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ABSTRACT 

Formulation of the problem. Remote sensing data might be used for indirect assessment of croplands conditions and drought 

stress through the calculation of specific vegetation indices, such as vegetation health index (VHI), agriculture stress index (ASI), and 

drought intensity or weighted mean vegetation health index (WMVHI). However, the accuracy of these indices is not clear for some 

territories. For example, the South of Ukraine is a zone of risky agriculture, because of low natural moisture supply and high evapo-

transpiration. Moisture supply is the main limiting factor for sustainable crop production in this region.  

The goals of this study were: 1) to assess the reliability of the mentioned vegetation indices in drought assessment through the 

direct comparison with the UNEP aridity index; 2) to find out whether remote sensing drought indicators could be used for the yield 

prediction of major crops on the regional scale.  

Methods. The study was conducted for Kherson region of Ukraine, as it is one of the most arid regions of the country with very 

high drought risks. The data on average weighted annual VHI, ASI, and WMVHI for the period 1984-2022 (Season 1) were collected 

and generalized from the FAO Earth Observation services. UNEP aridity index was calculated using the data from Kherson regional 

hydrometeorological center. Correlation and linear regression analysis were performed using common statistical methodology.  

Results. As a result, it was found that 1) all the studied remote sensing drought indicators demonstrate poor correlation with the 

aridity index, therefore, they should not be used to determine meteorological drought in the region; 2) all the studied remote sensing 

indices, especially VHI, demonstrate moderate-to-strong correlation with the yields of certain crops, cultivated in Kherson region 

(R=0.54-0.86), and could be used for the yield prediction; 3) the aridity index have poor relation to the yields of major crops, cultivated 

in the studied area; 4) VHI-based linear regression models for the crops’ yields prediction are reliable and reasonable for scientific and 

practical use just for cereal crops, and are much less accurate for grain corn and sunflower; 5) based on the study findings, it could be 

concluded that aridity index provides pure climatological characteristics of the region, while the studied vegetation indices are mainly 

focused on the level of drought stress that impacts crops during the growing season. 

Scientific novelty and practical significance. The article provides novel insights on the implementation of remote sensing data 

in drought risks assessment in crop production, and their utilization for the purpose of croplands productivity prediction. The study has 

theoretical and practical importance for current agriculture, and the findings could be used both in scientific, educational, and practical 

purposes. 
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Introduction. Global climate change is one of 

the greatest challenges for modern agriculture, as this 

branch of economy is highly dependent on environ-

mental conditions and weather [1]. Sustainable crop 

production is possible just under the satisfaction of 

crops’ requirements for vital elements, such as light, 

heat, nutrition, and water. Lack of natural moisture 

supply, accompanied by significant increase in air 

temperature, is one of the most important limiting 

factors for sustainable agriculture in the arid and 

semi-arid regions of the world. In these areas, which 

are gradually increasing in the intercourse of global 

warming, stable crop yields could be harvested in the 

irrigated conditions only [2, 3]. However, global wa-

ter resources scarcity limits irrigation capacities, 

therefore, current irrigation should be not only water-

saving, but it should also be provided on the territo-

ries, where its positive effects are expected to be the 

best [4]. In order to judge about the necessity of 

irrigation in the concrete territory, modern agricul-

tural and meteorological science provides direct and 

in-direct methods for drought risk assessment. 

Among direct methods for the assessment of the 

level of climate aridity, the United Nations Environ-

ment Program (UNEP) aridity index (AI) calcula-

tions are simple and re-liable, and this meteorological 

indicator is widely used in international scientific 

community to estimate the impacts of current climate 

change. The method is based on the ratio of the pre-

cipitation amounts (PA) and evaporation (PET) rates 

(AI=PA/PET), observed in the territory for the stipu-

lated period of time. According to the calculation re-

sults, six types of climate are marked out, namely: 

extremely arid or sub-desert (AI<0.05); arid 

(AI=0.05-0.20); semi-arid (AI=0.20-0.50); dry sub-

humid (AI=0.50-0.65); humid (AI=0.65-0.75); hyper 

humid (AI>0.75) [5, 6]. UNEP aridity index is re-

ferred as the standard methodology for climatological 
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assessment of the territories in many scientific stud-

ies, and it has proved its reliability [7]. 

