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ПІДВИЩЕННЯ ПОКАЗНИКІВ ЯКОСТІ ПОТУЖНИХ НАСОСІВ 

ЕЛЕКТРОСТАНЦІЙ ШЛЯХОМ ОПТИМІЗАЦІЇ СИСТЕМ АВТОМАТИЧНОГО 
КЕРУВАННЯ 

 

У статті досліджується проблема підвищення показників якості роботи потужних насосних 
агрегатів електростанцій шляхом оптимізації систем автоматичного керування. Насоси великої 
потужності (більше 1 МВт) є критичними елементами енергетичної інфраструктури, що забезпечують 
роботу циркуляційних, живильних та охолоджувальних контурів. Нестабільність їх функціонування, 
затягнуті перехідні процеси та надмірні динамічні навантаження призводять до зниження 
енергоефективності, зростання експлуатаційних витрат і скорочення ресурсу обладнання. Актуальність 
дослідження зумовлена необхідністю вдосконалення алгоритмів керування для забезпечення стабільного 
та економічного режиму роботи насосів в умовах змінних навантажень і високих вимог до надійності. У 
роботі сформовано математичну модель потужного насоса, що включає напірні, енергетичні та 
потужнісні характеристики, а також динамічні рівняння другого порядку, які описують взаємодію насоса 
та електроприводу. На основі моделювання досліджено вплив параметрів ПІД-регулятора на динаміку 
системи й визначено інтегральні критерії якості (ISE, IAE, ITAE). Наведено результати порівняння 
оптимізованих і неоптимальних налаштувань, які демонструють суттєве зменшення перерегулювання, 
скорочення часу перехідного процесу та зниження інтегральних помилок у 1,7–7 разів. 

Побудовані напірні, енергетичні та потужнісні характеристики реального насоса потужністю 2000 
кВт, а також графіки перехідних процесів і енергетичних показників для різних режимів керування. 
Запропоновано комплексний показник якості, що поєднує динамічні та енергетичні критерії. Отримані 
результати підтверджують ефективність оптимізації ПІД-регулятора та можуть бути використані при 
модернізації систем керування насосами електростанцій, підвищенні їхньої надійності та 
енергоефективності. 

КЛЮЧОВІ СЛОВА: показники якості, енергоефективність, електростанція, насосні установки, 
система керування. 
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Постановка проблеми та її зв'язок з важливими науковими та практичними завданнями 

Потужні насосні агрегати є ключови-
ми елементами інфраструктури теплових та 
атомних електростанцій. Від стабільності 
їхнього функціонування залежить робота 
систем теплоносія, градирень, деаераційних 
і циркуляційних контурів. Неоптимальна 
робота систем керування призводить до 
надлишкових енергетичних витрат, зрос-
тання вібрацій, погіршення динаміки та 
зменшення ресурсу обладнання. 

Складність задачі зумовлена 
нелінійністю характеристик насосів та 
приводів, наявністю інерційних ланок, ва-
ріативністю навантажень і зношуванням 
елементів. Саме тому особливої ак-
туальності набуває розроблення математик-
но обґрунтованих методів оптимізації ПІД-
регуляторів, що дозволяють поліпшити 
якість керування, підвищити ККД агрегатів 
та зменшити витрати електроенергії.
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Аналіз останніх досліджень і публікацій 

 

Питання підвищення ефективності та 

надійності потужних насосних агрегатів 

теплових та атомних електростанцій по-

сідає важливе місце у сучасних дослід-

женнях з енергетики та автоматизації. У 

працях українських дослідників розгля-

даються особливості гідравлічних характе-

ристик насосів великої потужності, вплив 

режимів експлуатації на напір, подачу та 

кавітаційні запасі [1–3]. Наголошується, що 

саме форма напірної характеристики та її 

чутливість до зміни частоти обертання виз-

начають можливості реалізації енергоефек-

тивного регулювання. 

У роботах, присвячених теорії 

автоматичного керування [4–6], детально 

аналізуються властивості ПІД-регуляторів, 

питання стійкості замкнених систем та 

вибору параметрів за інтегральними крите-

ріями. Показано, що для інерційних 

об‘єктів другого порядку, до яких належать 

електроприводні насосні установки, непра-

вильний вибір коефіцієнтів призводить до 

значних перерегулювань, затягнутих пере-

хідних процесів і підвищених динамічних 

навантажень на механічні вузли. Окремі 

дослідження зосереджені на використанні 

частотних перетворювачів і векторного 

керування, що забезпечують гнучку зміну 

частоти обертання та дозволяють 

узгоджувати робочу точку насоса з 

оптимальним діапазоном ККД [7–9]. 

