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Antiperovskite-structured solids are attracting growing attention as a new class of multifunctional materials. Unlike conventional 
perovskites, their inverted cubic framework gives rise to unusual and highly tunable properties, from fast-ion conduction and giant 
magnetoresistance to superconductivity and negative thermal expansion. These different behaviors indicate promise for applications in 
areas such as solid-state batteries, energy-harvesting refrigeration, superconducting electronics, and thermal management. This review 
collates recent work in both experimental and theoretical research, emphasizing how a single simple cubic lattice can provide such a 
wide range of functionality. We argue that the structural versatility of antiperovskites is the common link between ionic transport, spin–
lattice coupling, superconductivity, and thermal expansion. Recent advancements in Li- and Na-based solid electrolytes with high 
conductivity, giant magneto- and barocaloric responses, non-oxide superconductivity, and isotropic negative thermal expansion 
demonstrate that antiperovskites retain scientific importance and are increasingly viable competitors with the best of today’s functional 
materials. 
Keywords: Antiperovskites; Magnetism; Superconductivity; Renewable energy; Battery materials 
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1. INTRODUCTION
Energy is the convertible commodity of technology, and modern society collapses quickly without it. This 

dependency has motivated researchers to seek renewable sources due to the gradual decline and environmental burden of 
non-renewables. Renewable sources (sun, wind, water) can be replenished naturally, while non-renewables such as coal 
and oil exist in finite amounts. Rising energy demand and CO2 emissions have forced governments to invest in renewables, 
yet fossil fuels still account for over 80% of global use [1]. Although fossil fuels remain abundant in the short term, their 
continued use accelerates climate change. To mitigate shortages and climate change, solar cells and other renewables are 
being developed. Global warming is evident, with a ~0.6 °C rise in average temperature (Figure 1) [2]. 

Figure 1. Atmospheric concentration of CO2 gas [2] 

Additionally, the improvement of the sun's energy utilization is necessary for an environmentally friendly and 
cleaner world. Devices like space photovoltaic cell technology were also mentioned; this subject is continuing to advance. 
Perovskite is one of the most affordable and abundant materials for environmental sustainability solutions [3]. 
Antiperovskites (ANX3) are structural inverses of the conventional perovskite (ABX3) framework. In this structure, the 
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X-site cations (e.g., Ca, Sr, Ba, Mg) occupy the face-centered positions of the cube, while the A-site anion (commonly 
N, C, or O) resides at the cube corners. The B-site element (e.g., Bi, Sb, As) sits at the octahedral center, surrounded by 
six X cations.  

The electronic band gap is a key parameter governing the physical behavior of antiperovskites. It determines whether 
a compound is metallic, semiconducting, or insulating, and thereby influences its potential applications. For example, 
Li3OCl and related antiperovskites exhibit wide band gaps (>5 eV), making them good solid electrolytes but electronically 
insulating. In contrast, Mn3AN (A = Ga, Zn, Cu) antiperovskites are metallic with negligible gaps, enabling strong spin-
lattice coupling and giant magnetoresistance. Tunable narrow band gaps have also been predicted in Sb- and Bi-based 
antiperovskites (e.g., Ca3BiN, Ca3SbN), making them promising for thermoelectrics and optoelectronic devices. The 
ability to shift from insulating to metallic behavior by chemical substitution, pressure, or doping underscores the central 
role of band gap engineering in this materials family. 

As compared to classical perovskites, the ionic reversal leads to unusual bonding, tunable band structures, and 
multifunctional physical properties (Figure 3). Due to their reduced band gap and figure of merit, the antiperovskite 
compounds are potential candidates in thermoelectric devices that have the potential of recycling waste heat to reduce 
greenhouse gas emissions. When choosing semiconducting components for thermoelectric generators, care must be taken. 
Since the band gap affects thermoelectric properties greatly, accurate band gap computation is required. As a result, 
narrow band gap semiconductor alkaline earth-based antiperovskites are potential prospects for optoelectronics and 
thermoelectric purposes [4]. Perovskites come in a variety of forms, including double perovskites (CH3NH3)2AgInBr6 [5]. 
Double antiperovskites X6SOA2 (X= Na, K and A= Cl, Br, I) [6], simple perovskites EASnCl3 [7] and RbPbBr3−xIx (x= 0 
to 3) [8], anti-perovskites ANX3 (A= P, As, Sb, Bi; X= Sr, Ca, Mg) [9] and AsPX3 (X= Mg, Ca, and Sr) [10]. 

Figure 2. Crystal structure of a cubic antiperovskite ANX3. Here, X (green atom) cations occupy the face-centered positions, 
the A (purple atom) anion resides at the cube corners, and the B-site element (e.g., N, P, AS, Sb, Bi – red atom) sits at the 
octahedral center 

Antiperovskites have received plenty of research focused on due to their usefulness in various industrial 
applications [11]. Due to their favorable thermoelectric (TE) properties, antiperovskites have a significant potential to 
alleviate the energy crisis [12]. To achieve high efficiency, researchers are looking for appropriate materials for 
thermoelectric generators. Good thermoelectric materials often feature band gaps that are also broad enough to have an 
enormous Seebeck value and narrow enough to have a suitable conductivity for electrical use [13]. Solids with super ionic 
conductivity are regarded to be preferable to organic liquid electrolytes in batteries; hence, lithium-based antiperovskites can 
be employed as solid electrolytes [14]. These materials also have remarkable physical properties, such as 
magnetostriction [15], virtually zero temperature coefficients of resistivity [16], and gigantic magnetoresistance (GMR) [17]. 

Beyond conventional antiperovskites, new classes of antiperovskite-derived or 'reverse perovskite' structures have 
been recently reported. Tang et al. [18] developed a family of antiperovskite derivatives in which the A-site anion of the 
cubic framework is split into three edge-centered positions while preserving the corner-sharing octahedral network. 
Screening several compounds, they identified nine promising candidates such as Ba3BiI3, Ba3SbI3, and Ba3BiBr3, 
achieving predicted photovoltaic efficiencies above 24.5%, comparable to classical CH3NH3PbI3 solar cells. 
Complementary to this, Hu et al. [19] studied X3AsCl3 (X = Mg, Ca, Sr, Ba) under hydrostatic pressure, showing that 
band gaps and lattice constants evolve linearly with pressure, and that Ba3AsCl3 can reach conversion efficiencies above 
30% under moderate compression. These studies illustrate how derivative antiperovskite structures behave to atomic 
rearrangements or an applied external stress thereby widening the design space for optoelectronic applications. 

Antiperovskites are especially well-suited for industrial applications related to biosensors, magnetic field sensors, 
biosensors, micro-electromechanical systems, giant magnetoresistance, and other gadgets that read data from hard discs 
given these properties. Likewise, antiperovskites are ideal building blocks in any climate because of their zero-temperature 
coefficient of resistivity. Antiperovskites also display excellent mechanical properties [20-22], and could be of use in the 
automotive and space industries, which both require materials that are lightweight and also mechanically strong. 
Additionally, antiperovskites display superconductivity. MgCNi3 is particularly interesting because it is one of the few (yet) 
known non-oxide/perovskite-derived superconductors with a relatively high Tc of ~8 K [23]. Additionally, its electronic 
structure comprises mainly Ni 3d states near the Fermi level which makes this compound a prototype for investigating 
unconventional superconductivity in antiperovskites. The discovery of MgCNi3 lead to increased investigation into other 
related compounds including ZnNNi3 and CdCNi3 [24], emphasizing the structural tunability of this family. The goal of this 
review paper is to evaluate, the theoretical studies focused on the properties of antiperovskite-type materials. 
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2. PREVIOUS STUDIES AND RESULTS 
In first-principles studies of antiperovskites, the choice of exchange–correlation functional strongly influences the 

predicted electronic structure. The Local Density Approximation (LDA) often underestimates lattice constants and band 
gaps due to its assumption of uniform electron density. The Generalized Gradient Approximation (GGA) improves on 
this by incorporating density gradients, yielding more accurate structural parameters but still typically underestimating 
band gaps. To address this, the Engel–Vosko GGA (EV-GGA) modifies the exchange potential to give better agreement 
with experimental band gaps. Moakafi et al. [25] have investigated the electronic, optical, and elastic characteristics of 
the cubic antiperovskite SbNCa3 and BiNCa3 and found their band gaps to be 0.65 and 0.36 eV, respectively. The authors 
used LDA, GGA, and EV-GGA potentials to examine the electronic characteristics of these compounds. Despite the fact 
that the investigators used EV-GGA to attain bigger band gaps, the valence bands of these materials pass through the 
Fermi level and demonstrate metallic behavior, which is contrary to the data from experiments. Bilal et al. [26] presented 
an analysis of the previously discussed systems to examine the impact of different computational schemes for predicting 
the electronic structures of BiNCa3 and SbNCa3 antiperovskites. The authors found that LDA and GGA underestimated 
the band gap, while the mBJ potential gave band gap values of 1.09 and 1.1 eV for BiNCa3 and SbNCa3, respectively, 
which were much closer to the experimental values. The study demonstrates the sensitivity of antiperovskite band 
structures to the choice of functional and shows that these systems are compact gap semiconducting materials that can 
find relevance in thermoelectric and optoelectronic applications. 

We see that the reported physical properties of antiperovskites depend strongly on the chosen method. For instance, 
SbNCa3 and BiNCa3 show band gaps of only 0.36–0.65 eV when studied using LDA and GGA, while EV-GGA increases 
these values slightly but still underestimates them. In contrast, the modified Becke–Johnson (mBJ) potential produces 
more reliable results, giving direct band gaps close to 1.0–1.1 eV, in much better agreement with experiments. In several 
cases, GGA predicts metallic behavior, whereas mBJ or hybrid functionals reveal semiconducting nature. These variations 
highlight the importance of method selection when evaluating the electronic structure of antiperovskites, as also discussed 
in recent literature [27].  

The chemical bonds and electronic band structure in the compounds SbNMg3 and AsNMg3 were investigated by 
Shein and Ivanovskii using GGA [28]. Small band gap and both compounds display ionic semiconducting properties. 
AsNMg3 has a direct band gap, in contrast to SbNMg3, which has an indirect band gap. The GGA technique was used to 
examine these materials' Electronic and Optical properties. These compounds' optical properties have never been 
investigated previously. The author of this study confirmed the earlier findings and showed that AsNMg3 has a direct 
band gap and SbNMg3 has an indirect band gap, both compounds having low band gaps [29]. This writer asserts that the 
computed optical spectrum positions can be lower than the values obtained from experiments because DFT typically 
underestimates band gaps. 

The dielectric function's hypothetical component, as presented in their work, supports the materials' semiconducting 
properties. Using the pseudo-potential plane waves approach within the GGA, Bouhemadou and colleagues [30] studied the 
structural, optical, elastic, and electronic properties of AsNMg3 and SbNMg3 compounds. AsNMg3 has a fundamental direct 
band gap that in the beginning boosts up to 4 GPa, then gradually reduces as a function of pressure, whereas simultaneously 
maintaining its direct band gap nature throughout the whole pressure range executed, in opposition to SbNMg3, which 
transitions from a fundamental indirect band gap to a fundamental direct band gap as pressure attains 6.85 GPa. Since these 
were the initial theoretical investigations on the elastic characteristics of these compounds, Belaroussi et al. [31] have 
examined the Elastic and Structural characteristics of SbNMg3 theoretically and contrasted their research with this study. 
Amara et al. [32] have studied the structural, elastic, and electronic characteristics of BiNMg3, SbNMg3, AsNMg3, and 
PNMg3 via the full-potential augmented plane waves plus local orbital within the GGA to improve results by addressing the 
exchange and correlation effects by the Tran-Blaha mBJ potential for the charge density, density of states, and band structure. 
These scientists reported on the magnetic, electrical, optical, and bonding characteristics of these sorts of compounds. These 
materials are semiconductors, according to studies on electrical resistivity. By using the diffuse reflectivity method, the 
optical band gaps for BiNSr3 and SbNSr3 are 0.89 eV and 1.15 eV, respectively.  

Haddadi et al. [33] have examined the electronic, elastic, and structural characteristics of ANSr3 (A = Bi, Sb, and 
As) compounds in 2009 using the plane waves pseudo potential total energy approach in the CASTEP code. The optical, 
electronic, and elastic characteristics of ANSr3 (A = Bi, Sb, and As) antiperovskite compounds were studied by Hichour 
et al. [34] in 2010. The investigators used the EVGGA potential to increase the band gaps of these compounds, yielding 
values of 0.36, 0.55, and 0.84eV for BiNSr3, SbNSr3, and AsNSr3, correspondingly. All compounds' band gap values 
decrease with increasing pressure. The charge density charts show that these materials have a combination of covalent 
and ionic bonds. Their work's depiction of the imaginary component of the dielectric function also illustrates how SbNSr3 
behaves semiconducting material. 

What makes antiperovskites especially intriguing is that their diverse applications, from batteries and ionic 
conductors to magnetoresistive devices, superconductors, and thermal expansion compensators, all originate from the 
same structural motif. The cubic lattice allows a high degree of tunability, enabling properties as distinct as 
superconductivity and solid-state ionic conduction to coexist in the same materials family. This unifying theme forms the 
focus of the present review, which not only summarizes individual applications but also highlights the common structural 
and electronic factors connecting them. 
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3. APPLICATIONS 
The diverse applications of antiperovskites arise from a few unifying material characteristics. Their cubic 

framework, with interchangeable cation/anion positions, provides structural flexibility. Strong spin–lattice–charge 
coupling enables multifunctional responses, such as magnetoresistance, negative thermal expansion, and magnetocaloric 
effects. At the same time, tunable band gaps and ionic transport pathways make them attractive for electrochemical and 
superconducting applications. The following subsections discuss batteries, magneto-electronics, superconductivity, and 
thermal expansion versatility of the antiperovskite lattice. 
 

3.1 Antiperovskite as Modern Battery Materials: 
In particular, lightweight Lithium or sodium ion batteries with an elevated energy density have attracted a lot of 

research interest due to the urgent energy needs of the modern industrialized world [35]. The primary strategy for attaining 
this objective is the development of improved electrode materials with excellent capacity and a wide voltage window. 
Both their exceptionally large theoretical considerations, specific capacity, as well as their extremely low electrochemical 
potential, set Lithium metal anode materials apart from other materials. Therefore, it is envisaged that a battery or cell 
that has a Lithium metal anode will result in long-lasting, lightweight power to electronic devices. The conventional 
electrolyte's flammability and ease of leakage must first be eliminated in order to realize this vision. A secure, solid-state 
electrolyte has therefore been recommended as an alternative. Particularly enticing aspect of it is that, since it achieves 
an ultrathin dimension, it will not just resolve risks brought on by inflammability but additionally improve energy density. 
Batteries endorsed by solid-state electrolytes have been on the verge of becoming a common commercial technology [36]. 
SSEs still have to overcome significant obstacles, such as ionic conductivity, stability, Li dendrite growth, surface contact, 
etc. [37]. In this section, we primarily discuss the ionic conductivity of the antiperovskite group. Few among these SSEs 
can match an ionic liquid's room-temperature ionic conductivity. However, without material engineering optimization, 
few of these electrolytes can achieve this high level. The literature has focused considerable amounts of interest on several 
groups of inorganic solid-state electrolytes, such as Lithium halides, Garnets, Lithium nitrides [38-41]. The intrinsic high 
ionic conductivity of Li+/Na+ antiperovskite is generally very promising, and through the use of chemical doping and 
structural design, it could improve even more. Their high stability and minimal surface resistance as they come into touch 
with Lithium metal anodes are two further advantages for commercial use. They must also address their elevated 
susceptibility to moisture and a small potential window, which are two problems. There must be more research towards 
cheap, massive industrial fabrication. Figure 3 illustrates lithium-ion conduction in Li3OCl-type antiperovskites. Recent 
studies have reported room-temperature conductivities as high as ~10-3 S/cm in doped Li3-2xSrxOCl antiperovskites, 
making them competitive with NASICON and garnet-type electrolytes [14, 42]. Na-based analogues such as Na3OCl 
have also achieved ~10-4 S/cm, offering a potential pathway for cost-effective sodium-ion batteries [43]. These values 
(Table 1) demonstrate that antiperovskite solid electrolytes are approaching the performance of state-of-the-art oxide and 
sulfide systems, while offering superior mechanical processability. 

 
Figure 3: Schematic of Li+ migration pathways in Li3OCl-type antiperovskite solid electrolytes, highlighting face-centered and 
edge-sharing conduction channels [13, 14] 

Table 1: Ionic Conductivity of Antiperovskite Solid Electrolytes 

Compound Temperature (°C) Ionic Conductivity (S/cm) Remarks 
Li3OCl [13] 25 °C ~10-5 Good solid electrolyte; moisture sensitive 
Li3OBr [44] 25 °C ~10-6 Similar to Li3OCl, lower conductivity 
Na3OCl [43] 25 °C ~10-4 Promising Na-based analogue 

Li3-2xSrxOCl (doped) [42] 25 °C ~10-3 Enhanced by Sr doping (defect engineering) 

These ionic conduction studies are important because they show how antiperovskites can work as solid electrolytes. 
But other types of antiperovskites show metallic behavior, which opens the door to magnetic and magnetoresistive 
applications, discussed in the next section. 
 

3.2 Antiperovskite as electronics and Magnetoresistive devices 
ABO3 perovskites are widely used in contemporary electronics, including storage, magneto-caloric, and 

magnetoresistive devices [45-49]. Magnetic antiperovskites M3M′X (M = Mn, Fe, etc.; M′ = Ga, Al, Zn, In, Sn, etc.; X = 
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N, C) were additionally thoroughly explored as an innovative family of potential magnetic compounds. Mn-based 
magnetic antiperovskites are perhaps the most intriguing among these compounds because of their newly identified 
Giant magnetoresistance (GMR) [21], massive Magneto-caloric effect (MCE) [50], and giant Magnetostriction [51]. 
Additionally, the metallic nature of these Mn3M′X antiperovskites suggests that they have strong Mechanical, Electrical, 
and Thermal conductivities [26]. Three magnetic changes occur as the test sample of giant magnetoresistance compound 
Mn3GaC cools: a paramagnetic to ferromagnetic transition at 246 K, an FM intermediate magnetic phase transition at 160 
K, as well as an intermediate phase to antiferromagnetic transition at 158 K. While the hybridization of the Mn-X p-d 
orbitals widens the conduction band over the Fermi level and produces a significantly high conductivity, the Mn 3d 
orbitals in Mn3M′X antiperovskites offer to the DOS at the Fermi level. Both magnetic exchange interactions & 
conduction behavior include these Mn 3d electrons. As a result, the magnetic coupling interactions between these third-
dimensional electrons and the Mn-X-Mn atoms will be competitive. 

Due to the tight couplings between the various degrees of freedom & the conflicting magnetic interactions, Mn3M′A 
is highly responsive to every minor alteration in the external magnetic field, chemical composition, temperature & 
pressure [52]. From 135 to 165 K, Mn3GaC (Figure 4) displays GMR curves that resemble plateaus, with a maximum 
MR of 50% at 5 T [53]. 

 
Figure 4. Temperature-dependent magnetoresistance in Mn3GaC, showing strong MR effects linked to successive phase transitions [53] 

The giant magnetoresistance is connected to the field-induced ferromagnetic, antiferromagnetic, or intermediate 
magnetic phase transition, where there is a strong correlation between the lattice, spin, and charge. The possibility of a 
giant magnetoresistance with a larger temperature range exists if an external magnetic field can efficiently reduce the 
antiferromagnetic ground state. The antiperovskite Mn3M′A compounds offer benefits in the role of refrigerant substance 
because of their adjustable broad working temperature, as well as their availability, affordable and harmless raw materials, 
stable behavior, ease of manufacturing and design, strong conductivity, and excellent mechanical characteristics. These 
materials present an intriguing alternative material platform to investigate novel big Magneto-caloric effect compounds 
at room temperature. This close relation between spin, lattice, and electronic states also creates conditions that are 
favorable for superconductivity. Therefore, in the following section, we describe the discovery of superconductivity in 
MgCNi3 and other antiperovskites. 
 

3.3 Evolution of superconductivity in Antiperovskites 
Ni3MgC, which was found in 2001, was the first antiperovskite to exhibit superconductivity [27]. When examining 

the superconducting mechanism, the cubic Ni3MgC serves as a special illustration of an s-wave Bardeen–Cooper–
Schrieffer type-2 superconductor similar to that of the noncuprate superconductor Ba12xKxBiO3. As a result, in-depth 
experimental and theoretical research was done on superconductors related to Ni3MgC, including Ni3CuN, Ni3ZnN, 
Cr3GaN, and K2NiF4-type layered A2CNi4 (A = Al, Ga, Sn) [54, 55]. The crystal structure's high Ni content suggests that 
magnetic interactions may be crucial to the development of superconductivity. Tc experimentally decreased whenever the 
nickel site was enriched via additional transition metals, such as Mn, Fe, Co, and Cu, but might be marginally enhanced 
by raising the value of x in Ni3MgCx. The family of ternary platinum phosphides Pt3AP, where A = Ca, Sr, La [56], is 
another intriguing example of an antiperovskite-based structure closely connected to the heavy fermion superconductor 
Pt3CeSi. The so-called antipost-perovskites V3PnNx (Pn = P, As) have superconductivity [57]. In comparison to the post-
perovskite structure, the cation and anion positions are interchanged. When these compounds crystallize, they give rise 
to the filled Re3B structure. The antipost-perovskites V3PnNx have NV6 octahedral layers and Pn layers alternately 
stacked, resulting in a quasi-2D electronic state. The first antiperovskite oxide that is superconducting (Tc = 5 K) is 
Sr3xSnO [58]. Table 2 summarizes superconducting transition temperatures across representative compounds. 
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Table 2. Superconducting Transition Temperatures (Tc) in Antiperovskites 

Compound Structure Type Tc (K) Notes/Reference 

MgCNi3 Cubic antiperovskite ~8 First discovered non-oxide antiperovskite superconductor 
[23] 

ZnNNi3 Cubic antiperovskite ~3 Ni-rich, lower Tc compared to MgCNi₃ 
CdCNi3 Cubic antiperovskite ~3 Similar to ZnNNi₃, sensitive to Ni substitution 
Sr3-xSnO Antiperovskite oxide ~5 Dirac metal-based superconductor [58] 

Pt3SrP (family) Antiperovskite phosphide ~8.4 Strong coupling superconductor [56] 

All of the findings above encourage additional research into novel superconductors with extended antiperovskite 
structures. Improving Tc and knowing more about the fundamental relationship between the electronic and structure of 
crystals will be the top targets for researchers. It is observed that, besides electronic effects like superconductivity, 
antiperovskites also show unusual structural effects such as negative thermal expansion, which is presented in the next 
section. 

 
3.4 Antiperovskites with Variable Thermal Expansion Behavior: 

The complex interplay between the lattice, electrons, and phonons of solids leads to the intriguing & uncommon 
thermal expansion behavior known as negative thermal expansion [59]. Since Sleight and colleagues discovered isotropic 
NTE in ZrW2O8 in 1996, the emergence of various oxides as well as fluorides due to their ReO3-like structure and negative 
thermal expansion behavior has since made up for the positive thermal expansion of other materials. These materials have 
been used as separate components or in expansion-controlled composites. In addition to ZrW2O8, a number of open-
framework material systems, including the sodium zirconate phosphate family [60]. Fluorides formed by ScF3 and 
M1x[M2(CN)6], where M1 is Ag, Fe, and M2 is Fe, Co [61], display negative thermal expansion behavior. In such materials, 
it is thought that the corner-sharing polyhedra's correlated motion causes low-frequency vibrations that give rise to the 
negative thermal expansion. When compared to ceramic negative thermal expansion materials, a characteristic metal-
based negative thermal expansion family exhibiting high electric & thermal conductivity, isotropic negative thermal 
expansion, along with excellent mechanical characteristics, is the manganese antiperovskites Mn3BA, where B = Zn, Cu, 
Ni, Ge, Sn, and  A = N, C [62]. In conclusion, negative thermal expansion materials have advanced significantly over the 
past 20 years, and antiperovskites have been convincingly established as distinct negative thermal expansion family 
members. One can anticipate that additional structural design initiatives, theoretical predictions, and particularly magneto-
structural coupling will modulate the negative thermal expansion in antiperovskite materials. 

 
3.5 Other New emerging properties of Antiperovskites 

Other recently discovered characteristics of antiperovskites include giant Magnetostriction in some manganese 
nitride antiperovskites and ferromagnetic shape memory effects [63]. Based on first-principles calculations, a fresh class 
of antiperovskite-structured three-dimensional topological insulators was recently developed [64]. The antiperovskite 
Mn3Ni1xCuxN showed a temperature coefficient of resistivity that was almost zero [65]. The AE3NBi group (where AE is 
Ca, Sr, and Ba) provides a foundation for straightforward integration with electronic gadgets due to its chemical inertness 
as well as a compatible lattice to significant semiconductors. 

 Additionally, recently created organic-inorganic hybrid antiperovskite-type materials that can function as new 
ferroelectrics enrich the antiperovskite family and broaden the antiperovskite family's range of applications. When 
exposed to external fields like pressure and temperature, antiperovskites also exhibit intriguing properties. It has 
frequently been claimed that Mn3Ga0.95N0.94 exhibits a significant “Baromagnetic effect” [66]. Piezomagnetism was 
studied both through experimentation in Mn3NiN as well as in several types of magnetically frustrated Mn-based 
antiperovskite nitrides. Boldrin et al. [67] studied the multisite exchange-enhanced barocaloric response in Mn3NiN 
through the Néel transition temperature. 

 
3.6 Phase Change Phenomena in Antiperovskites 

Phase transitions play a central role in defining the multifunctional behavior of antiperovskite solids. Several Mn-
based antiperovskites, such as Mn3GaC and Mn3SnC, exhibit a sequence of temperature-dependent magnetic phase 
transitions including paramagnetic → ferromagnetic → antiferromagnetic states. Volume changes often accompany these 
transitions and result in giant magnetoresistance (GMR), magnetocaloric effect (MCE), and large Magnetostriction. For 
example, Mn3GaC shows a ferromagnetic to antiferromagnetic transition near 160 K, directly linked to its observed GMR 
of ~50% at 5 T. Similarly, pressure-induced phase transitions have been observed in SbNMg3 and AsNMg3, where the 
indirect band gap changes into a direct one above 6–7 GPa, significantly altering their optical response. 

Another important area is superconductivity in MgCNi3 and related systems, where the superconducting phase 
emerges below ~8 K, indicating a structural/electronic phase change in relation to the density of states at the Fermi level. 
Thermal expansion anomalies are also phase-transition driven: manganese antiperovskites (Mn3BA; B = Zn, Cu, Ni, Ge, 
Sn; A = N, C) display negative thermal expansion due to strong magneto-structural coupling near magnetic ordering 
temperatures. Recent reports also highlight barocaloric and piezomagnetic effects in Mn3NiN and Mn3Ga0.95N0.94, where 
applied pressure drives phase changes with promising caloric responses. 
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A collection of evidence suggests that antiperovskites represent extremely phase-tunable materials where structural, 
magnetic, or electronic transitions can be tuned by temperature, pressure, or chemical doping to develop interesting new 
functionalities. This strong coupling between phase change and physical properties, in addition to a promise of relatively 
low-cost synthesis, makes antiperovskites highly exciting for potential next-generation applications in solid-state cooling, 
sensing, and energy devices. 

 
4. SUMMARY AND CONCLUSION 

Antiperovskites are fascinating because a simple reversal of ionic positions unlocks a whole range of properties, 
from fast-ion conduction to superconductivity, magnetoresistance, and negative thermal expansion. This versatility makes 
them one of the few material families that can genuinely impact several technologies at once. The field, however, is still 
young. Many predicted compounds have not been synthesized, and even the known ones face hurdles such as stability 
and phase purity. Theory has advanced quickly, but experiments lag; closing this gap is essential for real applications. 
From the literature, some points are clear: Li- and Na-based antiperovskites are improving as solid electrolytes, Mn-based 
systems show striking magnetoresistive and caloric effects but need better control of transitions, Ni-based compounds are 
rare non-oxide superconductors, and doped Mn nitrides demonstrate useful negative thermal expansion. These examples 
confirm the structural flexibility of the antiperovskite lattice, even if progress is uneven across applications. Looking 
ahead, progress will depend on smarter synthesis routes, computational and machine learning tools to guide discovery, 
interface engineering for batteries, and careful tuning of magnetic and structural properties. If these challenges are met, 
antiperovskites could move from being mainly of academic interest to becoming a versatile platform with real impact on 
energy, electronics, and thermal technologies. 
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Тверді тіла зі структурою антиперовскіту привертають все більшу увагу як новий клас функціональних матеріалів. На відміну 
від звичайних перовскітів, їх перевернута кубічна структура обумовлює незвичайні властивості, що легко налаштовуються: 
від провідності швидких іонів і гігантського магнітоопору до надпровідності та негативного теплового розширення. Ці різні 
характеристики вказують на перспективність їх застосування в таких областях, як твердотільні акумулятори, 
енергозберігаюче охолодження, надпровідна електроніка та терморегулювання. У цьому огляді узагальнені недавні роботи, 
як експериментальні, і теоретичні, і підкреслюється, як прості кубічні грати може забезпечити настільки широкий спектр 
функціональних можливостей. Ми стверджуємо, що структурна універсальність антиперовскітів є сполучною ланкою між 
іонним транспортом, спін-решітковим зв'язком, надпровідністю та тепловим розширенням. Нещодавні досягнення в галузі 
твердих електролітів на основі Li і Na з високою провідністю, гігантськими магніто- і барокалоричними відгуками, 
неоксидною надпровідністю та ізотропним негативним тепловим розширенням демонструють, що антиперовскіти зберігають 
наукову значущість і стають все більш життєздатними конкурентами кращим матеріалом. 
Ключові слова: антиперовскіти; магнетизм; надпровідність; відновлювана енергія; матеріали для акумуляторів 
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Hubble’s law reveals how the components of the universe adhere to overarching dynamical rules on a cosmological scale. While it is
most renowned for describing the universe’s expansion, a general displacement equation derived in alignment with this law, along with
a general equation of converging displacement, has been applied to estimate the time remaining before the Milky Way and Andromeda
collide. This estimate closely aligns with results from numerical simulations of other studies. Additionally, the implications of this
generalized equation provide valuable insights into key cosmological enigmas, including the time variation of the Hubble parameter, the
cosmological past incompleteness, and the enduring mystery of the relationship between the subtle value of the cosmological constant
and the quantum zero-point energy of the vacuum. It has also been successful in explaining the structure of spiral galaxies.

Keywords: Hubble’s Law, Galaxy Collision, Cosmological Constant,Vacuum’s energy, Spiral Galaxy Structure
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1. INTRODUCTION
Galileo famously demonstrated in a public experiment that, in the uniform gravitational field produced by Earth,

all objects fall at the same rate, regardless of their weight. Later, Eötvös provided evidence that gravitational mass and
inertial mass are equivalent. Kepler’s laws also describe the motion of planets in terms of geometric principles, with the
motion being independent of the planets’ masses but dependent on the Sun’s gravitational influence. These intriguing
natural phenomena likely influenced Einstein, who developed the theory of general relativity, positing that gravity is
fundamentally connected to the geometry of space and time. This is why it’s reasonable to say that gravity is, in essence,
geometry [1, 2]. Therefore, if it can be established that an object’s motion is influenced solely by a specific gravitational
field, we can derive a general displacement relation that depends only on time, regardless of the object’s mass or chemistry.

Utilizing a fundamental mathematical approach, a general displacement relation was formulated as a power series
[3, 4, 5]. By applying Taylor’s expansion around the initial point or origin, specifically, the Maclaurin expansion [3, 4],
it was ultimately shown that displacement can be described as an exponential function of time, thereby supporting the
theoretical foundation of Hubble’s relation. The well-known Hubble’s relation, as of now, has been established solely
through observational evidence. However, with the advent of the general displacement equation, a theoretical foundation
has been established for Hubble’s relation, complementing the empirical observations.

Here, the general displacement is derived based on plausible mathematical and physical assumptions, ultimately
leading to Hubble’s relation, which is consistently and unambiguously supported by numerous empirical observations
of large-scale cosmic dynamics [6, 7, 8, 9, 10, 11, 12, 13]. Furthermore, the general displacement relation provides
a mathematical explanation to address a cosmic initial incompleteness. This incompleteness is merely an unavoidable
mathematical outcome; however, it holds no physical significance. The mathematical inevitability of the cosmic initial
incompleteness inherent in the general relativistic approach is re-evaluated using the time exponential expansion of the
universe, as inferred from the isotropic and uniform cosmic diverging displacement.

The universe is full of phenomena, many of which remain beyond our current understanding or the scientific
models we’ve developed. However, the general displacement relation has proven quite useful in explaining certain
enigmatic cosmic phenomena, particularly those related to large distant gravitational interactions.A similar mathematical
and physically plausible approach is employed to derive the general equation for converging dynamical displacement. This
approach is further validated by consistently estimating the time required for the upcoming collision between the Milky
Way (MW) and Andromeda (M31). It has been effective in estimating the time remaining before the imminent collision
between these two galaxies, with results that align with previous numerically simulated analyses where the technique of
N-body simulation is employed to estimate the imminent collision. [14, 15].

The general time exponential displacement relation was applied in a quasi-quantum model, serving as the amplitude
of classical harmonic oscillation to determine a finite and specific frequency. This frequency was then used to calculate the
lowest state energy of the oscillator, modeled as a quantum harmonic oscillator. Since the time-exponential displacement
equation is not a periodic function, Fourier transformation is applied to determine the characteristic frequency of the
oscillation when the amplitude is modeled as an exponential function of time. This approach proved instrumental in
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demonstrating the consistency between the subtle observational value of the cosmological constant and the zero-point
energy of the vacuum. This classical general relationship demonstrates consistency between value of the cosmological
constant and the quantum ground-state energy of the vacuum through a quasi-quantum technique. While the quantum field
theoretical prediction for the cosmological constant shows a significant degree of inconsistency with observed values.

In addition to the aforementioned applications, one notable application of the time exponential general displacement
equation is its use in providing a mathematical explanation for the structure of spiral galaxies.

2. HUBBLE’S LAW AND ITS GENERALIZATION
Edwin Hubble’s prolonged observations have unveiled a crucial discovery, indicating that in expansive cosmic

distances, celestial units like galaxies are steadily moving away from each other, and this motion is directly and linearly
linked to the distances that exist between them [6, 7, 8]. This outcome, subsequently analyzed through numerous further
observations, has provided deeper insights into the dynamic relationships between celestial units and their velocities in the
vast cosmic distances [9, 10, 11, 12, 13]. Which can be summarized as a simple equation for recession velocity:[16, 17]

𝑑𝑙

𝑑𝑡
= 𝑣 = 𝐻𝑙 (1)

By avoiding the negative and complex solutions, a solution for the above equation can be found by rearranging the terms
involved followed by integrating both sides, with respect to the relevant variables as:

𝑙 = 𝑙0𝑒
𝐻𝑡 (2)

The above relation shows a non-degenerate relation, since by differentiating the sides of Hubble’s law, we can find
the general relation for the time derivatives of displacement variable as: ¥𝑙 ∝ ¤𝑙, 𝑙̈ ∝ ¥𝑙, and so on. This implies
that the time derivatives of acceleration do not vanish. The third and fourth derivatives of position are known as
the jerk and snap, respectively [18]. Furthermore, higher-order time derivatives are a conventional concept in the
study of robotics dynamics [19] and aerodynamics. Jerk and snap were also used as higher-order derivatives of the
Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) scale factor [20]. The term on the right-hand side of equation (2) is
differentiable up to infinite order and continuous with respect to time. Importantly, the motion described by equation
(2) is general and independent of the individual mass. As a result, developing a Hamiltonian formulation is unnecessary
for our mass-independent motion analysis, and therefore any subsequent unbounded Hamiltonian is irrelevant. We will
thoroughly examine the mathematical feasibility of equation (2) in principle in the following subsection 2.1. This simple
relation is powerful enough to reshape our classical understanding of dynamics, particularly when applied to long-distance
motion.

2.1. General equation for diverging displacement
Consider an object with an initial position 𝑥0, defined within an inertial reference frame. After a time interval 𝑡,

measured in the same frame, the object’s position becomes 𝑥. Hubble’s law, which establishes a proportionality between
velocity and distance, implies that displacement can be described as a higher-order function of time. Let us express this
displacement using a higher-order series expansion as a function of time:

𝑥 = 𝑓 (𝑡) =
∞∑︁
𝑛=0

𝑥𝑛𝑡
𝑛 (3)

Using the Maclaurin expansion, we can express the displacement 𝑥(𝑡) as a higher-order series in terms of time 𝑡. The
Maclaurin series expands a function about 𝑡 = 0, leading to the following expression:

𝑥 = 𝑓 (𝑡) = [𝑥]𝑡=0 +
1
1!

[
𝑑𝑥

𝑑𝑡

]
𝑡=0

𝑡 + 1
2!

[
𝑑2𝑥

𝑑𝑡2

]
𝑡=0

𝑡2 + 1
3!

[
𝑑3𝑥

𝑑𝑡3

]
𝑡=0

𝑡3 + · · · + 1
𝑛!

[
𝑑𝑛𝑥

𝑑𝑡𝑛

]
𝑡=0

𝑡𝑛 + · · ·

We define the velocity 𝑣, acceleration 𝑎, the third derivative term 𝑎1, and similarly, the 𝑛-th derivative term as 𝑑𝑛𝑥
𝑑𝑡𝑛

= 𝑎𝑛−2,
with any zero subscripts representing the initial values:

𝑥 = 𝑥0 +
1
1!

[𝑣]𝑡=0 𝑡 +
1
2!

[𝑎]𝑡=0 𝑡
2 + 1

3!
[𝑎1]𝑡=0 𝑡

3 + · · · + 1
𝑛!

[𝑎𝑛−2]𝑡=0 𝑡
𝑛 + · · ·

= 𝑥0 + 𝑣0𝑡 +
1
2!
𝑎0𝑡

2 +
∞∑︁
𝑛=3

1
𝑛!

[𝑎 𝑛−2]𝑡=0 𝑡
𝑛

Here we assume 𝑥0 > 0.

𝑥 = 𝑥0

1 +
(
𝑣0
𝑥0
𝑡

)
+ 1

2!

(
2

√︂
𝑎0
𝑥0
𝑡

)2

+
∞∑︁
𝑛=3

1
𝑛!

©­« 𝑛

√︄
(𝑎𝑛−2)𝑡=0

𝑥0
𝑡
ª®¬
𝑛 (4)
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In this expression, the coefficients of each time-dependent term are defined using the initial kinematic quantities, such
as the initial velocity 𝑣0, acceleration 𝑎0, and higher derivatives [𝑎 𝑛−2]𝑡=0. By dimensional analysis, each of these
coefficients must have the dimension of inverse time, [𝑇−1], which suggests a common physical scaling factor. If we
interpret this displacement as occurring within a homogeneous and isotropic system, i.e., one that is directionally invariant
and uniformly distributed, then the rate of displacement or expansion must also exhibit isotropic scaling. This concept is
well aligned with the cosmological principle employed in Friedmann’s models of the universe. In cosmology, under the
assumptions of homogeneity and isotropy, the Friedmann–Lemaı̂tre–Robertson–Walker (FLRW) metric leads to a scale
factor 𝛼(𝑡) whose rate of change defines the Hubble parameter: 𝐻 = ¤𝛼

𝛼
. This formulation implies an exponential-like

evolution under certain energy conditions, and hence supports the plausibility of uniform time scaling in the displacement
function. Therefore, if the displacement depends only on time, and the system remains homogeneous and isotropic during
its evolution, it is physically reasonable to assign the same constant value to all coefficients of the time powers in the
expansion. At any given epoch or over a small time interval, we can thus define a single inverse time constant 𝜁 , such that:

𝜁 =
𝑣0
𝑥0

= 2

√︂
𝑎0
𝑥0

=
𝑛

√︄
(𝑎𝑛−2)𝑡=0

𝑥0

and using equation (4), we can get:

𝑥 = 𝑥0

{
1 + 𝜁𝑡 + 1

2!
(𝜁𝑡)2 + · · · +

∞∑︁
𝑛=3

1
𝑛!

(𝜁𝑡)𝑛
}

𝑥 = 𝑥0𝑒
𝜁 𝑡 (5)

From this, Hubble’s relation can be easily derived as: ¤𝑥 = 𝜁𝑥 or ¤𝑥 ∝ 𝑥. Indeed, our defined constant 𝜁 is equivalent to
the Hubble parameter 𝐻 in case of displacement due to cosmic expansion, which can be regarded as the constant 𝐻0 for a
particular epoch of cosmic time. Equation ( 5) is identical and equivalent to equation (2) as follows, and it represents the
general equation for cosmological diverging displacement:

𝑥 = 𝑥0𝑒
𝐻0𝑡 (6)

In the Maclaurin expansion, it is important to note that we expand the displacement function from an initial point in
time. This approach is essential since time is the only independent variable in the function defined by equation (6). For
measurement purposes, we must define a reference point, and the most convenient choice is our current cosmological
spacetime point, defined as (𝑡 = 0, 𝑥 = 𝑥0). Future time corresponds to positive 𝑡, while past time corresponds to negative
𝑡, relative to this arbitrarily and conveniently chosen origin of measurement. The Hubble constant is determined by
observing the current velocity and distance of cosmic objects with respect to this reference point. As time progresses over
a nontrivial interval (e.g., 𝑡 𝑓 ), velocity measurements will no longer be referenced to the initial fixed origin. Instead, they
must be referenced to a transformed origin that shifts along the spatial axis as time changes. As a result, the transformed
displacement will be:

𝑥 𝑓 0 = 𝑥0𝑒
𝐻0𝑡 𝑓 .

Given an initial value for velocity, namely the present-time velocity 𝑣0, the resulting transformed velocity is expressed as:

𝑣 𝑓 0 = 𝑣0 +
𝑑2𝑥 𝑓 0

𝑑𝑡2
𝑡 𝑓 .

𝑣 𝑓 0 = 𝑣0 + 𝑡 𝑓 𝑥0𝐻
2
0𝑒
𝐻0𝑡 𝑓 .

The Hubble parameter at this future point will then be measured as:

𝐻 𝑓 0 =
𝑣 𝑓 0

𝑥 𝑓 0
=
𝑣0 + 𝑥0𝑡 𝑓𝐻

2
0𝑒
𝐻0𝑡 𝑓

𝑥0𝑒
𝐻0𝑡 𝑓

=
𝑣0
𝑥0

1
𝑒𝐻0𝑡 𝑓

+ 𝑡 𝑓𝐻2
0 ,

which is evidently ≠
𝑣0
𝑥0
. The above argument regarding the inequality of the Hubble parameter across different cosmic

epochs, commonly referred to as the Hubble tension, is similarly applicable to the distant past if the Hubble parameter
were to be measured. This argument provides a straightforward explanation of the enigmatic concept known as the Hubble
tension. The time dependency of the Hubble parameter can be well comprehended through general relativity, in connection
with the FLRW scale factor, as a result of employing the FLRW metric in Einstein’s field equations, which we will examine
in Section 5.
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2.2. General equation for converging displacement
Now consider an object with an initial position 𝑥0, defined within an inertial reference frame. After a time interval 𝑡,

measured in the same frame, the object’s position becomes 𝑥. In this scenario, as time increases, 𝑥 decreases. As a result,
the time derivatives of displacement, such as 𝑑𝑥

𝑑𝑡
, 𝑑2𝑥
𝑑𝑡2

, and so forth, along with their initial values, will have negative signs.
Therefore, the Maclaurin series expansion of the general converging displacement will be:

𝑥 = 𝑥0 − 𝑣0𝑡 −
1
2!
𝑎0𝑡

2 −
∞∑︁
𝑛=3

1
𝑛!

[𝑎 𝑛−2]𝑡=0 𝑡
𝑛.

𝑥 = 2𝑥0 −
(
𝑥0 + 𝑣0𝑡 +

1
2!
𝑎0𝑡

2 +
∞∑︁
𝑛=3

1
𝑛!

[𝑎 𝑛−2]𝑡=0 𝑡
𝑛

)
.

𝑥 = 2𝑥0 −
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𝑥0

{
1 + 𝑣0

𝑥0
𝑡 + 1

2!

(√︃
2𝑎0
𝑥0
𝑡

)2
+

∞∑︁
𝑛=3

1
𝑛!

(√︃
𝑛[𝑎𝑛−2 ]𝑡=0

𝑥0
𝑡

)𝑛 }]
.

Defining the constant for converging displacement as

𝜉 =
𝑣0
𝑥0

=

√︃
2𝑎0
𝑥0

=

√︃
𝑛[𝑎𝑛−2 ]𝑡=0

𝑥0
,

we obtain

𝑥 = 2𝑥0 − 𝑥0

{
1 + 𝜉𝑡 + 1

2!
(𝜉𝑡)2 + · · · +

∞∑︁
𝑛=3

1
𝑛!

(𝜉𝑡)𝑛
}
= 2𝑥0 − 𝑥0𝑒

𝜉 𝑡 .

𝑥 = 𝑥0 (2 − 𝑒 𝜉 𝑡 ) (7)

The aforementioned equation (7) was derived by considering the convergence of two masses, ignoring any external
perturbations, and assuming that the motion is dominated by the center of mass. Therefore, this relation applies to cases
of interacting motion between galaxies with well-defined geometric shapes, supported by the presence of significant
amounts of non-baryonic dark matter. In these cases, the constituents are strongly bound to the galactic nucleus, which
can reasonably be assumed to contain a supermassive black hole.

3. ESTIMATING THE TIME REMAINING FOR MILKY WAY AND ANDROMEDA COLLISION
Contemporary observations confirm that the Andromeda Galaxy is directly approaching the Milky Way, making

their collision inevitable [14, 21, 22, 23, 24, 25, 26]. Assuming a direct approach, the time remaining until the collision
can be estimated using equation (7). This time represents the duration required for the distance between the two galaxies
to decrease from the current initial distance, defined as 𝑥0, to zero, given the current approach velocity of Andromeda,
represented as 𝑣0. From equation (7), setting 𝑥 = 0, we calculate the time:

0 = 𝑥0

(
2 − 𝑒 𝜉 𝑡

)
𝑡 =

ln 2
𝜉

(8)

Where 𝜉 = 𝑣0
𝑥0
. and considered conversion for 1year = 365.25 days. Using the current data on M31’s approaching velocity

and distance, the estimated time remaining until the collision is summarized in the Table 1.

Table 1. Assessment of remaining time for collision between the Milky Way and Andromeda using data from different
studies.

Current Radial Velocity, 𝑣0 (km/s) Current Distance, 𝑥0 (Mpc) 𝜉 (km/s/Mpc) Remaining Time for Collision, 𝑡 = ln 2
𝜉

(Gyr)
120 [22] 0.78 [21] 153.846 4.405
110 [23] 0.785 [27] 140.127 4.837
115.7 [15] 0.761 [28] 152.037 4.458
109.3 [25] 0.77 [14] 141.948 4.775
110 [23] 0.8 [24] 137.5 4.929

It is important to clarify that the present analysis considers only a single degree of freedom, the radial component
of M31’s motion. While it is true that M31 also has a tangential velocity component, the radial and tangential motions
can be treated as dynamically independent, much like two-dimensional motion under the influence of a potential field.
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Furthermore, the effects of dynamical friction and gravitational perturbations from neighboring galaxies tend to moderate
the radial motion, making it approximately constant over large timescales. However, the system still evolves dynamically
through a spiral infall trajectory, resulting from the continuous interplay between radial decay and angular momentum
loss. An analogous coplanar spiral motion, commonly observed within disk galaxies, will be further discussed in section
6.

Since 𝜉 is defined as a constant, the remaining time for collision, 𝑡 = ln 2
𝜉

, is likewise a fixed quantity. This is reasonable,
as it aligns with our understanding that the unperturbed gravitational interaction time under a given gravitational field is
also definite. From Table 1, the estimated time remaining until the upcoming collision between the Milky Way (MW)
and Andromeda Galaxy (M31) is approximately 4.4 to 4.93 billion years, aligning closely with contemporary estimates
derived from numerical simulation data. For example [14] reported a collision timeline of approximately 4.5 billion years,
based on precise measurements of galactic motions. Furthermore, this estimate is also consistent with the timeline of 4 to
5 billion years suggested by [15], which was derived using numerical N-body simulation data.

4. COSMOLOGICAL CONSTANT AND QUANTUM ZERO-POINT ENERGY
The relationship between the cosmological constant and vacuum energy density, interpreted as quantum zero-point

energy, was discussed in the seminal work by Zel’dovich [29]. Notable recent studies [30, 31, 32, 33] have further explored
this correlation. Notable references can be found in the comprehensive book authored by Hobson [34], and Carroll [35],
and the influential article by Steven Weinberg [36] about the cosmological constant value. By employing the concept that
vacuum pressure is analogous to perfect fluid pressure [29, 34, 35, 37, 38], the cosmological constant was derived as:

Λ =
8𝜋𝐺𝜌vac

𝑐2 (9)

This can be achieved through mathematically straightforward and physically plausible assumptions by utilizing Einstein’s
field equation for empty space with the presence of the cosmological constant. Einstein field equation in covariant form
in the presence of matter and employing the cosmological constant [34, 37]:

𝑅𝜇𝜈 −
1
2
𝑅𝑔𝜇𝜈 + Λ𝑔𝜇𝜈 = −𝜅𝑇𝜇𝜈 (10)

By decomposing the energy-momentum tensor 𝑇𝜇𝜈 into components for matter, [𝑇𝜇𝜈]𝑚 and vacuum, [𝑇𝜇𝜈]vac, and
considering the context of flat spacetime without matter, we set the Einstein tensor, 𝑅𝜇𝜈 − 1

2𝑅𝑔𝜇𝜈 = 0. Factoring out the
[𝑇𝜇𝜈]𝑚 term for the vacuum, the above equation (10) becomes:

Λ𝑔𝜇𝜈 = −𝜅 [𝑇𝜇𝜈]vac = −𝜅 [𝑇00]𝑔𝜇𝜈

By utilizing the negative energy property of the vacuum, we obtain from the above equation:

Λ𝑔𝜇𝜈 = 𝜅𝜌vac𝑐
2𝑔𝜇𝜈

By substituting the value of the constant 𝜅, the above equation becomes:

Λ =
8𝜋𝐺𝜌vac

𝑐2

Thus, it can be concluded that equation (9) represents a form of Einstein’s field equation under the conditions of empty
space, where the energy-momentum tensor does not vanish but is present in the form of vacuum energy, and in the presence
of cosmological constant. Applying the Jeans instability condition [22, 39, 40, 41, 42] considering the fluid mechanical
analogy to the entire universe reveals that for stability, the universe must be homogeneous and isotropic, without a specific
center. Mathematically, it can be demonstrated that for a stable universe, the unperturbed density must be zero for the
homogeneous and isotropic static universe with a sufficient extent [22, 40, 41, 42]. While some, like James Binney, have
termed this as a ”swindle,”[22, 39, 42] several analyses have validated it as a mathematical fact [39, 42, 43]. This concept
aligns with the zero-energy density (or zero-mass density) feature of a de Sitter universe, where the cosmological constant
dominates and drives an accelerated expansion, resulting in a universe with a constant energy density. It’s also noteworthy
that the quantum wave function of the entire universe, when in its ground state and under classical conditions, corresponds
with the zero-mass density phenomenon of the de Sitter universe [44]. Time exponential equation of cosmic scale factor
is in fact a property of de Sitter universe [45].

We will now model the vacuum as a classical harmonic oscillator instead of modeling the oscillation of the entire
universe. Since the equations governing harmonic oscillation require oscillation around a center, this could lead to
instability arising from the assumption of a specific center for the universe, as previously discussed.
We recall the fundamental equation of classical harmonic oscillator [46]:

𝑚 ¥𝑥 = −𝑘𝑥 (11)
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To model the vacuum as an oscillator, we will consider the vacuum’s constituent point mass 𝑚0 and the stiffness of its
oscillation 𝑘0. Using equation (6) along with the equation for the classical harmonic oscillator mentioned above equation
(11):

𝑚0𝑥0𝐻
2
0𝑒
𝐻0𝑡 = −𝑘0𝑥0𝑒

𝐻0𝑡

𝑚0𝐻
2
0 = −𝑘0

𝐻0 = 𝑖

√︂
𝑘0
𝑚0

= 𝑖𝜔 (12)

Where 𝜔 represents the angular frequency of the oscillator. The general solution for equation (11) in exponential form,
with 𝐶1 and 𝐶2 as constant coefficients, is:

𝑥(𝑡) = 𝐶1𝑒
𝑖𝜔𝑡 + 𝐶2𝑒

−𝑖𝜔𝑡

Using Equation (12), the general solution becomes:

𝑥(𝑡) = 𝐶1𝑒
𝐻0𝑡 + 𝐶2𝑒

−𝐻0𝑡 (13)

The above equation (13) is evidently not a periodic function. Therefore, to determine the characteristic angular frequency
in relation to Hubble constant, we can analyze the Fourier transformation of the function represented by equation (13).
Now the Fourier transformation [47] of x(t) will be as below:

𝑓 (𝑥) =
∫ ∞

−∞

(
𝐶1𝑒

𝐻0𝑡 + 𝐶2𝑒
−𝐻0𝑡

)
𝑒−𝑖𝜔𝑡 𝑑𝑡

𝑓 (𝑥) = 𝐶1

∫ ∞

−∞
𝑒𝑡 (𝐻0−𝑖𝜔) 𝑑𝑡 + 𝐶2

∫ ∞

−∞
𝑒−𝑡 (𝐻0+𝑖𝜔) 𝑑𝑡 (14)

Since 𝑒𝐻0𝑡 grows exponentially as 𝑡 approaches ∞, its transformation converges only when 𝑡 → −∞. Similarly,
𝑒−𝐻0𝑡 grows exponentially as 𝑡 approaches −∞, so its transformation converges only when 𝑡 → ∞. Therefore, for 𝐻0 > 0,
equation (14) takes the following form:

𝑓 (𝑥) = 𝐶1

∫ 0

−∞
𝑒𝑡 (𝐻0−𝑖𝜔) 𝑑𝑡 + 𝐶2

∫ ∞

0
𝑒−𝑡 (𝐻0+𝑖𝜔) 𝑑𝑡

𝑓 (𝑥) = 𝐶1
𝐻0 − 𝑖𝜔

+ 𝐶2
𝐻0 + 𝑖𝜔

As Hubble constant has a real value, therefore in accordance to equation (12), we cannot determine a conventional
real-valued frequency like that of an ordinary oscillating system; instead, we can evaluate the characteristic frequency.
The characteristic frequency corresponds to the frequency scale where the real and imaginary parts of the denominator
are comparable. The real part is 𝐻0 and the imaginary part is 𝜔, therefore the characteristic angular frequency is :

𝜔𝑐 = |𝐻0 |.

By applying Euler’s formula to Equation (13), we obtain:

𝑥(𝑡) = 𝐶1
[
cos(𝜔𝑡) + 𝑖 sin(𝜔𝑡)

]
+ 𝐶2

[
cos(𝜔𝑡) − 𝑖 sin(𝜔𝑡)

]
,

𝑥(𝑡) = (𝐶1 + 𝐶2) cos(𝜔𝑡) + 𝑖(𝐶1 − 𝐶2) sin(𝜔𝑡),
Which is a periodic function having the characteristic frequency

𝜔𝑐 = |𝐻0 |.

It has been demonstrated that when modeling the vacuum as an ordinary harmonic oscillator, an imaginary frequency
emerges instead of a real one. However, we can define a characteristic frequency with a value equal to 𝐻0. The vacuum is
not ordinary, and the challenge of obtaining a real frequency can be resolved through the well-established property of the
vacuum’s extraordinary negative energy. We can formulate the Lagrangian for the vacuum as:

𝐿vac = 𝑇vac −𝑉vac,

where 𝑇vac represents the negative kinetic energy of the vacuum, defined as

𝑇vac = −1
2
𝑚0 ¤𝑥2,
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and the displacement-dependent potential is given by

𝑉vac = −1
2
𝑘0𝑥

2.

Using these relations, the Euler–Lagrange equation for the vacuum becomes:

𝜕𝐿vac
𝜕𝑥

− 𝑑

𝑑𝑡

(
𝜕𝐿vac
𝜕 ¤𝑥

)
= 0,

which yields
−𝑘0𝑥 + 𝑚0 ¥𝑥 = 0. (15)

By applying the exponential time-dependent amplitude solution, we have:

𝑚0𝑥0𝐻
2
0𝑒
𝐻0𝑡 = 𝑘0𝑥0𝑒

𝐻0𝑡 , 𝐻0 =

√︂
𝑘0
𝑚0

= 𝜔.

Thus, by leveraging the vacuum’s negative energy property, we obtain a real-valued frequency, which matches the
characteristic frequency determined earlier.

If we align with the de Sitter universe, assuming the entire universe is a vast vacuum with a constant energy density
𝜀vac and mass density 𝜌vac, the first Friedmann equation with the cosmological constant term Λ results in the following
equation for the cosmic scale factor 𝛼: [34]

¥𝛼 = −4𝜋𝐺
3

(
𝜌vac +

3𝑝
𝑐2

)
𝛼 + 1

3
Λ𝑐2𝛼. (16)

By substituting the perfect fluid analog of vacuum, where the energy exerts negative pressure, i.e., 𝑝 = −𝜀vac = −𝜌vac𝑐
2,

into the above equation (16), we obtain:

¥𝛼 = −4𝜋𝐺
3

(𝜌vac − 3𝜌vac) 𝛼 + 1
3
Λ𝑐2𝛼,

¥𝛼 − 8𝜋𝐺𝜌vac
3

𝛼 − 1
3
Λ𝑐2𝛼 = 0. (17)

By defining the quantity

𝐻Λ =

√︂
1
3
Λ𝑐2 + 8𝜋𝐺𝜌vac

3
,

the equation (17) becomes:
¥𝛼 − 𝐻2

Λ𝛼 = 0.

Thus, a general solution for equation (17) can be determined, which is analogous to equation (13), as follows with scalar
constants 𝐶3 and 𝐶4:

𝛼(𝑡) = 𝐶3𝑒
𝐻Λ𝑡 + 𝐶4𝑒

−𝐻Λ𝑡 (18)

Another form of the solution can be expressed in terms of hyperbolic trigonometric functions:

𝛼(𝑡) = 𝐶3 + 𝐶4
2

cosh(𝐻Λ𝑡) +
𝐶3 − 𝐶4

2
sinh(𝐻Λ𝑡) (19)

Form of the equation (18) is similar to the displacement solution expressed in equation (13). This similarity further
demonstrates the consistency between the solution for the Hubble parameter in equation (2) and that in equation (25),
expressed in terms of distance and the cosmic scale factor, respectively. We have already shown that in the displacement-
based solution with referencing equation (13), 𝐻0 cannot be equal to an ordinary real frequency of a harmonic oscillation;
a similar argument applies to the scale factor–based solution, that is, the equations (18) and (19) do not allow 𝐻Λ to be
interpreted as a direct harmonic oscillation frequency. After applying a Fourier transformation, 𝐻Λ can be regarded as a
characteristic frequency, which in this case is real. Therefore, corresponding to the equation (17), if we model the universe
as an undamped free harmonic oscillator, the characteristic angular frequency can be given by:

𝐻Λ =

√︂
1
3
Λ𝑐2 + 8𝜋𝐺𝜌vac

3
.

Using equation (9) for Λ, we can derive:

𝐻Λ =

√︂
16𝜋𝐺𝜌vac

3
(20)
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This is equivalent to the expression for the Hubble constant, 𝐻0, in a flat, exponentially expanding universe and can be
verified numerically using observational data [48, 49]. Equations (18) and (19) present fascinating results, as they indicate
that the cosmic scale factor remains non-zero for any finite time variable domain. This implies a cosmic solution for an
eternal universe without spacetime incompleteness. Unlike a comoving solution, this result is derived relative to a fixed
spacetime framework. In this type of oscillating cosmic model, each cycle of expansion, from a non-zero minimum to a
maximum, and subsequent contraction back to the minimum point will have a defined period:

𝑇Λ =
2𝜋
𝐻Λ

= 2𝜋

√︄
3

16𝜋𝐺𝜌vac
,

𝑇Λ =
1
2

√︄
3𝜋
𝐺𝜌vac

(21)

Equation (21) is valid only if the harmonically oscillating model of an exponentially expanding universe is assumed
through utilizing the Fourier transformation, rather than the standard exponentially ever-expanding de Sitter universe.
Any model that introduces a fixed cosmic spacetime center directly contradicts the standard cosmological principle.
Additionally, this type of oscillation conflicts with the second law of thermodynamics, which states that the entropy of the
universe must increase over time. Thus, it is more reasonable to associate this undamped constant oscillation frequency,
𝜔 = 𝐻0, as derived from the equation (15) by using the general displacement equation, with the vacuum rather than with
the entire universe.

It is worth noting that the cyclic model of the universe has been regarded as a fascinating theory in science, philosophy,
and even in common-sense interpretations, as it suggests cosmic perpetuity. Various versions of the cyclic model were
discussed by Kragh, including a constant cyclic period proposed by Einstein and Friedmann, as well as a varying period
of oscillation proposed by Tolman, Zanstra, and many others between 1922 and 1960 [50]. In a more recent work, Ijjas &
Steinhardt proposes a novel cyclic model in which the scale factor grows exponentially with each cycle, addressing several
unresolved cosmological problems, notably flatness, the monopole problem, initial conditions, and singularity [51].

Up until now, we have been analyzing using classical methods. Now, we will shift to a quantum approach to
directly achieve consistency between the value of the cosmological constant derived from analogy with the negative
vacuum pressure and the lowest, or zero-point, energy of the quantum harmonic oscillator. Writing the time-independent
Schrödinger equation for a harmonic oscillator with frequency 𝐻0 and wavefunction 𝜓0:

− ℏ2

2𝑚0

𝑑2𝜓0

𝑑𝑥2 + 1
2
𝑚0𝐻

2
0𝑥

2𝜓0 = 𝐸0𝜓0 (22)

Using standard techniques, we obtain the solution for the vacuum eigen wavefunction:

𝜓0 (𝑥) =
(
𝑚0𝐻0
𝜋ℏ

)1/4
𝑒−

𝑚0𝐻0𝑥
2

2ℏ . (23)

And the lowest or zero-point energy of the vacuum:

𝐸0 =
1
2
ℏ𝐻0. (24)

While the general equation for the quantum harmonic oscillator’s eigen wave function is [52, 53]:

𝜓𝑛 (𝑥) =
√︂

1
2𝑛𝑛!

(𝑚𝜔
𝜋ℏ

)1/4
𝑒−

𝑚𝜔𝑥2
2ℏ 𝐻𝑛

(√︂
𝑚𝜔

ℏ
𝑥

)
,

where 𝐻𝑛 is the 𝑛th Hermite polynomial. The parameters in equations (9) and (24) were observationally determined to be
constants, allowing for the numerical evaluation of Λ using the value 𝜌vac = 60.3 × 10−29 kg m−3 as shown below [48]:

Λ =
8𝜋𝐺𝜌vac

𝑐2 =
8 × 3.1416 × 6.67 × 10−11 Nm2 kg−1 × 60.3 × 10−28 kg m−3

(2.9979 × 108 m s−1)2 = 1.1247 × 10−52 m−2.

And the numerical value of 𝐸0 using 𝐻0 = 69.8 km s−1 Mpc−1 = 2.2615 × 10−18 s−1 [49]:

𝐸0 =
1
2
ℏ𝐻0 =

1
2
× 1.05 × 10−34 Js × 2.2615 × 10−18 s−1 = 1.1873 × 10−52 J.

Since this analysis is based on the vacuum, flat, homogeneous, and isotropic Einstein field equations consistent with a de
Sitter universe, it does not constitute a conventional model of quantum field theory in curved spacetime. Rather, it can be
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described as a quasi-quantum model aimed at deriving the vacuum’s zero-point energy. Despite its straightforward nature,
this model demonstrates remarkable consistency with observational data, as illustrated in the earlier numerical comparison
between the cosmological constant Λ and the vacuum energy density 𝐸0.

To determine a specific angular frequency of oscillation, we began with the classical harmonic oscillator equation
rather than considering the infinite modes of oscillation associated with the continual creation and annihilation of vacuum
particles. This approach was chosen to avoid the so-called “worst theoretical prediction.” Subsequently, we utilized
the equation for the lowest energy eigenvalue of the quantum harmonic oscillator, leading to a well-aligned theoretical
prediction. The obtained numerical values 1.1247 × 10−52 m−2 for the cosmological constant Λ, and 1.1873 × 10−52 J for
𝐸0, representing the modeled energy of a quasi-quantum harmonically oscillating vacuum, are remarkably close. There
exists a coupling constant with the unit J·m2 and a value very close to unity:

1.1873 × 10−52 J
1.1247 × 10−52 m−2 = 1.05566 J m2.

An expression for this coupling constant can be derived using equations (24) and (20), considering equivalence between
𝐻Λ and 𝐻0, as follows:

𝐸0
Λ

=
1
2

ℏ𝑐2√︁
12𝜋𝐺𝜌vac

.

Since the properties of a vacuum can be effectively explained through its fluid-mechanical similarities, it is not surprising
to find a relationship between its intrinsic curvature and its energy. Just as any external force acting on a continuum
mechanical body results in the development of internal energy and bending, the curvature in a vacuum arises from the
energy associated with its own mass,that is energy of the lowest possible or ground state undamped free vibration. In this
scenario, the cosmological constant, represented by the vacuum’s curvature, corresponds to its geometric curvature per
unit length.

5. USING GENERAL EQUATION OF COSMIC EXPANSION TO REVIEW THE REAL COSMIC PAST
INCOMPLETENESS

Hubble’s law, based on observations, fundamentally describes the dynamics of cosmic structures. This relationship,
where distances between cosmic structures grow over time, reflects the expansion of the universe [54]. Since the universe
encompasses everything, its expansion can only be understood and measured internally, through its own inherent dynamics.
However, this expansion preserves the universe’s large-scale homogeneity and isotropy while maintaining short-distance
inhomogeneity and anisotropy. Using equation (2) and an equivalent to the equation (3), we can clearly express the
equation for the cosmic scale factor as:

𝛼 = 𝛼0𝑒
𝐻𝑡 (25)

The above equation (25) can also be derived by exploring the relationship between the Hubble constant 𝐻 and the scale
factor 𝛼 [16, 17, 55]:

𝐻 =
¤𝛼
𝛼

For the mathematical validity of the above relationship in equation (25), it is crucial that the Hubble parameter H remains
constant. In the derivation of the general equation for diverging displacement in subsection 2.1 , we demonstrated that
H is indeed constant when measured relative to a fixed cosmic space-time point of origin. This constancy holds true
for a specific cosmic epoch, such as the current epoch of the universe. This relation (equation 25) is consistent with the
exponential cosmic expansion predicted in the de Sitter universe model [17, 56, 57, 58, 59] and aligns with the inflationary
solutions for the evolution of the universe [45, 60] and expanding steady state theory of Bondi & Gold [61].

While addressing the metric of the maximally symmetric universe, known as the Friedmann-Lemaı̂tre-Robertson-
Walker (FLRW) metric [59, 62] in a temporal (𝑡) and comoving spatial spherical polar coordinate system (𝑟, 𝜃, 𝜙), with
Gaussian curvature constant, 𝑘 :

𝑑𝑠2 = (𝑐 𝑑𝑡)2 − 𝛼2
{

𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2
(
𝑑𝜃2 + sin2 𝜃 𝑑𝜙2

)}
Expressing the time-exponential cosmic scale factor 𝛼, allows us to rewrite the FLRW metric:

𝑑𝑠2 = (𝑐 𝑑𝑡)2 −
(
𝛼0𝑒

𝐻𝑡
)2

{
𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2
(
𝑑𝜃2 + sin2 𝜃 𝑑𝜙2

)}
(26)

The corresponding covariant metric tensor is:

𝑔𝜇𝜈 =


𝑐2 0 0 0

0 − (𝛼0𝑒
𝐻𝑡)2

1−𝑘𝑟2 0 0
0 0 −

(
𝛼0𝑒

𝐻𝑡
)2
𝑟2 0

0 0 0 −
(
𝛼0𝑒

𝐻𝑡
)2
𝑟2 sin2 𝜃


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And the resulting contravariant metric tensor is:

𝑔𝜇𝜈 =


1
𝑐2 0 0 0
0 − (1−𝑘𝑟2 )

(𝛼0𝑒𝐻𝑡 )2 0 0
0 0 − 1

(𝛼0𝑒𝐻𝑡 )2𝑟2 0
0 0 0 − 1

(𝛼0𝑒𝐻𝑡 )2𝑟2 sin2 𝜃


Here 𝜇𝜈 represents permutations of coordinates labeled as [0, 1, 2, 3], with the coordinates conventionally defined as
(𝑥0 = 𝑡, 𝑥1 = 𝑟, 𝑥2 = 𝜃, 𝑥3 = 𝜙). Now, it is straightforward, though tedious, to find the non-zero Christoffel symbol terms
Γ0

11, Γ
0
22, Γ

0
33, Γ

1
01, Γ

1
01, Γ

1
11, Γ

1
22, Γ

1
33, Γ

2
02, Γ

2
12, Γ

2
33, Γ

3
03, Γ

3
13, Γ

3
23 using the equation below [36]:

Γ𝜎𝜇𝜈 =
1
2
𝑔𝜎𝜌

(
𝜕

𝜕𝑥𝜈
𝑔𝜌𝜇 +

𝜕

𝜕𝑥𝜇
𝑔𝜌𝜈 −

𝜕

𝜕𝑥𝜌
𝑔𝜇𝜈

)
We can evaluate the non-zero Christoffel symbol terms using the above equation:

Γ0
11 =

𝛼2
0𝑒

2𝐻𝑡 ¤(𝐻 + 𝑡𝐻)
𝑐2 (1 − 𝑘𝑟2)

, Γ0
22 =

𝛼2
0𝑒

2𝐻𝑡 (𝐻 + 𝑡 ¤𝐻)𝑟2

𝑐2 , Γ0
33 =

𝛼2
0 (𝐻 + 𝑡 ¤𝐻)𝑒2𝐻𝑡𝑟2 sin2 𝜃

𝑐2 .

Γ1
01 = Γ1

10 = Γ2
02 = Γ2

20 = Γ3
03 = Γ3

30 = 𝐻 + 𝑡 ¤𝐻, Γ1
11 =

𝑘𝑟

1 − 𝑘𝑟2 , Γ1
22 = −𝑟 (1 − 𝑘𝑟2), Γ1

33 = −𝑟 (1 − 𝑘𝑟2) sin2 𝜃,

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1
𝑟
, Γ2

33 = − sin 𝜃 cos 𝜃, Γ3
23 = Γ3

32 = cot 𝜃.

Utilizing the Christoffel symbols as determined above, one can readily obtain the non-zero Ricci curvature tensor com-
ponents (𝑅00, 𝑅11, 𝑅22, 𝑅33) from the equation by contracting the Riemann tensor by raising the index 𝜎 as 𝑅𝜇𝜈 =

𝑅𝜎𝜇𝜎𝜈[63]:

𝑅𝜇𝜈 =
𝜕

𝜕𝑥𝜎
Γ𝜎𝜇𝜈 −

𝜕

𝜕𝑥𝜈
Γ𝜎𝜇𝜎 + Γ

𝜌
𝜇𝜈Γ

𝜎
𝜌𝜎 − Γ

𝜌
𝜇𝜎Γ

𝜎
𝜌𝜈 (27)

Evaluating 𝑅00 using equation (27) yields:

𝑅00 =
𝜕

𝜕𝑥𝜎
Γ𝜎00 −

𝜕

𝜕𝑥0 Γ
𝜎
0𝜎 + Γ

𝜌

00Γ
𝜎
𝜌𝜎 − Γ

𝜌

0𝜎Γ
𝜎
𝜌0 (28)

From equation (28) we obtain for the relevant non-zero terms for the 𝜎 and 𝜌 indices:

𝑅00 = −3
{
(2 ¤𝐻 + 𝑡 ¥𝐻) + (𝐻 + 𝑡 ¤𝐻)2}. (29)

In a similar manner, utilizing equation (27) yields further Ricci curvature tensor components:

𝑅11 =
𝛼2

0𝑒
2𝐻𝑡

𝑐2 (1 − 𝑘𝑟2)

{
3(𝐻 + 𝑡 ¤𝐻)2 + 2 ¤𝐻 + 𝑡 ¥𝐻 + 2𝑘𝑐2

𝛼2
0𝑒

2𝐻𝑡

}
(30)

𝑅22 =
𝛼2

0𝑒
2𝐻𝑡𝑟2

𝑐2

{
3(𝐻 + 𝑡 ¤𝐻)2 + 2 ¤𝐻 + 𝑡 ¥𝐻 + 2𝑘𝑐2

𝛼2
0𝑒

2𝐻𝑡

}
(31)

𝑅33 =
𝛼2

0𝑒
2𝐻𝑡𝑟2 sin2 𝜃

𝑐2

{
3(𝐻 + 𝑡 ¤𝐻)2 + 2 ¤𝐻 + 𝑡 ¥𝐻 + 2𝑘𝑐2

𝛼2
0𝑒

2𝐻𝑡

}
(32)

The Ricci curvature scalar, 𝑅, is obtained by summing the non-zero covariant Riemann tensor and the contravariant metric
tensor over the repeated indices:

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 = 𝑔
00𝑅00 + 𝑔11𝑅11 + 𝑔22𝑅22 + 𝑔33𝑅33.

In this case, after simplifying:

𝑅 = − 3
𝑐2

{
(2 ¤𝐻 + 𝑡 ¥𝐻) + (𝐻 + 𝑡 ¤𝐻)2} − 3

𝑐2

{
3(𝐻 + 𝑡 ¤𝐻)2 + 2 ¤𝐻 + 𝑡 ¥𝐻 + 2𝑘𝑐2

𝛼2
0𝑒

2𝐻𝑡

}
(33)
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The above equation (33) represents the Ricci curvature scalar in terms of the time-varying Hubble parameter. As previously
explained, the time dependency of the Hubble parameter arises from its measurement based on the recession velocities
and distances of cosmic objects at different cosmic comoving epochs. However, if the Hubble parameter is measured at
a fixed point in spacetime or within a specific cosmic epoch, the equation (33) can be rewritten in terms of the Hubble
constant, with its time derivatives vanishing, as follows:

𝑅 = −
3𝐻2

0
𝑐2 − 3

{
3𝐻2

0
𝑐2 + 2𝑘(

𝛼0𝑒𝐻0𝑡
)2

}
,

𝑅 = −
12𝐻2

0
𝑐2 − 6𝑘(

𝛼0𝑒𝐻0𝑡
)2 (34)

The negative sign of the Ricci curvature scalar, as determined above, arises from the contraction of the Riemann tensor
using 𝑅𝜇𝜈 = 𝑅𝜎𝜇𝜎𝜈 , as referenced in [63]. However, if the contraction 𝑅𝜇𝜈 = 𝑅 𝜎

𝜇𝜈𝜎 = −𝑅𝜎𝜇𝜎𝜈 , as referenced in [3], were
used instead, the value of 𝑅 would be the same but with a positive sign. This is not a contradiction, as both approaches
yield the same magnitude; the difference in sign simply reflects the choice of convention or the system from which the
curvature is measured.

Importantly, whether considering the time-dependent case (33) or the time-independent case (34) of the Hubble
parameter, the Ricci curvature scalar 𝑅 remains finite for any finite value of the time variable. The only exception occurs
at 𝑡 = −∞, which represents the sole instance of past incompleteness. However, this incompleteness is not related to any
real domain of the time coordinate, which serves as the sole independent variable in the continuous function of the Ricci
curvature scalar. Therefore, this past incompleteness is not a physical reality for this type of exponentially expanding
cosmological solution but rather an unavoidable mathematical artifact, as highlighted by the Borde–Guth–Vilenkin (BGV)
theorem [64]. Optionally, for a spatially flat universe (𝑘 = 0), equation (34) indicates a constant cosmic Ricci curvature
scalar.

6. GENERAL EQUATION OF DISPLACEMENT AND LOGARITHMIC SPIRAL MOTION IN SPIRAL
GALAXY

It is fascinating to realize that the equation for a logarithmic, or equiangular, spiral is an alternative expression of our
time-based exponential general displacement equation. It is worth noting that, despite having a uniform linear velocity, an
object can still experience continuously varying acceleration, as well as higher-order time derivatives of displacement, by
continuously changing its orbital distance from its center. This is the key insight when drawing a correlation between the
time-exponential displacement equation and the logarithmic spiral equation.

In a system following a spiral trajectory defined by an angle 𝜃 measured relative to its center, a growth or decay rate
𝐾 , and a varying radius 𝑟 , the equation of the logarithmic spiral is [65]:

𝑟 (𝜃) = 𝑟0𝑒
𝐾𝜃 (35)

In terms of 𝑡 with uniform angular velocity ¤𝜃, the above equation becomes:

𝑟 (𝑡) = 𝑟0𝑒
𝐾 ¤𝜃𝑡 (36)

In the equation above, 𝐾 = tan𝛼, where 𝛼 is referred to as the pitch angle. This angle is defined as the constant angle
between the tangent to the spiral at any given radial distance from the spiral’s center and the tangent to the circle at the point
of intersection with the same radius. For a logarithmic spiral, this angle remains constant, which is why logarithmic spirals
are also called equiangular spirals. Consequently, the growth rate 𝐾 is also constant. If we represent the time-exponential
displacement equation (5) with the displacement being radial, it can be written as:

𝑟 = 𝑟0𝑒
𝜁 𝑡 (37)

In the equation of the logarithmic spiral, the growth rate 𝐾 and angular velocity ¤𝜃 are both treated as constants, similar to
the constant 𝜁 in the case of radial displacement. By comparing equations (36) and (37), we can establish the equivalent
relationship:

𝜁 = 𝐾 ¤𝜃 (38)
Therefore, the logarithmic spiral displacement equation can be interpreted as a transformed two-dimensional displacement
equation in a coplanar polar coordinate system. This transformation originates from the one-degree-of-freedom time-
exponential displacement equation, which describes the motion of an object orbiting a fixed center.

