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ABSTRACT

Problem Statement and Purpose. Groundwater is an important resource for agriculture, drinking water, and ecosystems in
Sragen Regency, Central Java, Indonesia. However, the area is significantly water-stressed due to recurrent droughts, pollution, and
unsustainable extraction methods. The aim of this study is to monitor the changes of groundwater storages during 2003-2024 using
Gravity Recovery and Climate Experiment (GRACE) satellite mission and Global Land Data Assimilation System (GLDAS) products
into Google Earth Engine (GEE) to advance Sustainable Development Goal 6 (Clean Water and Sanitation) and SDG 13 (Climate
Action).

Data and Method. The study employs GRACE data to analyze Total Water Storage (TWS) and the hydrological components -
Soil Moisture SM and Snow Water Equivalent SWE- that GLDAS provides as a supplement. Merging these datasets within GEE seeks
to understand groundwater trends from seasonal to long-term.

Result and Discussion. The study observed an average decrease in groundwater storage, with observed stresses during drier-
than-usual periods in 2015-2016 and 2018-2020. Whereas, contrary to this long-term declining trend, the groundwater generally rises
during wet seasons and falls again during dry seasons, demonstrating seasonality in storage. Furthermore, quantitative analysis revealed
a net groundwater storage decline of approximately 15-20% during the 2003-2024 period, with critical depletion phases correlating
with events (2015-2016) and prolonged droughts (2018-2020). The GRACE-GLDAS-GEE integration demonstrated high efficacy in
detecting seasonal recharge cycles (+8-12 cm equivalent water height during monsoon months) versus dry-season depletion (-10-15
cm), providing unprecedented spatial-temporal resolution for this tropical agricultural region. This approach offers a scalable model
for implementing SDG 6.4 (sustainable water withdrawals) through precision aquifer management in developing economies facing
climate stress. The results should hasten the consideration of better water management approaches to stop further depletion of ground-
water through methods such as managed aquifer recharge and maximizing irrigation efficiencies. This study provides a good example
of using GRACE and GLDAS data adoption for regional groundwater monitoring, thus setting a solid basis for interventions aimed at
alleviating water scarcity for Sragen Regency and beyond. This information will also serve as input in making decision-supporting
management, aligning with SDG 6 targets for sustainable freshwater resource allocation and addressing challenges posed by climate
variability and increasing anthropogenic pressures under SDG 13.
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1. Introduction

Groundwater is a critical resource for sustaining
agriculture, drinking water supplies, and ecosystems
in Sragen Regency, Central Java, Indonesia, directly
supporting Sustainable Development Goal 6 (Clean
Water and Sanitation). However, the region faces re-
curring droughts, with over 6,000 households affect-
ted in 2023 alone, leading to severe water scarcity
and reliance on external water sources [1-3]. The

Bengawan Solo River, a primary water source, has
been heavily polluted since 2015, rendering it unsuit-
able for irrigation and drinking, further exacerbating
water stress [4, 5]. These challenges are compounded
by unsustainable groundwater extraction practices,
which have led to declining groundwater levels, hin-
dering progress toward SDG 6 and exacerbating vul-
nerabilities under SDG 13 (Climate Action) [6-9].
Globally, groundwater depletion has been docu-
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mented in regions such as the North China Plain [10],
Northwest Bangladesh [11], South and Southeast
Asian Countries [12], Nile River Basin (NRB) [13],
Western Iran region in the Middle East [14], Central
Valley in California [15], the High Plains Aquifer in
the U.S. [16], Colorado River Basin in the American
Southwest [17], and parts of India [18, 19], highlight-
ing the widespread nature of this issue. In the Sragen
Regency, the lack of localized, high-resolution data
on groundwater storage changes has hindered effec-
tive water resource management. Traditional moni-
toring methods, such as well measurements, are often
sparse and insufficient for capturing large-scale
trends [15]. The Issue with depleting groundwater
have arisen with varying severity degrees [20].

The GRACE (Gravity Recovery and Climate
Experiment) mission was a joint venture between
NASA and the German Aerospace Center (DLR),
launched on March 17, 2002, and concluded on Oc-
tober 27,2017 [21, 22]. This mission consisted of two
co-orbital satellites flying at an average altitude of
around 450 km, separated by approximately 220 km
[23, 24]. GRACE's primary objective was to measure
the Earth's gravity field and its temporal variations,
providing insights into mass changes within the Earth
system [22, 23]. This mission utilized a K-band mi-
crowave ranging system to measure the distance and
relative speed between the two satellites with high
precision [22, 24].

GRACE data has been instrumental in studying
terrestrial water storage changes, ice sheet mass bal-
ance, lacier mass variations, and sea level changes
[22, 25]. The mission provided critical measurements
for climate-related studies, including ocean dynam-
ics, polar ice mass changes, and global groundwater
changes [26, 27]. Following the success of GRACE,
the GRACE Follow-On (GRACE-FO) mission was
launched on May 22, 2018, to continue monitoring
temporal mass variations within the Earth's system
[26, 28].

GRACE-based total water storage (TWS) on
land includes variations in groundwater, soil mois-
ture, surface water, snow, and ice. TWS data from
GRACE is used to quantify basin storage river dis-
charge relationships [29-31], groundwater depletion
[15, 29], evapotranspiration [32, 33]. Initiated in
2002, GRACE and follow-on missions, GRACE-FO,
have provided a new perspective for monitoring
changes in water resources [34]. By utilizing addi-
tional observations from various remote sensing plat-
forms and land surface models and adjusting them,
scientists have been able to resolve changes in
groundwater storage within the great river basins
around the globe [35]. Some studies used remote
sensing data for indirect assessment of croplands
conditions and drought stress through the calculation
of specific vegetation indices [36]. This method has

successfully brought groundwater storage change in
various regions across the globe [22]. One of the sig-
nificant limitations of the GRACE data is low resolu-
tions, which makes it difficult to apply small-scale
groundwater monitoring [37]. Furthermore, GRACE
provides the first opportunity to observe groundwater
change directly from orbit. Using a variation of the
Earth's gravitational field as a device, measurements
are made to determine variations in the volume of wa-
ter stored within a particular area, which then causes
changes in gravity [38].