At the same time, current science and technol-

ogy offers great variety of alternative in-direct meth-

ods for drought risk and aridity assessment. Among 

them, remote sensing-based methods are of great im-

portance and interest for agricultural science and 

practice. 

For example, Food and Agriculture Organiza-

tion of the United Nations (FAO) developed the agri-

culture stress index (ASI) as a measure for the oper-

ational assessment of water stress and drought in 

croplands. The ASI is based on the integration of the 

Vegetation Health Index (VHI) in temporal and spa-

tial dimensions to assess drought events. The ASI is 

provided by administrative regions, and each admin-

istrative region is classified according to the percent-

age of the possibly affected by drought area into six 

classes (ASI<10; 10-25; 25-40; 40-55; 55-70; 70-85; 

>85) [8]. The ASI is not widely implemented, but it 

demonstrated good results in the estimation of El 

Nino’s drought impacts on agriculture [9]. However, 

the role of the ASI in drought characteristics in dif-

ferent environments re-mains unclear, as well as the 

suitability of this index for crop yield prediction.  

The Vegetation Health Index (VHI) is one of the 

most widely implemented vegetation indices, used 

for drought conditions assessment and monitoring. 

The VHI utilizes the Vegetation Condition Index 

(VCI) and the thermal Condition Index (TCI) to esti-

mate drought [10]. Prior studies testified that the VHI 

is dependent on such features of the territory as geo-

graphical location and type of the vegetation cover 

[11]. Besides, it was deter-mined that the input of the 

VHI constituent indices VCI and TCI into the final 

assessment is also dependent on vegetation type and 

general climate parameters of the studied area [12]. 

Therefore, it is necessary to evaluate its capacity to 

represent drought stress conditions in croplands in 

every certain area. Besides, the VHI is also suitable 

for crop yield prediction, as it was proved by some 

scientific studies for rice and wheat, cultivated in dif-

ferent environments [13, 14]. 

Apart from ASI and VHI, FAO proposes another 

interesting index for assessment of the intensity of 

agricultural drought conditions, based on the 

Weighted Mean Vegetation Health Index (WMVHI 

in percents) aggregated per GAUL 2 region. The in-

tensity of drought is assessed using the presumption 

that the poorer the vegetation health is, the more se-

vere the drought is. The WMVHI-based drought 

intensity index subdivides the areas by agricultural 

drought manifestation into five classes 

(WMVHI<25; 25-35; 35-38; 38-42; >42) [15]. The 

index found very little scientific and practical imple-

mentation in drought monitoring and croplands 

productivity prediction, however, this neglection 

lacks scientific justification.  

Therefore, remote sensing methods for drought 

assessment are represented by somewhat different 

approaches in the interpretation of the VHI. It should 

be noted that while VHI is commonly used for 

croplands health monitoring, the ASI and the 

WMVHI are less common and less studied indicators 

of drought. The goals of current study were: i) to as-

sess the reliability of the ASI, VHI, and WMVHI in 

drought assessment through the establishment of 

their relationship with aridity index level; ii) to find 

out whether the studied vegetation indices could be 

used for the yield prediction of major crops, culti-

vated in the South of Ukraine. As the reliability of the 

methods for drought risk assessment should be better 

evaluated in the areas, where climate aridity and 

droughts are common, it was determined that Kher-

son region of Ukraine, representing the zone of risky 

agriculture because of lack of natural moisture supply 

and high evaporation, is a good one for such a pur-

pose [16]. 

Materials and methods. The study was carried 

out for Kherson region of Ukraine for the period 

1984-2022. Geographical location of the region is 

presented in the Figure 1. The region represents typ-

ical Steppe zone climate, which is characterized by 

[17, 18] as BSk or cold semi-arid climate. The region 

belongs to the zone of risky agriculture with system-

atic impacts of drought events on croplands [19]. 