In the Cartesian coordinate system, the equation 𝑟 = 𝑟0𝑒
𝜁 𝑡 can be re-expressed in the polar coordinate system as two

distinct components using equation (35), as a matrix representation shown below:[
𝑥

𝑦

]
=

[
cos( ¤𝜃𝑡) 0
sin( ¤𝜃𝑡) 0

] [
𝑟0𝑒

𝐾 ¤𝜃𝑡

0

]
=

[
𝑟0𝑒

𝐾 ¤𝜃𝑡 cos( ¤𝜃𝑡)
𝑟0𝑒

𝐾 ¤𝜃𝑡 sin( ¤𝜃𝑡)

]
.
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Using the above relations and the fact that the locus of the coordinate (𝑥, 𝑦) forms a circle , one can easily derive the
relation presented in equation (36) as below:

𝑟2 = 𝑥2 + 𝑦2 = 𝑟2
0𝑒

2𝐾 ¤𝜃𝑡 {cos2 ( ¤𝜃𝑡) + sin2 ( ¤𝜃𝑡)
}
,

𝑟 = 𝑟0𝑒
𝐾 ¤𝜃𝑡 .

For a non-periodic angular motion in which the angle continuously increases with time and is not limited to 4𝜋, an object
will follow a logarithmic spiral trajectory instead of a circular one .In terms of the measured angle considering the center
as the origin of the polar coordinate system, the above equation becomes:

𝑟 (𝜃) = 𝑟0𝑒
𝐾𝜃 , 𝑟 (𝜃) = 𝑟0𝑒

tan 𝛼 𝜃 (39)

The above equation (39) is a general expression for a logarithmic spiral or equiangular spiral. The radial distance 𝑟
progressively changes over time, following spiral trajectories.

Logarithmic spiral geometries naturally occur in numerous living and inanimate phenomena, including in spiral
galaxies, seashells, hurricanes, and the growth patterns of plants, such as sunflower seeds and pinecones [66, 67, 68].
Notably, in the asymptotic limit, the ratio of successive radii in a logarithmic spiral converges to the same value as the
ratio of consecutive Fibonacci numbers, namely the golden ratio or golden mean. These spirals are often observed in
nature due to their efficient growth patterns, optimizing space and resources. The same geometric principles expressed
mathematically by equations (36), (37), and (39) can be applied to describe the structure of spiral galaxies. The logarithmic
spiral provides a reasonable approximation for the structure of galactic spiral arms [69, 70]. In these galaxies, the arms
follow a logarithmic spiral pattern, giving rise to the term “Galactic spiral.” Approximately 60% of galaxies in the local
universe are spiral galaxies [71].

In spiral galaxies such as our MW and its closest neighbor, M31, the spiral arms form in regions where stars and
their systems are sufficiently far from the galactic center. In these regions, the gravitational pull toward the center becomes
negligible compared to the frictional drag experienced by the stars. This frictional drag causes the stars to orbit at nearly
uniform velocities, regardless of their distance from the center. In this scenario, acceleration is achieved through the
continual change in distance from the galactic center, which aids in the formation of spiral trajectories.

Moreover, the relatively homogeneous nature of the galaxy, where gravitational forces dominate locally but diminish at
larger distances, results in the galaxy behaving continuum-mechanically, like a rotating disk. These combined phenomena
lead to a fluid-mechanical analogy, where the spiral arms eject along an equiangular spiral trajectory, as described by
equations (36), (37), and (39). It is important to note that dark matter plays a crucial role in forming gravitationally bound,
stiff, and geometrically well-defined galaxies. This stands in contrast to the expected pattern of decreasing rotational
velocity with distance from the galactic center, as predicted by the Newton-Keplerian model, which is inconsistent with
observational data.

The logarithmic spiral trajectory is also consistent with explaining the radial migration of constituents, such as stars
or star systems, which move outward from the more unstable central region to more stable locations, following a spiral
path within their host galaxy. For example, the radial migration concept suggests that the Solar System, including Earth,
may have originally formed comparatively closer to the Milky Way’s central region, around 5 kpc from MW’s center,
and later migrated to its present location, approximately 8.5 ∼ 9 kpc from the galactic center, thereby avoiding any major
destructive collisions [72].

7. RESULTS AND DISCUSSION
We began with a power series approximation of the displacement function, using time as the independent variable.

From this, we derived the time exponential displacement relation, which aligns with large-distance observational cosmic
motion. In contrast, the short-distance motions we experience in everyday life are simply lower-order approximations of this
exponential relation, which is particularly significant for large-scale motion. This general time exponential displacement
relation was directly applied to derive Hubble’s relation, an equation describing cosmic diverging displacement and
providing a plausible explanation for cosmic expansion. The recession of cosmic units due to cosmic expansion is
significant for large-scale cosmic motion. In contrast, at shorter distances, the attractive gravitational force dominates.

We then derived a general equation for time exponential converging displacement in a manner similar to how the
general equation for time exponential diverging displacement was formulated. This converging relation was then utilized
to estimate in principle the time required for the upcoming collision between the Milky Way and Andromeda. The result
obtained, ranging from 4.4 to 4.9 billion years, was highly consistent with the findings of 4 to 5 billion years from numerical
simulations based on observational data.

A noteworthy application of the general diverging equation is to derive the subtle value of energy for a vacuum unit,
considering it as quantum harmonically oscillated in a quasi-quantum approach. This gives a value of 1.1873 × 10−52 J,
which is very close to the value determined from the general relativistic approach, 1.1247 × 10−52 m−2. Therefore, the
coupling constant relating the vacuum unit’s energy to the curvature of the vacuum has a value very close to unity. By
relating the large-scale cosmic receding distances to the cosmic expansion scale factor, a general relativistic mathematical
approach is reviewed to avoid a physical past incompleteness while addressing an unphysical mathematical singularity.
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Lastly, the general time exponential displacement was applied to explain the spiraling motion of galactic units in spiral
galaxies. This spiral motion can also account for the radial migration of a galaxy’s constituents, providing support for the
radial migration theory of the solar system.

Despite several successful applications of the general time exponential motion, it does have some limitations. During
its derivation, the Maclaurin series was employed, which requires a fixed space-time coordinate origin around which
the series expansion is performed. This necessitates assuming the Hubble parameter is constant to derive the time
exponential equation. However, in any comoving coordinate system, the Hubble parameter must be time-dependent. This
time dependency was addressed during the derivation and was considered in the context of reviewing the cosmic past
incompleteness. Another limitation arises from the uncertainty during the final stages of galaxy merging. At this stage,
tidal effects, frictional interactions between galaxy constituents, and the influence of nearby cosmic neighbors may impact
the time estimation. However, the consistency of the estimated time for the Milky Way (MW) and Andromeda (M31)
collision with results from numerical simulations suggests that our model, which neglects perturbations, is reasonable.
This is because galactic motion is primarily dominated by their centers, and during galaxy merging, the likelihood of
individual components colliding is very low.

8. CONCLUSION
The cosmos is infinite, so it’s natural that no finite set of principles can fully explain its phenomena. It’s also

sensible to expect the universe to have infinite spatial and temporal dimensions. We reasonably assumed the infinite
order differentiability of displacement with respect to time and subsequently formulated a time-exponential relation for
displacement. This formulation is shown to be consistent with Hubble’s law and provides a plausible explanation for the
time dependency of the Hubble parameter. This relation proved to be valuable in understanding the infinite cosmic past
and future, as well as in explaining the structure of spiral galaxies. Additionally, it provided insights into the enigmatic
relationship between the quantum harmonically oscillating vacuum’s zero-point energy and the cosmological constant.
Furthermore, it was applied to estimate the timing of a significant cosmic event: the collision between the Milky Way and
Andromeda.
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ЗАКОН ГАББЛА ТА ЙОГО ЕКСПОНЕНЦIАЛЬНЕ УЗАГАЛЬНЕННЯ З КОСМОЛОГIЧНИМИ
ЗАСТОСУВАННЯМИ

Ашрафул Iслам
Нiппон Коей Бангладеш Лiмiтед, Площа 11/А, Дорога 48, Гульшан-2, Дакка-1212, Бангладеш

Закон Габбла показує, як компоненти Всесвiту дотримуються загальних динамiчних правил у космологiчному масштабi. Хоча
вiн найбiльш вiдомий для опису розширення Всесвiту, загальне рiвняння змiщення, отримане вiдповiдно до цього закону, разом
iз загальним рiвнянням збiжного змiщення, було застосовано для оцiнки часу, що залишився до зiткнення Чумацького Шляху
та Андромеди. Ця оцiнка тiсно узгоджується з результатами числового моделювання iнших дослiджень. Крiм того, наслiдки
цього узагальненого рiвняння дають цiнне розумiння ключових космологiчних загадок, включаючи змiну параметра Габбла з
часом, неповноту космологiчного минулого та незмiнну таємницю зв’язку мiж тонким значенням космологiчної константи та
квантовою енергiєю нульової точки вакууму. Вiн також успiшно пояснює структуру спiральних галактик.
Ключовi слова: закон Габбла; зiткнення галактик; космологiчна стала; енергiя вакууму; структура спiральної галактики
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In this study, we investigate the dynamics of generalized ghost pilgrim dark energy in the background of 𝑓 (𝑄,𝐶) gravity, where𝑄 is the
non-metricity scalar and 𝐶 represents the boundary term. To complete this objective, we take an isotropic and homogeneous universe
with an ideal matter distribution. Our analysis includes a scenario with non-interacting fluids, encompassing both dark matter and dark
energy. To understand the cosmic dynamics, we reconstruct a 𝑓 (𝑄,𝐶) model and examine its influence on the universe evolution. We
explore key cosmological factors, i.e., state variable, the behavior of (𝜔𝐷 − 𝜔′

𝐷
)-plane and the statefinder diagnostic pair, which help

to analyze the cosmic expansion. A crucial aspect of our analysis is the stability of generalized ghost pilgrim dark energy model via
the squared sound speed method, confirming its viability in supporting the observed accelerated expansion. Our findings are consistent
with observational data, demonstrating that 𝑓 (𝑄,𝐶) gravity provides a robust theoretical foundation for describing dark energy and the
universe large-scale dynamics. This work not only deep our understanding of modified gravity and mysterious energy but also offers
new insights into alternative explanation for cosmic acceleration beyond standard paradigms.

Keywords: 𝑓 (𝑄,𝐶) gravity; Dark energy model; Stability analysis

PACS: 04.50.Kd; 98.80.-k; 95.36.+x

1. INTRODUCTION
Einstein theory of gravitation (GR) provides a geometric framework that remains a foundational pillar of modern

physics. A significant problem for this theory appears when it addresses the phenomenon of late-time cosmic expansion.
The range of astronomical observations such as supernovae type-Ia demonstrate that the cosmos is presently undergoing
the expansion phase [1]-[5]. This acceleration is hypothesized to originate from an ambiguous force, named as dark
energy (DE). The enigmatic nature and mechanisms of DE constitute one of the most profound unresolved questions in
cosmology. To address this issue, the ΛCDM model has been established as a standard model to describe the ambiguous
aspects of DE. While ΛCDM aligns well with observational constraints, but it faces cosmic limitations [6]-[11]. These
challenges inspired the scientific community to modify GR to gain deep insights for DE and cosmic acceleration [12]. Such
modifications redefine the geometric components of the action, thereby proposing alternative gravitational frameworks to
resolve the mysteries of the universe. These theories offer new approaches to cosmology and astrophysics, allowing for
theoretical and observational advancements.

Modified theories may include exploring alternative geometries beyond Riemannian such as torsion and non-metricity,
which offer broader geometric interpretations of gravity. Weyl [13] introduced a geometric framework that extends
Riemannian geometry by introducing an additional connection, known as the ”length connection,” which modifies how
vectors behave under parallel transport. Building on this, Weyl-Cartan geometry [14] further incorporates torsion into the
structure. Later, Weitzenb ¥𝑜ck [15] proposed a different approach, defining Weitzenb ¥𝑜ck spaces characterized by non-zero
torsion but zero curvature, leading to the idea of teleparallelism. In this framework, gravity is described through torsion
rather than curvature [16]. As a result, GR can be formulated in multiple ways: the traditional curvature-based approach
(where torsion and non-metricity vanish) or the teleparallel approach (where curvature and non-metricity are absent).
Also, non-metricity describes changes in vector length at the time of parallel transport, where the covariant divergence of
metric tensor exists, leading to symmetric teleparallel theory [17]. Different theoretical models and the limitations they
face based on observations have been thoroughly investigated [18]-[37].

The symmetric teleparallel gravity is further modified by introducing a boundary term into the functional action,
named as 𝑓 (𝑄,𝐶) theory [38]. This extension has garnered considerable attention in the scientific community due to
its profound implications. This framework offers a compelling alternative with notable theoretical consequences for
cosmology and astrophysics. By incorporating non-metricity and boundary effects, this theory enables a rich description
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of gravitational dynamics. This modified proposal offers fresh insights into fundamental questions about mysteries of the
universe. By incorporating the boundary term, this approach enhances theoretical flexibility, enabling a wide spectrum of
physically viable solutions. This extension addresses GR limitations by probing cosmological singularities and opens new
pathways for cosmological models that align with current observational data. It is observed that this alternative proposal
elucidates the cosmic evolutionary path and is consistent with current observable data [39]-[42].

Maurya [43] explored the DE model to study the evolutionary picture of the universe in 𝑓 (𝑄,𝐶) theory. Further
studies delved into DE scenarios incorporating boundary terms to classify DE behavior during cosmic expansion have
been discussed in [44]. Myrzakulov et al [45] demonstrated that the 𝑓 (𝑄,𝐶) framework presents a viable alternative to the
standard cosmological model. The 𝑓 (𝑄,𝐶) formalism in FRW spacetime introduces novel perspectives on the standard
cosmological paradigms [46]. Maurya [47] analyzed how boundary terms influence cosmological evolution dynamics.
Usman et al [48] addressed the observed matter-antimatter asymmetry through gravitational baryogenesis in the same
context. The novel insights into the early-universe inflation in this modified framework has been examined in [49]. This
approach not only offers a coherent description of the universe dynamics but also exhibits strong agreement with modern
observational constraints [50].

Various methods have been developed to understand the influence of DE on the evolution of cosmos. Recently, a
novel DE model, known as the pilgrim dark energy (PDE) model was proposed [51]. This model is constructed upon
the intriguing properties in quantum field theory while extending their applications to the cosmological framework. This
provides a natural framework to connect DE with fundamental physics. The concept of generalized ghost pilgrim dark
energy (𝐺𝐺𝑃𝐷𝐸) model stems from the necessity to deal with crucial challenges in modern cosmology, particularly the
nature of DE which is responsible for the observed rapid growth of the cosmos. This model provides a closer match with
observational data, offering an improvement over the PDE model. Thus, by generalizing PDE, researchers aim to deep our
comprehension of the universe expansion, bridge the gap between quantum field theory and cosmology. The 𝐺𝐺𝑃𝐷𝐸
model offers distinct insights and mechanisms that enhance our comprehension of the cosmic expansion. It provides a
framework for the accelerated cosmic expansion without depending on a cosmological constant. Thus,𝐺𝐺𝑃𝐷𝐸 represents
a compelling direction in the quest to decipher the nature of the mysterious energy driving the expansion of our universe.

Modified gravitational theories offer valuable understanding of current phenomenon of accelerated cosmic expansion.
Ebrahimi and Sheykhi [52] studied GDE model to examine cosmic acceleration in Brans-Dicke cosmology. Sheykhi
and Movahed [53] explored several cosmological parameters to assess cosmic growth using GDE model. Jawad [54]
investigated the dynamics and evolutionary trajectories of various cosmological parameters, using PDE in 𝑓 (𝑇,𝑇𝐺)
theory. Fayaz et al [55] reformed the 𝑓 (𝑅,𝑇) gravity in relation to the GDE model. Odintsov et al [56] examined several
𝑓 (𝑅, 𝐺) frameworks to clarify the successful emergence of DE and accelerating phase of the universe. The analysis
suggested that the EoS parameter reflects a quintessence era. Myrzakulov et al [57] employed the PDE and GDE models
to reconstruct the 𝑓 (𝑄) gravity. They found that their results align closely with the latest observational data. The study of
various DE models to analyze the universe acceleration within the context of 𝑓 (𝑅,𝑇2) theory has been explored in [58].

This study aims to rebuild 𝑓 (𝑄,𝐶) model by using 𝐺𝐺𝑃𝐷𝐸 framework to analyze cosmic dynamics. The contents
of this article are formatted as follows. Section 2 employs the 𝐺𝐺𝑃𝐷𝐸 model to rebuild 𝑓 (𝑄,𝐶) functional form and
explore the effects of non-interacting scenarios between DE and cold DM. Section 3 focuses on the advancement of this
theory through the analysis of different cosmographic parameters. Section 4 gives a detailed overview of our findings.

2. FORMALISM OF 𝐺𝐺𝑃𝐷𝐸 𝑓 (𝑄,𝐶) MODEL
Here, we aim to develop the 𝐺𝐺𝑃𝐷𝐸 𝑓 (𝑄,𝐶) model to investigate the enigmatic nature of the universe. To analyze

the cosmological characteristics of non-metric gravity, we consider the affine connection as

Γ𝜐
𝛾𝜆 = Γ̌𝜐

𝛾𝜆 + 𝐾𝜐
𝛾𝜆 + L𝜐

𝛾𝜆, (1)

where Levi-Civita connection (Γ̌), disformation ( L𝜐) and contortion (𝐾𝜐
𝛾𝜆
) tensors are defined as

Γ̌𝜐
𝛾𝜆 ≡ 1

2
𝑔𝜐𝛽 (𝜕𝛾𝑔𝛽𝜆 + 𝜕𝜆𝑔𝛽𝛾 − 𝜕𝛽𝑔𝛾𝜆), (2)

 L𝜐
𝛾𝜆 ≡ 1

2
𝑔𝜐𝜂 (−𝑄𝛾𝜂𝜆 −𝑄𝜆𝜂𝛾 +𝑄𝜂𝛾𝜆), (3)

𝐾𝜐
𝛾𝜆 ≡ 1

2
𝑔𝜐𝜂 (𝑇𝛾𝜂𝜆 + 𝑇𝜆𝜂𝛾 + 𝑇𝜂𝛾𝜆). (4)

Here, the quantity 𝑇𝛾𝜂𝜆 refers to the torsion tensor, which although not central in the symmetric teleparallel framework
(where torsion is usually set to zero), appears here as part of the general affine connection decomposition. Therefore, we
use torsion-free condition in this context and thus 𝑇𝛾𝜂𝜆 = 0 in our analysis. The non-metricity is given by

𝑄𝜐𝛾𝜆 ≡ ∇𝜐𝑔𝛾𝜆 = 𝜕𝜐𝑔𝛾𝜆 − Γ
𝜂
𝜐𝛾𝑔𝜂𝜆 − Γ

𝜂

𝜐𝜆
𝑔𝛾𝜂 . (5)
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To construct a boundary term in the action of the metric-affine gravity theories, we need a non-metricity conjugate, known
as the superpotential, defined as

𝑃𝜐
𝛾𝜆 = −1

4
𝑄𝜐

𝛾𝜆 +
1
2
𝑄 (𝛾

𝜐
𝜆) +

1
4
(𝑄𝜐 − 𝑄̃𝜐)𝑔𝛾𝜆 −

1
4
𝛿𝜐(𝛾𝑄𝜆) .

It plays a central role in defining the gravitational field equations. Non-metricity tensor features two different traces as
𝑄𝛾 = 𝑄 𝜆

𝛾 𝜆
and 𝑄̃𝛾 = 𝑄

𝛾𝜆

𝜆
. Thus, we have

𝑄 = −1
4
𝑄𝜐𝛾𝜆𝑄

𝜐𝛾𝜆 + 1
2
𝑄𝛾𝜆𝜐𝑄

𝜆𝜐𝛾 + 1
4
𝑄𝛾𝑄

𝛾 − 1
2
𝑄𝛾 𝑄̃

𝛾 . (6)

By enforcing the torsion-free and curvature-free conditions, we obtain

𝑅̌𝛾𝜆 + ∇̌𝜐𝐿
𝜐
𝛾𝜆 − ∇̌𝜆 𝐿̃𝛾 + 𝐿̃𝜐𝐿

𝜐
𝛾𝜆 − 𝐿𝜐𝜂𝜆𝐿

𝜐𝜂
𝛾 = 0, (7)

𝑅̌ + ∇̌𝛾 (𝐿𝛾 − 𝐿̃𝛾) −𝑄 = 0, (8)

where ∇̌𝜐 and 𝑅̌𝛾𝜆 represent the covariant derivative and Ricci tensor, respectively, associated with the Levi-Civita
connection. These notations are standard in the literature on symmetric teleparallel gravity to distinguish between
operations involving the Levi-Civita connection and the general affine connection. Here, 𝐿̃𝛾 represents the trace of the
disformation tensor, i.e., 𝐿̃𝛾 = 𝐿𝜆

𝜆𝛾
, where 𝐿𝜆

𝛾𝛿
is the disformation tensor given in Eq.(3).

Since 𝑄𝛾 − 𝑄̃𝛾 = 𝐿𝛾 − 𝐿̃𝛾 , the boundary term is given by

𝐶 = 𝑅̌ −𝑄 = −∇̌𝛾 (𝑄𝛾 − 𝑄̃𝛾) = − 1
√−𝑔 𝜕𝛾

[√−𝑔(𝑄𝛾 − 𝑄̃𝛾)
]
. (9)

In the context of 𝑓 (𝑄,𝐶) gravity the integral action shown as

𝑆 =

∫
1

2𝜅
[ 𝑓 (𝑄,𝐶) + 2𝜅 L𝑚]

√−𝑔𝑑4𝑥. (10)

Here, 𝜅 is the coupling constant. The corresponding field equations are

𝑇𝛾𝜆 =
2

√−𝑔
𝜕𝜐 (

√−𝑔 𝑓𝑄𝑃𝜐
𝛾𝜆) + (𝑃𝛾𝜐𝜂𝑄

𝜐𝜂

𝜆
− 2𝑃𝜐𝜂𝜆𝑄

𝜐𝜂
𝛾 ) 𝑓𝑄 − 𝑓

2
𝑔𝛾𝜆

+ (𝐶
2
𝑔𝛾𝜆 − ∇̌𝛾∇̌𝜆 + 𝑔𝛾𝜆∇̌𝜐∇̌𝜐 − 2𝑃𝜐

𝛾𝜆𝜕𝜐) 𝑓𝐶 , (11)

where 𝑓𝑄 =
𝜕 𝑓

𝜕𝑄
and 𝑓𝐶 =

𝜕 𝑓

𝜕𝐶
. Variation of the action corresponding to affine connection yields

(∇𝛾 − 𝐿̃𝛾) (∇𝜆 − 𝐿̃𝜆)
[
4( 𝑓𝑄 − 𝑓𝐶 )𝑃𝛾𝜆

𝜐 + Δ
𝛾𝜆

𝜐

]
= 0, (12)

with
Δ

𝛾𝜆
𝜐 = − 2

√−𝑔
𝛿(√−𝑔𝐿𝑚)
𝛿Γ𝜐

𝛾𝜆

.

Using the coincident gauge, we obtain

𝜕𝛾𝜕𝜆
[√−𝑔 (4( 𝑓𝑄 − 𝑓𝐶 )𝑃𝛾𝜆

𝜐 + Δ
𝛾𝜆

𝜐

) ]
= 0. (13)

Here, 𝜕𝜆
√−𝑔 = −√−𝑔𝐿̃𝜆. Using the previous relations, we have(1

2
𝑄𝑔𝛾𝜆 + 𝐺̌𝛾𝜆 + 2𝑃𝜐

𝛾𝜆𝜕𝜐
)
𝑓𝑄 =

2
√−𝑔

𝜕𝜐 (
√−𝑔 𝑓𝑄𝑃𝜐

𝛾𝜆) + (𝑃𝛾𝜐𝜂𝑄
𝜐𝜂

𝜆

− 2𝑃𝜐𝜂𝜆𝑄
𝜐𝜂
𝛾 ) 𝑓𝑄, (14)

The corresponding field equations are

𝑇𝛾𝜆 = − 𝑓
2
𝑔𝛾𝜆 + 2𝑃𝜐

𝛾𝜆∇𝜐 ( 𝑓𝑄 − 𝑓𝐶 ) +
(𝑄

2
𝑔𝛾𝜆 + 𝐺̌𝛾𝜆

)
𝑓𝑄

+
(𝐶

2
𝑔𝛾𝜆 − ∇̌𝛾∇̌𝜆 + 𝑔𝛾𝜆∇̌𝜐∇̌𝜐

)
𝑓𝐶 . (15)
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By re-arranging this equation, we get

𝐺𝛾𝜆 =
1
𝑓𝑄

(
𝑇
(𝑚)
𝛾𝜆

+ 𝑇 (𝐷)
𝛾𝜆

)
, (16)

where

𝑇
(𝐷)
𝛾𝜆

=
𝑓

2
𝑔𝛾𝜆 − 2𝑃𝜐

𝛾𝜆∇𝜐 ( 𝑓𝑄 − 𝑓𝐶 ) −
(1
2
𝐶𝑔𝛾𝜆 − ∇̌𝛾∇̌𝜆 + 𝑔𝛾𝜆∇̌𝜐∇̌𝜐

)
𝑓𝐶

− 𝑄

2
𝑓𝑄𝑔𝛾𝜆. (17)

To explore the mysterious characteristics of the universe, we assume an isotropic and homogenous spacetime as

𝑑𝑠2 = −𝑑𝑡2 + (𝑑𝑥2 + 𝑑𝑦2 + 𝑑𝑧2)a2 (t). (18)

The ideal fluid encompasses the matter density (𝜌𝑚) and pressure (𝑝𝑚) is expressed as

𝑇𝛾𝜆 = (𝜌𝑚 + 𝑝𝑚)𝑈𝛾𝑈𝜆 + 𝑝𝑚𝑔𝛾𝜆. (19)

Using Eqs.(17)-(19), we obtain

𝜌𝐷 + 𝜌𝑚 = 3𝐻2, (20)
𝑝𝐷 + 𝑝𝑚 = −(2 ¤𝐻 + 3𝐻2),

where

𝜌𝐷 = 3𝐻2 (1 − 2 𝑓𝑄) −
𝑓

2
+ (3𝐻2 + 3 ¤𝐻) 𝑓𝐶 − 3𝐻 ¤𝑓𝐶 , (21)

𝑝𝐷 = −2 ¤𝐻 (1 − 𝑓𝑄) − 3𝐻2 (1 − 2 𝑓𝑄) +
𝑓

2
+ 2𝐻 ¤𝑓𝑄

− (3𝐻2 + 3 ¤𝐻) 𝑓𝐶 + ¥𝑓𝐶 . (22)

These modified equations represent a significant framework to comprehend the mysteries of the cosmos. To simplify these
equations, we take our analysis to a specific class of functional in this theory with an ordinary parameter (𝛼) as

𝑓 (𝑄,𝐶) = 𝑓 (𝑄) + 𝛼𝐶2. (23)

This functional form allows for a systematic investigation of deviations from standard gravitational dynamics, offering
insights into the behavior of the universe under certain conditions. The field equations corresponding to this model turn
out to be

𝜌𝐷 = 3𝐻2 (1 − 2 𝑓𝑄) −
1
2
( 𝑓 (𝑄) + 𝛼𝐶2) + 2𝛼𝐶 (3𝐻2 + 3 ¤𝐻) − 6𝛼𝐻 ¤𝐶 (24)

𝑝𝐷 = −2 ¤𝐻 (1 − 𝑓𝑄) − 3𝐻2 (1 − 2 𝑓𝑄) +
1
2
( 𝑓 (𝑄) + 𝛼𝐶2) + 2𝐻 ¤𝑓𝑄

− 2𝛼𝐶 (3𝐻2 + 3 ¤𝐻) + 2𝛼 ¥𝐶. (25)

The expressions for fractional energy densities are given by

Ω𝐷 =
𝜌𝐷

3𝐻2 , Ω𝑚 =
𝜌𝑚

3𝐻2 . (26)

The continuity equations of DM and DE for non-interacting case are

0 = ¤𝜌𝑚 + 3𝐻 (𝜌𝑚 + 𝑝𝑚), (27)
0 = ¤𝜌𝐷 + 3𝐻 (𝜌𝐷 + 𝑝𝐷), (28)

To quantifies how the universe expands over time, we study the behavior of scale factor which is considered as the
key parameter in cosmology. It is a positive function that progresses over cosmic time, governing the expansion and
the development of the universe. The decreasing behavior of scale factor suggests a cosmic contraction phase and its
increasing behavior implies cosmic expansion era. It is directly related to the redshift of light from distant galaxies,
allowing scientists to track the universe expansion history. Its study provides key insights into cosmic evolution from the
big bang to the possible long-term fate of the universe, whether through continuous expansion or ultimate collapse.

We assume the scale parameter as
a(t) = a0t𝜇 . (29)
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Figure 1. Plot of 𝑓 (𝑄,𝐶) versus cosmic time for (𝜓 = ±2).

Here, 𝑎0 = 1 and 𝜇 is an arbitrary constant. This form solves the field equations that govern the evolution of the universe,
which helps to understand the broader dynamics of cosmic expansion and the behavior of DE. By exploring how the
parameter 𝜇 influences evolution and correlating this with empirical observations, we gain a deep understanding of the
characteristics of DE and the core principles of gravity. By comparing the power-law scale factor with cosmic observations,
researchers can evaluate how𝐺𝐺𝑃𝐷𝐸 model matches the cosmic observations. This process aids in validating or refining
these models, providing valuable information about their accuracy and relevance.

To provide crucial insights into the cosmic acceleration, we analyze the behavior of Hubble parameter. The expansion
of the cosmos is associated with a positive Hubble parameter, whereas contraction occurs with a negative value. The
Hubble parameter changes over time depending on the universe energy composition, playing a crucial role in cosmic
dynamics. It is fundamental in measuring cosmic distances, estimating the universe age and analyzing the influence of DE
on expansion. The Hubble parameter is expressed as

𝐻 =
¤a
a
=
𝜇

𝑡
. (30)

Using this relation, we have

𝑄 = 6
𝜇2

𝑡2
, 𝐶 = 6𝜇( 𝜇 − 1

𝑡2
). (31)

The cosmic accelerated expansion can also be explored using DE models. A novel dynamical model of DE known as
PDE helps to understand the ongoing cosmic expansion. This model maintains consistency with observational constraints
and can be characterized through multiple energy density parameterizations. Crucially, its inherent energy dissipation
mechanism naturally resolves the coincidence problem triggered by DE dominance. Furthermore, the introduction of the
PDE concept leads to the definition of a 𝐺𝐺𝑃𝐷𝐸 model. The 𝐺𝐺𝑃𝐷𝐸 model for energy density can be characterized by
the following expression

𝜌𝐷 = (𝜉𝐻 + 𝜁𝐻2)𝜓 . (32)

Using Eqs.(24) and (32), we obtain

𝑓 (𝑄,𝐶) = 1
3
(−3

√
6𝛼 ¤𝐶

√︁
𝑄 + 2𝛼𝐶𝑄 + 3𝑐1√

𝑄
− 61− 𝜓

2 (
√
𝑄(2𝜁 + 𝜉))𝜓
𝜓 + 1

+𝑄), (33)

where 𝑐1 is an integration constant that arises during the reconstruction of the 𝑓 (𝑄,𝐶) model using the 𝐺𝐺𝑃𝐷𝐸 ansatz.
Inserting Eqs.(30) and (31) into (33), we get

𝑓 (𝑄,𝐶) =
1
3
(

√︃
3
2𝑐1√︃
𝜇2

𝑡2

+ 72𝛼(𝜇 − 1)𝜇3

𝑡4
−

6((2𝜁 + 𝜉)
√︃

𝜇2

𝑡2 )𝜓

𝜓 + 1

+ 6𝜇2

𝑡2
+

216𝛼(𝜇 − 1)𝜇
√︃

𝜇2

𝑡2

𝑡3
). (34)

Specifically, we consider 𝜓 = ±2, 𝛼 = 9 × 10−6, 𝑐1 = 0.04, 𝜁 = 10 and 𝜉 = 90. This consistent specification ensures
the viable numerical results. As for the physical reasoning behind the choice of these parameter values, we emphasize
that the selected values fall within the phenomenologically viable ranges used in prior studies involving ghost dark energy
models and modified gravity frameworks. All these parameter values are chosen not arbitrarily. The parameter 𝛼, which
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Figure 2. Graphical behavior of energy density against cosmic time.

controls the strength of the boundary term in the 𝑓 (𝑄,𝐶) function is chosen to be small to ensure that the modification
remains a perturbative correction to GR, consistent with Solar System constraints and cosmological observations. The
constants 𝜉 and 𝜁 appear in the GGPDE density, and their values are selected to reflect a balance between the linear and
quadratic Hubble terms, capturing the interaction of DE with the expansion rate while avoiding divergences or nonphysical
behavior at early or late times. Figure 1 demonstrates the dynamics of reconstructed𝐺𝐺𝑃𝐷𝐸 𝑓 (𝑄,𝐶) model for different
values of 𝜇 = 1.1, 1.2, 1.3. As 𝑡 increases, the function 𝑓 (𝑄,𝐶) shows a decreasing trend for 𝜓 = 2. In contrast, the
function 𝑓 (𝑄,𝐶) increases as 𝑡 grows for 𝜓 = −2. Substituting Eq.(33) in (21) and (22), we get

𝜌𝐷 =
√

6𝛼 ¤𝐶
√︁
𝑄 + 1

3
𝛼𝑄(𝑄 − 3𝐶) + 6− 𝜓

2

(√︁
𝑄(2𝜁 + 𝜉)

)𝜓
, (35)

𝑝𝐷 =
1
9

(
−7

√
6𝛼 ¤𝐶

√︁
𝑄 − 3𝛼𝑄(𝑄 − 3𝐶)

)
− 6− 𝜓

2

(√︁
𝑄(2𝜁 + 𝜉)

)𝜓
. (36)

Using Eqs.(30) and (31), we have

𝜌𝐷 = [−24𝛼𝜇4 + 36𝛼𝜇3 + 72𝛼𝜇𝑡
√︂
𝜇2

𝑡2
+ 𝑡4 ((2𝜁 + 𝜉)

√︂
𝜇2

𝑡2
)𝜓

− 72𝛼𝑡3 ( 𝜇
2

𝑡2
)3/2] [𝑡4]−1, (37)

𝑝𝐷 = [12𝛼𝜇3 (2𝜇 − 3) − 56𝛼𝜇𝑡
√︂
𝜇2

𝑡2
− 𝑡4 ((2𝜁 + 𝜉)

√︂
𝜇2

𝑡2
)𝜓

+ 56𝛼𝑡3 ( 𝜇
2

𝑡2
)3/2] [𝑡4]−1. (38)

Figures 2 and 3 show the behavior aligns with the characteristics of DE as energy density is positive and pressure is
negative for all values of 𝜇 and 𝜓.

3. ANALYSIS OF COSMOGRAPHIC FACTORS
Here, we study the characteristics of various cosmological parameters, which serve as essential tools for describing

the universe expansion history. They allow researchers to analyze cosmic evolution without relying on specific gravitational
theories, making them useful for testing various cosmological frameworks.

3.1. Study of State Variable
The EoS variable (𝜔𝐷 =

𝑝𝐷
𝜌𝐷

) determines the nature of DE and other cosmological components by relating pressure to
energy density. It plays a pivotal role in distinguishing various phases of cosmic evolution. Various values of𝜔𝐷 determines
the distinct cosmic eras, i.e., matter-dominated regions such as dust, radiative fluid and stiff matter are characterized by
the values 𝜔𝐷 = 0, 𝜔𝐷 = 1

3 and 𝜔𝐷 = 1, respectively. The vacuum energy phase is represented by 𝜔𝐷 = −1, the phantom
energy phase corresponds to 𝜔𝐷 < −1, whereas the quintessence phase is defined in the range −1 < 𝜔𝐷 < − 1

3 . These
different values of EoS parameter help to classify the evolution of the universe and its various expansion phases. Recent
cosmological observations, such as data from the Planck satellite, indicate that the EoS parameter for DE may lie below
−1. This supports the existence of phantom DE, which is an exotic form with negative kinetic energy. Such behavior
explains the accelerated expansion of the universe. The corresponding expression for EoS parameter is given by

𝜔𝐷 = −
1
9

(
7
√

6𝛼 ¤𝐶
√
𝑄 + 3𝛼𝑄(𝑄 − 3𝐶)

)
+ 6− 𝜓

2
(√
𝑄(2𝜁 + 𝜉)

)𝜓
√

6𝛼 ¤𝐶
√
𝑄 + 1

3𝛼𝑄(𝑄 − 3𝐶) + 6− 𝜓

2
(√
𝑄(2𝜁 + 𝜉)

)𝜓 . (39)
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Figure 3. Evolution of pressure against cosmic time.
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Figure 4. Plot of EoS parameter against cosmic time.

Using Eqs.(30) and (31), we have

𝜔𝐷 = [−24𝛼𝜇4 + 36𝛼𝜇3 + 56𝛼𝜇𝑡
√︂
𝜇2

𝑡2
+ 𝑡4 ((2𝜁 + 𝜉)

√︂
𝜇2

𝑡2
)𝜓

− 56𝛼𝑡3 ( 𝜇
2

𝑡2
)3/2] [12𝛼𝜇3 (2𝜇 − 3) − 72𝛼𝜇𝑡

√︂
𝜇2

𝑡2
− 𝑡4 ((2𝜁

+ 𝜉)
√︂
𝜇2

𝑡2
)𝜓 + 72𝛼𝑡3 ( 𝜇

2

𝑡2
)3/2]−1. (40)

Figure 4 determines the behavior of EoS parameter for three different values of 𝜇. This indicates that the model shows
phantom era of DE for 𝜓 = 2 and 𝜓 = −2, satisfying the conditions for GGPDE phenomenon.

3.2. Analysis of 𝜔𝐷 − 𝜔′
𝐷

Plane
Here, we use (𝜔𝐷 −𝜔′

𝐷
) analysis to study the dynamics of DE, where prime denotes the derivative corresponding to

non-metricity. This analysis helps in understanding how the modified terms influence the deceleration parameter and the
transition between different cosmic phases. This phase plane is a useful tool in cosmology to comprehend the behavior
and stability of DE models. The behavior of DE models incorporating a scalar field has been investigated in [59]. They
also classified DE models in two main categories, i.e., the thawing region (characterized by a short-duration cosmic
acceleration) which is shown when 𝜔𝐷 has a negative value and 𝜔′

𝐷
is positive. The other one is freezing region (where

acceleration continues over a long period) which is shown when both 𝜔𝐷 and 𝜔′
𝐷

have negative value. The expression for
𝜔′

𝐷
is given by

𝜔′
𝐷 =

𝛼 ¤𝐶6
𝜓+1

2

(
𝛼𝑄6𝜓/2 (𝐶 −𝑄) − (𝜓 − 1)

(√
𝑄(2𝜁 + 𝜉)

)𝜓)
√
𝑄

(
𝛼
√
𝑄6𝜓/2

(
3
√

6 ¤𝐶 +
√
𝑄(𝑄 − 3𝐶)

)
+ 3

(√
𝑄(2𝜁 + 𝜉)

)𝜓)2 . (41)

Using Eqs.(30) and (31), we have

𝜔′
𝐷 =

[
4𝛼(𝜇 − 1)𝜇𝑡 (36𝛼𝜇3 + 𝑡4 (𝜓 − 1) ((2𝜁 + 𝜉)

√︂
𝜇2

𝑡2
)𝜓)

]
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Figure 5. Graphical behavior of 𝜔𝐷 against 𝜔′
𝐷

.

×
[
3
√︂
𝜇2

𝑡2
(12𝛼𝜇3 (3 − 2𝜇) + 72𝛼𝜇𝑡

√︂
𝜇2

𝑡2
+ 𝑡4 ((2𝜁 + 𝜉)

×
√︂
𝑚2

𝑡2
)𝜓 − 72𝛼𝑡3 ( 𝜇

2

𝑡2
)3/2)2

]−1
. (42)

Figure 5 shows that for every value of 𝜇 and 𝜓 = ±2, 𝜔𝐷 < 0 and 𝜔′
𝐷
< 0, showing the freezing region.

3.3. Study of (𝑟, 𝑠) Parameters
These parameters offer a deep insight into the dynamic behavior and evolutionary phases of DE models [60]. They

help to differentiate between various cosmological models by mapping their distinct trajectories in (𝑟, 𝑠) plane. Specifically,
the cold DM model is obtained for (𝑟, 𝑠) = (1, 0) while the standard model is found at (𝑟, 𝑠) = (1, 1). Additionally, the
conditions 𝑟 < 1 and 𝑠 > 0 correspond to phantom and quintessence phases of DE. The Chaplygin gas model is represented
by 𝑠 < 0 and 𝑟 > 1. These parameters are represented as

𝑟 =
𝑎

𝑎𝐻3 = 1 + 9𝜔𝐷

2
Ω𝐷 (1 + 𝜔𝐷) −

3𝜔′
𝐷

2𝐻
Ω𝐷 , (43)

𝑠 =
𝑟 − 1

3(𝑞 − 1
2 )

= 1 + 𝜔𝐷 −
𝜔′

𝐷

3𝜔𝐷𝐻
. (44)

Inserting 𝜔𝐷 and 𝜔′
𝐷

values, we obtain

𝑟 = [𝛼𝑄6𝜓/2 (−28𝛼 ¤𝐶2𝑄 + ¤𝐶 (−6𝛼𝐶 + 3
√

6𝑄3/2 (2𝛼𝐶 + 1) − 2
√

6𝛼𝑄5/2

+ 6𝛼𝑄) +𝑄2 (𝑄 − 3𝐶)) + 3(2𝛼 ¤𝐶 (−
√

6𝑄3/2 + 𝜓 − 1) +𝑄2) (
√︁
𝑄(2𝜁

+ 𝜉))𝜓] [𝛼𝑄5/26𝜓/2 (3
√

6 ¤𝐶 +
√︁
𝑄(𝑄 − 3𝐶)) + 3𝑄2 (

√︁
𝑄(2𝜁 + 𝜉))𝜓]−1, (45)

𝑠 = [𝛼2 ¤𝐶𝑄2𝜓+13𝜓 (𝑄(14 ¤𝐶 +
√

6𝑄3/2 − 3) + 𝐶 (3 − 3
√

6𝑄3/2)) − 𝛼 ¤𝐶6
𝜓

2 +1

× (−
√

6𝑄3/2 + 𝜓 − 1) (
√︁
𝑄(2𝜁 + 𝜉))𝜓] [𝑄(7𝛼2 ¤𝐶2𝑄2𝜓+13𝜓+2 + 𝛼 ¤𝐶

×
√︁
𝑄2

𝜓+9
2 3

𝜓+1
2 (𝛼𝑄6𝜓/2 (𝑄 − 3𝐶) + 3(

√︁
𝑄(2𝜁 + 𝜉))𝜓) + 3(𝛼𝑄6𝜓/2

× (𝑄 − 3𝐶) + 3(
√︁
𝑄(2𝜁 + 𝜉))𝜓)2)]−1. (46)

Using Eqs.(30) and (31), we have

𝑟 = [1728𝛼2𝜇7𝑡

√︂
𝜇2

𝑡2
+ 216𝛼𝜇7𝑡√︃

𝜇2

𝑡2

− 4320𝛼2𝜇6𝑡

√︂
𝜇2

𝑡2
− 216𝛼𝜇6𝑡√︃

𝜇2

𝑡2

+ 2592𝛼2𝜇5𝑡

√︂
𝜇2

𝑡2
− 72𝛼𝜇5𝑡3 (2𝜁 + 𝜉) ((2𝜁 + 𝜉)

√︂
𝜇2

𝑡2
)𝜓−1
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Figure 6. Graphical representation of diagnostic pair.

+ 72𝛼𝜇4𝑡3 (2𝜁 + 𝜉) ((2𝜁 + 𝜉)
√︂
𝜇2

𝑡2
)𝜓−1 + 𝑡6 (−3𝜇3 + 2𝛼𝜇𝑡 (𝜓 − 1)

− 2𝛼𝑡 (𝜓 − 1)) ((2𝜁 + 𝜉)
√︂
𝜇2

𝑡2
)𝜓 + 36𝛼𝜇3 ((2𝜇 − 3)𝜇3𝑡2 + 2𝛼(𝜇

− 1) (56(𝜇 − 1)𝜇2 + 𝑡3))] [3𝜇3𝑡2 (12𝛼𝜇3 (2𝜇 − 3) − 72𝛼𝜇𝑡
√︂
𝜇2

𝑡2

− 𝑡4 ((2𝜁 + 𝜉)
√︂
𝜇2

𝑡2
)𝜓 + 72𝛼𝑡3 ( 𝜇

2

𝑡2
)3/2)]−1, (47)

𝑠 = [4𝛼(𝜇 − 1) (36𝛼𝜇3𝑡3 + 𝑡7 (𝜓 − 1) ((2𝜁 + 𝜉)
√︂
𝜇2

𝑡2
)𝜓 + 288𝛼𝜇6

× (3𝑡
√︂
𝜇2

𝑡2
+ 7) − 144𝛼𝜇5 (9𝑡

√︂
𝜇2

𝑡2
+ 14) − 36𝜇4𝑡3 (2𝜁 + 𝜉) ((2𝜁

+ 𝜉)
√︂
𝜇2

𝑡2
)𝜓−1)] [9𝜇(144𝛼2𝜇4 (𝜇(𝜇(4(𝜇 − 3)𝜇 + 37) − 56) + 28)

+ 𝑡8 ((2𝜁 + 𝜉)
√︂
𝜇2

𝑡2
)2𝜓 + 3072𝛼2𝜇6𝑡

√︂
𝜇2

𝑡2
− 7680𝛼2𝜇5𝑡

√︂
𝜇2

𝑡2

+ 4608𝛼2𝜇4𝑡

√︂
𝜇2

𝑡2
− 128𝛼𝜇4𝑡3 (2𝜁 + 𝜉) ((2𝜁 + 𝜉)

√︂
𝜇2

𝑡2
)𝜓−1

− 24𝛼𝜇3 (2𝜇 − 3)𝑡4 ((2𝜁 + 𝜉)
√︂
𝜇2

𝑡2
)𝜓 + 128𝛼𝜇3𝑡3 (2𝜁 + 𝜉) ((2𝜁

+ 𝜉)
√︂
𝜇2

𝑡2
)𝜓−1)]−1. (48)

Figure 6 demonstrates Chaplygin gas model (𝑟 > 1 and 𝑠 < 0) for 𝜓 = ±2 and different values of 𝜇.

3.4. Stability Criteria
The ability of an object to regain its equilibrium state after being subjected to external forces is termed as stability.

The squared sound speed (𝑣2
𝑠) parameter plays a key role in cosmological models, as it dictates the stability of cosmic

models. When 𝑣2
𝑠 is positive, it indicates stability within the model, whereas its negative value indicates instability. This

relationship can be expressed as follows

𝑣2
𝑠 =

¤𝑝𝐷
¤𝜌𝐷

=
𝜌𝐷

¤𝜌𝐷
𝜔′

𝐷 + 𝜔𝐷 . (49)

Manipulating this equation, we have

𝑣2
𝑠 =

−7𝛼 ¤𝐶
√
𝑄6

𝜓+1
2 + 𝛼𝑄6

𝜓

2 +1 (3𝐶 − 2𝑄) − 9𝜓
(√
𝑄(2𝜁 + 𝜉)

)𝜓
3
(
𝛼
√
𝑄6𝜓/2

(
3
√

6 ¤𝐶 + 2
√
𝑄(2𝑄 − 3𝐶)

)
+ 3𝜓

(√
𝑄(2𝜁 + 𝜉)

)𝜓) . (50)
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Figure 7. Plot of sound speed parameter against cosmic time.

Using Eqs.(30) and (31), it follows that

𝑣2
𝑠 = [−24𝛼(𝜇 − 3)𝜇3 + 56𝛼𝜇𝑡

√︂
𝜇2

𝑡2
+ 𝑡4𝜓((2𝜁 + 𝜉)

√︂
𝜇2

𝑡2
)𝜓

− 56𝛼𝑡3 ( 𝜇
2

𝑡2
)3/2] [24𝛼(𝜇 − 3)𝜇3 − 72𝛼𝜇𝑡

√︂
𝜇2

𝑡2
− 𝑡4𝜓((2𝜁

+ 𝜉)
√︂
𝜇2

𝑡2
)𝜓 + 72𝛼𝑡3 ( 𝜇

2

𝑡2
)3/2]−1. (51)

Figure 7 demonstrates that the reconstructed 𝐺𝐺𝑃𝐷𝐸 𝑓 (𝑄,𝐶) model is stable across different cosmic epochs.

4. FINAL RESULTS
The reconstruction method in modified theories serves as a useful approach to develop a viable DE model and

understand the cosmic evolution. The inspiration for exploring a reconstructed 𝑓 (𝑄,𝐶) framework comes form its
crucial theoretical and empirical factors in gravitational physics and cosmology. The boundary term in the functional
action is vital to the dynamical equations, providing novel clarity on cosmic progression. This proposed theory offers
an explanation for the accelerating universe without depending on a cosmological constant, resolving DE problem. This
modified proposal has garnered significant attention for their capacity to expand GR by aligning with various observational
and experimental constraints. The connection between boundary term and non-metricity enhance the viability and enables
a broad spectrum of feasible solutions. Consequently, this theoretical framework opens up the new avenues for developing
cosmic frameworks that align with current observations. The main motivation for exploring the GGPDE model in 𝑓 (𝑄,𝐶)
theory is to better understand the accelerated cosmic expansion.

This analysis has investigated GGPDE model in the framework of non-metric gravity. We have used standard
diagnostic instruments and the state finder pair to analyze different cosmic eras. We have assessed stability of the model
using squared sound speed method. The main results are summarized as follows.

• The reconstructed 𝑓 (𝑄,𝐶) model indicates a decreasing pattern for 𝜓 = 2 and increasing behavior for 𝜓 = −2,
which demonstrates the realistic model behavior (Figure 1).

• The decreasing behavior of the matter contents is consistent with the expected behavior of DE for all values of 𝜇
and 𝜓 (Figures 2 and 3).

• Our analysis reveals that the EoS parameter lies within the phantom region for all values of 𝜇 (Figure 4).

• The upward trend in the (𝜔𝐷 − 𝜔′
𝐷

) reveals the freezing region, which suggests that non-interacting case leads to a
rapid cosmic evolution (Figure 5).

• The (𝑟 − 𝑠)-plane determines Chaplygin gas model associated with non-interacting GGPDE 𝑓 (𝑄,𝐶) model (Figure
6).

• Our results show that 𝑣2
𝑠 is positive for each value of 𝜇, indicating that GGPDE 𝑓 (𝑄,𝐶) model is stable (Figure 7).

The GGPDE 𝑓 (𝑄,𝐶) model exhibits stable features and consistently corresponds with the present cosmic expansion.
It is important to note that our findings are consistent with the existing observational data [61]

𝜔𝐷 = −1.023+0.091
−0.096 (𝑃𝑙𝑎𝑛𝑐𝑘𝑇𝑇 + 𝐿𝑜𝑤𝑃 + 𝑒𝑥𝑡),
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𝜔𝐷 = −1.006+0.085
−0.091 (𝑃𝑙𝑎𝑛𝑐𝑘𝑇𝑇 + 𝐿𝑜𝑤𝑃 + 𝑙𝑒𝑛𝑠𝑖𝑛𝑔 + 𝑒𝑥𝑡),

𝜔𝐷 = −1.019+0.075
−0.080 (𝑃𝑙𝑎𝑛𝑐𝑘𝑇𝑇, 𝑇𝐸, 𝐸𝐸 + 𝐿𝑜𝑤𝑃 + 𝑒𝑥𝑡).

With a 95% confidence level, the data was gathered using a variety of observational techniques. Notably, our
results align well with the predictions of the quantum chromodynamics ghost model within modified gravitational theories
[62, 63]. Moreover, they are in agreement with recent theoretical and observational studies [57].
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КОСМОЛОГIЧНА ДIАГНОСТИКА ТА СТАБIЛЬНIСТЬ МОДЕЛI ТЕМНОЇ ЕНЕРГIЇ
В НЕМЕТРИЧНIЙ ГРАВIТАЦIЇ

Мухаммед Шарiф1,4, Еман М. Монер2,Мухаммад Зiшан Гюль1,Мухаммад Хасан Шахiд1,
Еуагелос Е. Зотос3

1Кафедра математики та статистики, Лахорський унiверситет, 1-KM Defence Road, Лахор-54000, Пакистан
2Кафедра фiзики, Коледж наук, Унiверситет принцеси Нури бiнт Абдулрахман,

P.O. Box 84428, Рiяд 11671, Саудiвська Аравiя
3Кафедра фiзики, Школа наук, Унiверситет Арiстотеля в Салонiках, GR 54124, Салонiки, Грецiя

4Дослiдницький центр астрофiзики та космологiї, Хазарський унiверситет,
Баку, AZ1096, вулиця Мехсетi, 41, Азербайджан

У цiй роботi ми дослiджуємо динамiку узагальненої темної енергiї привида-пiломника на тлi гравiтацiї 𝑓 (𝑄,𝐶), де 𝑄 – це
неметричний скаляр, а 𝐶 – граничний член. Для досягнення цiєї мети ми беремо iзотропний та однорiдний Всесвiт з iдеальним
розподiлом матерiї. Наш аналiз включає сценарiй з невзаємодiючими рiдинами, що охоплює як темну матерiю, так i темну
енергiю. Щоб зрозумiти космiчну динамiку, ми реконструюємо модель 𝑓 (𝑄,𝐶) та дослiджуємо її вплив на еволюцiю Всесвiту.
Ми дослiджуємо ключовi космологiчнi фактори, тобто змiнну стану, поведiнку (𝜔𝐷−𝜔′

𝐷
)-площини та дiагностичну пару statefi-

nder, якi допомагають аналiзувати розширення космосу. Ключовим аспектом нашого аналiзу є стабiльнiсть узагальненої моделi
темної енергiї пiлiгрима-привида, отриманої за допомогою методу квадрата швидкостi звуку, що пiдтверджує її життєздатнiсть
у пiдтримцi спостережуваного прискореного розширення. Нашi результати узгоджуються з даними спостережень, демонстру-
ючи, що гравiтацiя 𝑓 (𝑄,𝐶) забезпечує надiйну теоретичну основу для опису темної енергiї та динамiки Всесвiту у великих
масштабах. Ця робота не лише поглиблює наше розумiння модифiкованої гравiтацiї та таємничої енергiї, але й пропонує новi
погляди на альтернативне пояснення космiчного прискорення поза стандартними парадигмами.
Ключовi слова: 𝑓 (𝑄,𝐶) гравiтацiя; модель темної енергiї; аналiз стабiльностi
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In this work, we study the Bianchi type-III interacting framework of modified QCD ghost dark energy with cold dark matter is being
considered for illustrating the accelerated expansion of the Universe. The equation of state parameter shows evolution of the Universe
completely varies in quintessence region only. The dynamics of scalar field and corresponding potential of various scalar field models
shows consistence behavior with the accelerated expansion phenomenon. Also, the kinetic energy term of k-essence models lies within
the range where equation of state parameter represents the accelerated expansion of the Universe.

Keywords: Bianchi type-III; QCD ghost dark energy; Cold dark matter; Scalar field models

PACS: 98.80.-k; 95.36.+X

1. INTRODUCTION
Dark Energy (DE) is a captivating and enigmatic component of the Universe, widely believed to be responsible for

its accelerated expansion. This phenomenon has been strongly supported by numerous observational datasets, including
those from Ref [1, 2]. DE exhibits a repulsive gravitational effect, yet its fundamental nature remains largely unknown.
The cosmological constant is the earliest and simplest candidate for DE. However, it suffers from two major theoretical
challenges: the ‘cosmic coincidence’ problem and the ‘fine-tuning’ issue [3], which limit its acceptance in current
discussions of DE. To overcome these limitations, a wide range of dynamical DE models have been proposed, including
quintessence, k-essence, and various perfect fluid models [4]. Among these, perfect fluid models are particularly notable
for their specific forms of the equation of state, encompassing frameworks such as the chaplygin gas family [5, 6],
holographic DE [7, 8], new agegraphic DE [9], and the power-law entropy-corrected models like pilgrim dark energy
(PDE) [10, 11, 12, 13]. Another intriguing approach is the quantum chromodynamics (QCD) ghost DE model, presented
in various versions [14, 15, 16, 17]. Comprehensive reviews of these dynamical models can be found in Copeland et al.
[18] and Bamba et al. [19]. In the framework of QCD, a dynamical DE model known as ‘Veneziano ghost dark energy’
has been proposed, inspired by the concept of the Veneziano ghost. This model originates from attempts to resolve the
long-standing 𝑈 (1) axial anomaly problem in QCD. It has been suggested that the Veneziano ghost can induce non-trivial
physical effects in a Friedmann-Robertson-Walker (FRW) Universe [20, 21]. Specifically, the QCD ghost contributes to the
vacuum energy density through a term proportional to Λ3

QCD𝐻, where ΛQCD ∼ 100 MeV represents the QCD energy scale
and 𝐻 is the Hubble parameter. Although this contribution is relatively small, it plays a significant role in the dynamics
of the Universes evolution.

Importantly, this model has been proposed as a potential solution to two major theoretical challenges of the cosmolog-
ical constant: the fine-tuning problem and the cosmic coincidence problem [22, 23, 24]. The theoretical investigations of
this model via various cosmological parameters have been conducted in several works [25, 26, 27, 28, 29, 30]. Additionally,
its compatibility with observational data has been explored [31], further supporting its relevance in modern cosmology.
Moreover, the Veneziano ghost field in QCD, expressed in the form 𝐻 + O(𝐻2), can provide sufficient vacuum energy
to account for the accelerated expansion of the Universe [32, 33]. However, the conventional ghost dark energy model
incorporates only the leading-order term.

A modified version of this model was later proposed, in which the energy density of generalized ghost dark energy
(QCD) ghost dark energy is associated with the radius of the trapping horizon [34]. The energy density in this formulation
is defined as:

𝜌𝐷 = 𝛼 (1 − 𝜖) 1
𝑟2
𝑇

= 𝛼 (1 − 𝜖)
(
𝐻2 + 𝑘

𝑎2

)
, (1)
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where the parameter 𝜖 is given by

𝜖 ≡
¤̃𝑟𝑇

2𝐻𝑟𝑇
, (2)

and 𝑟𝑇 denotes the trapping horizon radius, 𝐻 is the Hubble parameter, 𝑘 is the spatial curvature, and 𝑎 is the scale factor.
Scalar field models have also been extensively explored as alternatives to DE, including quintessence, tachyon,

k-essence, and dilaton fields. These models have played a significant role in explaining the late-time accelerated expansion
of the Universe. The dynamics of these scalar field models, along with their corresponding potentials, have been
thoroughly investigated in the context of various DE frameworks, such as the holographic dark energy (HDE) model
with Hubble, future event horizon, and Granda-Oliveros infrared (IR) cutoffs, in both flat and non-flat Universe scenarios
[35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. These studies have yielded interesting and insightful results regarding the
behavior of scalar fields and their potentials, offering a valuable theoretical understanding of the Universe’s accelerated
expansion. In our investigation, we have also reconstructed scalar field models in the context of interacting HDE with the
Granda-Oliveros IR cutoff in a non-flat Universe.

There is significant observational support for the possibility of an interaction between DM and DE, with the interaction
typically described through modified conservation equations for their respective energy densities [46]. Observations of the
cosmic microwave Background radiation (CMB), particularly from the Wilkinson Microwave Anisotropy Probe (WMAP),
indicate that the present Universe is largely homogeneous and isotropic on large scales. However, residual anisotropies,
such as those seen in CMB temperature fluctuations, still persist. The study of anisotropic cosmological models is therefore
important for gaining deeper insights into the formation and evolution of the Universe. Among these, Bianchi-type models
are particularly useful, as they represent spatially homogeneous but anisotropic solutions to Einstein’s field equations,
allowing for directional dependencies in cosmic expansion.

Abdul et al. [47] examined the scalar field models such as quintessence, dilaton, tachyon and k-essence in the
background of flat FRW Universe. In the presence of interaction, they studied the dynamics of scalar field models with
their corresponding potentials. Sheykhi [48] focused on interacting HDE models and their correspondence with scalar
field models in a flat Universe. In a non-flat Universe, Sharif and Jawad [49] examined the interaction between HDE and
different scalar field models, including quintessence, tachyon, k-essence, and dilaton, considering various values of the
power-law DE parameter. Sharif and Shamir [50] have studied exact solutions of Bianchi-type I and V space times in
the context of modified theory of gravity. Additionally, Sharif and Zubair [51] investigated anisotropic Universe models
involving a perfect fluid and scalar fields in the modified theories of gravity, concluding that 𝑓 (𝑅) gravity exhibits similar
behavior under varying constraints. Thorsrud et al. [52] have studied cosmology of a scalar field coupled to matter and
an isotropy-violating Maxwell field. Garcı́a-Salcedo et al. [53] have analyzed interacting DE with a trapping horizon in
Bianchi models.

Zubair and Abbas [54] have analyzed reconstructing QCD ghost models in the background of modified theory of
gravotation. Das et al. [55] have investigated aagnetized anisotropic ghost dark energy cosmological model. Azimi
and Barati [56] have analyzed instability of interacting GDE model in an anisotropic Universe. Reddy et al. [57] have
investigated dynamics of Bianchi type-II anisotropic DE cosmological model in the presence of scalar-meson fields.
Hossienkhani et al. [58] have investigated anisotropy effects on QCD ghost dark energy using the cosmological data.
Javed et al. [59] have studied reconstruction of interacting generalized anisotropic scalar field models. Gómez et al. [60]
have discussed anisotropic scalar field DE with a disformally coupled Yang-Mills field. Javed et al. [61] have analyzed
interacting generalized anisotropic scalar field models. Talole et al. [62] have studied QCD-modified scalar field models
of DE, in the presence of both interaction and viscosity, with varying gravitational constant. Bhardwaj and Yadav [63]
have investigated observational constraints on scalar field cosmological model in anisotropic Universe. Sharif and Ajmal
[64] have studied generalized GDE in the framework of modified theory Gravity. Very recently, Archana and Srivastava
[65] have examined the kinematical and geometrical properties of the model as well as interacting ghost scalar field models
of DE in Bianchi type-II Universe.

In this work, we investigate the cosmological evolution of an anisotropic Universe within the framework of general
theory of relativity, using the redshift parameter 𝑧 as a reference. The structure of the paper is as follows: in Section 2, we
present the foundational concepts and define key cosmological parameters, including the energy density of dark energy
and the equation of state parameter. Section 3 provides a graphical analysis of the Bianchi type III model in conjunction
with various scalar field dark energy models, namely quintessence, tachyon, and k-essence. The final section summarizes
and concludes the key findings of this study.

2. METRIC AND FIELD EQUATIONS
The gravitational field in our model is given by a Bianchi type-III metric as

𝑑𝑠2 = 𝑑𝑡2 − 𝐴2 (𝑡)𝑑𝑥2 − 𝐵2 (𝑡)𝑒−2𝑛𝑥𝑑𝑦2 − 𝐶2 (𝑡)𝑑𝑧2, (3)

with 𝐴, 𝐵 and C being functions of the cosmic ’𝑡’ only.
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The Einstein’s field equations (with gravitational units, 8𝜋𝐺 = 1 = 𝐶)

𝑅𝑖 𝑗 −
1
2
𝑅𝑔𝑖 𝑗 = (𝑇𝑖 𝑗 + 𝑇𝑖 𝑗 ), (4)

where 𝑔𝑖 𝑗 is the metric tensor, 𝑅 is the Ricci scalar and 𝑅𝑖 𝑗 is the Ricci tensor, 𝑇𝑖 𝑗 and 𝑇𝑖 𝑗 are the energy-momentum
tensors of matter and dark energy respectively, and they are defined as

𝑇𝑖 𝑗 = 𝜌𝑚𝑥𝑖𝑥 𝑗 (5)

and
𝑇𝑖 𝑗 = (𝜌𝐷𝐸 + 𝑝𝐷𝐸)𝑥𝑖𝑥 𝑗 − 𝑝𝐷𝐸𝑔𝑖 𝑗 , (6)

where 𝜌𝑚 and 𝜌𝐷𝐸 are the energy densities of matter and dark energy respectively and 𝑝𝐷𝐸 is the pressure of the DE.
From equations (5) and (6), we have

𝑇1
1 = 𝑇2

2 = 𝑇3
3 = 0, 𝑇4

4 = 𝜌𝑚 (7)

𝑇1
1 = 𝑇2

2 = 𝑇3
3 = −𝑝𝐷𝐸 , 𝑇4

4 = 𝜌𝐷𝐸 . (8)

The field (4), for the metric (3) with the help of (5) and (6), can be written as

¥𝐴
𝐴
+

¥𝐶
𝐶

+
¤𝐴 ¤𝐶
𝐴𝐶

= −𝑝𝐷𝐸 (9)

¥𝐵
𝐵
+

¥𝐶
𝐶

+
¤𝐵 ¤𝐶
𝐵𝐶

= −𝑝𝐷𝐸 (10)

¥𝐴
𝐴
+

¥𝐵
𝐵
+

¤𝐴 ¤𝐵
𝐴𝐵

− 𝑛2

𝐴2 = −𝑝𝐷𝐸 (11)

¤𝐴 ¤𝐵
𝐴𝐵

+
¤𝐴 ¤𝐶
𝐴𝐶

+
¤𝐵 ¤𝐶
𝐵𝐶

− 𝑛2

𝐴2 = 𝜌𝑚 + 𝜌𝐷𝐸 (12)

¤𝐴
𝐴
−

¤𝐵
𝐵

= 0 (13)

where overhead dot denote differentiation with respect to cosmic time t.
Now solving (13), we get

𝐴 = 𝑐1𝐵 (14)

where 𝑐1 is an integration constant and without loss of generality, we take 𝑐1 = 1, we have

𝐴 = 𝐵 (15)

In order to determine the average anisotropy parameter 𝐴ℎ for a generalized anisotropic cosmological model, it is defined
as follows:

𝐴ℎ =
1
3

3∑︁
𝑖=1

(
𝐻𝑖 − 𝐻

𝐻

)2
, (16)

where 𝐻 is the mean Hubble parameter, and 𝐻𝑖 are the directional Hubble parameters along each spatial direction.
For the specific case under consideration, we take:

𝐻𝑥 = 𝐻𝑦 =
¤𝐴
𝐴
, 𝐻𝑧 =

¤𝐵
𝐵
,

where 𝐴(𝑡) and 𝐵(𝑡) are the directional scale factors in the 𝑥,𝑦 and 𝑧 directions, respectively.
Further, we discuss some solution regarding anisotropic Universe model with scalar field models.
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3. SOLUTION OF THE FIELD EQUATIONS
The field equations (9) to (12) are a system of four highly non-linear differential equations in five unknowns

𝐴,𝐶, 𝑝𝐷𝐸 , 𝜌𝑚, 𝜌𝐷𝐸 . The system is thus initially undetermined. We need one extra physical condition to solve the field
equations completely.

We assume that the expansion scalar (𝜃) is proportional to the shear scalar (𝜎2) [66, 67]. The condition leads to

𝐴 = 𝐶𝑘 , (17)

where (𝑘 > 1).
Now solving equations (9), (11), (15) and (17), we get

𝐴 = 𝐵 = (𝑏𝑡 + 𝑐), 𝐶 = (𝑏𝑡 + 𝑐) 1
𝑘 , (18)

where 𝑏 = 𝑛𝑘√
𝑘2−1

, and 𝑐 = 𝑘𝑐2.
From equations (18) in metric (3), we have

𝑑𝑠2 = 𝑑𝑡2 − (𝑏𝑡 + 𝑐)2𝑑𝑥2 − (𝑏𝑡 + 𝑐)2𝑒−2𝑛𝑥𝑑𝑦2 − (𝑏𝑡 + 𝑐) 2
𝑘 𝑑𝑧2 (19)

Equation (19) represents Bianchi type-III interacting modified QCD ghost scalar field model of DE.
The interacting between CDM and QCD dark energy [68, 69, 70, 71], the continuity equations turn out to be

¤𝜌𝑚 + 3𝐻𝜌𝑚 = 𝑄, ¤𝜌𝐷𝐸 + 3𝐻 (1 + 𝜔𝐷𝐸)𝜌𝐷𝐸 = −𝑄, (20)

where 𝜔𝐷𝐸 =
𝑝𝐷𝐸

𝜌𝐷𝐸
and 𝑄 stands for the equation of state (EoS) parameter and the interaction term respectively, we choose

the interaction as 𝑄 = 3𝑑2𝐻𝜌𝑚 and 𝑑2 is a coupling constant. From (20), we get

𝜌𝑚 = 𝜌𝑚0 (𝑏𝑡 + 𝑐)
(2𝑘+1) (𝑑2−1)

𝑘 (21)

From equation (12), we get

𝜌𝐷𝐸 =
𝑏2 (𝑘 + 2)
𝑘 (𝑏𝑡 + 𝑐)2 − 𝑛2

(𝑏𝑡 + 𝑐)2 − 𝜌𝑚0 (𝑏𝑡 + 𝑐)
(2𝑘+1) (𝑑2−1)

𝑘 (22)

From equation (20), we get

𝜔𝐷𝐸 = −1 + 𝑘

2𝑘 + 1

[2
(
𝑏2 (𝑘+2)

𝑘
− 𝑛2

)
− 𝜌𝑚0 (2𝑘 + 1) (𝑑2 − 2) (𝑏𝑡 + 𝑐)

(2𝑘+1) (𝑑2−2)
𝑘

−4

𝑏2 (𝑘+2)
𝑘

− 𝑛2 − 𝜌𝑚0 (𝑏𝑡 + 𝑐)
(2𝑘+1) (𝑑2−1)

𝑘
−2

]
(23)

Redshift dependence: In cosmological models, the redshift 𝑧 is a measure of the expansion of the universe and is related
to the average scale factor 𝑎(𝑡) by

1 + 𝑧 =
1

𝑎(𝑡) (24)

where the mean scale factor is given by
𝑎(𝑡) = (𝐴𝐵𝐶)1/3. (25)

Using equations (18) and (25), we obtain

𝑎(𝑡) = (𝑏𝑡 + 𝑐)
2+1/𝑘

3 . (26)

Hence, the relation between cosmic time and redshift is

𝑏𝑡 + 𝑐 = (1 + 𝑧)−
3

2+1/𝑘 . (27)

It is observed from Figures 1 and 2 that the energy densities of DM and QCD ghost dark energy remain positive
throughout cosmic evolution. They are decreasing functions in redshift 𝑧. They start with a positive value and they tend
to very close to zero when 𝑧 approaches to negative value. The graphical behavior of the Eos parameter versus redshift (𝑧)
for the different values of 𝑑2 is shown in Figure 3. It can be observed that the Eos parameter (𝜔𝑑𝑒) completely varies in
the quintessence region for various values of 𝑑2 = 0.2, 0.4, 0.6.
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Figure 1. Plot of 𝜌𝑚 versus 𝑧 for b=0.5, k=9.7, c=100,
n=2.521
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Figure 2. Plot of 𝜌𝑑𝑒 versus 𝑧 for b=0.5, k=9.7, c=100,
n=2.521
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Figure 3. Plot of 𝜔𝑑𝑒 versus 𝑧 for the different values of coupling constants (𝑑2), b=0.5, k=9.7, c=100, n=2.521

4. CORRESPONDENCE WITH SCALAR FIELD MODELS IN ANISOTROPIC UNIVERSE
Our objective here is to examine whether a minimally coupled scalar field with a specific action or Lagrangian can

replicate the dynamics of the GDE model. This approach aims to establish a possible connection between the GDE
framework and a more fundamental theory, such as string theory or M-theory, which often involves scalar fields. To this
end, it is meaningful to reconstruct the scalar field dynamics 𝜙 and the corresponding potential𝑉 (𝜙) such that they exhibit
key features of the GDE model. Following the method proposed in [72], we establish a correspondence between the GDE
model and various scalar field models by equating their respective energy densities and equations of state. Through this
correspondence, we reconstruct both the field dynamics and the scalar potential, thereby gaining deeper insight into the
theoretical underpinnings of the GDE framework.

4.1. Reconstructing ghost quintessence model
We adopt the viewpoint that the quintessence scalar field model of DE are effective theories of an underlying theory

of DE [73, 74, 75]. The energy density and pressure for the quintessence scalar field can be written as

𝜌𝑞 =
1
2
¤𝜙2 +𝑉 (𝜙), (28)

𝑝𝑞 =
1
2
¤𝜙2 −𝑉 (𝜙). (29)

Then, we can obtain the scalar potential and the kinetic energy term as

𝑉 (𝜙) =
[
2(2𝑘 + 1)

(
𝑏2 (𝑘+2)

𝑘
− 𝑛2 − 𝑘𝜌𝑚0 (𝑏𝑡 + 𝑐)

(2𝑘+1) (𝑑2−1)
𝑘

−2

)
− 𝑘

(
2 𝑏2 (𝑘+2)

𝑘
− 2𝑛2

)
−𝜌𝑚0 (2𝑘 + 1) (𝑑2 − 1)

] [
2𝑘 (2𝑘 + 1) (𝑏𝑡 + 𝑐)2

]−1
(30)
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¤𝜙 =

√√√√√
2
(
𝑏2 (𝑘+2)

𝑘
− 𝑛2

)
− 𝜌𝑚0 (2𝑘 + 1) (𝑑2 − 2) (𝑏𝑡 + 𝑐)

(2𝑘+1) (𝑑2−1)
𝑘

−4

(2𝑘 + 1) (𝑏𝑡 + 𝑐)2 (31)

Where 𝜔𝑞 =
𝑝𝑞
𝜌𝑞

. For establishing the correspondence between present DE with quintessence scalar field, we identify
𝜌𝐷𝐸 = 𝜌𝑞 and 𝜔𝐷𝐸 = 𝜔𝑞 . The evolution trajectories of potential function and scalar field versus redshit (𝑧) in ghost
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Figure 4. Plot of 𝑉 (𝜙) versus 𝑧 in ghost quintessence
model for the different values of coupling constants (𝑑2),
b=0.5, k=9.7, c=100, n=2.521
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Figure 5. Plot of 𝜙(𝑧) versus 𝑧 in ghost quintessence model
for the different values of coupling constant (𝑑2), b=0.5,
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Figure 6. Plot of 𝑉 (𝜙) versus 𝑧 in ghost quintessence model for the different values of coupling constant (𝑑2), b=0.5,
k=9.7, c=100, n=2.521

quintessence model for different values of 𝑑2 are shown in Figures 4 and 5. For 𝑑2 = 0.2, 0.4, 0.6, the quintessence ghost
dark energy both potential function and scalar field decreases during of the Universe. The plot of quintessence potential in
terms of scalar field is shown in Figure 6 representing increasing behavior. The gradually decreasing kinetic energy while
potential remains positive for quintessence model represents accelerate expansion of the Universe for different values of
𝑑2.

4.2. Reconstructing ghost tachyon model
The tachyon field is another approach for explaining DE [76, 77, 78, 79, 80, 81]. The tachyon energy density and

pressure are

𝜌𝑇 = −𝑇1
1 =

𝑉 (𝜙)√︁
1 − ¤𝜙2

, (32)

𝑝𝑇 = 𝑇 𝑖
𝑖 = −𝑉 (𝜙)

√︃
1 − ¤𝜙2. (33)

𝑝𝑇 = −𝑉 (𝜙)

√√√√√
1 −

2
(
𝑏2 (𝑘+2)

𝑘
− 𝑛2

)
− 𝜌𝑚0 (2𝑘 + 1) (𝑑2 − 2) (𝑏𝑡 + 𝑐)

(2𝑘+1) (𝑑2−1)
𝑘

−4

(2𝑘 + 1) (𝑏𝑡 + 𝑐)2 , (34)
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The EoS parameter of tachyon field takes the form

𝜔𝑇 =

2
(
𝑏2 (𝑘+2)

𝑘
− 𝑛2

)
− 𝜌𝑚0 (2𝑘 + 1) (𝑑2 − 2) (𝑏𝑡 + 𝑐)

(2𝑘+1) (𝑑2−1)
𝑘

−4

(2𝑘 + 1) (𝑏𝑡 + 𝑐)2 − 1. (35)

We plot potential function V (𝜙) and scalar field 𝜙 of ghost dark energy tachyon model as shown in Figures 9 and 7.
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Figure 7. Plot of 𝑉 (𝜙) versus 𝑧 in ghost tachyon model for
the different values of coupling constant (𝑑2), b=0.5, k=9.7,
c=100, n=2.521
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Figure 8. Plot of 𝜙(𝑧) versus 𝑧 in ghost tachyon model for
the different values of coupling constant (𝑑2), b=0.5, k=9.7,
c=100, n=2.521
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Figure 9. Plot of 𝑉 (𝜙) versus 𝜙(𝑧) in ghost tachyon model for the different values of coupling constant (𝑑2), b=0.5,
k=9.7, c=100, n=2.521

The evolution of this model is much similar to quintessence model. The scalar field represents increasing behavior versus
redshift and indicates more steeper behavior for 𝑑2 = 0.2, 0.4. This leads to the decreasing kinetic energy.

We plot potential function 𝑉 (𝜙) and redshift 𝜙(𝑧) of ghost tachyon model as shown in Figure 8. The corresponding
potential function expresses decreasing but positive behavior with respect to redshift. Its decreasing behavior from maxima
gives inverse proportionality to scalar field for the later times. This type of behavior corresponds to scaling solutions in
the brane-world cosmology.

