EFFECT OF AMYLOID FIBRILS ON ELECTROKINETIC PROPERTIES OF LIPID VESICLES

  • U. Tarabara Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University https://orcid.org/0000-0002-7677-0779
  • K. Vus Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University http://orcid.org/0000-0003-4738-4016
  • S. Girnyk Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University https://orcid.org/0000-0003-2977-5726
  • N. Kamneva Department of Physical Chemistry, V.N. Karazin Kharkiv National University4 Svobody Sq., Kharkiv, 61022, Ukraine https://orcid.org/0000-0003-1470-0393
  • O. Lavryk Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University
  • M. Mikhailyuta Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University
  • V. Trusova Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University http://orcid.org/0000-0002-7087-071X
  • G. Gorbenko Department of Nuclear and Medical Physics, V.N. Karazin Kharkiv National University http://orcid.org/0000-0002-0954-5053
Keywords: electrophoretic mobility, lipid vesicles, lysozyme, serum albumin, amyloid fibrils

Abstract

The influence of the lysozyme and serum albumin in their native and amyloid forms on the electrokinetic behavior of the negatively charged uni- and multilamellar liposomes from the zwitterionic lipid phosphatidylcholine and anionic lipid cardiolipin has been investigated using the microelectrophoresis technique. The zeta - potential, the surface electrostatic potential and surface charge density of the lipid vesicles have been determined upon varying the lipid-to-protein molar ratio. The complex dependencies of the electrophoretic mobility on the protein concentration and reversal of the surface charge observed for the multilamellar vesicles have been explained by the multilayer protein adsorption on the liposomal surface. It has been found that the native and fibrillar proteins differ in their ability to modify the charge state of the model membranes.

Downloads

Download data is not yet available.

Author Biography

N. Kamneva, Department of Physical Chemistry, V.N. Karazin Kharkiv National University4 Svobody Sq., Kharkiv, 61022, Ukraine



