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ABSTRACT

Formulation of the problem. Remote sensing data might be used for indirect assessment of croplands conditions and drought
stress through the calculation of specific vegetation indices, such as vegetation health index (VHI), agriculture stress index (ASI), and
drought intensity or weighted mean vegetation health index (WMVHI). However, the accuracy of these indices is not clear for some
territories. For example, the South of Ukraine is a zone of risky agriculture, because of low natural moisture supply and high evapo-
transpiration. Moisture supply is the main limiting factor for sustainable crop production in this region.

The goals of this study were: 1) to assess the reliability of the mentioned vegetation indices in drought assessment through the
direct comparison with the UNEP aridity index; 2) to find out whether remote sensing drought indicators could be used for the yield
prediction of major crops on the regional scale.

Methods. The study was conducted for Kherson region of Ukraine, as it is one of the most arid regions of the country with very
high drought risks. The data on average weighted annual VHI, ASI, and WMVHI for the period 1984-2022 (Season 1) were collected
and generalized from the FAO Earth Observation services. UNEP aridity index was calculated using the data from Kherson regional
hydrometeorological center. Correlation and linear regression analysis were performed using common statistical methodology.

Results. As a result, it was found that 1) all the studied remote sensing drought indicators demonstrate poor correlation with the
aridity index, therefore, they should not be used to determine meteorological drought in the region; 2) all the studied remote sensing
indices, especially VHI, demonstrate moderate-to-strong correlation with the yields of certain crops, cultivated in Kherson region
(R=0.54-0.86), and could be used for the yield prediction; 3) the aridity index have poor relation to the yields of major crops, cultivated
in the studied area; 4) VHI-based linear regression models for the crops’ yields prediction are reliable and reasonable for scientific and
practical use just for cereal crops, and are much less accurate for grain corn and sunflower; 5) based on the study findings, it could be
concluded that aridity index provides pure climatological characteristics of the region, while the studied vegetation indices are mainly
focused on the level of drought stress that impacts crops during the growing season.

Scientific novelty and practical significance. The article provides novel insights on the implementation of remote sensing data
in drought risks assessment in crop production, and their utilization for the purpose of croplands productivity prediction. The study has
theoretical and practical importance for current agriculture, and the findings could be used both in scientific, educational, and practical

purposes.
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Introduction. Global climate change is one of
the greatest challenges for modern agriculture, as this
branch of economy is highly dependent on environ-
mental conditions and weather [1]. Sustainable crop
production is possible just under the satisfaction of
crops’ requirements for vital elements, such as light,
heat, nutrition, and water. Lack of natural moisture
supply, accompanied by significant increase in air
temperature, is one of the most important limiting
factors for sustainable agriculture in the arid and
semi-arid regions of the world. In these areas, which
are gradually increasing in the intercourse of global
warming, stable crop yields could be harvested in the
irrigated conditions only [2, 3]. However, global wa-
ter resources scarcity limits irrigation capacities,
therefore, current irrigation should be not only water-
saving, but it should also be provided on the territo-
ries, where its positive effects are expected to be the
best [4]. In order to judge about the necessity of

irrigation in the concrete territory, modern agricul-
tural and meteorological science provides direct and
in-direct methods for drought risk assessment.
Among direct methods for the assessment of the
level of climate aridity, the United Nations Environ-
ment Program (UNEP) aridity index (AI) calcula-
tions are simple and re-liable, and this meteorological
indicator is widely used in international scientific
community to estimate the impacts of current climate
change. The method is based on the ratio of the pre-
cipitation amounts (PA) and evaporation (PET) rates
(AI=PA/PET), observed in the territory for the stipu-
lated period of time. According to the calculation re-
sults, six types of climate are marked out, namely:
extremely arid or sub-desert (AI<0.05); arid
(AI=0.05-0.20); semi-arid (AI=0.20-0.50); dry sub-
humid (AI=0.50-0.65); humid (AI=0.65-0.75); hyper
humid (AI>0.75) [5, 6]. UNEP aridity index is re-
ferred as the standard methodology for climatological
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assessment of the territories in many scientific stud-
ies, and it has proved its reliability [7].

