Decomposition and modelling of the annual cycle of meteorological variables in the Ukrainian Carpathians

Keywords: annual cycle, harmonicsс, amplitude, phase, models, Ukrainian Carpathians, orographic effects

Abstract

Formulation of the problem. In this paper we consider some structural peculiarities of the seasonal cycle of a number of meteorological variables (air temperature, sum of precipitations, saturation deficit, relative humidity, water vapour pressure, station level and sea level pressure, wind speed) in the Ukrainian Carpathians, with the annual cycle being interpreted as a superposition of six harmonics with the period ranging from 2 months to 1 year.

Data and methods. This research is based on the average monthly values of seven meteorological variables in the Ukrainian Carpathians within a standard climatological period of 1961-1990. Implicit frequencies in seasonal fluctuations were revealed and evaluated with the help of harmonic analysis method.

Presentation of the main research material. A particular emphasis has been laid on the parameters of the first (annual) and second (semiannual) harmonics. It was found out that, on average, the annual harmonic explains some 87% of the total variance of the variables, while the semiannual harmonic accounts for more than 7%. It is shown that when considering seasonal fluctuations of air temperature, saturation deficit and water vapour pressure annual harmonic will suffice. Analyzing fluctuations of other meteorological variables requires a semiannual harmonic to be taken into account. Higher order harmonics (from third to fifth) are to be taken into consideration when analyzing relative humidity, sum of precipitations, station level pressure, and wind speed. The last harmonic (with a period of 2 months) does not play any significant role at all.

It was found out that the seasonal cycle structure of these meteorological variables at mountain weather stations and at foothill ones differ noticeably. For some meteorological variables, namely saturation deficit, air temperature, water vapour pressure and atmospheric pressure, orographic effects that manifest in either delayed or early phase of the annual cycle with relation to altitude, have proved to be statistically significant. Phases of this harmonic are typical of meteorological variables that are directly interdependent, while variables that are inversely interdependent normally fluctuate in antiphase.

Downloads

Download data is not yet available.