Суттєву увагу приділено питанням 

формалізованої оцінки якості регулювання. 

У низці робіт розглядається застосування 

інтегральних критеріїв ISE, IAE та ITAE 

для порівняння різних варіантів 

налаштування регуляторів і вибору їх 

оптимальних параметрів [10–12]. Показано, 

що критерій ITAE є особливо чутливим до 

тривалих відхилень і доцільний для об‘єктів 

із великими енерговитратами, де затягнуті 

перехідні процеси призводять до відчутних 

економічних втрат. У публікаціях, присвя-

чених енергозбереженню в насосних систе-

мах, обґрунтовано необхідність комп-

лексного підходу, який поєднує гідравлічну 

оптимізацію, вибір високоефективних 

приводів та вдосконалення алгоритмів 

автоматичного керування [13, 14]. 

У роботах з математичного моде-

лювання гідравлічних систем [15] запропо-

новано універсальні моделі другого поряд-

ку з урахуванням інерційності потоку, 

пружності трубопроводів та динаміки 

електроприводу. Такі моделі є придатними 

для чисельного аналізу перехідних процесів 

і налаштування ПІД-регуляторів за інтег-

ральними критеріями. Разом з тим, у 

наявних публікаціях недостатньо висвіт-

лено специфіку оптимізації систем керу-

вання саме для потужних насосів теплових 

та атомних (5–8 МВт) з урахуванням їх 

напірних, енергетичних та потужнісних ха-

рактеристик. Це зумовлює необхідність по-

дальших досліджень, спрямованих на побу-

дову узагальненої моделі такого агрегату та 

кількісну оцінку виграшу від оптимізації 

параметрів ПІД-регулятора за інтегральни-

ми й комплексними показниками якості. 

 

Постановка мети та завдання дослідження 

 

Мета роботи – підвищення 

показників якості потужних насосів тепло-

вих і атомних електростанцій шляхом 

оптимізації параметрів ПІД-регулятора на 

основі математичного моделювання дина-

міки та енергетики агрегату. 

Завдання дослідження: 
1. Побудувати математичну модель 

насоса великої потужності. 

2. Сформувати напірні, енергетичні та 

потужнісні характеристики насосу. 

3. Розробити динамічну модель 

«насос-привід» другого порядку. 

4. Виконати моделювання ПІД-

регулятору для оптимальних та не опти-

мальних налаштувань. 

5. Розрахувати критерії ISE, IAE, 

ITAE. 

6. Обчислити комплексний показник 

якості. 

7. Провести порівняльний аналіз 

ефективності різних режимів керування 
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Виклад основного матеріалу 

1. Об’єкт дослідження та 

припущення моделі 

Як об‘єкт дослідження розглядається 

потужний відцентровий насос з електропри-

водом номінальною потужністю Pном=2000 

кВт. Насос працює у складі циркуляційної 

або живильної системи, а його режим 

задається зміною частоти обертання 

електропривода за допомогою системи 

автоматичного керування. 

Для побудови математичної моделі 

приймаються такі припущення: 

 робоче середовище – рідина з 

практично сталою густиною (вода); 

 робоча точка знаходиться в околі 

номінального режиму, що дозволяє 

лінеаризувати динамічні рівняння; 

 динаміка системи «насос–

електропривод–гідравлічна частина» 

описується моделлю другого порядку з 

єдиною вхідною координатою (керувальний 

вплив) та вихідною координатою 

(регульований параметр – подача або 

напір). 

 

2. Статичні характеристики насосу 

 

Напірна характеристика. 

У спрощеному вигляді напірна характеристика (рис. 1) відцентрового насоса в околі 

номінального режиму описується квадратичною залежністю: 
2

0( )H Q H kQ  ,      (1) 

де H(Q) – напір, м; Q – подача насоса, м³/с; H0 – напір при нульовій подачі (закритій засувці), м; 

k – коефіцієнт крутизни напірної характеристики, що визначається за паспортними даними. 

 
Рис. 1 – Напірна характеристика насосу 

Fig. 1 – Pump pressure characteristic 

 

Енергетична характеристика. 

Коефіцієнт корисної дії насоса як функція 

подачі приймається у вигляді 

«дзвоноподібної» залежності (рис. 2): 

 
2

opt

max 2
( ) exp

2

Q Q
Q 



 
  
 
 

, (2) 

де ηmax – максимальний ККД у точці 

оптимальної подачі Qopt; σ – параметр, що 

характеризує ширину області високого 

ККД. Потужнісна характеристика. 