References

1. Cevc G. Membrane electrostatics // Biochim. Biophys. Acta. – 1990. – Vol. 1031. – P. 311-382.
2. Demchenko A.P., Yesylevskyy S.O. Nanoscopic description of biomembrane electrostatics: results of molecular dynamics simulations and fluorescence probing // Chem. Phys. Lipids. – 2009. – Vol. 169. – P. 63-84.
3. Cho W.H., Stahelin R.V. Membrane–protein interactions in cell signaling and membrane trafficking // Annu. Rev. Biophys. Biomol. Struct. – 2005. – Vol. 34. – P. 119-151.
4. Murray D., Arbuzova A., Honig B., McLaughlin S. The role of electrostatic and nonpolar interactions in the association of peripheral proteins with membranes // Pept. Lipid Interact. – 2002. – Vol. 52. – P. 277-307.
5. Mulgrew-Nesbitt A., Diraviyam K., Wang J.Y., Singh S., Murray P., Li Z.H., L. Rogers, Mirkovic N., Murray D. The role of electrostatics in protein–membrane interactions // Biochim. Biophys. Acta. – 2006. – Vol. 1761. – P. 812-826.
6. Bazzi M.D., Nelsestuen G.L. Association of protein kinase C with phospholipid vesicles // Biochemistry. – 1987. – Vol. 26 – P.115-122.
7. Newton A.C., Koshland D.E. Regulation of protein kinase C activity by lipid // Biophys. J. – 1989. – Vol. 55. – P. 209a.
8. Smejtek P., Wang S.R. Adsorption to dipalmitoylphosphatidylcholine membranes in gel and fluid state: pentachlorophenolate, dipicrylamine, and tetraphenylborate // Biophys. J. – 1990. – Vol. 58. – P. 1285-1294.
9. Gennis R.B. Biomembranes: Molecular Structure and Function. - New York: Springer-Verlag, 1989.
10. Anderluh G., Lakey J.H. Disparate proteins use similar architectures to damage membranes // Trends Biochem. Sci. – 2008. – Vol. 33. – P. 482-490.
11. Ben-Tal N., Honig B., Miller C., McLaughlin S. Electrostatic binding of proteins to membranes. Theoretical predictions and experimental results with charybdotoxin and phospholipid vesicles // Biophys. J. – 1997. – Vol. 73. – P. 1717-1727.
12. Zschornig O., Opitz F., Muller M. Annexin A4 binding to anionic phospholipid vesicles modulated by pH and calcium // Eur. Biophys. J. – 2007. – Vol. 36. – P. 415-424.
13. Kurganov B., Doh M., Arispe N. Aggregation of liposomes induced by the toxic peptides Alzheimer's A beta s, human amylin and prion (106–126): facilitation by membrane-bound G(M1) ganglioside // Peptides. – 2004. – Vol. 25. – P. 217–232.
14. Cho W.J., Jena B.P., Jeremic A.M. Nano-scale imaging and dynamics of amylinmembrane interactions and its implication in type II diabetes mellitus // Methods Cell Biol. – 2008. – Vol. 90. – P. 267-286.
15. Davidson W.S., Jonas A., Clayton D.F., George J.M. Stabilization of alpha-synuclein secondary structure upon binding to synthetic membranes // J. Biol. Chem. – 1998. – Vol. 273. – P. 9443-9449.
16. Elbaum-Garfinkle S., Ramlall T., Rhoades E. The role of the lipid bilayer in tau aggregation // Biophys. J. – 2010. – Vol. 98. – P. 2722-2730.
17. Trexler A.J., Rhoades E. Alpha-synuclein binds large unilamellar vesicles as an extended helix // Biochemistry. – 2009. – Vol. 48. – P. 2304-2306.
18. Stefani M. Protein misfolding and aggregation: new examples in medicine and biology of the dark side of the protein world // Biochim. Biophys. Acta. – 2004. – Vol. 1739. – P. 5-25.
19. Zerovnik E. Amyloid-fibril formation. Proposed mechanisms and relevance to conformational disease // Eur. J. Biochem. – 2002. – Vol. 269. – P. 3362-3371.
20. Stefani M. Generic cell dysfunction in neurodegenerative disorders: role of surfaces in early protein misfolding, aggregation, and aggregate cytotoxicity // Neuroscientist. – 2007. – Vol. 13. – P. 519-531.
21. Meratan A.A., Ghasemi A., Nemat-Gorgani M. Membrane integrity and amyloid cytotoxicity: a model study involving mitochondria and lysozyme fibrillation products // J. Mol. Biol. – 2011. – Vol. 409. – P. 826-838.
22. Caughey B., Lansbury P.T., Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders // Annu. Rev. Neurosci. – 2003. – Vol. 26. – P. 267-298.
23. Sparr E., Engel M.F.M., Sakharov D.V., Sprong M., Jacobs J., de Kruijf B., Hoppener J., Killian J.A. Islet amyloid polypeptideinduced membrane leakage involves uptake of lipids by forming amyloid fibers // FEBS Lett. – 2004. – Vol. 577. – P. 117-120.
24. Arispe N., Rojas E., Pollard H. Alzheimer’s disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminium // Proc. Natl. Acad. Sci. U.S.A. – 2003. – Vol. 89. – P. 10940-10944.
25. Pepys M.B., Hawkins P.N., Booth D.R., Vigushin D.M., Tennent G.A., Souter A.K., Totty N., Nguyen O., Blake C.C., Terry C.J., Feest T.G., Zalin A.M., Hsuan J.J. Human lysozyme gene mutations cause hereditary systemic amyloidosis // Nature. – 1993. – Vol. 362. – P. 553-557.
26. Sen P., Fatima S., Ahmad B., Khan R.H. Interactions of thioflavin T with serum albumins: Spectroscopic analyses // Spectrochimica Acta Part A. – 2009. – Vol. 74. – P. 94-99.
27. Arasteh A., Habibi-Rezaei M., Ebrahim-Habibi A., Moosavi-Movahedi A.A. Response surface methodology for optimizing the bovine serum albumin fibrillation // Protein J. – 2012. – Vol. 31. – P. 457-465.
28. McLaughlin S. The electrostatic properties of membranes // Annu. Rev. Biophys. Biophys. Chem. – 1989. – Vol. 18. – P. 113-136.
29. Jahnig F. Electrostatic free energy and shift of the phase transition for charged lipid membranes // Biophys. Chem. – 1976. – Vol. 4. – P. 309-318.
30. Malyshka D., Pandiscia L.A., Schwweitzer-Stenner R. Cardiolipin containing liposomes are fully ionized at physiological pH. An FT-IR study of phosphate group ionization // Vib. Spectrosc. – 2014. – Vol. 75. – P. 86-92.
31. Chan D., Horn R.G. The drainage of thin liquid films between solid surfaces // J. Chem. Phys. – 1985. – Vol. 83. – P. 5311-5324.
32. Israelachvili J. Measurement of the viscosity of liquids in very thin films // J. Colloid Interface Sci. – 1986. – Vol. 110. – P.263-271.
33. Horn R.G., Smith D.T., Haller W. Surface forces and viscosity of water measured between silica sheets // Chem. Phys. Lett. – 1989. – Vol. 162. – P. 404-408.
34. O’Brien R.W., Hunter R.J. The electrophoretic mobility of large colloidal particles // Can. J. Chem. – 1981. – Vol. 59. – P.1878-1887.
35. O’Brien R.W. The solution of the electrokinetic equations for colloidal particles with thin double layer // J. Colloid InterfaceSci. – 1982. – Vol. 92. – P. 204-216.
36. O’Brien R.W., Ward D.N. The electrophoresis of a spheroid with a thin double layer // J. Colloid Interface Sci. – 1988. – Vol.121. – P. 402-413.
37. Jaffe L.F. Electrophoresis along cell membranes // Nature. – 1977. – Vol. 265. – P. 600-602.
38. Poo M., Lam J.W., Orida N., Chao A.W. Electrophoresis and diffusion in the plane of the cell membrane // Biophys. J. – 1979. – P. 1-21.
39. Groves J., Boxer S., McConnell H. Electric field-induced critical demixing in lipid bilayer membranes // Proc. Natl. Acad. Sci.U.S.A. – 1998. – Vol. 95. – P. 935-938.
40. Sokirko A., Pastushenko V., Svetina S., Zeks B. Deformation of a lipid vesicle in an electric field: a theoretical study // Bioelectrochem. Bioenerg. – 1994. – Vol. 34. – P. 101-107.
41. Pysher M.D., Hayes M.A. Examination of the electrophoretic behavior of liposomes // Langmuir. – 2004. – Vol. 20. – P. 4369-4375.
Published
2017-08-01
Cited
How to Cite
Tarabara, U., Vus, K., Girnyk, S., Kamneva, N., Lavryk, O., Mikhailyuta, M., Trusova, V., & Gorbenko, G. (2017). EFFECT OF AMYLOID FIBRILS ON ELECTROKINETIC PROPERTIES OF LIPID VESICLES. East European Journal of Physics, 4(2), 19-28. https://doi.org/10.26565/2312-4334-2017-2-03