The images of annual VHI for the Season 1 

croplands were extracted for the calculations and 

analysis from the Global Information and Early 

Warning System on Food and Agriculture (GIEWS) 

Living Atlas map, presented via ArcGIS Online plat-

form.  

The Season 1 croplands represent growing sea-

son of most cultivated crops in the region, as by the 

FAO’s definition it falls within the period March-Au-

gust in the region (Figure 2). 

The extracted images were analyzed using Pixel 

Color Counter (https://townsean.github.io/canvas-

pixel-color-counter/) to obtain quantitative character-

istics of the representation of each VHI class in the 

images. The final VHI score was calculated using the 

following equation (1): 

 

 

 

VHI = a*na + b*nb + c*nc + d*nd + e*ne + f*nf + g*ng + h*nh + i*ni, (1) 

where a, b, c, d, e, f, g, h, i are corresponding 

classes of the VHI values, namely, 0.075, 0.20, 0.30, 

0.40, 0.50, 0.60, 0.70, 0.80, 0.85; na-i are correspond-

ing share of the pixels in the image, which represent 

particular VHI class, calculated as the ratio of the pix-

els of certain color band to the total number of 

cropland-representing pixels in the image. 

The values of ASI and WMVHI were retrieved 

https://townsean.github.io/canvas-pixel-color-counter/
https://townsean.github.io/canvas-pixel-color-counter/
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Fig. 1. Location of Kherson region in the map of Europe (created with https://mapchart.net) 

 

from the data, provided by FAO (could be accessed 

from https://www.fao.org/giews/earthobservation/ 

country/index.jsp?lang=en&code=UKR). The asso-

ciation between the VHI, ASI, and WMVHI indica-

tors is presented in the Figure 3 on the example of 

2000 year. 

The UNEP aridity index for the stipulated period 

was calculated using historical meteorological data 

obtained at Kherson regional hydrometeorological 

center and the open data from meteoblue service 

(https://www.meteoblue.com/en/). Further, mutual 

relationship between the VHI, ASI, WMVHI and the 

UNEP aridity index was calculated using common 

correlation analysis methodology in Microsoft Excel 

365 statistical toolkit [20]. Strength of the relation-

ship between the studied indicators was evaluated by 

the guidelines [21]. The methodological flow chart of 

this part of the study could be presented as follows 

(Figure 4). 

Further, historical yielding data for the period 

2005-2021 were retrieved from official statistical 

bodies of Ukraine. Five major crops, including winter 

wheat, spring wheat, barley, grain corn, and sun-

flower were analyzed. The yielding data were associ-

ated with every studied drought index and statisti-

cally processed to estimate whether they are appro-

priate for yield prediction through the procedure of 

linear regression analysis toolkit within Microsoft 

Excel 365 [22]. Finally, linear regression models of 

major crops yield prediction were developed, if rea-

sonable. The models are developed based on the ba- 

sic equation of linear regression (2): 
 

Yield = a + b*x, (2) 
 

where Yield is the value of a certain crop 

productivity, t/ha; x – the value of a certain drought 

index; a – the interception of the regression model; b 

– regression coefficient. 

Linear models were chosen because of small in-

put sample size (less than 30), therefore, non-linear 

models, requiring bigger sample sizes, were con-

cluded to be inappropriate in the study because of the 

overfitting hazard. Regression models were devel-

oped in BioStat v.7 software. 

Results. The resulst of the study will be 

presented in the following sub-sections depending on 

their relevance to the stipulated tasks of the 

investigation. 

3.1. Relationship between the studied drought 

indicators 

As a result of correlation anlysis, it was found 

out that there is extremely strong relationship be-

tween FAO’s drought intensity (MWVHI) and ASI 

indices, while there is almost no connection between 

the UNEP aridity index (AI) and all other studied in-

dicators (Table 1). 

Strong relationship was established between 

VHI, ASI, and MWVHI. It should be noted that the 

relationship is inverted for VHI – ASI, ASI – 

MWVHI, and ASI – AI pairs. It means that an in-

creased VHI results in less ASI values, and so on. 