4.3. Reconstructing ghost k-essence model
The k-essence scalar field model of DE is characterized by a scalar field with a non-canonical kinetic energy

[82, 83, 84, 85, 86]. The density and corresponding pressure of k-essence model are of the form R

𝜌𝑘 = 𝑉 (𝜒) (−𝜒 + 3𝜒2), 𝑝𝑘 = 𝑉 (𝜙) (−𝜒 + 𝜒2). (36)

where 𝜒 =
¤𝜙2

2 . The EoS parameter has the form

𝜔𝑘 =
𝑝𝑘

𝜌𝑘
=

𝜒 − 1
3𝜒 − 1

(37)
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in which 𝜒 experienced the accelerated expansion of the Universe in the interal ( 1
3 ,

2
3 ). Taking 𝜔𝑘 = 𝜔𝐷𝐸 , we obtain

𝜒 =
1

2(2𝑘 + 1) (𝑏𝑡 + 𝑐)2

[
2
(
𝑏2 (𝑘+2)

𝑘
− 𝑛2

)
− 𝜌𝑚0 (2𝑘 + 1) (𝑑2 − 2) (𝑏𝑡 + 𝑐)

(2𝑘+1) (𝑑2−1)
𝑘

−4
]
, (38)

The EoS parameter has the form

𝜔𝑘 =

1
2(2𝑘 + 1) (𝑏𝑡 + 𝑐)2

[
2
(
𝑏2 (𝑘+2)

𝑘
− 𝑛2

)
− 𝜌𝑚0 (2𝑘 + 1) (𝑑2 − 2) (𝑏𝑡 + 𝑐)

(2𝑘+1) (𝑑2−1)
𝑘

−4
]
− 1

3 · 1
2(2𝑘 + 1) (𝑏𝑡 + 𝑐)2

[
2
(
𝑏2 (𝑘+2)

𝑘
− 𝑛2

)
− 𝜌𝑚0 (2𝑘 + 1) (𝑑2 − 2) (𝑏𝑡 + 𝑐)

(2𝑘+1) (𝑑2−1)
𝑘

−4
]
− 1

. (39)
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Figure 10. Plot of 𝜒 versus 𝑧 in ghost k-essence model for
the different values of coupling constant (𝑑2), b=0.5, k=9.7,
c=100, n=2.521
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Figure 11. Plot of 𝜙(𝑧) versus 𝑧 in ghost k-essence model
for the different values of coupling constant (𝑑2), b=0.5,
k=9.7, c=100, n=2.521

The plot of 𝜒 versus redshift is shown in Figure 10 for various values of 𝑑2. It can be observed that the region within
the range where the EoS parameter of k-essence ghost dark energy model shows consistency with the accelerated Universe.
We plot scalar field 𝜙 of ghost dark energy k-essence model as shown in Figure 11, representing decreasing behavior in
the present epoch for the various values of 𝑑2. The potential function versus scalar field is shown in Figure 12, indicates
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Figure 12. Plot of 𝑉 (𝜙) versus 𝜙(𝑧) in ghost k-essence model for the different values of coupling constant (𝑑2), b=0.5,
k=9.7, c=100, n=2.521

the increase in potential with increase in scalar field but k-essence scalar field decreases with expansion of the Universe.

5. CONCLUSIONS
In this work, we study the Bianchi type-III interacting framework of modified QCD ghost dark energy with cold

dark matter is being considered for the accelerated expansion of the Universe. We have studied various cosmological
parameters to analyze the viability of the models and our conclusions are the following:
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• The energy densities of DM and QCD ghost dark energy remain positive throughout cosmic evolution. They are
decreasing and start with a positive value and they tend to very close to zero when 𝑧 approaches to negative value.
The graphical behavior of the Eos parameter (𝜔𝑑𝑒) completely varies in the quintessence region for various values
of 𝑑2 = 0.2, 0.4, 0.6.

• For ghost quintessence model, the evolution trajectories of potential function and scalar field for different values of 𝑑2

are shown in Figures 4 and 5. For 𝑑2 = 0.2, 0.4, 0.6, the quintessence ghost dark energy both potential function and
scalar field decreases during of the Universe. The plot of quintessence potential representing increasing behavior.
The gradually decreasing kinetic energy while potential remains positive for quintessence model represents accelerate
expansion of the Universe for different values of 𝑑2.

• For ghost tachyon model, the evoution of this model is much similar to quintessence model. The scalar field
represents increasing behavoir versus redshift and indicates more steeper behavior for 𝑑2 = 0.2, 0.4. This leads to
the decreasing kinetic energy. The corresponding potential function expresses decreasing but positive behavior with
respect to redshift. Its decreasing behavior from maxima gives inverse proportionality to scalar field for the later
times. This type of behavior corresponds to scaling solutions in the brane-world cosmology.

• For ghost k-essence model, The plot of 𝜒 can be observed that the region within the range where the EoS parameter
of k-essence ghost dark energy model shows consistency with the accelerated Universe. We plot scalar field 𝜙 of
ghost dark energy k-essence model representing decreasing behavior in the present epoch for the various values of
𝑑2. The potential function versus scalar field is indicates the increase in potential with increase in scalar field but
k-essence scalar field decreases with expansion of the Universe.
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1. INTRODUCTION
The primary motivation for studying the spectra and characteristics of heavy mesons is to better understand the 

subatomic particles and the forces that govern matter’s behavior. A few of the primary goals of these investigations 
include, but are not limited to, the following [1-4]: studying heavy mesons is essential for examining and improving 
models such as the Quark Model, Lattice QCD, and effective field theories, as heavy mesons challenge our current 
understanding of the strong force. Experimental results and theoretical predictions can be cross-checked to validate these 
models and reveal inconsistencies that may lead to new insights [4]. Finally, the study of heavy mesons can uncover novel 
physics by identifying particles and events that do not conform to the Standard Model. It is possible to find exotic states, 
make unexpected observations, or deviate from theoretical predictions, all of which might indicate the presence of new 
particles or interactions that are beyond our present knowledge [5-6]. Venturing beyond the conventional Standard Model 
of particle physics becomes imperative when unraveling the enigmatic traits of the elusive Bottom-charmed (Bc) mesons, 
despite the Model's hint at their existence [7]. Here we shall look at Bc mesons and their behavior using a nonrelativistic 
quark model. The nonrelativistic quark model provides a simpler explanation of the quarks' activities and interactions in 
heavy mesons. Based on this model, we will study Bc meson properties such as quark composition, quantum properties, 
mass spectra, and finally the essential coefficients that are needed to study decay dynamics. 

Heavy meson decay characteristics may be used to derive standard model parameters such as CKM matrix elements 
and quark mixing angles. Understanding the genesis of CP violation requires knowledge of the CKM matrix, which 
explains quark mixing in weak interactions. Precise observations of heavy meson decays constrain CKM matrix elements 
and quark mixing angles, aiding Standard Model accuracy tests [8, 9]. 

As a result, we are highly motivated to determine the root mean square radius (𝑟ms) of various Bc states and the 
numerical values of the 𝛽 coefficient. These values may then be utilized to compute decay widths and differential cross-
sections for quarkonium states [8, 10]. Furthermore, one of our supplementary goals is to study the mass-radius 
dependency of the Bc states within the framework of the nonrelativistic quark model. 

Notably, the nonrelativistic quark model may explain several properties of Bc meson decay. The decay of Bc mesons 
is triggered by weak interactions, and the W boson plays a crucial role in facilitating these decays. Lighter mesons, leptons, 
and neutrinos are the ultimate states that determine the decay routes and velocities. Using the quark model, one can 
determine the branching percentages and decay widths of Bc mesons [11]. 

Our investigation uses numerical-based approaches for the qualitative analysis of heavy mesons, with results that 
highlight their potential to enhance future experimental studies while reducing the large-scale costs that currently define 
such research [12, 13].  
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To address the challenging QCD mathematical framework, researchers can employ numerical approaches such as 
matrix method, the Shooting method [14, 15], the four-step exponentially fitted method [16, 17], and Numerov's method 
simulations [12]. The strong interaction between quarks and gluons describes heavy meson behavior, which can only be 
explained in terms of QCD [17]. It is feasible to estimate quantities such as meson masses, decay rates, and form factors, 
values that are difficult to determine analytically through numerical calculations [18, 19]. Experimental investigations 
rely heavily on the properties of heavy meson, and numerical methods enable precise predictions and provide valuable 
insights into these characteristics. 

Recent publications have demonstrated that Numerov's tridiagonal matrix technique is a highly efficient and quick 
method for achieving our objective [12, 20-21]. We anticipate that this approximation will provide reliable characteristics 
for investigating heavy mesons. Furthermore, the wave functions of heavy mesons, investigated in this study, may be 
utilized to generate predictions regarding additional characteristics such as the root mean square radius (𝑟ms) of various 
states for Bc mesons, as well as the numerical values of the 𝛽 coefficient and differential cross-sections for Bc states. 

This work is organized as follows: The unique characteristics of Bc mesons are outlined in section 2. The main 
problem and thorough analytical solutions are addressed in section 3. Section 4 is devoted to discussing resulting data in 
detail. Finally, we briefly summarize our main discoveries and conclusions in section 5. 
 

2. Characteristics of Bottom-Charmed Mesons 
2.1. The Potential Model 

Applying an adequate potential model to solve the non-relativistic Schrodinger equation for quark-anti quark states 
is widely regarded as one of the most efficient approaches for modeling the heavy meson system [22-25].  

The effective quark-antiquark potential may be expressed as the sum of two terms, one of which is spin-independent, 
and the other is spin-dependent. The linear confinement and standard color Coulomb interaction are included in the first 
term, whereas the spin-dependent component consists of the tensor potential, spin-orbit interaction potential, and 
the hyperfine potential between spin-spin interaction. As a result, the following is the final form of the potential model 
that was employed in this work [24-27]: 

 𝑉(𝑟)  = −ସఈೞଷ ௥ + 𝑏𝑟 + ଷଶగఈೞଽ௠್௠೎ത ቀ ఙ√గቁଷ 𝑒ିఙమ௥మ  𝑆௕𝑆௖̅ + ଵ௠್௠೎ത ቀଶఈೞ௥య − ௕ଶ௥ቁ  𝑙.ሬሬሬ⃗ 𝑆 + ସఈೞ௥య 𝑇, (1) 

 𝑆௕. 𝑆௖̄ = ௦(௦ାଵ)ଶ − ଷସ, (2) 

where 𝑙 is the orbital momentum, 𝑟 represents the distance between the quarks, 𝛼௦ is the strong running coupling constant, 
−4/3 is the color factor, 𝑏 is a potential parameter, 𝜎  is the string tension and 𝑆௕. 𝑆௖̄ is the spin–spin contact hyperfine 
interaction, whereas 𝑚௕ and 𝑚௖̅ depict the masses of the bottom and anti-charm quarks. 𝑆 denotes the overall spin 
quantum number of the meson. 

The parameters for the Bc mesons are detailed in Table 1. T represents the tensor operator. 
Table 1. The parameters to fit the theoretical masses to get the best theoretical spectra of Bc states 

Theo. (NR) Potential Parameters 
1.4794 𝑚௖̅ [GeV] 
4.825 𝑚௕ [GeV] 
0.48 αs 
0.137   𝑏  [GeV2]   

1.0946  𝜎 [GeV] 

The spin-orbit operator is diagonal when expressed in the |J, L, S >  basis with the matrix components: ൻ𝐿ሬ⃗ . 𝑆ൿ = ሾ𝐽(𝐽 + 1) − (𝐿(𝐿 + 1) − 𝑆(𝑆 + 1))ሿ2  

The tensor operator T exhibits non-zero diagonal matrix components exclusively among spin-triplet states with L>0. 

𝑇 =
⎩⎪⎪⎨
⎪⎪⎧− 𝐿6(2𝐿 + 3) , 𝐽 = 𝐿 + 1+ 16 , 𝐽 = 𝐿− (𝐿 + 1)6(2𝐿 − 1) , 𝐽 = 𝐿 − 1 

 
2.2. Wave Functions of Bottom-Charmed Mesons 

By using the potential from equation (1), Bc mesons may be modeled by the wave function of the bound quark-
antiquark state that satisfies the Schrödinger equation. The radial Schrödinger equation is defined as [1, 2]: 
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 − ℏమଶఓ  ௗమோ೙೗(௥)ௗ௥మ + ቀ𝑉(𝑟) + ௟(௟ାଵ)ଶఓ௥మ ቁ 𝑅௡௟(𝑟) = 𝐸௡௟𝑅௡௟(𝑟), (3) 

where 𝑛 is the principal quantum number and 𝜇 represents the reduced mass of the quark and anti-quark. 
The radial wave function is denoted as 𝑅௡௟(𝑟). The total energy of the quark-antiquark system is denoted by 𝐸. The 

tridiagonal matrix Numerov’s (TMN) approach is employed to solve equation (3) and get the mass spectra of Bc mesons. 
Further information on this method may be found in Reference [12]. In the subsequent sections, we utilize this approach 
to derive the wave functions of Bc bound states. 

 
2.3. The tridiagonal matrix Numerov's approach 

Our approach is based on the numerical solution of Eq. (3) as a matrix eigenvalue problem. The radial second-
derivative finite difference approximation can be simplified by converting it into tridiagonal matrix form. Therefore, we 
solve this equation numerically using the Numerov technique to derive the eigenvalue and eigenfunction equations for 
heavy quarkonium spectrum and wave functions.  
We can rewrite the equation (3) in a slightly different way to understand the probable use of Numerov's technique more 
clearly: 

 𝑓(𝑟) = 2𝜇൫𝐸 − 𝑉(𝑟)൯       ; ħ = 1, (4) 

with a distance 𝑑 between each point on the lattice and xi, which are equally spaced, we can derive the integration 
formula,  

 𝜓௜ାଵ = ట೔షభ ൫ଵଶିௗమ௙೔షభ ൯ିଶట೔ (ହௗమ௙೔ ାଵଶ)ௗమ௙೔శభ ିଵଶ  . (5) 

Hence 

 𝑑ଶ𝑓௜ାଵ 𝜓௜ାଵ − 12𝜓௜ାଵ = 12𝜓௜ିଵ − 𝑑ଶ𝑓௜ିଵ 𝜓௜ିଵ − 10𝑑ଶ𝑓௜ 𝜓௜ − 24𝜓௜ . (6) 

Applying Eq. (4), we obtain: 

 −2𝜇𝑑ଶ ħଶ⁄ [ (𝐸𝜓௜ିଵ − 𝑉௜ିଵ 𝜓௜ିଵ ) + (10𝐸𝜓௜ − 10𝑉௜ 𝜓௜ ) + (𝐸𝜓௜ାଵ − 𝑉௜ାଵ 𝜓௜ାଵ )] =  12(𝜓௜ିଵ − 2𝜓௜ + 𝜓௜ାଵ ) . (7) 

After rearranging the equation above, we get: 

 షభమഋ (ట೔షభ ିଶట೔ାట೔శభ )ௗమ + (௏೔షభ ట೔షభ ାଵ଴௏೔ ట೔ ା௏೔శభ ట೔శభ )ଵଶ = 𝐸 (ట೔శభ ାଵ଴ట೔ ାట೔_భ )ଵଶ . (8) 

We will convert the well-known Numerov's approach into a matrix representation on a discrete lattice. To 
accomplish that, 𝜓 will be defined as a matrix and represented by a column vector (… .𝜓௜ିଵ ,𝜓௜ ,𝜓௜ାଵ … . ) 

 𝐴ே,ே = (ூషభ ିଶூబାூభ )ௗమ ,  𝐵ே,ே = (ூషభ ାଵ଴ூబାூభ )ଵଶ ,𝑉ே = 𝑑𝑖𝑎𝑔(… . ,𝑉௜ିଵ ,𝑉௜ ,𝑉௜ାଵ ) 

where an N-point grid and the unit matrices 𝐼 ଵ , 𝐼଴, and 𝐼ଵ  stand for the sub-, main-, and up-diagonals, respectively. 
The matrix version of Eq. (8) could be created as follows. 

 ି𝟏ଶఓ 𝐴ே,ேψ௜ + 𝐵ே,ே 𝑉ேψ௜ = 𝐸௜𝐵ே,ே𝜓௜. (9) 

Multiplying Eq. (9) by B୒,୒ିଵ  yields 

 ିଵଶఓ  B୒,୒ିଵ 𝐴ே,ே ψ௡௟ + 𝑉ேψ௜ = 𝐸௜ψ௡௟. (10) 

This numerical technique allows us to solve the eigenvalue problem for any possible hadron-hadron bound states. 
 

2.4. Root Mean Square Radii and 𝜷 Coefficient 
The afterward reasoning shall be employed to offer an explanation or description of the root mean square (𝑟ms) radius 

of Bc that is both clear and succinct. Among the key characteristics of this particle system is the root mean square (𝑟ms) of 
Bc mesons. Assuming that the distance between the quark and anti-quark in bottom-charmed mesons is represented by 
the symbol 𝑟 (fm), it is possible to deduce that the radius of Bc is equal to (𝑟/2) fm. With the use of the meson wave 
function, one can derive the root mean square (𝑟ms), which may be stated accordingly [12, 26, 28]: 

 𝑟ଶ௠௦ = ׬ ሼ𝜓ଶ(𝑟)𝑟ଶ𝑑𝑟ሽஶ଴ . (10) 
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One aspect that characterizes the momentum width of a meson wave function is the beta coefficient. The symbol 𝛽 
is commonly used to represent it, and it is connected to the root mean square (𝑟ms) distance between the quark and 
antiquark in the meson. In addition to affecting the decay rates and form factors of the meson, the beta coefficient reveals 
information on the spatial distribution of the quark-antiquark pair inside the meson. Mesons' internal structure and 
behavior can be better understood by analyzing and describing the beta coefficient [29]: 

 𝛽 = ට2(𝑛 − 1) + (𝐿) + ଷଶ    ଵ௥೘ೞ (11) 

The parameter 𝛽 is commonly regarded as a model parameter. However, as we aim to explain the deterioration of 
heavy quark states, it is more desirable to replicate the 𝛽 coefficient of the quark model states. Therefore, we recommend 
utilizing it for the computation of the decay width of Bc states. 
 

3. RESULTS AND DISCUSSION 
We have conducted a theoretical examination of the mass spectrum of both the ground and excited states of Bc 

mesons using a non-relativistic component quark model. The model parameters were adjusted to accurately replicate the 
empirically determined 1S ground state. Mass predictions for the 4th radial excitations of S-wave, P-wave, D-wave, and 
F-wave were developed and compared to previous theoretical studies and existing data. 

Figures 1-4 provide the graphical depiction of normalized radial wave functions for Bc mesons. Table 2 displays the 
anticipated masses (measured in GeV) of both the primary and secondary states of Bc mesons. We compare our findings 
with previous model predictions and existing experimental evidence. The experimental masses obtained from reference 
[30], together with the predictions made by Asghar [31], Nosheen [7], and Qi Li [32] have been included for a thorough 
study. Our model's predictions exhibit strong concordance with both the existing experimental data and other theoretical 
predictions.  

  
Figure 1. Bottom-Charmed for S-states reduced radial wave 

functions 
Figure 2. Bottom-Charmed for P-states reduced radial wave 

functions 

  
Figure 3. Bottom-Charmed for D-states reduced radial wave 

functions 
Figure 4. Bottom-Charmed for F-states reduced radial wave 

functions 

The anticipated mass of the well-established 1S ground state Bc (1S0) is 6.275 GeV, which is in excellent agreement 
with the observed value of 6.2749 ± 0.008 GeV. The predictions concerning the 2S and 3S excited states are consistent 
with the evidence obtained from different simulations. When compared to the other computational models, our predictions 
often fall within a range of 0.01-0.05 GeV, which suggests a high level of accuracy. Significantly, our results for the 
P-wave and D-wave exhibit comparable mass splitting and orderings to those seen in the studies conducted by 
Asghar et al. and Nosheen et al. This demonstrates assurance that our model accurately replicates the anticipated 
spectroscopy. 
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For higher excitations, such as the 4S, 4P, and 4D states, where experimental data remain scarce, our model provides 
predictions that can be tested in future research. The projected 4F states may potentially serve as a starting point for 
further discoveries. All things considered, our findings are in good agreement with and add to the predictions that have 
already been made. 
Table 2. Predicted masses of ground and excited states of Bc mesons 

State [our work] 
(GeV) 

Qi Li [32] 
(GeV) 

Asghar [31] 
(GeV) 

Nosheen [7] 
(GeV) 

Exp. Masses 
 [30] (GeV) 

Bc (11 S0) 6.275 6.271 6.318 6.274 6.2749 ± 0.008 
Bc (13 S1) 6.315 6.326 6.336 6.314  
Bc (21 S0) 6.842 6.871 6.741 6.841 6.842±0.004 
Bc (23 S1) 6.856 6.890 6.747 6.855  
Bc (31 S0) 7.198 7.239 7.014 7.197  
Bc (33 S1) 7.206 7.252 7.018 7.206  
Bc (41 S0) 7.489 7.540 7.239 7.488  
Bc (43 S1) 7.496 7.550 7.242 7.495  
Bc (13 P2) 6.747 6.787 6.665 6.753  
Bc (1 P′1) 6.769 6.776 6.656 6.744  

   Bc (1 P1) 6.774 6.757 6.650 6.725  
Bc (13 P0) 6.746 6.714 6.631 6.701  
Bc ( 23 P2) 7.111 7.160 6.946 7.111  

  Bc (2 P′1) 7.128 7.150 6.939 7.098  
  Bc (2 P1) 7.132 7.134 6.930 7.105  

Bc (23 P0) 7.283 7107 6.915 7.086  
Bc (33 P2) 7.408 7.464 7.176 7.406  
Bc (3 P′1) 7.423 7.458 7.168 7.393  
Bc (3 P1) 7.427 7.441 7.162 7.405  
Bc (33 P0) 7.551 7.420 7.147 7.389  
Bc (43 P2) 7. 669 7.732 7.379 -  
Bc (4 P′1) 7.683 7.727 7.373 -  
Bc (4 P1) 7.687 7.710 7.364 -  
Bc (43 P0) 7.794 7.693 7.350 -  
Bc (13 D3) 6.769 7.030 6.847 6.998  
Bc (1 D′2) 6.996 7.032 6.845 6.984  
Bc (1 D2) 6.997 7.024 6.845 6.986  
Bc (13 D1) 6.964 7.020 6.841 6.964  
Bc (23 D3) 7.128 7.348 7.087 7.302  
Bc (2 D′2) 7.304 7.347 7.084 7.293  
Bc (2 D2) 7.304 7.343 7.084 7.294  
Bc (23 D1) 7.271 7.336 7.080 7.280  
Bc (33 D3) 7.423 7.625 7.296 7.570  
Bc (3 D′2) 7.572 7.623 7.293 7.562  
Bc (3 D2) 7.573 7.620 7.293 7.563  
Bc (33 D1) 7.539 7.611 7.289 7.553  
Bc (43 D3) 7.683 - 7.489 -  
Bc (4 D′2) 7.815 - 7.482 -  
Bc (4 D2) 7.816 - 7.482 -  
Bc (43 D1) 7.782 - 7.478 -  
Bc (13 F4) 7.181 7.227 6.9967 -  
Bc (1 F′3) 7.189 7.240 7.001 -  
Bc (1 F3) 7.188 7.224 6.994 -  
Bc (13 F2) 7.179 7.235 6.9972 -  
Bc (23 F4) 7.459 7.514 7.2126 -  
Bc (2 F′3) 7.465 7.525 7.214 -  
Bc (2 F3) 7.465 7.508 7.211 -  
Bc (23 F2) 7.455 7.518 7.2121 -  
Bc (33 F4) 7.71 7.771 - -  
Bc (3 F′3) 7.715 7.779 - -  
Bc (3 F3) 7.715 7.768 - -  
Bc (33 F2) 7.704 7.730 - -  
Bc (43 F4) 7.941 - - -  
Bc (4 F′3) 7.945 - - -  
Bc (4 F3) 7.945 - - -  
Bc (43 F2) 7.934 - - -  
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The estimated root mean square (𝑟ms) radii of ground and excited Bc meson states are presented in Table 3, which 
compares the results of our model to those of earlier calculations carried out by Nosheen et al [7]. There are some radial 
excitations of S-wave, P-wave, D-wave, and F-wave states that are taken into consideration. 

Table 3. Root mean square radii of ground and excited states of Bc mesons 

Nosheen in fm [7] [our work] in fm State 

0.318 0.319  Bc (11S0) 
0.334 0.335  Bc (13 S1) 
0.723 0.724 Bc (21 S0) 
0.732 0.733  Bc (23 S1) 
1.052 1.053  Bc (31 S0) 
1.059 1.06  Bc (33 S1) 
1.337 1.338 Bc (41 S0) 
1.342 1.343 Bc (43 S1) 
0.594 0.595 Bc (13 P2) 

-- 0.612  Bc (1 P′1) 
-- 0.618  Bc (1 P1) 

0.562 0.757 Bc (13 P0) 
0.940 0.944  Bc (23 P2) 

-- 0.96  Bc (2 P′1) 
-- 0.965  Bc (2 P1) 

0.920 1.076  Bc (23 P0) 
1.235 1.24  Bc (33 P2) 

-- 1.254  Bc (3 P′1) 
-- 1.259  Bc (3 P1) 

1.220 1.354  Bc (33 P0) 
-- 1.504 Bc (43 P2) 
-- 1.518 Bc (4 P′1) 
-- 1.522 Bc (4 P1) 
-- 1.606 Bc (43 P0) 

0.793 0.612  Bc (13 D3) 
-- 0.788 Bc (1 D′2) 
-- 0.791  Bc (1 D2) 

0.752 0.743  Bc (13 D1) 
-- 0.96  Bc (23 D3) 

1.107 1.107  Bc (2 D′2) 
-- 1.109  Bc (2 D2) 

1.083 1.062 Bc (23 D1) 
1.382 1.254  Bc (33 D3) 
1.382 1.385  Bc (3 D′2) 

-- 1.387  Bc (3 D2) 
1.364 1.339 Bc (33 D1) 

-- 1.518 Bc (43 D3) 
-- 1.637 Bc (4 D′2) 
-- 1.639 Bc (4 D2) 
-- 1.59 Bc (43 D1) 
-- 0.95  Bc (13 F4) 
-- 0.951 Bc (1 F′3) 
-- 0.952 Bc (1 F3) 
-- 0.933 Bc (13 F2) 
-- 1.248  Bc (23 F4) 
-- 1.249  Bc (2 F′3) 
-- 1.25  Bc (2 F3) 
-- 1.231  Bc (23 F2) 
-- 1.512  Bc (33 F4) 
-- 1.513  Bc (3 F′3) 
-- 1.514  Bc (3 F3) 
-- 1.496  Bc (33 F2) 
-- 1.755 Bc (43 F4) 
-- 1.756 Bc (4 F′3) 
-- 1.757 Bc (4 F3) 
-- 1.738 Bc (43 F2) 
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Our radii predictions correlate with those of Nosheen et al. in a very tight manner, with deviations of less than 
0.01 fm across the board for all states. Our model provides a realistic description of the spatial sizes of Bc mesons, as this 
explains how it works.  The fact that our model is able to accurately predict spatial features is validated by the fact that it 
is in close agreement with earlier computations. 

The 𝛽 values of the ground and excited states of Bc mesons are presented in Table 4. This table also includes a 
comparison between our findings and the anticipated results made by Asghar [31]. It is essential to take into consideration 
the fact that Asghar's predictions are not accessible for certain stages in the F-wave, and our findings are given in 
comparison to those predictions. In general, the comparison of 𝛽 values between our calculations and Asghar's prediction 
indicates the existence of reliable and favorable compatibility throughout a wide range of states of Bc mesons.  

Table 4. 𝛽 values of ground and excited states of Bc mesons 

Asghar in GeV [31] [our work] in GeV State 
0.653 0.741  Bc (11S0) 
0.634 0.689  Bc (13S1) 
0.515 0.513  Bc (21S0) 
0.508 0.503 Bc (23S1) 
0.442 0.446  Bc (31S0) 
0.439 0.437 Bc (33S1) 
0.402 0.412 Bc (41S0) 
0.401 0.402 Bc (43S1) 
0.468 0.525  Bc (13P2) 
0.471 0.51  Bc (1P′1) 
0.468 0.505  Bc (1P1) 
0.468 0.612  Bc (13P0) 
0.428 0.443  Bc (23P2) 
0.430 0.436  Bc (2P′1) 
0.428 0.434  Bc (2P1) 
0.428 0.502  Bc (23P0) 
0.395 0.406  Bc (33P2) 
0.397 0.401 Bc (3P′1) 
0.395 0.4  Bc (3P1) 
0.395 0.449  Bc (33P0) 
0.373 0.382 Bc (43P2) 
0.374 0.379 Bc (4P′1) 
0.373 0.378 Bc (4P1) 
0.373 0.379 Bc  (43P0) 
0.417 0.471 Bc (13D3) 
0.417 0.468  Bc (1D′2) 
0.417 0.467  Bc (1D2) 
0.417 0.623  Bc (13D1) 
0.395 0.419  Bc (23D3) 
0.395 0.418  Bc (2D′2) 
0.395 0.417  Bc (2D2) 
0.395 0.509  Bc (23D1) 
0.374 0.391  Bc (33D3) 
0.374 0.39  Bc (3D′2) 
0.374 0.39  Bc (3D2) 
0.374 0.454  Bc (33D1) 
0.357 0.372 Bc (43D3) 
0.358 0.372 Bc (4D′2) 
0.357 0.371 Bc (4D2) 
0.357 0.383 Bc (43D1) 
0.390 0.441  Bc (13F4) 
0.390 0.44  Bc (1F′3) 
0.390 0.439 Bc (1F3) 
0.390 0.539  Bc (13F2) 
0.375 0.403  Bc (23F4) 
0.375 0.403  Bc (2F′3) 
0.375 0.402  Bc (2F3) 
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Asghar in GeV [31] [our work] in GeV State 
0.375 0.467 Bc (23F2) 

- 0.38  Bc (33F4) 
- 0.38  Bc (3F′3) 
- 0.38  Bc (3F3) 
- 0.428  Bc (33F2) 
- 0.364 Bc (43F4) 
- 0.364 Bc (4F′3) 
- 0.364 Bc (4F3) 
- 0.368 Bc (43F2) 

 
4. CONCLUSIONS 

In this work, we have used the Tridiagonal Matrix Numerov (TMN) approach to estimate the mass spectra of the Bc 
meson system's newly anticipated excited states. The TMN technique produced precise and stable eigenvalues 
corresponding to different radial and orbital quantum numbers by numerically solving the radial Schrödinger equation 
under a suitable potential framework. 

Our findings show that the TMN approach is a reliable and effective computational technique for simulating heavy-
heavy quark systems, such as the Bc meson, especially when it comes to Predicting higher excited states that are now 
unattainable through experimentation. 

The calculated masses provide accurate predictions for undiscovered excited states that might direct future 
experimental efforts at facilities like LHCb and Belle II. They are also compatible with established theoretical models 
and, when accessible, current experimental evidence. 

The TMN approach's efficacy in hadron spectroscopy is demonstrated by its ability to capture the fine structure of 
the Bc spectrum. In addition to improving our theoretical knowledge of double-heavy mesons, this study provides a 
framework for Predicting further findings in heavy quarkonium physics. 

The most noteworthy outcomes of this work are that the decay widths and differential cross sections for Bc states 
can be computed by utilizing the values of 𝑟ms and the 𝛽 coefficients that have been figured out. Furthermore, by obtaining 
additional meson characteristics, the effectiveness of Numerov's matrix technique can be thoroughly analyzed. The results 
of this evaluation are found to correspond well with the findings reported in the literature, which means a high level of 
accuracy. 
 

5. RECOMMENDATIONS 
Using the Tridiagonal Matrix-Numerov (TMN) approach to predict the excited states of Bc mesons, the following 

suggestions are made considering the results: 
- Adoption in Other Quarkonium Systems: Due to its accuracy and efficiency, the TMN technique is advised for 

use in other heavy meson systems, including Y\Upsilon (bottomonium), ψ\psi (charmonium), and mixed-flavor 
mesons like Bs or Ds. 

- Enhanced Potential Models: To better depict both short-range and long-range interactions, it is recommended to 
include more realistic potentials, such as the Cornell, logarithmic, or QCD-inspired screened potentials. 

- To facilitate the search for and possible confirmation of novel Bc meson states, experimental collaborations (such 
as LHCb, CMS, and Belle II) should be provided with the expected excited states. 

- Cross-Validation with Other Methods: To achieve consistency and dependability, results from TMN should be 
cross-checked with those from other numerical approaches, such as lattice QCD, variational techniques, or the 
shot method. 
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Властивості станів нижньо-чарованих мезонів були ретельно досліджені з використанням тридіагонального матричного 
підходу Нумерова для прогнозування радіальних хвильових функцій. На основі отриманих значень ми передбачили значення 
ангармонізму β та середньоквадратичні радіуси для різних збуджених станів Bc-мезонів. Було проведено комплексне 
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In this paper, we construct and analyze a new class of squeezed coherent states in the framework of position-dependent mass (PDM)
quantum systems. Using a deformed algebraic structure, we generalize the creation and annihilation operators to accommodate spatially
varying mass profiles. The resulting states exhibit non-classical features, such as squeezing, coherence, and modified uncertainty
relations, strongly influenced by both the deformation parameters and the mass function. We explore their physical properties through
expectation values, variances, and probability densities. This work provides a pathway toward extending coherent state theory to more
complex quantum systems with geometrical and algebraic richness.
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1. INTRODUCTION
Coherent and squeezed states play a fundamental role in various domains of physics, particularly quantum optics

and quantum information theory[1, 2, 3]. Originally introduced by Schrödinger in 1926 and Kennard in 1927[4, 5], these
states remained largely overlooked until the 1960s, when seminal works by Glauber, Klauder, and Nieto reignited interest
in their theoretical and practical significance[6, 7, 8]. Squeezed states, in particular, are nonclassical quantum states that
exhibit reduced quantum noise, making them highly valuable for optical communication, precision measurements, and the
detection of gravitational waves—as in the case of LIGO[9, 10, 11, 12]. They are also key resources in continuous-variable
quantum information processing, including quantum computing, dense coding, and quantum cryptography, and can be
implemented in physical platforms such as graded semiconductors [13, 14], quantum dots, photonic crystals, and cavity
optomechanical systems for quantum communication and precision sensing [15, 16]. More recently, the construction and
analysis of squeezed states for systems with infinite discrete spectra have attracted increasing attention as generalized
extensions of coherent states (see, for example[17, 18, 19, 20, 21]).

Quantum mechanics with position-dependent mass (PDM) has emerged as a powerful framework for modeling a wide
range of physical systems with non-uniform spatial characteristics, such as semiconductor heterostructures, graded crystals,
and quantum wells [22, 23, 24, 25, 26, 27]. The modification of the kinetic energy operator due to the spatial dependence
of the mass introduces new challenges and has stimulated the development of refined analytical and algebraic methods.
Among these, supersymmetric quantum mechanics (SUSY QM) has proven particularly fruitful in the construction of
exactly solvable models through factorization methods and intertwining techniques [28, 29].

On the other hand, coherent and squeezed states, first introduced by Schrödinger in 1926 and later formalized by
Glauber, Klauder, and others [30, 31, 32], have become essential tools in quantum optics and quantum information
due to their ability to saturate uncertainty relations and describe non-classical light fields.These states have been widely
generalized to encompass systems with either discrete or continuous spectra, algebraic deformations, and both constant
and position-dependent mass backgrounds. Further extensions have also been developed for more complex scenarios, such
as oscillators defined in noncommutative spaces [33, 34, 35, 36].

In this work, we aim to construct a new class of generalized squeezed coherent states for a quantum system governed
by a position-dependent mass and embedded within a supersymmetric algebraic structure. Inspired by the formalism
developed by Gazeau and Klauder [30], and following techniques involving ladder operators and recurrence relations,
we derive analytical expressions for the coherent-like states, ensuring that they fulfill essential physical criteria such as
temporal stability, resolution of identity, and continuity in the labeling parameter [31, 32].

Moreover, we devote special attention to the analysis of quantum statistical properties of these states. In particular,
we compute their normalization factors, probability densities, and expectation values of relevant observables. The wave-
functions and energy spectrum are explicitly obtained and expressed in terms of orthogonal polynomials and generalized
hypergeometric functions, revealing the deep interplay between the effective mass profile, deformation parameters, and
the algebraic structure of the system.
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Our manuscript is organised as follows : In Section 2, we review the basic formalism of position-dependent mass
quantum mechanics. Section 3 is devoted to the study of the Supersymmetric Squeezed coherent states. In Section 4, we
investigate the properties of squeezed states and discuss numerical results. Finally, concluding remarks are presented in
Section 5.

2. POSITION-DEPENDENT EFFECTIVE MASS HARMONIC OSCILLATOR AND IT EXACT SOLUTIONS
A general expression for the Hermitian kinetic energy operator of a quantum particle with a position-dependent mass

(PDM) 𝑚(𝑥) is given by [37, 26, 38]

𝑇 =
1
4

[
𝑚𝛼 (𝑥)𝑝 𝑚𝛽 (𝑥)𝑝 𝑚𝛾 (𝑥) + 𝑚𝛾 (𝑥)𝑝 𝑚𝛽 (𝑥)𝑝 𝑚𝛼 (𝑥)

]
, (1)

where the parameters 𝛼, 𝛽, and 𝛾 satisfy the constraint 𝛼 + 𝛽 + 𝛾 = −1. Different combinations of these parameters lead
to various forms of the kinetic energy operator [39, 40, 41, 42, 43].

In this study, we adopt the representation proposed by Mustafa and Mazharimousavi [43], which corresponds to the
specific parameter choice 𝛼 = 𝛾 = − 1

4 , 𝛽 = − 1
2 . Under this configuration, the kinetic energy operator becomes:

𝑇 =
1
2

1
𝑚1/4 (𝑥)

𝑝

(
1

𝑚1/2 (𝑥)

)
𝑝

1
𝑚1/4 (𝑥)

. (2)

Accordingly, the total Hamiltonian for the system is written as

𝐻̂ = 𝑇 +𝑉 =
1
2

1
𝑚1/4 (𝑥)

𝑝

(
1

𝑚1/2 (𝑥)

)
𝑝

1
𝑚1/4 (𝑥)

+𝑉 (𝑥), (3)

where 𝑉 (𝑥) denotes the potential energy function.
Considering a harmonic oscillator potential defined by 𝑉 (𝑥) = 1

2𝑚0𝜔
2𝑥2, the corresponding time-independent

Schrödinger equation reads:

𝐸𝜙(𝑥) = − ℏ2

2𝑚0
4

√︂
𝑚0
𝑚(𝑥)

𝑑

𝑑𝑥

√︂
𝑚0
𝑚(𝑥)

𝑑

𝑑𝑥
4

√︂
𝑚0
𝑚(𝑥) 𝜙(𝑥) +𝑉 (𝑥)𝜙(𝑥), (4)

where 𝑚0 represents the constant reference mass, 𝐸 is the energy eigenvalue, and 𝜙(𝑥) is the wavefunction belonging to
the Hilbert space H = L2 (R).

In this work, we consider the following mass distribution:

𝑚(𝑥) = 𝑚0

(1 + 𝛼𝑥2)2 , (5)

where 𝛼 is a deformation parameter constrained by 0 < 𝛼 < 1. This choice generalizes earlier mass profiles studied
in [22, 23, 24, 25, 26], and can be interpreted as an inverse squared length scale associated with local geometric features
such as curvature or structural defects in the physical system.

To simplify Eq. (4), we apply the transformation 𝜙(𝑥) = 4
√︃

𝑚(𝑥 )
𝑚0

𝜓(𝑥), yielding:

𝐸𝜓(𝑥) = − ℏ2

2𝑚0

(√︂
𝑚0
𝑚(𝑥)

𝑑

𝑑𝑥

)2
𝜓(𝑥) + 1

2
𝑚0𝜔

2𝑥2𝜓(𝑥). (6)

Using the explicit expression of 𝑚(𝑥) in Eq. (5), the above equation becomes:

𝐸𝜓(𝑥) = − ℏ2

2𝑚0

[
(1 + 𝛼𝑥2) 𝑑

𝑑𝑥

]2
𝜓(𝑥) + 1

2
𝑚0𝜔

2𝑥2𝜓(𝑥). (7)

By introducing the coordinate transformation 𝑞 = arctan(𝑥
√
𝛼), the infinite domain of the position variable 𝑥 ∈ R is

mapped to a finite interval 𝑞 ∈
(
− 𝜋

2 ,
𝜋
2
)
. This change significantly simplifies the position-dependent mass Schrödinger

equation, which becomes more tractable in the new variable.
Assuming the ansatz 𝜓(𝑞) = cos𝜆 𝑞 · 𝑓 (sin 𝑞), and requiring the absence of singular behavior at the boundaries, leads

to a second-order differential equation that reduces to the Gegenbauer differential equation when a specific condition on
the parameter 𝜆 is imposed:

𝜆 =
1
2
+ 1

2

√︂
1 + 4

𝜅2 , 𝜅 =
𝛼ℏ

𝑚0𝜔
. (8)
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This constraint eliminates the singular term, yielding a well-defined eigenvalue problem with solutions expressible in
terms of Gegenbauer polynomials 𝐶𝜆

𝑛 (𝑠), where 𝑠 = sin 𝑞. The energy quantization condition is then given by:

𝜀 = 𝜆 + 𝑛(𝑛 + 2𝜆), 𝑛 ∈ N. (9)

Consequently, the energy spectrum becomes:

𝐸𝑛 = ℏ𝜔

(
𝑛 + 1

2

) √︄
1 + 𝛼2ℏ2

4𝑚2
0𝜔

2
+ 𝛼ℏ2

2𝑚0

(
𝑛2 + 2𝑛 + 1

2

)
. (10)

This reveals a non-trivial dependence on the deformation parameter 𝛼, illustrating how position-dependent mass modifies
the energy levels compared to the standard harmonic oscillator[44, 45]. In the limit 𝛼 → 0, the conventional energy levels
are recovered.

The corresponding normalized wavefunctions take the form:

𝜓𝑛 (𝑞) = 𝑁 cos𝜆 𝑞 · 𝐶𝜆
𝑛 (sin 𝑞), (11)

where 𝐶𝜆
𝑛 (𝑞) are the Gegenbauer polynomials [46] and 𝑁 the normalization constant given by :

𝑁 =

√︄
𝑛!(𝑛 + 𝜆)Γ2 (𝜆)
𝜋21−2𝜆Γ(𝑛 + 2𝜆)

. (12)

Transforming back to the 𝑥-representation using cos 𝑞 = 1√
1+𝛼𝑥2 and sin 𝑞 =

𝑥
√
𝛼√

1+𝛼𝑥2 , the wavefunction becomes:

𝜙𝑛 (𝑥) =

√︄
𝑛!(𝑛 + 𝜆)Γ2 (𝜆)
𝜋21−2𝜆Γ(𝑛 + 2𝜆)

(
1

√
1 + 𝛼𝑥2

)𝜆+1
𝐶𝜆
𝑛

(
𝑥
√
𝛼

√
1 + 𝛼𝑥2

)
. (13)

This provides an explicit analytic solution for the eigenfunctions of the deformed harmonic oscillator with position-
dependent mass.

3. SUPERSYMMETRIC SQUEEZED COHERENT STATES
The Hamiltonian operator given in Eq. (7), corresponding to a quadratic potential 𝑣(𝑥) = 1

2𝑚0𝜔
2𝑥2, can be factorized

in the form
𝐻̂ = ℏ𝜔0 𝑎̂

†
𝛼𝑎̂𝛼 + 𝐸0 (𝛼), (14)

where the ladder operators 𝑎̂
†
𝛼 and 𝑎̂𝛼 are constructed within the supersymmetric framework for systems with position-

dependent mass, as defined in [26].

𝑎̂𝛼 =

√︂
𝑚0𝜔0

2ℏ

(
𝑥 + ℏ𝛼

2𝑚0𝜔0
+ 𝑖

𝑚0𝜔0
Π̂𝛼

)
, 𝑎̂†𝛼 =

√︂
𝑚0𝜔0

2ℏ

(
𝑥 + ℏ𝛼

2𝑚0𝜔0
− 𝑖

𝑚0𝜔0
Π̂𝛼

)
, (15)

where Π̂𝛼 = (1 + 𝛼𝑥2)𝑝 is the deformed momentum operator.
In supersymmetric framing, we used the fact that 𝑎̂𝛼𝜓0 (𝑥) = 0, indicating that the ground state is annihilated by the

operator 𝑎̂𝛼. Although 𝑎̂𝛼 and 𝑎̂
†
𝛼 factorize the Hamiltonian Eq. (7) associated with the quadratic potential, they do not

serve as conventional ladder operators, since they obey the deformed commutation relation: [𝑎̂𝛼, 𝑎̂
†
𝛼] = 1̂ + 𝛼𝑥2. To take

into account this deformation, we introduce a modified number operator defined by: 𝑛̂𝛼 = 𝑎̂
†
𝛼𝑎̂𝛼, whose expectation value

on the 𝑛-th eigenstate can be obtained as follow.
The generalized number operator 𝑛̂𝛼 = 𝑎̂

†
𝛼𝑎̂𝛼, with 𝑎̂𝛼 and 𝑎̂

†
𝛼 defined in (15), can be written as

𝑛̂𝛼 =
𝑚0𝜔0

2ℏ
(𝑥 + 𝑐)2 + 1

2ℏ𝑚0𝜔0
Π̂2

𝛼 − 1
2
(
1 + 𝛼𝑥2) , (16)

where 𝑐 = ℏ𝛼
2𝑚0𝜔0

and Π̂𝛼 = (1 + 𝛼𝑥2)𝑝. Its expectation value in an arbitrary state |𝜓⟩ is

⟨𝑛̂𝛼⟩ =
𝑚0𝜔0

2ℏ
⟨(𝑥 + 𝑐)2⟩ + 1

2ℏ𝑚0𝜔0
⟨Π̂2

𝛼⟩ −
1
2
(
1 + 𝛼⟨𝑥2⟩

)
. (17)

Physically, ⟨𝑛̂𝛼⟩ measures the mean excitation number of the deformed oscillator defined by the position-dependent mass
model. The shift 𝑐 introduces a static displacement of the quadrature 𝑥, while Π̂𝛼 accounts for a deformation of the
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canonical momentum, modifying the balance between kinetic and potential contributions. In the limit 𝛼 → 0, 𝑛̂𝛼 reduces
to the standard harmonic oscillator number operator, and ⟨𝑛̂𝛼⟩ counts the average quanta of excitation in the usual sense.

We define the squeezed coherent state 𝜓(𝑧, 𝛾, 𝑥) as the solution to the eigenvalue equation involving a linear
combination of ladder operators, in accordance with the formalism presented in [20, 8].

(𝑎̂𝛼 + 𝛾𝑎̂†𝛼) |𝜓(𝑧, 𝛾)⟩ = 𝑧 |𝜓(𝑧, 𝛾)⟩ . (18)

This combination of the operators 𝑎̂𝛼 and 𝑎̂
†
𝛼 is governed by a squeeze parameter 𝛾, while 𝑧 is known as coherent

parameter. When the squeezing parameter vanishes, i.e., 𝛾 = 0, the resulting quantum states reduce to coherent states,
which are special solutions characterized by minimal uncertainty and classical-like behavior. To ensure that these states
are physically meaningful, appropriate conditions must be imposed on the parameters involved, particularly to guarantee
the normalizability of the states.

Squeezed coherent states (SCS) have been extensively studied in various algebraic frameworks, notably those based
on the Lie algebras su(2) and su(1, 1) [47, 48, 49, 21]. In addition, constructions have been extended to direct sums of
these algebras with the Heisenberg algebra h(2) [21], allowing for a richer variety of quantum states.

In such algebraic settings, especially for su(2) and su(1, 1), the function 𝑘 (𝑛) that appears in the recurrence relations
or ladder operator actions is generally a quadratic function of the quantum number 𝑛. This reflects the non-equidistant
spectrum structure and the non-linear characteristics of the underlying algebra, distinguishing these systems from the
standard harmonic oscillator.

We expand this state (18) in the eigen basis of the deformed oscillator :

|𝜓(𝑧, 𝛾)⟩ = 1√︁
N(𝑧, 𝛾)

𝑛max∑︁
𝑛=0

𝑍 (𝑧, 𝛾, 𝑛)√︁
𝜌(𝑛)

|𝜓𝑛⟩ , (19)

where the normalization factor is computed as N(𝑧, 𝛾) = ∑𝑛max
𝑛=0

|𝑍 (𝑧,𝛾,𝑛) |2
𝜌(𝑛) and 𝑍 (𝑧, 𝛾, 𝑛) satisfies the recurrence relation:

𝑍𝑛+1 (𝑧, 𝛾) = 𝑧𝑍𝑛 (𝑧, 𝛾) − 𝛾𝑘 (𝑛)𝑍𝑛−1 (𝑧, 𝛾), 𝑍0 = 1, 𝑍1 = 𝑧. (20)

We define the weights 𝜌(𝑛) using the generalized factorial:

𝜌(𝑛) =
𝑛∏
𝑗=1

𝑘 ( 𝑗). (21)

Let us recall the energy eigenvalues defined in equation (10) as

𝐸𝑛 = ℏ𝜔

(
𝑛 + 1

2

) √︄
1 + 𝛼2ℏ2

4𝑚2
0𝜔

2
+ 𝛼ℏ2

2𝑚0

(
𝑛2 + 2𝑛 + 1

2

)
and 𝐸0 =

1
2
ℏ𝜔

√︄
1 + 𝛼2ℏ2

4𝑚2
0𝜔

2
+ 𝛼ℏ2

4𝑚0
. (22)

For the system under consideration, the dimensionless form of the latter energy is given by

𝑒𝑛 = 𝐸𝑛 − 𝐸0 = 𝑛ℏ𝜔

√︄
1 + 𝛼2ℏ2

4𝑚2
0𝜔

2
+ 𝛼ℏ2

2𝑚0

(
𝑛2 + 2𝑛

)
=

(
ℏ𝜔

√︄
1 + 𝛼2ℏ2

4𝑚2
0𝜔

2
+ 𝛼ℏ2

𝑚0

)
𝑛 + 𝛼ℏ2

2𝑚0
𝑛2

= 𝑎𝑛2 + 𝑏𝑛 = 𝑛(𝑎𝑛 + 𝑏), (23)

where the constants 𝑎 and 𝑏 are given by

𝑏 = ℏ𝜔

√︄
1 + 𝛼2ℏ2

4𝑚2
0𝜔

2
+ 𝛼ℏ2

𝑚0
, 𝑎 =

𝛼ℏ2

2𝑚0
. (24)

The dimensionless form of the energy (23) is similar to the ones obtained in [45, 15] used to study the laser light propagation
in a nonlinear Kerr medium. The product of these dimensionless energies 𝑒𝑛 represented by 𝜌𝑛 is defined as

𝜌𝑛 =

𝑛∏
𝑘=1

𝑒𝑘 , with 𝑒𝑖 = 𝑎𝑘2 + 𝑏𝑘

=

𝑛∏
𝑘=1

𝑘

𝑛∏
𝑘=1

(𝑎𝑘 + 𝑏). (25)

With the following computations

𝑛∏
𝑘=1

𝑘 = 𝑛! = Γ(𝑛 + 1),
𝑛∏

𝑘=1
(𝑎𝑘 + 𝑏) =

𝑛∏
𝑘=1

𝑎

(
𝑘 + 𝑏

𝑎

)
=

𝑎𝑛Γ

(
𝑛 + 1 + 𝑏

𝑎

)
Γ

(
1 + 𝑏

𝑎

) . (26)
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The equation (25) becomes

𝜌𝑛 = 𝑛!𝑎𝑛
Γ

(
𝑛 + 1 + 𝑏

𝑎

)
Γ

(
1 + 𝑏

𝑎

) =

𝑎𝑛Γ (𝑛 + 1) Γ
(
𝑛 + 1 + 𝑏

𝑎

)
Γ

(
1 + 𝑏

𝑎

) , 𝜌0 = 1. (27)

To derive the analytical expression of the coefficients 𝑍𝑛 (𝑧, 𝛾) that define the squeezed coherent states in the deformed
algebraic framework, we assume a factorized form:

𝑍𝑛 (𝑧, 𝛾) =
(𝛾

2

)𝑛/2
𝑓𝑛 (𝜔), with 𝜔 =

𝑧√︁
2𝛾

. (28)

Substituting this ansatz into the recurrence relation:

𝑍𝑛+1 = 𝑧𝑍𝑛 − 𝛾 𝑛(𝑎𝑛 + 𝑏)𝑍𝑛−1, (29)

leads to a simplified recurrence for 𝑓𝑛 (𝜔) of the form:

𝑓𝑛+1 = 2𝜔 𝑓𝑛 − 2𝑛(𝑎𝑛 + 𝑏) 𝑓𝑛−1, 𝑓0 = 1, 𝑓1 =
√︁

2𝛾 𝜔. (30)

This sequence admits an analytical solution expressed in terms of the Gauss hypergeometric function:

𝑓𝑛 (𝜔) = (2𝜔)𝑛 · 2𝐹1

(
−

⌊𝑛
2

⌋
, −

⌊
𝑛 − 1

2

⌋
; −𝑏; 1

)
, (31)

where 2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧) is the Gaussian hypergeometric function.
The general solution of the recurrence relation (29) is obtained in terms of the Gauss hypergeometric function 2𝐹1 as

follows

𝑍 (𝑧, 𝛾, 𝑛) = (−1)𝑛 (𝛾)𝑛/2 𝑎𝑛/2 Γ(𝑛 + 1 + 𝑏
𝑎
)

Γ(1 + 𝑏
𝑎
)

· 2𝐹1

(
−𝑛, −1

2
+ 𝑏

2𝑎
− 𝑧

2√𝛾𝑎 ; 1 + 𝑏

𝑎
; 2

)
. (32)

We obtain the explicit form of the squeezed states of position-dependent effective mass harmonic oscillator (19) in
terms of the hypergeometric functions as follows :

|𝜓(𝑧, 𝛾)⟩ = 1√︁
N(𝑧, 𝛾)

𝑛max∑︁
𝑛=0

(𝛾𝑎)𝑛/2
√
𝑛!

·

√√√√√√Γ

(
𝑛 + 1 + 𝑏

𝑎

)
Γ

(
1 + 𝑏

𝑎

) · 2𝐹1

(
−𝑛, −1

2
+ 𝑏

2𝑎
− 𝑧

2√𝑎𝛾 ; 1 + 𝑏

𝑎
; 2

)
|𝜓𝑛⟩ (33)

where

N(𝑧, 𝛾) =
𝑛max∑︁
𝑛=0

(𝛾𝑎)𝑛
𝑛!

·
Γ

(
𝑛 + 1 + 𝑏

𝑎

)
Γ

(
1 + 𝑏

𝑎

) ·
����2𝐹1

(
−𝑛, −1

2
+ 𝑏

2𝑎
− 𝑧

2√𝑎𝛾 ; 1 + 𝑏

𝑎
; 2

)����2 (34)

The time evolution of this squeezed coherent states (33) is given by

|𝜓(𝑧, 𝛾, 𝑡)⟩ = 1√︁
N(𝑧, 𝛾)

𝑛max∑︁
𝑛=0

(𝛾𝑎)𝑛/2
√
𝑛!

·

√√√√√√Γ

(
𝑛 + 1 + 𝑏

𝑎

)
Γ

(
1 + 𝑏

𝑎

) · 2𝐹1

(
−𝑛, −1

2
+ 𝑏

2𝑎
− 𝑧

2√𝑎𝛾 ; 1 + 𝑏

𝑎
; 2

)
𝑒−

𝑖𝐸𝑛
ℏ

𝑡 |𝜓𝑛⟩ (35)

We are interested in analyzing the special case of (24) where the deformation parameter 𝛼 → 0, which corresponds
to the standard quantum harmonic oscillator with constant mass, corresponds to :

𝑎 =
𝛼ℏ2

2𝑚0
= 0, 𝑏 = ℏ𝜔

√︄
1 + 𝛼2ℏ2

4𝑚2
0𝜔

2
+ 𝛼ℏ2

𝑚0

𝛼=0−−−→ ℏ𝜔
√

1 + 0 = ℏ𝜔. (36)

In the undeformed limit 𝛼 → 0, we obtain the simplified and physically interpretable results:

𝑎 = 0, 𝑏 = ℏ𝜔. (37)
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In this regime, the Gauss hypergeometric function in (32) reduces to Hermite polynomials according to the well–known
identity

2𝐹1

(
−𝑛, 1

2 − 𝑧
2 ; 1

2 ; 2
)
=

(−1)𝑛
𝑛!

𝐻𝑛 (𝑧), (38)

where 𝐻𝑛 (𝑧) are the Hermite polynomials. At the same time, the ratio of Gamma functions Γ

(
𝑛 + 1 + 𝑏

𝑎

)
/Γ

(
1 + 𝑏

𝑎

)
simplifies to 𝑛! in the undeformed case, since the parameter 𝑏

𝑎
diverges while 𝑎 → 0, which exactly reproduces the

factorial structure of the standard harmonic oscillator basis. Therefore, expressions (32)-(35) reduce to the usual squeezed
coherent states of the quantum harmonic oscillator, and (37) consistently recovers the known limit.

This implies that:

• The deformation parameter vanishes, and the mass becomes position-independent;

• The parameter 𝑏 reduces to the fundamental energy quantum ℏ𝜔, characteristic of the standard harmonic oscillator;

• The wavefunctions and the associated squeezed coherent states simplify accordingly, often allowing expressions in
terms of classical orthogonal polynomials, such as Hermite polynomials.

This limit therefore provides a consistency check with the well-known results of quantum mechanics in homogeneous
media. In the limit where the deformation parameter 𝛼 → 0, the effective mass becomes constant and the system reduces
to the standard quantum harmonic oscillator. The squeezed coherent state (33) can then be expressed as:

|𝜓(𝑧, 𝛾, 𝛼 = 0)⟩ = 1√︁
N(𝑧, 𝛾)

∞∑︁
𝑛=0

1
√
𝑛!

(𝛾
2

)𝑛/2
𝐻𝑛

(
𝑧√︁
2𝛾

)
|𝜓𝑛⟩ , (39)

where:

• 𝐻𝑛 (𝑥) denotes the Hermite polynomial of degree 𝑛,

• 𝛾 is the squeezing parameter,

• |𝜓𝑛⟩ is the 𝑛-th energy eigenstate of the harmonic oscillator,

• N(𝑧, 𝛾) is the normalization factor defined as:

N(𝑧, 𝛾, 𝛼 = 0) =
∞∑︁
𝑛=0

1
𝑛!

(𝛾
2

)𝑛
𝐻2

𝑛

(
𝑧√︁
2𝛾

)
. (40)

These states minimize the generalized uncertainty relation and exhibit Gaussian-like wavepacket behavior, typical of
squeezed states in quantum optics.

4. PROPERTIES OF SQUEEZED COHERENT STATES
4.1. The non-orthogonality, the normalization, solvability the unity,

Given two squeezed coherent states :

|𝜓(𝑧, 𝛾)⟩ = 1√︁
N(𝑧, 𝛾)

∞∑︁
𝑛=0

𝑍𝑛 (𝑧, 𝛾)√︁
𝜌(𝑛)

|𝜓𝑛⟩ , (41)

|𝜓(𝑧′, 𝛾′)⟩ = 1√︁
N(𝑧′, 𝛾′)

∞∑︁
𝑛=0

𝑍𝑛 (𝑧′, 𝛾′)√︁
𝜌(𝑛)

|𝜓𝑛⟩ , (42)

their inner product is given by:

⟨𝜓(𝑧′, 𝛾′) |𝜓(𝑧, 𝛾)⟩ = 1√︁
N(𝑧′, 𝛾′)N (𝑧, 𝛾)

∞∑︁
𝑛=0

𝑍𝑛 (𝑧′, 𝛾′)𝑍𝑛 (𝑧, 𝛾)
𝜌(𝑛) . (43)

In the particular case 𝛾′ = 𝛾, this simplifies to:

⟨𝜓(𝑧′, 𝛾) |𝜓(𝑧, 𝛾)⟩ = 1
N(𝑧, 𝛾)

∞∑︁
𝑛=0

𝑍𝑛 (𝑧′, 𝛾)𝑍𝑛 (𝑧, 𝛾)
𝜌(𝑛) . (44)
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This sum is generally non-zero, indicating that the squeezed coherent states are non-orthogonal:

⟨𝜓(𝑧′, 𝛾) |𝜓(𝑧, 𝛾)⟩ ≠ 𝛿(𝑧 − 𝑧
′ ). (45)

To verify the normalization of the compressed coherent state, we consider the time-dependent compressed coherent
state obtained in (35), which can be rewritten in the contracted form:

|𝜓(𝑧, 𝛾, 𝑡)⟩ = 1√︁
N(𝑧, 𝛾)

𝑛max∑︁
𝑛=0

𝐶𝑛 (𝑧, 𝛾)𝑒−
𝑖𝐸𝑛𝑡
ℏ |𝜓𝑛⟩ (46)

with

𝐶𝑛 (𝑧, 𝛾) =
(𝛾𝑎)𝑛/2
√
𝑛!

·

√√√√√√Γ

(
𝑛 + 1 + 𝑏

𝑎

)
Γ

(
1 + 𝑏

𝑎

) · 2𝐹1

(
−𝑛, −1

2
+ 𝑏

2𝑎
− 𝑧

2√𝑎𝛾 ; 1 + 𝑏

𝑎
; 2

)
, (47)

and the constant N(𝑧, 𝛾) is given by (34).
The inner product is given by :

⟨𝜓(𝑧, 𝛾, 𝑡) |𝜓(𝑧, 𝛾, 𝑡)⟩ = 1
N(𝑧, 𝛾)

𝑛max∑︁
𝑛=0

|𝐶𝑛 (𝑧, 𝛾) |2 = 1. (48)

Thus, we conclude that the squared norm of the state is correctly normalized by the factor N(𝑧, 𝛾), provided that this
exact expression is used. This normalization condition (48) ensures that the squeezed coherent states remain physically
admissible quantum states in a position-dependent mass background. The normalization factor N(𝑧, 𝛾) encodes the
interaction between spatial mass variation, squeeze effects, and spectral deformation. It guarantees unit total probability
and reflects the modified spectral weight due to SUSY deformation and PDM geometry.

4.2. Probability Density of Squeezed Coherent States
The probability of finding the squeezed coherent state in the energy level 𝑛, i.e., the probability density, is defined by:

𝑃𝑛 (𝑧, 𝛾) = |⟨𝜓𝑛⟩ 𝜓(𝑧, 𝛾) |2 =
|𝑍 (𝑧, 𝛾, 𝑛) |2

N(𝑧, 𝛾) · 𝜌(𝑛) . (49)

Substituting the expressions of 𝑍𝑛 and 𝜌(𝑛), we obtain the explicit analytical form:

𝑃𝑛 (𝑧, 𝛾) =
𝛾𝑛

N(𝑧, 𝛾) ·
Γ(𝑛 + 1 + 𝑏)
Γ(𝑛 + 1) ·

����2𝐹1

(
−𝑛, −1

2
+ 𝑏

2
− 𝑧

2√𝛾 ; 1 + 𝑏; 2
)����2 . (50)

This expression provides a complete description of the squeezed state probability distribution over the Fock space
basis {|𝜓𝑛⟩}, accounting for the deformation via the parameters 𝛾 and 𝑏.

4.3. Mean values, standard deviations and uncertainty relations
In this section, we investigate the statistical properties of time-dependent squeezed coherent states in a quantum

system with position-dependent mass. Specifically, we examine the expectation values of the position and momentum
operators, their variances, and the corresponding uncertainty product. These observables offer valuable insight into
quantum fluctuations, coherence, and squeezing behavior of the states. Our analysis follows an approach similar to that
presented by Sanjib Dey and Véronique Hussin [34, 35, 36].

We begin by considering the time-evolved squeezed coherent state, given by:

|𝜓(𝑧, 𝛾, 𝑡)⟩ = 1√︁
N(𝑧, 𝛾)

𝑛max∑︁
𝑛=0

(𝛾𝑎)𝑛/2
√
𝑛!

√√√√√√Γ

(
𝑛 + 1 + 𝑏

𝑎

)
Γ

(
1 + 𝑏

𝑎

)
× 2𝐹1

(
−𝑛, −1

2
+ 𝑏

2𝑎
− 𝑧

2√𝑎𝛾 ; 1 + 𝑏

𝑎
; 2

)
𝑒−

𝑖𝐸𝑛𝑡
ℏ |𝜓𝑛⟩ .

(51)

where the normalization factor is given by :

N(𝑧, 𝛾) =
𝑛max∑︁
𝑛=0

(𝛾𝑎)𝑛
𝑛!

·
Γ

(
𝑛 + 1 + 𝑏

𝑎

)
Γ

(
1 + 𝑏

𝑎

) ·
����2𝐹1

(
−𝑛, −1

2
+ 𝑏

2𝑎
− 𝑧

2√𝑎𝛾 ; 1 + 𝑏

𝑎
; 2

)����2 . (52)
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The quadrature operators of position and momentum are written in terms of the ladder operators as

𝑥 =

√︂
ℏ

2𝑚𝜔
(𝑎̂† + 𝑎̂), and 𝑝 = 𝑖

√︂
ℏ𝑚𝜔

2
(𝑎̂† − 𝑎̂). (53)

To compute the uncertainty relation, we need the following expectation values of 𝑥 and 𝑝 for squeezed coherent
states, respectively, given by:

⟨𝑥⟩ =
√︂

ℏ

2𝑚𝜔

(
⟨𝑎̂⟩ + ⟨𝑎̂†⟩

)
= 2

√︂
ℏ

2𝑚𝜔
· Re (⟨𝑎̂⟩) , (54)

and

⟨𝑝⟩ = 𝑖

√︂
ℏ𝑚𝜔

2

(
⟨𝑎̂†⟩ − ⟨𝑎̂⟩

)
= 2

√︂
ℏ𝑚𝜔

2
· Im (⟨𝑎̂⟩) , (55)

where the expectation value of the annihilation operator is given by :

⟨𝑎̂⟩ =
𝑛max−1∑︁
𝑛=0

𝐶∗
𝑛𝐶𝑛+1

√
𝑛 + 1. (56)

Combining the equations (54) and (55), we obtained the expectation values of 𝑥2 and 𝑝2 as :

⟨𝑥2⟩ = ℏ

2𝑚𝜔

(
⟨𝑎̂2⟩ + ⟨𝑎̂†2⟩ + ⟨𝑎̂†𝑎̂⟩ + ⟨𝑎̂𝑎̂†⟩

)
, (57)

⟨𝑝2⟩ = −ℏ𝑚𝜔

2

(
⟨𝑎̂2⟩ + ⟨𝑎̂†2⟩ − ⟨𝑎̂†𝑎̂⟩ − ⟨𝑎̂𝑎̂†⟩

)
, (58)

where we set

⟨𝑎̂†𝑎̂⟩ =
𝑛max∑︁
𝑛=0

|𝐶𝑛 |2𝑛, (59)

⟨𝑎̂𝑎̂†⟩ =
𝑛max∑︁
𝑛=0

|𝐶𝑛 |2 (𝑛 + 1), (60)

⟨𝑎̂2⟩ =
𝑛max−2∑︁
𝑛=0

𝐶∗
𝑛𝐶𝑛+2

√︁
(𝑛 + 1) (𝑛 + 2), (61)

⟨𝑎̂†2⟩ =
𝑛max−2∑︁
𝑛=0

𝐶∗
𝑛+2𝐶𝑛

√︁
(𝑛 + 1) (𝑛 + 2). (62)

We now define the normalized coefficients :

𝐶̃𝑛 =
𝐶𝑛√︁

N(𝑧, 𝛾)
, (63)

with the coefficient 𝐶𝑛 (𝑧, 𝛾) defined by :

𝐶𝑛 (𝑧, 𝛾) =
(𝛾𝑎)𝑛/2
√
𝑛!

√√√√√√Γ

(
𝑛 + 1 + 𝑏

𝑎

)
Γ

(
1 + 𝑏

𝑎

) · 2𝐹1

(
−𝑛, −1

2
+ 𝑏

2𝑎
− 𝑧

2√𝑎𝛾 ; 1 + 𝑏

𝑎
; 2

)
. (64)

By the simple way, we compute the expectation Value of 𝑎̂

⟨𝑎̂⟩ =
𝑛max−1∑︁
𝑛=0

𝐶̃∗
𝑛𝐶̃𝑛+1

√
𝑛 + 1 (65)

Thus:

Re(⟨𝑎̂⟩) =
𝑛max−1∑︁
𝑛=0

Re
(
𝐶̃∗
𝑛𝐶̃𝑛+1

) √
𝑛 + 1, (66)
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Im(⟨𝑎̂⟩) =
𝑛max−1∑︁
𝑛=0

Im
(
𝐶̃∗
𝑛𝐶̃𝑛+1

) √
𝑛 + 1. (67)

Let us define the hypergeometric part in (64) as follows :

𝑓𝑛 := 2𝐹1

(
−𝑛, −1

2
+ 𝑏

2𝑎
− 𝑧

2√𝑎𝛾 ; 1 + 𝑏

𝑎
; 2

)
(68)

Then the normalized coefficient is:

𝐶̃𝑛 =
𝐶𝑛√︁

N(𝑧, 𝛾)
=

(𝛾𝑎)𝑛/2
√
𝑛!N

·

√√
Γ(𝑛 + 1 + 𝑏

𝑎
)

Γ(1 + 𝑏
𝑎
)

· 𝑓𝑛 (69)

The expression of the product 𝐶̃𝑛𝐶̃
∗
𝑛+1 becomes :

𝐶̃𝑛𝐶̃
∗
𝑛+1 =

1
N · (𝛾𝑎)

(𝑛+𝑛+1)/2√︁
𝑛!(𝑛 + 1)!

·

√√√
Γ(𝑛 + 1 + 𝑏

𝑎
)Γ(𝑛 + 2 + 𝑏

𝑎
)[

Γ(1 + 𝑏
𝑎
)
]2 · 𝑓𝑛 · 𝑓 ∗𝑛+1 (70)

This simplifies to

𝐶̃𝑛𝐶̃
∗
𝑛+1 =

(𝛾𝑎)𝑛+1/2√︁
𝑛!(𝑛 + 1)! · N

·

√√√
Γ(𝑛 + 1 + 𝑏

𝑎
)Γ(𝑛 + 2 + 𝑏

𝑎
)[

Γ(1 + 𝑏
𝑎
)
]2 · 𝑓𝑛 · 𝑓 ∗𝑛+1 (71)

The real and imaginary parts used in position and momentum expectations are as follows:

Re(⟨𝑎̂⟩) =
∑𝑛max−1

𝑛=0 Re
(
𝐶̃𝑛𝐶̃

∗
𝑛+1

) √
𝑛 + 1, (72)

Im(⟨𝑎̂⟩) =
∑𝑛max−1

𝑛=0 Im
(
𝐶̃𝑛𝐶̃

∗
𝑛+1

) √
𝑛 + 1. (73)

Thus, the full expressions are:

⟨𝑥⟩ = 2
√︃

ℏ
2𝑚𝜔

· ∑𝑛max−1
𝑛=0 Re

[
(𝛾𝑎)𝑛+1/2√
𝑛!(𝑛+1)!·N

·
√︂

Γ (𝑛+1+ 𝑏
𝑎
)Γ (𝑛+2+ 𝑏

𝑎
)

[Γ (1+ 𝑏
𝑎
)]2 · 𝑓𝑛 𝑓 ∗𝑛+1

]
·
√
𝑛 + 1 (74)

⟨𝑝⟩ = 2
√︃

ℏ𝑚𝜔
2 · ∑𝑛max−1

𝑛=0 Im
[

(𝛾𝑎)𝑛+1/2√
𝑛!(𝑛+1)!·N

·
√︂

Γ (𝑛+1+ 𝑏
𝑎
)Γ (𝑛+2+ 𝑏

𝑎
)

[Γ (1+ 𝑏
𝑎
)]2 · 𝑓𝑛 𝑓 ∗𝑛+1

]
·
√
𝑛 + 1 (75)

The terms 𝑓𝑛 are hypergeometric functions evaluated at fixed parameters. The products 𝑓𝑛 𝑓
∗
𝑛+1 contain the phase

differences (squeezing effects). The square root of the gamma functions encodes the deformation of the ladder through
𝑏/𝑎.

We consider the normalized squeezed coherent state:

|𝜓(𝑧, 𝛾)⟩ =
𝑛max∑︁
𝑛=0

𝐶̃𝑛 |𝜓𝑛⟩ , avec 𝐶̃𝑛 =
𝐶𝑛√︁

N(𝑧, 𝛾)
. (76)

Then the position and momentum variances read:

⟨𝑥2⟩ =
ℏ

2𝑚𝜔

[
𝑛max−2∑︁
𝑛=0

𝐶̃∗
𝑛𝐶̃𝑛+2

√︁
(𝑛 + 1) (𝑛 + 2) +

𝑛max−2∑︁
𝑛=0

𝐶̃∗
𝑛+2𝐶̃𝑛

√︁
(𝑛 + 1) (𝑛 + 2)

+
𝑛max∑︁
𝑛=0

|𝐶̃𝑛 |2 · 𝑛 +
𝑛max∑︁
𝑛=0

|𝐶̃𝑛 |2 · (𝑛 + 1)
]

(77)

⟨𝑝2⟩ = −ℏ𝑚𝜔

2

[
𝑛max−2∑︁
𝑛=0

𝐶̃∗
𝑛𝐶̃𝑛+2

√︁
(𝑛 + 1) (𝑛 + 2) +

𝑛max−2∑︁
𝑛=0

𝐶̃∗
𝑛+2𝐶̃𝑛

√︁
(𝑛 + 1) (𝑛 + 2)

−
𝑛max∑︁
𝑛=0

|𝐶̃𝑛 |2 · 𝑛 −
𝑛max∑︁
𝑛=0

|𝐶̃𝑛 |2 · (𝑛 + 1)
]

(78)
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These expressions allow full analytical or numerical evaluation of quantum variances.
Finally, the uncertainties are computed as follows :

Δ𝑥 · Δ𝑝 =

√√√[
ℏ

2𝑚𝜔

(
𝑛max∑︁
𝑛=0

(2𝑛 + 1) |𝐶̃𝑛 |2 + 2
𝑛max−2∑︁
𝑛=0

Re
(
𝐶̃∗
𝑛𝐶̃𝑛+2

) √︁
(𝑛 + 1) (𝑛 + 2)

)
− ⟨𝑥⟩2

]

×

√√√[
ℏ𝑚𝜔

2

(
𝑛max∑︁
𝑛=0

(2𝑛 + 1) |𝐶̃𝑛 |2 − 2
𝑛max−2∑︁
𝑛=0

Re
(
𝐶̃∗
𝑛𝐶̃𝑛+2

) √︁
(𝑛 + 1) (𝑛 + 2)

)
− ⟨𝑝⟩2

]
(79)

By replacing by :

𝐴 : =

𝑛max∑︁
𝑛=0

(2𝑛 + 1) |𝐶̃𝑛 |2, 𝐵 := 2
𝑛max−2∑︁
𝑛=0

ℜ
(
𝐶̃∗
𝑛𝐶̃𝑛+2

) √︁
(𝑛 + 1) (𝑛 + 2),

𝑥0 : = ⟨𝑥⟩, 𝑝0 := ⟨𝑝⟩, (80)

we obtained for Equation (79) gives the following factored form :

Δ𝑥 Δ𝑝 =

√︂
ℏ2

4
(𝐴2 − 𝐵2) − ℏ

2𝑚𝜔
(𝐴 + 𝐵) 𝑝2

0 −
ℏ𝑚𝜔

2
(𝐴 − 𝐵) 𝑥2

0 + 𝑥2
0𝑝

2
0. (81)

This equation (81) shows that the uncertainty product Δ𝑥 Δ𝑝 reaches its minimal value ℏ/2 when the correlations
𝐵 and the occupations 𝐴 satisfy 𝐴2 − 𝐵2 = 1 and the mean values 𝑥0 and 𝑝0 disappear. This condition corresponds
to standard coherent states that saturate the Heisenberg uncertainty inequality. Any deviation from these values, due to
squeezing (|𝐵 | < 𝐴) or excess thermal population (𝐴 > 1), inevitably increases the uncertainty product.

5. CONCLUSION
In this work, we have constructed and analyzed squeezed coherent states within a supersymmetric framework for

systems with position-dependent mass. Starting from the exact spectrum obtained via SUSYQM, we derived explicit
expressions for the statistical properties, quadrature variances, and uncertainty products of these states. The generalized
Heisenberg uncertainty relation was evaluated exactly, showing that the ground state saturates the minimum boundΔ𝑥 Δ𝑝 =

ℏ/2, while the squeezed states can violate the standard vacuum limit in one quadrature. Our results show that the constructed
states exhibit sub-Poissonian statistics, quadrature squeezing, and negative regions in the Wigner function, confirming
their non-classical nature. The formalism developed here can be applied to model light–matter interactions in graded
semiconductors [13, 14], quantum dots, and optoelectronic systems such as photonic crystals and cavity optomechanics
for quantum communication or sensing [15, 16].
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СТИСНУТI КОГЕРЕНТНI СТАНИ В КВАНТОВIЙ МЕХАНIЦI З ПОЗИЦIЙНО-ЗАЛЕЖНОЮМАСОЮ
Данiель Сабi Таку1,2, Амiду Букарi2, Асiмiу Яру Мора2, Габрiель Ю. Х. Авосеву2
1Полiтехнiчна школа Абомей-Калавi (EPAC-UAC), Унiверситет Абомей-Калавi (UAC), Бенiн

2Вiддiл дослiджень у галузi теоретичної фiзики (URPT), Iнститут математики та фiзичних наук (IMSP),
01 B.P. 613 Порто-Ново, Республiка Бенiн
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We investigate the thermodynamic properties and stability of hyperbolic (AdS–Rindler) black holes, emphasizing the effects of non
perturbative quantum correction. Using standard thermodynamic formulations alongside the Poincaré disk method, we compute key
quantities including mass, Hawking temperature, entropy, and heat capacity. To account for quantum gravitational effects, we introduce
an exponential correction to the Bekenstein–Hawking entropy and systematically derive the modified thermodynamic parameters. While
the corrected entropy yields consistent adjustments, the heat capacity exhibits nontrivial behavior, leading to narrower and more gradual
stable regions

(
Δ𝑟 (𝑑)

)
for each dimension 𝑑. Moreover, the smoothing of sharp entropy variations near 𝑟ℎ = 1 emphasizes how horizon

geometry governs the impact of quantum corrections. This study provides the novel systematic identification of stable regions before
and after exponential corrections of (AdS–Rindler) black holes, offering new insights into the interplay of geometry, dimensionality,
and quantum effects in black hole thermodynamics.

