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ДІАГНОСТИКА ТА УМОВИ ПІДВИЩЕННЯ ЕФЕКТИВНОСТІ ПРОЦЕСУ 

ШЛІФУВАННЯ НА ОСНОВІ ЕНЕРГЕТИЧНИХ ПАРАМЕТРІВ 

 
Метою роботи є створення нового теоретичного підходу до діагностики процесу шліфування на 

основі відокремлення частки енергії тертя шліфувального круга із оброблюваним матеріалом від 

загального енергетичного балансу процесу шліфування та встановлення за цих умов напрямів 

підвищення його ефективності. Для цього в роботі встановлено аналітичні залежності для визначення 

енергетичних параметрів процесу шліфування: умовного напруження різання (енергомісткості обробки) і 

коефіцієнта шліфування (відношення тангенціальної і радіальної складових сили різання), які 

протилежно пов'язані з умовним кутом зсуву оброблюваного матеріалу. Виходячи із цього, 

розрахунками доведено, що зменшуючи експериментально встановлену тангенціальну складову сили 

різання, можна завжди досягти рівності значень умовного кута зсуву оброблюваного матеріалу, які 

визначаються умовним напруженням різання і коефіцієнтом шліфування. Виконання цієї умови 

забезпечує відокремлення частки енергії тертя шліфувального круга із оброблюваним матеріалом від 

загального енергетичного балансу процесу шліфування, що є новим в теорії обробки матеріалів різанням. 

Розрахунками встановлено, що  під час алмазно-іскрового шліфування частка енергії тертя приймає 

фактично нульове значення, оскільки, завдяки дії електричних розрядів в зоні різання, забезпечується 

висока ріжуча здатність алмазного круга на металевій зв'язці та виключається його тертя із 

оброблюваним матеріалом. Фактично нульове значення частки енергії тертя отримано і в умовах 

мікрорізання одиничним алмазним зерном. Все це вказує на достовірність запропонованого в роботі 

теоретичного підходу до діагностики процесу шліфування.  

Також встановлено, що в умовах звичайного абразивного шліфування частка енергії тертя може 

перевищувати частку енергії «чистого» різання. Це пов'язано із низькою ріжучою здатністю абразивного 

круга, оскільки значна частина абразивних зерен працює лише в режимі тертя з оброблюваним 

матеріалом. Показано, що розрахункові значення коефіцієнта тертя і коефіцієнта шліфування («чистого» 

різання) мало відрізняються та фактично відповідають значенням відомого відношення товщини 

мікрозрізу до радіусу вершини абразивного зерна, за якими процес стружкоутворення в зоні різання 

майже не відбу-вається. В цих випадках важливо застосовувати ефективні методи правлення та 

імпрегнування шліфувальних кругів, ефективні технологічні середовища для підвищення їх ріжучої 

здатності. Отже знання реально встановлених значень коефіцієнта тертя і коефіцієнта шліфування 

(«чистого» різання) на основі    запропонованого теоретичного рішення відкриває нові технологічні 

можливості підвищення ефективності процесу шліфування та створення високопродуктивних 

технологічних процесів обробки деталей машин. 

КЛЮЧОВІ СЛОВА: сила різання, енергомісткість обробки, коефіцієнт тертя, продуктивність 

обробки, математична модель     
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Вступ 

 