This is quite logical, because high VHI, and MWVHI 

https://mapchart.net/
https://www.fao.org/giews/earthobservation/country/index.jsp?lang=en&code=UKR
https://www.fao.org/giews/earthobservation/country/index.jsp?lang=en&code=UKR
https://www.meteoblue.com/en/
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Fig. 2. Season 1 duration for Kherson region of Ukraine (retrieved from FAO Earth Observation services, 

https://www.fao.org/giews/earthobservation/country/index.jsp?lang=en&code=UKR) 

https://www.fao.org/giews/earthobservation/country/index.jsp?lang=en&code=UKR
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Fig. 3. Association between the studied remote sensing drought indicators in Kherson region in 2000 year 

(extracted from ArcGIS Online platform) 

 

 
Fig. 4. Methodological flow chart of the study 

 

Table 1 

The results of correlation analysis between the studied drought indicators 

Indicators pair Correlation coefficient Determination coefficient 

VHI – ASI  -0.7975 0.64 (64%) 

VHI – MWVHI  0.8071 0.65 (65%) 

VHI – AI  0.2016 0.04 (4%) 

ASI – MWVHI  -0.9625 0.93 (93%) 

ASI – AI  -0.1269 0.02 (2%) 

MWVHI – AI 0.1173 0.01 (1%) 

 

values tell about better vegetation cover conditions 

and less stress in plants, while high ASI tells about 

higher affection of the area with drought stress. As 

well, higher UNEP AI values mean less arid and dry 

climate, therefore, it is logical, that higher UNEP AI 

shall correspond to lower ASI values. 

3.2. Yields of major crops and drought stress in-

dicators 

The yields of major crops, cultivated in Kherson 

region, namely, winter and spring wheat, barley, 

grain corn, and sunflower are strongly dependent on 

the levels of natural moisture supply in the region, as 

well as irrigation [23]. Therefore, there should be a 

connection between the crops’ productivity and 

drought indicators in the region. Tables 2–5 present 

generalized information on the mean annual yields of 

the studied crops in Kherson region, as well as their 

relationship with the studied drought indicators.  

From the study results, it becomes evident that 

the strongest relationship between the crops’ yields 

and drought indicators belongs to the pair “Yield – 

VHI”, where determination coefficient, depending on 

the crop, fluctuates within 0.29-0.75. The weakest 

connection is determined for grain corn, while the 

strongest – for winter wheat. There is almost no sta-

tistically significant relationship between the crops’ 

yields and UNEP aridity index. This is because the 

mentioned above indicator refers mainly to pure me-

teorological characteristics of the period and does not 

reflect real in-field conditions of drought intensity, 

which could be quite different because of additional 

parameters, affecting crops’ state (irrigation, agro-

technological measures for moisture preservation, 

etc.). As for ASI and WMVHI, there is mild-to-mod-

erate connection with crops’ yields in the region. 

However, it is sufficiently lower than for VHI. There-

fore, it is reasonable to create yield prediction models 

based on the VHI values, and other indices could be 

just supportive in this regard. 

3.3. Crops’ yield prediction models based on the 

vegetation health index  

Based on the inputs, provided in the Table 2, lin-

ear regression models have been developed for each 

crop, cultivated in Kherson region. The statistics for 

the developed models are presented in Table 6. 

Considering the results of linear regression analy- 

Third Step

Correlation analysis of the relationship between the studied drought indicators

Second Step

UNEP aridity index calculation

First Step

VHI calculation ASI, WMVHI adoption
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Table 2 