The problem of ensuring the population has ac-
cess to quality drinking water and sustainable water
supply for economic and industrial needs is one of the
most important issues for any country [8]. This
GRACE satellite mission offers a unique opportunity
to monitor groundwater storage changes at a regional
scale by measuring variations in Earth's gravity field,
which are influenced by changes in water mass [34].
When combined with land surface models like the
Global Land Data Assimilation System (GLDAS),
GRACE data can isolate groundwater anomalies
from other hydrological components, providing a
comprehensive understanding of groundwater dy-
namics [7, 19, 22].

Despite GRACE data potential in groundwater
monitoring, the application of this data in Sragen Re-
gency remains underexplored, leaving a critical gap
in understanding the region's groundwater trends and
their implications for sustainable water management.
So, this study aims to address this gap by leveraging
GRACE and GLDAS data within the Google Earth
Engine (GEE) platform to detect and analyze ground-
water storage changes in the Sragen Regency. By
providing insights into seasonal and long-term
groundwater trends, this research will inform strate-
gies for sustainable water resource management,
helping mitigate droughts' impacts and ensure water
security for the region's population.

2. Materials and Methods

Study Area. Sragen Regency is located in Cen-
tral Java province, Indonesia, between 111° 01'
19.99" East Longitude and -7° 25' 35.00" South Lat-
itude. It has 208 villages, 196 rural and 12 urban,
across 20 districts. The total area is 994.57 km?
(384.01 sq mi), and the population is 997,485 as of
mid-2023 [39]. Fig. 1 shows the map of the admin-
istration in the research area.

Data Source. Three types of datasets derived
from Landsat satellite imagery have been used to as-
sess the groundwater storage:

1. The GRACE (Gravity Recovery and Climate
Experiment) mission measures changes in
Earth's gravity field, which measures Terres-
trial Water Storage (TWS) data, which is a
combination of Groundwater Storage (AGW),
Soil Moisture (ASM), Snow Water Equivalent
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Fig. 1. Map of the Study Area, Sragen Regency, Central Java, Indonesia

(ASWE), and Surface Water (ASW).

2. GLDAS-2.1: Global Land Data Assimila-
tion System (Noah Model) included the fea-
tures of Soil Moisture (SM) and Snow Water
Equivalent (SWE).

The JRC Yearly Water Classification His-
tory dataset provided the Global Surface
Water (SW) dataset.

Satellite-based GWS change derived from
GRACE for changes in total water storage (ATWS)
and GLDAS water content data [10, 18, 19]. All data
were downloaded from 1 January 2003 and summa-
rized in Table 1. The methodology proposed for esti-
mating a change in groundwater storage is presented
in the flow chart Fig. 2.

Data Analysis. To detect groundwater storage
changes, this study combined GRACE and GLDAS
datasets within Google Earth Engine (GEE) and ap-
plied a computational workflow to isolate groundwa-
ter anomalies; GRACE has the unique ability to track
changes in total water storage anomalies (TWSa) di-
rectly, according to Eq.1.

TWSa=CANa + SWa + SMa + SWEa + GWa (1)

Where:
CANa = Canopy Water Storage Anomaly
SWa = Surface Water Anomaly

SMa = Soil Moisture Anomaly

SWEa = Snow Water Equivalent Anomaly

GWa = Groundwater Storage Anomaly

The methodology involves the following steps:

Exploring the Study Area. In the following
sections of code, shapefile of the study area loaded
and imported from an Assets Fig. 3.

Tracking Total Water Storage Changes in the
study area with GRACE. GRACE is able to moni-
tor TWSa changes directly [38]. The regions that are
receiving or losing water are indicated by changes in
TWSa. In GEE, GRACE Monthly Mass Grids Ver-
sion 03 - Global Mascon (CRI Filtered) dataset
contains gridded monthly global water storage/height
anomalies relative to a time-mean, derived from
GRACE and GRACE-FO and processed at JPL using
the Mascon approach (RL06.1Mv03).

This GRACE Monthly Mass Grids Version 03
- Global Mascon (CRI Filtered) dataset was em-
ployed as the primary data source for estimating
groundwater storage changes and was selected due to
its advanced mascon (mass concentration) approach,
which provides higher spatial resolution and reduces
leakage errors compared to traditional spherical har-
monic solutions. The inclusion of Coastal Resolution
Improvement (CRI) filtering further enhances the ac-
curacy of the data, particularly in land and coastal re-
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Table 1
Description of Datasets Sources
Data Spatial /
. . Product o .
Satellite obtained Source . . Band Description | Units | Temporal
specifications .
and date Resolution
Terrestrial GRACE
GRACE | Water Stor- JPL using the | Monthly Mass Equivalent
and age (TWS) Mascon ap- Grids Version Iwe_thick- liquid water om 55,660 me-
GRACE- | 01/01/2003 proach 03 - Global ness thickness in ters.
FO - (RL06.1Mv03). | Mascon (CRI centimeters
31/12/2024 Filtered).
Soil Mois- |\ ional Oce-
ture SM .
01/01/2003 | anic and Atmos- Root- Root zone ke/m?
B pheric Admin- Moist_inst soil moisture
istration GLDAS-2.1:
31/12/2024 (NOAA)/Global | Global Land 27,830 me-
GLDAS | Snow Water o o
Equivalent Data Assimila- | Data Assimila- ters
qgl\\{]E tion System tion System. Snow depth
(GDAS) atmos- SWE _inst water equiv- | kg/m?
01/01/2003 . . —
- pheric analysis alent
31/12/2024 fields.
Classifica-
Sltlga(cse\ga— Joint Research JRC: Yearly tion of the
JRC | 01/01/2003 | Contre ORC) of | Water Classifi- | g o, o | seasonality 30 meters
B the European | cation History, of water
31/12/2021 Commission. vl.4. throughout
the year.

gions, making it highly suitable for regional-scale
groundwater studies. The GRACE data provides
monthly terrestrial water storage (TWS) anomalies,
which include contributions from groundwater, soil
moisture, surface water, and snow. By isolating
groundwater storage changes from TWS using com-
plementary datasets like GLDAS, this study lever-
ages the precision and reliability of the GRACE mas-
con data to analyze seasonal and long-term ground-
water trends in the Sragen Regency. Integrating this
dataset within Google Earth Engine allows for effi-
cient processing, visualization, and interpretation of
groundwater dynamics, ensuring robust and actiona-
ble insights for sustainable water resource manage-
ment.

GRACE Data Processing. GRACE mission
data are processed within Google Earth Engine
(GEE) using a computational workflow from the pri-
mary data center: Jet Propulsion Laboratory (JPL) in
Pasadena, California, United States. This processing
is done using the following code Fig. 4.