Процеси різання матеріалів є 

основними у технології виготовлення 

деталей машин. Вони характеризуються 

високими показниками продуктивності та 

якості обробки, що пов'язано з відносно 

низькою енергомісткістю процесу різання 

порівняно з іншими процесами фізико-

технічної обробки. Найбільший ефект 

досягається в умовах різанням лезовими 

інструментами [1]. Під час шліфування, 

особливо високотвердих матеріалів, нав-

паки, енергомісткість та сили і температура 

різання збільшуються, а це приводить до 

появи на оброблюваних поверхнях різних 

дефектів (припікань, мікротріщин, мікрос-

колів тощо) та зниження якості обробки [2, 

3]. Для зменшення силової напруженості 

процесу шліфування застосовують алмазні 

круги, в тому числі, на металевих зв'язках, 

та прогресивні електрофізикохімічні мето-

ди їх правлення, ефективні технологічні 

середовища [4, 5]. Важливого значення 

набули процеси переривчастого шліфуван-

ня. які дозволяють отримати подвійний 

ефект обробки: одно-часно забезпечити 

високу різальну здатність шліфувального 

круга та зменшити температуру шліфуван-

ня [6].  Однак вибір раціональних умов шлі-

фування при цьому здійснюють без прове-

дення достатньо глибокої діагностики 

процесу, особливо, без встановлення часток 

енергій різання і тертя в загальному енер-

гетичному балансі процесу шліфування, 

оскільки наявність інтенсивного тертя при-

водить до суттєвого збільшення енергоміс-

ткості, сили та температури різання. Тому 

управління енергією тертя в зоні обробки та 

забезпечення можливості її зменшення до 

нуля є важливим кроком підвищення ефек-

тивності шліфування. Для цього потрібно 

вміти науково обґрунтовано підходити до 

відокремлення частки енергії тертя від 

загальної енергії, що витрачається під час 

шліфування, та на цій основі розробляти 

високопродуктивні й високоякісні техноло-

гічні процеси обробки деталей машин. 

 

 

Аналіз останніх досліджень і публікацій 

 

Основними методами дослідження за-

кономірностей процесу шліфування тради-

ційно є експериментальні методи, які дозво-

ляють встановити основні технологічні пара-

метри шліфування в залежності від парамет-

рів режиму шліфування, характеристик шлі-

фувальних кругів та оброблюваних матеріа-

лів. На цій основі створено емпіричні моде-

лі процесів шліфування для розрахунку 

оптимальних умов обробки. Однак вони не 

розкри-вають фізичну сутність процесу 

шліфування, оскільки в них відсутні 

взаємозв'язки між вхідними і вихідними 

параметрами. Тому на зміну емпіричним 

моделям процесів шліфування прийшли 

математичні (аналітичні) моделі [7, 8]. Їх 

призначення – встановлення внутрішніх 

зв'язків (параметрів) між вхідними і вихід-

ними параметрами процесу шліфування на 

основі таких фізичних величин, як імовір-

нісна товщина зрізу окремим зерном шлі-

фувального круга; механічне навантаження, 

що діє на окреме зерно; імовірнісні закони 

виступу зерен над зв'язкою шліфувального 

круга; величина зношування ріжучого зерна 

тощо [9 – 11]. Практичне застосування цих 

математичних моделей дозволило отримати 

більш узагальнені рішення порівняно з ем-

піричними моделями. Але серед наведених 

фізичних величин, на яких засновано мате-

матичні (аналітичні) моделі процесу шліфу-

вання, відсутні такі важливі величини, як 

частки енергій різання і тертя в загальному 

енергетичному балансі процесу шліфуван-

ня, які є визначальними в забезпеченні сут-

тєвого підвищення показників продуктив-

ності, якості та точності обробки. Тому 

встановлення цих величин на основі мате-

матичного моделювання процесу шліфуван-

ня та застосування відповідних експеримен-

тальних даних є актуальним завданням, що 

має важливе теоретичне і практичне значен-

ня в подальшому розширенні технологічних 

можливостей процесу шліфування. 
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Постановка проблеми 

 

У роботі [12] наведено математичну 

(аналітичну) модель визначення параметрів 

силової напруженості процесу шліфування: 

тангенціальної і радіальної складових сили 

різання, умовного напруження різання 

(енергомісткості обробки) для процесу 

«чистого» різання без урахування сили 

тертя шліфувального круга із оброблю-

ваним матеріалом. Встановлені аналітичні 

залежності пов'я-зують параметри силової 

напруженості процесу шліфування із такою 

важливою фізичною величиною, як умов-

ний кут зсуву оброблюваного матеріалу, що 

може змінюватися в межах 0 - 45
о
. Тому, 

якщо підкорити теоретичні рішення експе-

риментально встановленим значенням тан-

генціальної і ра-діальної складових сили 

різання, то можна визначити частки енергій 

різання і тертя в загальному енергетичному 

балансі процесу шліфування. А це дозво-

лить на основі діагностики процесу шліфу-

вання розкрити його фізичну сутність та 

спрогнозувати подальші дії щодо суттєвого 

зменшення енергії (сили) тертя шліфу-

вального круга із оброблюваним мате-

ріалом, енергомісткості обробки, темпера-

тури шліфування  та, в цілому, підвищити 

його ефективність [12, 13]. Запропонований 

підхід є принципово новим, відсутнім в 

науково-технічній літературі. 

Метою роботи є створення нового 

теоретичного підходу до діагностики про-

цесу шліфування на основі відокремлення 

частки енергії тертя шліфувального круга із 

оброблюваним матеріалом від загального 

енергетичного балансу процесу шліфування 

та встановлення  за цих умов напрямів  

підвищення його ефективності.  