Historical mean annual yields of major crops, cultivated in Kherson region,  

and vegetation health index values 

Year VHI 
Crops’ yields, t/ha 

Winter wheat Spring wheat Barley Corn Sunflower 

2006 0.55 2.54 2.54 2.12 3.87 1.00 

2008 0.61 3.28 3.28 3.09 5.99 1.11 

2009 0.52 2.44 2.44 2.14 5.46 0.82 

2010 0.52 2.43 2.43 1.63 5.29 1.23 

2011 0.56 3.47 3.47 2.71 5.24 1.29 

2013 0.51 2.41 2.41 1.97 4.97 0.77 

2014 0.55 2.94 2.94 2.29 5.18 0.87 

2015 0.68 3.54 2.86 3.10 7.10 1.70 

2016 0.62 3.62 3.43 3.18 5.77 1.65 

2017 0.53 3.49 3.00 3.05 5.97 1.34 

2018 0.52 3.22 2.56 3.47 6.56 1.64 

2019 0.60 3.49 3.14 4.09 8.03 1.79 

2020 0.59 3.16 3.16 3.20 8.42 1.65 

2021 0.74 4.22 4.22 4.42 6.70 2.00 

2005 0.55 2.45 2.45 1.54 4.47 1.03 

2007 0.26 1.85 1.85 0.90 4.13 0.57 

2012 0.27 1.57 1.57 1.33 4.96 0.83 

Correlation coefficient 0.86 0.86 0.78 0.54 0.73 

Determination coefficient 0.75 0.74 0.61 0.29 0.54 

 

Table 3 

Historical mean annual yields of major crops, cultivated in Kherson region, and UNEP aridity index values 

Year 
UNEP 

AI 

Crops’ yields, t/ha 

Winter wheat Spring wheat Barley Corn Sunflower 

2006 0.35 2.54 2.54 2.12 3.87 1.00 

2008 0.51 3.28 3.28 3.09 5.99 1.11 

2009 0.48 2.44 2.44 2.14 5.46 0.82 

2010 0.54 2.43 2.43 1.63 5.29 1.23 

2011 0.20 3.47 3.47 2.71 5.24 1.29 

2013 0.24 2.41 2.41 1.97 4.97 0.77 

2014 0.23 2.94 2.94 2.29 5.18 0.87 

2015 0.35 3.54 2.86 3.10 7.10 1.70 

2016 0.38 3.62 3.43 3.18 5.77 1.65 

2017 0.20 3.49 3.00 3.05 5.97 1.34 

2018 0.27 3.22 2.56 3.47 6.56 1.64 

2019 0.43 3.49 3.14 4.09 8.03 1.79 

2020 0.23 3.16 3.16 3.20 8.42 1.65 

2021 0.53 4.22 4.22 4.42 6.70 2.00 

2005 0.49 2.45 2.45 1.54 4.47 1.03 

2007 0.35 1.85 1.85 0.90 4.13 0.57 

2012 0.23 1.57 1.57 1.33 4.96 0.83 

Correlation coefficient 0.09 0.18 0.10 0.00 0.15 

Determination coefficient 0.01 0.03 0.01 0.00 0.02 
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Table 4 

Historical mean annual yields of major crops, cultivated in Kherson region, and agriculture stress index values 

Year ASI 
Crops’ yields, t/ha 

Winter wheat Spring wheat Barley Corn Sunflower 

2006 10.0 2.54 2.54 2.12 3.87 1.00 

2008 10.0 3.28 3.28 3.09 5.99 1.11 

2009 10.0 2.44 2.44 2.14 5.46 0.82 

2010 10.0 2.43 2.43 1.63 5.29 1.23 

2011 10.0 3.47 3.47 2.71 5.24 1.29 

2013 17.5 2.41 2.41 1.97 4.97 0.77 

2014 10.0 2.94 2.94 2.29 5.18 0.87 

2015 10.0 3.54 2.86 3.10 7.10 1.70 

2016 10.0 3.62 3.43 3.18 5.77 1.65 

2017 10.0 3.49 3.00 3.05 5.97 1.34 

2018 10.0 3.22 2.56 3.47 6.56 1.64 

2019 10.0 3.49 3.14 4.09 8.03 1.79 

2020 10.0 3.16 3.16 3.20 8.42 1.65 

2021 10.0 4.22 4.22 4.42 6.70 2.00 

2005 10.0 2.45 2.45 1.54 4.47 1.03 

2007 77.5 1.85 1.85 0.90 4.13 0.57 

2012 47.5 1.57 1.57 1.33 4.96 0.83 

Correlation coefficient -0.64 -0.62 -0.59 -0.40 -0.53 

Determination coefficient 0.41 0.38 0.35 0.16 0.28 

 