Estimate the Linear Trend in TWSa Over
Time. The TWSa trend was examined across the full
record period 01/01/2003 — 31/12/2024. The Earth
Engine has a capacity of fitting up linearly with time-
series data; each pixel will have a general linear fit
throughout all valuing the time. Following is the GEE
code Fig. 5 for doing that.

GLDAS (NOAH Model). At a three-hour inter-
val, the Global Land Data Assimilation System

(GLDAS) resolves global fluxes in the storage of en-
ergy and water (such as soil moisture and snow) using
a number of land surface models [40]. Table I shows
the basic characteristics of the NASA GLDAS-2 data.
This data was taken into consideration where soil
moisture data is available in the band root zone mois-
ture’ and snow water depth and canopy storage in the
band ‘SWE inst.’

Tracking Changes in Soil Water Storage,
Snow Water Equivalent, and Surface Water Over
Time. The three-hourly GLDAS data for Soil Mois-
ture converted to annual SWEa from 2003 until 2024
can be found in the script ’Soil Moistor SM™ in
Fig. 6. The same steps were applied for snow water
equivalent “’Snow_Water Equivalent SWE” in Fig.
7 and Surface Water from JRC data, which is availa-
ble until 2021, shown in the script ‘’Surface Wa-
ter SW” in Fig. 8. Running the scripts is important
to download all datasets for each variable over time
and clarify how the image assets were created for each
GLDAS and JRC dataset in this step.

GLDAS - GLDAS-2.1: Global Land Data As-
similation System.

- Soil Moisture Anomalies SMa - Band:
‘RootMoist_inst’
- Snow Water Equivalent Anomalies SWEa -
Band: ‘SWE inst’
Surface Water Anomalies SWa - JRC: Yearly Water
Classification History, v1.4
Band: ‘WaterClass’
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Satellite Data
GRACE GLDAS e
Band: Band:
IPL . [
RootMoist_inst SWE _inst Band: WaterClass
Band:
lwe_thickness
SM SWE SW
TWS

Combining Image Collections

ATWSa = ASWa + ASMa + ASWEa + AGWa

AGWa = ATWSa — (ASWa +ASMa + ASWEa)

Fig. 2. Flowchart showing methodology for estimation of change in groundwater storage in the Study Area

// Load the shapefile of Sragen
// Define the geometry of Sragen
// Center the map on Sragen

Map.centerObject(Sragen, 18);

// Add the shapefile to the map

var sragenShapefile = ee.FeatureCollection('projects/ee-najmhilal/assets/Sragen');

var sragenGeometry = sragenShapefile.geometry();

Map.addLayer(sragenShapefile, {color: 'green'}, 'Sragen', true, 8.5);

Fig. 3. GEE Code to Import Shapefile of the Study Area

For the next analysis, GLDAS SMa and SWEa;
JRC SWa datasets, which were process-sed by the
methods above, were imported to GEE. At a tem-
poral frequency of three hours, GLDAS estimations
of snow water equivalent and soil moisture are re-
solved. Reducing the GLDAS data from the three-
hour estimates to annual means has therefore taken
time. To increase the efficiency of conducting this re-
search, we also combined monthly GRACE measure-
ments to annual average estimations.

Load GLDAS Soil Moisture and Snow Water
Equivalent Images from an Asset to an Image

Collection. From 2003 until 2024, SM and SWE
imported several assets. Additionally, the script was
used to convert the list of annual mean soil moisture
and snow water images to an ImageCollection. Be-
fore using Eq. 1 to calculate groundwater storage
anomalies using GRACE and GLDAS data, we
should check the units to make sure our calculations
are correct. To find the units for "RootMoist_inst"
and "SWE _inst," search for "GLDAS" in Earth En-
gine's "search bar," click on GLDAS-2.1: Global
Land Data Assimilation System, and then select
Bands. At the moment, the units for GLDAS bands
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// Import Gravity Recovery and Climate Experiment (GRACE) dataset
var GRACE = ee.ImageCollection("MNASA/GRACE/MASS_GRIDS_V@3/MASCON_CRI™)

// Select the Liquid Water Equivalent thickness (LWE)
var sragenTWSa = GRACE.select('lwe_thickness');

// Filter GRACE data to Sragen
var sragenGRACE = sragenThSa.filterBounds(sragenGeometry);

// Visualize the GRACE data for Sragen
Map.addLayer(sragenGRACE, {min: -25.8, max: 25.8, palette: ['blue', 'white', "red']}, 'GRACE Water Thickness');

// Create a time series chart for GRACE data in Sragen
var TWSaChart = ui.Chart.image.series({
imageCollection: sragenTWSa.filter(ee.Filter.date(
'2003-01-01', '2024-12-31")),
region: sragenGeometry,
reducer: ee.Reducer.mean(),
scale: 25600

.setOptions({
title: 'Change in Total Water Storage (TWSa) from GRACE, Sragen',
hAxis: {title: 'Date’, titleTextStyle: {italic: false, bold: true}},
vAxis: {title: 'TWSa (cm)', titleTextStyle: {italic: false, bold: true}}

print(TWSaChart);

Fig. 4. GEE Code to load GRACE data for the Study Area during the period 2003-2024

// set start and end years to annualize the data.
var yrstart = 2002;
var yrend = 2024;
var years = ee.lList.sequence(yrStart, yrind);
var GRACE_yr = ee.ImageCollection.fromImages(years.map(function(y) {
var date = ee.Date.fromyMD(y, 1, 1);
return sragenTWSa.filter(ee.Filter.calendarRange(y, v,
‘year'))
.mean()
.set(’'system:time_start’, date)
.rename{"TWSa');
}).flatten());

// Make plot of annualized TWSa for Sragen Boundary.
var TwWSachart = ui.Chart.image.series({
imageCollection: GRACE yr.filter(ee.Filter.date(
'2003-01-01", '2024-12-31")),
region: Sragen,
reducer: ee.Reducer.mean(),
scale: 256000
1) .setChartType('Scatterchart”)
.setoptions({
title: 'Total Annualized Water Storage anomalies',
trendlines: {

a: {
color: "CCoboe’
¥
o
haxis: {
format: "MM-yyyy'
i)
vAxis: {

title: "TWSa (cm)’

1
linelWidth: 2,
pointSize: 2

15
print(TWsacChart);
Fig. 5. GEE Code for TWSa trend across the full record period for the Study Area

are kg/m?. The snow and soil moisture values need to
be converted to the corresponding cm of water depth.
Map the following conversion variable over the Im-
ageCollection after defining it. These Soil Moisture
and Snow Water Equivalents were converted to
equivalent water depth units of centimeters and
imported from Assets using the code in Fig. 9 and

Fig. 10, respectively.