At the same time, current science and technol-
ogy offers great variety of alternative in-direct meth-
ods for drought risk and aridity assessment. Among
them, remote sensing-based methods are of great im-
portance and interest for agricultural science and
practice.

For example, Food and Agriculture Organiza-
tion of the United Nations (FAO) developed the agri-
culture stress index (ASI) as a measure for the oper-
ational assessment of water stress and drought in
croplands. The ASI is based on the integration of the
Vegetation Health Index (VHI) in temporal and spa-
tial dimensions to assess drought events. The ASI is
provided by administrative regions, and each admin-
istrative region is classified according to the percent-
age of the possibly affected by drought area into six
classes (ASI<10; 10-25; 25-40; 40-55; 55-70; 70-85;
>85) [8]. The ASI is not widely implemented, but it
demonstrated good results in the estimation of El
Nino’s drought impacts on agriculture [9]. However,
the role of the ASI in drought characteristics in dif-
ferent environments re-mains unclear, as well as the
suitability of this index for crop yield prediction.

The Vegetation Health Index (VHI) is one of the
most widely implemented vegetation indices, used
for drought conditions assessment and monitoring.
The VHI utilizes the Vegetation Condition Index
(VCI) and the thermal Condition Index (TCI) to esti-
mate drought [10]. Prior studies testified that the VHI
is dependent on such features of the territory as geo-
graphical location and type of the vegetation cover
[11]. Besides, it was deter-mined that the input of the
VHI constituent indices VCI and TCI into the final
assessment is also dependent on vegetation type and
general climate parameters of the studied area [12].
Therefore, it is necessary to evaluate its capacity to
represent drought stress conditions in croplands in
every certain area. Besides, the VHI is also suitable
for crop yield prediction, as it was proved by some
scientific studies for rice and wheat, cultivated in dif-
ferent environments [13, 14].

Apart from ASI and VHI, FAO proposes another
interesting index for assessment of the intensity of
agricultural drought conditions, based on the
Weighted Mean Vegetation Health Index (WMVHI
in percents) aggregated per GAUL 2 region. The in-
tensity of drought is assessed using the presumption
that the poorer the vegetation health is, the more se-
vere the drought is. The WMVHI-based drought

intensity index subdivides the areas by agricultural
drought  manifestation into  five  classes
(WMVHI<25; 25-35; 35-38; 38-42; >42) [15]. The
index found very little scientific and practical imple-
mentation in drought monitoring and croplands
productivity prediction, however, this neglection
lacks scientific justification.

Therefore, remote sensing methods for drought
assessment are represented by somewhat different
approaches in the interpretation of the VHI. It should
be noted that while VHI is commonly used for
croplands health monitoring, the ASI and the
WMVHI are less common and less studied indicators
of drought. The goals of current study were: i) to as-
sess the reliability of the ASI, VHI, and WMVHI in
drought assessment through the establishment of
their relationship with aridity index level; ii) to find
out whether the studied vegetation indices could be
used for the yield prediction of major crops, culti-
vated in the South of Ukraine. As the reliability of the
methods for drought risk assessment should be better
evaluated in the areas, where climate aridity and
droughts are common, it was determined that Kher-
son region of Ukraine, representing the zone of risky
agriculture because of lack of natural moisture supply
and high evaporation, is a good one for such a pur-
pose [16].

Materials and methods. The study was carried
out for Kherson region of Ukraine for the period
1984-2022. Geographical location of the region is
presented in the Figure 1. The region represents typ-
ical Steppe zone climate, which is characterized by
[17, 18] as BSk or cold semi-arid climate. The region
belongs to the zone of risky agriculture with system-
atic impacts of drought events on croplands [19].

The images of annual VHI for the Season 1
croplands were extracted for the calculations and
analysis from the Global Information and Early
Warning System on Food and Agriculture (GIEWS)
Living Atlas map, presented via ArcGIS Online plat-
form.

The Season 1 croplands represent growing sea-
son of most cultivated crops in the region, as by the
FAQ’s definition it falls within the period March-Au-
gust in the region (Figure 2).