 

Виклад основного матеріалу 

 

Для досягнення поставленої мети 

скористаємося аналітичними залежностями 

для визначення тангенціальної zP  і 

радіальної yP  складових сили різання [13]: 

сумz SP  ;                         (1) 

сум
ш

y S
K

P 


,                      (2)  

де   – умовне напруження різання, Н/м
2
; 

крсум V/QS   – сумарна миттєва площа 

поперечного перерізу зрізу всіма одночасно 

працюючими зернами шліфувального 

круга, м
2
; tVBQ дет  – продуктивність 

обробки, м
3
/с; детV  – швидкість деталі, м/с; 

B – ширина шліфування, м; t – фактична 

глибина шліфування, м; крV – швидкість 

круга, м/с;  шK – коефіцієнт абразивного 

різання (коефіцієнт шліфування). 

У роботі [13] також наведено 

аналітичні залежності для визначення 

умовного напруження різання  та 

коефіцієнта шліфування yzш P/PK  : 






tg

ст ;                            (3) 

2tgKш  ,                          (4) 

де ст  – межа міцності на стиск оброб-

люваного матеріалу, Н/м
2
;   – умовний кут 

зсуву оброблюваного матеріалу. 

Залежності (3) і (4) справедливі для 

умов «чистого» різання, коли в процесі 

шліфування відсутнє тертя шліфувального 

круга з оброблюваним матеріалом. 

Використовуючи експериментально 

встановлені значення умовного напруження 

різання Q/VP крz   та коефіцієнта 

шліфування yzш P/PK  , за залежностями 

(3) і (4) можна визначити значення умовних 

кутів зсуву оброблюваного матеріалу 1  і 

2 . Параметри zP , yP і tVBQ дет 

встановлюються на основі 

експериментальних даних. 

Для умов «чистого» різання 

розраховані за цими залежностями 

значення умовних кутів зсуву 

оброблюваного матеріалу 1  і 2  будуть 

приблизно однаковими. За наявності в 

процесі шліфування тертя шліфувального 

круга з оброблюваним матеріалом значення 

кутів 1  і 2  будуть відрізнятися. 

Отже, використовуючи залежності (3) 

і (4), можна проводити діагностику процесу 

шліфування за енергетичними параметрами 

  і yzш P/PK  . Якщо виявиться, що вста-

новлені значення умовних кутів зсуву 

оброблюваного матеріалу 1  і 2  
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приблизно рівні, можна зробити висновок 

щодо високої ефективності процесу шліфу-

вання. У цьому випадку фактично вико-

нується умова «чистого» різання, що вик-

лючає інтенсивне тертя в зоні шліфування 

та збільшення сили і температури різання, 

дозволяє підвищити показники якості, точ-

ності та продуктивності обробки. Якщо роз-

раховані значення кутів 1  і 2  відріз-

няються, то це свідчить про порушення 

енергетичного балансу в процесі різання, 

оскільки значна частина енергії, яка спожи-

вається в процесі шліфування, йде на 

подолання сили тертя шліфувального круга 

з оброблюваним матеріалом. 

Для оцінювання запропонованого 

рішення проведено експериментальні 

дослід-ження параметрів процесу плоского 

шліфування за пружною схемою з 

радіальним зусиллям yP 60 Н плоского 

зразка із сталі Р18 ( ст 3600 Н/м
2
) 

абразивним кругом 24А40М36К5 з 

режимом шліфування: швидкість круга – 

крV 26 м/с; швидкість деталі – детV 6 

м/хв; ширина шліфування – B=10 мм. 

Результати досліджень наведено у  

табл. 1. Встановлено, що зі збільшенням 

часу обробки фактична глибина 

шліфування t, а, відповідно, і 

продуктивність обробки tVBQ дет   

зменшилися дуже значно – у 12,3 рази. 

При цьому тангенціальна складова 

сили різання zP , коефіцієнт шліфування 

yzш P/PK   та потужність шліфування N 

зменшилися незначно – менше, ніж у 2 

рази. Отже, користуючись лише 

наведеними експериментальними даними, 

складно визначити зміни внутрішніх 

параметрів обробки, які привели до суттєвої 

зміни продуктивності обробки 

tVBQ дет  . Тому слід скористатися 

залежностями (3) і (4) для встановлення 

чинників, що привели до  зменшення 

продуктивності обробки tVBQ дет   в 

12,3  рази зі збільшенням часу обробки. 