Importing Surface Water Storage from an
Asset to an Image Collection. The JRC Yearly Wa-
ter Classification History dataset, provided by
the Joint Research Centre (JRC) of the European
Commission, is a global dataset that maps the extent
and changes in surface water over time. It is part of
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the Global Surface Water (GSW) dataset derived
from Landsat satellite imagery. This dataset is partic-
ularly useful for studying long-term trends in surface
water dynamics, including seasonal and permanent
water bodies.

Unlike the other components of water storage,
land surface models do not include surface water
storage. JRC: Yearly Water Classification History,
v1.4, is the source of SWa instead. Band: ‘Water-
Class,” Resolution: 30 meters, created in the cod
script ‘Surface Water-SWa’ Fig. 8 before being in the
‘Assets’ from 2003 until 2021. This dataset contains
maps of the location and temporal distribution of sur-
face water from 1984 to 2021 and provides statistics
on the extent and change of those water surfaces [41].
Fig. 11 shows the GEE code used to import these JRC
datasets from Assets from 2003 to 2021.

The Yearly Seasonality Classification collection
for the study area contains a year-by-year classifica-
tion of the seasonality of water based on the occur-
rence values detected throughout the period Fig. 12.

Combining Image Collections to Resolve
Changes in Groundwater. Unfortunately, it’s still
hard to quantify change without having all the varia-
bles on one plot. It might be best to compute the dif-
ferences via Eq.1. In this case, many image collec-
tions are combined, and differences are calculated us-
ing an expression. The GLDAS image collections
were first combined. To do this, the "ee.Join.inner"
function is used. Calculate the change in water that is
accessible to humans by using GLDAS and GRACE
data.Print out the ImageCollection GRACE res
GLDAS for a moment. One can rearrange Eq. 1 to
solve for GWa in order to resolve changes in ground-
water storage in the basin. Here, we disregard canopy
storage anomalies in the equation below Eq. 2 since
we believe they are negligible in comparison to other
storage components. This phase is carried out by cre-
ating a new variable called GWa by mapping an ex-
pression across an ImageCollection.

Fig. 13 shows that GLDAS image collections for
soil moisture (SM) and snow water equivalent (SWE)

[/ Set start / end year.
var yrStart = 2003;

var yrEnd = 2024;

var years =

var varBand = "RootMoist inst’;

.select(varBand)
.filterDate({

s

print(waterstorage mean);

var y = 2024,
var date = ee.Date.fromYMD(y, 1, 1);

"NASA/GLDAS/VB21/HNOAH/GB25/T3H")
.select(varBand)

.mean());
print(waterstoragel();

waterstorage_mean)
.set('year’, y)
.set('system:time_start', date));
print(waterstorage out);

Export.image.toAsset({
image: waterstorage_out,
description:
assetld: 'sm2024°,
region: Sragen,
scale: 10000,
maxPixels: lel3

1)

"smZ2@24°
smees 3

ee.list.sequence(yrStart, yrEnd);

// The varBand variable is set to ewvaluated Soil Mpisture.

// Need to adjust to export Soil Moisture (SM_inst)

var waterstorage = ee.ImageCollection( MNASA/GLDAS/WB21/NOAH/GB25/T3H")
start: ee.Date.fromYMD{yrStart, 1, 1),
end: ee.Date.fromYMD{yrEnd, 12, 1)

var waterstorage mean = waterstorage.select{varBand).mean();

var waterstoragelC = ee.Image(ee.ImageCollection(

.filter(ee.Filter.calendarRange(y, y, 'year'))

var waterstorage out = ee.Image(waterstoragelC.subtract(

// Change the assetId & description below to reflect the variable being exported.
// These should be changed to reflect SM, SWE, Can etc.

Fig. 6. GEE Code to load and convert three-hourly GLDAS Soil Moisture to annual SMa for 2003 until 2024
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// Load GLDAS Soil Moisture (SM) images from an Asset to an ImageCollection.

var gldas_sm_list = ee.List([sm20863, sm2004, sm2085, sm2006, sm2667,
sm2088, sm2089, sm2818, sm2011, sm2812, sm2013, sm2014, sm20815, sm2016,
sm2017, sm2018, sm2@19, sm2020, sm20821, sm2022, sm2023, sm2024

1);

var sm_ic = ee.ImageCollection.fromImages(gldas_sm_list);

// The units for GLDAS are currently showing as kg/m2.
// You can go to Bands to see what the units are for 'RootMoist_inst' and 'SWE_inst'.
// We need to convert the soil moisture and snow values to equivalent water depth units of centimeters.
var kgm?_to_cm = 0.10;
var sm_ic_ts = sm_ic.map(function(img) {

var date = ee.Date.fromYMD(img.get('year’), 1, 1);

return img.select('RootMoist_inst').multiply(kegm2_to_cm)

.rename('SMa').set('system:time start', date);

1)

// Make plot of SMa for Sragen Boundary
var SMaChart = ui.Chart.image.series({
imageCollection: sm_ic_ts.filter(ee.Filter.date(
'2003-01-01', '2024-12-31')),
region: sragenGeometry,
reducer: ee.Reducer.mean(),
scale: 25008

}
.setChartType('ScatterChart ')
.setOptions({
title: 'Soil Moisture anomalies',
trendlines: {
6: {
color: 'CCog@@"
}
by

hAxis: {

format: "MM-yyyy'
1,
vAxis: {

title: 'SMa (cm)'
I

Linehlidth: > Fig. 9. GEE Code to Import SM from Assets

pointSize:
_ ig Eachart) and convert the value to cm
prin al ar 3

/{ Load GLDAS Snow Water Equivalent (SWE) Images from an Asset to an Image Collection

var gldas_swe_list = ee.List([swe2003, swelB@4, swel085, sweld@6,
swelld7, swelBB8, sweld@9, swel@lB, swelBll, swelBl2,
swe2@l13, swe20l4d, swe2@l5, swe20l6, swel@l7, swe2@ld, swe20l9,
swe2020, swe2021, swe2@22, swe2023, sweld24

s

var swe_ic = ee.ImageCollection.fromImages(gldas_swe list);

var swe_ic_ts = swe_ic.map(function(img) {
var date = ee.Date.fromYMD(img.get('year'), 1, 1);
return img.select('SWE_inst').multiply(kem2_to_cm).rename(
"SWEa').set('system:time_start', date);
s