The extracted images were analyzed using Pixel
Color Counter (https://townsean.github.io/canvas-
pixel-color-counter/) to obtain quantitative character-
istics of the representation of each VHI class in the
images. The final VHI score was calculated using the
following equation (1):

VHI = a*n, + b*n, + c*nc + d*ng + e*ne + F*ns + g*ng + h*n, + i*n;, D

where a, b, ¢, d, e, f, g, h, i are corresponding
classes of the VHI values, namely, 0.075, 0.20, 0.30,
0.40, 0.50, 0.60, 0.70, 0.80, 0.85; n,. are correspond-
ing share of the pixels in the image, which represent

particular VHI class, calculated as the ratio of the pix-
els of certain color band to the total number of
cropland-representing pixels in the image.

The values of ASI and WMVHI were retrieved

-167 -


https://townsean.github.io/canvas-pixel-color-counter/
https://townsean.github.io/canvas-pixel-color-counter/

Cepisi «[eonozisi. [eozpagpisi. Ekonozisi», 2023, sunyck 59

- Kherson region

ES

Scale 1:50,000,000

Fig. 1. Location of Kherson region in the map of Europe (created with https://mapchart.net)

from the data, provided by FAO (could be accessed
from  https://www.fao.org/giews/earthobservation/
country/index.jsp?lang=en&code=UKR). The asso-
ciation between the VHI, ASI, and WMVHI indica-
tors is presented in the Figure 3 on the example of
2000 year.

The UNEP aridity index for the stipulated period
was calculated using historical meteorological data
obtained at Kherson regional hydrometeorological
center and the open data from meteoblue service
(https://www.meteoblue.com/en/). Further, mutual
relationship between the VHI, ASI, WMVHI and the
UNEP aridity index was calculated using common
correlation analysis methodology in Microsoft Excel
365 statistical toolkit [20]. Strength of the relation-
ship between the studied indicators was evaluated by
the guidelines [21]. The methodological flow chart of
this part of the study could be presented as follows
(Figure 4).

Further, historical yielding data for the period
2005-2021 were retrieved from official statistical
bodies of Ukraine. Five major crops, including winter
wheat, spring wheat, barley, grain corn, and sun-
flower were analyzed. The yielding data were associ-
ated with every studied drought index and statisti-
cally processed to estimate whether they are appro-
priate for yield prediction through the procedure of
linear regression analysis toolkit within Microsoft
Excel 365 [22]. Finally, linear regression models of
major crops yield prediction were developed, if rea-
sonable. The models are developed based on the ba-

sic equation of linear regression (2):
Yield = a + b*x, 2

where Yield is the value of a certain crop
productivity, t/ha; x — the value of a certain drought
index; a — the interception of the regression model; b
— regression coefficient.

Linear models were chosen because of small in-
put sample size (less than 30), therefore, non-linear
models, requiring bigger sample sizes, were con-
cluded to be inappropriate in the study because of the
overfitting hazard. Regression models were devel-
oped in BioStat v.7 software.

Results. The resulst of the study will be
presented in the following sub-sections depending on
their relevance to the stipulated tasks of the
investigation.

3.1. Relationship between the studied drought
indicators

As a result of correlation anlysis, it was found
out that there is extremely strong relationship be-
tween FAQ’s drought intensity (MW VHI) and ASI
indices, while there is almost no connection between
the UNEP aridity index (Al) and all other studied in-
dicators (Table 1).

Strong relationship was established between
VHI, ASI, and MWVHI. It should be noted that the
relationship is inverted for VHI — ASI, ASI —
MWVHI, and ASI — Al pairs. It means that an in-
creased VHI results in less ASI values, and so on.
This is quite logical, because high VHI, and MWVHI
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Fig. 2. Season 1 duration for Kherson region of Ukraine (retrieved from FAO Earth Observation services,
https://www.fao.org/giews/earthobservation/country/index.jsp?lang=en&code=UKR)
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Fig. 3. Association between the studied remote sensing drought indicators in Kherson region in 2000 year
(extracted from ArcGIS Online platform)
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Fig. 4. Methodological flow chart of the study

The results of correlation analysis between the studied drought indicators

Table 1

Indicators pair Correlation coefficient | Determination coefficient
VHI - ASI -0.7975 0.64 (64%)
VHI - MWVHI 0.8071 0.65 (65%)
VHI - Al 0.2016 0.04 (4%)
AS| - MWVHI -0.9625 0.93 (93%)
ASI - Al -0.1269 0.02 (2%)
MWVHI - Al 0.1173 0.01 (1%)

values tell about better vegetation cover conditions
and less stress in plants, while high ASI tells about
higher affection of the area with drought stress. As
well, higher UNEP Al values mean less arid and dry
climate, therefore, it is logical, that higher UNEP Al
shall correspond to lower ASI values.