 
Таблиця 1 

 Вплив часу обробки на параметри шліфування за пружною схемою плоских зразків із сталі Р18 (

крV 26 м/с; детV 6 м/хв; B=10 мм; yP 60 Н) 

Table 1 
 The influence of processing time on the parameters of grinding according to the elastic scheme of flat 

samples made of steel P18 ( крV 26 m/s; детV 6 m/min; B=10 mm; yP 60 N) 

 

Номер 

експери-

менту 

Час 

обробки 

 , хв 

Фактична 

глибина 

шліфування 

t за 5 

проходжень, 

мм 

Продук-

тивність 

обробки  

Q, мм
3
/хв 

Потужність 

шліфування 

N, Вт 

Танген-

ціальна 

складова 

сили різання 

zP , Н 

Коефі- 

цієнт 

шліфу-

вання 

шK  

Умовне 

напру-

ження 

різання 
310 ,      

Н/ мм
2
 

1 0,1 0,037 2220 840 28,8 0,480 22,7 

2 0,5 0,013 780 854 22,4 0,373 65,7 

3 1,0 0,008 480 630 21,5 0,358 78,7 

4 2,0 0,006 360 522 17,9 0,299 87,0 

5 3,0 0,005 300 480 16,4 0,273 96,0 

6 5,0 0,003 180 450 15,2 0,253 150,0 

 

Очевидно, основним чинником тако-

го різкого зменшення глибини шліфування 

є інтенсивне зношування ріжучих зерен та 

затуплення шліфувального круга. У 

результаті процес різання з часом обробки 

фактично переходить до процесу тертя 

шліфувального круга із оброблюваним 

матеріалом. 

 

У табл. 2 наведено розраховані за за-

лежностями (3) і (4) значення умовних 

кутів зсуву оброблюваного матеріалу 1  і 

2 , розрахункові значення тангенціальної 

складової сили різання zP та коефіцієнта 

шліфування р.шK (за умов «чистого» 

різання), коефіцієнта тертя  f. 
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Таблиця 2  
 Розрахункові значення параметрів шліфування 

Table 2  
 Estimated values of grinding parameters 

 
Номер 

експе-

рименту 

Час 

обробки 

 , хв 

Умовний кут 

зсуву 

оброблювано

го матеріалу 

1 , град. 

Умовний кут 

зсуву 

оброблювано

го матеріалу 

2 , град. 

Умова 

1 2

, град. 

Тангенціальна 

складова сили 

різання р.zP , Н 

Коефіцієнт 

шліфування 

р.шK  

Коефі-

цієнт 

тертя  f 

1 0,1 9 12,8 10,8 23,9 0,3984 0,0816 

2 0,5 3,1 10,25 5,7 12,28 0,2033 0,1697 

3 1,0 2,6 9,85 5,2 10,965 0,1825 0,1755 

4 2,0 2,4 8,35 4,5 9,487 0,1588 0,1402 

5 3,0 2,2 7,65 4,1 8,528 0,1418 0,1312 

6 5,0 1,3 7,1 3,1 6,536 0,1088 0,1442 

 

Як випливає з табл. 2, для всіх 

проведених експериментів має місце роз-

ходження значень кутів 1  і 2 . Наприк-

лад, для першого експерименту 1 9
о
 і 

2 12,8
о
. При цьому значення кутів 1 , 

розрахованих за залежністю (3), менше 

аналогічних значень кутів 2 , розрахова-

них за залежністю (4). Це свідчить про те, 

що у зоні шліфування, поруч із процесом 

«чистого» різання, відбувається інтенсивне 

тертя шліфувального круга з оброблюваним 

матеріалом.  

Для визначення частки енергії 

«чистого» різання та частки енергії тертя 

шліфувального круга з оброблюваним 

матеріалом (у загальному енергетичному 

балансі процесу шліфування) слід 

домогтися рівності значень кутів 1  і 2  у 

залежностях (3) і (4). Це досягається 

зменшенням експериментально встанов-

леної тангенціальної складової сили різання 

zP  на величину сили тертя. У результаті 

функція 1tg  буде збільшуватися, а функція 

2tg  – буде зменшуватися, що призведе до 

досягнення рівності значень кутів 1  і 2 .  