// Make plot of SWEa for Sragen Boundary
var SWEaChart = ui.Chart.image.series({
imageCollection: swe_ic_ts.filter(ee.Filter.date(
'2803-01-01°, '2024-12-31')),
region: sragenGeometry,
reducer: ee.Reducer.mean(),
scale: 250600
1)
.setChartType( 'ScatterChart')
.setOptions({
title: 'Snow Water Equivalent anomalies',
trendlines: {
a: {
color: 'CCEEE0'
¥
1,

haxis: {

format: "MM-yyyy'
1
vAxis: {

title: 'SWEa (cm)'
}J‘

Linewidth: 7, Fig. 10. GEE Code to Import SWE from an Assets

pointSize: 2
_ igs EaChart) and convert the value to cm
prim aChart);
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var JRC_sw_list =
SW2808, sw2e89, sw2ele, sw2ell,
swWw2815, sw28le, sw2817, sw2els,

Map.addLayer(dataset, wvisualization,

f/ Make plot of SMa for Basin Boundary
var SWaChart = ui.Chart.image.series({

‘2@@3-p1-81', '2821-12-31")),
region: sragenGeometry,
reducer: ee.Reducer.mean(),
scale: 25000

.setChartType( "ScatterChart')

setoptions({
title: 'Surface Water anomalies’,
trendlines: {
8: {
color: 'CCOG88°
¥
Is
haxis: {
format: “MM-yyyy'
Is
whxis: {
title: "sWa (%)’

¥
lineWidth: 2,
pointSize: 2
F)s
print{SWaChart);

f/ Load Surface Water (5W) images from an Asset to an ImageCollection.
ee.List([sw2803, sw2084, sw20085, sw20d6, sw28e7,
sw2el2, sw2@l3, sw2el4,

swW2819, sw2az2é, sw2e2l

13
var sw_ic = ee.ImageCollection.fromImages(JRC_sw_list);
var kgm2 to cm = ©.18;
var sw_ic_ts = sw_ic.map(function(img) {
var date = ee.Date.fromYMD(img.get{'year'), 1, 1};
return img.select( 'waterClass").multiply(kgm2 _to_cm)
.rename( 'Ska’).set( system:time_start®, date);
I H
var dataset = ee.ImageCollection{ JRC/GSW1_4/YearlyHistory');
var visualization = {
bands: ['waterClass'],
min: 8.8,
max: 2.8,
palette: ['ccccec”, 'ffffff', "99d9ea’, '@aeaff’]

‘Water Class');

imageCollection: sw_ic_ts.filter(ese.Filter.date(

Fig. 11. GEE code used to import these JRC SWa datasets from Assets during the period 2003 — 2021

are combined using the ee.Join.inner function to
ensure temporal and spatial alignment. These da-
tasets are merged with surface water (SW) from
JRC image collections. Then, GRACE-derived ter-
restrial water storage (TWS) anomalies are
merged, representing the total water storage
changes. Groundwater storage anomalies (GWa)
are isolated by rearranging the water balance equa-
tion Eq.2.

GWa=TWSa—-SWa—-SMa—-SWEa (2)
Where:
TWSa = Terrestrial Water Storage anomaly
(from GRACE)

-136 -

SWa = Surface Water anomaly (from JRC)

SMa = Soil Moisture anomaly (from GLDAS)

SWEa Snow Water Equivalent anomaly

(from GLDAS)

This equation is applied across the combined
image collection using GEE's map function, gener-
ating a new variable, GWa, that represents monthly
groundwater storage changes. The results are visu-
alized and analyzed to assess seasonal and long-
term trends in groundwater storage. Also, during
the drought period 2015 — 2016, the groundwater
depletion and water losses were calculated using
the GEE code shown in Fig. 14.
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MENCIL

fan

KLEBEN

MOJOSONGO

Class Table: waterClass

Value Color Color Value
0 o #ccecce

1 _— > #HIFFFFF

2 G #99d9ea

3 [ #0000ff

Banjutarung}: i

Sidomuly

Description

No data
Not water
Seasonal water

Permanent water

Fig. 12. Classification of the Seasonality of Surface water in the study area

By leveraging the strengths of GRACE and
GLDAS datasets, this methodology offers a robust
framework for detecting groundwater storage
changes. The integration of these datasets enables
the separation of groundwater anomalies from
other hydrological components, facilitating accu-
rate monitoring of groundwater dynamics. This ap-
proach is particularly valuable for regions facing
water scarcity, as it supports informed decision-
making and sustainable water management prac-
tices.

3. Results And Discussion

Total Water Storage Changes in the study
area with GRACE. The imported GRACE data
has already been processed to provide TWSa units.
In this dataset, the anomalies are measured in
"equivalent water thickness" units. With GRACE,
the gravitational attraction of merely water is not
directly observed. Hence, GRACE hydrologic data
are given as anomalies. Earth's surface (such as
mountains) is also included in the observed gravity.

-137 -

Changes concerning a longer-term mean gravity
signal can be used to decipher the water signal. The
anomalies show the variation between a multi-year
mean and an observation from a specific month.
Fig. 15 shows the monthly TWSa for the study area
from "2003-01-01" to '2024-12-31"".

Fig. 15 illustrates the temporal variation in To-
tal Water Storage Anomaly (TWSa) derived from
GRACE data in the Sragen region from 2003 to
2024. The y-axis represents TWSa in centimeters
(cm), indicating deviations from the long-term av-
erage water storage, with positive values denoting
an increase and negative values indicating a de-
crease. The x-axis spans the study period, showing
monthly or annual changes in water storage. The
line connecting the data points reveals fluctuations
in TWSa, with peaks corresponding to periods of
increased water storage and troughs reflecting de-
creased storage. Over the observed period, the
trend analysis suggests a net decline in water stor-
age, potentially attributed to factors such as ground-
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var filter = ee.Filter.equals({
leftField: 'system:time start’,
rightField: 'system:time_start®

T

[/ Create the join.

var joindata = =e.Join.inner();

[/ Join GLDAS data

filter));
var join_1 = firstJoin.map(function(feature) {

secondary”));

s

print({’Joined’, join_1);

[/ Repeat to append SW Data now
filter));

‘secondary”));