3.2. Yields of major crops and drought stress in-
dicators

The yields of major crops, cultivated in Kherson
region, namely, winter and spring wheat, barley,
grain corn, and sunflower are strongly dependent on
the levels of natural moisture supply in the region, as
well as irrigation [23]. Therefore, there should be a
connection between the crops’ productivity and
drought indicators in the region. Tables 2-5 present
generalized information on the mean annual yields of
the studied crops in Kherson region, as well as their
relationship with the studied drought indicators.

From the study results, it becomes evident that
the strongest relationship between the crops’ yields
and drought indicators belongs to the pair “Yield —
VHI”, where determination coefficient, depending on
the crop, fluctuates within 0.29-0.75. The weakest

connection is determined for grain corn, while the
strongest — for winter wheat. There is almost no sta-
tistically significant relationship between the crops’
yields and UNEP aridity index. This is because the
mentioned above indicator refers mainly to pure me-
teorological characteristics of the period and does not
reflect real in-field conditions of drought intensity,
which could be quite different because of additional
parameters, affecting crops’ state (irrigation, agro-
technological measures for moisture preservation,
etc.). As for ASI and WMVHI, there is mild-to-mod-
erate connection with crops’ yields in the region.
However, it is sufficiently lower than for VHI. There-
fore, it is reasonable to create yield prediction models
based on the VHI values, and other indices could be
just supportive in this regard.

3.3. Crops’ yield prediction models based on the
vegetation health index

Based on the inputs, provided in the Table 2, lin-
ear regression models have been developed for each
crop, cultivated in Kherson region. The statistics for
the developed models are presented in Table 6.