Для здійснення розрахунків необхід-

но послідовно в однакову кількість разів 

зменшити значення тангенціальної скла-

дової сили різання zP  в залежностях (3) і 

(4). У результаті встановлено (табл. 2), що 

для 1-го експерименту зі зменшенням 

тангенціальної складової сили різання zP  в 

0,83 рази кути 1  і 2  набувають однако-

вого значення,  рівного 10,8
о
. Тоді коефі-

цієнт шліфування р.шK , що відповідає 

умові «чистого» різання, дорівнює р.шK

0,398, тобто приймає значення, яке в 0,83 

рази менше експериментально встановле-

ного значення коефіцієнта шліфування 

шK 0,48, що враховує як умови «чистого» 

різання, так і умови тертя шліфувального 

круга з оброблюваним матеріалом. Коефі-

цієнт тертя f дорівнює різниці експери-

ментально встановленого значення коефі-

цієнта шліфування шK 0,48 і розрахун-

кового значення коефіцієнта шліфування 

р.шK 0,3984, що відповідає умові 

«чистого» різання, тобто дорівнює 

значенню f = 0,0816. 

Частка енергії «чистого» різання у 

загальному енергетичному балансі процесу 

шліфування становить 83%, частка енергії 

тертя – 17%.  

Для 6-го експерименту (табл. 1) кути 

1  і 2  також приймають різні значення, 

відповідно, 1 =1,3
о
 і 2 =7,1

о
. Отже, поряд 

з процесом «чистого» різання, при шліфу-

ванні має місце інтенсивне тертя шліфу-

вального круга з оброблюваним мате-

ріалом. Для визначення умов «чистого» рі-

зання необхідно в розрахунках забезпечити 

рівність значень кутів 1  і 2 . Як і в попе-

редньому випадку, зменшуючи танген-

ціальну складову сили різання zP  в 0,43 

рази, досягнуто однакових значень кутів 1

= 2 =3,1
о
. Виходячи з цього, коефіцієнт 

шліфування р.шK , що відповідає умові 

«чистого» різання, дорівнює р.шK 0,1088, 

тобто приймає значення, яке в 0,43 рази 

менше експериментально встановленого 
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значення коефіцієнта шліфування шK

0,253, що враховує як умови чистого 

різання, так і умови тертя шліфувального 

круга з оброблюваним матеріалом. 

Коефіцієнт тертя f дорівнює різниці 

експериментально встановленого значення 

коефіцієнта шліфування шK 0,253 і 

розрахункового значення коефіцієнта 

шліфування р.шK 0,1088, що відповідає 

умові «чистого» різання, тобто коефіцієнт 

тертя дорівнює  f = 0,1442. 

Частка енергії «чистого» різання у 

загальному енергетичному балансі процесу 

шліфування становить 43%, а частка енергії 

тертя – 57%. Отже, частка енергії тертя пе-

ревищує частку енергії «чистого» різання, 

що пов'язано із низькою ріжучою здатністю 

абразивного круга, оскільки значна частина 

абразивних зерен працює лише в режимі 

тертя з оброблюваним матеріалом. При 

цьому розрахункові значення коефі-цієнта 

тертя і коефіцієнта шліфування  («чистого» 

різання) мало відрізняються. Цим і пояс-

нюється суттєве зменшення продуктивності 

обробки – у 12,3 рази – з часом обробки 

(табл. 1) та дозволяє більш повно розкрити 

фізичну сутність і технологічні можливості 

процесу шліфування [14]. 

Проведемо теоретичний аналіз зміни 

коефіцієнта шліфування р.шK  зі збільшен-

ням часу обробки. Для цього встановимо 

аналітичний зв'язок між коефіцієнтом 

шліфування р.шK  та відношенням товщини 

мікрозрізу za  і радіусу вершини абразив-

ного зерна R (рис. 1). 

 

 
 

Рис. 1 – Розрахункова схема відношення R/az : 1 – абразивне зерно; 2 – оброблюваний матеріал 

Fig. 1 – Calculation scheme of the relationship R/az : 1 – abrasive grain; 2 – processed material   

 

Якщо прийняти, що тангенціальна 

складова сили різання р.zP  пропорційна 

товщині мікрозрізу za , а радіальна складова 

сили різання р.yP  пропорційна довжині 

дуги контакту абразивного зерна з 

оброблюваним матеріалом АВ (рис.  1), то 

параметр р.шK  виразиться: 

sinR

a

P

P
K z

р.y

р.z
р.ш


 ,                   (5) 

де  
 
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2
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






z

zz

a

R

R

a

R

aRR
sin .  