1)
[/ Repeat to append GRACE now
filter));

'secondary”});

I

// Compute groundwater storage anomalies

return img.expression(

'"TWSa - SWa - SMa - SWEa', {
‘ThSa':
"SMa’:
"Ska"
'SWEa': img.select('SkEa')

1).rename( "Gla').copyProperties(img, [
‘system:time_start’

1);
ik

print{'GWa"', GWa);

// Combine GLDAS & GRACE Data to compute change in human accessible water

var firstloin = ee.ImageCoellection(joindata.apply(swe_ic_ts, sm_ic_ts,

return se.Image.cat(feature.get( primary'), feature.get(

var secondJoin = ee.ImageCollection(joindata.apply(join_1, sw_ic_ts,

var sragen GLDAS = secondJoin.map(function(feature) {
return ee.Image.cat(feature.get( primary'), feature.get(

var thirdloin = ee.ImageCoellection(joindata.apply(sragen_GLDAS, GRACE_yr,

var GRACE_sragen_GLDAS = thirdJoin.map(function({feature) {
return se.Image.cat(feature.get( primary'), feature.get(

var Gha = ee.ImageCollection(GRACE_sragen_GLDAS.map(function(img) {
var date = ee.Date.fromYMD(img.get( year'), 1, 1});

Fig. 13. GEE Code used to Combining Image Collections to Resolve Changes in Groundwater

water over-extraction, reduced precipitation, or un-
sustainable water management practices. This de-
cline highlights the region's vulnerability to water
scarcity and underscores the need for sustainable wa-
ter resource management strategies.

This analysis is significant because it provides
critical insights into the hydrological dynamics of
Sragen Regency. By quantifying changes in total wa-
ter storage, the chart helps assess the impacts of cli-
mate variability and human activities on the region's
water resources. These findings are essential for in-
forming policy decisions and developing adaptive
water management practices to address the region's
ongoing and future water challenges.

The interannual and seasonal fluctuations in
TWSa are depicted in Fig. 16. Since reservoirs are
full and the soil is wet, the winter months reveal times
when water storage is at its highest. Less TWSa is

visible in the summer and early fall since the soil is
drying out and the reservoir water has been con-
sumed. Furthermore, throughout the summer,
groundwater is drawn up and used to augment a finite
supply of surface water. Declining TWSa between
2017-2018 and 2022-2024 provided evidence of
drought.

Changes in Soil Water Storage in the Study
Area with GLDAS. Fig. 17 shows Soil Moisture
SMa. Notice that SMa is like TWSa but is slightly out
of phase with TWSa, which shows the temporal var-
iations in soil moisture levels, expressed as anomalies
(SMa), from January 2003 to December 2024. The y-
axis represents the deviation from the long-term av-
erage soil moisture, with positive values indicating
wetter-than-average conditions and negative values
reflecting drier-than-average conditions. The x-axis
tracks time in monthly increments, allowing for the
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/f Chart Results
var GWaChart = ui.Chart.image.series({

linelWidth: 2,
pointSize: 2
15

print{GWaChart);
S/ Now look at the f
S/ 2815 0.686 cm --> 2016 6.879 cm

ff This is a ~3.5 cm / 100008 (cm/km) *

.multiply{area_km2};
print({’Curing the 2815-2816 drought,
"km3 in groundwater'});

cA lost °,

imageCollection: GWa.filter(ee.Filter.date( ' 2883-21
'2021-12-31")),
region: sragenGeometry,
reducer: ee.Reducer.mean(),
scale: 25200
)]
.setChartType( ScatterChart')
.setOptions({
title: 'Changes in Groundwater Storage’,
trendlines: {
a: {
color: 'CCo2aa’
¥
Is
haxis: {
format: "MM-yyyy !
Is
vAxis: {
title: "GWa (cm)’
Ts

values from the start of 2015 to the end of 2816 drought.

Area 997 km2 =
var loss_km3 = ee.Number(2.606).subtract(6.87%).

-a1',

divide(km_2_cm)

loss_km3,

Fig. 14. GEE Code used to shaw and calculate water losses during 2015 — 2016

Change in Total Water Storage (TWSa) from GRACE, Sragen

TWSa (cm)

—— lwe_thickness

D M\/\W\W\/\NW\/WW

V \\/"U

2004 2008 2008 J 2010 0 2012 0 2014 )

Date

2016 J 2018 J 2020 J 2022 J 2024

Fig. 15. Monthly TWSa for the Study Area

observation of seasonal and interannual trends. The
line plot reveals fluctuations in soil moisture, with
notable peaks and troughs corresponding to in-
creased or decreased moisture availability. These
variations are critical for understanding the hydro-
logical and agricultural dynamics of the region, as
soil moisture anomalies influence crop yields, wa-
ter resource availability, and ecosystem health. The
overall trend in the data can provide insights into

-139-

the impacts of climate variability, land use changes,
and water management practices, making this chart
an essential tool for informing sustainable agricul-
tural and environmental strategies.

Changes in Snow Water Equivalent in the
Study Area with GLDAS. Fig. 18 shows Snow
Water Equivalent SWEa, which may be noticed in
the fact that SWEa has a much smaller (absent)
magnitude than the other two variables. Fig. 18 il-
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Total Annualized Water Storage anomalies

30

25

20

TWSa (cm)

—— TWSa

-5
01-2002 01-2004 01-2006 01-2008 01-2010 01-2012 01-2014 01-2016 01-2018 01-2020 01-2022 01-2024 01-2026

Fig. 16. Total Annualized Water Storage anomalies

Soil Moisture anomalies

10.0

75

50

25

—— SMa

0.0

Shia (em)

2.5

50

75

-10.0

012002 012004 012006 012008 012010 012012 012014 012016 012018 012020 01-2022 012024 012026

Fig. 17. Time-series charts of SMa in units of equivalent water height (centimeters)

lustrates the temporal variations in snow water
equivalent, expressed as anomalies, from January
2003 to December 2024. The y-axis represents de-
viations from the long-term average snow water
equivalent, with positive values indicating above-
average snow accumulation and negative values re-
flecting below-average conditions. However, in the
study area, there is no snow throughout the year, as
noted in the consistent absence of significant
anomalies in the data. This absence of snow is con-
sistent with the region's climatic conditions, which
do not support snowfall or snow accumulation.
Consequently, the chart underscores the irrelevance
of snow water equivalent as a hydrological variable
in this context, highlighting the need to focus on
other critical water storage components, such as
soil moisture and groundwater, to understand the
region's water dynamics and inform sustainable
water management practices.