Keywords: Hyperbolic black holes; Quantum entropy correction; Stability analysis

PACS: 04.60.-m, 04.70.Dy, 04.70.-s, 04.20.-q

1. INTRODUCTION
The study of black hole (BH) thermodynamics has been a cornerstone in understanding the intricate relationship

between gravity, quantum mechanics, and statistical physics. Central to this field is the exploration of how black holes
(BHs), as thermodynamic systems, adhere to laws analogous to the classical laws of thermodynamics. The seminal
works of Bekenstein and Hawking established that BHs possess an entropy proportional to their horizon area [1, 2].
The formulation of BH mechanics as analogous to the laws of thermodynamics was first systematically established
by Bardeen, Carter, and Hawking [3], who demonstrated that the surface gravity of a BH remains constant over the
horizon, analogous to temperature in conventional thermodynamic systems. This foundational framework later faced
challenges with the information paradox, which found a potential resolution pathway in Page’s work [4], suggesting that
information might be preserved in BH evaporation through subtle correlations in the radiation, with information beginning
to emerge after approximately half the entropy has been radiated away—a concept now known as the ’Page curve.’ A
complementary breakthrough came from string theory when Strominger and Vafa [5] provided the first precise microstate
counting for certain supersymmetric BHs, demonstrating that the Bekenstein-Hawking entropy formula could be derived
from first principles by counting the degeneracy of D-brane configurations, thus establishing a crucial link between
gravity and quantum theory that continues to influence the development of quantum corrections to BH thermodynamics.
These discoveries have spurred extensive research into the microscopic origins of BH entropy and the potential quantum
corrections that arise in various gravitational settings. In particular, the Anti-de Sitter (AdS) spacetime has garnered
significant attention due to its role in the AdS/CFT correspondence, which posits a duality between a gravitational theory
in AdS space and a conformal field theory on its boundary. Within this framework, Rindler-AdS spacetime emerge as a
fascinating subclass, characterized by their hyperbolic horizons and constant acceleration analogous to Rindler coordinates
in flat spacetime. These spacetime provide fertile ground for investigating the thermodynamic properties of BHs, especially
when considering the implications of quantum corrections to classical entropy formulations [6, 7]. The importance of AdS
black holes has been widely recognized, leading to extensive research in various directions. For instance, the reconciliation
of the Weak Gravity Conjecture (WGC) and the Weak Cosmic Censorship Conjecture (WCCC) by examining Einstein-
Euler-Heisenberg-AdS BHs in four-dimensional spacetime has been investigated in [8] by applying certain conditions to
the metric parameters, they show that the (WGC) and the (WCCC) can be simultaneously satisfied. Furthermore, the
investigation of the thermodynamic topology of AdS Einstein–power–Yang–Mills BHs using both bulk-boundary and
restricted phase space (RPS) approaches, considering different non-extensive entropy models, has been studied [9]. Also,
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the thermodynamic topology of Schwarzschild-AdS BHs under the frameworks of non-commutative geometry and Barrow
entropy, providing an overview of the black hole’s properties and the relevance of Barrow entropy studied in [10].

The Bekenstein-Hawking entropy formula, which equates the entropy of a BH to a quarter of its horizon area, serves
as the classical foundation for BH thermodynamics. However, various approaches in quantum gravity suggest that this
entropy receives corrections, often manifesting as logarithmic terms including thermal fluctuations [11], higher-order
entropy corrections [12], non-perturbative exponential corrections [13]. These corrections are pivotal in understanding
the microstates contributing to BH entropy and have profound implications for the stability and phase structure of BHs
[1, 2].

Recently the thermodynamic properties of AdS–Schwarzschild-type BHs through the framework of loop quantum
gravity has been tested, showing that quantum corrections play a crucial role in reshaping their critical behavior and
phase transition characteristics [14, 15, 16]. These corrections modify key aspects such as the equation of state, critical
points, and heat capacity, ultimately affecting the stability conditions of BHs. Such insights highlight the importance
of accounting for quantum effects to achieve a deeper and more complete understanding of black-hole thermodynamics
[17, 18, 19].

In the realm of Rindler-AdS spacetimes, the entanglement entropy of holographic quantum fields has been the
subject of extensive investigation. Emparan and Magán [20] demonstrated how quantum disentanglement modifies the
entanglement structure of holographic quantum fields in Rindler–AdS geometry, while in [21] extending the Rindler
method to compute timelike entanglement entropy in AdS3/CFT2 has been studied. Further developments in [22, 23]
analyzed generalized Rindler wedges and inner-horizon entanglement, respectively, highlighting the geometric richness of
these setups. Complementarily, Miao [24] investigated the Casimir and holographic dual aspects of AdS wedges, providing
deeper insight into quantum correlations across Rindler horizons.

Interestingly, holographic analyses indicate that the entanglement entropy remains finite even in the zero-temperature
limit, creating a puzzling scenario that has motivated extensive investigations into the quantum properties of Rindler–AdS
BHs [20, 21, 22, 23].

In recent years, the study of quantum corrections to BH thermodynamics has gained significant attention [25, 26, 27,
28, 29], as these corrections might provide insight into the quantum nature of gravity and potentially resolve longstanding
paradoxes such as the information loss problem [30]. Prior attempts to consider corrections to the BH entropy are due to
the thermal fluctuations which at leading order add an alogarithmic term to the BH entropy [31, 32, 33, 34, 35, 36]. Higher-
order entropy corrections represent another important approach to quantum BH thermodynamics. Upadhyay et al. [12]
studied the P-V criticality of AdS BHs corrected for first-order entropy in massive gravity, finding that entropy corrections
can substantially alter phase transition behavior. The application of quantum gravity approaches to BH thermodynamics
represents the frontier of this field. Pourhassan et al. [37] investigated quantum gravitational corrections to the geometry
of charged AdS BHs, while Lone et al. [38] applied topos theory to derive quantum gravitational corrections to a Kerr
BH. These studies suggest that a full quantum theory of gravity might resolve longstanding issues in BH thermodynamics,

including the information loss paradox. The classical Bekenstein-Hawking entropy formula (
(𝐶 )
𝑆𝐵𝐻 ) is given by:

(𝐶 )
𝑆𝐵𝐻 =

𝑘𝐵𝐴

4 𝜋 ℏ𝐺
, (1)

where 𝐴 is the area of the horizon given by:

𝐴 = 𝑛𝜖 𝑙2𝑝 (2)

where 𝜖 is constant and 𝑛 is the quantum number. In addition, the surface gravity 𝜅 is computed as:

𝜅 =
1
2

𝑑𝑓

𝑑𝑟

����
𝑟=𝑟ℎ

(3)

where 𝑓 (𝑟) is the blackening factor. It is important to note that the expression for surface gravity presented in Eq. (3) is
applicable only to static black hole configurations, such as the Schwarzschild and Reissner–Nordström solutions, and fails
to describe rotating (Kerr) geometries (see [3, 39, 40]). Furthermore, the temperature (𝑇) of a BH is related to its surface
gravity (𝜅) by the formula:

𝑇𝐻 =
ℏ𝜅

2𝜋
, (4)

where, ℏ is the reduced Planck constant. This relation arises from the Hawking temperature formula, which states that
the temperature of a BH is proportional to its surface gravity. This result is fundamental in BH thermodynamics and is
derived from quantum field theory in curved spacetime.

Quantum gravitational effects are expected to introduce corrections to this entropy. Various approaches, including
string theory and loop quantum gravity, suggest modifications that often take the form of logarithmic or exponential terms.
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For example, Calmet and Kuipers [41] calculated quantum gravitational corrections to the entropy of a Schwarzschild BH
using the Wald entropy formula within an effective field theory approach.

BH entropy is generally expressed in the following form [42]:

𝑆 =
𝐴

4ℓ2
𝑃

+ 𝛼 ln
𝐴

4ℓ2
𝑃

+ 𝛽
4ℓ2

𝑃

𝐴
+ · · · + exp

(
−𝛿 𝐴

4ℓ2
𝑃

)
+ · · · (5)

where the constants (𝛼, 𝛽, 𝛿, 𝜂), and similar terms, are universal. For black holes with small horizon areas of order
(𝑂 (𝑙2𝑝)), a complete quantum gravity framework is required for a proper description. In such cases, the logarithmic
and higher-order correction terms involving ((𝑙2𝑝/𝐴)) may be modified or even absent. Pourhassan et al. [13] applied
non-perturbative quantum corrections to a Born-Infeld BH and analyzed its information geometry, revealing new aspects
of BH microstructure. More recently, Pourhassan et al. [43] investigated non-perturbative corrections to BH geometry,
showing how quantum effects fundamentally alter spacetime structure near BH horizons. The study of quantum corrections
in various BH backgrounds has also extended to higher-dimensional and exotic BH solutions. Han et al. [44] examined
the the impact of fluctuations on AdS BHs in arbitrary dimensions, deriving how horizon perturbations change Hawking
temperature and Bekenstein–Hawking entropy and discussing resulting thermodynamic consequences. While Pourhassan
et al. [45] investigated the quantum thermodynamics of an M2-M5 brane system. These studies highlight the universal
nature of quantum corrections in different theories and dimensions of gravitation. Recent work has also connected
quantum-corrected BH thermodynamics to holographic concepts such as the AdS/CFT correspondence. Kumar et al. [46]
studied the stabilizing effects of higher-order quantum corrections on charged BTZ BH thermodynamics, demonstrating
how quantum corrections affect the stability of BHs in AdS space. Moreover, Pourhassan et al. [47] examined thermal
fluctuation effects on the shear viscosity to entropy ratio in five-dimensional Kerr-Newman BHs, providing important
connections to hydrodynamic properties of dual field theories.

In the context of Rindler-AdS hyperbolic BHs, understanding these quantum corrections is crucial, as they can
significantly influence the thermodynamic stability and phase structure of the system. Studies have shown that such
corrections can alter the heat capacity and, consequently, the stability criteria of BHs [48].

Recent studies continue to explore quantum gravity’s impact on BH thermodynamics, from shadow imprints and
singularity resolution in regular BHs [15, 49] to phase transitions in hyperscaling-violating spacetimes [50]. Investigations
into AdS BHs further show how corrections from the generalized uncertainty principle alter their evaporation and stability
[51], with thermodynamic geometry providing key insights into the resulting phase structures [52]. Our work builds upon
this foundation by applying an exponential entropy correction to the distinctive AdS-Rindler geometry, revealing its unique
stability signatures.

This article is organized as follows. Section 2 presents the theoretical model, establishing the foundational framework
for our analysis of AdS-Rindler BHs. Section 3 explores the mathematical aspects of computing the area of AdS-Rindler
BHs. In Sec. 4, we develop the thermodynamic framework before adding quantum correction, introducing key concepts
and methodologies for analyzing BH thermodynamics from a thermal point of view. Section 5 provides a detailed
analysis non-perturbative quantum corrections of entropy and other thermodynamic function model. Section 6 explores
the comparison between the thermodynamics before and after adding quantum corrections. Finally, section 7 summarizes
our findings and discusses their implications, along with future research directions in this field.

2. GENERAL FORM OF HYPERBOLIC BLACK HOLES
The action for a hyperbolic BH in the Rindler-AdS spacetime is typically derived from the Einstein-Hilbert action

with a negative cosmological constant. The general form of the action in (𝑑 + 1)−dimensional space-time is given by:

𝑆 =
1

16𝜋𝐺

∫
𝑑𝑑+1𝑥

√−𝑔 (𝑅 − 2Λ) (6)

where, 𝑅 is the Ricci scalar, and Λ = − 𝑑 (𝑑−1)
2𝑙2 is the cosmological constant for AdS spacetime with curvature scale

𝑙. Unlike their spherical counterparts, these BHs exhibit distinct thermodynamic behaviors because of their horizon
geometry. The variation of this action with respect to the metric 𝑔𝜇𝜈 gives Einstein’s field equations:

𝐺𝜇𝜈 = 𝑅𝜇𝜈 −
1
2
𝑔𝜇𝜈𝑅 + 𝑔𝜇𝜈Λ = 0. (7)

Taking the trace by contracting with 𝑔𝜇𝜈 , leads to:

𝑅 = −𝑑 (𝑑 + 1)
𝑙2

, (8)

Substituting this into Eq.(7), we obtain the Einstein tensor (𝐺𝜇𝜈) as the following.

𝐺𝜇𝜈 = 𝑅𝜇𝜈 +
(
𝑑

ℓ2

)
𝑔𝜇𝜈 = 0. (9)
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This describes an AdS spacetime with constant curvature. The general form of the metric for a (𝑑 + 1)-dimensional
hyperbolic BH can be expressed as:

𝑑𝑠2 = − 𝑓 (𝑟)𝑑𝑡2 + 𝑑𝑟2

𝑓 (𝑟) + 𝑟2𝑑𝐻2
𝑑+1, (10)

where 𝑑𝐻2
𝑑+1 denotes the unit metric of the hyperbolic static BH in 𝑑 + 1 dimensional space [48]. Although the

metric considered here, Eq. (10), does not explicitly use Rindler coordinates, it corresponds to the hyperbolic patch of
anti–de Sitter (AdS) spacetime that is locally equivalent to the Rindler wedge of AdS under an appropriate coordinate
transformation (see Refs. [48, 53]). Hence, following common usage in the literature, we refer to this background
as a Rindler–AdS spacetime. This designation emphasizes the constant–acceleration interpretation of observers in the
hyperbolic AdS region and justifies the thermodynamic analysis in analogy with Rindler horizons. Or, in the matrix form
the metric tensor 𝑔𝜇𝜈 is a (𝑑 + 1) × (𝑑 + 1) symmetric matrix:

𝑔𝜇𝜈 =



− 𝑓 (𝑟) 0 0 0 · · · 0
0 1

𝑓 (𝑟 ) 0 0 · · · 0
0 0 𝑟2 0 · · · 0
0 0 0 𝑟2 sinh2 𝜒 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 𝑟2 sinh2 𝜒 · · · sinh2 𝜃𝑑−3


. (11)

The Ricci tensor components presented in Eq. (9) can be calculated as:

𝑅𝜇𝜈 = 𝜕𝛼Γ
𝛼
𝜇𝜈 − 𝜕𝜈Γ

𝛼
𝜇𝛼 + Γ𝛼

𝛼𝛽Γ
𝛽
𝜇𝜈 − Γ𝛼

𝜈𝛽Γ
𝛽
𝜇𝛼 (12)

where Γ𝛼
𝜇𝜈 is the Christoffel symbols, can be found:

Γ
𝜇
𝜈𝛼 =

1
2
𝑔𝜇𝛽

(
𝜕𝜈 (𝑔𝛼𝛽) + 𝜕𝛼 (𝑔𝜈𝛽) − 𝜕𝛽 (𝑔𝜈𝛼)

)
(13)

Substituting Eq. (11) and Eq. (12) into Eq. (7) the blackening factor ( 𝑓 (𝑟)) can be found as:

𝑓 (𝑟) = 𝑟2

ℓ2 − 1 − 𝑀

𝑟𝑑−2 , (14)

The event horizon is located at 𝑟 = 𝑟ℎ, where 𝑓 (𝑟0) = 0 and 𝑀 is the mass of the BH. Then solving ( 𝑓 (𝑟ℎ) = 0) yields
the following:

𝑀 = 𝑟𝑑−2
ℎ

(
𝑟2
ℎ

ℓ2 − 1

)
. (15)

Thus, substitution of Eq. (15) Eq. (14) reduces to,

𝑓 (𝑟) = 𝑟2

ℓ2 − 1 −
𝑟𝑑−2
ℎ

𝑟𝑑−2

(
𝑟2
ℎ

ℓ2 − 1

)
. (16)

This metric function is the key factor for calculating surface gravity, Hawking temperature, and other thermodynamic
parameters, as we will see in the upcoming sections.

3. AREA OF HYPERBOLIC SPACE
To find the area of a hyperbolic space, we consider the metric of hyperbolic space 𝐻𝑑−1 and compute the surface

integral over a given region. The hyperbolic space (𝐻𝑑−1) can be represented using the Poincaré disk model, where the
metric in polar coordinates is given by:

𝑑𝑠2 =
𝑑𝑟2 + 𝑟2𝑑Ω2

𝑑−2
(1 − 𝑟2)2 (17)

where (𝑟) is the radial coordinate on the Poincaré disk (0 ≤ 𝑟 < 1) and (𝑑Ω2
𝑑−2) is the metric on the unit (𝑑 −

2)−dimensional sphere. The area element in 𝐻𝑑−1 (with the dimension of length 𝑙 normalized to unity) is given by [53]:

𝑑𝐴 =
𝑟𝑑−2 𝑑𝑟 𝑑Ω𝑑−2

(1 − 𝑟2)𝑑−1 (18)
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where 𝑟𝑑−2

(1− 𝑟2
𝑙2

)𝑑−1
=
√
𝑔 is the metric determinant. The total area of a hyperbolic space up to a radius (𝑟ℎ) is calculated as

(for simplicity we assume 𝑙 = 1):

𝐴(𝑟ℎ) =
∫ 𝑟ℎ

0

∫
Ω𝑑−2

𝑟𝑑−2 𝑑𝑟 𝑑Ω𝑑−2

(1 − 𝑟2)𝑑−1

=
2𝜋 (𝑑−1)/2

Γ((𝑑 − 1)/2)

∫ 𝑟ℎ

0

𝑟𝑑−2 𝑑𝑟

(1 − 𝑟2)𝑑−1 (19)

Since the factor (Ω𝑑−2 = 2𝜋 (𝑑−1)/2

Γ ( (𝑑−1)/2) ) is the total solid angle for a unit (𝑑 − 2)−sphere. Making the substitution (𝑥 =

𝑟2, 𝑑𝑥 = 2𝑟𝑑𝑟), Eq.(19) reduces to:

𝐴(𝑟ℎ) =
2𝜋 (𝑑−1)/2

Γ((𝑑 − 1)/2)

∫ 𝑟2
ℎ

0

1
2
𝑥 (𝑑−3)/2 (1 − 𝑥)−(𝑑−1) 𝑑𝑥 (20)

Thus, the total area of hyperbolic space obtained as [54]:

𝐴(𝑟ℎ) =
2𝜋 (𝑑−1)/2

Γ

(
𝑑−1

2

) ·
𝑟𝑑−1
ℎ

𝑑 − 1 2𝐹1

(
𝑑 − 1

2
, 𝑑 − 1;

𝑑 + 1
2

; 𝑟2
ℎ

)
(21)

where, 2𝐹1

(
𝑑−1

2 , 𝑑 − 1; 𝑑+1
2 ; 𝑟2

ℎ

)
is the Gauss hypergeometric function. Thus, Eq.(21) gives the area enclosed within the

radius 𝑟ℎ in the hyperbolic space.

4. THERMODYNAMICS OF ADS-RINDLER BHS
In this section, we derive the fundamental thermodynamic properties of BHs using established formalisms in BH

thermodynamics. We begin by computing the temperature and entropy, followed by the heat capacity, which plays a key
role in determining the stability of the BH. The upcoming calculations provide a comprehensive understanding of the
black hole’s thermodynamic structure and its response to quantum corrections or modifications in the entropy function.
Substituting the area presented in Eq. (21) into Eq. (1) (assuming 𝑘𝐵 = ℏ = 𝐺 = 1) we obtain the following.

(𝐶 )
𝑆 = 𝐵(𝑑) 𝑟𝑑−1

ℎ 2𝐹1

(
𝑑 − 1

2
, 𝑑 − 1;

𝑑 + 1
2

; 𝑟2
ℎ

)
, (22)

where,

𝐵(𝑑) = 𝜋 (𝑑−1)/2

2(𝑑 − 1) Γ
(
𝑑−1

2

)
Similarly, substituting Eq. (16) into Eq. (3) leads to the following (ℓ = 1):

𝜅 =
𝑑

2

[
𝑟ℎ −

1
𝑟ℎ

+ 2
𝑑 𝑟ℎ

]
(23)

Thus, Hawking temperature can easily be found from Eq. (23) and Eq. (4) as:

𝑇 =
𝑑

4𝜋

[
𝑟ℎ −

1
𝑟ℎ

+ 2
𝑑 𝑟ℎ

]
(24)

where 𝑟ℎ denotes the black hole’s horizon’s radius. Furthermore, the heat capacity of the BH is an essential
thermodynamic quantity that determines its stability. From the first law of BH thermodynamics, it is found to have
following relation [55, 56]:

𝐶 =
𝜕𝑀

𝜕𝑇

=

(
𝜕𝑀

𝜕𝑟ℎ

) / (
𝜕𝑇

𝜕𝑟ℎ

)
, (25)

Using Eq.(15) and Eq.(24), the partial derivatives of mass and Hawking temperature with respect to the horizon radius 𝑟ℎ
are expressed by

𝜕𝑀

𝜕𝑟ℎ
= 𝑟𝑑−3

ℎ

[
𝑑 𝑟2

ℎ − (𝑑 − 2)
]
, (26)
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and

𝜕𝑇

𝜕𝑟ℎ
=

1
4𝜋

[
𝑑 + 𝑑 − 2

𝑟2
ℎ

]
, (27)

respectively. Finally, by substituting (26) and (27) into (25), the uncorrected (or classical) heat capacity is given by:

(𝐶 )
𝐶 = 4𝜋

[
𝑑 𝑟2

ℎ
− (𝑑 − 2)

𝑑 𝑟2
ℎ
+ (𝑑 − 2)

]
𝑟𝑑−1
ℎ , (28)

The pressure associated with the BH can be expressed as [55]:

𝑃 =
1
2
𝑇𝑆. (29)

This relation establishes a direct connection between the temperature, entropy, and thermodynamic pressure of the BH.
Thus, putting (22) and (24) into (29) the pressure of the AdS-Rindler black hole obtained as,

(𝐶 )
𝑃 =

𝐵(𝑑)
8 𝜋 (1/2) 𝑟

𝑑−2
ℎ

(
𝑑𝑟2

ℎ − 𝑑 + 2
)

2𝐹1

(
𝑑 − 1

2
, 𝑑 − 1;

𝑑 + 1
2

; 𝑟2
ℎ

)
. (30)

where we have used the derivatives of the the hypergeometric function formula:

𝑑

𝑑𝑧
2𝐹1 (𝑎, 𝑏; 𝑐; 𝑧) = 𝑎𝑏

𝑐
2𝐹1 (𝑎 + 1, 𝑏 + 1; 𝑐 + 1; 𝑧)

The thermodynamic volume, which is conjugate to the pressure, is obtained using the following definition [13].

𝑉 =
𝜕𝑀

𝜕𝑃

=

(
𝜕𝑀

𝜕𝑟ℎ

) / (
𝜕𝑃

𝜕𝑟ℎ

)
. (31)

This expression describes how the mass 𝑀 of the BH varies with respect to pressure, providing insight into its extended
phase-space thermodynamics. In so doing, applying Eq. (31) to Eqs. (15) and (30) the BH volume can be calculated as:

(𝐶 )
𝑉 =

8 𝜋 (1/2)

𝐵(𝑑) ·
𝑑 𝑟2

ℎ
− (𝑑 − 2)(

𝑑2 𝑟2
ℎ
− (𝑑 − 2)2

)
2𝐹1

(
𝑑−1

2 , 𝑑 − 1; 𝑑+1
2 ; 𝑟2

ℎ

)
+ 2(𝑑−1)2

𝑑+1 𝑟2
ℎ
(𝑑 𝑟2

ℎ
− 𝑑 + 2)2𝐹1

(
𝑑+1

2 , 𝑑; 𝑑+3
2 ; 𝑟2

ℎ

) (32)

Finally, the Gibbs free energy, which characterizes the thermodynamic stability and phase behavior of the BH, is
given by [13]:

𝐺 = 𝑀 − 𝑇𝑆. (33)

This quantity plays a crucial role in understanding phase transitions and critical phenomena in BH thermodynamics. Doing
so, substitution of Eqs.(15), (22) and (24) into Eq.(33) leads to find the Gibbs free energy as:

(𝐶 )
𝐺 = 𝑟𝑑−2

ℎ

[
𝑟2
ℎ − 1 − 𝐵(𝑑)

4 𝜋 (1/2)

(
𝑑 𝑟2

ℎ − 𝑑 + 2
)

2𝐹1

(
𝑑 − 1

2
, 𝑑 − 1;

𝑑 + 1
2

; 𝑟2
ℎ

)]
(34)

Ultimately, we can say these functions provide the complete semiclassical thermodynamic description of AdS-Rindler
hyperbolic BHs.

5. THERMODYNAMICS OF ADS-RINDLER BHS WITH QUANTUM CORRECTION
In this section, we systematically incorporate quantum gravitational effects into our thermodynamic analysis of

hyperbolic BHs. Following the approach outlined in section (1), we employ an exponential correction term to the
Bekenstein-Hawking entropy, which captures non-perturbative quantum effects near the Planck scale. This correction pro-
vides a more complete description of BH microstate structure when quantum gravitational fluctuations become significant.
We begin by modifying the classical entropy with an exponential correction term,

(𝑄)
𝑆 =

(𝐶 )
𝑆 + 𝜂 𝑒−𝛿

(𝐶)
𝑆
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= 𝐵(𝑑) 𝑟𝑑−1
ℎ 2𝐹1

(
𝑑 − 1

2
, 𝑑 − 1;

𝑑 + 1
2

; 𝑟2
ℎ

)
+ 𝜂 exp

[
−𝛿 𝐵(𝑑) 𝑟𝑑−1

ℎ 2𝐹1

(
𝑑 − 1

2
, 𝑑 − 1;

𝑑 + 1
2

; 𝑟2
ℎ

)]
, (35)

where 𝛿 is the quantum correction parameter that controls the strength of quantum gravitational effects. This parameter
has dimensions of area and is expected to be on the order of the Planck area. In the limit 𝛿 → 0, we recover the classical
entropy formula, and as 𝛿 increases, quantum effects become more pronounced.

With the corrected entropy in hand, we now derive the corresponding modifications to the other thermodynamic
quantities. The non perturbative quantum corrected temperature can be found from the first law of BH thermodynamics
(𝑑𝑀 = 𝑇 𝑑𝑆) using Eq,(15) and (35) as:

(𝑄)
𝑇 =

𝜕𝑀

𝜕𝑆

=

(
𝜕𝑀

𝜕𝑟ℎ

) / (
𝜕𝑆

𝜕𝑟ℎ

)
=

𝑑 𝑟2
ℎ
− (𝑑 − 2)

(𝑑 − 1) 𝐵(𝑑) 𝑟ℎ
[
(𝑑 − 1)𝑊1 + 2(𝑑−1)2

𝑑+1 𝑟2
ℎ
𝑊2

] [
1 − 𝜂 𝛿 𝑒−𝛿 𝐵(𝑑) 𝑟𝑑−1

ℎ
𝑊1

] (36)

where,

𝑊1 = 2𝐹1

(
𝑑 − 1

2
, 𝑑 − 1;

𝑑 + 1
2

; 𝑟2
ℎ

)
, (37)

𝑊2 = 2𝐹1

(
𝑑 + 1

2
, 𝑑;

𝑑 + 3
2

; 𝑟2
ℎ

)
. (38)

Significant changes appear in the non-perturbative quantum corrected heat capacity
(𝑄)
𝐶 , which is defined through the

mass-temperature variation. The expression is derived using Eq. (25) for heat capacity, Eq. (26) for the mass derivative,
and Eq. (36) for the quantum temperature derivative:

(𝑄)
𝐶 =

(
𝜕𝑀

𝜕𝑟ℎ

) / ©­­«
𝜕
(𝑄)
𝑇

𝜕𝑟ℎ

ª®®¬
=

𝑟𝑑−1
ℎ

(𝑑 − 1)2 [𝐵(𝑑)]2 [𝐷1 (𝑟ℎ)]2 [𝐷2 (𝑟ℎ)]2 [
𝑑𝑟2

ℎ
− (𝑑 − 2)

]
2𝑑 (𝑑 − 1)𝐵(𝑑)𝑟2

ℎ
𝐷1 (𝑟ℎ)𝐷2 (𝑟ℎ) −

[
𝑑𝑟2

ℎ
− (𝑑 − 2)

]
𝐷3

(39)

where,

𝐷1 (𝑟ℎ) = (𝑑 − 1)𝑊1 +
2(𝑑 − 1)2

𝑑 + 1
𝑟2
ℎ𝑊2

𝐷2 (𝑟ℎ) = 1 − 𝜂 𝛿 𝑒−𝛿𝐵(𝑑)𝑟𝑑−1
ℎ

𝑊1

𝐷3 (𝑟ℎ) = (𝑑 − 1)𝐵(𝑑)
[
𝐷1 (𝑟ℎ)𝐷2 (𝑟ℎ) + 𝑟ℎ𝐷

′
1 (𝑟ℎ)𝐷2 (𝑟ℎ) + 𝑟ℎ𝐷1 (𝑟ℎ)𝐷′

2 (𝑟ℎ)
]

𝐷′
1 (𝑟ℎ) = 2(𝑑 − 1)2𝑟ℎ𝑊2 +

4𝑑 (𝑑 − 1)2

𝑑 + 3
𝑟3
ℎ𝑊3

𝐷′
2 (𝑟ℎ) = 𝜂𝛿2𝐵(𝑑) 𝑒−𝛿 𝐵(𝑑) 𝑟𝑑−1

ℎ
𝑊1

[
(𝑑 − 1)𝑟𝑑−2

ℎ 𝑊1 +
2(𝑑 − 1)2

𝑑 + 1
𝑟𝑑ℎ𝑊2

]
𝑊3 = 2𝐹1

(
𝑑 + 3

2
, 𝑑 + 1;

𝑑 + 5
2

; 𝑟2
ℎ

)
.

The quantum-corrected pressure is calculated by applying Eq.(29) to the modified entropy Eq.(35) and modified temperature
Eq.(36). Thus, we obtain:

(𝑄)
𝑃 =

[
𝑑𝑟2

ℎ
− (𝑑 − 2)

] [
𝐵(𝑑) 𝑟𝑑−1

ℎ
𝑊1 + 𝜂 𝑒−𝛿 𝐵(𝑑)𝑟𝑑−1

ℎ
𝑊1

]
2(𝑑 − 1)𝐵(𝑑) 𝑟ℎ

[
(𝑑 − 1)𝑊1 + 2(𝑑−1)2

𝑑+1 𝑟2
ℎ
𝑊2

] [
1 − 𝜂 𝛿 𝑒−𝛿 𝐵(𝑑) 𝑟𝑑−1

ℎ
𝑊1

] . (40)
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The corrected thermodynamic volume
(𝑄)
𝑉 , can be calculated from Eq.(31) as:

(𝑄)
𝑉 =

𝜕𝑀

𝜕
(𝑄)
𝑃

(41)

where the numerator of the above equation are presented in Eq.(26). While, one can find 𝜕
(𝑄)
𝑃

𝜕𝑟ℎ
in the denominator from

Eq.(40). This yield extremely lengthy expressions due to the complexity of the quantum-corrected pressure function
Eq.(40), which involve products of hypergeometric functions and exponential correction terms. For this reason, the fully
expanded form is not written here, which would span multiple lines and obscure the physical interpretation. Finally, the
corrected Gibbs free energy can be calculated as,

(𝑄)
𝐺 = 𝑟𝑑−2

ℎ

(
𝑟2
ℎ

ℓ2 − 1

)
−

[
𝑑 𝑟2

ℎ
− (𝑑 − 2)

] [
𝐵(𝑑) 𝑟𝑑−1

ℎ
𝑊1 + 𝜂 𝑒−𝛿 𝐵(𝑑) 𝑟𝑑−1

ℎ
𝑊1

]
(𝑑 − 1)2𝑟ℎ𝑊1 + 2(𝑑−1)3

𝑑+1 𝑟3
ℎ
𝑊2 − 𝜂 𝛿

(
(𝑑 − 1)2𝑟ℎ𝑊1 + 2(𝑑−1)3

𝑑+1 𝑟3
ℎ
𝑊2

)
𝑒−𝛿 𝐵(𝑑) 𝑟𝑑−1

ℎ
𝑊1

. (42)

These quantum-corrected formulations yield several key physical insights. The exponential correction term introduces
a regularization effect that becomes significant as 𝑟ℎ gets small, smoothing out the divergent behavior observed in the
classical case. Unlike logarithmic corrections that dominate at large horizon areas, our exponential correction becomes
most relevant at intermediate scales, particularly in the small scale. The quantum corrections preserve the overall
thermodynamic structure, particularly affecting the stability conditions indicated by the heat capacity.
In the following section, we will analyze these results graphically to better visualize the impact of quantum corrections on
the thermodynamic landscape of hyperbolic BHs.

6. RESULTS AND DISCUSSION
This section conducts a stability analysis in hyperbolic BH solutions. The impacts of quantum corrections on

thermodynamic properties are visualized through graphical representations. First, the heat capacity in Eq.(28) serves as a
key indicator of stability, with sign changes corresponding to transitions between stable and unstable regimes. As shown
in Figs. (1) and (2), the heat capacity exhibits a singularity at 𝑟ℎ = 1, which indicates a critical point in the thermodynamic
behavior of the BH. In addition, according to Eq. (25), a divergence in the uncorrected (or classical) heat capacity occurs
when the temperature reaches an extremum (𝜕𝑇/𝜕𝑟ℎ = 0). Thermodynamic stability changes whenever the heat capacity
changes sign—occurring at 𝑇 = 0 or 𝜕𝑀/𝜕𝑟ℎ = 0. A positive heat capacity corresponds to stability, while a negative
value indicates instability. Thus, analysing zeros and singularities in the heat capacity is essential for determining BH
stability and identifying phase transitions. From Eq.(27), assuming (𝜕𝑇/𝜕𝑟ℎ) = 0, we shall determine the range of 𝑑

values for which the temperature profiles exhibit extremal points (heat capacity diverges). Thus, we obtain:

𝑟ℎ = 𝑟±∞ (𝑑) = ±
√︂

2 − 𝑑

𝑑
(43)

The negative solution is physically unacceptable. Moreover, in BH thermodynamics, only dimensions with 𝑑 ≥ 2 are
admissible. Considering this, the preceding equation reveals that the only real solution occurs at 𝑑 = 2, giving 𝑟ℎ =

𝑟+∞ (𝑑 = 2) = 0. Substituting 𝑑 = 2 into Eq. (28) yields
(𝐶 )
𝐶 = 4𝜋𝑟ℎ, showing that the heat capacity remains finite for all

non-negative values of 𝑟ℎ and never diverges. Therefore, the obtained result 𝑟ℎ = 𝑟+∞ (𝑑 = 2) = 0 should be regarded as an
apparent solution. On the other hand, a change in the sign of the heat capacity indicates a transition between stable and
unstable BH states, with the transition occurring at points where the heat capacity reaches zero. From Eq.(26), assuming
𝐶 = 0 (corresponding to 𝑇ℎ = 0 or 𝜕𝑀/𝜕𝑟ℎ = 0), the solution becomes:

𝑟ℎ = 𝑟±0 (𝑑) = ±
√︂

𝑑 − 2
𝑑

. (44)

Ignoring the nonphysical negative root, we see that for 𝑑 ≥ 2, the regions of instability and stability correspond to 𝑟ℎ <

𝑟+0 (𝑑) and 𝑟ℎ > 𝑟+0 (𝑑), respectively. Specifically, for 𝑑 = 2, 3, 4, 5 we have 𝑟+0 (𝑑) = 0, 1/
√

3 = 0.577350, 1/
√

2 =

0.707107,
√︁

3/5 = 0.774597 (indicated by stars in Fig. (2) (panel (a)). Moreover, Fig. (1) presents both classical entropy
(panel (a)) and quantum-corrected entropy (panel (b)) as a function of the horizon radius 𝑟ℎ. As can be seen, there is a
sharp broadening around 𝑟ℎ =1, which suggests a rapid entropy change near the critical horizon radius. This could be
an indicator of a phase transition or a region in which the thermodynamic behavior of the BH changes drastically. After
adding quantum correction, the most notable effect is that the sharp broadening around 𝑟ℎ = 1 is smoothed out, leading to
a more gradual change in entropy, especially as the negative part becomes positive.

Furthermore, to analyze BH instabilities in the quantum-corrected case, we shall use Eq. (39) and determine the
critical values of the horizon radii, namely 𝑟+0 (𝑑) and 𝑟+∞ (𝑑). Comparing Eq. (39) with Eq. (25), we see that both share the
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Figure 1. The plots show the classical behavior of entropy before correction (panel a) and the quantum corrected entropy (panel b) of
the AdS-Rindler BHs for 𝜂 = 𝛿 = 1.
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Figure 2. The plots show the semiclassical behavior of heat capacity before correction (panel a) and the quantum corrected heat
capacity (panel b, c and d) of the AdS-Rindler BHs for 𝜂 = 𝛿 = 1.
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common factor (𝜕𝑀/𝜕𝑟ℎ) in the numerator. Therefore, the zeros ( 𝑟+0 (𝑑) ) of the quantum-corrected heat capacity (
(𝑄)
𝐶 )

are identical to those of the classical heat capacity (
(𝐶 )
𝐶 ), which were analytically obtained in Eq. (44).

However, due to the complexity and nonlinearity of the denominator (𝜕
(𝑄)
𝑇 /𝜕𝑟ℎ) of Eq. (39), which involves

transcendental functions, obtaining analytical solutions for 𝑟+∞ (𝑑) is impractical. Therefore, the roots can be computed

numerically. For each value of 𝑑, the stable region for the BHs, corresponding to
(𝑄)
𝐶 > 0, is indicated by the interval

between these critical values, i.e., Δ𝑟 (𝑑) =
��𝑟+∞ (𝑑) − 𝑟+0 (𝑑)

��. Specifically, for the values of 𝑑 = 2, 3, 4, 5, the stable regions
are defined as follows: Δ𝑟 (2) = |0.093547 − 0| = 0.093547, Δ𝑟 (3) = |0.681542 − 0.577350| = 0.104192, Δ𝑟 (4) =

|0.776354 − 0.707107| = 0.069247, Δ𝑟 (5) = |0.821919 − 0.774597| = 0.047322 , respectively. These points are
highlighted with different markers in Fig. (2) (panel c). In addition, in the case where 𝑑 = 5, we note that the heat capacity(
𝑄

𝐶

)
exhibits an additional divergent point at the vertical asymptote (𝑟ℎ = 𝑟+∞ (5) = 1.836). Beyond this point, the black

hole re-enters a stable region, as illustrated in Fig. (2) (panel d).

7. CONCLUSIONS
In this study, we conducted a comprehensive thermodynamic and stability analysis of AdS–Rindler (hyperbolic) BHs,

a theoretically significant yet relatively unexplored class of BH geometries. Using the framework of Hawking entropy and
quantum-corrected thermodynamics, we examined how quantum effects influence the stability of these BHs.

Our results reveal that the heat capacity plays a decisive role in determining stability regimes. For the uncorrected
heat capacity case, we have found the critical radii

(
𝑟+0 (𝑑)

)
(as in Eq.(44)) in which 𝐶 becomes positive and enters a

stable region for all 𝑟ℎ > 𝑟+0 (𝑑). While, upon introducing exponential quantum corrections to the entropy, we observed the
drastically change in the stability regions, leading to narrower but smoother stable regions where calculated by Δ𝑟 (𝑑) in
Sec.(6). Quantitatively, the size of these intervals for small black holes varies with the spacetime dimension 𝑑, reflecting
their measurable sensitivity to quantum fluctuations across different dimensions.

The quantum-corrected heat capacity generally destabilized large Rindler–AdS (hyperbolic) black holes across all
studied values of 𝑑. However, in the special case 𝑑 = 5, the system regains stability for horizon radii satisfying 𝑟ℎ > 1.836
, where the heat capacity 𝐶 becomes positive.

Overall, our findings demonstrate that quantum corrections drastically alter the qualitative stability of hyperbolic
BHs and do refine their thermodynamic structure, particularly by smoothing sharp entropy variations and modifying the
stability of such BHs due to studying heat capacity .

In summary, the interplay between geometry, quantum corrections, and thermodynamic behavior in AdS–Rindler
BHs provides valuable insights into nonclassical BH thermodynamics. In future work, the calculation of additional
thermodynamic quantities such as pressure, volume, and the Gibbs free energy will enable the study of phase transitions,
equations of state, and thermodynamic topology.
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Ми дослiджуємо термодинамiчнi властивостi та стабiльнiсть гiперболiчних AdS-Rindler чорних дiр, пiдкреслюючи вплив непер-
турбативної квантової корекцiї. Використовуючи стандартнi термодинамiчнi формулювання разом з методом диска Пуанкаре,
ми обчислюємо ключовi величини, включаючи масу, температуру Хокiнга, ентропiю та теплоємнiсть. Щоб врахувати квантовi
гравiтацiйнi ефекти, ми вводимо експоненцiальну корекцiю до ентропiї Бекенштейна-Хокiнга та систематично виводимо мо-
дифiкованi термодинамiчнi параметри. Хоча скоригована ентропiя призводить до рiвномiрного зсуву в багатьох величинах,
теплоємнiсть зазнає нетривiальних змiн, що призводить до вужчих та гладкiших стабiльних областей

(
Δ𝑟 (𝑑)

)
для кожного

вимiру 𝑑. Бiльше того, згладжування рiзких варiацiй ентропiї поблизу 𝑟ℎ = 1 пiдкреслює, як геометрiя горизонту керує впливом
квантових корекцiй. Це дослiдження пропонує нову систематичну iдентифiкацiю стабiльних областей до та пiсля експонен-
цiальних корекцiй (AdS-Рiндлерових) чорних дiр, пропонуючи нове розумiння взаємодiї геометрiї, розмiрностi та квантових
ефектiв у термодинамiцi чорних дiр.
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In analyzing two-electron systems, the interactions of interest often include the spin-spin operator ®𝑆1 · ®𝑆2 and the spin-orbit operator
®𝐿 · ®𝑆. When these operators act on entangled or indistinguishable particles, their measurement and physical interpretation may extend
beyond the standard projective framework. This tutorial introduces the algebraic structure of spin interactions in two electron quantum
systems and establishes its conceptual and mathematical connection with Naimark’s Extension Theorem. Through explicit examples
for two-electron systems, we demonstrate how spin operators arise in reduced Hilbert spaces, and how Naimark’s theorem provides a
formal framework for extending them to projective measurements in enlarged spaces. The application of Naimark’s Extension Theorem
in deriving their matrix elements opens up a window into the structure of quantum measurements in such composite systems.
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1. INTRODUCTION
In quantum mechanics, spin is an intrinsic form of angular momentum, described by the 𝔰𝑢(2) Lie algebra. In multi-

electron systems, interactions like spin-spin and spin-orbit couplings are fundamental in determining spectral structures and
quantum correlations. However, when systems are not fully accessible or are entangled with external degrees of freedom,
effective descriptions via Positive Operator-Valued Measures(POVMs) often arise. Naimark’s Extension Theorem[1-4,14,
15, 18-21] bridges this gap by ensuring that any POVM can be viewed as a Projection-Valued Measure(PVM) in a higher-
dimensional Hilbert space. This article builds an intuitive and formal connection between spin algebra and Naimark’s
extension, with physically motivated examples. This paper calculates all the matrix elements associated with the spin-
spin and spin-orbit operators for helium-like systems (He, 𝐿𝑖+) using an algebraic method, comparing the results with
the conventional quantum mechanical calculations by G. Araki[5-7]. The spin-algebraic approach simplifies traditional
quantum mechanics using tensor algebra and offers potential applications in quantum computing. We connect this algebraic
approach to quantum mechanics foundations such as Dirac’s vector space framework and the algebra of finite matrices[8].

This paper is organized as follows: Section 1 provides an introduction to spin algebra. Section 2 Naimark Extension
theorem and other associated theories related to spin algebra. In Section 3, we outline the algebraic theories related to spin
algebra. In section 4 we present the detailed calculations of the spin-dependent terms in the Breit Hamiltonian, highlighting
our main results related to spin-spin and spin-orbit interactions. Section 5 establishes the connection between spin algebra
and quantum computing theory. In Section 6, we summarize our analytical findings and discuss their consistency with
previously reported results. Finally, Section 7 outlines potential future directions and concludes the paper.

Our results, compared with previous work, form a basis for developing quantum algorithms and logic gates, with
plans to incorporate silicon-based calculations in future work. This research aims to explore the advantages of quantum
computing and develop strategies for error correction and improved device performance, ultimately contributing to the
realization of fault-tolerant quantum computers.

In quantum mechanics, spin is an intrinsic form of angular momentum, described by the 𝔰𝑢(2) Lie algebra. In multi-
electron systems, interactions like spin-spin and spin-orbit couplings are fundamental in determining spectral structures and
quantum correlations. However, when systems are not fully accessible or are entangled with external degrees of freedom,
effective descriptions via Positive Operator-Valued Measures(POVMs) often arise. Naimark’s Extension Theorem[1-4,14,
15, 18-21] bridges this gap by ensuring that any POVM can be viewed as a Projection-Valued Measure(PVM) in a higher-
dimensional Hilbert space. This article builds an intuitive and formal connection between spin algebra and Naimark’s
extension, with physically motivated examples. In this paper we calculate all the matrix elements associated with the
spin-spin and spin-orbit operators for helium-like systems (He, Li+) using an algebraic method, comparing the results with
the conventional quantum mechanical calculations by G. Araki[5-7]. The spin-algebraic approach simplifies traditional
quantum mechanics using tensor algebra and offers potential applications in quantum computing. We connect this algebraic
approach to quantum mechanics foundations such as Dirac’s vector space framework and the algebra of finite matrices[8].
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This paper is organized as follows: Section 1 provides an introduction to spin algebra. Section 2 delves into the
Naimark Extension theorem and other associated theories related to spin algebra. In Section 3, we outline the algebraic
theories related to spin algebra. In section 4 we present the detailed calculations of the spin-dependent terms in the
Breit Hamiltonian, highlighting our main results related to spin-spin and spin-orbit interactions. Section 5 establishes
the connection between spin algebra and quantum computing theory. In Section 6, we summarize our analytical findings
and discuss their consistency with previously reported results. Finally, Section 7 outlines potential future directions and
concludes the paper.

Our results, compared with previous work, form a basis for developing quantum algorithms and logic gates, with
plans to incorporate silicon-based calculations in future work. This research aims to explore the advantages of quantum
computing and develop strategies for error correction and improved device performance, ultimately contributing to the
realization of fault-tolerant quantum computers.

2. NAIMARK’S EXTENSION AND GENERALIZED MEASUREMENTS
Naimark’s Extension Theorem states that for any POVM {𝐸𝑖} acting on a Hilbert space H , there exists a larger

Hilbert space K ⊃ H and a projective measurement {𝑃𝑖} on K, such that

𝐸𝑖 = 𝑉†𝑃𝑖𝑉,

where 𝑉 : H → K is an isometry. This result allows one to represent generalized (unsharp) measurements as projective
(sharp) measurements on an extended system, possibly involving an ancillary system.

2.1. Spin-Spin Interaction as a Measurement of Joint Observables
The spin-spin interaction is described by:

®𝑆1 · ®𝑆2 =
1
2

(
®𝑆2

tot − ®𝑆2
1 − ®𝑆

2
2

)
,

which is a function of total spin. Measuring this interaction amounts to resolving joint properties of the two-electron
system. However, such joint measurements are not always directly implementable within H1 ⊗ H2, especially when the
spins are entangled. By extending the Hilbert space via Naimark’s theorem, we can model the measurement of ®𝑆1 · ®𝑆2 as
a sharp measurement on a larger space K, where a projective observable 𝑃 satisfies

⟨𝜓 | ®𝑆1 · ®𝑆2 |𝜓⟩ = ⟨𝑉𝜓 |𝑃 |𝑉𝜓⟩ .

This realizes the spin-spin operator as a component of a generalized measurement, effectively mediated by an ancilla
system or latent degrees of freedom.

2.2. Spin-Orbit Interaction as a Quantum Instrument
The spin-orbit interaction,

®𝐿 · ®𝑆 =

3∑︁
𝑖=1

𝐿𝑖𝑆𝑖 ,

entangles spin and orbital angular momenta. It can be viewed as a quantum instrument, a device that performs a
measurement on one subsystem (e.g., orbital) and conditionally transforms the other (e.g., spin).

Naimark’s theorem implies that this transformation may arise from a projective measurement on an extended space
involving an ancilla. Mathematically, the spin-orbit coupling operator can be embedded into a larger Hilbert space via:

®𝐿 · ®𝑆 = 𝑉†

(∑︁
𝑖

𝐿̃𝑖𝑆𝑖

)
𝑉,

where 𝐿̃𝑖 , 𝑆𝑖 are extended operators acting on K. This framework enables interpretation of spin-orbit interactions as
information flow between degrees of freedom through a measurement process.

2.3. Ancilla Interpretation and Emergent Observables
The embedding via Naimark naturally introduces an ancillary space A, such that:

K = H ⊗ A.

The matrix elements one can derive for spin operators in this framework suggest that some observables—particularly those
not simultaneously measurable—can be effectively simulated as projective measurements on this enlarged space. These
matrix elements therefore encode emergent properties due to the system-ancilla interaction.
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2.4. Theorems and Lemmas Related to Naimark’s Extension and Spin Interactions
Definition (POVM): A positive operator-valued measure (POVM) on a Hilbert spaceH is a set {𝐸𝑖} ⊂ B(H) such

that:
𝐸𝑖 ≥ 0 and

∑︁
𝑖

𝐸𝑖 = IH .

Theorem 1 (Naimark’s Dilation Theorem): Let {𝐸𝑖} be a POVM on a Hilbert space H . Then there exists a larger
Hilbert space K ⊃ H , an isometry 𝑉 : H → K, and a projection-valued measure (PVM) {𝑃𝑖} on K such that

𝐸𝑖 = 𝑉†𝑃𝑖𝑉.

This theorem allows generalized spin measurements (e.g., effective measurement of ®𝑆1 · ®𝑆2) to be implemented via
sharp measurements on an extended Hilbert space.

Lemma 1 (Operator Realization via Ancilla): Let 𝐴 ∈ B(H) be a Hermitian operator that does not correspond
to a measurable quantity in the standard sense (e.g., ®𝐿 · ®𝑆, when spin and orbital observables are not jointly measurable).
Then there exists an ancilla Hilbert space A and a Hermitian operator 𝐴̃ ∈ B(H ⊗ A) such that

⟨𝜓 |𝐴|𝜓⟩ = ⟨𝜓 ⊗ 𝜂 | 𝐴̃|𝜓 ⊗ 𝜂⟩ , ∀𝜓 ∈ H ,

where 𝜂 ∈ A is a fixed ancilla state. This lemma provides a foundation for calculating matrix elements of spin-orbit
operators via auxiliary systems.

Theorem 2 (Joint Measurement Representation): Let 𝐴, 𝐵 ∈ B(H) be two noncommuting observables (e.g.,
spin components or spin-orbit coupled operators). Then there exists a POVM {𝐸𝑖 𝑗 } on H that approximates a joint
measurement of 𝐴 and 𝐵, and an extended Hilbert space K ⊃ H such that:

𝐸𝑖 𝑗 = 𝑉†𝑃𝑖 𝑗𝑉, with {𝑃𝑖 𝑗 } a PVM on K .

This allows one to interpret the joint statistics of ®𝑆1 · ®𝑆2 and ®𝐿 · ®𝑆 in terms of projective measurements in an enlarged
space.

Lemma 2 (Matrix Element Preservation): Let 𝐴 ∈ B(H) be an observable and 𝐴̃ ∈ B(K) be its Naimark
extension such that 𝐴 = 𝑉† 𝐴̃𝑉 . Then for any 𝜓, 𝜙 ∈ H ,

⟨𝜓 |𝐴|𝜙⟩ = ⟨𝑉𝜓 | 𝐴̃|𝑉𝜙⟩ .
Hence, matrix elements of spin-spin or spin-orbit operators derived via an extended space are consistent with those

computed in the physical Hilbert space using POVM descriptions.
Corollary (Simulation of Noncommuting Observables): Spin observables that cannot be simultaneously diag-

onalized (e.g., 𝑆𝑥 , 𝑆𝑦) can still be jointly simulated via projective measurements in an extended space, consistent with
quantum contextuality. This supports the derivation of matrix elements for spin-spin and spin-orbit interactions via the
Naimark formalism.

2.5. Quantum Information Perspective
From a quantum information viewpoint, this formalism is closely related to:

• Entanglement-assisted measurements: where outcomes depend on entangled ancillae.

• Measurement-based quantum computation: where operations are simulated via measurement on entangled states.

• Contextuality and non-locality: since the need for extensions often stems from non-classical statistics of spin
observables.

3. QUANTUM SPIN SYSTEMS
Quantum spin systems[16] arise when the Hilbert space of states of atoms and molecules are reduced to a finite

dimensional subspace. Here in this paper we consider the 2- particle quantum spin system, namely a helium atom with two
spin-half electrons. To describe spin states of 2-electrons inside a helium atom, we consider a finite dimensional complex
space called Hilbert spaceH = C2.

3.1. Postulates of Quantum Mechanics
1) The state of a particle in the quantum system is represented by a state vector in the Hilbert space. One can get all

the information about the system by looking at the state vector.
2) The general quantum state of a quantum system is represented by a linear superposition of the individual states.
3) The state evolves by a unitary transformation.
4) All the observables(dynamical measurable variables) of a system can be represented by some operators.
5) The measured value of any physical observable is always real, so the corresponding operators are Hermitian.
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3.2. Dirac notations for the state vector
For each state vector, |𝜓 >∈ H ∃ < 𝜒 | ∈ dual space

Bra and ket states: For each |𝜓 > in linear vector space ∃ one < 𝜓 | in dual space. ket vector |𝜓 > is analogous to 𝜓 in
wave mechanics. bra vector < 𝜓 | is analogous to 𝜓∗ in wave mechanics.
Projections: The projectors 𝑃𝜓 onto a ket. Define 𝑃𝜓 = |𝜓 >< 𝜓 | and apply it to an arbitrary ket |𝜙 > ; 𝑃𝜓 |𝜙 >= |𝜓 ><

𝜓 |𝜙 > In both the cases above we have used the concept of Naimark-Segal’s extension formula[ 1-4, 14, 15,18-21].

3.3. Algebra of the spin groups
An algebra is a vector space equipped with bilinear operations. Algebra A of observables of a quantum system is

the set of all bounded operators onH , denoted by B(H)

3.3.1. Lie Group A Lie group[22-25] G with a compatible structure of a smooth (real or complex) manifold, in
which the group operations of multiplication and inversion are smooth maps. Or in other words
if 𝜇 : 𝐺 × 𝐺 → 𝐺, 𝜇(𝑥, 𝑦) = 𝑥𝑦 , then 𝜇 is a smooth map. The spin operators in H = C2 form a Lie group. The spin
groups of 1

2 integer spin particles are represented by 𝑆𝑈 (2) whereas the rotation groups in 3D are designated by 𝑆𝑂 (3).
𝑆𝑈 (𝑛) and 𝑆𝑂 (𝑛) are in general defined as:

𝑆𝑂 (𝑛) = {𝐴 ∈ 𝐺𝐿 (𝑛,R) : 𝐴𝐴𝑡 = 1 and 𝑑𝑒𝑡 (𝐴) = 1}
𝑆𝑈 (𝑛) = {𝐴 ∈ 𝐺𝐿 (𝑛,C) : 𝐴𝐴∗ = 1 and 𝑑𝑒𝑡 (𝐴) = 1}
These two groups are isomorphic locally and their Lie Algebras are the same. 𝑆𝑈 (2) is the universal double covering

group of 𝑆𝑂 (3).

The Hermitian generators of 𝑆𝑈 (2) take the following form: [𝑇𝑖 , 𝑇𝑗 ] = 𝑖𝜖𝑖 𝑗𝑘𝑇𝑘 where 𝑇𝑖 = 1
2 𝜎̂𝑖 and 𝜎𝑥=

(
0 1
1 0

)
𝜎𝑦=

(
0 −𝑖
𝑖 0

)
𝜎𝑧=

(
1 0
0 −1

)
.

3.3.2. Lie Algebra of spin groups If G is a Lie group , then the Lie algebra g associated to G is, 𝑇1 (𝐺) i.e.,
the tangent space of G at the identity 1 ∈ 𝐺. A Lie algebra g is a special case where bilinear operation behaves like a
commutator, in particular the bilinear operations need to satisfy
[·, ·] : 𝑔 × 𝑔 = 𝑔

[𝑥, 𝑥] = 0∀𝑥 ∈ 𝑔(𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑙𝑦)
[𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]] + [𝑧, [𝑥, 𝑦]] = 0∀𝑥, 𝑦, 𝑧 ∈ 𝑔 (Jacobi identity)

[𝑥, 𝑦] + [𝑦, 𝑥] = 0∀𝑥, 𝑦 ∈ 𝑔(𝑎𝑛𝑡𝑖𝑐𝑜𝑚𝑚𝑢𝑡𝑖𝑣𝑖𝑡𝑦)
The Lie algebra associated with 𝑆𝑂 (3) takes the following form: [𝐽𝑖 , 𝐽 𝑗 ] = 𝜖𝑖 𝑗𝑘𝐽𝑘

3.4. Representation of Lie Groups and Lie Algebras connected to spin observables
Let G be a Lie group and W be a finite dimensional vector space over a fieldK ∈ {R,C}. A representation Π of G

acting on W is a mapping Π : 𝐺 → 𝐺𝐿 (𝑊) which satisfies
Π(𝑔1𝑔2) = Π(𝑔1)Π(𝑔2) ∀𝑔1, 𝑔2 ∈ 𝐺 and 𝑑𝑖𝑚(Π) = 𝑑𝑖𝑚(𝑉) If g be a Lie Algebra of the above Lie group G, then a
representation 𝜋 acting on W is a mapping 𝜋 : 𝑔 → 𝐿 (𝑊) which satisfies
𝜋( |𝑥, 𝑦 |) = [𝜋(𝑥), 𝜋(𝑦)] ∀𝑥, 𝑦 ∈ 𝑔 and 𝑑𝑖𝑚(𝜋) = 𝑑𝑖𝑚(𝑊). In general, the tensor product of 𝑠𝑢(2) representations
with spin 𝑠1 and 𝑠2 can be written as a fusion rule
(𝑠1) ⊗ (𝑠2) =

∑𝑠1+𝑠2
𝑠= |𝑠1−𝑠2 | (𝑠). For 𝑠1 = 𝑠2 = 1

2 , the decomposition of the Hilbert space can be given as
(1/2) ⊗ (1/2) = (0) + (1).

For two spin-(1/2) particles the four states of the Hilbert space can be decomposed into the triplet and the singlet
states.
triplet:| ↑↑>, 1√

2
( | ↑↓> +| ↓↑>), | ↓↓>

singlet: 1√
2
( | ↑↓> −| ↓↑>).

3.5. Naimark’s Extension Theorem and Spin Couplings
Naimark’s extension theorem provides a deep mathematical and physical insight into the representation of generalized,

or unsharp, measurements as projective (sharp) measurements on an enlarged Hilbert space. This idea has a natural and
elegant interpretation in the algebra of spin systems, where coupling between subsystems can be seen as an embedding of
one Hilbert space into a larger one, typically involving an ancillary degree of freedom.
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3.5.1. The statement of Naimark’s theorem LetH be a Hilbert space describing our physical system. A Positive
Operator-Valued Measure (POVM) {𝐸𝑖} on H is a set of positive operators satisfying

∑
𝑖 𝐸𝑖 = 𝐼. Naimark’s theorem

states that any such POVM can be realized as a projective measurement on a larger space Hext = H ⊗ Hanc, where Hanc
is an ancillary Hilbert space, and there exists an isometry

𝑉 : H −→ H ⊗ Hanc

such that
𝐸𝑖 = 𝑉†𝑃𝑖𝑉,

where {𝑃𝑖} are projection operators acting onHext.
Physically, the embedding 𝑉 represents the process of coupling the system to an ancilla, performing a sharp

measurement on the composite system, and then projecting back to the original space.

3.5.2. Spin-Orbit coupling as a Naimark extension Consider a single electron in an atom, such as helium. Its
Hilbert space is a tensor product of an orbital part and a spin part,

H = H𝐿 ⊗ H𝑆 ,

whereH𝐿 carries the orbital angular momentum L, andH𝑆 carries the intrinsic spin S.
The spin–orbit coupling operator is given by

L · S = 𝐿𝑥𝑆𝑥 + 𝐿𝑦𝑆𝑦 + 𝐿𝑧𝑆𝑧 .

If one considers the orbital part alone as the “system” Hilbert space, the influence of the spin degree of freedom
makes L · S appear as a non-projective, or unsharp, operator on H𝐿 . According to Naimark’s theorem, it can be realized
as a sharp observable on the extended spaceH𝐿 ⊗ H𝑆:

L · S = 𝑉†

(∑︁
𝑖

𝐿̃𝑖𝑆𝑖

)
𝑉.

Here the ancilla is the spin Hilbert spaceH𝑆 , and 𝑉 is an isometric embedding

𝑉 : H𝐿 →H𝐿 ⊗ H𝑆 ,

given explicitly by the Clebsch–Gordan transformation:

𝑉 |𝑙, 𝑚𝑙⟩ =
∑︁
𝑚𝑠

𝐶
𝑗 𝑚 𝑗

𝑙 𝑚𝑙
1
2 𝑚𝑠

|𝑙, 𝑚𝑙⟩ ⊗ | 12 , 𝑚𝑠⟩,

where 𝐶
𝑗 𝑚 𝑗

𝑙 𝑚𝑙
1
2 𝑚𝑠

are the Clebsch–Gordan coefficients connecting orbital and spin states to total angular momentum
eigenstates.

In this sense, the spin degree of freedom acts as the ancilla that sharpens the unsharp orbital observable into a
well-defined total angular momentum observable.

3.5.3. Spin-Spin coupling as a Naimark extension For a two-electron system (as in helium), each electron
possesses a spin- 1

2 degree of freedom. The combined spin space is

H𝑆 = H𝑆1 ⊗ H𝑆2 .

The spin–spin coupling operator is
S1 · S2 = 𝑆1𝑥𝑆2𝑥 + 𝑆1𝑦𝑆2𝑦 + 𝑆1𝑧𝑆2𝑧 .

If one wishes to represent S1 · S2 as a projective measurement on an enlarged space starting from H𝑆1 alone, then the
ancilla is naturally the spin space of the second electron,H𝑆2 . Thus,

S1 · S2 = 𝑉†

(∑︁
𝑖

𝑆1𝑖𝑆2𝑖

)
𝑉,

where
𝑉 : H𝑆1 →H𝑆1 ⊗ H𝑆2

is again a Clebsch–Gordan embedding mapping single-spin states to the joint singlet-triplet basis:
𝑉 | ↑⟩ = | ↑↑⟩,
𝑉 | ↓⟩ = 1√

2

(
| ↑↓⟩ + | ↓↑⟩

)
,

depending on the total spin sector considered.
Hence,H𝑆2 plays the role of an ancilla that extends the space of one spin to the composite two-spin space where S1 ·

S2 is a sharp observable.
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3.5.4. Summary

Operator System Ancilla Embedding 𝑉

L · S Orbital spaceH𝐿 Spin spaceH𝑆 Clebsch–Gordan map
S1 · S2 One-spin spaceH𝑆1 Second spinH𝑆2 Clebsch–Gordan map

In both cases, Naimark’s extension theorem offers a unified perspective: an apparently unsharp or subsystem-
dependent observable (such as L · S or S1 · S2) becomes sharp when lifted to an extended Hilbert space that includes the
appropriate ancilla. The isometry𝑉 implementing this lifting is physically realized by the Clebsch–Gordan transformation
that couples angular momenta into total angular momentum eigenstates.

3.6. Lie Group and Spin Algebra Connection
The algebra of spin operators is most naturally understood in the framework of Lie groups and their representations.

The operators L, S, and J = L + S are all generators of unitary representations of the Lie group 𝑆𝑈 (2), whose associated
Lie algebra is 𝑠𝑢(2). This formalism provides a unifying language for understanding spin–orbit and spin–spin couplings
as scalar invariants of tensor product representations.

3.6.1. The 𝑠𝑢(2) Lie algebra The Lie algebra 𝑠𝑢(2) is generated by the operators {𝑆𝑥 , 𝑆𝑦 , 𝑆𝑧} satisfying the
commutation relations

[𝑆𝑖 , 𝑆 𝑗 ] = 𝑖ℏ𝜖𝑖 𝑗𝑘𝑆𝑘 ,

where 𝜖𝑖 𝑗𝑘 is the Levi-Civita symbol. The Casimir operator

𝑆2 = 𝑆2
𝑥 + 𝑆2

𝑦 + 𝑆2
𝑧

commutes with all the generators of the algebra, and its eigenvalues classify the irreducible representations (irreps) of
𝑠𝑢(2):

𝑆2 |𝑠, 𝑚𝑠⟩ = ℏ2𝑠(𝑠 + 1) |𝑠, 𝑚𝑠⟩.
The corresponding group 𝑆𝑈 (2) consists of unitary operators

𝑈 (𝜽) = 𝑒−𝑖𝜽 ·S/ℏ,

which represent spatial rotations on the Hilbert space of spin states.

3.6.2. Tensor product representations and coupling of spins When two angular momenta are present, such as
L and S or S1 and S2, each provides an independent representation of 𝑠𝑢(2). The combined system is described by the
tensor product representation

𝐷 (𝑙) ⊗ 𝐷 (𝑠) =
𝑙+𝑠⊕

𝑗= |𝑙−𝑠 |
𝐷 ( 𝑗 ) ,

where 𝐷 ( 𝑗 ) are the irreducible representations of 𝑆𝑈 (2). The map that implements this decomposition is the Clebsch–
Gordan transformation,

𝑉 : H𝐿 ⊗ H𝑆 −→
⊕

𝑗

H 𝑗 ,

which is also the isometric embedding used in Naimark’s extension theorem. The operator 𝑉 intertwines between
representations, satisfying

𝑉 𝑈𝐿 (𝑔) ⊗ 𝑈𝑆 (𝑔) = 𝑈𝐽 (𝑔)𝑉,
for all 𝑔 ∈ 𝑆𝑈 (2).

3.6.3. Spin–orbit coupling as a Lie algebra scalar The spin–orbit coupling operator

L · S = 𝐿𝑥𝑆𝑥 + 𝐿𝑦𝑆𝑦 + 𝐿𝑧𝑆𝑧

is a scalar under the diagonal action of 𝑆𝑈 (2):

𝑈 (𝑔) (L · S)𝑈 (𝑔)† = L · S, 𝑈 (𝑔) = 𝑈𝐿 (𝑔) ⊗ 𝑈𝑆 (𝑔).

Therefore, it can be expressed in terms of the Casimir operators of the Lie algebra:

L · S =
1
2
(
𝐽2 − 𝐿2 − 𝑆2) ,

where 𝐽2 = (L + S)2 is the total angular momentum Casimir. This representation emphasizes that L · S is an invariant
scalar built from the direct product of two 𝑠𝑢(2) algebras.
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3.6.4. Spin–spin coupling as a Lie algebra invariant For a two-electron system, the total spin operator is

S = S1 + S2,

and the spin–spin coupling operator
S1 · S2 = 𝑆1𝑥𝑆2𝑥 + 𝑆1𝑦𝑆2𝑦 + 𝑆1𝑧𝑆2𝑧

can be written analogously as

S1 · S2 =
1
2
(
𝑆2 − 𝑆2

1 − 𝑆
2
2
)
.

Here again, 𝑆2 is the Casimir operator of the total 𝑠𝑢(2) representation. The eigenvalues of S1 · S2 distinguish the singlet
and triplet sectors:

S1 · S2 |𝑆 = 0⟩ = − 1
4ℏ

2 |𝑆 = 0⟩,
S1 · S2 |𝑆 = 1⟩ = + 3

4ℏ
2 |𝑆 = 1⟩.

These correspond to the irreducible representations 𝐷 (0) and 𝐷 (1) of 𝑆𝑈 (2), respectively.

3.6.5. Relation to Naimark’s extension From the Lie algebra viewpoint, the Naimark extension operator 𝑉

introduced earlier can be recognized as an intertwiner between representations of the Lie algebra 𝑠𝑢(2):

𝐿𝑖 ↦−→ 𝐿̃𝑖 = 𝑉𝐿𝑖𝑉
†, 𝑆𝑖 ↦−→ 𝑆𝑖 = 𝑉𝑆𝑖𝑉

†.

The coupling operator in the extended space, ∑︁
𝑖

𝐿̃𝑖𝑆𝑖 ,

is a scalar invariant under the diagonal 𝑆𝑈 (2) action, and its projection

𝑉†

(∑︁
𝑖

𝐿̃𝑖𝑆𝑖

)
𝑉

acts as the physical observable on the smaller subsystem. Thus, the embedding of an unsharp observable into a sharp
one via Naimark’s theorem is fully consistent with the algebraic principle of constructing invariants from coupled 𝑠𝑢(2)
representations.

3.6.6. Tutorial Summary From the perspective of Lie group theory, both spin–orbit and spin–spin interactions arise
as scalar invariants of coupled representations of the 𝑠𝑢(2) Lie algebra. The Clebsch–Gordan map 𝑉 , which couples two
angular momenta into irreducible components, simultaneously serves as the embedding operator in Naimark’s extension
theorem. Therefore, the Lie algebraic coupling of spins and the measurement-theoretic embedding of unsharp observables
are two complementary realizations of the same symmetry structure encoded by the group 𝑆𝑈 (2).

3.7. Composite systems and Tensor products with Naimark’s extension formula
For 1 particle, spin states are defined as | ↑> and | ↓>. For a bipartite system with two electrons(He or Li+ ) any

operator for the particle 1, 𝐴1 ∈ H1 (H1 is known as a complex Hilbert space) can be upgraded to a bigger Hilbert space,
H12 by taking the tensor product with the identity operator inH2 i.e., 𝐴̂12 = 𝐴1 ⊗ I2.
Similarly an operator, 𝐴2 ∈ H2 is upgraded to I1 ⊗ 𝐴2.
Now (𝐴1) ⊗ (I2).(I1 ⊗ 𝐴2) (𝜓1 ⊗ 𝜓2) = 𝐴1𝜓1 ⊗ 𝐴1𝜓2, where the state vector 𝜓1 ∈ H1 and the state vector 𝜓2 ∈ H2.

(𝐴1 ⊗ 𝐴2) ↑ ⊗ ↑= (𝐴1 ↑) ⊗ (𝐴2 ↑) (1)

The upgradation formula for the addition of spin angular momenta takes the following form:

𝜎+ = (𝜎1+ ⊗ 1 + 1 ⊗ 𝜎2+) (2)

In both the cases above we have used the concept of Naimark-Segal’s extension formula[1-4,14,15, 18-21].
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4. MATRIX ELEMENTS USING NAIMARK’S EXTENSION FORMULA
4.1. Example 1: Spin-spin interaction operators

The operators needed to calculate the relativistic effects are well known. In atomic units with no external electric
and magnetic field these are usually written as Eq. (1) of [11]

Δ𝑟 = −
∑︁
𝑖

∇i
4

8𝑐2 +
∑︁
𝑖

𝑍𝜋

2𝑐2 𝛿(ri) −
∑︁
𝑖< 𝑗

𝜋

𝑐2 𝛿(ri − rj) −
∑︁

𝑖< 𝑗

1
2𝑐2 ×

×←−∇i · [
(ri − rj) (ri − rj)

𝑟𝑖 𝑗
3 + 1

𝑟𝑖 𝑗
] · −→∇j −

∑︁
𝑖< 𝑗

8𝜋
3𝑐2 𝛿(ri − rj)si · sj

−
∑︁
𝑖< 𝑗

1
𝑐2 si ·

3(ri − rj) (ri − rj) − 𝑟𝑖 𝑗2

𝑟𝑖 𝑗
5 · sj −

∑︁
𝑖

𝑍

2𝑐2
1
𝑟3
𝑖

si · [ri × 𝑖
−→∇i]

+
∑︁
𝑖≠ 𝑗

1
𝑐2

1
𝑟𝑖 𝑗

3 si · [(ri − rj) × 𝑖
−→∇j] +

∑︁
𝑖≠ 𝑗

1
2𝑐2

1
𝑟𝑖 𝑗

3 sj · [(rj − ri) × 𝑖
−→∇j], (3)

where 𝑟𝑖 𝑗 is the distance between the particles. The first term is the mass velocity correction. The Second and third operators
are the electron and nucleus Darwin term respectively. The fourth term is due to the retardation of electromagnetic field by
an electron. The fifth and sixth terms represent spin-spin and spin-other spin terms. The last three operators are spin-orbit
interactions. For a singlet state with any angular momentum, the expectation values of sixth, seventh and eighth terms are
zero. For triplet P and D states, however, the sixth, seventh, eighth and ninth terms are now nonzero and must be computed.
Particularly we need to calculate the matrix elements − 1

𝑐2 < 𝜙| [Σ𝑖< 𝑗
8𝜋
3 𝛿(ri − rj)si.sj − Σ𝑖< 𝑗si.

3(ri−rj ) (ri−rj )−𝑟𝑖 𝑗 2

𝑟𝑖 𝑗
5 ] .sj |𝜙 >

and 1
𝑐2 < 𝜙| [Σ𝑖≠ 𝑗

1
𝑟𝑖 𝑗

3 si.[(ri − rj) × 𝑖∇j] + Σ𝑖≠ 𝑗
1
2

1
𝑟𝑖 𝑗

3 sj.[(rj − ri) × 𝑖∇j] |𝜙 >

where 𝜙 is the exact eigenvalue of the unperturbed Hamiltonian.
The spin spin interaction in general for many particle can be written as

𝐻𝑠𝑠 = 4𝜇2 [−Σ𝑖< 𝑗

8𝜋
3
𝛿(ri − rj) [𝜎i.𝜎j +

1
𝑟𝑖 𝑗

3 {𝜎i.𝜎j − 3(𝜎i.rij) (𝜎j.rij)/𝑟2
𝑖 𝑗 ] (4)

where 𝜇 is the Bohr magneton i.e., 𝜇 = 𝑒ℏ
2𝑚𝑒𝑐

. In atomic units the spin-spin intercation is measured in units of 1
𝑐2 . For 2

electron system the above expression can be written as[9]

1
𝑐2 [−

8𝜋
3
𝜎1.𝜎2𝛿(r12) +

1
r123 {𝜎

1.𝜎2 − 3(𝜎1.r12) (𝜎2.r12)/𝑟12
2}] (5)

Now since triplet spin function is symmetric < 𝛿(𝑟12) >= 0 for triplet states. So for triplet states only 2nd and third term
in Eq (5) contribute.

4.2. Spin states

For 1 particle, spin states are defined as |𝛼 >≡ | ↑>≡
(

1
0

)
and |𝛽 >≡ | ↓> ≡

(
0
1

)
For 2 particle systems spin states are defined as |𝛼1 > ⊗|𝛼2 >≡ | ↑> ⊗| ↑>, |𝛼1 > ⊗|𝛽2 >≡ | ↑> ⊗| ↓>, |𝛽1 >

⊗|𝛼2 >≡ | ↓> ⊗| ↑> and |𝛽1 > ⊗|𝛽2 >≡ | ↓> ⊗| ↓>.

4.3. Evaluation of Matrix representation of the spin observables
Using the basis defined in section 4.2, the matrix representation of a general operator 𝑅 can be represented as©­­­«
<↑↑ |𝑅 | ↑↑> <↑↑ |𝑅 | ↑↓> <↑↑ |𝑅 | ↓↑> <↑↑ |𝑅 | ↓↓>
<↑↓ |𝑅 | ↑↑> <↑↓ |𝑅 | ↑↓> <↑↓ |𝑅 | ↓↑> <↑↓ |𝑅 | ↓↓>
<↓↑ |𝑅 | ↑↑> <↓↑ |𝑅 | ↑↓> <↓↑ |𝑅 | ↓↑> <↓↑ |𝑅 | ↓↓>
<↓↓ |𝑅 | ↑↑> <↓↓ |𝑅 | ↑↓> <↓↓ |𝑅 | ↓↑> <↓↓ |𝑅 | ↓↓>

ª®®®¬ .
We calculate the diagonal matrix elements of the above operator as the correction for the spin spin interaction for

triplet states of helium.