Considering the results of linear regression analy-
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Table 2
Historical mean annual yields of major crops, cultivated in Kherson region,
and vegetation health index values
Year VHI Crops’ yields, t/ha
Winter wheat Spring wheat | Barley Corn Sunflower
2006 0.55 2.54 2.54 2.12 3.87 1.00
2008 0.61 3.28 3.28 3.09 5.99 1.11
2009 0.52 2.44 2.44 2.14 5.46 0.82
2010 0.52 2.43 243 1.63 5.29 1.23
2011 0.56 3.47 3.47 2.71 5.24 1.29
2013 0.51 2.41 2.41 1.97 4.97 0.77
2014 0.55 2.94 2.94 2.29 5.18 0.87
2015 0.68 3.54 2.86 3.10 7.10 1.70
2016 0.62 3.62 3.43 3.18 5.77 1.65
2017 0.53 3.49 3.00 3.05 5.97 1.34
2018 0.52 3.22 2.56 3.47 6.56 1.64
2019 0.60 3.49 3.14 4.09 8.03 1.79
2020 0.59 3.16 3.16 3.20 8.42 1.65
2021 0.74 4.22 422 4.42 6.70 2.00
2005 0.55 2.45 2.45 1.54 4.47 1.03
2007 0.26 1.85 1.85 0.90 4.13 0.57
2012 0.27 1.57 1.57 1.33 4.96 0.83
Correlation coefficient 0.86 0.86 0.78 0.54 0.73
Determination coefficient 0.75 0.74 0.61 0.29 0.54
Table 3
Historical mean annual yields of major crops, cultivated in Kherson region, and UNEP aridity index values
Year UNEP Crops’ yields, t/ha
Al Winter wheat Spring wheat | Barley Corn Sunflower
2006 0.35 2.54 2.54 2.12 3.87 1.00
2008 0.51 3.28 3.28 3.09 5.99 1.11
2009 0.48 2.44 2.44 2.14 5.46 0.82
2010 0.54 2.43 2.43 1.63 5.29 1.23
2011 0.20 3.47 3.47 2.71 5.24 1.29
2013 0.24 2.41 2.41 1.97 4.97 0.77
2014 0.23 2.94 2.94 2.29 5.18 0.87
2015 0.35 3.54 2.86 3.10 7.10 1.70
2016 0.38 3.62 3.43 3.18 5.77 1.65
2017 0.20 3.49 3.00 3.05 5.97 1.34
2018 0.27 3.22 2.56 3.47 6.56 1.64
2019 0.43 3.49 3.14 4.09 8.03 1.79
2020 0.23 3.16 3.16 3.20 8.42 1.65
2021 0.53 4.22 4.22 442 6.70 2.00
2005 0.49 245 2.45 1.54 4.47 1.03
2007 0.35 1.85 1.85 0.90 4.13 0.57
2012 0.23 1.57 1.57 1.33 4.96 0.83
Correlation coefficient 0.09 0.18 0.10 0.00 0.15
Determination coefficient 0.01 0.03 0.01 0.00 0.02
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Table 4
Historical mean annual yields of major crops, cultivated in Kherson region, and agriculture stress index values
Year ASI : . Crops’ yields, t/ha
Winter wheat | Spring wheat | Barley Corn Sunflower
2006 10.0 2.54 2.54 2.12 3.87 1.00
2008 10.0 3.28 3.28 3.09 5.99 1.11
2009 10.0 2.44 2.44 2.14 5.46 0.82
2010 10.0 243 2.43 1.63 5.29 1.23
2011 10.0 3.47 3.47 2.71 5.24 1.29
2013 17.5 241 241 1.97 4.97 0.77
2014 10.0 2.94 2.94 2.29 5.18 0.87
2015 10.0 3.54 2.86 3.10 7.10 1.70
2016 10.0 3.62 3.43 3.18 5.77 1.65
2017 10.0 3.49 3.00 3.05 597 1.34
2018 10.0 3.22 2.56 3.47 6.56 1.64
2019 10.0 3.49 3.14 4.09 8.03 1.79
2020 10.0 3.16 3.16 3.20 8.42 1.65
2021 10.0 422 422 4.42 6.70 2.00
2005 10.0 2.45 2.45 1.54 4.47 1.03
2007 717.5 1.85 1.85 0.90 4.13 0.57
2012 47.5 1.57 1.57 1.33 4.96 0.83
Correlation coefficient -0.64 -0.62 -0.59 -0.40 -0.53
Determination coefficient 0.41 0.38 0.35 0.16 0.28

Table 5
Historical mean annual yields of major crops, cultivated in Kherson region, and drought intensity
(weighted mean vegetation health index) index values

Crops yield, t/ha
Year WMVHI
Winter wheat Spring wheat | Barley Corn Sunflower

2006 71.0 2.54 2.54 2.12 3.87 1.00
2008 71.0 3.28 3.28 3.09 5.99 1.11
2009 71.0 2.44 2.44 2.14 5.46 0.82
2010 71.0 2.43 2.43 1.63 5.29 1.23
2011 71.0 3.47 3.47 2.71 5.24 1.29
2013 71.0 2.41 2.41 1.97 497 0.77
2014 71.0 2.94 2.94 2.29 5.18 0.87
2015 71.0 3.54 2.86 3.10 7.10 1.70
2016 71.0 3.62 343 3.18 5.77 1.65
2017 71.0 3.49 3.00 3.05 5.97 1.34
2018 71.0 3.22 2.56 3.47 6.56 1.64
2019 71.0 3.49 3.14 4.09 8.03 1.79
2020 71.0 3.16 3.16 3.20 8.42 1.65
2021 71.0 422 422 4.42 6.70 2.00
2005 71.0 2.45 2.45 1.54 4.47 1.03
2007 30.0 1.85 1.85 0.90 4.13 0.57
2012 36.5 1.57 1.57 1.33 4.96 0.83
Correlation coefficient 0.66 0.64 0.58 0.37 0.50
Determination coefficient 0.43 0.41 0.34 0.14 0.25
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Table 6
Regression statistics for the developed models of the crops’ yields prediction
based on the values of vegetation health index
Crop name
Statistical criteria Winter Spring B Grain Sun-