Changes in Surface Water SWa in the
Study Area with GLDAS. Fig. 19 shows surface
water anomalies (Swa), which indicates the time
variation in surface water level anomalies between
January 2003 and January 2021. The y-axis denotes

-140 -

deviation from the long-term average surface water
storage. Positive values indicate above-average
water levels, while negative values indicate below-
average conditions. The x-axis measures time in
months and shows seasonal and interannual fluctu-
ations in surface water availability.

Fig. 19 shows that surface water anomalies
SWa are of a similar magnitude to soil moisture
anomalies SMa. As expected, SWa increases dur-
ing each wet period in Sragen Regency (2009—
2010 and 2011-2013) aligns with the hydrological
behavior. During wet periods, increased precipita-
tion typically leads to higher surface water levels,
resulting in positive anomalies, as the chart depicts.
The observed increases in SWa during these peri-
ods suggest that water inputs from rainfall and
other sources exceed water use and losses, leading
to a net gain in surface water storage. This pattern
is consistent with the natural hydrological cycle,
where wet periods replenish surface water reser-
voirs. Such anomalies are important because they
signify the effect of precipitation patterns, evapo-
ration rates, and human activities, such as water ex-
traction and land use changes, on the hydrological
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Snow Water Equivalent anomalies

0.25
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0.00
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Fig. 18. Time-series charts of SWEa in units of equivalent water height (centimeters)

Surface Water anomalies

SWa (%)

—— SWa

0.00

-0.02
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Fig. 19. Time-series chart of SWa in units of equivalent water height (%)

dynamics of the study area. Trends and variations
in surface water anomalies can be used to give in-
terpretable information about regional water re-
source variability and management strategies for
sustainable water consumption and adaptation to
climate change. This aspect of data is very signifi-
cant when assessing the resistance of surface water

Changes in Groundwater Storage

25

20

GWa (em)

systems toward climatic extremes and anthropo-
genic pressures in a bid to establish the sustainabil-
ity of water for ecosystems and human needs.
Changes in Groundwater Storage for the
Study Area. Fig. 20 shows the changes in ground-
water storage anomalies (GWa) in Sragen Regency
from 2003 to 2021, derived using GRACE and

—— GWa

-10

01-2003 01-2009

01-2005 01-2007

01-201

01-2013

01-2015 01-2017 01-2019 01-2021

Fig. 20. Time-series chart of GWa in units of equivalent water height (centimeters)
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GLDAS data. The y-axis represents groundwater
storage anomalies in centimeters (cm), indicating
deviations from the long-term average, while the x-
axis shows the timeline in monthly increments. The
fluctuations in the line reflect seasonal and interan-
nual variations in groundwater storage, with posi-
tive values indicating periods of groundwater re-
charge and negative values suggesting depletion.

This groundwater depletion observed in Sra-
gen Regency aligns with findings from other re-
gions experiencing similar challenges. Studies in
areas such as the North China Plain, the Ganges-
Brahmaputra basin in India, and California's Cen-
tral Valley have also reported significant ground-
water decline due to over-extraction, climate vari-
ability, and insufficient recharge [7, 11, 22, 42]. For
instance, Tiwari et al. [10] documented alarming
groundwater depletion rates in northern India, at-
tributing the decline primarily to excessive agricul-
tural water use. Famiglietti et al. [15] highlighted
the role of unsustainable groundwater extraction in
California's Central Valley, leading to long-term
declines in groundwater storage. Similarly, Wada et
al. [43] reported significant groundwater depletion
in the Middle East and North Africa due to over-
extraction and limited recharge.

The seasonal fluctuations in groundwater stor-
age in Sragen Regency, driven by monsoon pat-
terns, mirror trends observed in the High Plains Ag-
uifer in the U.S. [16], where wet and dry season
variability significantly affects water availability.
Furthermore, the drought-induced declines in Sra-
gen Regency during 2015-2016 are comparable to
patterns seen in the Colorado River Basin [17], em-
phasizing the critical need for adaptive water man-
agement strategies such as managed aquifer re-
charge and improved irrigation practices. These
comparisons underscore the global nature of
groundwater depletion and the urgency for sustain-
able interventions to address water scarcity issues.

Key Observations

1. Seasonal Variability: The chart reveals pro-
nounced seasonal fluctuations in groundwa-
ter storage, consistent with the region's mon-
soon-driven climate. Peaks in groundwater
storage typically coincide with wet seasons,
while troughs align with dry periods. This
pattern is consistent with findings from other
regions with similar climatic conditions,
such as Rodell et al. [19], who observed
strong seasonal signals in groundwater sto-
rage in the Ganges-Brahmaputra basin. Sim-
ilarly, in California’s Central Valley, exces-
sive irrigation practices have resulted in sig-
nificant water table declines [15].
Long-Term Trends: A gradual decline in
groundwater storage is evident over the
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study period, particularly after 2010. This
trend aligns with studies in other groundwa-
ter-dependent regions, such as the North
China Plain [10], the High Plains Aquifer in
the U.S. [16], and in the South and Southeast
Asian Countries [12], where over-extraction
for agriculture and urbanization has led to
significant groundwater depletion.

3. Anomalies and Extreme Events: Sharp de-
clines in groundwater storage, such as those
observed around 2015 and 2019, may corre-
spond to prolonged droughts or increased
water demand. Similar anomalies have been
documented in regions like India, where
groundwater depletion has been exacerbated
by erratic rainfall and intensive irrigation
[18].

Implications for Water Management

The observed decline in groundwater storage
underscores the urgent need for sustainable water
management practices in the Sragen Regency, a
critical step toward achieving SDG 6.3 (improving
water quality and reducing water scarcity). Strate-
gies such as managed aquifer recharge, improved
irrigation efficiency, and regulatory measures to
limit groundwater extraction could mitigate further
depletion, align with SDG 6.4 (ensuring sustaina-
ble withdrawals) and could mitigate further deple-
tion [9]. These findings align with recommenda-
tions from studies in similar contexts, such as those
by Gleeson et al. [44], who emphasized the im-
portance of integrated water resource management
to address groundwater sustainability.