Table 5 

Historical mean annual yields of major crops, cultivated in Kherson region, and drought intensity  

(weighted mean vegetation health index) index values 

Year WMVHI 
Crops yield, t/ha 

Winter wheat Spring wheat Barley Corn Sunflower 

2006 71.0 2.54 2.54 2.12 3.87 1.00 

2008 71.0 3.28 3.28 3.09 5.99 1.11 

2009 71.0 2.44 2.44 2.14 5.46 0.82 

2010 71.0 2.43 2.43 1.63 5.29 1.23 

2011 71.0 3.47 3.47 2.71 5.24 1.29 

2013 71.0 2.41 2.41 1.97 4.97 0.77 

2014 71.0 2.94 2.94 2.29 5.18 0.87 

2015 71.0 3.54 2.86 3.10 7.10 1.70 

2016 71.0 3.62 3.43 3.18 5.77 1.65 

2017 71.0 3.49 3.00 3.05 5.97 1.34 

2018 71.0 3.22 2.56 3.47 6.56 1.64 

2019 71.0 3.49 3.14 4.09 8.03 1.79 

2020 71.0 3.16 3.16 3.20 8.42 1.65 

2021 71.0 4.22 4.22 4.42 6.70 2.00 

2005 71.0 2.45 2.45 1.54 4.47 1.03 

2007 30.0 1.85 1.85 0.90 4.13 0.57 

2012 36.5 1.57 1.57 1.33 4.96 0.83 

Correlation coefficient 0.66 0.64 0.58 0.37 0.50 

Determination coefficient 0.43 0.41 0.34 0.14 0.25 
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Table 6 

Regression statistics for the developed models of the crops’ yields prediction  

based on the values of vegetation health index 

Statistical criteria 

Crop name 

Winter 

wheat 

Spring 

wheat 
Barley 

Grain 

corn 

Sun-

flower 

Number of inputs (N) 17 17 17 17 17 

Correlation coefficient (R) 0.8644 0.8583 0.7802 0.5360 0.7349 

Coefficient of determination (R2) 0.7471 0.7367 0.6088 0.2873 0.5401 

Adjusted R2 0.7302 0.7192 0.5827 0.2398 0.5094 

Predicted R2 0.6873 0.6421 0.5223 0.1509 0.4242 

Mean square error (MSE) 0.1323 0.1138 0.3963 1.2219 0.0879 

Standard deviation (SD) 0.3637 0.3373 0.6295 1.1054 0.2965 

Mean average percentage error 

(MAPE) 
10.40% 9.67% 20.96% 13.90% 21.89% 

 

sis. Five regression models have been developed for 

the yield prediction based on the VHI values (Table 

7). However, it should be noted that the accuracy of 

the developed models is unequal, and the best quality 

of the prediction was achieved for winter and spring 

wheat. The greatest errors were established for grain 

corn and sunflower predictions, while barley yield 

prediction model has the lowest error and high fitting 

quality, taking into account the values of correlation 

and determination coefficients. 

Therefore, the models for wheat and barley 

could be recommended for practical use, while the 

lower accuracy and fitting quality of the models for 

grain corn and sunflower makes these models contra-

dictive and does not allow to recommend them for 

practitioners. 
 

Table 7 

Linear regression models for the studied crops’ yields prediction based on vegetation health index values 

Crop name Model 

Winter wheat Yield=0.2296+5.0346*VHI 

Spring wheat Yield=0.3548+4.5446*VHI 

Barley Yield=-0.8136+6.3248*VHI 

Grain corn Yield=2.7183+5.65358VHI 

Sunflower Yield=-0.1453+2.5882*VHI 

 

Discussion. Current study provides first scien-

tific insight on the relationship between different 

drought risk indicators, both remotely sensed and di-

rectly measured. Special attention has been paid to 

comparatively rarely used in science and practice in-

dicators, such as Agri-culture Stress Index (ASI), and 

FAO’s drought intensity indicator (based on the 

Weighted Mean Vegetation Health Index WMVHI). 