arley

wheat wheat corn flower
Number of inputs (N) 17 17 17 17 17

Correlation coefficient (R) 0.8644 0.8583 0.7802 0.5360 0.7349
Coefficient of determination (R?) 0.7471 0.7367 0.6088 0.2873 0.5401
Adjusted R? 0.7302 0.7192 0.5827 0.2398 0.5094
Predicted R® 0.6873 0.6421 0.5223 0.1509 0.4242
Mean square error (MSE) 0.1323 0.1138 0.3963 1.2219 0.0879
Standard deviation (SD) 0.3637 0.3373 0.6295 1.1054 0.2965
Mean a"e”‘(?\fl'g‘;’fé;”tage error 10.40% 9.67% | 20.96% | 13.90% | 21.89%

sis. Five regression models have been developed for
the yield prediction based on the VHI values (Table
7). However, it should be noted that the accuracy of
the developed models is unequal, and the best quality
of the prediction was achieved for winter and spring
wheat. The greatest errors were established for grain
corn and sunflower predictions, while barley yield
prediction model has the lowest error and high fitting

quality, taking into account the values of correlation
and determination coefficients.

Therefore, the models for wheat and barley
could be recommended for practical use, while the
lower accuracy and fitting quality of the models for
grain corn and sunflower makes these models contra-
dictive and does not allow to recommend them for
practitioners.

Table 7

Linear regression models for the studied crops’ yields prediction based on vegetation health index values

Crop name

Model

Winter wheat

Yield=0.2296+5.0346*VHI

Spring wheat

Yield=0.3548+4.5446*VHI

Barley Yield=-0.8136+6.3248*VHI
Grain corn Yield=2.7183+5.65358VHI
Sunflower Yield=-0.1453+2.5882*VHI

Discussion. Current study provides first scien-
tific insight on the relationship between different
drought risk indicators, both remotely sensed and di-
rectly measured. Special attention has been paid to
comparatively rarely used in science and practice in-
dicators, such as Agri-culture Stress Index (ASI), and
FAQO’s drought intensity indicator (based on the
Weighted Mean Vegetation Health Index WMVHI).
These drought risk indicators are specific for agricul-
tural use, but they found narrow implementation in
science and practice. For example, the ASI was ap-
plied in several studies to assess drought impacts of
the El Nifio phenomenon on agricultural lands [15,
24] and as a remotely sensed indicator for crop insur-
ance [25]. But none of the quoted studies investigated
the relationship between the real meteorological
drought and/or aridity indicators, as well as other re-
motely sensed drought indicators. This statement is
also true for the FAO’s drought intensity indicator.
But the situation with the VHI is absolutely different.

The vegetation health index is one of the most
well-studied drought and vegetation cover conditions
indicators, which are computed based on the remote

sensing data. The study [12] evaluated the relation-
ship between the VHI and SPEI (Standardized Pre-
cipitation-Evapotranspiration Index) and found that
these two indices are moderately correlated with each
other. The study [26] revealed that the VHI moder-
ately correlates with the NDVI (Normalized Differ-
ence Vegetation Index), and weakly correlates with
the LST (Land Surface Temperature). The study [27]
on the optimization of the VHI computation tech-
nique revealed that the correlation between the origi-
nal VHI and scaled PDSI (Palmer’s Drought Severity
Index) was mild-to-moderate (0.38), while the opti-
mized calculations resulted in better correlation be-
tween the two drought indicators (enhanced to 0.51).
In the study [28] the authors revealed presence of
moderate correlation between the VHI and SMI (Soil
Moisture Index), favoring for the assumption that
vegetation health index could be a reliable predictor
of soil drought. Another study [29] claims that both
VHI and SPI-3 (Standardized Precipitation Index)
can clearly explain the relationship between meteo-
rological drought and agricultural drought in Indone-
sia; the VHI and SPI-3 are strongly correlated with
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each other. Therefore, it is evident that vegetation
health index is vastly studied in terms of its reliability
in drought assessment and its connection with other
popular meteorological indicators, calculated based
on actual meteorological data. Not-withstanding the
fact, there is no study available in scientific literature,
devoted to the investigation on the relationship be-
tween the VHI and UNEP-AI. Thus, current study
pro-vides novel insight into this subject, pointing out
on extremely weak correlation between all the stud-
ied remote sensing-based drought indicators and arid-
ity index. At the same time, it has been proved that
all the remote sensing indicators are moderately-to-
strong correlated with each other. Considering the
study outcomes regarding the correlation be-tween
the crops’ yields in Kherson region and the studied
indicators, it is possible to conclude that the UNEP
aridity index provides pure climatological character-
istics, while the ASI, MWVHI, and VHI provide in-
direct characteristics of drought effects on the
croplands.