Author Biography

Vasyl Ivanovych Zatula, Taras Shevchenko National University of Kyiv

PhD (Geography), Associate Professor

References

1. Abercromby R. (1878). On the application of harmonic analysis to the reduction of meteorological observations, and on the general methods of meteorology. Quarterly Journal of the Royal Meteorological Society, 4(27), 141-157. doi:10.1002/qj.4970042701
2. Barry R.G. (2008). Mountain weather and climate. Cambridge, UK: Cambridge University Press, 506.
3. Buchy`ns`ky`j I.O., Volevaxa M.M., Korzhov V.O. (1971). Klimat Ukrayins`ky`x Karpat [Climate of the Ukrainian Carpathians]. Kyiv, Ukraine: Naukova Dumka, 172.
4. Craddock J.M. (1956). The representation of the annual temperature variation over central and northern Europe by a two-term harmonic form. Quarterly Journal of the Royal Meteorological Society, 82(353), 275-288. doi:10.1002/qj.49708235304
5. Girskaja Je.I. (1976). Polugodovye kolebanija atmosfernogo davlenija [Semi-annual variations of atmospheric pressure]. Proceedings of Main Geophysical Observatory, 378, 110-115.
6. Isaev A.A. (1988). Statistika v meteorologii i klimatologii [Statistics in meteorology and climatology]. Moscow, USSR: Moscow State University, 248.
7. Ivanov V.V. (2002). Periodicheskie kolebanija pogody i klimata [Periodic weather and climate variations]. Ad-vances in physical sciences, 172(7), 777-811. doi:10.1070/PU2002v045n07ABEH000948
8. Ivanov-Holodnyj G.S. (1974). Polugodovye variacii v ajeronomii i geomagnetizme [Semi-annual variations in aeronomy and geomagnetism]. Advances in physical sciences, 114(2), 379-381. doi:10.3367/UFNr.0114.197410i/0379
9. Kalma J.D. (1971). The annual course of air temperature and near-surface soil temperature in a tropical Savan-nah environment. Agricultural Meteorology, 8, 293-303. doi:10.1016/0002-1571(71)90117-8
10. Kobysheva N.V., Kostin S.I., Strunnikov Je.A. (1980). Klimatologija [Climatology]. Leningrad, USSR: Gidromete-oizdat, 344.
11. Lipins`ky`j V.M., Dyachuk V.A., Babichenko V.M. eds. (2003). Klimat Ukrayiny` [Climate of Ukraine]. Kyiv, Ukraine: Vy`davny`cztvo Rayevs`kogo, 343.
12. Logvinov K.T., Raevskij A.N., Ajzenberg M.I. (1973). Opasnye gidrometeorologicheskie javlenija v Karpatah [Dangerous hydrometeorological phenomena in the Carpathians]. Leningrad, USSR: Gidrometeoizdat, 199.
13. Lucenko O.V. (2003). Vremennaja izmenchivost' momenta impul'sa atmosfery [Temporal variability of the angular momentum of the atmosphere]. Hydrometeorological research center of Russian Federation. Moscow, Russian Federation, 22.
14. Marshall G.J. (2009). On the annual and semi-annual cycles of precipitation across Antarctica. International Journal of Climatology, 29(15), 2298–2308. doi:10.1002/joc.1810
15. Mary`ny`ch O.M., Shy`shhenko P.G. (2003). Fizy`chna geografiya Ukrayiny` [Physical Geography of Ukraine]. Kyiv, Ukraine: Tovarystvo «Znannya», 479.
16. McKinnon K.A., Stine A.R., Huybers P. (2013). The Spatial Structure of the Annual Cycle in Surface Temperature: Amplitude, Phase, and Lagrangian History. Journal of Climate, 26, 7852-7862. doi:10.1175/JCLI-D-13-00021.1
17. Molodyh V.A., Loginov V.F. (1984). Vozmozhnye prichiny polugodovyh kolebanij temperatury vozduha [Possible causes of semi-annual variations in air temperature]. Proceedings of Main Geophysical Observatory, 471, 86-92.
18. Panofsky H.A., Brier G.W. (1968). Some Applications of Statistics to Meteorology. University Park, USA: Pennsyl-vania state university, 224.
19. Prescott J.A., Collins J.A. (1951). The lag of temperature behind solar radiation. Quarterly Journal of the Royal Meteorological Society, 77(331), 121-126. doi:10.1002/qj.49707733112
20. Sakali L.I., Lingova S.H. eds. (1988). Klimaticheskie resursy Ukrainskih Karpat i gornyh rajonov Bolgarii [Climate resources of the Ukrainian Carpathians and mountainous regions of Bulgaria]. Moscow, USSR: Gidrometeoizdat, Moskovskoe otdelenie, 340.
21. Sedunov Ju.S. (Chairman), Avdjushin S.I., Borisenkov E.P., Volkovickij O.A., Petrov N.N., Rejtenbah R.G., Smirnov V.I., Chernikov A.A. eds. (1991). Atmosfera. Spravochnik (spravochnye dannye, modeli) [Atmosphere Handbook (reference data, models)]. Leningrad, USSR: Gidrometeoizdat, 510.
22. Semenov S.M., Gel'ver E.S. (2002). Sinusoidal'naja approksimacija godovogo hoda srednesutochnoj temperatury vozduha na territorii Rossii v XX veke [Sine approximation of the annual course of daily mean air temperature in Russia in the twentieth century]. Meteorology and hydrology, 11, 25-30.
23. Van den Broeke M. (2000). The semi-annual oscillation and Antarctic climate. Part 3: the role of near-surface wind speed and cloudiness. International Journal of Climatology, 20(2), 117-130. doi:10.1002/(SICI)1097-0088(200002)20:2<117::AID-JOC481>3.0.CO;2-B
24. Wallace C.J., Osborn T.J. (2002). Recent and future modulation of the annual cycle. Climate Research, 22(1), 1-11. doi:10.3354/cr022001
25. Wilks D.S. (2006). Statistical methods in the atmospheric sciences. 2nd edn. Amsterdam: Academic Press, 630.
26. Yashayaev I.M., Zveryaev I.I. (2001). Climate of the seasonal cycle in the North Pacific and the North Atlantic oceans. International Journal of Climatology, 21(4), 401-417. doi:10.1002/joc.585
27. Zatula V.I. (2017). Viyavlennya prihovanih periodichnostej sezonnih kolivan meteorologichnih velichin na teri-toriyi Volinskogo Polissya [Identifying of the hidden periodicities of seasonal oscillations of meteorological vari-ables on the territory of Volyn Polissya]. Physical geography and geomorphology, 1(85), 101-105.
28. Zatula V.I., Zatula N.I. (2014). Harmonic analysis of seasonal oscillations of some meteorological variables on Ukrainian territory. Hydrology, hydrochemistry and hydroecology, 2(33), 98-103.
29. Zatula V.I., Zatula N.I. (2017a). Sezonnye kolebaniya nekotoryh meteorologicheskih velichin na territorii Odesskoj oblasti [Seasonal oscillations of some meteorological variables on territory of Odessa region]. Bulletin of Hydro-meteorological center of Black and Azov seas, 1(20), 67-75.
30. Zatula V.I., Zatula N.I. (2017b). Viyavlennya prihovanih periodichnostej sezonnih kolivan meteorologichnih veli-chin na teritoriyi Zhitomirskogo Polissya [Identifying of the hidden periodicities of seasonal oscillations of mete-orological variables on the territory of Zhytomyr Polissya]. Hydrology, hydrochemistry and hydroecology, 1(44), 114-120.
31. Zveryaev I.I. (2007). Climatology and long-term variability of the annual cycle of air temperature over Europe. Russian Meteorology and Hydrology, 32, 426-430. doi:10.3103/S1068373907070023
Published
2019-03-20
Cited
How to Cite
Zatula, V. I. (2019). Decomposition and modelling of the annual cycle of meteorological variables in the Ukrainian Carpathians. Visnyk of V. N. Karazin Kharkiv National University, Series "Geology. Geography. Ecology&quot;, (49), 95-106. https://doi.org/10.26565/2410-7360-2018-49-08