4. Conclusion

The study utilized the GRACE satellite data
with GLDAS and Joint Research Centre datasets to
investigate groundwater storage changes in the
Google Earth Engine platform in the Sragen Re-
gency, Central Java, Indonesia. Results indicated
serious declines in total water storage, especially
during periods of drought from 2015 to 2016 and
in 2019, which were facilitated by over-extraction,
decreased precipitation, and unsustainable water
management. Soil moisture dynamics were sea-
sonal, while snow water equivalent varied a negli-
gible amount in the region with a tropical climate.
Surface water levels showed seasonal variation
with increasing stress from climate variability and
human activities.

The most important finding is the long-term
decline in groundwater storage, especially post-
2010, with seasonal recharge during wet spells and
depletion during warmer drought periods. The
trend fits within the common narrative of global
groundwater depletion patterns in agriculture and
urban areas. This study highlights the need for sus-
tainable water management practices such as
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managed aquifer recharge systems, better irrigation
efficiency, and regulatory measures to control
groundwater extraction, contributing directly to
SDG 6 (Clean Water and Sanitation) and SDG 13
(Climate Action). Implementing these strategies
will ensure water security for vulnerable popula-
tions and ecosystems, advancing the 2030 Agenda
for Sustainable Development.

for future research with higher-resolution data and
advanced models. In conclusion, this research un-
derscores the importance of monitoring groundwa-
ter changes and implementing sustainable water
management strategies to ensure water security in
the Sragen Regency amid climate change and in-
creasing demand.
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MoHiTOpHHTI 3MiH y 3amacax HiA3¢eMHHUX BOJ 32 J0IOMOI0I0
cynyTHHKOBOI Micii Exciepument 3 Bignosiaenns I'pasiranii ta Kinimarty
(GRACE): remaru4He gocaigxeHns okpyry Cparen, Ingonesis

Haoxem Anv-/lin Monep Xinan !

MaricTepchka porpama 3 Hayk IIpo HaBKOJIHUIIHE CEPeOBHIIIE,

! VuiBepcurer Cebenac Mapet, Cypaxapra, [HmoHe3is;

Komapisa !

1. himocodii, MaricTepchKka mporpama 3 HayK Ipo HABKOJIUIIHE CEPEIOBHIIIC;

Api Xanoono Pamenan '

npodecop BHKIaIa4, MaricTepcbka mporpaMa 3 Hayk Ipo HaBKOJIMIIHE CEPEIOBHIIIE;
Keiiro Hooa °

JIOLIEHT, BuIa mkosna cilbChKOTOCHOAapPChKUX Ta 010J0TIYHUX HayK,

2 Tokiliceknii yriBepcuret, Tokio, SImomHis

[Tig3emMHi BOOM € BaKIIMBUM PECYPCOM IS CLTBCHKOTO TOCMOAAPCTBA, TUTHOT BOJY Ta €EKOCHUCTEM Y pereHTcTBI Cpa-
reH, LlentpansHa SBa, [Hmone3is. OqHaK, mei paioH 3HAYHO CTPa)XKIa€ BiJ BOAHOTO CTPECy depe3 MepiogudHi MOCyXH,
3a0pyIHEHHS Ta HECTiHKi MeToau BUAOOYTKY. MeTor IBOTO JOCIHIIKCHHS € MOHITOPHHT 3MiH 3alaciB MiI3eMHUX BOZ
npotsrom 2003-2024 pokiB 3a ZOMOMOTor0 CymyTHUKOBOi Micii Exkcnepument 3 BigHosnenus ['paBitamii Ta Kiimary
(GRACE) Ta npoaykTiB ['106ansHOI crcTemMu 3acBoenHs 3eMenbHux ganux (GLDAS) y Google Earth Engine (GEE). Y
JocnipkeHHl BukopuctoBytoThes qani GRACE s ananizy 3aransHoro 3anacy Boau (TWS) Ta rizponoridyHux KomIo-
HeHTiB, siki GLDAS Hanae sik nonoBHeHHs. O0'enHanHs nux HabopiB nanux y GEE mae Ha meti 3po3ymiTi TeHeHLil
MiZ3EMHHUX BOJ BiJl CE30HHUX JI0 TOBrOCTPOKOBUX. Y MOCIIKCHHI CIIOCTEPIraiocs CepeiHE 3MCHIIICHHS 3aMaciB Imia3e-
MHHX BOJI, 31 CIIOCTEPEXYyBaHHUMH CTPECAMHM TPOTATOM OiJIbII CYXHX, HiX 3a3BH4ai, nepioai y 2015-2016 Ta 2018-2020
pokax. Beyrieped 11iif JOBrocTpoKOBiH TEHICHIIIT 10 3HWKEHHS PIBEHb IPYHTOBHX BOJ 3a3BUYAI i ABUITYETHCS IPOTATOM
BOJIOTHX CE30HIB 1 3HOBY IaJa€ MPOTATOM IOCYNUINBHAX CE30HIB, IO JIEMOHCTPYE CE30HHICTh 30epiraHHs. Pe3ympraTti
MAalOTh IPUIIBHIIIUTH PO3IIIA] KPAIIUX ITiIXOIB O YIPABIiHHS BOXHUMH PECypcaMH, I100 3yIMMHUTH ITOAIbIIe BUCHA-
JKCHHS TPYHTOBHX BOJI 33 JOIIOMOTOIO TAKMX METOIIB, K KEPOBaHE ITOTIOBHEHHS BOJOHOCHOTO TOPH30HTY Ta MaKCHMi3a-
mist epeKTUBHOCTI 3pomreHHs. Lle mocmimkeHHs € rapauM npukinagom suxkopuctanHs gaHux GRACE ta GLDAS mis
PETiOHATBHOTO MOHITOPUHTY IPYHTOBHX BOJ, THM CaMHM 3aKJIaJaloddl MIIIHy OCHOBY JUIS BTPYYaHb, CIIPSIMOBAaHHUX Ha
3MeHIIeHHs aedinuty Boau s Cpeiimken Perenci Ta 3a fioro mexxamu. LIst iHopMalist TAKOXK CIYyTyBaTHME BHECKOM y
NPUIHATTS YIPaBIIHCHKUX PillIeHb, 0COOIMBO MOB'SI3aHUX 3 PO3MOIIIOM PeCcypcCiB MPICHOT BOIU B MEPIOAN MIHIMBOCTI
KJIIMaTy Ta 3pOCTar040r0 aHTPOIIOTEHHOTO THUCKY.

Knrouosi cnosa: 3oepicanns tpynmosux 600, cynymuux GRACE, GLDAS, Google Earth Engine, Cpeiiosicen Peze-
HCl.
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