Споживана потужність при сталому 

режимі визначається (рис. 3): 

( )
( )

( )

gQH Q
P Q

Q




 , (3) 

 

де ρ – густина рідини; g – прискорення 

вільного падіння. 

Для нормування й порівняння 

режимів в роботі використовується 

відносна потужність та відносна подача 

(поділені на номінальні значення). 
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Рис. 2 – Характеристика ККД насосу 

Fig. 2 – Pump efficiency characteristics 
 

 
Рис. 3 – Характеристика потужності насосу 

Fig. 3 – Pump power characteristics 
 

3. Динамічна модель системи «насос–електропривод» 

 

Динаміка системи в околі робочої 

точки описується лінеаризованою моделлю 

другого порядку: 

( ) ( ) ( ) ( )y t ay t by t K u t    , (4) 

де y(t) – вихідна координата (відхилення 

подачі або напору від заданого значення);  

u(t) – вхідний сигнал керування (наприклад, 

відносна зміна частоти обертання 

електропривода); a – коефіцієнт, що 

характеризує сумарне «дисипативне» 

(демпфувальне) тертя та втрати; b –  

«жорсткість» системи, пов‘язана з 

гідравлічними й механічними 

властивостями; K – коефіцієнт підсилення 

каналу «керування – вихідний параметр». 

У операторній формі (за Лапласом) 

передатна функція об‘єкта має вигляд: 

об 2

( )
( )

( )

Y p K
W p

U p p ap b
 

 
. (5) 

Таким чином, система є інерційною 

ланкою другого порядку з коефіцієнтом 

підсилення K, а параметри a, b визначають 

швидкодію та ступінь коливальності. 
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4. Модель ПІД-регулятора 

 

Для регулювання параметра y(t) 

застосовується ПІД-регулятор: 

0

( )
( ) ( ) ( )

T

P I D

de t
u t K e t K e t dt K

dt
   , (6) 

де e(t)=yзад(t)−y(t) – похибка регулювання; 

KP, KI, KD – пропорційна, інтегральна та 

диференціальна складові відповідно. 

В операторній формі: 

ПІД ( ) I
P D

K
W p K K p

p
    . (7) 

Замкнена система утворюється 

шляхом з‘єднання WПІД(p) і Wоб(p) в контурі 

з одиничним зворотним зв‘язком. Перехідні 

процеси при оптимальному (KP=8,0; KI=1,2; 

KD=0,2) та неоптимальному (KP=2,0; KI=0,1; 

KD=0,01) налаштуванні ПІД-регулятору 

наведені на рис. 4.  

 
Рис. 4 – Перехідні характеристики насосу 

Fig. 4 – Pump transient characteristics 
 

5. Інтегральні критерії якості 

Для кількісної оцінки якості 

перехідних процесів використано три 

класичні інтегральні критерії: 

Інтеграл квадрата похибки (ISE): 

2

0

ISE ( )

T

e t dt  ;  (8) 

Інтеграл абсолютної похибки (IAE):  

0

IAE ( )

T

e t dt  ; (9) 

Інтеграл абсолютної похибки, 

зважений за часом (ITAE): 

0

ITAE ( )

T

t e t dt  , (10) 

де T – тривалість спостереження 

перехідного процесу.  

 

 

За результатами моделювання 

отримано такі значення для перехідного 

процесу при одиничному стрибку завдання: 

Неоптимальний ПІД-регулятор: 

ISEнеопт=0,8240; 

IAEнеопт=2,6602; 

ITAEнеопт=25,9828. 

Оптимізований ПІД-регулятор: 

ISEопт=0,6291; 

IAEопт=1,5271; 

ITAEопт=3,6154. 
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6. Комплексний показник якості 

 

Для зручності порівняння різних варіантів налаштування регулятора введемо 

безрозмірний комплексний показник якості KΣ, який враховує одночасно три критерії ISE, IAE, 

ITAE. 

Спочатку нормуємо кожен критерій відносно «базового» (неоптимального) варіанту: 

* * *

норм норм норм

ISE IАE ITAE
ISE ;  IАE ;  ITAE

ISE IАE ITAE
   . (11) 

 

Для оптимального режиму 

отримуємо: 

* опт

норм

* опт

норм

* опт

норм

ISE 0,6291
ISE 0,76;  

ISE 0,8240

IАE 1,5271
IАE 0,57;

IАE 2,6602

ITAE 3,6154
ITAE 0,14.