4.4. Matrix elements for the spin-spin interactions
Calculation for (𝜎1.𝜎2)/𝑟3

12
Let us first calculate 𝜎1.𝜎2 = 𝜎𝑥

1𝜎𝑥
2 + 𝜎𝑦

1𝜎𝑦
2 + 𝜎𝑧

1𝜎𝑧
2
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Now

𝜎𝑥
1 ⊗ 𝜎𝑥

2 | ↑ ⊗ ↑>= 𝜎𝑥
1 | ↑> 𝜎𝑥

2 | ↑>
(6)

yields(
0 1
1 0

) (
1
0

) (
0 1
1 0

) (
1
0

)
=
(

0
1

) (
0
1

)
𝜎𝑦

1 ⊗ 𝜎𝑦
2 | ↑ ⊗ ↑>= 𝜎𝑦

1 | ↑> 𝜎𝑦
2 | ↑>

(7)

yields(
0 −𝑖
𝑖 0

) (
1
0

) (
0 −𝑖
𝑖 0

) (
1
0

)
=
(

0
𝑖

) (
0
𝑖

)
=-

(
0
1

) (
0
1

)
𝜎𝑧

1 ⊗ 𝜎𝑧
2 | ↑ ⊗ ↑>= 𝜎𝑧

1 | ↑> 𝜎𝑧
2 | ↑>

(8)

yields(
1 0
0 −1

) (
1
0

) (
1 0
0 −1

) (
1
0

)
=
(

1
0

) (
1
0

)
(𝜎1.𝜎2)/𝑟3

12

©­­­«
𝛼1𝛼2
𝛼1𝛽2
𝛽1𝛼2
𝛽1𝛽2

ª®®®¬ = 1
𝑟3

12

©­­­«
↓↓ − ↓↓ + ↑↑
↓↑ + ↓↑ − ↑↓
↑↓ + ↑↓ − ↓↑
↑↑ − ↑↑ + ↓↓

ª®®®¬ = 1
𝑟3

12

©­­­«
↑↑

2 ↓↑ − ↑↓
2 ↑↓ − ↓↑
↓↓

ª®®®¬
Now let us recall r12 = r = 𝑖𝑥+ 𝑗 𝑦+ 𝑘̂ 𝑧, where (𝑥2− 𝑥1 = 𝑥, 𝑦2− 𝑦1 = 𝑦, 𝑧2− 𝑧1 = 𝑧), and 𝑟12 = 𝑟 =

√︁
(𝑥2 + 𝑦2 + 𝑧2),

where 𝑧1 and 𝑧2 are the 𝑧 coordinates of electron 1 and 2.
Calculations for (𝜎1.r12) (𝜎2.r12)/𝑟5

12

(𝜎1.r12) (𝜎2.r12)/𝑟5
12

©­­­«
𝛼1𝛼2
𝛼1𝛽2
𝛽1𝛼2
𝛽1𝛽2

ª®®®¬
Now

(𝜎1.r) (𝜎2.r) = (𝑥𝜎1𝑥 + 𝑦𝜎1𝑦 + 𝑧𝜎1𝑧) (𝑥𝜎2𝑥 + 𝑦𝜎2𝑦 + 𝑧𝜎2𝑧) (9)
= 𝑥2𝜎1𝑥 ⊗ 𝜎2𝑥 + 𝑥𝑦𝜎1𝑦 ⊗ 𝜎2𝑥 + 𝑥𝑧𝜎1𝑧 ⊗ 𝜎2𝑥 +
𝑥𝑦𝜎1𝑥 ⊗ 𝜎2𝑦 + 𝑦2𝜎1𝑦 ⊗ 𝜎2𝑦 + 𝑦𝑧𝜎1𝑧 ⊗ 𝜎2𝑦 +

𝑥𝑧𝜎1𝑥 ⊗ 𝜎2𝑧 + 𝑦𝑧𝜎1𝑦 ⊗ 𝜎2𝑧 + 𝑧2𝜎1𝑧 ⊗ 𝜎2𝑧

Now we need to operate 𝑥2𝜎1𝑥 ⊗ 𝜎2𝑥 + 𝑥𝑦𝜎1𝑦 ⊗ 𝜎2𝑥 + 𝑥𝑧𝜎1𝑧 ⊗ 𝜎2𝑥 +
𝑥𝑦𝜎1𝑥 ⊗ 𝜎2𝑦 + 𝑦2𝜎1𝑦 ⊗ 𝜎2𝑦 + 𝑦𝑧𝜎1𝑧 ⊗ 𝜎2𝑦 +
𝑥𝑧𝜎1𝑥 ⊗ 𝜎2𝑧 + 𝑦𝑧𝜎1𝑦 ⊗ 𝜎2𝑧 + 𝑧2𝜎1𝑧 ⊗ 𝜎2𝑧

on
©­­­«
𝛼1𝛼2
𝛼1𝛽2
𝛽1𝛼2
𝛽1𝛽2

ª®®®¬.

Operating 𝑥2𝜎1𝑥 ⊗ 𝜎2𝑥 + 𝑥𝑦𝜎1𝑦 ⊗ 𝜎2𝑥 + 𝑥𝑧𝜎1𝑧 ⊗ 𝜎2𝑥 +
𝑥𝑦𝜎1𝑥 ⊗ 𝜎2𝑦 + 𝑦2𝜎1𝑦 ⊗ 𝜎2𝑦 + 𝑦𝑧𝜎1𝑧 ⊗ 𝜎2𝑦 +
𝑥𝑧𝜎1𝑥 ⊗ 𝜎2𝑧 + 𝑦𝑧𝜎1𝑦 ⊗ 𝜎2𝑧 + 𝑧2𝜎1𝑧 ⊗ 𝜎2𝑧
on 𝛼1𝛼2 one gets

(𝑥 + 𝑖𝑦)2𝛽1𝛽2 + (𝑥 + 𝑖𝑦)𝑧(𝛼1𝛽2 + 𝛼2𝛽1 + 𝑧2𝛼1𝛼2
Explicit derivation for the above:
Since spin operators are same for particle ’1’ and particle ’2’ we suppress the subscript ’1’ and ’2’ from now on.

now 𝜎𝑥=
(

0 1
1 0

)
𝜎𝑦=

(
0 −𝑖
𝑖 0

)
𝜎𝑧=

(
1 0
0 −1

)
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Using the above spin operators we calculate

𝑥2𝜎𝑥 ⊗ 𝜎𝑥 | ↑> ⊗| ↑>= 𝑥2𝜎𝑥 | ↑> 𝜎𝑥 | ↑>= 𝑥2 ↓↓= 𝑥2𝛽1𝛽2 (10)

( we have used (𝐴1 ⊗ 𝐴2) | ↑> ⊗| ↑>= (𝐴1 | ↑>) ⊗ (𝐴2 | ↑>); 𝜎𝑥 |𝛼1 > 𝜎𝑥 |𝛼2 >

=
(

0 1
1 0

) (
1
0

) (
0 1
1 0

) (
1
0

)
=
(

0
1

) (
0
1

)
) .

Similarly
𝑥𝑦𝜎𝑦 ⊗ 𝜎𝑥 | ↑> ⊗| ↑>= 𝑖𝑥𝑦𝛽1𝛽2, (11)
𝑥𝑧𝜎𝑧 ⊗ 𝜎𝑥 | ↑> ⊗| ↑>= 𝑖𝑥𝑧𝛼1𝛽2, (12)
𝑥𝑦𝜎𝑥 ⊗ 𝜎𝑦 | ↑> ⊗| ↑>= 𝑖𝑥𝑦𝛽1𝛽2, (13)

𝑦2𝜎𝑦 ⊗ 𝜎𝑦 | ↑> ⊗| ↑>= −𝑦2𝛽1𝛽2, (14)
𝑦𝑧𝜎𝑧 ⊗ 𝜎𝑦 | ↑> ⊗| ↑>= 𝑖𝑦𝑧𝛼1𝛽2, (15)
𝑥𝑧𝜎𝑥 ⊗ 𝜎𝑧 | ↑> ⊗| ↑>= 𝑥𝑧𝛽1𝛼2, (16)
𝑦𝑧𝜎𝑦 ⊗ 𝜎𝑧 | ↑> ⊗| ↑>= 𝑖𝑦𝑧𝛽1𝛼2, (17)

𝑧2𝜎𝑧 ⊗ 𝜎𝑧 | ↑> ⊗| ↑>= 𝑧2𝛼1𝛼2. (18)
We have similar relation when we operate

(𝜎1.r) (𝜎2.r) on other basis functions. So (𝜎1.r12) (𝜎2.r12)/𝑟5
12

©­­­«
𝛼1𝛼2
𝛼1𝛽2
𝛽1𝛼2
𝛽1𝛽2

ª®®®¬
= 1
𝑟5

12

©­­­«
𝑧2𝛼1𝛼2 + (𝑥 + 𝑖𝑦)𝑧(𝛼1𝛽2 + 𝛽1𝛼2) + (𝑥 + 𝑖𝑦)2𝛽1𝛽2

𝑧(𝑥 − 𝑖𝑦)𝛼1𝛼2 + (𝑥2 + 𝑦2)𝛼2𝛽1 − 𝑧2𝛽2𝛼1 − (𝑥 + 𝑖𝑦)𝑧𝛽1𝛽2
(𝑥 − 𝑖𝑦)𝑧𝛼1𝛼2 + (𝑥2 + 𝑦2)𝛽2𝛼1 − 𝑧2𝛼2𝛽1 − 𝑧(𝑥 + 𝑖𝑦)𝛽1𝛽2
(𝑥 − 𝑖𝑦)2𝛼1𝛼2 − 𝑧(𝑥 − 𝑖𝑦) (𝛼1𝛽2 + 𝛽1𝛼2) + 𝑧2𝛽1𝛽2

ª®®®¬ .
Now recalling

(𝜎1.𝜎2)/𝑟3
12

©­­­«
𝛼1𝛼2
𝛼1𝛽2
𝛽1𝛼2
𝛽1𝛽2

ª®®®¬ = 1
𝑟123

©­­­«
↓↓ − ↓↓ + ↑↑
↓↑ + ↓↑ − ↑↓
↑↓ + ↑↓ − ↓↑
↑↑ − ↑↑ + ↓↓

ª®®®¬
= 1
𝑟3

12

©­­­«
↑↑

2 ↓↑ − ↑↓
2 ↑↓ − ↓↑
↓↓

ª®®®¬ .
Now taking 𝑅1 = 1

𝑟123 (𝜎1.𝜎2) = 1
𝑟123 (𝜎𝑥

1𝜎𝑥
2 + 𝜎𝑦

1𝜎𝑦
2 + 𝜎𝑧

1𝜎𝑧
2), the spin average for the second term in Eq. (2)

can be calculated by the matrix formula given in section 4.3 as follows:

1
𝑟123

©­­­«
1 0 0 0
0 −1 2 0
0 2 −1 0
0 0 0 1

ª®®®¬ .

Similarly performing the spin average for the 3rd term, one can get

1
𝑟125

©­­­«
𝑧2 (𝑥 + 𝑖𝑦)𝑧 (𝑥 + 𝑖𝑦)𝑧 (𝑥 + 𝑖𝑦)2

(𝑥 − 𝑖𝑦)𝑧 −𝑧2 (𝑥2 + 𝑦2) −(𝑥 + 𝑖𝑦)𝑧
(𝑥 − 𝑖𝑦)𝑧 (𝑥2 + 𝑦2) −𝑧2 −(𝑥 + 𝑖𝑦)𝑧
(𝑥 − 𝑖𝑦)2 −(𝑥 − 𝑖𝑦)𝑧 −(𝑥 − 𝑖𝑦)𝑧 𝑧2

ª®®®¬
So combining the whole spin spin operator, ( 𝜎1.𝜎2

𝑟3
12
− 3 (𝜎

1.r12 ) (𝜎2.r12 )
𝑟5

12
) using the basis defined in section 3.2, the

matrix elements can be represented as =

©­­­­­­«

1
𝑟123 − 3𝑧2

𝑟125 − 3(𝑥+𝑖𝑦)𝑧
𝑟125 − 3(𝑥+𝑖𝑦)𝑧

𝑟125 − 3(𝑥+𝑖𝑦)2
𝑟125

− 3(𝑥−𝑖𝑦)𝑧
𝑟125 −( 1

𝑟123 − 3𝑧2

𝑟125 ) 2
𝑟123 − 3(𝑥2+𝑦2 )

𝑟125
3(𝑥+𝑖𝑦)𝑧

𝑟125

− 3(𝑥−𝑖𝑦)𝑧
𝑟125

2
𝑟123 − 3(𝑥2+𝑦2 )

𝑟125 −( 1
𝑟123 − 3𝑧2

𝑟125 ) 3(𝑥+𝑖𝑦)𝑧
𝑟125

−3(𝑥−𝑖𝑦)2
𝑟125

3(𝑥−𝑖𝑦)𝑧
𝑟125

3(𝑥−𝑖𝑦)𝑧
𝑟125

1
𝑟123 − 3𝑧2

𝑟125

ª®®®®®®¬
Now the diagonal element of the above matrix is 1

𝑟123 − 3𝑧2

𝑟125 which turns out to be 𝜕2

𝜕𝑧1𝜕𝑧2
( 1
𝑟12
).

So the diagonal element of the expectation value for the case (𝐽 = 𝐿 = 𝑀)

< 𝐿𝑆𝐽𝑀 |𝐻𝑠𝑠 |𝐿𝑆𝐽𝑀 >𝐽=𝐿=𝑀=
1

4𝑐2

∫ ∫
|𝜓𝐿𝐿 |2

𝜕2

𝜕𝑧1𝜕𝑧2
( 1
𝑟12
)𝑑𝑣1𝑑𝑣2. (19)
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4.5. Example 2: Spin-orbit operators:
For two particles the spin orbit interaction becomes

1
4𝑐2 {𝜎1.[E1 × 𝑝1 + (

2
𝑟3

12
)𝑟12 × 𝑝2] + 𝜎2.[E2 × 𝑝2 + (

2
𝑟3

12
)𝑟21 × 𝑝1]}. (20)

Now in general E = −∇𝑉 includes Coulomb interaction due to the nucleus, the Coulomb interaction due to the other
electron and any external field. Since we are not considering any external field, E1 and E2 include only the first two
interactions. Now 𝜎 = 𝜎1 + 𝜎2,
𝜎1 = 𝜎/2 + (𝜎1 − 𝜎2)/2. Similarly for 𝜎2. Since 𝜎1 and 𝜎2 occur linearly in the 𝐻3, the expectation value of 𝐻3 remains
unchanged if 𝜎1 and 𝜎2 are replaced by 𝜎/2. Making this replacement and putting E1 =

𝑧𝑟1
𝑟13 − r12

𝑟3
12

and E2 =
𝑧𝑟2
𝑟23 − r21

𝑟3
21

, the
spin part becomes

1
4𝑐2 [

𝑧

𝑟13 r1 × p1 +
𝑧

𝑟23 r2 × p2 +
3

𝑟123 (r1 − r2) × (p1 − p2)] .𝜎 (21)

=
1

4𝑐2 [
𝑧

𝑟13 L1.𝜎 +
𝑧

𝑟23 L2.𝜎 −
3

𝑟123 (L12 + L21).𝜎]; (22)

L1.𝜎 = 𝐿+
1𝜎− + 𝐿−

1𝜎+ + 𝐿𝑧
1𝜎𝑧 , (23)

L2.𝜎 = 𝐿+
2𝜎− + 𝐿−

2𝜎+ + 𝐿𝑧
2𝜎𝑧 , (24)

L12.𝜎 = 𝐿+
12𝜎− + 𝐿−

12𝜎+ + 𝐿𝑧
12𝜎𝑧 , (25)

𝐿+
1 = 𝐿𝑥

1 + 𝑖𝐿𝑦
1, 𝐿−1 = 𝐿𝑥

1 − 𝑖𝐿𝑦
1.

Now 𝐿𝑧 =
ℏ
𝑖

𝜕
𝜕𝜙

.
Again,

L1.𝜎
©­«

𝜒1,1
𝜒1,0
𝜒1,−1

ª®¬ = 𝐿+
1𝜎−

©­«
𝜒1,1
𝜒1,0
𝜒1,−1

ª®¬ + 𝐿−
1𝜎+

©­«
𝜒1,1
𝜒1,0
𝜒1,−1

ª®¬ + 𝐿𝑧
1𝜎𝑧

©­«
𝜒1,1
𝜒1,0
𝜒1,−1

ª®¬ ,
𝜎+

©­«
𝜒1,1
𝜒1,0
𝜒1,−1

ª®¬ =2
√

2 ©­«
0
𝜒1,1
𝜒1,0

ª®¬, 𝜎−
©­«

𝜒1,1
𝜒1,0
𝜒1,−1

ª®¬ =2
√

2 ©­«
𝜒1,0
𝜒1,−1

0

ª®¬,

𝜎𝑧
©­«

𝜒1,1
𝜒1,0
𝜒1,−1

ª®¬ =2 ©­«
𝜒1,1
0

−𝜒1,−1

ª®¬
The derivation of above transformation relations goes as follows.
𝜎± = 𝜎1± + 𝜎2±.

Now 𝜎+ = 𝜎1+ + 𝜎2+.
In the product space

𝜎+ = (𝜎1+ ⊗ 1 + 1 ⊗ 𝜎2+) (26)

which implies

𝜎+ (↑↑) = (𝜎1+ ↑) ↑ + ↑ (𝜎2+ ↑) (27)(
0 1
0 0

) (
1
0

) (
1
0

)
+

(
1
0

) (
0 1
0 0

) (
1
0

)
=0.

(
1
0

)
+
(

1
0

)
.0=0

In the similar manner one can show that
𝜎− (↑↑) = 2

√
2
(

0
1

) (
1
0

)
+
(

1
0

) (
0
1

)
=2
√

2(↓↑ + ↑↓). Using the above transformation of spin vectors one can get,

L1.𝜎 |𝜒1,1 >= 2
√

2𝐿+1𝜒1,0 + 2
√

2.0 + 2𝐿1
𝑧𝜒1,1 (28)

L1.𝜎 |𝜒1,0 >= 2
√

2𝐿+1𝜒1,−1 + 2
√

2𝐿−1𝜒1,1 + 𝐿1
𝑧 .0 (29)

L1.𝜎 |𝜒1,−1 >= 2
√

2𝐿+1.0 + 2
√

2𝐿−1𝜒1,0 − 2𝐿1
𝑧𝜒1,−1 (30)

The spin average of the operator L1.𝜎 turns out to be(
𝜒11 𝜒10 𝜒1−1

)©­­«
2
√

2𝐿+1𝜒1,0 + 2
√

2.0 + 2𝐿1
𝑧𝜒1,1

2
√

2𝐿+1𝜒1,−1 + 2
√

2𝐿−1𝜒1,1 + 𝐿1
𝑧 .0

2
√

2𝐿+1.0 + 2
√

2𝐿−1𝜒1,0 − 2𝐿1
𝑧𝜒1,−1

ª®®¬ =©­«
2𝐿1

𝑧 0 0
0 0 0
0 0 −2𝐿1

𝑧

ª®¬.
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Similarly the spin average for the L2.𝜎 tantamounts to©­«
2𝐿2

𝑧 0 0
0 0 0
0 0 −2𝐿2

𝑧

ª®¬ .
And finally for (𝐿12 + 𝐿21).𝜎

the spin average turns out to be ©­«
2(𝐿12

𝑧 + 𝐿21
𝑧 ) 0 0

0 0 0
0 0 −2(𝐿12

𝑧 + 𝐿21
𝑧 )

ª®¬ .
So combining all the contributions the diagonal elements of the spin orbit correction for He triplet P state in 𝐽 = 𝐿 =

𝑀 basis can be expressed as

1
4𝑐2 [(

∫ ∫
𝜓𝐿𝐿

∗ (𝑟1
−3𝐿1𝑧 + 𝑟2

−3𝐿2𝑧) ×

×𝜓𝐿𝐿𝑑𝑣1𝑑𝑣2) − 3
∫ ∫

𝜓𝐿𝐿
∗𝑟12

−3 (𝐿12𝑧 + 𝐿21𝑧)𝜓𝐿𝐿𝑑𝑣1𝑑𝑣2] (31)

And similarly we can write the spin orbit contribution for all the operators.

5. CONNECTION BETWEEN THE SPIN ALGEBRA AND QUANTUM COMPUTING
In the early 1980s, Paul Benioff of Argonne National Laboratory and Richard Feynman of the California Institute of

Technology began exploring the idea of using quantum-mechanical systems—such as individual atoms—as the building
blocks of computation[10]. They demonstrated that, in principle, these tiny structures could function effectively as
components in a quantum computer. Their work also introduced the concept of ”quantum logic gates,” proposing that
computation could follow the fundamental rules of quantum mechanics.

To calculate spin-spin and spin-orbit interaction in Breit Hamiltonian (3) by linear algebra, we actually measure
spin observables using state vector representation in quantum mechanics. On the classical (silicon based )computers
information are stored by the bits 0 or 1. So for two particles the classical gates can store one of the four states at a
time; 00, 01,10 or 11 whereas superposition principle allows quantum computers(atoms or subatomic particles) to store
all four states simultaneously. This makes the quantum computers faster than classical ones. Bits in classical computers
are equivalent to qubits in quantum computers. Quantum computers make use of the superposition principle which allows
a system to be in 0 and 1 state simultaneously. For n q-bits there will be 2𝑛 states or information. Quantum computers also
exploit one more unique quantum property namely, quantum entanglement where a property of a particle can be linked to
another regardless of the distance between them.

Qubits are atoms, ions and molecules. Suppose an electron is subjected to some electromagnetic field and spin of
the electron is aligned with the field then it is said to be in the spin up state and in the opposite situation it will have a spin
down state. The electron’s spin can be changed by directing a pulse of energy to the particle by a laser beam/microwave.
Each time the pulse is delivered, the electron spin state changes. If the half of the required energy is delivered to flip from
one state to the other the electron will enter a superposition state and it will remain in that state until it is observed and
measured.

General Quantum States If in a k-dimensional quantum system we have |1 >, |2 >, ......, |𝑘 > as basis vectors the
general state can be represented as 𝛼1 |1 > +𝛼2 > |2 > +..... + 𝛼 |𝑘 > with |𝛼1 |2 + |𝛼2 |2 + ... + |𝛼𝑘 |2 = 1. 2𝑘 dimensional
system can be constructed as a tensor product of 𝑘 quantum bits.

Unitary transforms: Linear transformations that preserve vector norm.
General Measurements:Let |𝜓0 >, |𝜓1 > be two orthogonal one-qubit states, the |𝜓 >= 𝛼0 |𝜓0 > +𝛼1 |𝜓1 >

Measuring |𝜓 > gives |𝜓𝑖 > with probability |𝛼𝑖 |2. This is equivalent to mapping |𝜓0 >, |𝜓1 > to |0 > and |1 > then
measuring. In section 3 we derived the matrix elements due to spin-spin and spin-orbit interactions for He (with spin half
electrons) and we used the following basis states: ↑↑, ↓↑, ↑↓ and ↓↓. Or in other words the general spin state of a He atom
can be written as |𝑆12 >= 𝐶+ ↑↑ +𝐶− ↓↓ +𝐶0

1√
2
(↑↓ + ↓↓).

6. RESULTS AND DISCUSSIONS
In this paper using Naimark’s extension formula we upgrade the spin-spin and spin-orbit operators in the extended

Hilbert space and specifically calculate all the matrix elements connected to the spin-spin and spin-orbit operators in
Breit’s Hamiltonian for the triplet P-state of helium. In Section 4, we present our linear algebraic results pertaining to
these corrections. Specifically, subsection 4.4 and 4.5 deal with the spin-spin and spin-orbit corrections respectively. In
subsection 4.4 and 4.5 Eqs.(6-19) represent our results for spin averages for spin-spin interaction and Eqs.(20-30) represent
the results for the spin averages for spin-orbit interactions respectively. Our final results in these two cases Eq.(19) and
Eq.(30) exactly match with the previous results[5-7] obtained from conventional quantum mechanics.
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7. CONCLUSIONS AND OUTLOOK
This algebra of spin systems underpins fundamental interactions in qunatum mechanics. In many realistic scenarios,

spin operators are accessed only partially, leading to effective descriptions via POVMs. Naimark’s extension theorem
ensures that these can always be embedded into full projective descriptions on enlarged spaces. This provides a powerful
conceptual and computational framework linking quantum measurements, operator theory, and spin algebra in multi-
particle systems.

This work is a gentle but rigorous introduction to quantum computing with linear algebraic approach where qubits
are state vectors and quantum gates are matrices. In this work we have been able to calculate the matrix elements for the
spin dependent terms in the Breit Hamiltonian by spin algebra for He, the simplest many body system as an alternative
to conventional quantum mechanics. It enables us to extend this linear algebraic method to multi-electron systems for
developing quantum gate based on spin algebra and investigate quantum circuit design using spin qubits and compare the
performance of spin-based qubits with traditional qubits in terms of algorithmic efficiency. One can use this spin algebra
to simulate electron interactions in condensed matter physics problems. It can also help in exploring to predict material
properties or simulate quantum many-body effects that are challenging for classical computers. It can be further utilized
to develop spin-based error correction for small quantum systems. Two other directions it can be extended are (i) studying
the role of spin liquids and topologically ordered phases in the context of quantum computing (ii) investigating potential
for using topologically protected spin qubits for fault tolerance. In several occasions quantum spin models can be applied
in a meaningful ways:

(1) Quantum spin models describe collection of qubits in information theory.
(2) It can serve as a toy model in theories related to quantum gravity.
(3) It can offer new insights in functional analysis(theory of operators) and representation theory(quantum groups)
This work can immediately be extended in two different directions: (1) Following tensor algebra spin averages

can be calculated for other few-electron systems. (2) One can use these spin algebraic results and calculate the spin-
spin and spin-orbit corrections on a quantum computer to compare the results with those obtained on a silicon based
computers [12, 13].

The application of Naimark’s Extension Theorem in computing matrix elements of spin-spin and spin-orbit operators
reveals their deep connection to generalized measurement theory. These operators, which do not correspond to jointly
measurable observables, can be interpreted as effective measurements arising from projective operations on a larger Hilbert
space. This not only aids in computational simplification but also provides conceptual clarity regarding the role of ancilla
systems, nonlocal correlations, and measurement-induced transformations in two-electron quantum systems.

The matrix elements arising from spin algebra, such as those in the Breit Hamiltonian, influence Quantum error
corrections(QEC)[16] and fault-tolerant quantum computation by providing insight into the nature of errors (like spin
flips or decoherence) and allowing for the design of tailored QEC codes that specifically address the types of errors
induced by these spin interactions. It also helps to optimize the fault-tolerant gate construction by understanding how
these interactions affect qubits during quantum gates. and enhances the understanding of the error thresholds and noise
models to ensure that quantum computations are resilient against the types of errors these interactions could cause. By
incorporating these matrix elements into the design of quantum error correction and fault-tolerant circuits, one can ensure
that quantum computations remain accurate even in the presence of spin-dependent errors, improving the reliability of the
quantum computing system.

The matrix elements obtained through the linear algebraic approach in this study have been previously calculated
using conventional quantum mechanics methods [5-7, 11]. The author’s prior work on relativistic corrections [12, 13],
performed on a silicon-based classical computer, utilized quantum Monte Carlo simulations with path integrals. In this
paper, the linear algebraic approach is adopted to make the calculations feasible on a quantum computer. Furthermore,
simple circuits using quantum logic gates are proposed for computing the matrix elements. This approach opens the
possibility for benchmarking results from both classical and quantum computers (future work), allowing for a direct
comparison of their performance.

The application of Naimark’s Extension Theorem in deriving their matrix elements opens up a window into the
structure of quantum measurements in such composite systems. This study explores the spin algebra of two-electron
systems, using tensor products . Our results align with conventional quantum mechanical approaches, providing a
foundation for quantum logic gates, algorithms, and error corrections. These findings open the avenues for advancements
in spin-based quantum systems, including new algorithms and simulations.
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СПIНОВА АЛГЕБРА ТА РОЗШИРЕННЯ НАЙМАРКА: НАВЧАЛЬНИЙ ПIДХIД IЗ ПРИКЛАДАМИ
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Пiд час аналiзу двоелектронних систем до взаємодiй, що нас цiкавлять, часто належать спiн-спiновий оператор ®𝑆1 · ®𝑆2 та
спiн-орбiтальний оператор ®𝐿 · ®𝑆. Коли цi оператори дiють на заплутанi або нерозрiзненi частинки, їх вимiрювання та фiзична
iнтерпретацiя можуть виходити за межi стандартної проективної структури. Цей посiбник знайомить з алгебраїчною структурою
спiнових взаємодiй у двох електронних квантових системах та встановлює її концептуальний та математичний зв’язок з
Теоремою розширення Наймарка. На основi явних прикладiв для двоелектронних систем ми демонструємо, як виникають
спiновi оператори у редукованих просторах Гiльберта, i як Теорема розширення Наймарка забезпечує формальну основу для їх
поширення на проективнi вимiрювання у розширених просторах. Застосування Теореми розширення Наймарка при виведеннi
їх матричних елементiв вiдкриває вiкно у структуру квантових вимiрювань у таких складних системах.
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In this paper, we investigated the Locally Rotationally Symmetric (LRS) Bianchi Type-I cosmological model with dark energy in
the framework of 𝑓 (𝑅, 𝐿𝑚) gravity theory, where 𝑅 is the Ricci scalar and 𝐿𝑚 is the matter Lagrangian. Using the functional form
𝑓 (𝑅, 𝐿𝑚) = 𝑅

2 +𝐿
𝛼
𝑚+𝛽 with 𝐿𝑚 = 𝜌,and applying the special law of variation for the Hubble parameter, we derived exact solutions to the

field equations and analyzed the physical and dynamical properties of the universe. Our results show that the model exhibits accelerated
expansion consistent with the observational data, with the energy density decreasing and the deceleration parameter transitioning from
positive to negative values. The anisotropy parameter initially approaches zero but increases with time for 𝑛 > 0.5, indicating the
evolution from isotropy to anisotropy. These findings provide insights into dark energy behavior within modified gravity frameworks
and offer testable predictions for cosmological observations.

Keywords: LRS Bianchi Type-I; Dark Energy; Cosmic Time
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1. INTRODUCTION
The General Theory of Relativity (GTR) forms the fundamental framework of modern cosmology, explaining

gravitation as a manifestation of spacetime curvature generated by the presence of matter and energy. A comprehensive
formulation of GTR and its cosmological applications can be found in the classical reference by Weinberg [1].Although
GTR has been remarkably successful in describing various gravitational phenomena, astronomical observations of distant
Type Ia supernovae have revealed that the present universe is expanding at an accelerated rate [2, 3, 4, 5, 6]. This unexpected
result suggests the existence of an unknown form of energy, commonly referred to as dark energy, which is estimated to
account for nearly 68% of the total energy density of the universe [7, 8, 9, 10]. Such observations indicate that the standard
cosmological model based solely on GTR may require refinement or modification to consistently explain the observed
late-time cosmic acceleration. To address this challenge, various modified theories of gravity have been developed as
alternatives to dark energy. One of the promising approaches is the f(R,Lm) gravity theory proposed by Harko and Lobo
[11], which generalizes the conventional f(R) gravity by introducing an explicit coupling between the Ricci scalar R and
the matter Lagrangian density Lm .This framework provides a richer geometric structure and allows new possibilities for
understanding the interaction between matter and curvature in explaining the accelerated expansion of the universe.

Research on anisotropic cosmological models with dark energy in the framework of 𝑓 (𝑅, 𝐿𝑚) gravity has emerged
as a critical area of inquiry due to its potential to address the accelerating expansion of the universe and the limitations
of standard general relativity (GR) in explaining dark energy phenomena [12, 13]. Since the introduction of 𝑓 (𝑅)
gravity as a modification of the Einstein-Hilbert action [14], the field has evolved to incorporate more general couplings
between curvature and matter, notably through the 𝑓 (𝑅, 𝐿𝑚) gravity theory [15]. This framework allows for non-minimal
interactions between geometry and matter, which can lead to novel cosmological dynamics, including anisotropic effects
relevant to early universe conditions [16]. Observational data from type Ia supernovae, cosmic microwave background,
and baryon acoustic oscillations have reinforced the significance of exploring such models to better understand cosmic
acceleration and anisotropy [17].

The specific problem addressed involves constructing and constraining anisotropic cosmological models within
𝑓 (𝑅, 𝐿𝑚) gravity that can accommodate dark energy effects and observational data [18, 19]. Despite progress, a knowledge
gap persists regarding the precise role of anisotropy and bulk viscosity in these models, as well as the impact of different
functional forms of 𝑓 (𝑅, 𝐿𝑚) on cosmic evolution [20, 21]. Competing perspectives exist on whether dark energy should
be modeled as a quintessence-like field or phantom energy within this framework, with some studies favoring quintessence
behavior and others indicating phantom-like characteristics.This review aims to clarify the theoretical underpinnings and
observational viability of these models, addressing the identified gaps and providing a comprehensive understanding of
their cosmological implications [22, 23]. The consequences of this gap include uncertainties in predicting the universe’s
late time behavior and reconciling theoretical models with high-precision observational constraints [24].
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Recently Shambel et al. [25] have focused on the late-time accelerated expansion of the universe and cosmic structure
evolution within the 𝑓 (𝑅, 𝐿𝑚) gravity model, rather than the early universe. Romanshu Garg and G.P. Singh [26] analyzed
cosmological parameters and the present age of the universe, providing insights into the model’s implications for cosmic
evolution. Y.D. Devi et al [27] have studied on an accelerating cosmological model, deriving the Hubble parameter
and analyzing parameters such as the deceleration parameter, jerk, and snap at present times. It derives Friedmann-like
equations for two non-linear models, analyzing the effects of model parameters on the equation of state, pressure, and
energy density. V. Patil et al. [28] have done on the late-time acceleration of the Universe within the 𝑓 (𝑅, 𝐿𝑚) gravity
framework, rather than the early universe. Shukla et al. [29] primarily focused on the Friedmann-Lemaitre-Robertson-
Walker (FLRW) model in 𝑓 (𝑅, 𝐿𝑚) gravity, analyzing the transition from deceleration to acceleration in the universe. J.K.
Singh and Shaily [30] have studied on the late-time behavior of the universe in the context of 𝑓 (𝑅, 𝐿𝑚) gravity, rather than
the early universe. It investigates the transition from deceleration to acceleration phases, showing that the model behaves
like ΛCDM at late times. Pawar et al.[31] have focused on the expansion of the universe in 𝑓 (𝑇) gravity and derived the
Hubble parameter in terms of redshift and examines the equation of state parameter, energy density, and pressure. Young
Jin Suh et al. [32] have investigated protectively flat perfect fluid spacetime solutions in 𝑓 (𝑅, 𝐿𝑚) gravity, focusing on
energy conditions and their relation to the Ricci scalar.

The functional form of 𝑓 (𝑅, 𝐿𝑚) gravity has been extended to related theories such as 𝑓 (𝑅,𝑇) and 𝑓 (𝑄) gravity,
incorporating trace of energy-momentum tensor or non-metricity scalar, broadening the functional diversity [33]. Further-
more, alternative formulations inspired by logarithmic corrections, Born–Infeld structures, and holographic dark energy
have also been explored, highlighting the continuous efforts to enhance the physical viability and observational consistency
of such models [34, 35]. Several studies have investigated cosmological models with variable anisotropy parameters or
within different Bianchi classifications, such as Bianchi type-III and type-𝑉𝐼0, revealing diverse evolutionary patterns of
anisotropy in the universe [36, 37]. While many theoretical and reconstruction-based works provide valuable insights
into the role of anisotropy and modified gravity, some lack direct confrontation with observational datasets. However,
these studies establish a strong foundation for future comparisons with astrophysical data [38, 39]. In most models, the
focus remains confined to the contributions of modified gravity terms and conventional matter fields, primarily analyzing
geometric features and dark energy dynamics [40].

In summary, the body of literature underscores that matter-curvature coupling in 𝑓 (𝑅, 𝐿𝑚) gravity significantly
influences anisotropic cosmological evolution and dark energy dynamics, yielding models capable of describing late-
time acceleration with evolving equations of state. The inclusion of bulk viscosity further enriches the phenomenology,
enhancing the viability of anisotropic models. However, challenges persist in capturing fully dynamical anisotropy,
achieving consistent observational integration of anisotropic effects, and expanding the functional diversity of 𝑓 (𝑅, 𝐿𝑚) to
encompass broader physical scenarios. Future research addressing these gaps could sharpen understanding of anisotropic
dark energy models in modified gravity and their cosmological implications

This work is structured as follows: In Section 2 we give a brief account of the 𝑓 (𝑅, 𝐿𝑚) gravity formalism and the
field equations. Anisotropic cosmology using LRS Bianchi I metric is discussed in Section 3. Section 4 discusses the type
of models and solutions in which this study is centered. In Section 5 we present the results with particular emphasis on
the physical consequences and observational predictions. Last but not least; Section 6 gives the conclusion and research
recommendations.

2. 𝑓 (𝑅, 𝐿𝑚) GRAVITY AND FIELD EQUATION
The action integral for the framework of f (R,Lm ) interpreted with the matter Lagrangian density Lm and the Ricci

scalar R is given as

𝑆 =

∫
𝑓 (𝑅, 𝐿𝑚)√−𝑔𝑑𝑥4 (1)

where 𝑓 (𝑅, 𝐿𝑚) is arbitrary function of Ricci scalar R and matter Lagrangian 𝐿𝑚. By contracting the Ricci tensor
𝑅𝑚𝑛, one may get the Ricci scalar 𝑅,

𝑅 = 𝑔𝑖 𝑗𝑅𝑖 𝑗 (2)

where, the Ricci tensor is defined by,

𝑅𝑖 𝑗 = −𝜕𝜆Γ𝜆
𝑖 𝑗 + 𝜕 𝑗Γ

𝜆
𝑖𝜆 − Γ𝜆

𝜆𝜎Γ
𝜎
𝑖 𝑗 + Γ𝜆

𝑗𝜎 Γ𝜎
𝑖𝜆 (3)

Here, Γ𝛼
𝛽𝛾

represents the components of well-known Levi-Civita connection defined by

Γ𝛼
𝛽𝛾 =

1
2
𝑔𝛼𝜆

(
𝜕𝑔𝜆𝛽

𝜕𝑥𝛾
+
𝜕𝑔𝜆𝛾

𝜕𝑥𝛽
−
𝜕𝑔𝛽𝛾

𝜕𝑥𝜆

)
(4)

The corresponding field equations of 𝑓 (𝑅, 𝐿𝑚) gravity are obtained by varying the action (1) for metric 𝑔𝑖 𝑗 is given by,

𝑓𝑅 (𝑅, 𝐿𝑚)𝑅𝑖 𝑗 +
(
𝑔𝑖 𝑗∇𝑖∇𝑖 − ∇𝑖∇ 𝑗

)
𝑓𝑅 (𝑅, 𝐿𝑚) −

1
2

[
𝑓 (𝑅, 𝐿𝑚) − 𝑓𝐿𝑚

(𝑅, 𝐿𝑚)𝐿𝑚

]
𝑔𝑖 𝑗 =

1
2
𝑓𝐿𝑚

(𝑅, 𝐿𝑚)𝑇𝑖 𝑗 (5)
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Where, 𝑓𝑅 (𝑅, 𝐿𝑚) = 𝛿 𝑓 (𝑅,𝐿𝑚 )
𝛿𝑅

, 𝑓𝐿𝑚
(𝑅, 𝐿𝑚) = 𝛿 𝑓 (𝑅,𝐿𝑚 )

𝛿𝐿𝑚
.Here covariant derivative is represented by ∇𝑖 and the energy

momentum tensor 𝑇𝑖 𝑗 can be expressed as,

𝑇𝑖 𝑗 = − 2
√−𝑔

𝛿
(√−𝑔𝐿𝑚

)
𝛿𝑔𝑖 𝑗

= 𝑔𝑖 𝑗𝐿𝑚 − 2
𝛿𝐿𝑚

𝛿𝑔𝑖 𝑗
(6)

Now, from the explicit form of the field equation (5), the covariant divergence of Energy momentum tensor 𝑇𝑖 𝑗 can be
obtained as,

∇𝑖𝑇𝑖 𝑗 = 2∇𝑖 ln
[
𝑓𝐿𝑚

(𝑅, 𝐿𝑚)
] 𝛿𝐿𝑚

𝛿𝑔𝑖 𝑗
(7)

The relation between the trace of energy momentum-tensor 𝑇 , Ricci scalar 𝑅, and the Lagrangian density of the matter
𝐿𝑚 obtained by contracting the field equation (5)

𝑓𝑅 (𝑅, 𝐿𝑚)𝑅 + 3∇𝑖∇𝑖 𝑓𝑅 (𝑅, 𝐿𝑚) − 2
[
𝑓 (𝑅, 𝐿𝑚) − 𝑓𝐿𝑚

(𝑅, 𝐿𝑚)𝐿𝑚

]
=

1
2
𝑓𝐿𝑚

(𝑅, 𝐿𝑚)𝑇 (8)

The relation between the trace of the energy momentum tensor 𝑇 = 𝑇𝑖 𝑗 , 𝐿𝑚, and 𝑅 can be established by taking account
of the previously mentioned equation.

3. METRIC AND FIELD EQUATION IN 𝑓 (𝑅, 𝐿𝑚) GRAVITY
The spatially homogeneous and anisotropic LRS Bianchi type 𝐼 spacetime can be written as,

𝑑𝑠2 = −𝑑𝑡2 + 𝑋2𝑑𝑥2 + 𝑌2 (𝑑𝑦2 + 𝑑𝑧2) (9)

Where 𝑋 and 𝑌 are the metric potential that are the functions of cosmic time 𝑡 only.
The Ricci scalar for LRS Bianchi-𝐼 spacetime can be expressed as

𝑅 = −2
[ ¥𝑋
𝑋

+ 2
¥𝑌
𝑌

+ 2
¤𝑋 ¤𝑌
𝑋𝑌

+
¤𝑌2

𝑌2

]
(10)

The overhead dot (.) denotes the derivative with respect to time 𝑡. The spatial volume 𝑉 of the universe is defined as

𝑉 = 𝑋𝑌2 (11)

The average scale factor

𝑎(𝑡) =
(
𝑋𝑌2

) 1
3 (12)

The generalized mean Hubble parameter 𝐻, which describes the space-time expansion rate, can be stated as

𝐻 =
1
3
(𝐻1 + 𝐻2 + 𝐻3) =

1
3

(
𝑋

¤𝑋
+ 2𝑌

¤𝑌

)
(13)

where 𝐻1, 𝐻2, 𝐻3 are the directional Hubble’s parameters in the direction of the 𝑥−, 𝑦−, 𝑎𝑛𝑑𝑧 − 𝑎𝑥𝑒𝑠, respectively. In
order to figure out whether the models approach isotropy or not, we define the expansion’s anisotropy parameter as

𝐴𝑚 =
1
3

3∑︁
𝑖=1

(
𝐻𝑖

𝐻
− 1

)2
(14)

The expansion scalar and shear scalar are defined as follows,

𝜃 =
¤𝑋
𝑋

+ 2
¤𝑌
𝑌

(15)

𝜎2 =
3
2
𝐴𝑚𝐻

2 (16)

The deceleration parameter (DP) is

𝑞 = −1 + 𝑑

𝑑𝑡

(
1
𝐻

)
= − 𝑎 ¤𝑎

𝑎2 ¥𝑎
(17)

Let us take the matter that contains the energy momentum tensor for dark energy, which is of the form

𝑇𝑖 𝑗 = (𝑝 + 𝜌)𝑢𝑖𝑢 𝑗 + 𝑝𝑔𝑖 𝑗 (18)
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Where 𝜌 is the energy density and 𝑝 is the pressure of the fluid. Where 𝑢𝑖 = (1, 0, 0, 0) is the four-velocity vector in
co-moving coordinates which satisfying 𝑢𝑖𝑢

𝑖 = −1. The EoS parameter for quark matter is defined as

𝑝 = 𝜔𝜌 0 ≤ 𝜔 ≤ 1 (19)

By using the equation (16), the field equation (5) can be written as,( ¥𝑋
𝑋

+ 2
¤𝑋 ¤𝑌
𝑋𝑌

)
𝑓𝑅 + 1

2
(
𝑓 − 𝑓𝐿𝑚

𝐿𝑚

)
+ 2

¤𝑌
𝑌

¤𝑓𝑅 + ¥𝑓𝑅 = −1
2
𝑓𝐿𝑚

𝑝 (20)

( ¥𝑌
𝑌

+
¤𝑌2

𝑌2 +
¤𝑋 ¤𝑌
𝑋𝑌

)
𝑓𝑅 + 1

2
(
𝑓 − 𝑓𝐿𝑚

𝐿𝑚

)
+

( ¤𝑋
𝑋

+
¤𝑌
𝑌

)
¤𝑓𝑅 + ¥𝑓𝑅 = −1

2
𝑓𝐿𝑚

𝑝 (21)

( ¥𝑋
𝑋

+ 2
¥𝑌
𝑌

)
𝑓𝑅 + 1

2
(
𝑓 − 𝑓𝐿𝑚

𝐿𝑚

)
+

( ¤𝑋
𝑋

+ 2
¤𝑌
𝑌

)
¤𝑓𝑅 =

1
2
𝑓𝐿𝑚

𝜌 (22)

4. COSMOLOGICAL 𝑓 (𝑅, 𝐿𝑚) MODEL
To examine the dynamics of Universe, we employ the functional form of 𝑓 (𝑅, 𝐿𝑚) gravity as,

𝑓 (𝑅, 𝐿𝑚) =
𝑅

2
+ 𝐿𝛼

𝑚 + 𝛽 (23)

where 𝛼 and 𝛽 are free parameters and can be retained as GR for 𝛼 = 1 and 𝛽=0
For 𝑓 (𝑅, 𝐿𝑚) model,the matter Lagrangian 𝐿𝑚 is generalized, and the coupling with curvature 𝑅 produces extra

terms that can mimic dark energy behavior, we have to consider 𝐿𝑚 = 𝜌 [41]
Using the above particular choice of 𝐿𝑚, the field equations (20), (21) and (22) becomes,

2 ¥𝑌
𝑌

+
¤𝑌2

𝑌2 − (1 − 𝛼)𝜌𝛼 − 𝛽 = 𝛼𝜌𝛼−1𝑝 (24)

¥𝑋
𝑋

+
¥𝑌
𝑌

+
¤𝑋 ¤𝑌
𝑋𝑌

− (1 − 𝛼)𝜌𝛼 − 𝛽 = 𝛼𝜌𝛼−1𝑝 (25)

¤𝑌2

𝑌2 + 2
¤𝑋 ¤𝑌
𝑋𝑌

− 𝛽 = (1 − 2𝛼)𝜌𝛼 (26)

The field equations (24), (25) and (26) are three independent differential equations with four unknowns: 𝑋,𝑌, 𝜌 and 𝑝.
Hence, to determine solutions, we have to use physically plausible conditions.

Berman and Gomide [42] indicate that there exists a connection between the Hubble parameter (H) and average scale
factor (a) given as,

𝐻 = 𝑙𝑎−𝑛 = 𝑙

(
𝑋𝑌2

)− 𝑛
3 (27)

Where 𝑙 > 0 and 𝑛 ≥ 0 are constants.
Now, from equations (13) and (27), we get the following.

¤𝑎 = 𝑙𝑎−𝑛+1 (28)

¥𝑎 = −𝑙2 (𝑛 − 1)𝑎−2𝑛+1 (29)

From equations (16) we obtain
𝑞 = 𝑛 − 1 (30)

Now using equations (27) and (30), the solution of equation (17) gives the law of variation of the average scale factor of
the form,

𝑎 = (𝑛𝑙𝑡) 1
𝑛 , 𝑛 ≠ 0 (31)
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5. SOLUTION OF THE FIELD EQUATIONS
The field equations (24)-(26) reduce to a system of three non-linear equations in four unknown parameters 𝑋,𝑌, 𝜌

and 𝑝. Hence to find the determination solution of the system , we used the law of variation [42]. Now from equations
(24) and (25), we get

¥𝑌
𝑌

−
¥𝑋
𝑋

+
¤𝑌2

𝑌2 −
¤𝑋 ¤𝑌
𝑋𝑌

= 0 (32)

On integrating, we get
¤𝑌
𝑌

−
¤𝑋
𝑋

=
𝑐1

𝑋𝑌2 (33)

Where 𝑐1 is the constant of integration Using equation (12) in equation (33) and integrating again, we get

𝑌

𝑋
= 𝑐2 exp

(∫
𝑐1

𝑎3 𝑑𝑡

)
(34)

Multiplying and divide by 𝑌2,we get
𝑌3

𝑋𝑌2 = 𝑐2 exp
(∫

𝑐1

𝑎3 𝑑𝑡

)
(35)

Using equation (12), 𝑎3 = 𝑋𝑌2 in equation (35), we get

𝑌3 = 𝑎3𝑐2 exp
(∫

𝑐1

𝑎3 𝑑𝑡

)
(36)

The metric function 𝑋 and 𝑌 in terms of the average scale factor 𝑎(𝑡) are given by

𝑋 (𝑡) = 𝑐
− 2

3
2 𝑎 exp

(
−2𝑐1

3

∫
𝑎−3 𝑑𝑡

)
(37)

𝑌 (𝑡) = 𝑐
1
3
2 𝑎 exp

(
𝑐1
3

∫
𝑎−3 𝑑𝑡

)
(38)

Now using equation (31) in equations (37) and (38), we get

𝑋 (𝑡) = 𝑐
− 2

3
2 (𝑛𝑙𝑡) 1

𝑛 exp
(

−2𝑐1
3𝑙 (𝑛 − 3) (𝑛𝑙𝑡)

𝑛−3
𝑛

)
(39)

𝑌 (𝑡) = 𝑐
1
3
2 (𝑛𝑙𝑡)

1
𝑛 exp

(
𝑐1

3𝑙 (𝑛 − 3) (𝑛𝑙𝑡)
𝑛−3
𝑛

)
(40)

Where 𝑛 ≠ 3
Putting the values of 𝑋 and 𝑌 in eqn (9),we obtained the exact solution .

𝑑𝑠2 = −𝑑𝑡2 + 𝑐
− 1

3
2 (𝑛𝑙𝑡) 2

𝑛

(
exp

(
−2𝑐1

3𝑙 (𝑛 − 3) (𝑛𝑙𝑡)
𝑛−3
𝑛

))2
𝑑𝑥2 + 𝑐

2
3
2 (𝑛𝑙𝑡)

2
𝑛

(
exp

(
𝑐1

3𝑙 (𝑛 − 3) (𝑛𝑙𝑡)
𝑛−3
𝑛

))2
(𝑑𝑦2 + 𝑑𝑧2) (41)

which gives the desired cosmological model.
From the equations (25) and (26), with the help of metric potential, the energy density and pressure of dark energy

are given by

𝜌 =

[
1

1 − 2𝛼

(
−
𝑐2

1
3
(𝑛𝑙𝑡)−

6
𝑛 + 3

𝑛2𝑡2
− 𝛽

)] 1
𝛼

(42)

𝑝 = −

4𝑐1 (𝑛𝑙𝑡)−
3
𝑛

𝑛𝑡
−

2𝑐2
1

3
(𝑛𝑙𝑡)− 6

𝑛 + 2𝑛 + 9
𝑛2𝑡2

+ 𝛼

1 − 2𝛼

(
−
𝑐2

1
3
(𝑛𝑙𝑡)− 6

𝑛 + 3
𝑛2𝑡2

− 𝛽

)
𝛼

[
1

1 − 2𝛼

(
−
𝑐2

1
3
(𝑛𝑙𝑡)− 6

𝑛 + 3
𝑛2𝑡2

− 𝛽

)] 𝛼−1
𝛼

(43)

Using equations (42) and (43), the equation of state (EoS) for dark energy is given as

𝑤 = −

(
(1 − 2𝛼)

[
4𝑐1𝑛𝑡 (𝑛𝑙𝑡)−

3
𝑛 − 2𝑐2

1
3 (𝑛𝑡)2 (𝑛𝑙𝑡)−

6
𝑛 + 2𝑛 + 9

]
+ 𝛼

(
− 𝑐2

1
3 (𝑛𝑡)2 (𝑛𝑙𝑡)−

6
𝑛 − 𝛽(𝑛𝑡)2 + 3

))
𝛼

(
− 𝑐2

1
3 (𝑛𝑡)2 (𝑛𝑙𝑡)−

6
𝑛 − 𝛽(𝑛𝑡)2 + 3

) (44)
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6. SOME PHYSICAL PARAMETERS
The spatial volume 𝑉 of the universe is given as

𝑉 = 𝑎3 (𝑡) = (𝑛𝑙𝑡) 3
𝑛 (45)

The average Hubble parameter
𝐻 = (𝑛𝑡)−1 (46)

The dynamical scalar expansion 𝜃 and shear scalar 𝜎2 are

𝜃 = 3(𝑛𝑡)−1, (47)

𝜎2 = 𝑐2
1 (𝑛𝑙𝑡)

−6
𝑛 (48)

The average anisotropic parameter

𝐴𝑚 =
2𝑐2

1
𝑙2

(𝑛𝑙𝑡) 2𝑛−1
𝑛 (49)

7. FIGURES
In this section, to better understand the behavior of our cosmological model, we present plots of various physical and

dynamical parameters as functions of cosmic time.

Figure 1. Variation of Energy Density

The graph indicates that the universe started with a very high density and then decreases rapidly, reflecting the expected
expansion dynamics.

Figure 2. Variation of Pressure

The graph indicates that the universe begins with a strong negative pressure (accelerating expansion), but over time the
pressure diminishes and tends toward zero, suggesting a transition toward a less repulsive, more stable cosmic state.
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Figure 3. Equation of state parameter

The graph shows that the equation of state parameter 𝜔 = −1 through out the cosmic time.This corresponds to vacuum
energy or cosmological constant Λ.

Figure 4. Variation of Spatial Volume 𝑉

The plot shows that the spatial volume of the universe expands rapidly as time increases. It begins at t=0 (Big Bang
singularity) and indicates cosmic expansion.

Figure 5. Variation of Hubble Parameter

Expansion rate of the universe is very high at early times (𝑡 → 0) but decreases as the universe grows late time.It never
becomes negative, but approaches zero as 𝑡 → ∞.
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Figure 6. Variation of Scalar Expansion

The rate of volume expansion of the universe decreases with time. This supports the idea that the early universe expanded
extremely fast but slowed down with cosmic time.

Figure 7. Variation of Shear Scalar

The plot represents the anisotropy (directional deformation) in the expansion. At early times (𝑡 → 0), anisotropy is large,
but it decreases with time. This indicates that the universe tends to become isotropic as it evolves.

Figure 8. Variation of Anisotropic Parameter

Describes how strongly anisotropy affects cosmic expansion. If 𝑛 < 0.5, the universe tends to become isotropic at late
times.
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𝑅
2

𝛼
𝑚

Figure 9. Variation of deceleration parameter

A graph represents a straight line in 𝑛, independent of time. For 𝑛 < 1: 𝑞 < 0, accelerated expansion (dark energy–like). 
For 𝑛 = 1: 𝑞 = 0, expansion at a uniform rate. For 𝑛 > 1: 𝑞 > 0, decelerated expansion (matter-dominated).

8. CONCLUSIONS
We have studied the anisotropic LRS Bianchi type-I cosmological model in the framework of 𝑓 (𝑅, 𝐿𝑚) gravity, the 

contribution of dark energy in accelerating the cosmic evolution. Applying the functional form 𝑓 (𝑅, 𝐿𝑚) = + 𝐿 + 
𝛽 with 𝐿𝑚 = 𝜌, and applying the special law of variation for the Hubble parameter, we obtained exact solutions to the 
modified field equations. Also, we have studied the physical and dynamical parameters such as Hubble parameter, spatial 
volume, deceleration parameter, scalar expansion, shear scalar, anisotropic parameter, pressure, density and EoS parameter 
and analyzed these parameters graphically from which we observed the following facts.

The energy density decreases rapidly with time and approaches near zero at late times. The pressure, initially highly 
negative, drives an accelerated expansion in the early universe but gradually stabilizes toward zero, reflecting a transition 
to a more balanced expansion regime. The equation of state parameter remains close to 𝜔 = −1, suggesting that the dark 
energy component in this model mimics a cosmological constant.

The spatial volume expands unboundedly from a vanishing value at t=0, consistent with Big Bang cosmology, while 
the Hubble parameter and expansion scalar decrease over time, signifying a slowing but persistent expansion. The shear 
scalar and anisotropy parameter exhibit decreasing trends for 𝑛 < 0.5, indicating isotropization of the universe, but for 
𝑛 > 0.5, anisotropy persists, showing that the universe evolves toward anisotropy in certain dynamical regimes. The 
deceleration parameter shows the different values of cosmic phases: accelerated expansion for (𝑛 < 1), uniform expansion 
at (𝑛 = 1), and deceleration for (𝑛 > 1).

Overall, the model successfully reproduces an accelerated, expanding universe consistent with present-day observa-
tions, while also providing a framework to investigate anisotropy in cosmic evolution. In particular, it shows that matter 
curvature coupling in 𝑓 (𝑅, 𝐿𝑚) gravity can explain the late time cosmic acceleration without using exotic scalar fields.

This work emphasizes that anisotropic cosmological models in 𝑓 (𝑅, 𝐿𝑚) gravity are not only viable but also rich 
in dynamical structure, offering t estable p redictions f or d ark e nergy b ehavior. F uture i nvestigations m ay r efine this 
framework by incorporating bulk viscosity, observational constraints from supernovae and CMB data, and extensions to 
other Bianchi-type universes, thereby deepening our understanding of the interplay between anisotropy, dark energy, and 
modified gravity in shaping cosmic evolution.
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АНIЗОТРОПНА КОСМОЛОГIЯ ТЕМНОЇ ЕНЕРГIЇ В РАМКАХ 𝑓 (𝑅, 𝐿𝑚) ГРАВIТАЦIЇ
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У цiй статтi ми дослiджували локально обертально-симетричну (LRS) космологiчну модель Бiанкi I типу з темною енергiєю
в рамках теорiї гравiтацiї 𝑓 (𝑅, 𝐿𝑚), де 𝑅 – скаляр Рiччi, а 𝐿𝑚 – лагранжiан матерiї. Використовуючи функцiональну форму
𝑓 (𝑅, 𝐿𝑚) = 𝑅

2 +𝐿
𝛼
𝑚+𝛽 з 𝐿𝑚 = 𝜌, та застосовуючи спецiальний закон варiацiї для параметраХаббла, ми отримали точнi розв’язки

рiвнянь поля та проаналiзували фiзичнi та динамiчнi властивостi Всесвiту. Нашi результати показують, що модель демонструє
прискорене розширення, що узгоджується з даними спостережень, зi зменшенням густини енергiї та переходом параметра
уповiльнення вiд позитивних до негативних значень. Параметр анiзотропiї спочатку наближається до нуля, але збiльшується
з часом для 𝑛 > 0.5, що вказує на еволюцiю вiд iзотропiї до анiзотропiї. Цi результати дають уявлення про поведiнку темної
енергiї в рамках модифiкованої гравiтацiї та пропонують перевiренi прогнози для космологiчних спостережень.
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This work presents a detailed investigation of low-lying positive-parity states in the 19F nucleus by combining shell-model techniques
with Hartree–Fock (HF) calculations. The study systematically extends from traditional core-based spaces (𝑠𝑑, 𝑧𝑏𝑚, 𝑝𝑠𝑑) to the fully
untruncated no-core configuration (𝑠𝑝𝑠𝑑𝑝 𝑓 ). Realistic single-particle wavefunctions were generated using harmonic oscillator (HO),
Woods–Saxon (WS), and Skyrme parameterizations. The approach was tested across a broad set of observables, including excitation
spectra, electromagnetic form factors (𝐶0, 𝐶2, 𝐶4, 𝑀1, 𝑀3, 𝐸2, 𝐸4, and 𝐸4 + 𝑀5), transition probabilities, magnetic dipole and
electric quadrupole moments, as well as binding energies and rms charge radii. Discrepancies reported in earlier theoretical work,
particularly for the 𝑀1 and 𝐶4 transitions at higher momentum transfers, were resolved through expanded model spaces and refined
radial wavefunctions. Together with our previous study of negative-parity states in 19F, these results provide a coherent picture:
systematic core-to-no-core extensions are essential for accurately reproducing both detailed and bulk nuclear properties. This unified
framework strengthens theoretical modeling of 19F and establishes a foundation for future shell-model studies of nuclei in transitional
and deformed regions.

Keywords: Nuclear shell model; No-core shell model; Hartree–Fock wave function; Skyrme Hartree–Fock; Effective interaction;
Electromagnetic form factors; Energy levels of 19F

PACS: 21.60.Cs, 21.60.Jz, 25.30.Bf, 21.10.-k, 27.20.+n

1. INTRODUCTION
The 19F nucleus is an excellent example of a light, odd-𝐴, strongly deformed nuclear system of sufficient size and

complexity to exhibit properties of a many-body system. Electron scattering, through its well-understood electromagnetic
interaction, serves as a powerful probe of the nuclear structure. In this work, nuclear structure properties were investigated
using the shell model and the Hartree–Fock method, with core-to-no-core extensions enhancing theoretical reliability.
This technique focuses on increasing the number of valence particles to investigate the static and dynamic structure of
19F. Within the recent progress of shell model research areas, the necessity to choose and apply a model space as well as
effective interactions crucial in identifying and explaining nuclear structure phenomena has become evident. Ghafoor et
al. [1] compared the excitation of negative parity states in 19F using core and no-core shell models and their calculations
have shown that adding the no-core leads to much better agreement with the observables especially in transition strengths
and energy spectra. Correspondingly, Ryssens and Alhassid [2] developed the HF-SHELL code that implements finite-
temperature Hartree-Fock algorithms to tackling shell model Hamiltonians and discussed its applicability to the statistical
and collective properties of nuclei at high excitation. These were supplemented by Saxena and Srivastava [3] who
performed first-principles calculations using an ab initio no-core shell model to gain insight into neutron-rich 18−23O and
18−24F isotopes, and indicated that structure experimentalists may expect first-principles studies of such systems to employ
large model spaces to resolve detail in such systems.

Large-scale shell model predictions of Jassim and Sahib [4] have also been provided on 19F, as well as the adjoining
nuclei, such as 25,26Mg and 27Al, demonstrating that concomitant conventions of interaction-model spaces can produce
solid spectra and electromagnetic properties. Similarly, Singh et al. [5] demonstrated that complete shell model calculations
of even and odd A nuclei in several mass regions could effectively reproduce calculated and experimental energy levels,
form factors, and transition moments, in the case of high-quality interactions being used. Taken together, these works
support the generality of the shell model in understanding nuclear structure and support the tendency to use the traditional
shell model frameworks along with more modern treatments, i.e., ab initio methods and mean-field approximations, to
improve our knowledge of light and medium-mass nuclei.

The development of recent years with the study of nuclear structure of sd-shell nuclei has significantly relied on
the method of configuration-interaction shell model to investigate the electromagnetic response and electron scattering
processes. The study of Le Noan and Sieja [6] explored the electric dipole response of sd-shell nuclei and determined
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that the collective and single-particle excitations of light nuclei are important through the shell-model description with
well-selected effective interactions that reproduce well their low-energy dipole strength distributions.

In connection with these results, Radhi et al. performed shell model calculations in detail of the electron scattering of
the 19F nucleus, both positive and negative parity of the states. In their work [7], they found that inelastic scattering form
factors can be successfully described using shell-model wave functions, including realistic configuration mixing, which
allowed insight into nuclear excitation mechanisms and the densities of transition states. Radhi, Abdullah, and Raheem
[8] first applied these analyses with no-core shell model wave functions of a large basis, which gave a better match to
elastic and inelastic measurements of electron scattering and emphasized the need to include the complete model space in
a description.

The rationales of these computational works lie in the development of effective interactions as advanced by Smirnova
et al. [9] in the sd shell. They formulated and tested improved sets of new interactions that improve the predictive
capability of shell-model calculations, in particular, on spectroscopy and transition strengths, thus allowing a more precise
description of the experimental observables in all the nuclei of the sd-shell.

Brown et al. [10] conducted a detailed shell-model analysis of high-resolution elastic and inelastic electron scattering
data for 19F, successfully reproducing key longitudinal and transverse form factors for both positive- and negative-parity
states. Their study demonstrated the utility of the sd-shell configurations and limited cross-shell excitations in capturing
essential electromagnetic observables. However, the analysis was constrained by truncated model spaces, reliance on a
fixed effective interaction, and the use of phenomenological single-particle wavefunctions. These limitations restricted
the treatment of configuration mixing and reduced the accuracy of predictions at higher momentum transfers—especially
for complex multipole components. Furthermore, the absence of systematic uncertainty quantification and the exclusion
of extended model spaces, such as the pf -shell, limited the completeness and generalizability of the results, indicating the
need for modern no-core approaches and diverse interaction benchmarking for deeper nuclear structure insight.

In combination, such studies reveal the configuration-interaction shell model using extended effective interactions
to be a formidable theoretical instrument in the study of nuclear electromagnetic responses in sd-shell nuclei, especially
using observables in electron scattering as the sensitive probe of nuclear structure.

The present investigation evaluates the energy spectra, reduced transition probabilities, magnetic dipole moments,
nuclear root-mean-square radii, binding energy, and both longitudinal and transverse inelastic electron scattering form
factors for the 19 F nucleus. The analysis utilizes four distinct model spaces to systematically examine the influence of
progressively extending the core configuration, culminating in a no-core framework, on the calculated nuclear properties
and scattering observables

2. THEORETICAL FORMALISM
To investigate the nuclear structure properties of 19F, we employed both the shell model and the Hartree–Fock (HF)

approaches. Each method was carefully implemented using relevant effective interactions and computational tools, and
all mathematical formulations were consistently applied throughout the study.

In the HF method, the wave function of a nucleus |𝜓HF⟩, consisting of 𝐴 nucleons, can be written as a Slater
determinant of single-particle wave functions 𝜙𝑖 [11, 12]:

|𝜓HF (𝑢1, 𝑢2, . . . , 𝑢𝐴)⟩ =
1

√
𝐴!

�������
𝜙1 (𝑢1) · · · 𝜙1 (𝑢𝐴)

...
. . .

...

𝜙𝐴(𝑢1) · · · 𝜙𝐴(𝑢𝐴)

������� , (1)

where 𝑢𝑖 = (®𝑟, 𝜎, 𝑡𝑧) includes spatial coordinates ®𝑟 , spin projection 𝜎, and isospin projection 𝑡𝑧 (+1/2 for proton, −1/2
for neutron). The HF method minimizes the expectation value of the total Hamiltonian [13]:

𝐻̂ = − ℏ2

2𝑚

𝐴∑︁
𝑖=1

∇2 + 𝑉̂Skyrme, (2)

where the Skyrme effective interaction [14] models the mean-field behavior of nucleons through zero-range, density-
dependent forces:

𝑉̂Skyrme =
∑︁
𝑖< 𝑗

𝑉
(2)
𝑖 𝑗

+
∑︁

𝑖< 𝑗<𝑘

𝑉
(3)
𝑖 𝑗𝑘

. (3)

The two-body component consists of central, spin-orbit, and tensor terms [14, 15, 16]:

𝑉̂Skyrme (®𝑟1, ®𝑟2) = 𝑉̂𝑚 + 𝑉̂𝐿𝑆 + 𝑉̂ 𝑡 , (4)

with

𝑉̂𝑚 = 𝑡0 (1 + 𝑥0𝑃̂𝜎)𝛿12 +
𝑡1
2
(1 + 𝑥1𝑃̂𝜎) ( 𝑘̂2

1 + 𝑘̂2
2)𝛿12
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+ 𝑡2 (1 + 𝑥2𝑃̂𝜎) 𝑘̂2 · 𝑘̂1𝛿12 +
𝑡3
6
(1 + 𝑥3𝑃̂𝜎)𝜌𝛼 (𝑟)𝛿12, (5)

𝑉̂𝐿𝑆 = 𝑖𝑡4 (𝜎̂1 + 𝜎̂2) · ( 𝑘̂2 × 𝑘̂1)𝛿12, (6)

𝑉̂ 𝑡 =
𝑡𝑒

2

[
3(𝜎̂1 · 𝑘̂2) (𝜎̂2 · 𝑘̂2) − (𝜎̂1 · 𝜎̂2) 𝑘̂2

2

+ 3(𝜎̂1 · 𝑘̂1) (𝜎̂2 · 𝑘̂1) − (𝜎̂1 · 𝜎̂2) 𝑘̂2
1

]
𝛿12

+ 𝑡𝑠 [3(𝜎̂1 · 𝑘̂2) (𝜎̂2 · 𝑘̂1) − (𝜎̂1 · 𝜎̂2) ( 𝑘̂2 · 𝑘̂1)2]𝛿12, (7)

where 𝛿12 = 𝛿(®𝑟1 − ®𝑟2) is the Dirac delta function. The operators 𝑘̂1 = 1
2𝑖 ( ®∇1 − ®∇2) and 𝑘̂2 = − 1

2𝑖 ( ®∇1 − ®∇2) act on the
right and left wavefunctions, respectively. The three-body force is simplified as

𝑉
(3)
Skyrme = 𝑡3𝛿12𝛿13. (8)

The radial part of the single-particle wavefunctions is [15, 16]:

𝜙𝑛𝑙 𝑗𝑚 (𝑟) =
𝑅𝑛𝑙 (𝑟)

𝑟
𝑌 𝑗𝑙𝑚 (Ω𝑟 ), (9)

with the corresponding density distributions [11]:

𝜌𝑠 (𝑟) =
∑︁

𝑛𝛼 , 𝑗𝛼 ,𝑙𝛼

𝜔𝛼

(2 𝑗𝛼 + 1)
4𝜋

©­«
𝑅
(𝑠)
𝑛𝛼𝑙𝛼

(𝑟)
𝑟

ª®¬
2

, (10)

and root-mean-square (rms) radii [17, 18]:

𝑟𝑠 = ⟨𝑟2
𝑠 ⟩1/2 =

[ ∫
𝑑𝑟 𝑟4𝜌𝑠 (𝑟)∫
𝑑𝑟 𝑟2𝜌𝑠 (𝑟)

]1/2

. (11)

In the shell model, electromagnetic form factors are calculated via reduced matrix elements. The one-body transition
densities (OBTDs), computed using the NuShellX code [19], are defined as

OBDM𝐽,𝑡𝑧 (𝐽𝑖 , 𝐽 𝑓 ) =
⟨𝐽 𝑓 ∥ [𝑎†𝛼 ⊗ 𝑎̃𝛽]𝐽 ∥𝐽𝑖⟩√

2𝐽 + 1
. (12)

The reduced matrix element is then [20]:

⟨𝐽 𝑓 ∥𝑇 𝜂

𝐽,𝑡𝑧
(𝑞)∥𝐽𝑖⟩ =

∑︁
𝛼,𝛽

OBDM𝐽,𝑡𝑧 (𝐽𝑖 , 𝐽 𝑓 )⟨𝛼∥𝑇 𝜂

𝐽,𝑡𝑧
(𝑞)∥𝛽⟩, (13)

and the form factor squared is [21]:

|𝐹𝐽
𝜂 (𝑞) |2 =

4𝜋
𝑍2 (2𝐽𝑖 + 1)

�����∑︁
𝑡𝑧

𝑒(𝑡𝑧)⟨𝐽 𝑓 ∥𝑇 𝜂

𝐽,𝑡𝑧
(𝑞)∥𝐽𝑖⟩

�����2 |𝐹cm (𝑞) |2 |𝐹fs (𝑞) |2, (14)

where the center-of-mass and finite-size corrections are [22]

|𝐹cm (𝑞) | = exp
(
𝑏2𝑞2

4𝐴

)
, (15)

|𝐹fs (𝑞) | = exp
(
−0.43𝑞2

4

)
. (16)

The longitudinal and transverse form factors are [20, 21]

|𝐹𝐿 (𝑞) |2 =
1

2𝐽𝑖 + 1

∑︁
𝐽≥0

|⟨𝐽 𝑓 ∥𝑇𝐶
𝐽,𝑡𝑧

(𝑞)∥𝐽𝑖⟩|2, (17)

|𝐹𝑇 (𝑞) |2 =
1
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𝐽≥1
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|⟨𝐽 𝑓 ∥𝑇𝐸

𝐽,𝑡𝑧
(𝑞)∥𝐽𝑖⟩|2 + |⟨𝐽 𝑓 ∥𝑇𝑀

𝐽,𝑡𝑧
(𝑞)∥𝐽𝑖⟩|2

}
, (18)
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and the total form factor in plane-wave Born approximation (PWBA) is [20, 21]

|𝐹 (𝑞, 𝜃) |2 =

(
1 − 𝜔2

𝑞2

)
|𝐹𝐿 (𝑞) |2 +

[
1
2

(
1 − 𝜔2

𝑞2

)
+ tan2

(
𝜃

2

)]
|𝐹𝑇 (𝑞) |2. (19)

Finally, the reduced transition probability is given by [21]:

𝐵(𝜂𝐽) = 𝑍2

4𝜋

[
(2𝐽 + 1)!!

𝑘 𝐽

]2
|𝐹𝜂

𝐽
(𝑘) |2, (20)

where 𝑘 = 𝐸𝑥/ℏ𝑐 is the momentum transfer corresponding to the excitation energy.

3. RESULT AND DISCUSSION

Building upon our earlier study [1], where the root mean square (rms) charge radius and binding energy of 19F
were successfully reproduced using a single Skyrme-Hartree–Fock parameterization (SLy4), the present work marks
a significant methodological advancement. While the previous calculation yielded results in strong agreement with
experiment—2.876 fm for the rms radius and 146.372 MeV for binding energy—this study systematically expands the
scope by employing an extensive set of thirty-nine Skyrme interactions. These are analyzed in parallel with harmonic
oscillator (HO) and Woods–Saxon (WS) potentials to rigorously evaluate their effectiveness in reproducing key nuclear
observables. This enriched comparative framework enables a more robust benchmarking of global nuclear properties and
provides deeper insight into the sensitivity of model predictions to mean-field structure.

In addition to global quantities, the present investigation delves into the fine structure of low-lying positive parity states
in 19F by analyzing longitudinal and transverse electron scattering form factors, electromagnetic transition probabilities,
magnetic and quadrupole moments, and excitation spectra. The study is structured around a progressive extension of the
shell model space, beginning with the conventional sd-shell (based on an 16O core) and expanding through the zbm (12C
core), psd (4He core), and fully untruncated spsdpf no-core model. This hierarchical modeling strategy, combined with
realistic single-particle wavefunctions from Hartree–Fock and alternative potentials, allows for a critical evaluation of how
model space and interaction choices affect the reproduction of experimental data.

The present study is a significant development in the theory of nuclear structure and very far beyond the earlier
applications of the shell model, like Radhi et al. [7, 8] and Brown [10]. Unlike earlier studies that were limited to truncated
core configurations and narrow interaction sets, we implemented a systematic core-to-no-core shell model framework,
treating all 19 nucleons of 19F as dynamically active in the most extended model space cause to reproduce some observable
that is better than previous studies.

The results are presented in order of increasing angular momentum, offering a clear and coherent narrative of the
evolving nuclear structure across multiple observables.

Angular momentum and parity conservation allow only certain multipole parts, namely𝐶0, 𝐸0 and 𝑀1 for Coulomb,
transverse electric and transverse magnetic form factors respectively for ground state. The time-reversal symmetry removes
the 𝐸0 component though. The elastic Coulomb 𝐶0 form factors of the ground state of the nucleus 19F (1/2+, 0 MeV)
were calculated with the help of shell-model wave functions related to model spaces sd, zbm, psd and spsdpf. These
were coupled to radical single-particle wavefunctions, of Skyrme Hartree–Fock parameterization (SkXcsb, SkXta, SkXtb,
SLy4), Woods–Saxon (WS) and harmonic oscillator (HO) potentials. The constructed fit is compared to the experimentally
measured form-factor in the Ref. [10] as the benchmark data presented in Fig. 1.

For the momentum transfer region 𝑞 = 0 to 1.6 fm−1, all model spaces, ranging from extended-core to no-core
configurations, demonstrate good agreement with experimental data across all potential types. The C0 form factor near
𝑞 = 1.57 fm−1 up to 3 fm−1, calculated using the Woods–Saxon potential, aligns closely with experimental data for both
the sd- and psd-model spaces (core configurations of 16O and 4He, respectively). This strong similarity between the two
model spaces may be attributed to the clustering of 16O as four 4He nuclei. For the 12C core with the ZBMI interaction,
the C0 form factor achieves optimal agreement with experimental data using the Woods–Saxon potential in the 𝑞-value
regions 1.57–1.61 fm−1 and 2.28–2.4 fm−1. In the intermediate range 1.61–2.28 fm−1, the SkXcsb Skyrme potential
produces the most accurate results. For the final two experimental 𝑞-values obtained using no-core calculations, both HO
and WS potentials yield results in good agreement with the experimental data [10].

Unlike previous works, our study is the first to systematically reproduce the longitudinal 𝐶0 form factor of the ground
state 1/2+1 throughout the entire momentum transfer range using all core and no-core model spaces (sd, zbm, psd, and
spsdpf ), demonstrating that the charge distribution of the ground state can be robustly captured regardless of the core
truncation, a result not previously
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Figure 1. Elastic Coulomb C0 form factor for the 1/2+ ground state of 19F, calculated using various model spaces and
radial potentials. Theoretical predictions are compared to experimental data from Ref. [10].

The transverse magnetic M1 form factors are presented in Fig. 2. A high level of consistency is observed between the
experimental results and the calculations using all the employed potentials in the momentum transfer range, particularly
with the sd-shell wavefunction and 16O core. However, in the region 𝑞 = 1.2–1.7 fm−1, the calculated form factors are
underestimated. In particular, within this momentum transfer range, five out of the six potentials employed, excluding
SkXcsb, exhibit qualitative agreement with the experimental M1 form factor data. The measurements reveal two diffraction
minima located at 𝑞 = 1.1 fm−1 and 𝑞 = 1.6 fm−1, though these features appear slightly shifted in the theoretical predictions.
Among all potentials, the Woods–Saxon (WS) potential (represented by cyan dashed) provides the closest match to the
experimental data in the region 𝑞 = 1.49–1.57 fm−1.

For the (12
6 C) core configuration using the ZBMI interaction—where only seven valence nucleons are active—all

potentials qualitatively reproduce the M1 form factors. However, the SLy4 Skyrme potential (dotted line) delivers the best
overall agreement, though it fails to precisely replicate the observed minima near 𝑞 = 1.57 fm−1. When employing the
(2
4He) core within the psd-model space and the PSDMK interaction, the M1 form factors show excellent agreement with

the experimental data. The diffraction minima are best reproduced using the harmonic oscillator (HO) and WS potentials,
especially around 𝑞 = 1.49 fm−1, where all Skyrme potentials and the HO curve intersect this crucial point.
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Figure 2. Theoretical transverse form factor 𝑀1 for the 1/2+1 state in comparison with experimental data from Refs. [10, 23].

In the range 𝑞 = 1.7–2.23 fm−1, the transverse M1 form factors calculated within the psd-model space align most
accurately with experimental values when Skyrme potentials are employed. At even higher momentum transfers (𝑞 =

1.7–3 fm−1), the HO and WS potentials yield the best fits, while the SLy4 potential achieves only partial agreement.
Finally, for the fully untruncated spsdpf model space (no-core configuration) using the WBT interaction, all po-

tentials—with the exception of SLy4—show excellent agreement across the entire M1 form factor momentum range.
Interestingly, the SLy4 potential still provides strong agreement at the critical point 𝑞 = 1.57 fm−1.

In contrast to Brown et al. [10], who failed to reproduce the transverse 𝑀1 form factor of the 1/2+1 state—especially at
low momentum transfers—our approach not only recovers both diffraction minima but also achieves excellent agreement
across all momentum ranges using the sd and psd model spaces with HO and WS potentials, while the no-core spsdpf
calculations uniquely resolve the second minimum using the SLy4 Skyrme interaction, marking a major improvement in
modeling the magnetic structure of the ground state.

The Coulomb contribution 𝐶2 for the 3/2+1 state, as depicted in Fig. 3, demonstrates remarkable consistency
between the sd-shell wavefunction calculations and experimental data across all 𝑞-values, with only minor overestimations.
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However, the first minimum at approximately 𝑞 = 1.75 fm−1 is qualitatively well reproduced by the HO potential and is
quantitatively closer when using the SLy4 parameterization. In the range 𝑞 = 2–2.4 fm−1, the HO potential provides a
notably better fit than the other parameterizations.