Тоді 

z

z

р.y

р.z
р.ш

aR

a

P

P
K




2
.                (6) 

Оскільки zaR  , то залежність (6) 

спроститься: 

R

a

P

P
K z

р.y

р.z
р.ш




2
.                   (7) 

У табл. 3 наведено розрахункові 

значення коефіцієнта шліфування р.шK  в 

залежності від відношення R/az .  
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Таблиця 3  

 Розрахункові значення коефіцієнта шліфування р.шK  

Table 3  

 Calculated values of the grinding coefficient р.шK  

R/az  0,02 0,04 0,08 0,1 0,14 0,2 0,35 0,5 

р.шK  0,1 0,14 0,2 0,224 0,264 0,316 0,418 0,5 

 

Як показано в роботі [13], процес 

тертя абразивного зерна з оброблюваним 

матеріалом (під час процесу мікрорізання) 

розпочинається і, відповідно, припиняється 

за умови досягнення відношення товщини 

мікрозрізу za  і радіусу вершини абразив-

ного зерна R значень 140040 ,...,R/az  . 

Згідно табл. 3, зі збільшенням відно-

шення R/az  значення коефіцієнта шліфу-

вання р.шK  збільшуються. За умови 

R/az 0,02 … 0,08 коефіцієнт шліфування 

р.шK  приймає значення, які відповідають 

значенням коефіцієнта тертя абразивного 

зерна із оброблюваним матеріалом. Тому за 

цих умов процес мікрорізання не відбу-

вається, а здійснюється лише процес тертя 

абразивного зерна із оброблюваним мате-

ріалом. Процес мікрорізання розпочинаєть-

ся з більших значень  відношення R/az .  

Отже, розрахункові значення коефі-

цієнта шліфування р.шK , які наведено в  

табл. 3, погодяться з отриманими даними 

(табл. 2). Як видно, коефіцієнт шліфування 

р.шK  змінюється в діапазоні 0,398 … 

0,1088. Згідно табл. 3, в діапазоні 

140040 ,...,R/az   має місце пластичне 

деформування оброблюваного матеріалу 

фактично без утворення мікростружок. 

Тому частина значень коефіцієнта шліфу-

вання р.шK , починаючи з 0,264, входить до 

цього діапазону, що вказує майже на припи-

нення знімання оброблюваного матеріалу. 

У результаті фактична глибина шліфування 

t приймає дуже малі значення, на рівні 

0,006 – 0,003, що приводить до суттєвого 

зменшення продуктивності обробки.  

Цим показано, що зменшення продук-

тивності обробки Q з часом (табл. 1) по-

в'язано зі збільшенням умовного напружен-

ня різання   через інтенсивне зношування 

та затуплення шліфувального абразивного 

круга. Отже, в процесі шліфування необ-

хідно домагатися зменшення умовного нап-

руження різання   завдяки підвищенню рі-

жучої здатності шліфувального круга. В 

цих випадках важливо застосовувати ефек-

тивні методи правлення та імпрегнування 

шліфувальних кругів, ефективні техноло-

гічні середовища, процеси вібраційного та 

переривчастого шліфування  [10, 15]. 

Цього можна досягти також застосу-

ванням методу алмазно-іскрового шліфу-

вання [16, 17], сутність якого полягає в під-

веденні в зону шліфування електричного 

струму у формі електричних розрядів для 

електроерозійного руйнування металевої 

зв'язки алмазного круга і стружок, що ут-

ворюються, та забезпечення високої ріжу-

чої здатності алмазного круга. У результаті 

під час шліфування фактично виключається 

процес тертя шліфувального круга із 

оброблюваним матеріалом, забезпечується 

суттєве зменшення сили і температури 

різання, підвищення показників якості, 

точності та продуктивності обробки.  

У табл. 4 наведено отримані експери-

ментальні значення основних показників 

алмазно-іскрового шліфування (із щільніс-

тю електричного струму 0,6·10
5
 А/мм

2
) 

зразка із твердого сплаву ВК8 ( ст 3600 

Н/м
2
), які отримано під час шліфування 

алмазним кругом на металевій зв'язці 1А1 

300401275 АС6 250/200 М2-01 4 за 

пружною схемою ( constPy  ; крV 28 м/с; 

Рв – вага), показаною на рис. 2. Умовне 

напруження різання визначено за 

залежністю Q/VP крz  . Як видно, у всіх 

трьох розглянутих випадках ( yP = 40 Н; 60 

Н і 80 Н) значення кутів 1  і 2   майже 

співпадають. Це вказує на те, що під час 

алмазно-іскрового шліфування фактично 

відсутнє тертя алмазного круга на 

металевій зв'язці із оброблюваним 

матеріалом. Отже має місце процес 

«чистого» різання, що вказує на 

ефективність застосування на практиці 
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цього прогресивного методу шліфування.