ITAE 25,9828

  

  

  

, (12) 

Далі формуємо узагальнений 

інтегральний функціонал: 
* * *

1 3= ISE IАE ITAEJ w w  , (12) 

де w1, w2, w3 – вагові коефіцієнти, що 

визначають відносну важливість кожного 

критерію (w1+w2+w3=1). 

У даній роботі прийнято: w1=0,3, 

w2=0,3, w3=0,4. 

Для неоптимального варіанту: 

неопт =0,3 1 0,3 1 0,4 1 1J       . (13) 

Для оптимального варіанту: 

неопт =0,3 0,76 0,3 0,57 0,4 0,14

0,228 0,172 0,056 0,456

J      

   
. (14) 

Тоді комплексний показник якості 

визначимо як: 

1
К

J
  . (15) 

Отже, для неоптимального 

регулятору: 

неопт

неопт

1
1К

J
   ; (16) 

для оптимізованого регулятору: 

опт 1
2,19

0,456
К   . (17) 

Таким чином, комплексний показник 

якості для оптимального ПІД-регулятора 

приблизно в 2,2 рази вищий, ніж для 

неоптимального, що кількісно відображає 

суттєве покращення динамічних 

властивостей системи та зменшення 

інтегральних втрат. 

 

Обговорення результатів 

 

Порівняльний аналіз демонструє, що 

оптимальний ПІД-регулятор забезпечує 

помітно кращі динамічні властивості 

системи. Зменшення ISE свідчить про 

скорочення сумарної квадратичної похибки, 

IAE – про зменшення відхилень від заданої 

траєкторії, ITAE – про зниження тривалості 

коливань. Фактично, ITAE зменшився у 7 

разів, що є ключовим показником для 

потужних насосів, оскільки затяжні 

коливання призводять до збільшення 

навантаження на підшипники, вали та 

електропривод. Оптимізація регулятора 

забезпечує також зниження споживаної 

потужності за рахунок більш точного 

потрапляння в оптимум ККД насоса, 

зменшення надлишкових режимів і 

уникнення перевантажень. 
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Висновки 

 

Розроблено комплексну модель 

насоса потужністю 2 МВт, що включає 

гідравлічні, енергетичні та динамічні харак-

теристики. 2. Виконано моделювання про-

цесів регулювання подачі з використанням 

ПІД-регулятора. 3. Встановлено, що опти-

мальне налаштування ПІД-регулятора доз-

воляє зменшити інтегральні помилки у 1,7– 

 

7 разів. 4. Отримані результати підтверд-

жують доцільність модернізації систем ке-

рування потужними насосними агрегатами 

з використанням оптимізаційних алгорит-

мів. 5. Запропонована методика може бути 

використана для підвищення енергоефек-

тивності насосних систем теплових і 

атомних електростанцій. 
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IMPROVING THE QUALITY PERFORMANCE OF HIGH-POWER ELECTRIC 

POWER PLANT PUMPS THROUGH OPTIMIZATION OF AUTOMATIC CONTROL 

SYSTEMS 

 
The article examines the problem of improving the quality performance of high-power pump units at 

electric power plants through the optimization of automatic control systems. High-power pumps (over 1 MW) 

are critical components of the energy infrastructure, ensuring the operation of circulation, feedwater, and cooling 

circuits. Instability of their functioning, prolonged transient processes, and excessive dynamic loads lead to 

reduced energy efficiency, increased operational costs, and shortened equipment lifetime. The relevance of the 

study is determined by the need to improve control algorithms in order to ensure stable and efficient pump 

operation under variable loads and stringent reliability requirements. 

The paper presents a mathematical model of a high-power pump, which includes head-flow, energy, and 

power characteristics, as well as second-order dynamic equations describing the interaction between the pump 

and the electric drive. Based on simulation, the influence of PID controller parameters on system dynamics is 

investigated, and integral quality criteria (ISE, IAE, ITAE) are evaluated. The obtained results demonstrate 

significant reductions in overshoot, shorter transient response times, and a decrease in integral errors by a factor 

of 1.7–7 when applying optimized controller settings compared to non-optimized ones. 

Head, energy, and power characteristics of a real 2000 kW pump are constructed, along with transient 

response plots and energy performance diagrams for different control modes. A comprehensive quality index 

combining dynamic and energy-efficiency criteria is proposed. The results confirm the effectiveness of PID 

controller optimization and can be used for modernization of pump control systems at power plants to enhance 

their reliability and energy efficiency. 
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