As for the crops’ yields prediction, it was found
out that vegetation health index is the only one to be
implemented in this purpose, because the relationship
between the yields and ASI/MWVHI is much
weaker. Current study is not the first one to build up
the models for crops’ yields prediction based on re-
mote sensing VHI data; although, it is the first study
made for the specific conditions of Kherson region,
which is characterized as the zone of risky agricul-
ture. Kussul et al. (2015) refer to the VHI-based em-
pirical models for regional crop yield prediction as
commonly used in agricultural science [30]. VHI-
based empirical models were developed and success-
fully used in scientific purposes for such crops as
rice, cultivated in Bangladesh (R = 0.71-0.83) [31];
winter wheat, cultivated in Australia (R > 0.70) [14],
India (mean absolute percentage error of the predic-
tive models was less than 10%) [32], Ukraine (VHI-
based model outperformed NDVI-based and
FAPAR-based ones having the lowest root mean
square error of 0.51 t/ha) [33] etc.; grain corn,

cultivated in Bulgaria (strong correlation between the
crop yields and VHI was detected) [34]. Thus, it is
evident that the VHI-based approach is well-known
in modern agricultural science, but still not widely
implemented. Current study provides some addi-
tional insights on the relationship between the VHI
and regional yields of wheat, barley, grain corn and
sunflower crops, pointing out that there is a great dif-
ference in this relationship for each of the studied
crops. If cereal crops are strongly related to vegeta-
tion health index, grain corn and sunflower are much
less related to this indicator, thus, making VHI-based
yield prediction less reliable and reasonable. Such a
discrepancy could be put upon different reaction of
the studied crops on drought conditions, as well as
great inequality in the areas under irrigation for each
crop.

Conclusions. Current study is devoted to the in-
vestigation of the inter-relationship between drought
indicators, such as ASI, MWVHI, VHI, and UNEP
Al, as well as their correlation with the yields of ma-
jor crops, cultivated in Kherson region of Ukraine. It
was revealed that UNEP Al is weakly related both to
remote sensing drought indicators and crops’ yields
in the region, providing mainly pure climatological
characteristics, while other studied indicators are
moderately-to-strong related to the yields of the stud-
ied crops, providing the information on how the cul-
tivated plants react to drought conditions in the re-
gion. VHI-based linear regression models were de-
veloped to predict the yields of the studied crops for
Kherson region. It was established that the best accu-
racy and reliability of the models is attributed to ce-
real crops, e.g., wheat and barley, while late-spring
crops (grain corn and sunflower) have much less re-
lation to the VHI. The developed models could be ap-
plied in scientific and practical purposes to predict
the yields of the studied crops in Kherson region of
Ukraine. Further studies will be conducted to learn
more details about the patterns and features of the re-
lationship between the remote sensing drought indi-
cators and real-life productivity of crops.
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JlaHi JUCTAHIIMHOIO 30HAYBAHHSA /ISl OLIHKHU CTPeCY BiJl MOCYyXHU Ta
NPOAYKTHBHOCTI CUIbCHKOIOCIIOAAPCHKUX YTib Y XepCOHCHKIM 00J1acTi

Ilagno JTuxoeuo

. CLIBIOCII. H., CT. HayK. CIiBPOOITHHK,

BiJIILJT 3pOIITYBaHOTO 3eMIIEPOOCTBA Ta AeKapOOHi3allii arpoeKOCHCTEM,
[HCTUTYT KITIMATHIHO OPiEHTOBAHOTO CIIbCHKOTO TocmonapceTea HAAH,
ByII. Masiibka opora 24, cmt Ximibomapceeke, Oneca, 67667, Ykpaina