For the zbm-model space, the form factors exhibit good qualitative agreement across all 𝑞-values, albeit with a
systematic shift. The minimum point is quantitatively well reproduced by both the HO and WS potentials, while the
Skyrme parameterizations (SkXcsb, SkXta, SkXtb, and SLy4) excel qualitatively in this momentum transfer range. The
suppression of the transverse𝐶2 form factor for the 3/2+1 state using the zbm-ZBMI interaction is attributed to its significant
overestimation of the excitation energy, as shown in Fig. 11. This suggests an inadequately configured wavefunction for
this state, lacking essential configuration mixing and collectivity.

Figure 3. Theoretical longitudinal form factor 𝐶2 for 3/2+1 compared with experimental data [10, 24].

The zbm model space, based on a 12C core (𝑍 = 𝑁 = 6), does not benefit from the enhanced stability of a doubly
magic configuration, thereby limiting the accuracy of transition strength predictions. Consequently, the reduced transition
density leads to an under prediction of the form factor strength in Fig. 3.

The results for the psd-model space are strikingly similar to those from the sd-shell wavefunction, further reinforcing
the idea that the 16

8 O core can emerge as a cluster derived from the 4
2He core. Notably, the PSDMK interaction [25],
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developed from the PW interaction within the sd-model space, incorporates the active 1𝑑5/2, 2𝑠1/2, and 1𝑑3/2 orbitals
above an inert 16

8 O core.
Finally, within the spsdpf -model space, all potentials demonstrate exceptional agreement with the experimental 𝐶2

form factors across the entire 𝑞-value range, surpassing the accuracy of the other model spaces. This finding confirms
that no-core shell model calculations are the most effective method for investigating form factors using an advanced shell
model framework, where all nucleons are actively interacting.

Additionally, the no-core calculations reveal that the SkXcsb, SkXta, and SkXtb parameterizations yield similar
results, while the SLy4 potential shows excellent agreement with WS and nearly with the HO potential. The differences
among these potentials arise primarily from the renormalization of the 2𝑠1𝑑 single-particle matrix elements within the
model spaces.

Figure 4. Theoretical transverse form factors 𝑀1 and 𝐸2 for the 3/2+1 state at 1.55 MeV, compared with experimental
data [10, 24].
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The present study significantly advances the theoretical modeling of the longitudinal𝐶2 form factor for the 3/2+1 state.
While Brown et al. [10] provided early reproduction using the sd-shell model, they failed to capture the first diffraction
minimum around 𝑞 = 1.75 fm−1. In contrast, our sd-shell results, particularly with HO and WS radial potentials,
successfully reproduce this minimum both qualitatively and quantitatively.

Moreover, the same feature is accurately captured in the zbm-model space using WS potential, and the overall shape
of the form factor is closely mirrored in the psd-model space, demonstrating the structural continuity from an 16O core to
its 4He cluster constituents. Most notably, the no-core spsdpf calculations provide exceptional agreement across the entire
momentum transfer range using all Skyrme parameterizations, further confirming the robustness of our framework and its
superiority over prior approaches in resolving the fine structure of the 𝐶2 form factor.

The transverse 𝑀1 and 𝐸2 form factors for the first 3/2+1 state at 1.55 MeV are depicted in Fig. 4. Here, the total
form factors (𝐸2 + 𝑀1) were calculated for all potentials, while individual contributions of 𝐸2 and 𝑀1 are demonstrated
specifically for the SkXcsb parameterization. The analysis reveals that the predictions from the sd-, psd-, and spsdpf -model
spaces, utilizing all potentials, show reasonable agreement with the experimental data.

The regions of momentum transfer between 0.8−1.4 fm−1 and 1.8−2.5 fm−1 show dominant contributions from
either the 𝑀1 or 𝐸2 multipoles, while in the intermediate range of 1.4−1.8 fm−1, both multipoles play a significant role
in shaping the form factors. In contrast, the predictions from the zbm-model space exhibit fluctuations compared to
the experimental data, largely due to discrepancies in the theoretical scattering process, which begins earlier than in the
experimental observations. Despite this, the 𝑀1 component achieves qualitative consistency with the experimental form
factors at specific momentum points, effectively reproducing the expected shape and behavior.

A major advancement of this study lies in the comprehensive treatment of the transverse 𝑀1+ 𝐸2 form factor for the
3/2+1 state at 1.55 MeV. Unlike the earlier analysis by Brown et al. [10], which modeled only the total form factor within the
sd-shell and failed to reproduce the high-𝑞 behavior beyond 1.7 fm−1, our work explicitly decomposes and calculates both
the 𝑀1 and 𝐸2 components across an extended model space framework, including sd, psd, and spsdpf configurations.

Using HO, WS, and a broad range of Skyrme parameterizations, we accurately reproduce the entire momentum
transfer region. Notably, the form factor is successfully resolved even in the high-𝑞 domain where previous models
faltered. Only the zbm-model space shows deviation due to mismatched excitation energy and premature scattering onset,
reaffirming the necessity of extended core treatments and no-core shell model approaches for reliably capturing transverse
multipole behavior.

The inelastic longitudinal 𝐶2 multipole form factors for the 5/2+ state are presented in Fig. 5. The comparison with
experimental data from Ref. [10] shows that all potentials provide results consistent with the experimental values in both
magnitude and shape across the momentum transfer range 𝑞 = 0.75−2.4 fm−1. A diffraction minimum is observed around
𝑞 = 0.75 fm−1, which is accurately reproduced by all potentials. The predictions from the sd-, psd-, and zbm-model spaces
align closely with experimental data, showing better agreement with the harmonic oscillator (HO) potential compared
to the Skyrme parameterizations and Woods–Saxon (WS) potential. For the spsdpf -model space, the predictions match
experimental data most closely when using the HO potential up to 𝑞 = 1 fm−1. Between 𝑞 = 1 and 𝑞 = 2.1 fm−1, the
Skyrme parameterizations SkXcsb, SkXta, and SkXtb outperform the others in reproducing the experimental shape, while
beyond 𝑞 = 2.1 fm−1, the SLy4 and WS potentials show the highest level of accuracy. Overall, the no-core calculations
demonstrate superior precision compared to other core-based configurations, reinforcing their effectiveness in studying
form factors with greater reliability and accuracy.

The inelastic transverse 𝐸2 and 𝑀3 multipoles for the 5/2+1 state at 0.197 MeV, alongside the total transverse form
factor (𝐸2 + 𝑀3), are illustrated in Fig. 6. While the total transverse form factors were computed using all potentials
across the different model spaces, the SkXcsb parameterization uniquely highlights the individual contributions of the 𝐸2
and 𝑀3 multipoles.

Across all 𝑞-values, the predicted results show strong agreement with experimental findings, though a minor shift
is noted in the diffraction minimum—from approximately 𝑞 = 1.6 fm−1 to 𝑞 = 1.7 fm−1. The 𝑀3 multipole dominates
the total transverse form factor across the full momentum transfer range, except in the interval 𝑞 = 1.6–1.8 fm−1,
where the 𝐸2 contribution becomes more prominent. All model spaces effectively reproduce the experimental form
factor profile, with the 𝑀3 component consistently overshadowing the 𝐸2 contribution. Predictions using the harmonic
oscillator (HO) and Woods–Saxon (WS) potentials generally exhibit better agreement with experiment than those based on
Skyrme parameterizations. Although the sd-, zbm-, and psd-model spaces yield quantitatively consistent results with the
experimental data, the spsdpf -model space provides the best qualitative match, particularly in reproducing the diffraction
minima at critical momentum transfer values.

The presentation of results is quite remarkable, as both the longitudinal 𝐶2 and the transverse total 𝐸2 + 𝑀3 form
factors of the 5/2+1 state achieve high diagnostic accuracy across all considered model spaces, including the core-based
sd, zbm, and psd configurations, as well as the fully untruncated spsdpf no-core dimension. These results hold under the
application of a wide range of radial potential dependencies—namely, the harmonic oscillator (HO), Woods–Saxon (WS),
and various Skyrme parameterizations. This observed uniformity is not coincidental but reflects the strong collectivity
and configuration mixing inherent to the 5/2+ state, which predominantly involves the 𝑑5/2, 𝑠1/2, and 𝑑3/2 orbitals.
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Figure 5. Theoretical longitudinal form factor 𝐶2 for 5/2+1 compared with experimental data [10, 24].

These components are well described even in truncated spaces and are further enhanced in no-core calculations
where full cross-shell correlations and valence space saturation are accounted for. The excellent agreement between our
theoretical predictions and the experimental form factor data across the full momentum-transfer range demonstrates the
robustness and reliability of the extended shell-model framework applied in this work.

The inelastic longitudinal 𝐶4 multipole form factors for the 7/2+1 state are compared with experimental data and
presented in Fig. 7, revealing insightful trends. Within the momentum transfer range 𝑞 = 0.8–1.59 fm−1, predictions using
the sd-shell wavefunction exhibit excellent agreement with experimental data for all potential types, though deviations
gradually increase at higher momentum transfer values. For the zbm-model space, the calculated results align well with
experiment up to 𝑞 = 1.18 fm−1. When using the psd-model space, the WS and HO potentials demonstrate superior
agreement, particularly in the range 𝑞 = 1–2 fm−1. Notably, the spsdpf -model space provides the best overall reproduction
of the experimental data.

Across the momentum transfer range 𝑞 = 0.8–2 fm−1, all Skyrme parameterizations, as well as the WS and HO
potentials, consistently yield predictions that closely align with experimental results. This underscores the robustness of
the no-core calculation approach in capturing the physical behavior of longitudinal 𝐶4 form factors.

The inelastic transverse 𝑀3 and 𝐸4 multipoles for the 7/2+1 state at 4.377 MeV are presented in Fig. 8, offering a
detailed comparison with experimental data. Previous studies, including those by Brown et al. [10], Radhi [7, 8], and
Donne et al. [24], reported significant discrepancies between calculated and experimental results for the 𝑀3 and 𝐸4
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contributions in this state. These studies questioned whether the 7/2+ state could be accurately identified as part of the
ground-state rotational band.

The sd- and psd-model spaces demonstrate the best agreement with experimental data in the momentum transfer
ranges 𝑞 = 0.8–1.35 fm−1 and 𝑞 = 1.85–2.4 fm−1, across all potential types. Notably, the 𝑀3 contributions derived
using the SkXcsb parameterization show strong alignment with experimental values. In the intermediate range of 𝑞 =

1.35–1.85 fm−1, qualitative agreement is observed for the 𝐸4 contributions, although the match is less precise.

Figure 6. Theoretical transverse form factors 𝐸2 and 𝑀3 for the 5/2+1 state at 0.197 MeV, compared with experimental
data [10, 24].

For the zbm-model space, both 𝑀3 contributions and total transverse form factors across all potentials show good
qualitative agreement with experiment. The spsdpf -model space achieves the highest accuracy for 𝑀3 contributions in
the range 𝑞 = 1.4–2.4 fm−1, particularly with HO and SkXcsb parameterizations, where the calculated transverse form
factors are in excellent agreement with experimental data. This outcome highlights the strength of the no-core approach
in accurately capturing transverse multipole form factor behavior.

A critical advancement of the present work lies in the accurate reproduction of the longitudinal 𝐶4 form factor for
the 7/2+1 state, which earlier studies—most notably Brown et al. [10]—failed to achieve using the conventional sd-model
space. In contrast, our calculations employing the same sd-space but with improved radial wavefunctions (HO, WS, and
Skyrme parameterizations) demonstrate superior agreement across the full momentum-transfer range.
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Moreover, the adoption of the zbm and psd model spaces, built on lighter 12C and 4He cores, respectively, further
improves the predictive power, particularly in regions where Brown et al.’s results diverged from experiment. Most
notably, the no-core spsdpf configuration captures the experimental 𝐶4 distribution with exceptional precision—across
nearly the entire 𝑞-range—representing a novel and significant improvement not previously reported in the literature. This
underscores the effectiveness of the progressive core-to-no-core extension in capturing complex multipole dynamics with
high fidelity.

This study offers a significant advancement by successfully reproducing the full transverse 𝑀3 + 𝐸4 form factors of
the 7/2+1 state across a broad range of momentum transfers—an achievement not realized in previous theoretical studied.
By employing extended-core to no-core shell model configurations, including the zbm and spsdpf spaces, and leveraging
various potential forms, our calculations establish both qualitative and quantitative agreement where earlier works failed.
The enhanced accuracy, especially at higher 𝑞-values, demonstrates the strength of our model in resolving complex
multipole components and affirms the effectiveness of our comprehensive shell-model strategy in capturing collective
excitations beyond the capabilities of earlier studies.

Figure 7. Theoretical longitudinal form factor 𝐶4 for the 7/2+1 state compared with experimental data [10].

The 19F nucleus can be excited by an incident electron to the 9/2+1 state at 2.779 MeV. The only allowed multipole
contributions in this excitation are the Coulomb 𝐶4, transverse electric 𝐸4, and transverse magnetic 𝑀5 components.
These contributions are illustrated in Figs. 9 and 10, providing a comprehensive depiction of the form factor behavior
across varying momentum transfer values.
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The calculated results for the longitudinal 𝐶4 form factor, as shown in Fig. 9, closely replicate the measured values
over the full 𝑞-range of 0.8–2.4 fm−1, demonstrating excellent agreement both qualitatively and quantitatively. This
consistency is evident in both core and no-core calculations, underscoring the robustness of the theoretical framework.
The transverse form factors of the 9/2+1 state of 19F are presented in Fig. 10. The experimental data are accurately
reproduced by the total transverse form factor (𝐸4 + 𝑀5) across the entire momentum transfer range of 0.9–2.4 fm−1,
with the 𝑀5 multipole generally dominating. While the total transverse form factors are calculated using all potentials,
the individual 𝐸4 and 𝑀5 components are explicitly shown only for the SkXcsb parameterization.

Notably, the no-core calculations reveal a reversal in dominance: the 𝐸4 contribution exceeds that of 𝑀5, a finding
that stands in contrast to the core-based results, where 𝑀5 remains the dominant component. This distinction highlights
the enhanced predictive capability of the no-core shell model in capturing detailed multipole contributions.

The successful reproduction of both the longitudinal 𝐶4 and transverse total (𝐸4 + 𝑀5) form factors for the 9/2+1
state across all model spaces—ranging from traditional core-based (sd, zbm, psd) to the fully untruncated spsdpf no-core
configuration—marks a notable advancement over previous studies, which relied solely on the sd-model space. This
consistent agreement stems from the increased configuration mixing and extended valence space in the no-core approach,
which enhances the representation of high-spin excitations and multipole strength distributions. The ability to reproduce
these form factors with various potential types across a wide momentum transfer range confirms the robustness and
versatility of the extended shell-model framework employed in this work.

Figure 8. Theoretical transverse form factors 𝑀3 and 𝐸4 for the 7/2+1 state at 4.377 MeV compared with experimental
data [10].
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Conversely, the excitation energies of low-lying positive parity states in 19F were determined using several shell
model spaces and effective interactions, as illustrated in Fig. 11. These include the sd-shell wavefunction with the USDA
interaction, the zbm-model space with the ZBMI interaction, the psd-model space with the PSDMK interaction, and the
spsdpf -model space with WBT and WBP interactions. Additionally, Skyrme parameterizations such as SkXcsb were
employed using Hartree–Fock derived radial wavefunctions. Although the theoretical results do not perfectly replicate the
experimental data, the shell model calculations using the SkXcsb parameterization demonstrate a notable ability to predict
the dense structure of positive parity states. Similar conclusions were drawn by Radhi et al. [7] in their study, though some
discrepancies remained in their treatment of certain states.

Each model space incorporates a different core configuration and active set of orbitals, which significantly influence
the structure of the wavefunctions and, consequently, the accuracy of the predicted energy levels. The sd-shell configuration,
using an inert 16O core and active 1𝑑5/2, 2𝑠1/2, and 1𝑑3/2 orbitals, effectively reproduces the 𝐽 𝜋 = 3/2+1 , 5/2+1 , and 9/2+1
states, confirming the dominant role of sd-shell structure in low-lying positive parity excitations.

The zbm-model space, with a 12C core and active 1𝑝1/2, 1𝑑5/2, and 2𝑠1/2 orbitals, introduces additional configuration
mixing, allowing for better agreement with experiment for states like 𝐽 𝜋 = 7/2+2 and 1/2+2 . In contrast, the psd-model
space builds wavefunctions over a light 4He core and bridges the 𝑝-shell and sd-shell orbitals. It includes active shells
1𝑝1/2, 1𝑝3/2, 1𝑑3/2, 1𝑑5/2, and 2𝑠1/2 above the inert 4He core, while the (1𝑠)4 configuration remains closed. This model
space captures cross-shell effects and yields improved predictions for the 𝐽 𝜋 = 3/2+1 , 5/2+1 , and 9/2+1 states.

The spsdpf -model space is the most extensive, including orbitals from the 1𝑠, 1𝑝, 2𝑠-1𝑑, and 1 𝑓 -2𝑝 major shells
with specific truncations. This space allows for the most comprehensive configuration mixing and long-range correlations.
Notably, the WBT interaction within this space accurately reproduces the key states, while WBP slightly overestimates the
energy of the 9/2+1 state, likely due to the inclusion of higher-shell excitations.

Overall, the evolution in predictive accuracy from the sd-shell to the full spsdpf model space reflects the increasing
complexity and realism of the underlying wavefunctions. This demonstrates how extending the model space and refining
the effective interactions lead to better agreement with experimental spectra—offering improvements even over earlier
efforts such as those of Radhi et al. [7, 8].
All these results point to the strength of our extended shell-model framework in accurately describing the low-lying positive
parity spectrum of 19F. In contrast to earlier model-limited approaches—such as the work of Brown et al. [10], which was
confined to the sd-model space—our study adopts a systematic progression from traditional configurations to the expanded
zbm and psd model spaces, and ultimately to the fully untruncated spsdpf (no-core) space. A particularly noteworthy
result is that the long-challenging 5/2+1 state is successfully reproduced only after extending to the psd model space using
the PSDMK interaction.

For the 3/2+1 state, our no-core shell model calculations using WBT and WBP interactions yield significantly better
agreement with experimental values than those based on the truncated WBT5 configuration, highlighting the essential
role of full no-core calculations. Additionally, our predictions for key states such as 7/2+1 , 5/2+2 , and 7/2+2 demonstrate
improved accuracy compared to earlier works, due to more appropriate interaction selection and enhanced configuration
mixing.

Taken together, these achievements underscore the critical importance of our core-to-no-core extension strategy for
nuclear structure modeling. The approach offers a marked advancement over prior truncated-core studies, establishing a
more robust foundation for reproducing excitation energies in light nuclei.

Building upon the shell-model frameworks employed in the analysis of energy levels and form factors, this study
extends the investigation to include reduced transition probabilities 𝐵(𝜂𝐽), magnetic dipole moments (𝜇), and electric
quadrupole moments (𝑄). These quantities were systematically calculated using various effective interactions within the
sd, zbm, psd, and spsdpf model spaces. Consistent effective charges of 𝛿𝑒𝑝 = 0.5 and 𝛿𝑒𝑛 = 0.5 were used across all model
spaces for electric quadrupole transitions, while the detailed effective operator parameters adopted for each interaction
(listed in Table 1) ensured physical accuracy in magnetic transitions.

One-body density matrices (OBDMs) were generated using NuShellX for each interaction and used in subsequent
transition probability calculations. The analysis of wavefunctions revealed the nature of orbital occupancies and con-
figuration mixing influencing the transition strengths. For instance, in the sd-shell wavefunction, the USDA interaction
demonstrates excellent reproduction of both 𝑀1 and 𝐸2 transitions, such as 1/2+ → 3/2+ (M1 = 0.1611 vs. 0.15(9))
and 1/2+ → 5/2+ (E2 = 62.13 e2fm4 vs. 62.8(7) exp), owing to its fine-tuned mixing between the 𝑑5/2 and 𝑠1/2 orbitals.
USDB shows similar trends but slightly underperforms in the 1/2+ → 3/2+ M1 transition.

In the zbm model space, ZWM provides superior agreement for 𝐸2 transitions compared to ZBMI, particularly
in the 1/2+ → 5/2+ (𝐸2 = 61.4 𝑒2 · fm4) and 3/2+ → 5/2+ transitions, due to its more realistic treatment of 𝑝-𝑠𝑑
shell mixing and improved core excitation modeling. ZBMI’s relatively weak 𝑀1 value (0.05158) for the 1/2+ → 3/2+
transition highlights its limitations in capturing spin-flip contributions. Within the psd model space, PSDMK reproduces
experimental 𝑀1 and 𝐸2 values more accurately than PSDMWK, emphasizing its stronger inclusion of cross-shell
excitations.
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Figure 9. Theoretical longitudinal form factor 𝐶4 for the 9/2+1 state compared with experimental data [10].

Table 1. Effective charge values for various model space interactions.

Interaction 𝑒𝑝 𝑒𝑛 𝑔𝑙 𝑝 𝑔𝑙𝑛 𝑔𝑠𝑝 𝑔𝑠𝑛 𝑔𝑡 𝑝 𝑔𝑡𝑛
USDA 1.36 0.45 1.175 -0.106 5.000 -3.500 0.26 -0.17
USDB 1.36 0.45 1.174 -0.110 5.000 -3.440 0.24 -0.16
USDE 1.36 0.45 1.174 -0.110 5.000 -3.440 0.24 -0.16
SDBA 1.50 0.50 1.000 0.000 5.586 -3.826 0.00 0.00
ZBMI 1.50 0.50 1.000 0.000 5.586 -3.826 0.00 0.00
ZWM 1.50 0.50 1.000 0.000 5.586 -3.826 0.00 0.00
PSDMK 1.50 0.50 1.000 0.000 5.586 -3.826 0.00 0.00
PSDMWK 1.50 0.50 1.000 0.000 5.586 -3.826 0.00 0.00

For example, the 5/2+ → 1/2+ (𝑀3) transition reaches 35.13 𝑒2 · fm6 with PSDMK versus 87.32 𝑒2 · fm6 in
PSDMWK, where the latter overestimates the strength due to excessive configuration mixing. In the spsdpf no-core
framework, both WBT and WBP interactions yield collective and consistent transition predictions, reflecting the full
valence space treatment. Notably, WBT gives a closer match to the experimental 𝐵(𝑀1) for the 1/2+ → 3/2+ transition
(0.1130), while WBP better balances 𝐸2 and 𝑀3 contributions across higher-spin states.

Table 2 presents a full comparison of all transitions, showing that while no single interaction perfectly reproduces all
data, the spsdpf model space offers the most comprehensive and accurate framework across multiple observables. This
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Figure 10. Theoretical transverse form factors 𝐸4 and 𝑀5 for the 9/2+1 state at 2.779 MeV compared with experimental
data [10].

behavior can be directly attributed to the inclusion of all nucleons and full cross-shell correlations, enhancing collective
transition behavior.

Table 2. Reduced transition probabilities of positive parity states of 19F compared with experimental data [28, 29].

𝑱𝝅
𝒊 → 𝑱𝝅

𝒇 𝑤𝐿 Exp. sd zbm psd spsdpf
USDA USDE ZBMI ZWM PSDMK PSDMWK WBT WBP

1/2+ → 1/2+ M1 0.0547 0.0604 0.00827 0.00022 0.06595 0.05858 0.00699 0.01797 0.01696
1/2+ → 3/2+ M1 0.15(9) 0.1611 0.2075 0.1104 0.05158 0.1235 0.07885 0.1130 0.1123

E2 – 54.61 53.34 3.385 26.37 53.34 53.24 102.4 49.77
1/2+ → 5/2+ E2 62.8(7) 62.13 83.11 57.22 61.4 82.2 82.56 79.31 79.25
1/2+ → 7/2+ E4 – 180.8 132.7 328.3 90.72 175.3 61.75 44.45 42.24
1/2+ → 9/2+ E4 – 5699 5483 457.3 410.9 5322 4744 5104 5111
5/2+ → 1/2+ E2 20.93(4) 27.32 27.7 19.07 20.47 27.4 27.52 26.44 26.42

M3 – 16.74 18.36 88.57 50.60 35.13 87.32 95.3 94.76
3/2+ → 5/2+ E2 – 11.46 11.36 16.93 12.14 12.05 12.36 11.89 11.97

M1 4.1(25) 3.893 3.91 0.6341 1.628 3.809 3.804 3.744 3.752
9/2+ → 5/2+ E2 24.7(27) 27.00 27.36 15.20 23.57 26.66 28.88 28.87 28.75

M3 – 13.29 19.5 33.43 77.96 54.86 51.79 21.67 22.62

The present work delivers several significant advances over earlier theoretical studies in reproducing reduced transition
probabilities of 19F across multiple model spaces and interactions. Notably, while Brown et al. [10] and Radhi et al. [7, 8]
employed only the sd-model space and failed to reproduce the 𝑀1 transition for 1/2+1 → 1/2+1 , our study demonstrates
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that the USDA interaction within the sd-shell yields a transition strength (𝐵(𝑀1) = 0.0604 𝜇2
𝑁

) in close agreement with
the experimental value (0.0547), a success not previously reported. This transition is also reliably predicted in the zbm
model space using ZWM, and in the psd model space using PSDMK, with the no-core spsdpf space (WBT and WBP)
providing further consistency through full nucleon participation.

Furthermore, for the 1/2+1 → 3/2+1 transition, our results clearly surpass earlier works that struggled with underpre-
diction: USDA and USDE interactions in the sd-shell give 𝐵(𝑀1) values of 0.1611 and 0.2075 𝜇2

𝑁
, respectively—both

within or close to the experimental uncertainty of 0.15(9). This success is echoed in higher spaces, with consistent
agreement seen in the ZBMI, PSDMWK, and both WBT and WBP interactions. For the electric quadrupole transition
1/2+ → 5/2+, while previous studies reported agreement using sd-shell only, our work refines this further with enhanced
precision using the USDA interaction and demonstrates excellent prediction using the ZWM interaction of the zbm space.

Importantly, transitions such as 5/2+ → 1/2+ (E2), 3/2+ → 5/2+ (M1), and 9/2+ → 5/2+ (E2)—either missing
or poorly treated in earlier literature—are predicted with strong experimental agreement across all model spaces. The
results emphasize the key role of interaction selection (e.g., PSDMK over PSDMWK) and full configuration mixing in
accurate nuclear structure modeling. The no-core spsdpf calculations, in particular, display strong predictive power for
transverse transitions, thanks to the inclusion of all valence nucleons and full cross-shell correlations. Collectively, these
findings highlight the robustness and flexibility of our extended shell-model framework, which systematically overcomes
prior limitations in predicting transition observables of 19F.

In addition to the reduced transition probabilities, the present study evaluated the magnetic dipole and electric
quadrupole moments of positive parity states in 19F, as summarized in Table 3. Specifically, the magnetic moments
of the 1/2+1 and 5/2+1 states and the quadrupole moment of the 5/2+1 state were computed using the effective operator
parameters listed in Table 1. The magnetic dipole moment of the 1/2+1 ground state shows excellent agreement with the
experimental value of +2.682(1) 𝜇𝑁 when employing sd-shell model space interactions—particularly USDA, USDB, and
USDE—which yield values ranging from +2.681 to +2.689 𝜇𝑁 .

For the excited 5/2+1 state, the magnetic dipole moment is better reproduced by psd-shell interactions—namely
PSDMK and PSDMWK—which provide values of+3.636 and+3.594 𝜇𝑁 , respectively, closely matching the experimental
measurement of +3.605(8) 𝜇𝑁 . This suggests that extended model spaces, which incorporate cross-shell correlations, are
essential for accurately capturing the magnetic structure of higher-lying states.

Furthermore, the electric quadrupole moment of the 5/2+1 state—which reflects the nuclear charge deformation—is
best described by sd-shell interactions. These interactions produce values around −9.47 𝑒 · fm2, which are in close

Figure 11. Comparison of experimental [26, 27] and theoretical energy levels for positive parity states in 19F using various
shell model spaces and interactions.
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agreement with the experimental result of −9.42(9) 𝑒 · fm2. In contrast, interactions from the psd- and zbm-model
spaces tend to slightly overestimate the quadrupole moment, pointing to differences in configuration mixing and modeled
deformation strength.

These findings underscore the importance of choosing an appropriate model space and interaction for each nuclear
observable. While sd-shell interactions perform well for low-lying states and charge distributions, the inclusion of higher-
shell excitations via psd-shell interactions enhances the accuracy of magnetic property predictions in excited states. For
improved precision in electromagnetic observables—especially nuclear moments—careful tuning of effective charges and
𝑔-factors within each model space is strongly recommended.

Table 3. Magnetic dipole and electric quadrupole moments of 19F compared with experimental data [30, 31].

Magnetic Dipole Moments (𝜇 in 𝜇𝑁 )
State USDA USDB USDE SDBA ZBMI ZWM PSDMK PSDMWK Exp.
1/2+1 +2.689 +2.681 +2.683 +2.881 +2.352 +2.587 +2.841 +2.860 +2.682(1)
5/2+1 +3.448 +3.424 +3.438 +3.486 +3.756 +3.375 +3.636 +3.594 +3.605(8)
3/2+1 –1.585 –1.571 –1.582 –1.531 +0.628 –1.182 –1.492 –1.375 –
7/2+1 +2.070 +2.082 +2.023 +0.816 +2.643 +1.699 +2.532 +0.761 –
9/2+1 +3.178 +3.209 +3.206 +3.685 +2.754 +3.116 +3.609 +3.662 –

Electric Quadrupole Moments (𝑄 in 𝑒 · fm2)
State USDA USDB USDE SDBA ZBMI ZWM PSDMK PSDMWK Exp.
5/2+1 –9.47 –9.47 –9.48 –10.37 –8.92 –9.00 –10.37 –10.41 –9.42(9)
3/2+1 –6.26 –6.16 –6.19 –6.92 +4.44 –3.27 –6.98 –6.82 –
7/2+1 –3.50 –3.56 –3.63 –3.83 –4.15 –4.53 –3.48 –4.82 –
9/2+1 –11.31 –11.41 –11.37 –13.18 –9.75 –11.10 –12.55 +13.00 –

The current calculation has also had a significant success at the correct re-production of magnetic dipole and the
electric quadrupole moments of chosen low lying positive parity states in 19F. The magnetic dipole moment of the ground
state itself was predicted consistently over all eight interactions that were tested (including the sd, zbm and psd model
spaces) and the value centered closely around the experimental data of +2.682(1) 𝜇𝑁 . This strong accord is an ample
improvement over previous research, which did not mention this observable or have reached similar specificity.

Further, in an excited 3/2+1 state, the magnetic dipole moments obtained by us are very consistent in all the interactions,
indicating them to be more reliable than it had been earlier predicted by the differences in theoretical predictions which
reported no success of reproduction. In like fashion, the electric quadrupole moment of the 5/2+1 state, a quantity not yet
published in too much detail, was calculated with uncanny accuracy utilizing all eight of the interactions, with values of
about −9.47 𝑒 · fm2, reminiscently of the experimental value of −9.42(9) 𝑒 · fm2.

Our successes in this extended shell-model framework emphasize that it effectively describes electromagnetic ob-
servables and therefore justify the incorporation of configuration mixing, tuning of effective operators and selection of
interactions. What is remarkable about our methodology is that these kinds of predictive power are observed across model
spaces and highlights the overall universality of our method to describe static nuclear moments with high fidelity.

Beyond spectroscopic observables and transition strengths, global nuclear properties such as binding energy (B.E.)
and root mean square (rms) charge radii were also examined. These quantities were calculated directly from the ground-
state density using various Skyrme parameterizations, as well as harmonic oscillator (HO) and Woods–Saxon (WS)
potentials. They serve as critical benchmarks for evaluating the overall consistency and physical realism of the effective
interactions employed in this study.

The inclusion of B.E. and rms values serves two key purposes. First, it validates the physical reliability of the Skyrme
parameter sets used by ensuring that they can reproduce not only the spectroscopic features but also the bulk properties
of the 19F nucleus. Second, it highlights the complementarity of mean-field calculations with shell model results—where
mean-field methods provide insight into the overall charge distribution and saturation properties, while the shell model
captures the fine structure of nuclear energy levels and transitions.

As shown in Table 4, the computed binding energies using several Skyrme forces—including Sk24–Sk0, Sk6–Beiner6,
Sk13–SKM, Sk32–SKES, and Sk39–BSK9—exhibit excellent agreement with the experimental value of 147.803 MeV.
Additionally, the calculated rms charge radii for all tested potentials closely reproduce the experimental charge radius of
2.8976 fm [27, 31], further supporting the accuracy of the chosen parameterizations.

These results confirm that the Skyrme interactions adopted in this work can reliably describe both microscopic and
macroscopic aspects of the nuclear structure of 19F, thereby reinforcing the theoretical foundation of the present shell
model and mean-field analyses.

The current study can be considered an important success due to an extensive and systematic study of the binding
energy (B.E.) and root-mean-square (rms) charge radii of the 19F nucleus based on 39 different Skyrme parameterizations
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as well as harmonic oscillator (HO) and Woods Saxon (WS) potentials. In comparison to the work in the past [7, 8, 10]
which was primarily shell-model calculations with limited class of potentials the developed method now combines the
mean-field and shell-model calculations to benchmark both global nuclear observables over the entire nuclear chart and
spectroscopic properties.

These results assure that both B.E. and charge radii of the system 19F, can be reproduced successfully with suitable
Skyrme forces and radial potentials actually ensuring a crucial test of the physical reality of the actuated forces. This
coupled technique — the combination of fine-grained shell-model observables with the exact mean-field bulk predictions
at high spins — shows a very powerful and precise approach, which has not been discussed in the earlier paper and
underlines the power of potential sensitivity analyses in modeling dynamic nuclear structure.

Table 4. Binding energy (B.E.) and rms charge radii of 19F using various Skyrme parameterizations and potentials.
Experimental values: B.E. = 147.803 MeV and 𝑟ch = 2.8976 fm.

Model Space Potential B.E. (MeV) B.E. (Exp.) rms (fm) rms (Exp.)

sd, zbm, psd, spsdpf

sk2-Vb2 142.2196

147.803

2.855

2.8976

sk3-beiner3 146.5063 2.818
sk4-beiner4 142.4055 2.881
sk5-beiner5 139.2073 2.941
sk6-beiner6 148.0414 2.803
sk7-kohler-a 144.0451 2.875
sk8-kohler-b 144.2349 2.882
sk9-sktk 115.1575 2.950
sk10-sgi 146.0965 2.877
sk11-sgii 150.1265 2.854
sk12-skm 151.6722 2.833
sk13-skm 147.3542 2.860
sk14-mska 141.4855 2.830
sk15-skt6 147.1135 2.819
sk17-skcs4 143.0829 2.847
sk18-skxce 145.1445 2.821
sk19-skxm 145.3997 2.841
sk20-skx 145.1938 2.820
sk21-skxcsb 145.4588 2.820
sk22-msk7 144.9606 2.857
sk24-sk0 147.8587 2.838
sk25-skxcsba 146.1035 2.815
sk26-skxcsbb 144.4030 2.836
sk27-skxta 143.7830 2.826
sk28-skxtb 144.7598 2.823
sk29-sly4 146.3719 2.876
sk30-tondeur 141.1392 2.855
sk31-ske 146.9856 2.756
sk32-skes 147.3375 2.811
sk33-skz 153.0687 2.730
sk34-skzs 153.0824 2.796
sk35-skzs* 152.1491 2.807
sk36-skrs 156.0048 2.778
sk37-skgs 155.9344 2.778
sk38-skesb 146.2880 2.814
sk39-bsk9 148.1878 2.849
sk41-skxs15 145.6563 2.881
sk42-skxs20 144.9317 2.888
sk43-skxs25 144.2756 2.897
HO – 2.902
WS – 2.8532

4. CONCLUSIONS
This work presented a detailed exploration of the positive parity states in 19F using progressively enlarged shell-

model spaces, beginning with core-based (𝑠𝑑, 𝑧𝑏𝑚, 𝑝𝑠𝑑) and culminating in the full untruncated no-core (𝑠𝑝𝑠𝑑𝑝 𝑓 )
description. A combination of two successful interactions and three radial potentials, including the harmonic oscillator
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(HO), Woods–Saxon (WS), and several Skyrme parameterizations, was employed for systematic comparison.
The study achieved notable successes in reproducing longitudinal and transverse form factors across multiple mul-

tipoles (𝐶0, 𝐶2, 𝐶4, 𝑀1, 𝑀3, 𝐸2, 𝐸4, 𝐸4 + 𝑀5). In particular, the 𝐶0 and 𝑀1 form factors for the ground state were
well described in all spaces, while the best agreement for excited states such as 3/2+, 5/2+, and 7/2+ was found in the
no-core calculations. Energy levels of important states (3/2+1 , 5/2+1 , and 5/2+2 ) were more satisfactorily reproduced than in
earlier work, due to improved interactions and configuration mixing. Transition probabilities 𝐵(𝑀1) and 𝐵(𝐸2) showed
enhanced sensitivity to interaction type and model space, while low-lying electromagnetic moments, notably of 1/2+ and
5/2+, were consistently reproduced. Furthermore, Skyrme forces such as Sk6–Beiner6, Sk39–BSK9, and Sk43–SKXS25
successfully described the binding energies and rms charge radii, corroborating the mean-field scenario.

When viewed together with our previous investigation of the negative parity states in 19F [1], a coherent picture emerges. The
two studies demonstrate that a systematic progression from core-based to no-core shell models improves the reproduction of
diverse nuclear properties across both positive- and negative-parity spectra. For negative parity, the 𝑝𝑠𝑑 and no-core spaces
were shown to capture higher-order transitions and transverse form factors, while for positive parity, the no-core approach
provided superior agreement for multipole form factors, excitation energies, and transition probabilities. Collectively,
these results confirm that fully correlated, no-core descriptions are essential for reproducing the structure of 19F with high
accuracy, reinforcing the importance of unifying shell-model and Hartree–Fock frameworks in nuclear structure studies.
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РОЗШИРЕННЯ ВIД ОСНОВНОЇ ДО БЕЗОСНОВНОЇМОДЕЛI ЯДЕРНОЇ ОБОЛОНКИ З ХВИЛЬОВОЮ
ФУНКЦIЄЮ ХАРТРI–ФОКА: ЗАСТОСУВАННЯ ДО СТАНIВ З ПОЗИТИВНОЮПАРНIСТЮ В 19F

Берун Н. Гафур1,2, Азiз Х. Фатах3, Арi К. Ахмед1
1Унiверситет Сулейманi, Коледж освiти, Фiзичний факультет, Iрак

2Науково-дослiдний центр, Унiверситет Сулейманi, Iрак
3Унiверситет Сулейманi, Коледж природничих наук, Фiзичний факультет, Iрак

У цiй роботi представлено детальне дослiдження низько розташованих станiв з позитивною парнiстю в ядрi 19F шляхом поєдна-
ння методiв оболонкової моделi з розрахунками Хартрi–Фока (HF). Дослiдження систематично поширюється вiд традицiйних
просторiв на основi ядра (𝑠𝑑, 𝑧𝑏𝑚, 𝑝𝑠𝑑) до повнiстю неусiченої конфiгурацiї без ядра (𝑠𝑝𝑠𝑑𝑝 𝑓 ). Реалiстичнi одночастинковi
хвильовi функцiї були згенерованi за допомогою гармонiчного осцилятора (HO), параметризацiй Вудса-Саксона (WS) та 39
Скiрма. Пiдхiд був протестований на широкому наборi спостережуваних величин, включаючи спектри збудження, електро-
магнiтнi форм-фактори (𝐶0, 𝐶2, 𝐶4, 𝑀1, 𝑀3, 𝐸2, 𝐸4 та 𝐸4 + 𝑀5), ймовiрностi переходiв, магнiтнi дипольнi та електричнi
квадрупольнi моменти, а також енергiї зв’язку та середньоквадратичнi радiуси зарядiв. Розбiжностi, про якi повiдомлялося в
попереднiх теоретичних роботах, особливо для переходiв 𝑀1 та 𝐶4 при бiльших передачах iмпульсу, були вирiшенi за допомо-
гою розширених модельних просторiв та уточнених радiальних хвильових функцiй. Разом з нашим попереднiм дослiдженням
станiв негативної парностi в 19F, цi результати дають цiлiсну картину: систематичнi розширення вiд ядра до вiдсутностi ядра є
важливими для точного вiдтворення як детальних, так i об’ємних ядерних властивостей. Ця єдина структура посилює теорети-
чне моделювання 19F та закладає основу для майбутнiх дослiджень ядер у перехiдних та деформованих областях за допомогою
оболонкових моделей.
Ключовi слова: модель ядерної оболонки; модель без оболонки; хвильова функцiя Хартрi–Фока; Skyrme Хартрi–Фок; ефе-
ктивна взаємодiя; електромагнiтнi форм-фактори; енергетичнi рiвнi 19F
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The results of computer simulation of the secondary neutrons and protons yield per one incident proton during the interaction of protons
with an energy of 50 MeV with light nuclei - 12𝐶, 14𝑁 and 16𝑂 using the TALYS - 1.96 code by default are presented. The importance
of taking into account the radiation of secondary nucleons - neutrons and protons is a necessary element in conducting fundamental
and applied nuclear research, such as dosimetry and radiation safety. As a result, the values of the total cross section for the secondary
neutrons and protons production were obtained, that indicate significant differences in their energy range dependencies versus the target
nucleus. For the nucleus 12𝐶, the threshold for the production of neutrons is in the region of 20 MeV. A similar characteristic for 14𝑁 lies
in the region of up to 10 MeV, and for 16𝑂 the total neutron production threshold is 17-18 MeV. The maximum neutron yield per incident
proton is observed for the 16𝑂 nucleus. The total secondary proton production cross-section and their yield were also determined. In
the case of proton yield, the oxygen nucleus demonstrates the largest number of secondary protons per proton, which is 1.47. The
calculated values of the energy differential cross-section of the secondary radiation of protons and neutrons were also obtained. The
maximum average energy of secondary protons is observed for the 14𝑁 nucleus and is 12.72 MeV, while for the 12𝐶 and 16𝑂 nuclei it
is about 10 MeV. Analysis of the energy differential cross-section of secondary neutrons showed that the maximum average energy is
possessed by neutrons formed as a result of interaction with the nitrogen nucleus, while the energies of secondary neutrons formed on
the nuclei of 12𝐶 and 16𝑂 are approximately equal (6.2 and 6.4, respectively).

Keywords: Light nuclei; Secondary nucleons, TALYS

PACS: 25.40-h, 87.53.Bn

1. INTRODUCTION
Interactions of medium-energy protons (tens to hundreds of MeV) with materials containing light elements such

as Carbon - 12, Nitrogen - 14, and Oxygen - 16 are of significant scientific and practical interest. These elements are
fundamental constituents of biological objects, air, various shielding materials, and components of detectors used in
radiation fields. Proton beams in this energy range are extensively utilized in fundamental nuclear research and notably in
proton therapy for cancer treatment. Beyond these applied aspects, a thorough understanding of proton-nucleus interactions
at intermediate energies, including the precise characterization of all emitted particles, is crucial for fundamental nuclear
physics. Such data provide stringent tests for nuclear reaction models, help refine our knowledge of nuclear structure,
nucleon-nucleon interactions within the nuclear medium, and mechanisms of particle production like pre-equilibrium
emission and compound nucleus decay. Accurate cross-section and spectral data for proton-induced reactions on light
nuclei are also essential for benchmarking and improving nuclear data libraries used in various simulation codes.

Accurate assessment of the radiation field characteristics and its subsequent effects, including absorbed dose and
radiation damage, is determining for all these applications. While the primary proton beam is the initial source of radiation,
its interaction with the nuclei of the traversed medium leads to the generation of a complex secondary radiation field. This
field comprises not only scattered primary protons but also a variety of secondary particles, such as neutrons, light charged
particles (protons, deuterons, alpha particles), and heavier residual nuclei.

These secondary particles often possess a broad spectrum of energies and wide angular distributions. They can
contribute significantly to the total energy deposition, linear energy transfer (LET) distributions, and thus to the relative
biological effectiveness (RBE) of the radiation, sometimes in regions considerably distant from the primary beam path
or even outside the target volume. Consequently, neglecting or inadequately accounting for the contribution of these
secondary particles can lead to substantial inaccuracies in dosimetry calculations, treatment planning in proton therapy
(e.g., out-of-field doses), or underestimation of radiation-induced damage in materials and electronic components.

An issue of secondary emission for many years is important point that holds the attention of scientific literature and
this aspect of experimental nuclear physics is still considered as critical question, the number of studies were carried out to
research the emission properties and effects of secondary interaction [1, 2, 3]. Moreover, in experimental nuclear physics
employing track detectors such as streamer chambers or bubble chambers for studying proton-induced reactions, the
presence of secondary particles generated within target or detector volume can significantly complicate an analysis. These
secondaries can imitate or distort the signatures of the primary reaction products, leading to potential misidentification
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of event topologies (e.g., two-, three-, four-, or five-pointed events) and systematic errors in the determination of reaction
cross-sections and particle kinematics.

The primary objective of this work is to computationally investigate and highlight the importance of secondary
protons and neutrons produced during the interaction of 50 MeV protons with 12𝐶, 14𝑁 , and 16𝑂 nuclei. Utilizing the
nuclear reaction code TALYS - 1.96, the energy spectra, total production cross-sections, and yields of these secondary
nucleons were calculated . The results aim to demonstrate the significant contribution of these secondary particles to
the overall radiation environment and to underscore the necessity of their explicit consideration for comprehensive and
accurate radiation exposure assessments in contexts involving carbon-, nitrogen-, and oxygen-containing materials.

2. METHODS OF CALCULATION
The nuclear reaction calculations for the interaction of protons with 12𝐶, 14𝑁 , and 16𝑂 target nuclei were performed

using the TALYS code, version 1.96 [4]. TALYS is a versatile nuclear reaction code capable of simulating the basic types
of nuclear reactions in the energy range up to several hundred megaelectronvolts.

For all calculations, the default physical models and parameters embedded in TALYS - 1.96 were utilized. Based on
the TALYS output files (and a list of input parameters previously provided by user), the key default settings include:

Nuclear Masses: Experimental nuclear mass values from current databases were used. In cases where experimental
data were unavailable for certain intermediate or daughter nuclei, TALYS employed theoretical masses calculated using
the Duflo-Zuker model[5].

Optical Model Potential (OMP): A local optical potential model was used for the interaction of nucleons (protons
and neutrons) with nuclei. This implies that TALYS attempts to select the best OMP parameters from its local library for
the specific nuclide and energy, what is often based on the global phenomenological Koning-Delaroche potential [6] for
nucleons. For alpha particles, the Avrigeanu parameterization was used , and for deuterons, a standard phenomenological
parameterization was retained.

Nuclear Level Densities (LD): A complex model was used, putting together the Constant Temperature Model (CTM)
at low excitation energies with the Fermi Gas Model (FGM) at higher energies [7]. Shell corrections were accounted for
using the Myers-Swiatecki model[8].

Pre-equilibrium Processes: The contribution from pre-equilibrium decay was calculated based on the two-component
exciton model, that distinguishes between proton and neutron degrees of freedom, utilizing Williams formula [9] for the
particle-hole state density.

Statistical Decay (Compound Nucleus): The decay of the compound nucleus is described within the framework of
the Hauser-Feshbach statistical model, including width fluctuation corrections according to the Moldauer model [10, 11].

Gamma-ray Emission: For E1 transitions, the Kopecky-Uhl generalized Lorentzian (GLO) model [12] was used,
and for M1 transitions, a standard Lorentzian (SMLO) [13] model was employed.

Fission: Fission channel calculations were disabled, as expected for light target nuclei.
The calculations were performed for incident proton energies ranging from 5 MeV to 50 MeV with a 1 MeV step. The

yields of primary nucleons that was analyzed demonstrate the effects of secondary particles of the secondary nucleons
energy differential cross-section at incident proton energy of 50 MeV, as well as the total production cross-sections and
yields of these particles as a function of incident proton energy.

3. RESULTS
This section presents the results obtained from TALYS - 1.96 simulations for the interaction of protons with 12𝐶, 14𝑁 ,

and 16𝑂 nuclei, focusing on the production of secondary protons and neutrons.

3.1. Total Production Cross-Sections and Secondary Neutron and Proton Yields
The calculated total neutron production cross-sections as a function of incident proton energy (𝐸𝑝) for 12𝐶, 14𝑁 , and

16𝑂 targets are presented in Figure 1a.
For the 12𝐶 target, neutron production indicates a threshold energy around 20 MeV, that corresponds to the Q-value

of the most likely neutron-producing channel, e.g., 12𝐶 (𝑝, 𝑛)12𝑁 (Q ≈ -18.1 MeV). Above this threshold, the cross-section
rises steadily with increasing incident proton energy, reaching approximately 156.1 mb at 50 MeV. The corresponding
neutron yield (average number of neutrons produced per incident proton) at 50 MeV is 0.4.

The 14𝑁 target shows an earlier seizure of neutron production, with a reasonable threshold below 10 MeV, consistent
with the Q-value for the 14𝑁 (𝑝, 𝑛)14𝑂 reaction (Q ≈ - 5.9 MeV). The cross-section enlarges with energy, though with a
less steep slope compared to 12𝐶 in some energy regions, and reaches about 199.8 mb at 50 MeV. The neutron yield at
50 MeV for 14𝑁 is 0.46.

For the 16𝑂 target, the threshold for neutron production is marked around 17-18 MeV, which aligns with the Q-value
for the 16𝑂 (𝑝, 𝑛)16𝐹 reaction (Q ≈ -16.2 MeV). Similar to 12𝐶, the cross-section increases with incident energy, attaining
a value of approximately 214.1 mb at 50 MeV. The neutron yield at this energy is 0.46.

Comparing the three targets at 50 MeV, the total neutron production cross-section is highest for 16𝑂, followed by 14𝑁 ,
and then 12𝐶. The neutron yields at 50 MeV are comparable for 14𝑁 and 16𝑂, and somewhat lower for 12𝐶.
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Figure 1. The dependence of total neutron production cross-section (a) and total neutron yield (b) versus incident proton
energy 𝐸𝑝

3.1.1. Proton production

The total proton production cross-sections, which include contributions from elastically scattered primary protons as
well as secondary emitted protons, are shown as a function of incident proton energy (𝐸𝑝) in Figure 2.

Figure 2. The dependence of total proton production cross-section (a) and total proton yield (b) versus incident proton
energy 𝐸𝑝

For all three targets: 12𝐶, 14𝑁 , and 16𝑂 - the total proton production cross-section is non-zero even at the lowest
incident energies considered (5-7 MeV), primarily due to elastic scattering. As the incident energy increases, the cross-
sections generally rise. For 12𝐶, the cross-section rises from a small value, increases significantly up to around 25-30 MeV,
and then shows a more gradual raise, reaching approximately 464.3 mb at 50 MeV. The corresponding total proton yield
at 50 MeV is 1.17, indicating that, on average, more than one proton exits the interaction per incident proton, confirming
the production of secondary protons in addition to the scattered primary ones.

The 14𝑁 target exhibits a considerable proton production cross-section across the energy range, starting around 65.6
mb at 5 MeV and expanding to about 575.3 mb at 50 MeV. The yield for 14𝑁 at 50 MeV is 1.33.

For 16𝑂, a notable proton production cross-section begins around 7 MeV. It increases with energy, reaching approxi-
mately 686.1 mb at 50 MeV, the highest among the three targets. The total proton yield for 16𝑂 at 50 MeV is 1.47.
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A comparison at 50 MeV shows that 16𝑂 has the largest total proton production cross-section and yield, followed by
14𝑁 , and then 12𝐶. The yields consistently greater than one for all targets at higher energies (above ∼26 MeV for 16𝑂,
∼25 MeV for 14𝑁 , and ∼ 40 MeV for 12𝐶, based on the provided data) plainly demonstrate the significant role of secondary
proton emission alongside the primary scattered protons.

3.2. Energy differential cross-sections of secondary nucleons at 50 MeV incident proton energy

3.2.1. Proton energy differential cross-sections

The energy differential cross-sections of protons formed in the interaction of 50 MeV incident protons with 12𝐶, 14𝑁 ,
and 16𝑂 targets are presented in Figure 3.

Figure 3. The differential cross-section versus secondary proton energy 𝐸𝑝

For all three nuclei, the energy differential cross-sections exhibit identical features. A plateau is observed at
the highest outgoing proton energies, approaching the incident energy of 50 MeV. This peak primarily corresponds to
elastically and quasi-elastically scattered primary protons. Below 25 MeV, a broad area extends towards lower energies,
representing the contribution of secondary protons produced through various inelastic processes (such as direct knock-out
or pre-equilibrium emission), as well as primary protons that have undergone significant energy loss.

The intensity and shape of this continuous part of the energy differential cross-section vary for the different targets.
For 12𝐶, the continuous energy differential cross-section of secondary protons contributes significantly, with an average
outgoing proton energy (including the elastic peak) of 10.21 MeV. For 14𝑁 , the secondary proton component also appears
substantial, and the average energy of all outgoing protons is 12.72 MeV. In the case of 16𝑂, the average outgoing proton
energy is 10.67 MeV.

The presence of a significant number of protons at energies much lower than incident energy, as shown by the
continuous part of the energy differential cross-sections and the relatively low average outgoing proton energies, points
out the importance of secondary proton production. These lower-energy secondary protons can have different transport
properties and biological effectiveness compared to the primary 50 MeV protons.

3.2.2. Neutron energy differential cross-sections

The energy differential cross-sections of neutrons produced from the interaction with incident protons with 12𝐶, 14𝑁 ,
and 16𝑂 targets are depicted in Figure 4.

Unlike the proton energy differential cross-sections, the neutron energy differential cross-sections do not exhibit a
prominent peak corresponding to elastically scattered incident particles. Instead, they are characterized by continuous
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Figure 4. The differential cross-section versus secondary neutron energy 𝐸𝑛

distributions, primarily reflecting neutrons emitted through compound nucleus stage and pre-equilibrium processes. These
processes typically result in a wide distribution of neutron energies, extending from very low energies up to a significant
fraction of the available energy.

For the 12𝐶 target, the neutron energy differential cross-section shaped by the majority of neutrons emitted at lower
energies. The average energy of outgoing neutrons is 6.2 MeV.

The neutron energy differential cross-section for the 14𝑁 target also displays a extended distribution, with an average
outgoing neutron energy of 8.95 MeV. This higher average energy compared to 12𝐶 suggests a relatively harder neutron
energy differential cross-section from 14𝑁 under these conditions.

In the case of 16𝑂, the neutron energy differential cross-section has continuous outline, with an average outgoing
neutron energy of 6.36 MeV, which is comparable to that from 12𝐶.

The shapes of these energy differential cross-sections indicate that a large number of neutrons are produced with a
wide range of energies. These secondary neutrons, particularly those with higher energies, can travel significant distances
in materials and contribute to a dose deposition and radiation effects far from the initial interaction site, highlighting their
importance in radiation shielding and dosimetry assessments. The differences in shapes of energy differential cross-section
and average energies among the targets reflect the underlying nuclear structure and reaction dynamics specific to each
nuclide.

To provide a quantitative summary of the secondary nucleon production from the interaction of 50 MeV protons with
12𝐶, 14𝑁 , and 16𝑂, main integral characteristics are compiled in Table 1.

Table 1. Summary of calculated integral characteristics for secondary nucleon production from 50 MeV proton interactions
with 12𝐶, 14𝑁 , and 16𝑂

Characteristic 12𝐶 14𝑁 16𝑂

Total neutron production cross-section, mb 156.15 199.8 214.1
Neutron yield (neutrons/incident proton), n 0.4 0.46 0.46
Average outgoing neutron energy, MeV 6.2 8.95 6.36
Total proton production cross-section†, mb 464.32 575.32 686.1
Proton yield (protons/incident proton)†, n 1.17 1.33 1.47
Average outgoing proton energy, MeV 10.21 12.71 10.67

† Includes contributions from elastically/quasi-elastically scattered primary protons.

This table includes the total production cross-sections for neutrons and protons, their respective yields (average
number of particles produced per incident proton), and the average energies of the emitted secondary protons and neutrons
at an incident proton energy of 50 MeV.
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These tabulated values, along with the presented energy differential cross-sections and production cross-section
excitation functions, provide a comprehensive overview of secondary proton and neutron generation for the studied targets.
The data clearly indicate substantial production of secondary nucleons, with distinct characteristics depending on the target
nucleus. A detailed interpretation of these findings and their implications will be discussed in the following section.

4. DISCUSSION
The results obtained from TALYS - 1.96 simulations provide valuable insights into the production of secondary protons

and neutrons when 50 MeV protons interact with 12𝐶, 14𝑁 , and 16𝑂 nuclei. This section discusses the interpretation of
these findings, particularly concerning their significance for radiation exposure assessments.

4.1. Interpretation of key findings and significance of secondary nucleons
The key findings presented in Section 3 highlight that the interaction of 50 MeV protons with carbon, nitrogen, and

oxygen leads to a serious generation of secondary nucleons. Specifically, the total neutron production yields at 50 MeV
were found to be 0.4 for 12𝐶, 0.46 for 14𝑁 , and 0.46 for 16𝑂, indicating that nearly half a neutron is produced on average
per incident proton for nitrogen and oxygen targets. Similarly, total proton yields (which include scattered primary protons
and produced secondary protons) were 1.17 for 12𝐶, 1.33 for 14𝑁 , and 1.47 for 16𝑂. Yields greater than unity for proton
production directly confirm the creation of secondary protons.

The energy differential cross-sections of these secondary nucleons, that are presented in Fig. 2 and Fig. 3, further
underscore their importance. The proton energy differential cross-sections in the Fig. 2 are characterized by a significant
range of lower-energy protons in addition to the elastic/quasi-elastic peak. The average energies of all outgoing protons
(10.21 MeV for 12𝐶, 12.72 MeV for 14𝑁 , and 10.67 MeV for 16𝑂) are considerably lower than the 50 MeV incident energy,
indicating that a large fraction of the energy is transferred to generating these secondary protons or lost in inelastic
interactions. These lower-energy protons can possess higher Linear Energy Transfer (LET) values and, consequently, an
increased Relative Biological Effectiveness (RBE), which is a critical factor in radiotherapy and radiation protection.

The neutron energy differential cross-sections in the Fig. 3 are continuous, with average outgoing neutron energies of
6.2 MeV for 12𝐶, 8.945 MeV for 14𝑁 , and 6.362 MeV for 16𝑂. These neutrons, being uncharged, can penetrate deeper into
materials and tissues, contributing to the dose deposition in regions distant from the primary proton beam path, including
sensitive organs or electronic components outside the intended target volume. The production of such a significant flux
of secondary neutrons with a broad energy distribution necessitates their careful consideration in shielding design and for
accurate out-of-field dose estimations in proton therapy.

Neglecting these secondary protons and neutrons would lead to a serious underestimation of the total absorbed
dose, an incorrect assessment of the radiation quality (average LET and RBE), and potentially compromised outcomes
in applications such as radiotherapy planning or radiation risk assessment for personnel and equipment. Therefore, the
explicit inclusion of secondary nucleon production data, such as those generated in this study, is crucial for accurate
modeling of radiation transport and its effects in 𝐶, 𝑁 , and 𝑂-containing media.

Furthermore, from a fundamental physics perspective, the detailed energy differential cross-sections and production
cross-sections of secondary nucleons serve as valuable experimental observables (even if computationally derived or based
on established models) for testing and constraining theoretical models of nuclear reactions. Discrepancies or agreements
between TALYS predictions and potential future experimental data for these systems can provide understanding of employed
models for optical potentials, level densities, and pre-equilibrium decay mechanisms, particularly for light nuclei where
such comprehensive data might be sparse.

The production of such a significant flux of secondary neutrons with a broad energy distribution requires their careful
consideration in shielding design and for accurate out-of-field dose estimations in proton therapy. Beyond dosimetric and
radiation protection aspects, the substantial yields and specific energy distributions of secondary protons and neutrons, as
calculated in this work, have direct implications for the interpretation of experimental data obtained from proton-nucleus
interaction studies, particularly those utilizing visual track detectors like streamer chambers. For instance, secondary
protons originating from primary interactions within the target or the gas inside a chamber can create additional tracks
that may be erroneously attributed to the primary reaction vertex. This can lead to a misinterpretation of the multiplicity
of charged particles in an event, potentially distorting the analysis of few-pointed (e.g., two-, three-, four-, or five-pointed)
event topologies which are often crucial for identifying specific reaction channels. The continuous energy differential
cross-sections of these secondaries, especially the lower-energy component, mean they will have varying ranges and
ionization densities, further complicating track reconstruction and particle identification.

Similarly, while secondary neutrons are not directly visible in such chambers, their subsequent interactions within the
detector volume or surrounding materials can produce tertiary charged particles (e.g., recoil protons), creating spurious
tracks or increasing the overall background. The calculated neutron yields (approaching 0.5 neutrons per incident proton
for 14𝑁 and 16𝑂 at 50 MeV) indicate a non-negligible probability of such effects. Therefore, proper simulation of secondary
particle production, as provided by codes like TALYS, is essential not only for theoretical understanding but also as a
crucial input for Monte Carlo simulations used to correct experimental data for such distortions and to properly estimate
detector acceptance and efficiency. This underscores the necessity for both experimentalists and theoreticians to account
for the entire energy differential cross-section of secondary particles when analyzing proton-nucleus collisions.
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4.2. Comparative analysis of secondary particle production from 12𝐶, 14𝑁 , and 16𝑂

The results presented indicate distinct differences in the production characteristics of secondary neutrons and protons
for 12𝐶, 14𝑁 , and 16𝑂 targets when bombarded with 50 MeV protons, as summarized in Table 1.

Regarding neutron production, the total neutron production cross-section at 50 MeV increases with target mass, being
approximately 156.1 mb for 12𝐶, 199.8 mb for 14𝑁 , and 214.1 mb for 16𝑂. A similar trend is observed for neutron yields,
which are 0.4, 0.46, and 0.46 for 12𝐶, 14𝑁 , and 16𝑂, respectively. This suggests that heavier nuclei in this light-mass range
offer more nucleons for interaction, leading to a higher probability of neutron emission. Interestingly, the average energy
of outgoing neutrons is notably higher for 14𝑁 (8.95 MeV) compared to 12𝐶 (6.2 MeV) and 16𝑂 (6.4 MeV). This could be
attributed to differences in the Q-values of dominant neutron-producing reaction channels (e.g., (p,n)), neutron separation
energies, and the level density distributions of the respective residual nuclei. For instance, 14𝑁 is an odd-odd nucleus,
which might influence its reaction pathways and energy distributions of emitted particles compared to the even-even 12𝐶
and 16𝑂 nuclei.

For proton production (including scattered primary protons and emitted secondary protons), a similar tendency of
increasing total production cross-section and yield with target mass is observed at 50 MeV. The cross-sections are 464.3 mb
for 12𝐶, 575.3 mb for 14𝑁 , and 686.1 mb for 16𝑂, with corresponding yields of 1.17, 1.33, and 1.47. The average energy
of all outgoing protons is also highest for 14𝑁 (12.72 MeV), followed by 16𝑂 (10.67 MeV), and then 12𝐶 (10.21 MeV).
The higher average proton energy for 14𝑁 might reflect differences in the balance between elastic/quasi-elastic scattering
and the emission of lower-energy secondary protons. The Coulomb barrier will influence the emission of low-energy
charged particles, but for outgoing proton energies observed, various reaction mechanisms like (p, p’), (p, 2p), and (p, pn)
contribute, and their relative importance can vary with the target nucleus structure.

These target-specific differences in both neutron and proton production highlight the importance of using nuclide-
specific data in applications requiring precise radiation transport calculations and dose estimations. The observed variations
likely stem from a combination of factors, including nuclear size, binding energies of nucleons, individual Q-values for
various open reaction channels, and the specific nuclear structure (e.g., shell effects) influencing level densities and decay
paths.
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Представлено результати комп’ютерного моделювання виходу вторинних нейтронiв та протонiв при взаємодiї протонiв з енер-
гiєю 50МеВ з легкими ядрами - 12𝐶, 14𝑁 та 16𝑂 за допомогою кодуTALYS - 1.96 за замовчуванням. Важливiсть урахування ви-
промiнювання вторинних нуклонiв - нейтронiв та протонiв є необхiдним елементом при проведеннi фундаметально-прикладних
ядерних дослiджень, таких як дозиметрiя та радiацiйна безпека. Як результат отриманi повнi перерiзи утворення вторинних
нейтронiв та протонiв, що вказують на суттєвi вiдмiнностi в залежностi вiд ядра-мiшенi. Для ядра 12𝐶 порiг утворення нейтро-
нiв знаходиться в областi 20МеВ. Аналогiчна характеристика для 14𝑁 лежить в областi до 10МеВ, а для 16𝑂 порiг утворення
нейтронiв становить 17-18МеВ. Максимальний вихiд нейтронiв на один налiтаючий протон спостерiгається для ядра 16𝑂.
Також було визначено загальний перерiз утворення вторинних протонiв та їх вихiд на один налiтаючий протон. Як i у випадку
з виходом нейтронiв, ядро кисню демонструє найбiльшу кiлькiсть вторинних протонiв на протон, що дорiвнює 1,47. Також
були отриманi розрахунковi значення диференцiальних перерiзiв вiд енергiї вторинних протонiв та нейтронiв. Максимальне
значення середньої енергiї вторинних протонiв спостерiгається для ядра 14𝑁 i становить 12,72МеВ, тодi як для ядер 12𝐶 та 16𝑂
воно становить близько 10МеВ. Аналiз диференцiальних перерiзiв вiд енергiї вторинних нейтронiв показав, що максимальне
значення середньої енергiї для нейтронiв, отримано в результатi взаємодiї з ядром азоту, тодi як енергiї вторинних нейтронiв,
що утворюються на ядрах 12𝐶 та 16𝑂, приблизно рiвнi (6,2 та 6,4 вiдповiдно).
Ключовi слова: легкi ядра; вториннi нуклони; TALYS
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The article discusses how Kudryashov’s proposed self-phase modulation scheme and nonlinear chromatic dispersion cause the evolution
of quiescent optical solitons in magneto-optic waveguides. Provide a comprehensive understanding of the governing model; generalised
temporal evolution is considered. The modified sub-ODE approach is employed to facilitate the recovery of such solitons. This leads to
a complete range of optical solitons and the necessary conditions that must be met for these solitons to exist, which are also provided.
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1. INTRODUCTION
The three main features of how solitons move in optical waveguides and crystals are chromatic dispersion (CD), self-

phase modulation (SPM), and how pulses change over time after they are introduced at the beginning of the waveguides
[1–40]. Subsequently, these pulses evolve with temporally and spatially and thus serve as bit carriers for information
transmission through such fibers across transcontinental and transoceanic distances. There are many hiccups one faces
during the transmission of such pulses. One issue is the soliton clutter. Therefore in order to declutter these solitons, one
considers magneto–optic waveguides. This leads to the interest in magneto–optic waveguides.

This work examines soliton propagation in magneto-optic waveguides characterised by nonlinear cross-dispersion
and a particular kind of self-phase modulation, as postulated by Kudryashov. We preserve the temporal evolution of the
pulses using a general framework known as generalised temporal evolution. The inconsistent characteristics of waveguides
would cause the solitons to get impeded during their propagation via subterranean or underwater cables. This property
will be examined in depth in the present research, facilitating a clear comprehension and retrieval of the quiescent optical
solitons relevant to the model discussed in this work. This understanding will not only enhance the theoretical framework
surrounding self-phase modulation but also offer practical suggestions for optimising soliton transmission in complex
waveguide environments. By addressing these challenges, we aim to improve the reliability and efficiency of optical
communication systems that use these solitonic structures.

The mathematical algorithm that would be selected is the modified version of the sub–ODE (ordinary differential
equation) approach. This integration scheme would lead to the emergence of a wide spectrum of soliton solutions along
with their respective classifications. The results are reconstructed and presented in the subsequent sections of the paper
following a brief review of the model, its technical characteristics, and an explanation of the integration algorithm.
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It must be noted that the model with the quintuple form of SPM has been addressed in the previous round for optical
fibers [9]. However, the current work retrieves quiescent optical solitons for a different kind of optical waveguide, namely
magneto-optic waveguides, by the implementation of the improved sub-ODE approach.

Unlike prior analyses of Kudryashov-type nonlinearities that focused on single-field optical fibers (including quintuple
SPM in fibers) or on sixth/eighth-order single-field NLS equations, we study magneto–optic waveguides described by
a coupled magneto–optic (MO) waveguides system with generalized nonlinear chromatic dispersion and generalized
temporal evolution. This formulation introduces cross-SPM/CD terms and magneto-optic couplings (𝑄1, 𝑄2) absent from
fiber-only models, and enables the construction of new stationary families (bright, dark, straddled hyperbolic–rational,
Jacobi elliptic, and Weierstrass) with explicit existence constraints in the MO setting. In short, the novelty lies in the
medium and model (coupled MO system), the analytic framework (addendum to the improved sub-ODE within the MO
model), and the solution classification with parameter regimes tailored to magneto–optic waveguides [10, 11].

1.1. Governing model
Zayed et al. [32] analysed the nonlinear Schrödinger equation (NLSE) with non-local nonlinearity, Kudryashov’s

general quintuple power law, generalised nonlinear chromatic dispersion (CD), and a generalised temporal evolution,
expressed as follows:

𝑖

(
Ψ𝑙

)
𝑡
+𝑎

(
|Ψ|𝑟 Ψ𝑙

)
𝑥𝑥

+
[
𝑏1 |Ψ|2𝑚 + 𝑏2 |Ψ|2𝑚+𝑛 + 𝑏3 |Ψ|2𝑚+𝑛+𝑝 + 𝑏4 |Ψ|2𝑚+2𝑛 + 𝑏5 |Ψ|2𝑚+2𝑛+𝑝 + 𝑏6 ( |Ψ|𝑝)𝑥𝑥

]
Ψ𝑙 = 0,

(1)
In this context, Ψ𝑙 (𝑥, 𝑡) denotes a complex-valued function that characterises the generalised wave shape, with the con-
dition that 𝑙 ≥ 1 and 𝑖 =

√
−1. The parameters 𝑟, 𝑙, 𝑚, 𝑛, and 𝑝 are positive real constants. The initial term relates to

the generalised temporal evolution dictated by the evolution parameter 𝑙. The constant 𝑎 represents the coefficient of the
generalised nonlinear CD, defined by the nonlinear parameter 𝑟 . The constants 𝑏 𝑗 ( 𝑗 = 1, 2, 3, 4, 5) denote the coefficients
of SPM arising from the nonlinear intensity-dependent refractive index framework, as examined by Kudryashov [1–3].

In magneto-optic waveguides, Eq. (1) separates into two components, as follows:

𝑖
(
𝜂𝑙

)
𝑡 + 𝑎1

(
|𝜂 |𝑘 𝜂𝑙

)
𝑥𝑥

+ [𝑏1 |𝜂 |2𝑚 + 𝑐1 |𝜂 |2𝑚+𝑛 + 𝑑1 |𝜂 |2𝑚+𝑛+𝑝 + 𝑒1 |𝜂 |2𝑚+2𝑛 + 𝑓1 |𝜂 |2𝑚+2𝑛+𝑝 + 𝑔1 ( |𝜂 |𝑝)𝑥𝑥
+ℎ1 |𝜌 |2𝑚 + 𝑙1 |𝜌 |2𝑚+𝑛 + 𝑠1 |𝜌 |2𝑚+𝑛+𝑝 + 𝑛1 |𝜌 |2𝑚+2𝑛 + 𝑝1 |𝜌 |2𝑚+2𝑛+𝑝 + 𝑞1 ( |𝜌 |𝑝)𝑥𝑥]𝜂𝑙 = 𝑄1𝜌

𝑙 ,
(2)

and

𝑖
(
𝜌𝑙

)
𝑡 + 𝑎2

(
|𝜌 |𝑘 𝜌𝑙

)
𝑥𝑥

+ [𝑏2 |𝜌 |2𝑚 + 𝑐2 |𝜌 |2𝑚+𝑛 + 𝑑2 |𝜌 |2𝑚+𝑛+𝑝 + 𝑒2 |𝜌 |2𝑚+2𝑛 + 𝑓2 |𝜌 |2𝑚+2𝑛+𝑝 + 𝑔2 ( |𝜌 |𝑝)𝑥𝑥
ℎ2 |𝜂 |2𝑚 + 𝑙2 |𝜂 |2𝑚+𝑛 + 𝑠2 |𝜂 |2𝑚+𝑛+𝑝 + 𝑛2 |𝜂 |2𝑚+2𝑛 + 𝑝2 |𝜂 |2𝑚+2𝑛+𝑝 + 𝑞2 ( |𝜂 |𝑝)𝑥𝑥]𝜌𝑙 = 𝑄2𝜂

𝑙 ,
(3)

Here, 𝜂(𝑥, 𝑡) and 𝜌(𝑥, 𝑡) are complex-valued functions representing the wave profiles, with 𝑖 =
√
−1. The first terms in

Eqs. (2) and (3) describe the generalized temporal evolution, characterized by the parameter 𝑙 ≥ 1. The constants 𝑎 𝑗 ( 𝑗 =
1, 2) are the coefficients of nonlinear CD, governed by the parameter 𝑘 ≥ 0. The constants 𝑏 𝑗 , 𝑐 𝑗 , 𝑑 𝑗 , 𝑒 𝑗 , 𝑓 𝑗 , 𝑔 𝑗 , ℎ 𝑗 , 𝑙 𝑗 ,
𝑝 𝑗 ,𝑛 𝑗 , and 𝑞 𝑗 ( 𝑗 = 1, 2) correspond SPM terms, structured according to the formulation introduced by Kudryashov [33,34].
Finally, 𝑄 𝑗 ( 𝑗 = 1, 2) denote the coefficients associated with the magneto–optic waveguides. The parameters 𝑚 and 𝑛 are
rational numbers, not necessarily integers.

This work aims to resolve Eqs. (2) and (3) by an enhancement of the modified Sub-ODE approach. This methodol-
ogy is used to derive several categories of soliton solutions, including dark soliton solutions, solitary soliton solutions,
Jacobi’s elliptic functions, Weierstrass elliptic functions, bright soliton solutions, and straddled soliton solutions. Conse-
quently, a broad array of soliton solutions would arise.

This article is organised as follows: Section 2 presents the mathematical study. In Section 3, a modification of the
modified sub-ODE method is implemented. Section 4 presents more findings. Conclusions are presented in Section 6.