Таблиця 4  
 Експериментальні та розрахункові значення параметрів алмазно-іскрового  шліфування 

Table 4  
 Experimental and calculated values of diamond spark grinding parameters 

 
Нормальна 

складова 

сили 

різання 

yP , Н 

Тангенціальна 

складова сили 

різання zP , Н 

Коефі- 

цієнт 

шліфу-

вання 

шK  

Умовне 

напруження 

різання 
310 ,      

Н/ мм
2
 

Продук-

тивність 

обробки 

Q, 

мм
3
/хв 

Умовний кут 

зсуву 

оброблюваного 

матеріалу 1 , 

град. 

Умовний кут 

зсуву 

оброблюваного 

матеріалу 2 , 

град. 

40 9,2 0,23 46 344 5,0 6,5 

60 12,6 0,21 39 556 6,0 6,0 

80 16,0 0,2 36,6 755 6,2 5,7 

 

 
 

Рис. 2 – Схема пристрою для реалізації процесу алмазно-іскрового шліфування за пружною 

схемою 

Fig. 2 – Diagram of a device for implementing the process of diamond spark grinding according to an 

elastic scheme   

 

Такими ж високими технологічними 

показниками характеризується метод 

алмазного шліфування із безперервним 

автономним електрохімічним правленням 

алмазного круга на металевій зв'язці [11, 

14]. Він отримав широке практичне 

застосування, особливо, в умовах шліфу-

вання виробів із твердих сплавів. Для 

оцінювання його технологічних можливос-

тей було проведено експериментальні 

дослідження продуктивності обробки та 

тангенціальної zP  і радіальної yP  складо-

вих сили різання під час глибинного висо-

копродуктивного круглого зовнішнього 

шліфування за жорсткою схемою ци-

ліндричної фрези (діаметром 160 мм) з 

ріжучими пластинами з твердого сплаву 

Т5К10 ( ст 4450 Н/м
2
) алмазним кругом 

на металевій зв'язці 1А1 300х25х5 

АС6 200/160 М2-01 4. Умови обробки: 

крV 35 м/с; детV 1 м/хв;      t 0,25 мм; 

B 25 мм. У результаті проведення 

експериментальних досліджень встановлено: 

шK 0,67 ( zP 110 Н; yP 164,2 Н). 

Умовне напруження різання дорівнює 

 Q/VP крz 36960 Н/мм
2
 (для Q 6250 

мм
3
/хв). Розрахунками встановлено: 1

7,5
o
; 2 16,9

o
. Як видно, значення кутів 

1  і 2   значно відрізняються. Це пов'язано 

зі значною продуктивністю обробки і 

значним тертям алмазного круга із 

оброблюваним матеріалом. Умова 1

2 11,1
o
 досягається шляхом зменшення 

P

P
y

z

Pв

Vкр
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тангенціальної складової сили різання zP

110 Н в 0,61 рази, тобто до значення zP

67,1 Н. Тоді коефіцієнт шліфування р.шK

0,4087, частки енергії «чистого» різання і 

тертя, відповідно, дорівнюють: 0,61% і 0,39 

%. Коефіцієнт тертя f 0,2613.  

Слід зазначити, що за наведених умов 

високопродуктивного глибинного шліфу-

вання без застосування безперервного авто-

номного електрохімічного або електроеро-

зійного правлення алмазний круг на мета-

левій зв'язці швидко втрачає ріжучу здат-

ність і процес шліфування фактично 

нездійсненний [9, 18]. 

Для перевірки достовірності наведе-

ного в роботі теоретичного рішення визна-

чено значення кутів 1  і 2  для умов мік-

рорізання одиничним алмазним зерном 

АС50 твердого сплаву Т15К6 ( ст 3900 

Н/м
2
) із товщиною мікрозрізу za 8 мкм і 

крV 35 м/с, які отримано професором 

Узуняном М. Д. і наведено у роботі [16]. У 

результаті проведених експериментальних 

досліджень встановлено: шK 0,48; 

20000 Н/мм
2
. Відповідно, розрахунками 

визначено: 1 11
o
; 2 12,8

o
. Отже, 

значення кутів 1  і 2 незначно відріз-

няються, тобто в процесі мікрорізання має 

місце лише незначне тертя алмазного зерна  

 