JaHi AMCTaHIIIHHOTO 30HIYBaHHS 3eMJIi € I[IHHUM JKepesioM iH(OopMallii Ipo CTaH HABKOJIMIITHBOTO CEPEOBHUINA B
LIJIOMY Ta CiJIbCBKOTOCHOAAPCHKUX YTi/lb 30KpeMa. Y CTaTTi ONMCAHO Pe3yJIbTaTd BUBYEHHS 3aCTOCYBaHHS 1HIEKCY 3710-
pos’st pociuaHocTi (VHI), ingekcy cinbebkorocnonapebkoro crpecy (ASI) ta ingekcy inteHcuBHocTi nocyxu (WMVHI)
JUIsl OLIHKH IHTEHCHBHOCTI HEraTHBHOI /i MOCYIUIMBHX SIBULL Ha arpodiTOIEHO3M Yy KOHTEKCTI iX Kopesiiii 3 MeTeopo-
JIOTIYHUM 1HIEKCOM apUIHOCTI Ta IMPOAYKTUBHICTIO CIITHCHKOTOCIIONAPCHKUX 3eMebh XePCOHCHKOT o0macTi. Jlocmi ke s
0aszyBasiocsi Ha JaHUX, 3HATHX Yy mepion 1984-2022 pp., Mmoo BpoXKaiHOCTI OCHOBHUX CITBCHKOTOCIIONAPCHKUX KYIBTYP
y perioHi (03uMa Ta sipa MIIEHUIS, SIMiHb, KyKypyA3a, COHSIITHIK) Ta BEJIMYNHI BeTeTallifHIX 1HACKCIB, PO3PaxXOBaHUX
y BianosigHocti 10 Metoaukn PAO OOH 3a cynyrankoBumu 3HiMKamu cepBicy FAO Earth Observation Services. [Hnexc
apuaHocTi Oyno ouineno 3a Metoaukoro UNEP 3a nannmu XepcoHCHKOTO 001aCHOTO TiAPOMETEOPOIIOTiYHOTO LIEHTPY.
CraructuuHy 00poOKy JaHWX BUKOHYBAJIH 3TiAHO TPAJULIHHUX METOIUK KOPEJLiHHO-perpeciiiHoro aHaisy Ta Moje-
moBanHs y Microsoft Excel 365 ta BioStat v.7. Y pe3ynbTari A0CiKEHb BCTAHOBJICHO, IO CYMTyTHUKOBI BEreTaIliiTHI
1H/IEKCH TICHO KOPEJIOIOTH i3 MPOIYKTUBHICTIO TOCIIIKYBaHUX CUIBCHKOTOCIIONAPCHKHUX KYIBTYp, Ta MOXKYTb OyTH yCIIi-
IIIHO BUKOPHCTAHI JUIsSl CTPATETIYHOT0 Ta ONEPaTHBHOIO IPOrHO3YyBaHHsI iX ypoxaiiHocTi. [1lo10 MeTeoposIorivHoro iHzie-
KCY apHIHOCTI, TO BiH CJIa00 KOPEIIOE 3 yPOKaHHICTIO KYJIBTYPHUX POCIIHH, 1 € CYTO KJIIMaTOJIOT1YHIM TTOKA3HUKOM, SIKUIT
Mae JPYyropsaHe 3HAYEHHS AJIS OIIHKM CTaHy Ta MPOTHO3YBAaHHS MPOXYKTHBHOCTI arpodiTorieHo3iB. Takum unHOM, 3a-
MIPOITIOHOBAHO HOBWI MiJIXiJ 10 OI[iHKH iHTEHCUBHOCTI BIUIMBY MOCYIITMBUX SIBUI Ha arpoQiToleHO3H MiBIHS YKpaiHH
Ta MPOTHO3Y iX MPOAYKTUBHOCTI 3a JAHUMH JTUCTAHIIHHOTO 30HAYBaHHS 3eMIi, 1[0 Ma€ BUCOKY HayKOBO-TEOPETUYHY Ta
MIPAKTUYHY [IHHICTB.

Knrouosi cnoga: inoekc ciibcbko2ocnooapcbkozo cmpecy, iH0eke apuOHocmi, IHMeHCUSHICMb NOCyXu, THOeKC 300-
PO sl POCTUHHOCHI, YPOdICAl.
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