These drought risk indicators are specific for agricul-

tural use, but they found narrow implementation in 

science and practice. For example, the ASI was ap-

plied in several studies to assess drought impacts of 

the El Niño phenomenon on agricultural lands [15, 

24] and as a remotely sensed indicator for crop insur-

ance [25]. But none of the quoted studies investigated 

the relationship between the real meteorological 

drought and/or aridity indicators, as well as other re-

motely sensed drought indicators. This statement is 

also true for the FAO’s drought intensity indicator. 

But the situation with the VHI is absolutely different.  

The vegetation health index is one of the most 

well-studied drought and vegetation cover conditions 

indicators, which are computed based on the remote 

sensing data. The study [12] evaluated the relation-

ship between the VHI and SPEI (Standardized Pre-

cipitation-Evapotranspiration Index) and found that 

these two indices are moderately correlated with each 

other. The study [26] revealed that the VHI moder-

ately correlates with the NDVI (Normalized Differ-

ence Vegetation Index), and weakly correlates with 

the LST (Land Surface Temperature). The study [27] 

on the optimization of the VHI computation tech-

nique revealed that the correlation between the origi-

nal VHI and scaled PDSI (Palmer’s Drought Severity 

Index) was mild-to-moderate (0.38), while the opti-

mized calculations resulted in better correlation be-

tween the two drought indicators (enhanced to 0.51). 

In the study [28] the authors revealed presence of 

moderate correlation between the VHI and SMI (Soil 

Moisture Index), favoring for the assumption that 

vegetation health index could be a reliable predictor 

of soil drought. Another study [29] claims that both 

VHI and SPI-3 (Standardized Precipitation Index) 

can clearly explain the relationship between meteo-

rological drought and agricultural drought in Indone-

sia; the VHI and SPI-3 are strongly correlated with 
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each other. Therefore, it is evident that vegetation 

health index is vastly studied in terms of its reliability 

in drought assessment and its connection with other 

popular meteorological indicators, calculated based 

on actual meteorological data. Not-withstanding the 

fact, there is no study available in scientific literature, 

devoted to the investigation on the relationship be-

tween the VHI and UNEP-AI. Thus, current study 

pro-vides novel insight into this subject, pointing out 

on extremely weak correlation between all the stud-

ied remote sensing-based drought indicators and arid-

ity index. At the same time, it has been proved that 

all the remote sensing indicators are moderately-to-

strong correlated with each other. Considering the 

study outcomes regarding the correlation be-tween 

the crops’ yields in Kherson region and the studied 

indicators, it is possible to conclude that the UNEP 

aridity index provides pure climatological character-

istics, while the ASI, MWVHI, and VHI provide in-

direct characteristics of drought effects on the 

croplands. 

As for the crops’ yields prediction, it was found 

out that vegetation health index is the only one to be 

implemented in this purpose, because the relationship 

between the yields and ASI/MWVHI is much 

weaker. Current study is not the first one to build up 

the models for crops’ yields prediction based on re-

mote sensing VHI data; although, it is the first study 

made for the specific conditions of Kherson region, 

which is characterized as the zone of risky agricul-

ture. Kussul et al. (2015) refer to the VHI-based em-

pirical models for regional crop yield prediction as 

commonly used in agricultural science [30]. VHI-

based empirical models were developed and success-

fully used in scientific purposes for such crops as 

rice, cultivated in Bangladesh (R = 0.71-0.83) [31]; 