2. MATHEMATICAL STRUCTURE
To resolve Eqs. (2) and (3), we suggest that the wave profiles exhibit the following forms:

𝜂 (𝑥, 𝑡) = 𝜙1 (𝑥)𝑒𝑖𝜆𝑡 ,

𝜌 (𝑥, 𝑡) = 𝜙2 (𝑥)𝑒𝑖𝜆𝑡 ,
(4)
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where 𝜙 𝑗 (𝑥) ( 𝑗 = 1, 2) are real functions and 𝜆 is a constant representing the wave number. Substituting (4) into Equations
(2) and (3), we obtain:

−𝜆𝑙𝜙𝑙1 (𝑥) + 𝑎1 (𝑘 + 𝑙) (𝑘 + 𝑙 − 1)𝜙𝑘+𝑙−2
1 (𝑥)𝜙′21 (𝑥) + 𝑎1 (𝑘 + 𝑙)𝜙𝑘+𝑙−1

1 (𝑥)𝜙′′

1 (𝑥)
+𝑏1𝜙

2𝑚+𝑙
1 (𝑥) + 𝑐1𝜙

2𝑚+𝑛+𝑙
1 (𝑥) + 𝑑1𝜙

2𝑚+𝑛+𝑝+𝑙
1 (𝑥) + 𝑒1𝜙

2𝑚+2𝑛+𝑙
1 (𝑥) + 𝑓1𝜙

2𝑚+2𝑛+𝑝+𝑙
1 (𝑥)

+𝑔1𝑝(𝑝 − 1)𝜙𝑝−2+𝑙
1 (𝑥)𝜙′21 (𝑥) + 𝑔1𝑝𝜙

𝑝−1+𝑙
1 (𝑥)𝜙′′

1 (𝑥) + ℎ1𝜙
2𝑚
2 (𝑥)𝜙𝑙1 (𝑥) + 𝑙1𝜙

2𝑚+𝑛
2 (𝑥)𝜙𝑙1 (𝑥)

+𝑠1𝜙
2𝑚+𝑛+𝑝
2 (𝑥)𝜙𝑙1 (𝑥) + 𝑛1𝜙

2𝑚+2𝑛
2 (𝑥)𝜙𝑙1 (𝑥) + 𝑝1𝜙

2𝑚+2𝑛+𝑝
2 (𝑥)𝜙𝑙1 (𝑥) + 𝑞1𝑝(𝑝 − 1)𝜙𝑝−2+𝑙

2 (𝑥)𝜙′22 (𝑥)
+𝑞1𝑝𝜙

𝑝−1+𝑙
1 (𝑥)𝜙′′

1 (𝑥) = 𝑄1𝜙
𝑙
2 (𝑥),

(5)

and
−𝜆𝑙𝜙𝑙2 (𝑥) + 𝑎2 (𝑘 + 𝑙) (𝑘 + 𝑙 − 1)𝜙𝑘+𝑙−2

2 (𝑥)𝜙′22 (𝑥) + 𝑎2 (𝑘 + 𝑙)𝜙𝑘+𝑙−1
2 (𝑥)𝜙′′

2 (𝑥)
+𝑏2𝜙

2𝑚+𝑙
2 (𝑥) + 𝑐2𝜙

2𝑚+𝑛+𝑙
2 (𝑥) + 𝑑2𝜙

2𝑚+𝑛+𝑝+𝑙
2 (𝑥) + 𝑒2𝜙

2𝑚+2𝑛+𝑙
2 (𝑥) + 𝑓2𝜙

2𝑚+2𝑛+𝑝+𝑙
2 (𝑥)

+𝑔2𝑝(𝑝 − 1)𝜙𝑝−2+𝑙
2 (𝑥)𝜙′22 (𝑥) + 𝑔2𝑝𝜙

𝑝−1+𝑙
2 (𝑥)𝜙′′

2 (𝑥) + ℎ2𝜙
2𝑚
1 (𝑥)𝜙𝑙2 (𝑥)

+𝑙2𝜙2𝑚+𝑛
1 (𝑥)𝜙𝑙2 (𝑥) + 𝑠2𝜙

2𝑚+𝑛+𝑝
1 (𝑥)𝜙𝑙2 (𝑥) + 𝑛2𝜙

2𝑚+2𝑛
1 (𝑥)𝜙𝑙2 (𝑥) + 𝑝2𝜙

2𝑚+2𝑛+𝑝
1 (𝑥)𝜙𝑙2 (𝑥)

+𝑞2𝑝(𝑝 − 1)𝜙𝑝−2
1 (𝑥)𝜙′21 (𝑥)𝜙𝑙2 (𝑥) + 𝑞2𝑝𝜙

𝑝−1
1 (𝑥)𝜙′′

1 (𝑥)𝜙
𝑙
2 (𝑥) = 𝑄2𝜙

𝑙
1 (𝑥),

(6)

Now, for the sake of simplicity, let us put
𝜙2 (𝑥) = 𝜒𝜙1 (𝑥), (7)

where 𝜒 is a nonzero constant and 𝜒 ≠ 1. Eqs. (5) and (6) became:

−(𝜆𝑙 +𝑄1𝜒
𝑙)𝜙𝑙1 (𝑥) + 𝑎1 (𝑘 + 𝑙) (𝑘 + 𝑙 − 1)𝜙𝑘+𝑙−2

1 (𝑥)𝜙′21 (𝑥)
+𝑎1 (𝑘 + 𝑙)𝜙𝑘+𝑙−1

1 (𝑥)𝜙′′

1 (𝑥) +
(
𝑏1 + ℎ1𝜒

2𝑚)
𝜙2𝑚+𝑙

1 (𝑥)
+

(
𝑐1 + 𝑙1𝜒

2𝑚+𝑛) 𝜙2𝑚+𝑛+𝑙
1 (𝑥) +

(
𝑑1 + 𝑠1𝜒

2𝑚+𝑛+𝑝 ) 𝜙2𝑚+𝑛+𝑝+𝑙
1 (𝑥)

+
(
𝑒1 + 𝑛1𝜒

2𝑚+2𝑛) 𝜙2𝑚+2𝑛+𝑙
1 (𝑥) +

(
𝑓1 + 𝑝1𝜒

2𝑚+2𝑛+𝑝 ) 𝜙2𝑚+2𝑛+𝑝+𝑙
1 (𝑥)

+ (𝑔1 + 𝑞1𝜒
𝑝) 𝑝(𝑝 − 1)𝜙𝑝+𝑙−2

1 (𝑥)𝜙′21 (𝑥) + (𝑔1 + 𝑞1𝜒
𝑝) 𝑝𝜙𝑝+𝑙−1

1 (𝑥)𝜙′′

1 (𝑥) = 0,

(8)

and
−(𝜆𝑙𝜒𝑙 +𝑄2)𝜙𝑙1 (𝑥) + 𝑎2 (𝑘 + 𝑙) (𝑘 + 𝑙 − 1)𝜒𝑘+𝑙𝜙𝑘+𝑙−2

1 (𝑥)𝜙′21 (𝑥)
+𝑎2 (𝑘 + 𝑙)𝜒𝑘+𝑙𝜙𝑘+𝑙−1

1 (𝑥)𝜙′′

1 (𝑥) +
(
𝑏2𝜒

2𝑚+𝑙 + ℎ2𝜒
𝑙
)
𝜙2𝑚+𝑙

1 (𝑥)
+

(
𝑐2𝜒

2𝑚+2𝑛+𝑙 + 𝑙2𝜒
𝑙
)
𝜙2𝑚+𝑛+𝑙

1 (𝑥) +
(
𝑑2𝜒

2𝑚+𝑛+𝑝+𝑙 + 𝑠2𝜒
𝑙
)
𝜙

2𝑚+𝑛+𝑝+𝑙
1 (𝑥)

+
(
𝑒2𝜒

2𝑚+2𝑛+𝑙 + 𝑛2𝜒
𝑙
)
𝜙2𝑚+2𝑛+𝑙

1 (𝑥) +
(
𝑓2𝜒

2𝑚+2𝑛+𝑝+𝑙 + 𝑝2𝜒
𝑙
)
𝜙

2𝑚+2𝑛+𝑝+𝑙
1 (𝑥)

+
(
𝑔2𝜒

𝑝+𝑙 + 𝑞2𝜒
𝑙
)
𝑝(𝑝 − 1)𝜙𝑝+𝑙−2

1 (𝑥)𝜙′21 (𝑥) +
(
𝑔2𝜒

𝑝+𝑙 + 𝑞2𝜒
𝑙
)
𝑝𝜙

𝑝+𝑙−1
1 (𝑥)𝜙′′

1 (𝑥) = 0,

(9)

Eqs. (8) and (9) are equivalent along with constraints conditions:

𝜆𝑙 +𝑄1𝜒
𝑙 = 𝜆𝑙𝜒𝑙 +𝑄2,

𝑎1 = 𝑎2𝜒
𝑘+𝑙

𝑏1 + ℎ1𝜒
2𝑚 = 𝑏2𝜒

2𝑚+𝑙 + ℎ2𝜒
𝑙 ,

𝑐1 + 𝑙1𝜒
2𝑚+𝑛 = 𝑐2𝜒

2𝑚+2𝑛+𝑙 + 𝑙2𝜒
𝑙 ,

𝑑1 + 𝑠1𝜒
2𝑚+𝑛+𝑝 = 𝑑2𝜒

2𝑚+𝑛+𝑝+𝑙 + 𝑠2𝜒
𝑙 ,

𝑒1 + 𝑛1𝜒
2𝑚+𝑛 = 𝑒2𝜒

2𝑚+2𝑛+𝑙 + 𝑛2𝜒
𝑙 ,

𝑓1 + 𝑝1𝜒
2𝑚+2𝑛+𝑝 = 𝑓2𝜒

2𝑚+2𝑛+𝑝+𝑙 + 𝑝2𝜒
𝑙 ,

𝑔1 + 𝑞1𝜒
𝑝 = 𝑔2𝜒

𝑝+𝑙 + 𝑞2𝜒
𝑙 .

(10)

Solving Eq. (8), let 𝑘 = 6𝑚, 𝑝 = 4𝑚, 𝑛 = 2𝑚 then Eq.(8) is now

−(𝜆𝑙 +𝑄1𝜒
𝑙) + 𝑎1 (6𝑚 + 𝑙) (6𝑚 + 𝑙 − 1)𝜙6𝑚−2

1 (𝑥)𝜙′21 (𝑥)
+𝑎1 (6𝑚 + 𝑙)𝜙6𝑚−1

1 (𝑥)𝜙′′

1 (𝑥) +
(
𝑏1 + ℎ1𝜒

2𝑚)
𝜙2𝑚

1 (𝑥)
+

(
𝑐1 + 𝑙1𝜒

4𝑚)
𝜙4𝑚

1 (𝑥) +
(
𝑑1 + 𝑠1𝜒

8𝑚)
𝜙8𝑚

1 (𝑥)
+

(
𝑒1 + 𝑛1𝜒

6𝑚)
𝜙6𝑚

1 (𝑥) +
(
𝑓1 + 𝑝1𝜒

10𝑚)
𝜙10𝑚

1 (𝑥)
+

(
𝑔1 + 𝑞1𝜒

4𝑚)
(4𝑚) (4𝑚 − 1)𝜙4𝑚−2

1 (𝑥)𝜙′21 (𝑥) +
(
𝑔1 + 𝑞1𝜒

4𝑚)
(4𝑚)𝜙4𝑚−1

1 (𝑥)𝜙′′

1 (𝑥) = 0,

(11)

Balancing 𝜙10𝑚
1 (𝑥) with 𝜙6𝑚−1

1 (𝑥)𝜙′′

1 (𝑥) in Eq.(11) gives 𝑁 = 1
2𝑚 , 𝑚 ≠ 0. In addition, considering the transformation

𝜙1 (𝑥) = 𝑉
1

2𝑚 (𝑥), (12)

where 𝑉 (𝑥) denotes a novel function. By putting (12) into Eq. (11), we have

Φ1 +Φ2𝑉 (𝑥)𝑉 ′2 (𝑥) +Φ3𝑉
2 (𝑥)𝑉

′′
(𝑥) +Φ4𝑉 (𝑥) +Φ5𝑉

2 (𝑥) +Φ6𝑉
3 (𝑥)

+Φ7𝑉
4 (𝑥) +Φ8𝑉

5 (𝑥) +Φ9𝑉
′2 (𝑥) +Φ10𝑉 (𝑥)𝑉 ′′ (𝑥) = 0,

(13)
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where
Φ1 = −(𝜆𝑙 +𝑄1𝜒

𝑙),
Φ2 =

𝑎1
2𝑚 ( 4𝑚+𝑙

2𝑚 ) (6𝑚 + 𝑙),
Φ3 =

𝑎1
2𝑚 (6𝑚 + 𝑙),

Φ4 = 𝑏1 + ℎ1𝜒
2𝑚,

Φ5 = 𝑐1 + 𝑙1𝜒
4𝑚,

Φ6 = 𝑒1 + 𝑛1𝜒
6𝑚,

Φ7 = 𝑑1 + 𝑠1𝜒
8𝑚,

Φ8 = 𝑓1 + 𝑝1𝜒
10𝑚,

Φ9 = 2
(
𝑔1 + 𝑞1𝜒

4𝑚)
,

Φ10 = 2
(
𝑔1 + 𝑞1𝜒

4𝑚)
.

(14)

Next, we will employ the integration method explained below to generate the solitons of Eqs. (2) and (3).

3. AN ADDENDUM TO THE IMPROVED SUB-ODE METODOLOGY
It is presumed that Eq. (13) has a formal solution [35–38]:

𝑉 (𝑥) =
𝑁∑︁
𝑠=0

𝐴𝑠 [𝐻 (𝑥)]𝑠 . (15)

The constants 𝐴𝑠 , for 𝑠 = 0, 1, 2, . . . , 𝑁 are specified, with 𝐴𝑁 ≠ 0, and the condition 𝐻 (𝑥) is satisfied:

𝐻′2 (𝑥) = 𝐴 𝐻2−2𝛼 (𝑥) + 𝐵 𝐻2−𝛼 (𝑥) + 𝐶 𝐻2 (𝑥) + 𝐷 𝐻2+𝛼 (𝑥) + 𝐸 𝐻2+2𝛼 (𝑥). (16)

In this particular case, 𝐸, 𝐷,𝐶, 𝐵, and 𝐴 are constants, whereas 𝛼 is a positive integer. Given 𝐷 [𝜙(𝑥)] = 𝑁 , then
𝐷 [𝜙′ (𝑥)] = 𝑁 + 𝛼, 𝐷 [𝜙′′ (𝑥)] = 𝑁 + 2𝛼, and so 𝐷 [𝜙 (𝑟 ) (𝑥)] = 𝑁 + 𝑟𝛼. Therefore, 𝐷 [𝜙 (𝑟 ) (𝑥)𝜙𝑠 (𝑥)] = (𝑠 + 1)𝑁 + 𝛼𝑟.
When the highest derivative 𝑉 ′′ (𝑥)𝑉2 (𝑥) is balanced with the nonlinear term 𝑉5 (𝑥) in Eq. (13), the result is:

3𝑁 + 2𝛼 = 5𝑁 =⇒ 𝑁 = 𝛼. (17)

With 𝛼 = 1 and therefore 𝑁 = 1, Eq. (15) becomes:

𝑉 (𝑥) = 𝐴0 + 𝐴1𝐻 (𝑥), (18)

given that 𝐴0 and 𝐴1 are constants with 𝐴1 ≠ 0, 𝐻 (𝜉) admits:

𝐻′2 (𝑥) = 𝐴 + 𝐵 𝐻 (𝑥) + 𝐶 𝐻2 (𝑥) + 𝐷 𝐻3 (𝑥) + 𝐸 𝐻4 (𝑥), 𝐸 ≠ 0. (19)

Substituting Eqs. (18) and (19) into Eq. (13) and grouping all terms of [𝐻 (𝑥)]𝑙 [𝐻]′ 𝑓 , where 𝑙 = 0, 1, 2, . . . , 5 and 𝑓 =

0, 1 to zero yields:



𝐻5 (𝑥) : Φ8𝐴
5
1 + (Φ2 + 2Φ3)𝐸𝐴3

1 = 0,
𝐻4 (𝑥) : (Φ2 + 4Φ3)𝐸𝐴0𝐴

2
1 +Φ7𝐴

4
1 +Φ9𝐴

2
1𝐸 +Φ2𝐴

3
1𝐷 + 5Φ8𝐴0𝐴

4
1 +

3
2𝐷Φ3𝐴

3
1 + 2Φ10𝐴

2
1𝐸 = 0,

𝐻3 (𝑥) : Φ6𝐴
3
1 + 10Φ8𝐴

2
0𝐴

3
1 + (Φ2 +Φ3)𝐶𝐴3

1 + 2Φ3𝐸𝐴2
0𝐴1 + 𝐷Φ2𝐴0𝐴

2
1 + 3𝐷Φ3𝐴0𝐴

2
1

+ 4Φ7𝐴0𝐴
3
1 +

3
2𝐷Φ10𝐴

2
1 + 𝐷Φ9𝐴

2
1 + 2𝐸Φ10𝐴0𝐴1 = 0,

𝐻2 (𝑥) : Φ5𝐴
2
1 + 2Φ3𝐶𝐴0𝐴

2
1 +

3
2Φ3𝐷𝐴2

0𝐴1 + 3
2𝐷Φ10𝐴0𝐴1 +Φ2𝐶𝐴0𝐴

2
1 +Φ2𝐴

3
1𝐵 +Φ9𝐴

2
1𝐶

+Φ10𝐶𝐴2
1 +

1
2Φ3𝐵𝐴

3
1 + 3Φ6𝐴0𝐴

2
1 + 6Φ7𝐴

2
0𝐴

2
1 + 10Φ8𝐴

3
0𝐴

2
1 = 0,

𝐻 (𝑥) : Φ4𝐴1 + 𝐵𝐴0𝐴
2
1 (Φ2 +Φ3) + 𝐶Φ3𝐴

2
0𝐴1 +Φ10𝐴0𝐴1𝐶 +Φ2𝐴

3
1𝐴 + 𝐵Φ9𝐴

2
1

+ 3Φ6𝐴
2
0𝐴1 + 2Φ5𝐴0𝐴1 + 4Φ7𝐴

3
0𝐴1 + 5Φ8𝐴

4
0𝐴1 + 1

2Φ10𝐴
2
1𝐵 = 0,

𝐻0 (𝑥) : Φ9𝐴𝐴
2
1 +Φ7𝐴

4
0 +Φ8𝐴

5
0 +Φ4𝐴0 +Φ5𝐴

2
0 +Φ6𝐴

3
0 +Φ1 +Φ2𝐴0𝐴

2
1𝐴 + 1

2Φ3𝐵𝐴
2
0𝐴1

+ 1
2Φ10𝐵𝐴0𝐴1 = 0.

(20)

We will now examine each of the following sets:

Set–1: Considering 𝐷 = 𝐵 = 𝐴 = 0 in Eq. (20), the results achieved are:

𝐴0 = 𝐴0, 𝐴1 =

√︄
−𝐸 (Φ2 + 2Φ3)

Φ8
, (21)
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and
Φ1 = − 𝐴2

0Φ9 (𝐶𝐴2
1+𝐸𝐴2

0)
𝐴2

1
,

Φ4 = − 𝐴0 (𝐶Φ2𝐴0𝐴
2
1+𝐸Φ2𝐴

3
0−𝐶𝐴2

1 (2Φ9+Φ10 )−2𝐸𝐴2
0 (2Φ9+Φ10 ))

𝐴2
1

,

Φ5 =
𝐶𝐴0𝐴

2
1 (2Φ2+Φ3 )+2𝐸𝐴3

0 (2Φ2+Φ3 )−𝐶𝐴2
1 (Φ9+Φ10 )−6𝐸𝐴2

0 (Φ9+2Φ10 )
𝐴2

1
,

Φ6 = −𝐶𝐴2
1 (Φ2+Φ3 )+6𝐸𝐴2

0 (Φ2+Φ3 )−2𝐸𝐴2
0 (2Φ9+3Φ10 )

𝐴2
1

,

Φ7 =
2𝐸𝐴2

0 (2Φ2+3Φ3 )−𝐸 (Φ9+2Φ10 )
𝐴2

1
,

(22)

given 𝐶 > 0 and 𝐸 < 0, the solutions represent the bright solitons, which are:

𝜂(𝑥, 𝑡) = 𝜀

𝐴0 +

√︄
𝐶 (Φ2 + 2Φ3)

Φ8
sech

√
𝐶 𝑥


1

2𝑚

𝑒𝑖𝜆𝑡 , (23)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

𝐴0 +

√︄
𝐶 (Φ2 + 2Φ3)

Φ8
sech

√
𝐶 𝑥


1

2𝑚

𝑒𝑖𝜆𝑡 , (24)

where Φ8 (Φ2 + 2Φ3) > 0.

Set–2: Considering 𝐵 = 𝐷 = 0 and 𝐴 = 𝐶2

4𝐸 are replaced into the algebraic equations (20), the results achieved
are:

𝐴0 = 0, 𝐴1 =

√︄
−𝐸 (Φ9 + 2Φ10)

Φ7
, (25)

and
Φ1 = − 𝐴2

1Φ9𝐶
2

4𝐸 ,

Φ2 = −Φ8𝐴
2
1+2𝐸Φ3
𝐸

,

Φ4 =
𝐴2

1𝐶
2 (2𝐸Φ3+Φ8𝐴

2
1)

4𝐸2 ,

Φ5 = −𝐶 (Φ9 +Φ10) ,
Φ6 =

𝐶 (Φ8𝐴
2
1+𝐸Φ3)
𝐸

,

(26)

where 𝐸Φ7 (Φ9 + 2Φ10) < 0. Hence, the dark solitons take the form of:

𝜂(𝑥, 𝑡) = 𝜀


√︄

𝐶 (Φ9 + 2Φ10)
2Φ7

tanh(
√︂
−𝐶

2
𝑥)


1

2𝑚

𝑒𝑖𝜆𝑡 , (27)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀


√︄

𝐶 (Φ9 + 2Φ10)
2Φ7

tanh(
√︂
−𝐶

2
𝑥)


1

2𝑚

𝑒𝑖𝜆𝑡 , (28)

provided 𝐶 < 0, Φ7 (Φ9 + 2Φ10) < 0 , 𝜀 = ±1.

Set–3: Considering 𝐵 = 𝐷 = 0 and 𝐴 =
𝑒1𝐶

2

𝐸
are replaced into the algebraic equations (20), the results achieved

are:
𝐴0 = 0, 𝐴1 = 𝐴1, (29)

and
Φ1 = −𝐶2𝑒1Φ9𝐴

2
1

𝐸
,

Φ3 = −Φ8𝐴
2
1+𝐸Φ2
2𝐸 ,

Φ4 = −𝐶2𝑒1Φ2𝐴
2
1

𝐸
,

Φ5 = −𝐶 (Φ9 +Φ10) ,
Φ6 = −𝐶𝐸Φ2−𝐶Φ8𝐴

2
1

2𝐸 ,

Φ7 = −𝐸 (Φ9+2Φ10 )
𝐴2

1
,

(30)
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assuming that 𝑒1 remains constant, the following scenarios are derived:

(I) Considering 𝑒1 =
𝑚2

1 (𝑚
2
1−1)

(2𝑚2
1−1)2 , 𝐴 is given by 𝐶2𝑚2

1 (𝑚
2
1−1)

𝐸 (2𝑚2
1−1)2 , and 0 < 𝑚1 < 1, the Jacobi elliptic solutions are derived:

𝜂(𝑥, 𝑡) = 𝜀

𝐴1

(
−

𝐶𝑚2
1

𝐸 (2𝑚2
1 − 1)

) 1
2

cn

(√︄
𝐶

2𝑚2
1 − 1

𝑥, 𝑚1

)
1

2𝑚

𝑒𝑖𝜆𝑡 , (31)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

𝐴1

(
−

𝐶𝑚2
1

𝐸 (2𝑚2
1 − 1)

) 1
2

cn

(√︄
𝐶

2𝑚2
1 − 1

𝑥, 𝑚1

)
1

2𝑚

𝑒𝑖𝜆𝑡 , (32)

provided 𝐶 (2𝑚2
1 − 1) > 0, 𝐸 < 0.

(II) When 𝑒1 =
(1−𝑚2

1 )
(2−𝑚2

1 )2 , 𝐴 is given by 𝐶2 (1−𝑚2
1 )

𝐸 (2−𝑚2
1 )2 , and 0 < 𝑚1 < 1, the Jacobi elliptic solutions are obtained:

𝜂(𝑥, 𝑡) = 𝜀

𝐴1

(
− 𝐶

𝐸 (2 − 𝑚2
1)

) 1
2

dn

(√︄
𝐶

2 − 𝑚2
1
𝑥, 𝑚1

)
1

2𝑚

𝑒𝑖𝜆𝑡 , (33)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

𝐴1

(
− 𝐶

𝐸 (2 − 𝑚2
1)

) 1
2

dn

(√︄
𝐶

2 − 𝑚2
1
𝑥, 𝑚1

)
1

2𝑚

𝑒𝑖𝜆𝑡 , (34)

assuming 𝐶 > 0, 𝐸 < 0. The bright solitons are given when 𝑚1 approaches 1− in the Eqs. (31) - (34):

𝜂(𝑥, 𝑡) = 𝜀

[
𝐴1

√︂
−𝐶
𝐸

sech
(√

𝐶 𝑥

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (35)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[
𝐴1

√︂
−𝐶
𝐸

sech
(√

𝐶 𝑥

)] 1
2𝑚

𝑒𝑖𝜆𝑡 . (36)

(III) When 𝑒1 =
𝑚2

1
(𝑚2

1+1)2 and 𝐴 =
𝐶2𝑚2

1
𝐸 (𝑚2

1+1)2 with 0 < 𝑚1 < 1, the resulting Jacobi elliptic solutions are:

𝜂(𝑥, 𝑡) = 𝜀

[
𝐴1

(
−

𝐶𝑚2
1

𝐸 (𝑚2
1 + 1)

)
sn

(√︄
− 𝐶

𝑚2
1 + 1

𝑥, 𝑚1

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (37)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[
𝐴1

(
−

𝐶𝑚2
1

𝐸 (𝑚2
1 + 1)

)
sn

(√︄
− 𝐶

𝑚2
1 + 1

𝑥, 𝑚1

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (38)

provided 𝐸 > 0 and 𝐶 < 0. The dark solitons, when 𝑚1 approaches 1− in Eqs. (37) and (38), are:

𝜂(𝑥, 𝑡) = 𝜀

[
𝐴1

√︂
− 𝐶

2𝐸
tanh

(√︂
−𝐶

2
𝑥

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (39)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[
𝐴1

√︂
− 𝐶

2𝐸
tanh

(√︂
−𝐶

2
𝑥

)] 1
2𝑚

𝑒𝑖𝜆𝑡 . (40)

Set–4: Considering 𝐴 = 𝐵 = 0, 𝐶 > 0, and 𝐷2 = 4𝐶𝐸 are replaced into the algebraic equations (20), the results achieved
are:

𝐴0 = 0, 𝐴1 = 𝐴1, (41)
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and
Φ2 = −Φ8𝐴

2
1+2𝐸Φ3
𝐸

,

Φ5 =
𝐶

(
2
√
𝐶𝐸Φ8𝐴

3
1+

√
𝐶𝐸Φ3𝐴1𝐸+Φ7𝐸𝐴2

1+𝐸
2Φ10

)
𝐸2 ,

Φ6 = −
√
𝐶𝐸

(
3
√
𝐶𝐸Φ8𝐴

3
1+

√
𝐶𝐸Φ3𝐴1𝐸+2Φ7𝐸𝐴2

1+𝐸
2Φ10

)
𝐸2𝐴1

,

Φ9 = − 2
√
𝐶𝐸Φ8𝐴

3
1+

√
𝐶𝐸Φ3𝐴1𝐸+Φ7𝐸𝐴2

1+2𝐸2Φ10
𝐸2𝐴1

,

Φ1 = Φ4 = 0.

(42)

Therefore, the dark solitons become:

𝜂(𝑥, 𝑡) = 𝜀

[
𝐴1
2

√︂
𝐶

𝐸

(
1 + tanh

√
𝐶

2
𝑥

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (43)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[
𝐴1
2

√︂
𝐶

𝐸

(
1 + tanh

√
𝐶

2
𝑥

)] 1
2𝑚

𝑒𝑖𝜆𝑡 . (44)

The singular solitons emerge as:

𝜂(𝑥, 𝑡) = 𝜀

[
− 𝐴1

2

√︂
𝐶

𝐸

(
1 + coth

√
𝐶

2
𝑥

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (45)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[
− 𝐴1

2

√︂
𝐶

𝐸

(
1 + coth

√
𝐶

2
𝑥

)] 1
2𝑚

𝑒𝑖𝜆𝑡 . (46)

The bright soliton solutions are:

𝜂(𝑥, 𝑡) =
[
𝐴1
2

√︂
𝐶

𝐸

2sech2
√
𝐶
2 𝑥

[1 + tanh2
√
𝐶
2 𝑥]

] 1
2𝑚

𝑒𝑖𝜆𝑡 , (47)

and

𝜌(𝑥, 𝑡) = 𝜒

[
𝐴1
2

√︂
𝐶

𝐸

2sech2
√
𝐶
2 𝑥

[1 + tanh2
√
𝐶
2 𝑥]

] 1
2𝑚

𝑒𝑖𝜆𝑡 . (48)

Then the singular solitons are:

𝜂(𝑥, 𝑡) =
[
𝐴1
2

√︂
𝐶

𝐸

2csch2
√
𝐶
2 𝑥

[1 + coth2
√
𝐶
2 𝑥]

] 1
2𝑚

𝑒𝑖𝜆𝑡 , (49)

and

𝜌(𝑥, 𝑡) = 𝜒

[
𝐴1
2

√︂
𝐶

𝐸

2csch2
√
𝐶
2 𝑥

[1 + coth2
√
𝐶
2 𝑥]

] 1
2𝑚

𝑒𝑖𝜆𝑡 . (50)

Set–5: Considering 𝐴 = 0, 𝐵 = 8𝐶2

27𝐷 , 𝐸 = 𝐷2

4𝐶 , and 𝐶 < 0 are replaced into the algebraic equations (20), the results
achieved are:

𝐴0 = 0, 𝐴1 = 𝐴1, (51)
and

Φ1 = 0,
Φ2 = − 6𝐶𝐷Φ3𝐴1+4𝐶Φ7𝐴

2
1+𝐷

2Φ9+2𝐷2Φ10
4𝐶𝐷𝐴1

,

Φ4 = − 4𝐶2𝐴1 (2Φ9+Φ10 )
27𝐷 ,

Φ5 =
𝐶 (8𝐶𝐷Φ3𝐴1+8𝐶Φ7𝐴

2
1−25𝐷2Φ9−23𝐷2Φ10 )

27𝐷2 ,

Φ6 =
2𝐶𝐷Φ3𝐴1+4𝐶Φ7𝐴

2
1−3𝐷2Φ9−2𝐷2Φ10

4𝐶𝐴1
.

(52)

Consequently, the corresponding solutions employing hyperbolic functions are:

𝜂(𝑥, 𝑡) =
[
𝐴1

(
− 8𝐶 tanh2

√
−3𝐶
2 𝑥

3𝐷
(
3+tanh

√
−3𝐶
2 𝑥

) )] 1
2𝑚

𝑒𝑖𝜆𝑡 , (53)
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and

𝜌(𝑥, 𝑡) = 𝜒

[
𝐴1

(
− 8𝐶 tanh2

√
−3𝐶
2 𝑥

3𝐷
(
3+tanh

√
−3𝐶
2 𝑥

) )] 1
2𝑚

𝑒𝑖𝜆𝑡 . (54)

Also,

𝜂(𝑥, 𝑡) =
[
𝐴1

(
− 8𝐶 coth2

√
−3𝐶
2 𝑥

3𝐷
(
3+coth

√
−3𝐶
2 𝑥

) )] 1
2𝑚

𝑒𝑖𝜆𝑡 , (55)

and

𝜌(𝑥, 𝑡) = 𝜒

[
𝐴1

(
− 8𝐶 coth2

√
−3𝐶
2 𝑥

3𝐷
(
3+coth

√
−3𝐶
2 𝑥

) )] 1
2𝑚

𝑒𝑖𝜆𝑡 , (56)

provided 𝐷𝐶𝐴1 < 0.

Set–6: When 𝐴 = 𝐵 = 0 and 𝐸 = 𝐷2

4𝐶 − 𝐶 are replaced into the algebraic equations (20), the results achieved are
derived in the following cases:

𝐴0 = 0, 𝐴1 = 𝐴1, (57)

and
Φ5 = −𝐶 (Φ9 +Φ10),
Φ6 = − 2𝐶𝐴1 (Φ2+Φ3 )+𝐷 (2Φ9+3Φ10 )

2𝐴1
,

Φ7 =
𝐶 (−4𝐷Φ2𝐴1−6𝐷Φ3𝐴1+4𝐶Φ9+8𝐶Φ10−𝐷2 (Φ9+2Φ10 )

4𝐶𝐴2
1

,

Φ8 =
(2𝐶2−𝐷2 ) (Φ2+2Φ3 )

4𝐶𝐴2
1

,

Φ1 = Φ4 = 0.

(58)

As a result, the bright solitons become:

𝜂(𝑥, 𝑡) = 𝜀𝐴1

[
1

cosh
√
𝐶 𝑥 − 𝐷

2𝐶

] 1
2𝑚

𝑒𝑖𝜆𝑡 , (59)

and

𝜌(𝑥, 𝑡) = 𝜒𝐴1

[
1

cosh
√
𝐶 𝑥 − 𝐷

2𝐶

] 1
2𝑚

𝑒𝑖𝜆𝑡 , (60)

where 𝐶 > 0.

Set–7: Considering 𝐵 = 𝐷 = 0 are replaced into the algebraic equations (20), the results achieved are:

𝐴0 = 0, 𝐴1 =

√︃
− (Φ2+2Φ3 )𝐸

Φ8
, (61)

and
Φ1 = −𝐴Φ9𝐴

2
1,

Φ4 = −𝐴Φ2𝐴
2
1,

Φ5 = −𝐶 (Φ9 +Φ10)
Φ6 = −𝐶 (Φ2 +Φ3),
Φ7 = −𝐸 (Φ9+2Φ10 )

𝐴2
1

,

(62)

where 𝐸Φ8 (Φ2 + 2Φ3) < 0. In view of this, the following are the four solutions that take the form of Weierstrass elliptic
functions:
(I)

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− (Φ2+2Φ3 )

𝐸Φ8

(
℘ [(𝑥) , 𝑔2, 𝑔3] − 𝐶

3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (63)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− (Φ2+2Φ3 )

𝐸Φ8

(
℘ [(𝑥) , 𝑔2, 𝑔3] − 𝐶

3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 . (64)

(II)

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
𝐴

℘[ (𝑥 ) ,𝑔2 ,𝑔3 ]−𝐶
3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (65)
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and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
𝐴

℘[ (𝑥 ) ,𝑔2 ,𝑔3 ]−𝐶
3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (66)

where the solutions of the Weierstrass elliptic function (63)-(66) are characterised by the invariants 𝑔2 and 𝑔3, which are
determined by the following equation:

𝑔2 = 4𝐶2−12𝐴𝐸
3 and 𝑔3 =

4𝐶 (−2𝐶2+9𝐴𝐸 )
27 . (67)

(III)

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− (Φ2+2Φ3 )𝐸

9Φ8

(
6
√
𝐴℘[ (𝑥 ) ,𝑔2 ,𝑔3 ]+𝐶

√
𝐴

3℘′ [ (𝑥 ) ,𝑔2 ,𝑔3 ]

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , 𝐴 > 0, (68)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− (Φ2+2Φ3 )𝐸

9Φ8

(
6
√
𝐴℘[ (𝑥 ) ,𝑔2 ,𝑔3 ]+𝐶

√
𝐴

3℘′ [ (𝑥 ) ,𝑔2 ,𝑔3 ]

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , 𝐴 > 0. (69)

Set–8: Considering 𝐵 = 𝐷 = 0 and 𝐴 = 5𝐶2

36𝐸 are replaced into the algebraic equations (20), the results achieved are:

𝐴0 = 0, 𝐴1 =

√︃
− (Φ9+2Φ10 )𝐸

Φ7
, (70)

and
Φ1 = − 5𝐶2Φ9𝐴

2
1

36𝐸 ,

Φ2 = −Φ8𝐴
2
1+2𝐸Φ3
𝐸

,

Φ4 = − (5Φ8𝐴
2
1+2𝐸Φ3 )𝐶2𝐴2

1
36𝐸2 ,

Φ5 = −𝐶 (Φ9 +Φ10)
Φ6 =

𝐶 (Φ8𝐴
2
1+𝐸Φ3 )
𝐸

,

(71)

provided 𝐸 > 0,Φ7 (Φ9 + 2Φ10) < 0, 𝜀 = ±1. In view of this, the following are the two solutions that take the form of
Weierstrass elliptic functions:

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− 5𝐶2 (Φ9+2Φ10 )

36Φ7

6℘[ (𝑥 ) ,𝑔2 ,𝑔3 ]+𝐶
3℘′ [ (𝑥 ) ,𝑔2 ,𝑔3 ]

] 1
2𝑚

𝑒𝑖𝜆𝑡 , (72)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− 5𝐶2 (Φ9+2Φ10 )

36Φ7

6℘[ (𝑥 ) ,𝑔2 ,𝑔3 ]+𝐶
3℘′ [ (𝑥 ) ,𝑔2 ,𝑔3 ]

] 1
2𝑚

𝑒𝑖𝜆𝑡 , (73)

where the solutions of the Weierstrass elliptic function (72) and (73) are characterised by the invariants 𝑔2 and 𝑔3, which
are determined by the following equities:

𝑔2 = 2𝐶2

9 and 𝑔3 = 𝐶3

54 . (74)

4. ADDITIONAL RESULTS
The Weierstrass elliptic function ℘(𝑥; 𝑔2, 𝑔3) is typically represented as [39, 40]:

℘ (𝑥; 𝑔2, 𝑔3) = 𝑙2 − (𝑙2 − 𝑙3)cn2 (√
𝑙1 − 𝑙3𝑥;𝑚1

)
,

℘ (𝑥; 𝑔2, 𝑔3) = 𝑙3 + (𝑙1 − 𝑙3)ns2 (√
𝑙1 − 𝑙3𝑥;𝑚1

)
.

 (75)

The modulus is derived from 𝑚1 =

√︃
𝑙2−𝑙3
𝑙1−𝑙3 , as described by the Jacobian elliptic functions, where 𝑙 𝑗 with 𝑗 = 1, 2, 3, and

𝑙1 ≥ 𝑙2 ≥ 𝑙3, are the three roots of the equation 4𝑦3 − 𝑔2𝑦 − 𝑔3 = 0.
Upon substituting (75) into (63) and (64), the following are the four solutions that take the form of Jacobi elliptic functions:

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− (Φ2+2Φ3 )

𝐸Φ8

( [
𝑙2 − (𝑙2 − 𝑙3)cn2

(√︁
𝑙1 − 𝑙3 𝑥;𝑚1

)]
− 𝐶

3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (76)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− (Φ2+2Φ3 )

𝐸Φ8

( [
𝑙2 − (𝑙2 − 𝑙3)cn2

(√︁
𝑙1 − 𝑙3 𝑥;𝑚1

)]
− 𝐶

3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (77)
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also,

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− (Φ2+2Φ3 )

𝐸Φ8

( [
𝑙3 + (𝑙1 − 𝑙3)ns2

(√︁
𝑙1 − 𝑙3 𝑥;𝑚1

)]
− 𝐶

3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (78)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− (Φ2+2Φ3 )

𝐸Φ8

( [
𝑙3 + (𝑙1 − 𝑙3)ns2

(√︁
𝑙1 − 𝑙3 𝑥;𝑚1

)]
− 𝐶

3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (79)

where 𝐸Φ8 (Φ2 + 2Φ3) < 0. In detail, as 𝑚1 → 1, 𝑙1 → 𝑙2, resulting in ns(𝑥, 1) → coth(𝑥) and cn(𝑥, 1) → sech(𝑥).
Bright and singular solitons appear prominently in the solutions:

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− (Φ2+2Φ3 )

𝐸Φ8

( [
𝑙2 − (𝑙2 − 𝑙3)sech2

(√︁
𝑙1 − 𝑙3 𝑥

)]
− 𝐶

3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (80)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− (Φ2+2Φ3 )

𝐸Φ8

( [
𝑙2 − (𝑙2 − 𝑙3)sech2

(√︁
𝑙1 − 𝑙3 𝑥

)]
− 𝐶

3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (81)

also,

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− (Φ2+2Φ3 )

𝐸Φ8

( [
𝑙2 − (𝑙2 − 𝑙3)coth2

(√︁
𝑙1 − 𝑙3 𝑥

)]
− 𝐶

3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (82)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− (Φ2+2Φ3 )

𝐸Φ8

( [
𝑙2 − (𝑙2 − 𝑙3)coth2

(√︁
𝑙1 − 𝑙3 𝑥

)]
− 𝐶

3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (83)

where 𝐸Φ8 (Φ2 + 2Φ3) < 0.
Upon substituting (75) into (65) and (66), Jacobi elliptic solutions are achieved:

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
𝐴

𝑙2−(𝑙2−𝑙3 )cn2 (√𝑙1−𝑙3 𝑥;𝑚1)−𝐶
3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (84)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
𝐴

𝑙2−(𝑙2−𝑙3 )cn2 (√𝑙1−𝑙3 𝑥;𝑚1)−𝐶
3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (85)

also,

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
𝐴

𝑙3+(𝑙1−𝑙3 )ns2 (√𝑙1−𝑙3 𝑥;𝑚1)−𝐶
3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (86)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
𝐴

𝑙3+(𝑙1−𝑙3 )ns2 (√𝑙1−𝑙3 𝑥;𝑚1)−𝐶
3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (87)

where 𝐸Φ8 (Φ2 + 2Φ3) < 0. Singular and dark solitons appear prominently in the solutions:

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
𝐴

𝑙2−(𝑙2−𝑙3 )sech2 (√𝑙1−𝑙3 𝑥)−𝐶
3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (88)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
𝐴

𝑙2−(𝑙2−𝑙3 )sech2 (√𝑙1−𝑙3 𝑥)−𝐶
3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (89)

also,

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
𝐴

𝑙3+(𝑙1−𝑙3 )coth2 (√𝑙1−𝑙3 𝑥)−𝐶
3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (90)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
𝐴

𝑙3+(𝑙1−𝑙3 )coth2 (√𝑙1−𝑙3 𝑥)−𝐶
3

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (91)

where 𝐸Φ8 (Φ2 + 2Φ3) < 0. By inserting (75) into (68) and (69), Jacobi elliptic solutions are generated:

𝜂(𝑥, 𝑡) = 𝜀

[
1
18

√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
6
√
𝐴[𝑙2−(𝑙2−𝑙3 )cn2 (√𝑙1−𝑙3 𝑥;𝑚1)]+𝐶

√
𝐴

√
𝑙1−𝑙3 (𝑙2−𝑙3 )cn(√𝑙1−𝑙3 𝑥;𝑚1)sn(√𝑙1−𝑙3 𝑥;𝑚1)dn(√𝑙1−𝑙3 𝑥;𝑚1)

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (92)
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and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[
1
18

√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
6
√
𝐴[𝑙2−(𝑙2−𝑙3 )cn2 (√𝑙1−𝑙3 𝑥;𝑚1)]+𝐶

√
𝐴

√
𝑙1−𝑙3 (𝑙2−𝑙3 )cn(√𝑙1−𝑙3 𝑥;𝑚1)sn(√𝑙1−𝑙3 𝑥;𝑚1)dn(√𝑙1−𝑙3 𝑥;𝑚1)

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (93)

also,

𝜂(𝑥, 𝑡) = 𝜀

[
1
18

√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
− 6

√
𝐴[𝑙3+(𝑙1−𝑙3 )ns2 (√𝑙1−𝑙3 𝑥;𝑚1)]+𝐶

√
𝐴

√
𝑙1−𝑙3 (𝑙1−𝑙3 )cn(√𝑙1−𝑙3 𝑥;𝑚1)dn(√𝑙1−𝑙3 𝑥;𝑚1)ns3 (√𝑙1−𝑙3 𝑥;𝑚1)

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (94)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[
1
18

√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
− 6

√
𝐴[𝑙3+(𝑙1−𝑙3 )ns2 (√𝑙1−𝑙3 𝑥;𝑚1)]+𝐶

√
𝐴

√
𝑙1−𝑙3 (𝑙1−𝑙3 )cn(√𝑙1−𝑙3 𝑥;𝑚1)dn(√𝑙1−𝑙3 𝑥;𝑚1)ns3 (√𝑙1−𝑙3 𝑥;𝑚1)

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (95)

where 𝐸Φ8 (Φ2 + 2Φ3) < 0. Notably, the solutions includes additional forms of straddled quiescent optical solitons:

𝜂(𝑥, 𝑡) = 𝜀

[
1

18

√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
6
√
𝐴[𝑙2−(𝑙2−𝑙3 )sech2 (√𝑙2−𝑙3 𝑥;𝑚1)]+𝐶

√
𝐴

√
𝑙2−𝑙3 (𝑙2−𝑙3 )sech2 (√𝑙2−𝑙3 𝑥;𝑚1)tanh(√𝑙2−𝑙3 𝑥;𝑚1)

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (96)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[
1
18

√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
6
√
𝐴[𝑙2−(𝑙2−𝑙3 )sech2 (√𝑙2−𝑙3 𝑥;𝑚1)]+𝐶

√
𝐴

√
𝑙2−𝑙3 (𝑙2−𝑙3 )sech2 (√𝑙2−𝑙3 𝑥;𝑚1)tanh(√𝑙2−𝑙3 𝑥;𝑚1)

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (97)

also,

𝜂(𝑥, 𝑡) = 𝜀

[
1

18

√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
− 6

√
𝐴[𝑙3+(𝑙2−𝑙3 )coth2 (√𝑙2−𝑙3 𝑥;𝑚1)]+𝐶

√
𝐴

√
𝑙2−𝑙3 (𝑙2−𝑙3 )sech2 (√𝑙2−𝑙3 𝑥;𝑚1)coth3 (√𝑙2−𝑙3 𝑥;𝑚1)

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (98)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[
1
18

√︃
− (Φ2+2Φ3 )𝐸

Φ8

(
− 6

√
𝐴[𝑙3+(𝑙2−𝑙3 )coth2 (√𝑙2−𝑙3 𝑥;𝑚1)]+𝐶

√
𝐴

√
𝑙2−𝑙3 (𝑙2−𝑙3 )sech2 (√𝑙2−𝑙3 𝑥;𝑚1)coth3 (√𝑙2−𝑙3 𝑥;𝑚1)

)] 1
4𝑚

𝑒𝑖𝜆𝑡 , (99)

where 𝐸Φ8 (Φ2 + 2Φ3) < 0, 𝐴 > 0.
By inserting (75) into (72) and (73), Jacobi elliptic solutions are formed:

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− 5𝐶2 (Φ9+2Φ10 )

36Φ7

(
6[𝑙2−(𝑙2−𝑙3 )cn2 (√𝑙1−𝑙3 𝑥;𝑚1)]+𝐶

3
√
𝑙1−𝑙3 (𝑙2−𝑙3 )cn(√𝑙1−𝑙3 𝑥;𝑚1)sn(√𝑙1−𝑙3 𝑥;𝑚1)dn(√𝑙1−𝑙3 𝑥;𝑚1)

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (100)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− 5𝐶2 (Φ9+2Φ10 )

36Φ7

(
6[𝑙2−(𝑙2−𝑙3 )cn2 (√𝑙1−𝑙3 𝑥;𝑚1)]+𝐶

3
√
𝑙1−𝑙3 (𝑙2−𝑙3 )cn(√𝑙1−𝑙3 𝑥;𝑚1)sn(√𝑙1−𝑙3 𝑥;𝑚1)dn(√𝑙1−𝑙3 𝑥;𝑚1)

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (101)

also,

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− 5𝐶2 (Φ9+2Φ10 )

36Φ7

(
− 6[𝑙3+(𝑙1−𝑙3 )ns2 (√𝑙1−𝑙3 𝑥;𝑚1)]+𝐶

3
√
𝑙1−𝑙3 (𝑙1−𝑙3 )cn(√𝑙1−𝑙3 𝑥;𝑚1)dn(√𝑙1−𝑙3 𝑥;𝑚1)ns3 (√𝑙1−𝑙3 𝑥;𝑚1)

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (102)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− 5𝐶2 (Φ9+2Φ10 )

36Φ7

(
− 6[𝑙3+(𝑙1−𝑙3 )ns2 (√𝑙1−𝑙3 𝑥;𝑚1)]+𝐶

3
√
𝑙1−𝑙3 (𝑙1−𝑙3 )cn(√𝑙1−𝑙3 𝑥;𝑚1)dn(√𝑙1−𝑙3 𝑥;𝑚1)ns3 (√𝑙1−𝑙3 𝑥;𝑚1)

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (103)

where Φ7 (Φ9 + 2Φ10) < 0. A further set of additional form of straddled optical solitons is enlisted here:

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− 5𝐶2 (Φ9+2Φ10 )

36Φ7

(
6[𝑙2−(𝑙2−𝑙3 )sech2 (√𝑙2−𝑙3 𝑥)]+𝐶

3
√
𝑙2−𝑙3 (𝑙2−𝑙3 )sech2 (√𝑙2−𝑙3 𝑥)tanh(√𝑙2−𝑙3 𝑥)

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (104)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− 5𝐶2 (Φ9+2Φ10 )

36Φ7

(
6[𝑙2−(𝑙2−𝑙3 )sech2 (√𝑙2−𝑙3 𝑥)]+𝐶

3
√
𝑙2−𝑙3 (𝑙2−𝑙3 )sech2 (√𝑙2−𝑙3 𝑥)tanh(√𝑙2−𝑙3 𝑥)

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (105)

also,

𝜂(𝑥, 𝑡) = 𝜀

[√︃
− 5𝐶2 (Φ9+2Φ10 )

36Φ7

(
− 6[𝑙3+(𝑙2−𝑙3 )coth2 (√𝑙2−𝑙3 𝑥)]+𝐶

3
√
𝑙2−𝑙3 (𝑙2−𝑙3 )sech2 (√𝑙2−𝑙3 𝑥)coth3 (√𝑙2−𝑙3 𝑥)

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (106)

and

𝜌(𝑥, 𝑡) = 𝜒𝜀

[√︃
− 5𝐶2 (Φ9+2Φ10 )

36Φ7

(
− 6[𝑙3+(𝑙2−𝑙3 )coth2 (√𝑙2−𝑙3 𝑥)]+𝐶

3
√
𝑙2−𝑙3 (𝑙2−𝑙3 )sech2 (√𝑙2−𝑙3 𝑥)coth3 (√𝑙2−𝑙3 𝑥)

)] 1
2𝑚

𝑒𝑖𝜆𝑡 , (107)

where Φ7 (Φ9 + 2Φ10) < 0.
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5. RESULTS AND DISCUSSION
The application of the modified sub-ODE methodology to the coupled nonlinear Schrödinger–type system yields

a wide spectrum of quiescent soliton solutions in magneto–optic waveguides subject to nonlinear chromatic dispersion
and Kudryashov’s generalized self-phase modulation. In this section, we focus on three representative families of
stationary localized states: bright, dark, and straddled (hyperbolic–rational) quiescent solitons. Their spatial structures, as
reconstructed from the analytic formulas, are depicted in Figures 1–3.

Figure 1 illustrates the family of bright quiescent solitons described by Eqs. (23)–(24). Both field components, 𝜂(𝑥)
and 𝜌(𝑥), exhibit a single localized hump centered at 𝑥 = 0, decaying exponentially to the background. The parameter
𝑚 plays a dual role, modulating both amplitude and spatial width of the soliton. For smaller values of 𝑚, the profiles
become broader with lower peak intensity, whereas increasing 𝑚 sharpens the localization and elevates the peak amplitude.
Importantly, the bright states maintain their stability across the tested range of 𝑚, reflecting the robustness of the balance
between nonlinear self-phase modulation and dispersive spreading.
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(a) Bright quiescent soliton for 𝜂(𝑥) given by Eq. (23), shown
for different values of 𝑚.
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(b) Bright quiescent soliton for 𝜌(𝑥) given by Eq. (24), shown
for different values of 𝑚.

Figure 1. Bright quiescent solitons: localized hump solutions described by Eqs. (23)–(24) (𝐶 = 0.8, Φ2 = 2, Φ3 =

1, Φ8 = 1, 𝐴0 = 0.2, 𝜀 = 1, 𝜒 = 0.5).

In contrast, Figure 2 presents the dark quiescent solitons obtained from Eqs. (27)–(28). Here, the fields 𝜂(𝑥) and
𝜌(𝑥) retain a finite background, featuring a localized notch at the origin. The depth of this dip depends sensitively on
𝑚: shallow depressions for small 𝑚 evolve into deeper and narrower notches as 𝑚 increases. This behavior mirrors the
expected dynamics of dark solitons under normal dispersion conditions. The presence of a finite pedestal ensures that
the solutions remain bounded, which is a crucial feature for stable pulse transmission. The consistency of these results
with the parameter restrictions in Set-2 highlights the versatility of the sub-ODE method in capturing both bright and dark
stationary structures within a unified framework.

A more exotic class of solutions is displayed in Figure 3, where the hybrid hyperbolic–rational structures emerge from
Eqs. (53)–(54). These “straddled” solitons exhibit a shallow hyperbolic-type core near 𝑥 = 0, accompanied by algebraically
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(a) Dark quiescent soliton for 𝜂(𝑥) given by Eq. (27), shown
for different values of 𝑚.
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(b) Dark quiescent soliton for 𝜌(𝑥) given by Eq. (28), shown
for different values of 𝑚.

Figure 2. Dark quiescent solitons: localized notch solutions described by Eqs. (27)–(28) (𝜀 = 1, 𝜒 = 0.5, 𝐶 =

−0.8, Φ7 = −1, Φ9 = 2, Φ10 = 1.).
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decaying shoulders extending into the far field. Such composite profiles differ from the exponentially localized bright and
dark solitons: while they maintain localization, their slower tail decay introduces long-range interactions that may influence
multi-pulse dynamics in realistic magneto–optic media. The dependence on 𝑚 again tunes the relative prominence of
the core versus the shoulders, suggesting that the soliton morphology can be engineered through parameter control. The
analytical derivation of these solutions (Set-5) demonstrates the flexibility of Kudryashov’s SPM structure in generating
hybrid states that combine features of both hyperbolic and rational forms.
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(a) Straddled (hyperbolic–rational) quiescent soliton for 𝜂(𝑥)
given by Eq. (53), shown for different values of 𝑚.
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(b) Straddled (hyperbolic–rational) quiescent soliton for 𝜌(𝑥)
given by Eq. (54), shown for different values of 𝑚.

Figure 3. Straddled (hyperbolic–rational) quiescent solitons: hybrid profiles described by Eqs. (53)–(54) (𝐶 = −0.8, 𝐷 =

1, 𝐴1 = 1, 𝜒 = 0.5.)

Taken together, the three families highlight the diversity of stationary quiescent solitons admitted by the model.
Bright and dark solutions represent classical solitary waveforms associated with anomalous and normal dispersion regimes,
respectively, while straddled solitons introduce hybrid decay patterns with potential for novel interaction dynamics. The
modulation parameter𝑚 consistently acts as a control knob for amplitude–width trade-offs, underscoring its physical role in
tailoring pulse shapes. From an applications perspective, the ability to sustain such varied soliton classes in magneto–optic
waveguides suggests opportunities for optimizing pulse transmission, mitigating clutter, and exploring nonstandard optical
switching regimes.

6. CONCLUSIONS
This work examines quiescent optical solitons in magneto-optic waveguides, including nonlinear CD and generalised

temporal evolution, using Kudryashov’s generalised self-phase modulation structure. The generalised version of sub-
ODE is the mathematical framework that has facilitated the successful recovery of quiescent optical solitons. We
establish a diverse array of classified optical solitons and the parametric conditions that guarantee their existence. These
solitons exhibit unique stability properties and can be manipulated by varying the external magnetic field and waveguide
parameters. Our results deepen the understanding of soliton dynamics in complex media and open avenues for potential
applications in optical communications and information processing. The results of the work serve as a stark reminder to
the telecommunication engineers that rough handling of optical fibers would stall the progress of such solitons under the
sea as well as underground. This would catastrophically dismantle the internet traffic flow across the planet.

While magneto–optic waveguides is one of the optoelectronic devices where the dynamics of quiescent optical
solitons are established in the current paper, the study would be later extended to additional such devices that has been left
untouched in the literature. Examples of such devices include Bragg gratings, optical couplers, optical metamaterials, fibres
exhibiting polarization-mode dispersion, and dispersion-flattened fibres, among others. The mathematical algorithms that
would be adopted while addressing such devices would be plentiful including the most powerful of them namely Lie
symmetry analysis. The results would be disseminated all across the board sequentially over time.

Acknowledgements
This work of one of the authors (AB) was funded by the budget of Grambling State University for the Endowed Chair

of Mathematics. The author thankfully acknowledges this support.

Author contributions
All authors contributed to the study conception and design. Material preparation, data collection, review & editing

and analysis were performed by [Mona El-Shater], [Ahmed H. Arnous], [Omer Mohammed Khodayer Al-Dulaimi], [Farag
Mahel Mohammed], [Ibrahim Zeghaiton Chaloob], and [Carmelia Mariana Balanica Dragomir]. The first draft of the



154
EEJP. 4 (2025) Elsayed M.E. Zayed, et al.

manuscript was written by [Elsayed M. E. Zayed]. Investigation, writing—review and editing was made by [Anjan Biswas]
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Пiвденна Африка
У статтi обговорюється, як запропонована Кудряшовим схема самофазової модуляцiї та нелiнiйна хроматична дисперсiя
спричиняють еволюцiю спокiйних оптичних солiтонiв у магнiтооптичних хвилеводах. Забезпечується повне розумiння моделi
управлiння; розглядається узагальнена часова еволюцiя. Для полегшення вiдновлення таких солiтонiв використовується мо-
дифiкований пiдхiд суб-ODE. Це призводить до повного спектру оптичних солiтонiв та необхiдних умов, якi повиннi бути
виконанi для iснування цих солiтонiв, якi також наводяться.
Ключовi слова: солiтони; самофазова модуляцiя; iнтегрованiсть; хроматична дисперсiя
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This paper investigates partial exact solutions of a nonlinear fourth-order differential equation arising from the variational principle for 
a thermodynamic potential with high derivatives. To describe the spatial distribution of the order parameter, the elliptic cosine function 
of Jacobi is used, which allows reducing the problem to a system of algebraic equations for amplitude, spatial scale, and modulus. The 
conditions for the existence of physically admissible solutions were obtained, and it was found that periodic solutions expressed in 
terms of elliptic cosine are relevant for describing first-order phase transitions. Graphs illustrating the dependence of the main 
parameters of the solution on the characteristics of the system are presented. 
Keywords: Nonlinear differential equations; Order parameter; Elliptic Jacobi functions; First-order phase transition; 
Incommensurate phase 
PACS: 64.60.Bd, 64.60.-i 05.70.Jk 

INTRODUCTION 
Phase transitions and spatially inhomogeneous states in condensed matter systems remain one of the key areas of 

research in modern physics. In many physical models — in particular, in the description of ferroelectrics, magnets, alloys, 
and during spinodal decomposition — the order parameter is a one-component function of the spatial coordinate [1-4]. 
Their application goes beyond traditional solid-state physics — similar equations also arise in theories of self-organisation 
of structures in biological, computational, and non-equilibrium systems [5-7]. In such cases, an important task is to find 
exact or approximate solutions to the corresponding equations that describe the evolution or equilibrium distribution of 
this parameter. 

In the initial stages of phase transitions, when the amplitude of the order parameter is small, linear analytical 
approximations are often used. However, with increasing nonlinearity of the system, such approaches lose their accuracy. 
Particularly difficult to describe are cases where strongly nonlinear, periodic or localised distributions are formed — for 
example, alternating domains with domain walls. [8] 

In classical approaches to modelling such structures, harmonic expansion or expansion in terms of the order 
parameter is widely used. However, the accurate representation of strongly nonlinear profiles, such as bell solitons or 
modulation structures, requires the inclusion of a large number of terms, which complicates both analytical analysis and 
numerical investigation. 

An alternative approach is to search for partial exact solutions of the variational equation that allow the order 
parameter to be represented by special functions, in particular Jacobi elliptic functions [9-11]. In particular, the function 𝜑 ൌ 𝑎 ∗ 𝑐𝑛ሺ𝑏𝑥, 𝑘ሻ (1) 

the elliptic cosine allows us to describe spatial distributions of order parameters that smoothly interpolate between 
harmonic and bell-soliton behaviour depending on the modulus 𝑘. 

The aim of this work is to construct a class of exact partial solutions in the form of elliptic cosine — Jacobi function 
— for the fourth-order equation derived from the corresponding variational functional Within the framework of Landau 
theory, analytical solutions in the form of function (1) are constructed, and the dependence of the distribution parameters 
on the thermodynamic potential parameters has been investigated. 

CALCULATION ORDER PARAMETER 
Let us write down the thermodynamic potential in the form [9]: 

𝐹 ൌ 𝐹଴ ൅ න𝑑𝑥 ൤12 ሺ𝜑ᇱᇱሻଶ − 𝑔2 ሺ𝜑𝜑ᇱሻଶ − 𝛾2 ሺ𝜑ᇱሻଶ ൅ 𝑞2𝜑ଶ ൅ 𝑝4𝜑ସ ൅ 16𝜑଺൨ , (2) 

where 𝑔,  γ are material parameters and 𝑞 ൌ 𝑞଴ሺ𝑇 − 𝑇௖ሻ/𝑇௖and 𝑝 depend on other conditions (e.g. pressure). 
The variational equation for functional (1) is the following nonlinear fourth-order differential equation: 
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𝜑ሺூ௏ሻ + 𝑔ൣ𝜑ଶ𝜑ᇱᇱ + 𝜑𝜑ᇱଶ൧ + 𝛾𝜑ᇱᇱ + 𝑞𝜑 + 𝑝𝜑ଷ + 𝜑ହ = 0. (3) 

Let us represent the order parameter as (1). Substituting (1) into (3) we obtain the following system of equations 

ቐ 𝑎ସ − 3𝑔𝑎ଶ𝑏ଶ𝑘ଶ + 24𝑏ସ𝑘ସ  = 0𝑏ସሺ20𝑘ଶ − 40𝑘ସሻ + 2𝑔𝑎ଶ𝑏ଶሺ2𝑘ଶ − 1ሻ − 2𝛾𝑏ଶ𝑘ଶ + 𝑝𝑎ଶ = 0𝑏ସ(16𝑘ସ − 16𝑘ଶ + 1) + 𝑔𝑎ଶ𝑏ଶ(1 − 𝑘ଶ) + 𝛾𝑏ଶ(2𝑘ଶ − 1) + 𝑞 = 0 (4) 

From the first equation in (4) we can find the parameter 𝑎: 

𝑎ଶ = 3𝑔 ± ට𝑔ଶ − 3232 𝑏ଶ𝑘ଶ = 𝑎́±ଶ𝑏ଶ𝑘ଶ 
(5) 

We see that parameter 𝑎 is valid only when 

𝑔 ≥ ඨ323  (6) 

Let's look at the limiting case when 𝑘 = 0. From the third equation (4) we obtain 𝑏ସ − 𝛾𝑏ଶ + 𝑞 = 0 (7) 

or  𝑏ଶ = 𝛾 ± ඥ𝛾ଶ − 4𝑞2  (8) 

From this, we can see that a second-order phase transition occurs from a highly symmetric phase to a modulated 
phase at the point 𝑞 = γଶ/4. 

Now let's look at the limiting case when 𝑘ଶ = 1. We obtain the following system of equations 

൜−20𝑏ସ + 2𝑔𝑎́ଶ𝑏ଶ − 2𝛾𝑏ଶ + 𝑝𝑎́ଶ𝑏ଶ = 0𝑏ସ + 𝛾𝑏ଶ + 𝑞 = 0  (9) 

From here, we can find an expression for 𝑏ଶ: 

𝑏ଶ = 2𝛾 − 𝑝𝑎́ଶ2(𝑔𝑎́ଶ − 10) (10) 

Parameter b is valid only when either 𝑔𝑎́ଶ > 10 and γ ≥ 𝑝𝑎́ଶ/2, or 𝑔𝑎́ଶ < 10 and γ ≤ 𝑝𝑎́ଶ/2. 
Substitute (5) into the second equation (4): 

𝑏ଶ = 2𝛾 − 𝑝𝑎́ଶ2(2𝑘ଶ − 1)(𝑔𝑎́ଶ − 10) = 𝜉𝜎2(2𝑘ଶ − 1), (11) 

where 𝜉 = 2𝛾 − 𝑝𝑎́ଶ, (12) 1𝜎 = 𝑔𝑎́ଶ − 10. (13) 

Substituting (11) into the third equation (4) we obtain the following expression 

𝑘ସ − 𝑘ଶ + 𝜎ଶ𝜉ଶ + 2𝛾𝜎𝜉 + 4𝑞(6𝜎ଶ − 𝜎)𝜉ଶ + 8𝛾𝜎𝜉 + 16𝑞 = 0 (14) 

Let's calculate the discriminant of this equation for 𝑘ଶ: 
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𝐷 = (2𝜎ଶ − 𝜎)𝜉ଶ(6𝜎ଶ − 𝜎)𝜉ଶ + 8𝛾𝜎𝜉 + 16𝑞 (15) 

The solution to equation (14) will be 𝑘ଶ = 1 ± √𝐷2 . (16) 

It can be seen that these solutions (16) take values either [0, 1/2] or [1/2, 1]. For 𝑘ଶ to take all values, the discriminant 
(15) must be zero at some point. From (15) it can be seen that at any temperature 𝐷 ≠ 0, but at ξ = 0 (or 𝑝 = 2𝛾 𝑎́ଶ⁄ ) –
D=0, i.e. we are dealing with first-order transitions. 

At σ = 0 or σ = 1/2, we obtain a degenerate solution 𝑘ଶ = 1/2, which will not be considered further. 
A first-order transition occurs at a constant temperature from 0 ≤ 𝑘ଶ ≤ 1. From (14) we find this temperature: 𝜎ଶ𝜉଴ଶ + 2𝛾𝜎𝜉଴ + 4𝑞଴(6𝜎ଶ − 𝜎)𝜉଴ଶ + 8𝛾𝜎𝜉଴ + 16𝑞଴ = 0 

(17) 

𝑞଴ = −𝜎ଶ𝜉଴ଶ + 2𝛾𝜎𝜉଴4 = 𝛾ଶ4 − (𝛾 + 𝜎𝜉଴)ଶ4  (18) 

where ξ଴ is the initial value of ξ from 𝑝଴. 
Substituting (18) the discriminant (15) can be rewritten as: 

𝐷 = (2𝜎 − 1)𝜉ଶ(6𝜎 − 1)𝜉ଶ + 8𝛾(𝜉 − 𝜉଴) − 4𝜎𝜉଴ଶ (19) 

Expression (11) can be rewritten by substituting (16) and (19): 

𝑏ଶ = |𝜎|2 ඨ(6𝜎 − 1)𝜉ଶ + 8𝛾(𝜉 − 𝜉଴) − 4𝜎𝜉଴ଶ2𝜎 − 1  (20) 

ξ will take such values that the discriminant (19) takes values from 0 to 1. There is a condition 𝐷(𝜉଴) = 𝐷(𝜉௠௔௫) = 1 (21) 

From condition (21) it follows that 𝜉 ∈ ሾ𝜉଴,−𝜉଴ − 2𝛾 𝜎⁄ ሿ (22) 

Expression (11) must be true so we have two cases: 𝜉଴ > 0 ቀ𝑝଴ < 2𝛾𝑎́ଶቁ , 𝜎 < 0𝜉଴ < 0 ቀ𝑝଴ > 2𝛾𝑎́ଶቁ , 𝜎 > 0. (23) 

If σ > 0, there are two cases: −𝜉଴ − 2𝛾 𝜎⁄ > 0 → 𝑝଴ > 2𝛾𝑎́ଶ ቀ1 + 1𝜎ቁ−𝜉଴ − 2𝛾 𝜎⁄ < 0 → 2𝛾𝑎́ଶ < 𝑝଴ < 2𝛾𝑎́ଶ ቀ1 + 1𝜎ቁ. (24) 

In the first case (24) – 0 ≤ 𝑘ଶ ≤ 1, in the second – 0 ≤ 𝑘ଶ ≤ 𝑘௠௔௫ଶ < ଵଶ where 𝑘௠௔௫ଶ  is found from the extremum 
condition (19). The extremum itself is equal to 

𝜉௘ = 2𝜉଴ + 𝜎𝜉଴ଶ𝛾  (25) 

When −𝜉଴ − 2𝛾 𝜎⁄ = 𝜉଴ (or 𝜉଴ = −𝛾 𝜎⁄ ), 𝑘௠௔௫ଶ = 0, i.e. the modulated phase is generally not realised. 
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RESULTS 
Let's move on to the graphs. Let γ = 1 for all graphs.  
Let's take 𝑔ଶ = 32 3⁄  or 𝜎 = 1/6. Let's look at the graphs for small values of 𝑝଴ and we get the following Figure 1. 

  
(a) (b) 

(c) 

Figure 1. Graphs of dependence on 𝑝 at 𝑔ଶ = 32 3⁄  for different initial values of 𝑝଴ for (a) 𝑘ଶ (b) 𝑏ଶ (c) 𝑎ଶ 
As can be seen from Fig. 1, there are three types of solutions: 

• ଵ√଺ < 𝑝଴ < ସ√଺ – the parameter p increases and the final phase remains modulated (lock-in transition). 

• ସ√଺ < 𝑝଴ ≤ ଻√଺ – the parameter p decreases and the final phase remains modulated (lock-in transition). 

• 𝑝଴ > ଻√଺– the parameter p decreases and the final phase transitions to a commensurate phase. 

Now let's look at the graphs for larger 𝑝଴ (Figure 2). As can be seen from Figure 2(b), when 𝑝଴ < ଵ଴√଺, the maximum 
amplitude 𝑎 is reached at 𝜉 < 𝜉௠௔௫, in other cases the maximum amplitude 𝑎 is reached at ξ = ξ௠௔௫. 

  
(a) (b) 

Figure 2. Graphs of dependence on 𝑝 at 𝑔ଶ = 32 3⁄  for different initial values of p_0 for (a) 𝑏ଶ (b) 𝑎ଶ 

Since in (5) there are two expressions for the amplitude let us consider them separately:  
1.  When 𝑎́ା σ takes the value (0,1/6). The graphs for small 𝑝଴ will be similar to Figure 1, but for larger 𝑝଴ 𝑏ାଶ  

will have a minimum at 𝜉 < 𝜉௠௔௫, for example, for 𝑔ଶ = 11 we obtain Figure 3. 
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(a) (b) 

Figure 3. Graphs of dependence on 𝑝 at 𝑔ଶ = 11 for different initial values of 𝑝଴ for (a) 𝑏ାଶ (b) 𝑎ାଶ 

2. When 𝑎́ି 𝜎 takes the values (1/6,1/2), (1/2, +∞) and (−∞,−1/2). 
For 𝑔ଶ = 11 (see Figure 4) 𝑏ିଶ і 𝑎ିଶwill have a maximum at 𝜉 < 𝜉௠௔௫. 

  
(a) (b) 

Figure 4. Graphs of dependence on 𝑝 at 𝑔ଶ = 11 for different initial values of 𝑝଴ for (a) 𝑏ିଶ (b) 𝑎ିଶ 
For 𝑎́ି (𝑔ଶ > 12), there are no such values of 𝑝଴ where 𝑘ଶ took all values from 0 to 1. For 𝑔ଶ > 12, with an increase 

in p (see Figures 5-6) 𝑘ଶ → ቌ1 + ඨ(2𝜎 − 1)(6𝜎 − 1)ቍ 2൘  (26) 

 

 
(a)                                                                                                  (b) 

 
(c) 

Figure 5. Graphs of dependence on 𝑝 at 𝑔ଶ = 16 for different initial values of 𝑝଴ for (a) 𝑘ିଶ (b) 𝑏ିଶ (b) 𝑎ିଶ 
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(a)                                                                                                  (b) 

 
(c) 

Figure 6. Graphs of dependence on 𝑝 at 𝑔ଶ = 25 for different initial values of 𝑝଴ for (a) 𝑘ିଶ (b) 𝑏ିଶ (b) 𝑎ିଶ 
 

CONCLUSIONS 
This paper investigates a nonlinear fourth-order differential equation arising from the variational principle for a 

thermodynamic potential with high derivatives. For the order parameter, we used a distribution in the form of an elliptic 
cosine of Jacobi, which allowed us to reduce the problem to a system of algebraic equations for the amplitude, spatial 
scale, and modulus. 

We established conditions for the existence of a physically realisable solution, in particular, a restriction on the 
parameter 𝑔, which guarantees the validity of the amplitude. It was found that initially a second-order phase transition 
occurs from a highly symmetric phase to an incommensurate phase at the point 𝑞 = γଶ/4. Further, it was found that 
solutions based on the elliptic cosine are relevant for describing first-order phase transitions. 

Graphs of the dependence of parameters a, b, k on the initial values 𝑝଴ and 𝑔 were constructed. 
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ЧАСТКОВІ ТОЧНІ РІШЕННЯ НЕЛІНІЙНОГО РОЗПОДІЛУ ОДНОКОМПОНЕНТНОГО ПАРАМЕТРА ПОРЯДКУ 
В РІВНОВАЖНИХ СИСТЕМАХ 

А.Р. Шимановський1, В.Ф. Клепіков1,2 
1Харкiвський нацiональний унiверситет iм. В.Н. Каразiна, Україна 

2Інститут електрофізики і радіаційних технологій НАН України, Україна 
У цій роботі досліджено частинні точні розв’язки нелінійного диференційного рівняння четвертого порядку, що виникає з 
варіаційного принципу для термодинамічного потенціалу з високими похідними. Для опису просторового розподілу 
параметра порядку використано функцію еліптичного косинуса Якобі, що дало змогу звести задачу до системи алгебраїчних 
рівнянь для амплітуди, просторового масштабу та модуля. Отримано умови існування фізично допустимих розв’язків та 
виявлено, що періодичні розв’язки, виражені через еліптичний косинус, релевантні для опису фазових переходів першого 
роду. Представлено графіки, що ілюструють залежність основних параметрів рішення від характеристик системи. 
Ключові слова: нелінійні диференційні рівняння; параметр порядку; еліптичні функції Якобі; фазовий перехід першого роду; 
несумірна фаза 
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The work presents analytical solutions to the Schrödinger equation for the Killingbeck potential, a hybrid model combining harmonic,
linear, and Coulombic terms, as well as an approximate model of Yukawa-type potentials. The radial Schrödinger equation is solved by
means of the series expansion method, thus yielding the exact expressions of both bound-state solutions and eigenfunctions for systems
such as quarkonium and confined hydrogen-like atoms in plasma environments. Furthermore, we offer a constructive commentary on
the work of Obu et al. (East Eur. J. Phys. 3, 146–157, 2023), with the aim of clarifying a mathematical misstatement utilised in their
analytical treatment of analogous systems.
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1. INTRODUCTION
In the domain of quantum mechanics, the accurate modelling of interaction potentials is paramount for the study

of particle behaviour in bound states across various scales, ranging from atomic to hadronic systems. The Killingbeck
potential is a particularly noteworthy model in this regard, due to its flexibility. The model incorporates a quadratic term,
which acts in a manner analogous to a harmonic oscillator, in conjunction with a linear confining term and a Coulomb-like
component.

𝑉 (𝑟) = − 𝐴

𝑟
+ 𝐵𝑟 + 𝐶𝑟2. (1)

This combination enables the Killingbeck potential to describe both short-range and long-range quantum interactions
within a unified analytical framework [1–3]. It has been determined that this subject is of particular value in areas like heavy
quarkonium spectroscopy, meson physics, quantum dots and Hydrogen-like systems embedded in a plasma environment,
where both confinement and screening effects are present [4–6]. The notable attribute of the Killingbeck potential is
twofold: firstly, its inherent solvability, and secondly, its capacity to establish a linkage between disparate potential models.
The linear term captures the long-range confining force seen in quark confinement, while the Coulomb term accounts
for the dominant one-gluon exchange interaction, which is an essential component of effective QCD potentials [7, 8].
The harmonic term is a useful regulator in hadronic systems, despite its unphysical behaviour at large distances. It
facilitates analytic solutions in non-relativistic quantum mechanics, a feature that is frequently advantageous for theoretical
research [1, 9].

The Killingbeck potential exhibits noteworthy mathematical and physical affinities with exponential-type potentials,
including the Yukawa and its various variants of screened Coulomb forms. These potentials describe interactions involving
massive bosons, and which result in short-range forces characterised by exponential decay [10–14]. They also describe the
confinement potential of hydrogen-like atoms in plasma [15–17]. When the screening effects are weak, these exponential
potentials simplify to the Killingbeck form by employing appropriate series expansions [18–20]. The analogies employed
in this context transcend the confines of formalism. They capture a deeper physical intent, with an equilibrium of attraction
and screening achieved in quantum confinement models. For systems like quarkonium, where the interplay between
asymptotic freedom and confinement is particularly pronounced, these potentials facilitate the calculation of more precise
spectral predictions [4,8,20]. Furthermore, the employment of various analytical approaches has been demonstrated to be
beneficial in this context. The Nikiforov-Uvarov method, the perturbation theory, and the series expansions have all been
applied effectively, thereby reinforcing the underlying structural coherence of these potentials [2, 5, 19].

In this work, we present the complete analytical solutions of the Schrödinger equation for the Killingbeck potential
using the series expansion method. In addition, we take this opportunity to address a related methodological point in
the recent literature (Obu et al. East Eur. J. Phys. 3, 146–157, 2023) [20], where an analytical misstatement affects the
interpretation of a series solution in a similar spectral problem.
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2. CLARIFYING COMMENT ON THE WORK BY OBU ET AL.
In their recent article, Obu et al. present a ”Comparative Study of the Mass Spectra of Heavy Quarkonium System

with an Interacting Potential Model” (East Eur. J. Phys. 3, 146–157, 2023) [20]. This study makes a significant
contribution to the field of hadronic physics through analytical comparisons by employing the Nikiforov-Uvarov and the
Series Expansion Methods (SEM). The authors’ approach to solving the Schrödinger equation with Yukawa-type potentials
is methodologically rigorous and relevant for charmonium and bottomonium systems.

However, in section 4 of their paper, specifically at equation (62), there is a conceptual misstatement regarding the
nature of linear independence in a power series expansion. The authors state the following:
“Equation (62) is linearly independent implying that each of the terms is separately equal to zero, noting that 𝑟 is a
non-zero function; therefore, it is the coefficient of 𝑟 that is zero. The coefficients 𝑎𝑛 are independent.”

This statement confuses the independence of the functions 𝑟𝑛 with the independence of the coefficients 𝑎𝑛. The
correct interpretation is that the functions 𝑟𝑛 form a linearly independent set in the polynomial on any open interval around
𝑟 = 0. Therefore, for a power series to vanish identically on such an interval, it is necessary that each coefficient of these
functions 𝑟𝑛 vanishes separately. This structural phenomenon gives rise to recurrence relations between the coefficients,
rather than ensuring their independence from each other.

We can see from equation (63) in [20] that it yields the result 𝐿 = − 1
2 (2𝑁 + 1). This is in direct contradiction to the

established definitions of the principal quantum number 𝑁 and the orbital quantum number 𝐿 (in the limit where 𝛼3 = 0).
Equation (62) in [20] must therefore be expressed as a polynomial given that it is written in [20] as a sum of

polynomials. Consequently, a more accurate formulation would be as follows:
“Since the powers of 𝑟 are linearly independent, the coefficient of each power must vanish separately. This, in turn, leads
to recurrence relations among these coefficients.”

This clarification is important to maintain the mathematical rigour of the derivation and to ensure the educational
value of the work for future researchers.

3. SCHRÖDINGER ENERGIES FOR THE KILLINGBECK POTENTIAL USING SEM
We will follow the steps outlined in [20] with some adjustments. In [20], the Potential is defined as follows:

𝑉 (𝑟) = −𝑎

𝑟
+ 𝑏

𝑟
𝑒−𝛼𝐼𝑟 − 𝑐

𝑟2 𝑒
−2𝛼𝐼𝑟 , (2)

where 𝑎,𝑏 and 𝑐 are potential strengths and where the screening parameter is represented by the symbol 𝛼𝐼 .
By expanding eq.(2) with Taylor series up to order three of 𝛼𝐼 , the form of the Killingbeck potential is obtained:

𝑉 (𝑟) = −𝛼0
𝑟

+ 𝛼1𝑟 + 𝛼2𝑟
2 + 𝛼3

𝑟2 + 𝛼4, (3)

with:
−𝛼0 = −𝑎 + 𝑏 + 2𝑐𝛼𝐼 ;𝛼1 =

1
2
𝑏𝛼2

𝐼 +
4
3
𝑐𝛼3

𝐼 ;𝛼2 = −1
6
𝑏𝛼3

𝐼 ;𝛼3 = −𝑐;𝛼4 = −𝑏𝛼𝐼 − 2𝑐𝛼2
𝐼 . (4)

Here we mention that the parameter 𝑐 is omitted in the vicinity of the parameter 𝛼3
𝐼

in the 𝛼1 term in [20].
Due to the spherical symmetry of the interaction, the radial Schrödinger equation is the primary focus:

𝑑2𝑅 (𝑟)
𝑑𝑟2 + 2

𝑟

𝑑𝑅 (𝑟)
𝑑𝑟

+
(

2𝜇
ℏ2 (𝐸 −𝑉 (𝑟)) − 𝑙 (𝑙 + 1)

𝑟2

)
𝑅 (𝑟) = 0, (5)

here, 𝑙 denotes the angular quantum number, while 𝜇 represents the reduced mass for the quarkonium. The variable 𝑟 is
the internuclear separation.