з оброблюваним матеріалом. Також вста-

новлено, що умова 1 2 12
o
 вико-

нується при зменшенні тангенціальної 

складової сили різання zP  в 0,93 рази, тобто 

при зменшенні коефіцієнта шліфування до 

значення р.шK 0,446 та збільшенні умов-

ного напруження різання   до значення 

18600 Н/мм
2
. При цьому коефіцієнт тертя 

набуває невеликого значення f 0,034, 

тобто процес мікрорізання одиничним ал-

мазним зерном фактично здійснюється в 

умовах «чистого» різання. Це повністю 

підтверджує достовірність наведеного в 

роботі теоретичного рішення щодо 

розподілу часток енергій «чистого» різання 

і тертя в процесі шліфування. Отже знання 

встановлених значень коефіцієнта тертя і 

коефіцієнта шліфування («чистого» різан-

ня) на основі запропонованого теоре-

тичного рішення відкриває принципово 

нові технологічні можливості для 

визначення параметрів шліфування [19], 

підвищення ефективності процесу шлі-

фування та створення високопродуктивних 

технологічних процесів обробки деталей 

машин.

 

Висновки 

 

У роботі наведено новий теоретичний 

підхід до діагностики процесу шліфування 

на основі відокремлення частки енергії 

тертя шліфувального круга із оброблю-

ваним матеріалом від загального енергетич-

ного балансу процесу шліфування та вста-

новлення за цих умов напрямів підвищення 

його ефективності. Сутність підходу зво-

диться до встановлення однакових розра-

хункових значень  умовного кута зсуву 

оброблюваного матеріалу від зміни 

умовного напруження різання (енерго-

місткості обробки) і коефіцієнта 

шліфування (відношення тангенціальної і 

радіальної складових сили різання) через 

зменшення експериментально встановленої 

тангенціальної складової сили різання. На 

конкретних прикладах обґрунтовано досто-

вірність запропонованого підходу та надано 

практичні рекомендації щодо зменшення 

енергії тертя шліфувального круга із 

оброблюваним матеріалом в процесі 

шліфування та підвищення його 

ефективності.
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DIAGNOSTICS AND CONDITIONS FOR INCREASING THE EFFICIENCY OF THE 

GRINDING PROCESS BASED ON ENERGY PARAMETERS  

 
The aim of the work is to create a new theoretical approach to the diagnostics of the grinding process 

based on the separation of the share of friction energy of the grinding wheel with the processed material from the 

total energy balance of the grinding process and to establish under these conditions the directions for increasing 

its efficiency. For this purpose, the work establishes analytical dependencies for determining the energy 

parameters of the grinding process: the conditional cutting stress (processing energy intensity) and the grinding 

coefficient (the ratio of the tangential and radial components of the cutting force), which are inversely related to 

the conditional shear angle of the processed material. Based on this, calculations have proven that by reducing 

the experimentally established tangential component of the cutting force, it is always possible to achieve equality 

of the values of the conditional shear angle of the processed material, which are determined by the conditional 

cutting stress and the grinding coefficient. Fulfillment of this condition ensures separation of the friction energy 

fraction of the grinding wheel with the processed material from the total energy balance of the grinding process, 

which is new in the theory of material processing by cutting. Calculations have established that during diamond 

spark grinding the friction energy fraction takes on a virtually zero value, since, due to the action of electric 

discharges in the cutting zone, a high cutting ability of the diamond wheel on the metal bond is ensured and its 

friction with the processed material is eliminated. A virtually zero value of the friction energy fraction was also 

obtained under the conditions of microcutting with a single diamond grain. All this indicates the reliability of the 

theoretical approach to the diagnostics of the grinding process proposed in the work.   

It was also established that under the conditions of conventional abrasive grinding, the share of friction 

energy can exceed the share of "clean" cutting energy. This is due to the low cutting ability of the abrasive wheel, 

since a significant part of the abrasive grains work only in the friction mode with the processed material. It is shown 

that the calculated values of the friction coefficient and the grinding coefficient ("clean" cutting) differ little and 

actually correspond to the values of the known ratio of the micro-cut thickness to the radius of the abrasive grain 

tip, at which the chip formation process in the cutting zone almost does not occur. In these cases, it is important to 

use effective methods of dressing and impregnation of grinding wheels, effective technological environments to 

increase their cutting ability. Therefore, knowledge of the actually established values of the friction coefficient and 

the grinding coefficient ("clean" cutting) based on the proposed theoretical solution opens up new technological 

possibilities for increasing the efficiency of the grinding process and creating high-performance technological 

processes for processing machine parts.  

KEYWORDS: cutting force, processing energy intensity, friction coefficient, processing productivity, 

mathematical model   
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