winter wheat, cultivated in Australia (R ≥ 0.70) [14], 

India (mean absolute percentage error of the predic-

tive models was less than 10%) [32], Ukraine (VHI-

based model outperformed NDVI-based and 

FAPAR-based ones having the lowest root mean 

square error of 0.51 t/ha) [33] etc.; grain corn, 

cultivated in Bulgaria (strong correlation between the 

crop yields and VHI was detected) [34]. Thus, it is 

evident that the VHI-based approach is well-known 

in modern agricultural science, but still not widely 

implemented. Current study provides some addi-

tional insights on the relationship between the VHI 

and regional yields of wheat, barley, grain corn and 

sunflower crops, pointing out that there is a great dif-

ference in this relationship for each of the studied 

crops. If cereal crops are strongly related to vegeta-

tion health index, grain corn and sunflower are much 

less related to this indicator, thus, making VHI-based 

yield prediction less reliable and reasonable. Such a 

discrepancy could be put upon different reaction of 

the studied crops on drought conditions, as well as 

great inequality in the areas under irrigation for each 

crop. 

Conclusions. Current study is devoted to the in-

vestigation of the inter-relationship between drought 

indicators, such as ASI, MWVHI, VHI, and UNEP 

AI, as well as their correlation with the yields of ma-

jor crops, cultivated in Kherson region of Ukraine. It 

was revealed that UNEP AI is weakly related both to 

remote sensing drought indicators and crops’ yields 

in the region, providing mainly pure climatological 

characteristics, while other studied indicators are 

moderately-to-strong related to the yields of the stud-

ied crops, providing the information on how the cul-

tivated plants react to drought conditions in the re-

gion. VHI-based linear regression models were de-

veloped to predict the yields of the studied crops for 

Kherson region. It was established that the best accu-

racy and reliability of the models is attributed to ce-

real crops, e.g., wheat and barley, while late-spring 

crops (grain corn and sunflower) have much less re-

lation to the VHI. The developed models could be ap-

plied in scientific and practical purposes to predict 

the yields of the studied crops in Kherson region of 

Ukraine. Further studies will be conducted to learn 

more details about the patterns and features of the re-

lationship between the remote sensing drought indi-

cators and real-life productivity of crops. 
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Дані дистанційного зондування для оцінки стресу від посухи та  

продуктивності сільськогосподарських угідь у Херсонській області 
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Дані дистанційного зондування Землі є цінним джерелом інформації про стан навколишнього середовища в 

цілому та сільськогосподарських угідь зокрема. У статті описано результати вивчення застосування індексу здо-

ров’я рослинності (VHI), індексу сільськогосподарського стресу (ASI) та індексу інтенсивності посухи (WMVHI) 

для оцінки інтенсивності негативної дії посушливих явищ на агрофітоценози у контексті їх кореляції з метеоро-

логічним індексом аридності та продуктивністю сільськогосподарських земель Херсонської області. Дослідження 

базувалося на даних, знятих у період 1984-2022 рр., щодо врожайності основних сільськогосподарських культур 

у регіоні (озима та яра пшениця, ячмінь, кукурудза, соняшник) та величині вегетаційних індексів, розрахованих 

у відповідності до методики ФАО ООН за супутниковими знімками сервісу FAO Earth Observation Services. Індекс 

аридності було оцінено за методикою UNEP за даними Херсонського обласного гідрометеорологічного центру. 

Статистичну обробку даних виконували згідно традиційних методик кореляційно-регресійного аналізу та моде-

лювання у Microsoft Excel 365 та BioStat v.7. У результаті досліджень встановлено, що супутникові вегетаційні 

індекси тісно корелюють із продуктивністю досліджуваних сільськогосподарських культур, та можуть бути успі-

шно використані для стратегічного та оперативного прогнозування їх урожайності. Щодо метеорологічного інде-

ксу аридності, то він слабо корелює з урожайністю культурних рослин, і є суто кліматологічним показником, який 

має другорядне значення для оцінки стану та прогнозування продуктивності агрофітоценозів. Таким чином, за-

пропоновано новий підхід до оцінки інтенсивності впливу посушливих явищ на агрофітоценози півдня України 

та прогнозу їх продуктивності за даними дистанційного зондування Землі, що має високу науково-теоретичну та 

практичну цінність. 

Ключові слова: індекс сільськогосподарського стресу, індекс аридності, інтенсивність посухи, індекс здо-

ров’я рослинності, урожай. 
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