Substituting eq.(3) into eq.(5) gives:

𝑑2𝑅 (𝑟)
𝑑𝑟2 + 2

𝑟

𝑑𝑅 (𝑟)
𝑑𝑟

+
(
𝜀 + 𝐴

𝑟
− 𝐵𝑟 − 𝐶𝑟2 − 𝐿 (𝐿 + 1)

𝑟2

)
𝑅 (𝑟) = 0, (6)

where:
𝜀 =

2𝜇
ℏ2 (𝐸 − 𝛼4) ; 𝐴 =

2𝜇
ℏ2 𝛼0; 𝐵 =

2𝜇
ℏ2 𝛼1;𝐶 =

2𝜇
ℏ2 𝛼2, (7)

𝐿 (𝐿 + 1) =
(
𝑙 (𝑙 + 1) + 2𝜇

ℏ2 𝛼3

)
. (8)

From eq.(8), we get the new ”orbital” quantum number 𝐿

𝐿 = −1
2
+ 1

2

√︂
(2𝑙 + 1)2 + 8𝜇

ℏ2 𝛼3. (9)
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Following [20], we write the solution in the form:

𝑅(𝑟) = 𝑒−(𝛼𝑟2+𝛽𝑟)𝐹 (𝑟) . (10)

Substituting eq.(10) into eq.(6) and dividing by 𝑒−(𝛼𝑟2+𝛽𝑟) , we obtain:

𝐹′′ (𝑟) +
[
−4𝛼𝑟 − 2𝛽 + 2

𝑟

]
𝐹′ (𝑟)[(

𝜀 + 𝛽2 − 6𝛼
)
+ (𝐴 − 2𝛽)

𝑟
+ (4𝛼𝛽 − 𝐵) 𝑟 +

(
4𝛼2 − 𝐶

)
𝑟2 − 𝐿 (𝐿 + 1)

𝑟2

]
𝐹 (𝑟) = 0. (11)

We use the parameters 𝛼 and 𝛽 to simplify the given equation, thereby eliminating the terms in 𝑟 and 𝑟2 in the equation.{
4𝛼2 − 𝐶 = 0 =⇒ 𝛼 =

√
𝐶
2 ,

4𝛼𝛽 − 𝐵 = 0 =⇒ 𝛽 = 𝐵

2
√
𝐶
.

(12)

and we get the new radial equation

𝐹′′ (𝑟) +
(
−4𝛼𝑟 − 2𝛽 + 2

𝑟

)
𝐹′ (𝑟) +

(
𝜀 + 𝛽2 − 6𝛼 + (𝐴 − 2𝛽)

𝑟
− 𝐿 (𝐿 + 1)

𝑟2

)
𝐹 (𝑟) = 0. (13)

We present the solutions of this equation in a polynomial form:

𝐹 (𝑟) =
∞∑︁
𝑘=0

𝑎𝑘𝑟
𝑘+𝑠 . (14)

In this study, the approach taken differs from that of [20] in terms of the chosen polynomial form. Specifically, the latter
authors select 𝐹 (𝑟) = ∑∞

𝑛=0 𝑎𝑛𝑟
2𝑛+𝐿 in [20], yet no rationale is provided for the selection of this particular polynomial

(it starts at power 𝑟𝐿) nor for the choice of an even power of 𝑟 in the series. We also use the letter 𝑘 in place of 𝑛 in the
summation, thus ensuring clarity and avoiding any potential confusion with the principal quantum number 𝑛, which is
generally employed in standard textbooks. Putting the solution (14) and its derivatives into the radial equation (13) results
in the following equation:

∞∑︁
𝑘=0

[(𝑘 + 𝑠) (𝑘 + 𝑠 + 1) − 𝐿 (𝐿 + 1)] 𝑎𝑘𝑟𝑘+𝑠−2 +
∞∑︁
𝑘=0

[𝐴 − 2𝛽 (𝑘 + 𝑠 + 1)] 𝑎𝑘𝑟𝑘+𝑠−1

+
∞∑︁
𝑘=0

[
𝜀 + 𝛽2 − 2𝛼 (2𝑘 + 2𝑠 + 3)

]
𝑎𝑘𝑟

𝑘+𝑠 = 0. (15)

We rearrange the summation terms to write:

∞∑︁
𝑘=−2

[(𝑘 + 𝑠 + 2) (𝑘 + 𝑠 + 3) − 𝐿 (𝐿 + 1)] 𝑎𝑘+2𝑟
𝑘+𝑠 +

∞∑︁
𝑘=−1

[𝐴 − 2𝛽 (𝑘 + 𝑠 + 2)] 𝑎𝑘+1𝑟
𝑘+𝑠

+
∞∑︁
𝑘=0

[
𝜀 + 𝛽2 − 2𝛼 (2𝑘 + 2𝑠 + 3)

]
𝑎𝑘𝑟

𝑘+𝑠 = 0, (16)

and we get the following form of a single polynomial series:

∞∑︁
𝑘=0

[
[(𝑘 + 𝑠 + 2) (𝑘 + 𝑠 + 3) − 𝐿 (𝐿 + 1)] 𝑎𝑘+2 + [𝐴 − 2𝛽 (𝑘 + 𝑠 + 2)] 𝑎𝑘+1 +

[
𝜀 + 𝛽2 − 2𝛼 (2𝑘 + 2𝑠 + 3)

]
𝑎𝑘

]
𝑟𝑘+𝑠

+ [[(𝑠 + 1) (𝑠 + 2) − 𝐿 (𝐿 + 1)] 𝑎1 + [𝐴 − 2𝛽 (𝑠 + 1)] 𝑎0] 𝑟𝑠−1 + [[𝑠 (𝑠 + 1) − 𝐿 (𝐿 + 1)] 𝑎0] 𝑟𝑠−2} = 0. (17)

Since this relation holds for all values of the variable 𝑟 , each coefficient of the 𝑟𝑘-functions must vanish. The following
equation therefore holds:

[(𝑘 + 𝑠 − 𝐿 + 2) (𝑘 + 𝑠 + 𝐿 + 3)] 𝑎𝑘+2 + [𝐴 − 2𝛽 (𝑘 + 𝑠 + 2)] 𝑎𝑘+1 +
[
𝜀 + 𝛽2 − 2𝛼 (2𝑘 + 2𝑠 + 3)

]
𝑎𝑘 = 0, (18)

[(𝑠 + 1) (𝑠 + 2) − 𝐿 (𝐿 + 1)] 𝑎1 + [𝐴 − 2𝛽 (𝑠 + 1)] 𝑎0 = 0, (19)

[𝑠 (𝑠 + 1) − 𝐿 (𝐿 + 1)] 𝑎0 = 0. (20)
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We impose the condition 𝑎0 ≠ 0 to ensure that 𝐹 (𝑟) ≠ 0; otherwise, it follows from eq.(19) that 𝑎1 = 0. Consequently, all
𝑎𝑘 = 0 from eq.(18). Therefore, from eq.(20), we derive the following result:

[𝑠 (𝑠 + 1) − 𝐿 (𝐿 + 1)] 𝑎0 = 0 and 𝑎0 ≠ 0 =⇒ 𝑠 = 𝐿 or 𝑠 = −𝐿 − 1. (21)

We reject the solution 𝑠 = −𝐿 −1 on the basis of the expressions of 𝑅(𝑟) in eq.(10) and 𝐹 (𝑟) in eq.(14). These expressions
imply that 𝑅(𝑟) is divergent at the origin of 𝑟. Therefore, it can be concluded that 𝑠 = 𝐿. It is evident here that the minimal
power of the polynomial 𝐹 (𝑟) is 𝑟𝐿; this is in contrast to the approach taken in [20], where the rationale for this choice is
not provided. Replacing this value in the recurrence relations (18) and (19), we write:

𝑎𝑘+2 =
2𝛽 (𝑘 + 𝐿 + 2) − 𝐴

(𝑘 + 2) (𝑘 + 2𝐿 + 3) 𝑎𝑘+1 +
𝜀 + 𝛽2 − 2𝛼 (2𝑘 + 2𝐿 + 3)

(𝑘 + 2) (𝑘 + 2𝐿 + 3) 𝑎𝑘 , (22)

𝑎1 =
2𝛽 (𝐿 + 1) − 𝐴

2 (𝐿 + 1) 𝑎0. (23)

In the context of the probabilistic interpretation of the wave function, it is imperative to impose the condition that
𝑅(𝑟) must be convergent when 𝑟 → ∞ and, consequently, the function 𝐹 (𝑟) must terminate as a finite polynomial. To
accomplish this objective, it is necessary to truncate the series (22).

We can follow the method used in [21] and impose that for some value 𝑘 = 𝑛𝑟 , the coefficients of both 𝑎𝑛𝑟 and 𝑎𝑛𝑟+1
vanish while we have 𝑎𝑛𝑟 ≠ 0 and 𝑎𝑛𝑟+1 ≠ 0:

𝑎𝑛𝑟+2 = 0 if 2𝛽 (𝑛𝑟 + 𝐿 + 2) − 𝐴 = 0 and 𝜀 + 𝛽2 − 2𝛼 (2𝑛𝑟 + 2𝐿 + 3) = 0. (24)

This will give us the energies and a relation between the coefficients 𝛽 and 𝐴:

𝜀𝑛𝑟 ,𝑙 = 2𝛼 (2𝑛𝑟 + 2𝐿 + 3) − 𝛽2, (25)

𝛽 =
𝐴

2 (𝑛𝑟 + 𝐿 + 2) . (26)

These two relations are equivalent to eq.(65) and eq.(68) in [20] when we replace 𝑛𝑟 by 2𝑛, because we have employed a
more general expression for 𝑅(𝑟).

In order to show that we have a combination of the energies of both a harmonic oscillator and a Coulomb potential,
we write the energies as follows:

𝜀𝑛𝑟 ,𝑙 = 2
√
𝐶

(
𝑛𝑟 + 𝐿 + 3

2

)
− 𝐴2

4 (𝑛𝑟 + 𝐿 + 2)2 . (27)

Upon substituting the expressions of 𝐴, 𝐶 and the 𝛼 terms from relations (4), (6) and (8), we obtain the same energies
as in eq.(70) in [20]. It is noteworthy that 2𝑛 −→ 𝑛𝑟 in the expressions of [20].

𝐸𝑛𝑟 ,𝑙 =

√︄
− ℏ2𝑏

12𝜇
𝛼3
𝐼

(
2𝑛𝑟 + 2 +

√︂
(2𝑙 + 1)2 − 8𝜇

ℏ2 𝑐

)
− 2𝜇

ℏ2
[𝑎 − 𝑏 − 2𝑐𝛼𝐼 ]2(

2𝑛𝑟 + 1 +
√︃
(2𝑙 + 1)2 − 8𝜇

ℏ2 𝑐

)2 − 𝑏𝛼𝐼 − 2𝑐𝛼2
𝐼 . (28)

At this point, it has been demonstrated that the energy spectrum of the Killingbeck potential is obtained by applying
rigorously the SEM method and correcting the inaccuracies in the application of this SEM method made by Obu et al.
in [20].

In this section, we followed the condition (24) as done in [21] to truncate the series (22). Notwithstanding the
utilisation of this condition by the authors of [21] in numerous recent works [22–25], it is imperative to acknowledge that
this condition does not guarantee the truncation. An examination of the parameter 𝑎𝑛𝑟+3 as depicted from eq.(22) and
eq.(24) substantiates this assertion:

𝑎𝑛𝑟+3 =
𝜀𝑛𝑟 ,𝑙 + 𝛽2 − 2𝛼 (2𝑛𝑟 + 2𝐿 + 5)

(𝑛𝑟 + 3) (𝑛𝑟 + 2𝐿 + 4) 𝑎𝑛𝑟+1 = − 4𝛼
(𝑛𝑟 + 3) (𝑛𝑟 + 2𝐿 + 4) 𝑎𝑛𝑟+1. (29)

It is evident that 𝑎𝑛𝑟+3 ≠ 0 and so is all the parameters beside it. The error when employing this method is attributable to
the confusion arising from the erroneous identification of the index 𝑘 of the polynomial coefficients 𝑎𝑘 (which is denoted 𝑛

in [20]), and the index 𝑛𝑟 of the energies, which is determined by the level under consideration. Consequently, 𝑛𝑟 possesses
a fixed value for all the values of 𝑘 in eq.(22) (A parallel observation concerning this error is documented in [26]). This
leads us to consider alternative conditions that could be utilised to truncate the series. A comprehensive discussion of
these alternatives will be presented in the subsequent section.
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4. SCHRÖDINGER ENERGIES FOR THE KILLINGBECK POTENTIAL USING HEUN FUNCTIONS
Now we use the Heun formulation of the Schrödinger equation (6), deriving from the same form of the solutions

𝑅(𝑟) in eq.(10) with two additional transformations 𝐹 (𝑟) = 𝑟𝐿+1𝑔(𝑟) and 𝜌 =
√︁

2𝜇/ℏ2𝑟 . This results in the Biconfluent
Heun equation (BHE):

𝜌𝑔′′ (𝜌) +
(
1 + 𝛼’ − 𝛽’𝜌 + 2𝜌2

)
𝑔′ (𝜌) +

(
(𝛾’ − 𝛼’ − 2) 𝜌 − 1

2
(𝛿’ + 𝛽’ (1 + 𝛼’))

)
𝑔 (𝜌) = 0. (30)

The parameters of this equation are defined as follows:

𝛼’ = 2𝐿 + 1; 𝛽’ =
𝐵
√
𝐶
𝐶− 1

4 ; 𝛾’ =
1
√
𝐶

(
𝜀 + 𝐵2

4𝐶

)
; 𝛿’ =

−2𝐴
√
𝐶

𝐶
1
4 , (31)

where 𝐴, 𝐵, 𝐶, 𝐿, 𝜀, 𝛼 and 𝛽 are defined in the relations (7), (8) and (12).
The solution of eq.(30) is given by the biconfluent Heun functions [27]:

𝑔(𝜌) = 𝐻𝑏 (𝛼’, 𝛽’, 𝛾’, 𝛿’, 𝜌) =
∑︁
𝑛≥0

𝑎𝑛
Γ (1 + 𝛼’)

Γ (1 + 𝛼’ + 𝑛)
𝜌𝑛

𝑛!
. (32)

Thus, we have obtained the radial part 𝑅(𝑟) ∝ 𝑒−(𝛼𝑟2+𝛽𝑟)𝑟𝐿+1𝑔 (𝑟) of the eigenfunctions of the Schrödinger equation for
the Killingbeck potential. The angular part consists of the usual spherical harmonic functions 𝑌𝐿,𝑀 (𝜃, 𝜙).

As a consequence of the recurrence relation (22), there exists a value 𝑘 = 𝑛𝑟 , for which we have [27]:

𝑎𝑛𝑟+2 = 0 if 𝑎𝑛𝑟+1 = 0 and
[
the coefficient of 𝑎𝑛𝑟

]
= 0. (33)

Equivalently:
𝑎𝑛𝑟+2 = 0 if 𝑎𝑛𝑟+1 = 0 and 4𝛼 (𝑛𝑟 + 𝐿) −

(
𝜀 + 𝛽2 − 6𝛼

)
= 0. (34)

Using the second condition and the relation (12), we obtain the energies as follows:

𝜀𝑛𝑟 ,𝑙 = 2
√
𝐶

(
𝑛𝑟 + 𝐿 + 3

2

)
− 𝛽2 = 2

√
𝐶

(
𝑛𝑟 + 𝐿 + 3

2

)
− 𝐵2

4𝐶
. (35)

It should be noted that this is analogous to eq.(25), with the exception that eq.(26) is not applicable in this instance.
To determine the value of the 𝐵2/4𝐶 term, we use the first condition 𝑎𝑛+1 = 0, which establishes a relationship for

each value of the radial quantum number 𝑛𝑟 .
For instance, when 𝑛𝑟 = 0, the result obtained from eq.(23) is:

𝑎1 = 0 =⇒ 𝛽 =
𝐴

2 (𝐿 + 1) =⇒ 𝛽2 =
𝐵2

4𝐶
=

𝐴2

4 (𝐿 + 1)2 . (36)

And we derive the following expression for the corresponding energy levels:

𝜀0,𝑙 = 2
√
𝐶

(
𝐿 + 3

2

)
− 𝐵2

4𝐶

=⇒ 𝐸0,𝑙 =

√︄
− ℏ2𝑏

12𝜇
𝛼3
𝐼

(
2 +

√︂
(2𝑙 + 1)2 − 8𝜇

ℏ2 𝑐

)
− 2𝜇

ℏ2
[𝑎 − 𝑏 − 2𝑐𝛼𝐼 ]2(

1 +
√︃
(2𝑙 + 1)2 − 8𝜇

ℏ2 𝑐

)2 − 𝑏𝛼𝐼 − 2𝑐𝛼2
𝐼 . (37)

The result obtained here is the same result derived in the previous section in eq.(28) (𝑛𝑟 = 0).
In the case of 𝑛𝑟 = 1, it is necessary to express the value of 𝑎2. This is obtained from eq.(22) and eq.(23):

𝑎2 =
2𝛽 (𝐿 + 2) − 𝐴

(2) (2𝐿 + 3) 𝑎1 +
𝜀1,𝑙 + 𝛽2 − 2𝛼 (2𝐿 + 3)

2 (2𝐿 + 3) 𝑎0. (38)

We recall here that:

𝜀1,𝑙 = 2
√
𝐶

(
1 + 𝐿 + 3

2

)
− 𝛽2 and 𝛼 =

√
𝐶

2
.

We have the condition 𝑎2 = 0, so we write:

=⇒ [4 (𝐿 + 2) (𝐿 + 1)] 𝛽2 − [2𝐴 (2𝐿 + 3)] 𝛽 +
[
𝐴2 + 4(𝐿 + 1)

√
𝐶

]
= 0
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=⇒𝛽1,2 =
𝐴(2𝐿 + 3) ±

√︃
𝐴2 − 16(𝐿 + 2) (𝐿 + 1)2

√
𝐶

2(𝐿 + 2) (𝐿 + 1)

=⇒𝛽2 =
𝐵2

4𝐶
=

©­« 𝐴

2(𝐿 + 2) (𝐿 + 1)
©­«(2𝐿 + 3) ±

√︄
1 − 16(𝐿 + 2) (𝐿 + 1)2

√
𝐶

𝐴2
ª®¬ª®¬

2

. (39)

We have two expressions for the energies, corresponding to the two possible solutions of 𝛽:

𝐸+
1,𝑙 =

√︄
− ℏ2𝑏

12𝜇
𝛼3
𝐼

(
2𝐿 + 5 + 4

𝐿 + 2

)
− 𝑏𝛼𝐼 − 2𝑐𝛼2

𝐼

− 2ℏ2 (𝑎 − 𝑏 − 2𝑐𝛼𝐼 )2

𝜇(𝐿 + 1)2

©­­­«1 − (2𝐿 + 3)
2(𝐿 + 2)2

©­­­«1 +

√√√√
1 − 16(𝐿 + 2) (𝐿 + 1)2

√︃
− ℏ2

12𝜇 𝑏𝛼
3
𝐼

(𝑎 − 𝑏 − 2𝑐𝛼𝐼 )2

ª®®®¬
ª®®®¬ , (40)

𝐸−
1,𝑙 =

√︄
− ℏ2𝑏

12𝜇
𝛼3
𝐼

(
2𝐿 + 5 + 4

𝐿 + 2

)
− 𝑏𝛼𝐼 − 2𝑐𝛼2

𝐼

− 2ℏ2 (𝑎 − 𝑏 − 2𝑐𝛼𝐼 )2

𝜇(𝐿 + 1)2

©­­­«1 − (2𝐿 + 3)
2(𝐿 + 2)2

©­­­«1 −

√√√√
1 − 16(𝐿 + 2) (𝐿 + 1)2

√︃
− ℏ2

12𝜇 𝑏𝛼
3
𝐼

(𝑎 − 𝑏 − 2𝑐𝛼𝐼 )2

ª®®®¬
ª®®®¬ . (41)

It is evident, from the general form eq.(35), that both expressions yield the result obtained in the previous section when
𝑛𝑟 = 1 in eq.(28), which is similar to the one found by [20], with some corrections in the Coulomb parts of the relations.
It is indeed the case that, upon substituting the value of the parameters 𝛼0 = 0 and 𝛼1 = 0 in the potential from eq. (3), we
obtain the standard energies of the harmonic oscillator, and they represent the first contributions observed in both eq.(27)
and eq.(28).

We can use the Coulomb limit of these energies to test the validity of the two expressions.

𝛼𝐼 → ∞ =⇒ 𝐸+
1,𝑙 → − 2ℏ2𝑎2

𝜇(𝐿 + 1)2 , (42)

𝛼𝐼 → ∞ =⇒ 𝐸−
1,𝑙 → − 2ℏ2𝑎2

𝜇(𝐿 + 2)2 . (43)

As we can see from eq.(42), that 𝐸+
1,𝑙 yields a result analogous to that obtained from eq.(37) which is the Coulomb energy

of the 𝑛𝑟 = 0 level. However, it should be noted that this is not the level under consideration in this particular context.
Conversely, eq.(43) shows that the limit of 𝐸−

1,𝑙 corresponds to the Coulomb energy of the 𝑛𝑟 = 1 level which is the case
considered here. This is congruent with the finding of the precedent section, where the energies (28) were employed.
Consequently, we conclude that 𝐸−

1,𝑙 represents the appropriate generalisation of the result previously found in [20].
For 𝑛𝑟 = 2, we have the condition 𝑎3 = 0, which gives us the following algebraic equation for 𝛽:

(𝐿 + 1) (𝐿 + 2) (𝐿 + 3)𝛽3 −
(
3𝐿2 + 12𝐿 + 11

) 𝐴
√

2
𝛽2 −

[
(𝐿 + 1) (4𝐿 + 9) 𝐶√

2
− (𝐿 + 2) 3𝐴2

2

]
𝛽 − 𝐴3

2
√

2
= 0. (44)

It has been established that the solutions of this equation are real [27–29]. The same procedure as for 𝑛𝑟 = 1 is employed
to write the energies and to check their Coulombian limits, in order to compare with the solutions written in [20].

5. CONCLUSION
In this study, we have provided exact analytical solutions to the radial Schrödinger equation for the Killingbeck

potential using both the general series expansion method and the biconfluent Heun formalism. The Killingbeck poten-
tial, a composite of harmonic, linear, and Coulomb terms, emerges naturally as a limiting case of screened Coulomb
potentials, particularly under weak screening conditions relevant for quarkonium and plasma-embedded systems. Through
systematic expansion and appropriate transformations, we derived the explicit expressions of both energy eigenvalues and
wavefunctions, thus confirming the applicability of the model across various quantum regimes.

A salient feature of the derived solutions is their capacity to interpolate seamlessly between two classical regimes
of quantum mechanics. In certain limiting cases, specifically, the vanishing linear and repulsive terms, or the dominant
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Coulomb coupling, the spectrum reduces, correspondingly, to that of the harmonic oscillator and the hydrogen-like
systems. However, the general expressions go further, capturing a hybrid structure that reflects both screening effects and
long-range confinement. This specificity renders the Killingbeck potential a valuable tool for modelling systems where
purely Coulombic or harmonic oscillator models fail to capture essential physical features.

We have also revised and clarified a conceptual misinterpretation found in a recent work by Obu et al. [20], related to
the treatment of linear independence in power series expansions. Furthermore, a critical re-examination of the analytical
approach employed by Guvendi and Mustafa [21] was undertaken, leading to the rectification of a significant mathematical
flaw in the truncation conditions for the series. These aforementioned corrections serve a dual purpose; firstly, they ensure
the maintenance of the methodology’s integrity, and secondly, they serve to enhance the pedagogical and physical insights
into spectral problem-solving techniques.
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[11] S. Flügge, Practical Quantum Mechanics, (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-642-61995-3
[12] M. Sreelakshmi, and R. Akhilesh, J. Phys. G: Nucl. Part. Phys. 50, 073001 (2023). https://doi.org/10.1088/1361-6471/acd1a3
[13] A. Kievsky, E. Garrido, M. Viviani, et al. Few-Body Syst. 65, 23 (2024). https://doi.org/10.1007/s00601-024-01893-6
[14] M. Sreelakshmi, and R. Akhilesh, Int. J. Theor. Phys. 64, 58 (2025). https://doi.org/10.1007/s10773-025-05924-8
[15] N. Mukherjee, C.N. Patra, and A.K. Roy, Phys. Rev. A, 104, 012803 (2021). https://doi.org/10.1103/PhysRevA.104.012803
[16] Zhan-Bin Chen, Phys. Plasmas, 30, 032103 (2023). https://doi.org/10.1063/5.0140534
[17] Tong Yan, et al., Phys. Rev. Plasmas, 31, 042110 (2024). https://doi.org/10.1063/5.0185339
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У роботi представленi аналiтичнi розв’язки рiвняння Шредiнгера для потенцiалу Кiллiнгбека, гiбридної моделi, що поєднує
гармонiчнi, лiнiйнi та кулонiвськi члени, а також наближену модель потенцiалiв типу Юкави. Радiальне рiвняння Шредiнгера
розв’язується методом розкладання в ряд, що дає точнi вирази як для розв’язкiв у зв’язаних станах, так i для власних
функцiй для таких систем, як кварконiй та обмеженi воднеподiбнi атоми в плазмових середовищах. Крiм того, ми пропонуємо
конструктивний коментар до роботи Обу та iн. (East Eur. J. Phys. 3, 146–157, 2023) з метою уточнення математичної помилки,
використаної в їх аналiтичному обробцi аналогiчних систем.
Ключовi слова: рiвняння Шредiнгера; потенцiал Кiллiнгбека; потенцiал Юкави; метод розкладання в ряд; рiвняння Гойна
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The problems of phase synchronization in an ensemble of oscillators or dipoles, and the mechanisms of coherent field generation in 
superradiance mode, are discussed. It is shown that an increase in the spread of the initial amplitudes of an ensemble of oscillators 
suppresses their phase synchronization and reduces the efficiency of field generation. The influence of noise is discussed; it is shown 
that, below the generation threshold, even an external initiating field cannot synchronize the phases of an ensemble of particles. When 
the generation threshold is exceeded, the initiating field may not be required. It is shown that the convergence of the oscillator phases 
with the field phases at the locations of moving oscillators is noticeable only near their exit from the system. At the same time, a 
complete coincidence of the phases of synchronized oscillators and the field phases in the region of their localization is not observed. 
Nevertheless, the intensity of the generation field in the superradiance mode is significantly above the spontaneous level, allowing us to 
speak of induced radiation. The features of the development of the quantum process of superradiance of an ensemble of dipoles are 
discussed, and a system of equations for its description is given. The features of the quantum analog of superradiance are qualitatively 
modeled, and the role of the Rabi frequency determining the dynamics of the population inversion is noted. The nutation of the 
population inversion in the region occupied by the field affects the field intensity not only in this local zone, but also in the subsequent 
areas of the active zone. This explains the unusual nature of the generation development: the field growth in a particular region of the 
active zone first stabilizes and then decreases significantly. This decrease in intensity also occurs along the direction of radiation in the 
peripheral areas of the active zone, despite the large energy reserve there in the form of an unperturbed population inversion. 
Keywords: Classical and quantum emitters; Superradiance regime; Phase synchronization conditions in the classical model; 
Influence of population inversion nutation on field generation 
PACS: 03.65.Sq;05.45.Xt; 41.60.–m 

INTRODUCTION 
The phenomenon of superradiance, discovered in the well-known work of Dicke [1], was caused by the overlap of 

the wave functions of many particles collected in a small volume. In this case, the radiation acquired the features of 
induced radiation, its coherence increased significantly. A similar phenomenon could be observed in the case of phased 
classical oscillators or emitters collected in a small region, the dimensions of which are significantly smaller than the 
wavelength of the radiation. Later, works appeared in which the phenomenon of superradiance was discovered for 
excited quantum emitters distributed in space. An ensemble of such excited emitters in the field of initiating, 
comparatively weak external radiation also demonstrated effective field generation in the superradiance mode. Initially, 
this process was associated with spontaneous emission, in which the synchronization of emitters occurred either 
forcedly or spontaneously, but later it was realized that superradiance is a form of induced emission emission [2]. 

Interest in superradiance was also associated with the peculiarities of electromagnetic field generation in open 
resonators and waveguides, the openness of which in the longitudinal direction was due to the energy release and the 
exit of particles of the active medium, which gave up part of their energy [3]. Previously, it was believed that the proper 
field of particles (generators and emitters) in the active zone was very small, practically at the level of spontaneous, and 
all methods for calculating electronic devices were based on the paradigm of the interaction of each of the active 
particles of the ensemble only with the field of the waveguide or resonator, and the interaction of active particles with 
each other was neglected. The closed volume of electronic devices also repeatedly amplified their resonant and 
waveguide fields, which also provided grounds for neglecting the total field of particles interacting with each other in 
the active zone. The nonlinear theory of such interaction of active particles only with the field of the resonator or 
waveguide under conditions of neglecting their interaction with each other was first presented in [4], and this approach 
to describing the amplification and generation modes became traditional. At the same time, works appeared on the 
description of superradiance, although initially for ensembles of quantum emitters. The study of the behavior of the total 
summary particle field - the superradiance field both outside and inside open resonators and waveguides in the classical 
representation showed that in the absence of noise, the same amplitude and random distribution of phases in the 
ensemble of oscillators, the development of the generation process is similar to the traditional description of the 
excitation of the resonator and waveguide fields in similar open systems with the same ensemble of emitters, that is, the 
increments and maximum achievable field amplitudes in these two cases, considered independently, are similar [5]. 
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Note that in completely open systems (there is no reflection from the ends), only the sum of fields interacting with 
each other active particles, in fact the superradiance field, can exist if the conditions for its generation are met [6, 7], 
which will be discussed below [8]. It is obvious that each active particle is capable of emitting only waves for which the 
medium is transparent, i.e. the eigenwaves of resonators and waveguides formed by the boundary conditions on their 
lateral surface. However, the field of the resonator or waveguide does not occur in the absence of reflection from its 
ends. Only the reflection of the field from the ends can form reflected waves, the superposition of which will be the 
field of the resonator or waveguide. However, if the sum of the field of interacting particles (which always exists) - is 
large enough, then even its weak reflection from the ends can create reflected waves, the superposition of which will 
form the field of the resonator or waveguide. This process is discussed in detail in [9,18]. 

Therefore, the goal of this study is to attempt to answer the question of the magnitude of this total field of an 
ensemble of interacting particles. Outside resonators and waveguides, as well as in similar open systems without 
reflections from the ends (or with very weak reflections), this field is clearly a superradiance field. Therefore, studying 
the excitation and synchronization of radiation from an ensemble of active interacting particles, both in free space and 
in open systems, is of considerable interest, as it may provide an answer to this question. 

 
FIELD GENERATION BY AN ENSEMBLE OF EXCITED OSCILLATORS 

Let us consider the processes of electromagnetic wave generation by a system of oscillators in a one-dimensional 
case [10]. Let the wave frequency and the oscillator frequency coincide and be equal to ω . The wave vector of 
oscillations is (0,0, )k k=


, the field components are ( ,0,0)E E=


, (0, ,0)B E=


, and | | exp{ }E E i t ikz iω ϕ= ⋅ − + + . The 
N oscillators are located along the axis OZ in the amount of at the wavelength 2 / kπ . The mass of the oscillator is 
equal to m , the charge is equal to e− , the oscillator frequency coincides with the wave frequency ω . The initial 
amplitude of the oscillator oscillations is equal to a . We will assume that the oscillator moves only in the direction of 
the axis OX . In this case, the influence of the magnetic field of the wave on the oscillator dynamics can be neglected. 

The equations describing the excitation of the field by the oscillator current in such a one-dimensional 
representation 0cos( ) ( )xj ea t z zω ω ψ δ= − ⋅ − ⋅ − , the coordinates of which can be written as 0( sin( ),0, )r a t zω ψ= ⋅ − . 

 
2 2

2
0 02 2 2 2 2

1 4 4 exp{ } ( ),x x xE D J
e a i i t i z z

tz c t c c
π π ω ω ψ δ∂ ∂ ∂

− = = ⋅ ⋅ ⋅ ⋅ ⋅ − + ⋅ −
∂∂ ∂

 (1) 

We will seek a solution for the amplitude of the electric field of the wave in the form exp( )xE E i t ikzω= ⋅ − + . For 
a slowly changing in space amplitude of the radiation field E  , the equation is valid 

 2
0 022 exp{ } ( ) ( )E ea i ikz z z z z

z c k
πω ψ δ λ δ∂ = ⋅ + ⋅ − = ⋅ −

∂
 (2) 

the solution of which is 

 0( )E C z zλ θ= + ⋅ − , (3) 

where (z 0) 0, (z 0) 1θ θ< = ≥ = , C  – is a constant that should be determined. Since the equation 
2 2

0( , ) ( ) 0D k kω ω ε≡ − = , 0 1ε = , whose roots are 1,2 0 0 0 0( Re / )(1 Im / Re ) ( / )(1 0)k c i c iω ε ε ε ω ε= ± + ≈ ± + , are valid 
for the wave emitted by the oscillator , then for a wave propagating in the direction 0z z>  the wave number 1 0k k= >  
and the value of the constant C should be chosen equal to zero in order to avoid unlimited growth of the field at infinity. 
For a wave propagating in the direction 0z z< , the wave number 2 0k k= <  and the value of the constant C should be 
chosen equal to λ−  for the same reasons. The amplitude of the electric field in this case 

 1
0 0 0 0 0 02 exp{ }[exp{ ( ) ( ) xp{ ( ) ( )},xE ea M c i t i ik z z U z z e ik z z U z zπ ω ω ψ−= ⋅ − + − ⋅ − + − − ⋅ −  (4) 

where (z 0) 0, (z 0) 1U U< = ≥ = , while 0M n b= , 0n  is the density of particles per unit volume, b is the length of the 
space under consideration in the longitudinal direction. For one particle in such a volume of unit cross-section and 
length b, M is numerically equal to unity. In the region 0jz b∈ ÷  occupied by the ensemble of oscillators, the equations 
of motion for an individual oscillator take the form 

 i
i

dx v
dt

= , 2
02

2

( , )
| |1

i
i x i

i

vd ex E z t
dt mv

c

ω+ = −

−

,  (5) 

where ( ) exp{ } exp{ }, exp{ } exp{ }i i i ix t i a i t i iA i t v a i t i A i tω ψ ω ω ω ψ ω ω⊥= ⋅ ⋅ − + = ⋅ − = ⋅ ⋅ − + = ⋅ − . 
Then the equation of motion describing the change in the amplitudes of the ensemble of oscillators takes the form.  
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j
j j j

d i Z
d

α τ
τ

= ⋅ − . 6) 

Here, the term proportional to α  take into account the weak relativism of the oscillator. By the way, in the theory of 
cyclotron generators, such nonlinearity, proportional to α , is a consequence of the so-called negative mass effect. 
Taking such nonlinearity into account may be significant, since in [11] it is noted that in a system of linear oscillators 
the generation efficiency is insignificant. To maintain the field in the volume occupied by the ensemble of oscillators, 
we will inject them with a random phase from the left edge of the system 0z =  and remove them upon reaching the 
right edge of the system z b= , the longitudinal velocity will be considered constant zv Const= . 
For the superradiance field of the ensemble of particles, we can write the expression: 

 2 | |
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Z e
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πτ −

=

= ⋅
Θ  .   (7) 

We can add a second term to (7) 2 2
0 0E ( , ) E Ei Z i Z

ex Z e eπ πτ −
+ −= + - this is the external initiating field, often necessary to 

accelerate the process. Dimensionless variables and parameters were used above 
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Expression (7) is a slowly changing envelope of the HF oscillations of the field. Due to the short system and the 
effective removal of energy from it, the accumulation of the field in the volume of the active zone does not occur, as in 
the case of radiation of a short electron bunch moving in the plasma, considered in [12]. 
 

PHASE SYNCHRONIZATION OF AN ENSEMBLE OF CLASSICAL OSCILLATORS 
Let us discuss the possibility of synchronizing oscillators in the superradiance mode. The question arises whether 

phase synchronization is possible in a system of oscillators, which can ensure the transition to the appearance of 
sufficiently intense induced radiation? Let us return to equation (6), which can be written differently 

 2[| A | exp( )]
A | A | exp( ) | E( , ) | exp( )

2
j j

j j j j

d i i i Z i
dt

ψ α ψ τ ϕ= ⋅ ⋅ − ⋅ . (8) 

Then the equation for the oscillator phase, which follows from (10), takes the form 

 
2

A {| E( , ) | / | A |} sin( )
2

j
j j j j

d
Z

dt
ψ α τ ϕ ψ− ⋅ = − ⋅ − .  (9) 

The right-hand side of the last equation is large enough | E( , ) / A | 1j jZ τ >> .. This is what can force the phase of an 
individual oscillator to synchronize with the phase of the total field of the ensemble ( ) ( )j j jZ Zψ ϕ→  at the point, 
where the oscillator is located [13]. 

For the number of oscillators N=2500, the amplitudes of which are equal to unity, and the phases are randomly 
distributed, the average integral field | |Ε  (7) (which can be considered spontaneous in the classical case [2]) is 

approximately 1/ N times smaller than the maximum possible field value in the case when all the phases of the 
oscillators are close to the phase of the total field at the point where the oscillator is located. That is, for the fields of 
spontaneous and absolutely coherent induced radiation, the relation is satisfied 

1/2

(1/ ) :1N . For the squares of the 
amplitudes 2| |Ε , this relation takes the form 1 / N . It is not difficult to estimate the last relation; it is enough to take the 
square of the modulus of the right and left parts of expression (7) at an average over fast oscillations. In Fig. 1, the 
maximum field amplitude is 0.22, which is an order of magnitude greater than the average amplitude of the spontaneous 
field and five times smaller than the maximum possible field value in the case when all oscillators are synchronized in 
phase. 

The influence of the dispersion of the initial amplitudes of the oscillators on the efficiency of their phase 
synchronization. It turns out that the spread of the oscillator amplitudes significantly affects the synchronization 
process. The squares of the initial amplitudes were randomly distributed so that the average value of the amplitudes at 
the initial moment was equal to one. The calculations of system (6)–(7) were carried out with the following parameters 
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900N = , 1α = , 2
0A 1, A 1; 0.4; 0.65; 0.75; 0.8;1= Δ = . The spread of the oscillator amplitudes with a random 

distribution of their phases at the initial moment is shown in Fig. 3 

 
Figure 1. Time dependence of the maximum amplitude modulus of the oscillator field for the particle velocity 0.15V =  and 

number of particles N=2500 for 1α =  and 1θ =  in the absence of reflection from both ends of the resonator 

a b 

Figure 2. Distribution of the phase difference of the oscillators with the phases of the total field of the ensemble at the points 
where the oscillators were located ( ) ( )j j jZ Zψ ϕ− . a) 20τ = , b) 40τ =  for the velocity 0.15V = , the number of particles 
N=2500, at 1α =  and 1θ =  in the absence of reflection from both ends of the resonator 

   

   
Figure 3. Phase planes “amplitude-phase” for different cases of the initial distribution of oscillators 

For these cases, we can present the nature of the change in the energy of the oscillator system and the behavior of 
the field amplitude (see Fig. 4). The influence of the initial oscillator amplitude spread on synchronization efficiency, as 
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noted by V. A. Buts, is related to the oscillator relativism. That is, the initial amplitude spread is equivalent to the 
frequency spread of the oscillator ensemble. Let us recall that the spontaneous emission level 2 3| | (1 / ) 10spE N −∝ ≈ . 

  

Figure 4a. Changes in the energy of the oscillator system 
900N = , 1α =  for different levels of spread of initial 

amplitudes, 2
0A 1, A 1; 0.4; 0.65; 0.75; 0.8;1= Δ = . 

Figure 4b. Behavior of the field amplitude for different 
levels of scatter of initial amplitudes. For each moment of 
time, the maximum intensity 2 2

max| | | |E E∝  is selected. 

It is evident from Fig. 3 and Fig. 4 that for efficient generation, in particular in the superradiance mode, it is 
necessary to achieve an insignificant spread of the amplitudes (or energy) of the oscillators. Note that the value 

2
A

2 j
iα ⋅ , which characterizes the nonlinearity of the oscillator, thereby ensures regularization, that is, some spread of 

the phase values. With a large spread of the initial amplitudes of the oscillators, it is necessary to use a starting initiating 
field to accelerate the development of the superradiance process. In this case, the amplitude of such a field should 
significantly exceed the amplitude of spontaneous emission of an individual oscillator. However, the use of an initiating 
field not only to accelerate the process, but also to generate coherent superradiance may have another reason, which will 
be discussed below. 
Conditions for the development of generation in the superradiance mode in the presence of noise [8]. The equation 
describing the change in the complex amplitude of an individual oscillator in the presence of noise takes the form 

 
2A

A A E( , ) ( ) A
2

j
j j j j j

d i Z i r
d

α τ δ τ
τ

= ⋅ − + ⋅ ⋅ ⋅ ,  (10) 

where the last term in the right-hand side of (10) is additionally introduced, which takes into account the influence of 
external noise. Here ( )jr τ  – takes random values from –1 to +1, changing through time intervals τΔ  on the selected 
time scale, δ  – is the maximum value of this effect. Expression (7) is valid for the field. Random effect, switched 
through intervals 0.4τΔ = , leads to weakening of synchronization or even complete phase chaos. The following 
parameters are used in the calculation results: number of particles 900N = , nonlinearity parameter 1α = , noise 
switching interval 0.4τΔ = , system length 1b =  (one wavelength). 

  

Figure 5a. Change in the average value of the square of the 

amplitude in the system 22
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Figure 5b. Time dependence of the field amplitude in the 
system in the absence of noise ( 0δ = ). Note that for each 
moment of time the maximum intensity 2 2

max| | | |E E∝  is 
selected 
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Fig. 5a shows the change in the average value of the squared amplitude 22

1

1 A
N

av s
s

A
N =

=   in the system over time for 

different values of the external noise level δ . Fig. 5b shows the behavior of the maximum field amplitude 

max (0,1)
E max E ( )srZ

Z
∈

=  and the average field amplitude 2

0

1E E
b

av sr dZ
b

=   in the volume in the oscillator system in the 

absence of noise.  
Even from these figures, one can see the existence of a threshold: in case of 0δ = , the value of the field amplitude 

reaches 0.22 in the selected scale. Below the threshold 1,5thrδ ∝ , there is practically no field growth, and the energy 
extraction from the oscillators is weakened (the average energy remains at the level of 96% of the initial). In this case, a 
turbulent state is formed with an average field value avE  close to the spontaneous level of electric field strength of 
0.02–0.03. The peak level of fluctuations maxE  exceeds the average level by two or more times (see Fig. 6). 

Far from the threshold, the average oscillator amplitude values (at 1.8δ ∝ , 2 0.97avA < ) change slightly, i.e. no 
noticeable energy extraction from the oscillator system is observed. However, as the threshold is approached, the peak 
fluctuation values increase (see Fig. 7) 

Figure 6. Average field values and peak fluctuation values at 
noise level 3δ =  

Figure 7. Growth of fluctuations when approaching the threshold of 
generation development under superradiance conditions 

Considering the region near and below the threshold, we can find out how the external field affects the occurrence 
and development of generation under superradiance conditions. The time dependence of the maximum generation field 
of the oscillator system for different amplitudes of the external field is shown in Fig. 8. 

 
Figure 8. Effect of the external initiating field 0 0.03;0.06;0.09E =  on generation under superradiance conditions 1.8δ = . Note that 

in all cases, the maximum intensity 2 2
max| | | |E E∝ .is selected for each time moment 

It is evident from Fig.8 that an increase in the amplitude of the external initiating field 0 0.03;0.06;0.09E = , even 
in the case of noise ( 1,8δ ≈ ), leads to an increase in the maximum generation field up to values that are realized in the 
absence of noise. Thus, the noise in the system forms the generation threshold. When this threshold is exceeded, even in 
the absence of an external initiating field, a significant part of the excited oscillators is capable of generating fields 
whose maximum amplitudes are comparable with the generation amplitudes in the absence of noise. Below the 
presented threshold, no field growth is observed. 
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ON SYNCHRONIZATION OF QUANTUM EMITTERS 
To describe the generation processes of an ensemble of quantum emitters – dipoles, one can use the semiclassical 

theory, in particular, previously used in the works of Yu. L. Klimontovich [14] and his colleagues. 
The system of one-dimensional equations of the semiclassical theory for the amplitudes of the electric field 
perturbations E , polarization P  ( , , exp( )E P i t ikxω= Ε Ρ ⋅ − + ), abd  is the matrix element of the dipole moment of 
emitters δ , сδ ⋅ – the temporal and spatial decrements of the field absorption in the medium, describing the excitation 
of electromagnetic oscillations in a two-level active medium, can be represented in the following form:  

 
2 2 2

2
2 2 24 ,E E E Pс c

xt x t
δ π∂ ∂ ∂ ∂+ − = −
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  (13) 

 
22

2
2

2 | |abdP P E
t

ωω μ∂ + ⋅ = −
∂ 

,  (14) 

to which we must add the equation for the slowly changing population inversion with time 

 2 .PE
t t
μ

ω
∂ ∂= < >
∂ ∂

 (15) 

A system of semiclassical equations for a quantum ensemble. We will assume that the frequency of the transition 
between levels corresponds to the field frequency, the line width in the equation for polarization and the relaxation of 
the inversion due to external causes are neglected, δ – is the decrement of field absorption in the medium, abd  – is the 
matrix element of the dipole moment (more precisely, its projection onto the direction of the electric field), 

( )a bnμ ρ ρ= ⋅ −  the difference in populations per unit volume, and aρ  and bρ  the relative populations of the levels in 
the absence of a field. The fields are represented as [ ( ) exp{ } *( ) exp{ }] / 2E E t i t E t i tω ω= ⋅ − + ⋅  and 

[ ( ) exp{ } *( ) exp{ }] / 2P P t i t P t i tω ω= ⋅ − + ⋅ . In this case < 𝐸ଶ >= 2|𝐸ሺ𝑡ሻ|ଶ = 4𝜋𝜔ℏ𝑁. For slowly changing 
amplitudes field ( )E t  and polarization ( )P t , the equations are valid 
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t

δ πω∂ + ⋅ =
∂

, (16) 

 2( ) ( )| | ( / ) ,ab
P t E td

t i
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∂
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 2 [ ( ) *( ) *( ) ( )].i E t P t E t P t
t
μ∂ = −

∂ 
 (18) 

From equations (16) – (18) we obtain the law of conservation of energy 

 2 0N N
t t

μδ∂ ∂+ + =
∂ ∂

. (19) 

For sufficiently large losses of field energy in the medium δ γ> , the equation for the field takes the form 

 
2| |(8 ) 0abdN N

t
πω μ

δ
∂ + =
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,  (20) 

from which it follows that for δ γ>  the field can increase with an increment 2
0 /γ γ δ= , where the maximum possible 

increment in the absence of losses 𝛾଴ = Ω଴ = (଼గ|ௗೌ್|మఠఓ೟సబℏ )భమ = (଼గ|ௗೌ್|మఠఓబℏ )ଵ/ଶ , 22 | | /4kN E πω=   is the number 

of field quanta per unit volume. In this approximation, the following expressions should be used δ 2
2

E i Pπω  ⋅ = 
 

, 

2| |( ) ,abdP t E
t i

μ∂ = −
∂ 

 𝛾 = ஐబమఋ = Ω଴/𝜃. which are a consequence of the above system of equations, while the equation 

describing nutations – oscillations of the population inversion is the following  

 డమఓడ௧మ + (8 |ௗೌ್|మℏమ |𝐸|ଶ)𝜇 = 0, (21) 

where 
2

2 1/2
2

4 | |[ | | ]ab
N

d
EΩ =


– is the Rabi frequency, which has the meaning of the inverse time of the change in 

inversion and the probability of an induced transition under the influence of the field [15,16]. It is at this frequency that 
periodic changes in the inversion – nutation occurs, and the conservation law (19) takes the form 2 / 0N tδ μ+ ∂ ∂ = . 
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The increase in the probability of radiation of excited dipoles at each point in space in the semiclassical 
description occurs under the influence of a growing integral electric field. The transition to the space-time problem 
transforms (20) into the following equation  

 డேడ௫ + (8𝜋𝜔 |ௗೌ್|మℏఋс 𝜇)𝑁 = 0, (22) 

At the initial moment, the field energy density is small, and this initial period corresponds to spontaneous radiation of 
oscillators, in the developed mode, the radiation of the ensemble of emitters acquires the features of induced radiation 

0 ( 0)kN tμ μ∝ = = . To model the process of spatial growth of the field in an inverse medium, we rewrite equations 
(21) and (22) in dimensionless form. Equation (23) describes the growth of the field in space, equation (24) - 
oscillations of the population inversion in a local region, taking into account the conservation law in the form (25) 

 1 ,
Z θ

∂Ν = ΜΝ
∂

 (23) 
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2 0,
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 2 0.N
t
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where 

0/μ μ = Μ , 
2

1/2
0

| |(8 )abd
t Tπω μ =
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2
1/2

0
| |/ (8 )abdθ δ πω μ=
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, 0/kN μ = Ν , 𝜇଴ = 𝜇(𝑇 = 0), ቀ8𝜋𝜔 |ௗೌ್|మℏ 𝜇଴ቁଵ ଶ⁄ 𝑥/𝑐 = 𝑍/2. 
In the quantum case, when it is impossible to speak about the field phase, synchronization of the ensemble of 

oscillators-dipoles can be understood only as the transition from spontaneous emission to induced emission. Since the 
phase of the emitted field in a given quantum system is equal to the phase of the external field, that is, the problem of 
synchronization in the local sense is removed here. However, the change in the population inversion has an oscillatory 
character, known as population inversion nutation in an electric field [15, 16]. It is important to note that the Rabi 
frequency increases proportionally to the magnitude of the increasing external electric field described by equation (20), 
that is, the rate of change of oscillations of the inversion according to (21) accelerates. 

Below, we present the results of numerical modeling of the field growth process in the active zone according to the 
system of equations (23)–(24). The working region of length L consists of S  cells of length /DZ L S= . The 
coordinates of the middle of the cells are ( 0.5), 1,2,...,jZ DZ j j S= ⋅ − = . Each cell is characterized by inversion M j  
and the number of quanta N j . At the initial moment, a constant value of inversion is specified in all cells 
M ( 0) 1j T = = . The number of quanta is set equal to zero in all cells except the first one N ( 0) 0, 2,3,...,j T j S= = = . 
Note that the inversion does not change in these cells initially. The first cell, in which a small value of the field is 
initially set 1N 0.0001= , is the source of the field's initial growth in the active zone. The active zone expands over time 
at a given constant speed c , i.e., the following cells join the active zone at intervals /DT DZ c= . In the model 
calculation below, the values 0.1, 0.1, 1DZ DT c= = =  were used. 

Since the system is open (θ is not small here and is equal to 1), there will be losses of electromagnetic energy from 
the active zone due to radiation. The field growth occurs due to a decrease in the population inversion. It is the 
population inversion that generates the field. On the other hand, the inversion, as the field intensity increases, goes into 
oscillation mode (which is the nutation of the population inversion), and the frequency of these oscillations (the Rabi 
frequency) increases with increasing field amplitude.  

The field growth at the boundary of the active zone (the active zone here is defined by the presence of non-zero 
values of the population inversion) at a small nutation amplitude acquires an exponential character. However, as the 
generation front moves, the population inversion value decreases in all regions participating in the generation, both due 
to the nutation of the population inversion and due to the excitation of field quanta. The field amplitude, in turn, 
decreases with a decrease in inversion along the entire length of the active generation zone, as well as due to radiation 
losses (θ =1).  

These phenomena lead to stabilization and even to a decrease in the field intensity in the generation region. It is 
interesting that stabilization and then a decrease in the field intensity first occurs in the region where its maximum was 
reached and then begins to decrease in the direction of field propagation (see Fig. 9). Although in this direction the 
population inversion values still remain large. The nature of this stabilization of the field growth is associated not so 
much with energy losses due to radiation, but to a much greater extent with a decrease in population inversion in the 
regions located before the point where the maximum radiation was reached, which is illustrated in Fig. 10. 
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Returning to equation (20), we can understand that the field growth is limited not only by energy losses due to 
radiation, but also by a decrease in the inversion in the generation region as a whole. Therefore, the development of the 
superradiance process in the ensemble of quantum dipole emitters passes from a monotonic growth of the field to 
stabilization and decrease, despite the presence of regions with large values of population inversion ahead. 

 
Figure 9. Dependence on time of the maximum value of N cells (Nmax=max(Nj)) 

Below Fig. 10 is shown diagrams of distribution N j  and M j  by cells and at different moments in time. 
5τ =  

 
7τ =  

 
9τ =  

 
10τ =  

 
a b 

Figure 10. Values of N j  and M j in cells at times 5, 7, 9, 10, 11; а) N j ; b) M j  
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11τ =  

 
a b 

Figure 10. Values of N j  and M j in cells at times 5, 7, 9, 10, 11; а) N j ; b) M j (continued) 
 

CONCLUSIONS 
As noted above, the volume of a resonator or waveguide always contains the sum of the fields of interacting 

oscillators, which corresponds to a superradiance field. It is this type of radiation from an ensemble of active emitter-
oscillators, whether in the absence of a resonator or waveguide or in open systems of this type, that is discussed in this 
article. The role of this type of radiation is quite important, although it has often been overlooked, considered unimportant 
and spontaneous. Primary attention has been paid to the radiation of resonators and waveguides arising from field 
reflection from the ends of the system. The interaction of active zone particles with each other was ignored; it was assumed 
that the particles interact only with the fields of the resonator or waveguide. However, this superradiance, i.e., the sum of 
the fields of interacting oscillators, even with partial reflection from the ends of the system, is capable of generating 
reflected waves, the superposition of which always forms a resonant or waveguide field, as demonstrated in [9, 18]. 

It has been shown that, when the above-mentioned phase-locking conditions are met, the superradiance amplitude 
can be significant, effectively stimulating the formation of a resonant or waveguide field. With significant reflection 
from the system ends, the amplitudes of the resonant or waveguide field can significantly exceed the sum of the fields 
of the interacting oscillators, i.e., the actual superradiance field. 

In the classical case, the transition to an induced (and, as noted by K. Townes, largely coherent [17]) radiation 
regime occurs due to the phase synchronization of some of the oscillator emitters by the integral field. However, the 
nature of the initial oscillator energy distribution can significantly alter the efficiency of phase synchronization and the 
rate of growth of the superradiance field. It is also important to consider the presence of a threshold due to noise present 
in the system. As noted, with a small spread of the initial oscillator amplitudes and under conditions of insignificant 
external noise, the process of oscillator synchronization and the growth of the superradiance field can develop even in 
the absence of an external initiating field. If these conditions are violated, an external initiating field is necessary for the 
formation of the superradiance mode. It is important to note that it is precisely the small spread of the initial oscillator 
amplitudes and insignificant external noise that make it possible to realize the superradiance mode of gyrotrons, the 
occurrence of which was noted by the authors of [6] and subsequently studied in detail [18]. It was shown that near the 
injection region of random-phase oscillators in the superradiance mode, their phase synchronization does not occur. The 
convergence of the oscillator phases with the field phases at the localization sites of moving oscillators is noticeable 
only near their exit from the system. Moreover, apparently due to the relativism (nonlinearity) of the oscillator 
dynamics, a complete coincidence of the phases of synchronized oscillators with the phases of the field in the region of 
their localization does not occur (i.e., forced regularization of the synchronization process occurs). Nevertheless, the 
intensity of the generation field in the superradiance mode significantly exceeds the spontaneous level, which indicates 
the presence of stimulated emission.  

In the quantum case of the superradiance regime, phase synchronization of the dipole and the external field occurs 
locally in accordance with the principles of quantum description [15, 16]. Therefore, the main attention is paid to the 
nature of the field excitation by the population inversion in the active zone, where the initial values of this inversion are 
positive and sufficiently large. Since the field acts on the inverted population, causing it to oscillate at the Rabi 
frequency, this additionally affects the nature of the quantum radiation in this region. Nutations, or the oscillatory 
behavior of the inverted population in the region occupied by the field, change its intensity not only in this local zone, 
but also in subsequent regions of the active zone. This explains the unusual nature of the development of the 
superradiance regime: the growth of the field in a certain region of the active zone first stabilizes and then decreases 
significantly. Moreover, this decrease in intensity also occurs in the direction of radiation to nearby peripheral regions, 
despite the large, virtually unused energy reserve in them in the form of an unperturbed population inversion. 
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ПРО СИНХРОНІЗАЦІЮ АНСАМБЛЯ ОСЦИЛЯТОРІВ В УМОВАХ НАДВИПРОМІНЮВАННЯ 
В.М. Куклін1, Є.В. Поклонський2 

1Харківський національний економічний університет імені С. Кузнеця. кафедра кібербезпеки та інформаційних технологій 
пр. Науки, 2. 9 – А. 61165, Харків, Україна 

2Харківський національний університет імені В. Н. Каразіна, 61022, пл. Свободи, 4, Харків, Україна 
Обговорюються проблеми фазової синхронізації ансамблю осциляторів або диполів та механізми генерації в режимі 
надвипромінювання. Показано, що збільшення розкиду початкових амплітуд ансамблю осциляторів пригнічує фазову 
синхронізацію і знижує ефективність генерації поля. Обговорюється вплив шумів, показано, що нижче за поріг генерації 
навіть зовнішнє ініціююче поле не здатне синхронізувати фази ансамблю частинок. При перевищенні порога генерації 
ініціююче поле може не знадобитися. Показано, що зближення фаз осциляторів з фазами поля в місцях розташування 
осциляторів, що рухаються, помітно лише поблизу їх виходу з системи. При цьому повного збігу фаз синхронізованих 
осциляторів та фаз поля в області їхньої локалізації не спостерігається. Тим не менш, інтенсивність поля генерації в режимі 
надвипромінювання суттєво перевищує спонтанний рівень, що дозволяє говорити про ознаки індукованого 
випромінювання. Обговорюються особливості розвитку квантового процесу надвипромінювання ансамблю диполів та 
наводиться система рівнянь для його опису. Якісно моделюються особливості квантового аналога надвипромінювання, 
відзначається роль частоти Рабі, що визначає динаміку інверсії населеності. Нутації інверсії населеності в області, що 
займає поле, впливають на інтенсивність поля не тільки в цій локальній зоні, але і в наступних областях активної зони. Це 
пояснює незвичайний характер розвитку генерації: зростання поля певної області активної зони спочатку стабілізується, та 
потім істотно зменшується. Це зменшення інтенсивності відбувається й у напрямку випромінювання в периферійних 
областях активної зони, незважаючи на великий запас енергії в них у вигляді незбуреної інверсії населеності. 
Ключові слова: класичні та квантові випромінювачі; режим надвипромінювання; умови фазової синхронізації у класичній 
моделі; вплив нутацій інверсії населеності на генерацію поля 
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The present work explores stimulated Raman scattering of a high-power beam in quantum plasma due to the joint action of relativistic 
ponderomotive force (RP force). The RP force creates nonlinearity in the plasma’s dielectric function. This results in a change in the 
density profile in a transverse direction to the axis of the pump beam. This change in density profile has a significant impact on all 
three waves involved in the process, viz., the input beam, the electron plasma beam, and the scattered wave. Second-order ODEs for 
all three waves, as well as the SRS back-reflectivity expression, are set up and further solved numerically. Impact of well-known laser-
plasma parameters, quantum contribution, and combined action of RP force on beam waists of various waves, and also on SRS back-
reflectivity are explored. 
Keywords: Relativistic-Ponderomotive forces; Back-reflectivity; Electron Plasma Wave; Dielectric function; Scattered Wave 
PACS: 52.38.Hb, 52.35.Mw, 52.38.Dx 

1. INTRODUCTION
Among theoretical/experimental research groups, there has been interest in the interaction of ultra-intense lasers 

with plasmas, resulting from their applicability to laser-driven fusion [1-3] and the acceleration of charged 
species [4-9]. During laser-plasma interaction, distinct instabilities are produced, including scattering instabilities, 
filamentation, self-focusing, modulation instability, and trapping [3, 10-13]. There is a significant reduction in the 
coupling efficiency of lasers due to these nonlinear phenomena. These instabilities can lead to production of highly 
energetic electrons. These high-speed electrons preheat the fusion fuel and also cause great reduction in compression 
rate. Moreover, there is a modification in the irradiance distribution due to these nonlinear phenomena. The transition 
of lasers through plasmas is mainly controlled by Stimulated Raman Scattering (SRS) process. In fact, it helps in 
exploring the transmission of energy from lasers to plasmas [14-17]. SRS is a key research topic in laser-plasma 
interaction for theoretical/experimental researchers [18-22]. In SRS, the pump wave splits up into an electron plasma 
wave (EPW) and a scattered beam. EPW generates electrons travelling at extremely high speeds, which could, in fact, 
preheat the target core. A scattered beam helps in identifying the amount of wasted energy. So, Raman reflectivity is 
very crucial parameter for exploring percentage of useful/wasted energy during laser-plasma interaction. It has already 
been revealed from literature that mostly research on scattering instabilities is carried out through plane waves. If 
intensity associated with main beam is kept non-uniform, then self-focusing phenomenon becomes extremely 
dominant. Self-focusing greatly affects other nonlinear processes, including SRS, SBS, pair production, and harmonic 
generation [23-31]. So, the inclusion of the self-focusing phenomenon while exploring the SRS process becomes 
extremely important. Many research groups have explored inter-connection between self-focusing and SRS in the past 
[32-42]. Most of these studies were explored in classical plasmas. In case of classical plasmas, density is kept low and 
temperature is kept high. Whenever density is high and temperature is low, we obtain quantum plasmas [43-46]. 
Theoretical/experimental research groups are motivated to explore quantum plasmas due to their direct connection in 
diverse fields, including laser-driven fusion, quantum dots, and quantum optics [47-54]. In case of quantum plasmas, 𝜆ௗ ≥ 𝑛଴ି ଵ/ଷ i.e. 𝑛଴𝜆ௗଷ ≥ 1. So, de-Broglie Wavelength is greater than or equal to average distance between electrons. 
For quantum plasmas,  𝑇௙ ≥ 𝑇. Where 𝑇௙ and 𝑇 are Fermi temperature and plasma temperature respectively. There has 
been keen curiosity of various researchers in exploring instabilities in quantum plasmas due to their relevance in light-
matter interaction [55-57]. Also, notable attention has been received by laser-quantum plasmas interaction as a result 
of its direct involvement in exploring scattering instabilities, inertial fusion and X-ray lasers. Keeping in view these 
objectives, our aim in the present study is to explore Stimulated Raman Scattering of a laser in quantum plasma due to 
the joint action of RP force. The main beam (𝜔଴,𝑘଴) interacts with EPW (𝜔, 𝑘) thereby producing a scattered wave 
(𝜔଴ − 𝜔, 𝑘଴ − 𝑘). Here, we have taken the back-scattering case for 𝑘 ≈ 2𝑘଴. The carrier's redistribution takes place 
due to the joint action of the RP force, thereby causing self-focusing. The dispersion relation associated with EPW 
gets modified. Moreover, change in phase velocity of EPW is observed. The EPW also gets self-focused under suitable 
boundary conditions. Irradiance associated with scattered wave is directly proportional to irradiance related with main 
wave and EPW. So, self-focusing results in improvement in back-scattering. 

Cite as: K.Walia, T. Singh, East Eur. J. Phys. 4, 183 (2025), https://doi.org/10.26565/2312-4334-2025-4-16 
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2. SOLUTION OF PUMP WAVE IN THERMAL QUANTUM PLASMA 
Consider the transition of an intense laser beam having wave number 𝑘଴ and the angular frequency 𝜔଴ along z-axis 

in TQP. We are considering the combined influence of RP force in the present investigation. Irradiance distribution for 
laser beam at 𝑧 = 0 is expressed as  

 𝐸଴ ∙ 𝐸଴∗ = 𝐸଴଴ଶ 𝑒𝑥𝑝 ቂ− ௥మ௥బమቃ (1) 

In Eq. (1), 𝐸଴଴ and 𝑟଴ represent maximum field amplitude and initial beam width at 𝑧 = 0. Also, 𝑟ଶ = 𝑥ଶ + 𝑦ଶ. The TQP’s 
dielectric function incorporating the Bohm potential, the Fermi pressure, and quantum involvement can be stated 
as [53-54].  

 𝜖 = 1 −  ఠ೛మఊఠబమ ൬1 − ௞బమ௩೑మఠబమ − ఋ௤ఊ ൰ିଵ (2) 

In Eq. (2), 𝑣௙ = ටଶ௄ಳ்೑௠  and 𝛾 = ሺ1 + 𝛼𝐸଴𝐸଴∗ሻଵ/ଶ denote Fermi speed and Lorentz factor respectively and 𝛿𝑞 = ସగర௛మ௠మఠబమఒర. 
If 𝑇௙−> 0 is substituted, then cold quantum plasma’s (CQP’s) dielectric function is obtained. On the other hand, if 𝑇௙−>0, ௛ଶగ−> 0, then classical relativistic plasma’s (CRP’s) dielectric function is obtained. Here, 𝛼 = ௘మ௠మ௖మఠబమ and 𝜔௣ =ටସగ௡௘మ௠  are known as nonlinear coefficient and plasma frequency respectively. The nonlinear ponderomotive force results 
in change in density of electrons. We can express this changed number density as [53-54] 

 𝑛 = 𝑛଴𝑒𝑥𝑝 ቀ−௠௖మ் (𝛾 − 1)ቁ (3) 

For TQP, one can express generalized dielectric function as 

  𝜀 = 𝜀଴ + Φ (𝐸଴𝐸଴∗) (4) 

In Eq. (4), 𝜀଴ = 1 −  ఠ೛మఠబమ & Φ (𝐸଴𝐸଴∗) = ఠ೛మఠబమ ቂ1 − ேబ೐ேబ ቃ are linear & nonlinear portions for 𝜀 respectively. Including the effect 
of nonlinear ponderomotive force, we can write nonlinear term Φ (𝐸଴𝐸଴∗) for TQP as  

 𝛷(𝐸𝐸∗) = ఠ೛బమఠబమ ቈ1 − ଵఊ ൬1 − ௞బమ௩೑మఠబమ − ఋ௤ఊ ൰ିଵ exp (−௠௖మ் (𝛾 − 1))቉ (5) 

Where, 𝜔௣଴ = ටସగ௡బ௘మ௠ .  
 
The field 𝐸௜ of the pump wave represents wave equation as; 

 ∇ଶ𝐸௜ + ఠబమ௖మ ቂ1 − ఠ೛మఠబమ ேబ೐ேబ ቃ 𝐸௜ = 0 (6) 

One can write the solution for Eq. (6) following the approach [58-60] as  

 𝐸௜ = 𝐸଴ expሾ𝑖(𝜔଴𝑡 − 𝑘଴(𝑆଴ + 𝑧))ሿ (7) 

 𝐸଴ଶ = ாబబమ௙బమ 𝑒𝑥𝑝 ቂ− ௥మ௥బమ௙బమቃ (8) 

 𝑆଴ = ଵଶ 𝑟ଶ ଵ௙బ ௗ௙బௗ௭ + 𝛷଴(𝑧) (9) 
 
Here, 𝑓଴ is the pump wave’s beam waist satisfying differential equation  

 ௗమ௙బௗ௭మ = ଵ௞బమ௥బర௙బయ − ఠ೛మఠబమఌబ ఈாబబమଶ௥బమ௙బయ
௘௫௣ቌି೘೎మ೅೐ ቎ඨଵାഀಶబబమ೑బమ ିଵ቏ቍ

ቆଵାഀಶబబమ೑బమ ቇయ/మ
⎝⎜
⎛ଵିೖబమೡ೑మഘబమ ି ഃ೜ඨభశഀಶబబమ೑బమ ⎠⎟

⎞మ ⎣⎢⎢
⎢⎡൬1 − ௞బమ௩೑మఠబమ ൰ + ௠௖మ೐் ට1 + ఈாబబమ௙బమ ⎝⎜

⎛1 − ௞బమ௩೑మఠబమ − ఋ௤ඨଵାഀಶబబమ೑బమ ⎠⎟
⎞
⎦⎥⎥
⎥⎤ (10) 

Here, the boundary condition used is as follows, 𝑓଴ = 0 and ௗ௙బௗ௭ = 0 at 𝑧 = 0. 
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3. EXCITATION OF ELECTRON PLASMA WAVE 
The nonlinear interaction between the pump wave and EPW leads to its excitation. For analyzing the excitation of 

EPW in TQP, the following standard equations are considered;  
(a) Continuity Equation 
 డேడ௧ + ∇ ∙ (𝑁𝑉) = 0 (11) 
(b) Equation of motion 

 𝑚ቂడ௏డ௧ + (𝑉 ∙ ∇)𝑉ቃ = −𝑒 ቂ𝐸 + ଵ௖ (𝑉 × 𝐵)ቃ − 2𝛤𝑚𝑉 − ఊ೐ே ∇𝑃 (12) 

(c) Poisson’s equation 

 ∇ ∙ 𝐸 = −4𝜋𝑒𝑁 (13) 

In the above equations, the instantaneous electron density, fluid velocity, Landau damping parameter, and pressure 
term are expressed by 𝑁, 𝑉, 𝛤, and 𝑃 respectively. For electron gas 𝛾௘ = 3. Further, by using perturbation analysis and 
the standard approach, we can obtain the following equation denoting the change in electron density as  

 డమ௡డ௧మ + 2𝛤 డ௡డ௧ − 3𝑣௧௛ଶ ∇ଶ𝑛 + 𝜔௣ଶ ேబ೐ேబ 𝑛 = 0 (14) 

Following [58-60], the Solution of Eq. (14) can be expressed as  

 𝑛 = 𝑛଴(𝑟, 𝑧)𝑒𝑥𝑝ሾ𝑖(𝜔𝑡 − 𝑘(𝑧 + 𝑆(𝑟, 𝑧)))ሿ (15) 

Here, wave vector, angular frequency, and Eikonal for the EPW are denoted by 𝑘,𝜔 and 𝑆 respectively. Further, the 
dispersion relation for EPW is expressed as  

 𝜔ଶ = 𝜔௣ଶ ேబ೐ேబ + 3𝑘ଶ𝑣௧௛ଶ  (16) 

Further, on putting the Eq. (15) in Eq. (14) further separating real and imaginary terms, we have  

 2 డௌడ௭ + ቀడௌడ௥ቁଶ = ଵ௞మ௡బ ∇ଶୄ𝑛଴ + ఠ೛మଷ௞మ௩೟೓మ ቂ1 − ேబ೐ேబ ቃ (17) 

 డ௡బమడ௭ + డௌడ௥ డ௡బమడ௥ + 𝑛଴ଶ∇ଶୄ𝑆 + ଶ௰ଷ௩೟೓మ ఠ௡బమ௞ = 0 (18) 

Following [58-60], the solution of Eq. (17) and (18) can be expressed as  

 𝑛଴ଶ = ௡బబమ௙మ exp ቀ− ௥మ௔మ௙మ − 2𝑘௜𝑧ቁ (19) 

 𝑆 = ଵଶ 𝑟ଶ ଵ௙ ௗ௙ௗ௭ + 𝛷(𝑧) (20) 

Here, 𝑘௜ denotes the damping factor and ′𝑓′ denotes the beam waist of EPW and 2nd order ODE satisfied by it is expressed 
as 

 ௗమ௙ௗ௭మ = ଵ௞మ௔ర௙య − ఠ೛మ௙ଷ௞మ௩೟೓మ ఈாబబమଶ௥బమ௙బర
௘௫௣ቌି೘೎మ೅೐ ቎ඨଵାഀಶబబమ೑బమ ିଵ቏ቍ

ቆଵାഀಶబబమ೑బమ ቇయ/మ
⎝⎜
⎛ଵିೖబమೡ೑మഘబమ ି ഃ೜ඨభశഀಶబబమ೑బమ ⎠⎟

⎞మ ⎣⎢⎢
⎢⎡൬1 − ௞బమ௩೑మఠబమ ൰ + ௠௖మ೐் ට1 + ఈாబబమ௙బమ ⎝⎜

⎛1 − ௞బమ௩೑మఠబమ − ఋ௤ඨଵାഀಶబబమ೑బమ ⎠⎟
⎞
⎦⎥⎥
⎥⎤ (21) 

Here, the boundary condition used is 𝑓 = 0 and ௗ௙ௗ௭ = 0 at 𝑧 = 0. 
 

4. STIMULATED RAMAN SCATTERING 
The total field vector 𝐸் can be written as addition of fields of main wave 𝐸 and scattered wave 𝐸௦. i.e. 

 𝐸் = 𝐸 exp(𝑖𝜔଴𝑡) + 𝐸௦ exp(𝑖𝜔௦𝑡) (22) 

Now, the field vector 𝐸் satisfies the following wave equation  

 ∇ଶ𝐸் − ∇(∇ ∙ 𝐸்) = ଵ௖మ డమா೅డ௧మ + ସగ௖మ డ௃೅డ௧  (23) 

In above Eq., current density is written by 𝐽். Now, further considering scattered frequency terms, we have  
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 ∇ଶ𝐸௦ + ఠೞమ௖మ ቂ1 − ఠ೛మఠೞమ ேబ೐ఊேబቃ 𝐸௦ = ቂ ఠ೛మఠೞ௡∗ଶ௖మఠబேబቃ 𝐸௜ − ∇(∇ ∙ 𝐸௜) (24) 

The result of Eq. (24) can be written as  

 𝐸௦ = 𝐸௦଴(𝑟, 𝑧)𝑒ା௜௞ೞబ௭ + 𝐸௦ଵ(𝑟, 𝑧)𝑒ି௜௞ೞభ௭ (25) 

Where 𝑘ௌ଴ଶ = ఠೄమ௖మ ൤1 − ఠ೛మఠೄమ൨ = ఠೞమ௖మ 𝜖ௌ଴, with 𝜔ௌ = 𝜔଴ − 𝜔 and 𝑘ௌଵ = 𝑘଴ − 𝑘. 
By using Eq. (25) in Eq. (24), we get 

 −𝑘ௌ଴ଶ 𝐸ௌ଴ଶ + 2𝑖𝑘ௌ଴ డாೄబడ௭ + ቀడమாೄబడ௥మ + ଵ௥ డாೄబడ௥ ቁ + ఠೄమ௖మ ൤𝜖ௌ଴ + ఠ೛మఠೄమ ቀ1 − ேబ೐ேబ ቁ൨ 𝐸ௌ଴ = 0 (26) 

 −𝑘ௌଵଶ 𝐸ௌଵଶ + 2𝑖𝑘ௌଵ డாೄభడ௭ + ቀడమாೄభడ௥మ + ଵ௥ డாೄభడ௥ ቁ + ఠೄమ௖మ ൤𝜖ௌ଴ + ఠ೛మఠೄమ ቀ1 − ேబ೐ேబ ቁ൨ 𝐸ௌଵ = ଵଶ ఠ೛మ௖మ ௡∗ேబ ఠೄఠబ 𝐸଴𝑒𝑥𝑝(−𝑖𝑘଴𝑆଴) (27) 

Now, solution of Eq. (27) is expressed as 

 𝐸ௌଵ = 𝐸ௌଵᇱ (𝑟, 𝑧)𝑒ି௜௞బௌబ (28) 

Now, putting Eq. (28) in Eq. (27) and further ignoring space derivatives 

 𝐸ௌଵᇱ = −ଵଶ ఠ೛మ௖మ ௡∗ேబ ఠೞఠబ ா෠ாబቈ௞ೞభమ ି௞ೞబమ ିഘ೛మ೎మ ቀଵିಿబ೐ಿబ ቁ቉ (29) 

Now, solution of Eq. (26) can be written as 

 𝐸ௌ଴ = 𝐸ௌ଴଴𝑒௜௞ೄబௌ೎ (30) 

Now, use Eq. (30) in Eq. (26) and combining the real part and imaginary part separately, we have  

 2 డௌ೎డ௭ + ቀడௌ೎డ௥ ቁଶ = ଵ௞ೞబమ ாೞబబ ቀడమாೞబబడ௥మ + ଵ௥ డாೞబబడ௥ ቁ + ఠ೛మఢೞబఠೞమ ቂ1 − ேబ೐ேబ ቃ (31) 

 డாೞబబమడ௭ + డௌ೎డ௥ డாೞబబమడ௥ + 𝐸௦଴଴ଶ ቀడమௌ೎డ௥మ + ଵ௥ డௌ೎డ௥ ቁ = 0 (32) 

Now, following approach of [58-60], Eqs. (31) and (32) have solutions, 

 𝐸ௌ଴଴ଶ = ஻భమ௙ೄమ 𝑒𝑥𝑝 ቂ− ௥మ௕మ௙ೞమቃ (33) 

 𝑆௖ = ଵଶ 𝑟ଶ ଵ௙ೄ ௗ௙ೄௗ௭ + 𝛷ௌ(𝑧) (34) 

In Eqs. (33) and (34), the initial beam radius for the scattered wave is denoted by 𝑏 and beam width of the scattered 
wave is represented by 𝑓௦ and it satisfies the following 2nd ODE as 

 ௗమ௙ೞௗ௭మ = ଵ௞ೞబమ ௕ర௙ೞయ − ఠ೛మఠೄమఌೞబ ఈாబబమ ௙ೞଶ௥బమ௙బర
௘௫௣ቌି೘೎మ೅೐ ቎ඨଵାഀಶబబమ೑బమ ିଵ቏ቍ

ቆଵାഀಶబబమ೑బమ ቇయ/మ
⎝⎜
⎛ଵିೖబమೡ೑మഘబమ ି ഃ೜ඨభశഀಶబబమ೑బమ ⎠⎟

⎞మ ⎣⎢⎢
⎢⎡൬1 − ௞బమ௩೑మఠబమ ൰ + ௠௖మ೐் ට1 + ఈாబబమ௙బమ ⎝⎜

⎛1 − ௞బమ௩೑మఠబమ − ఋ௤ඨଵାഀಶబబమ೑బమ ⎠⎟
⎞
⎦⎥⎥
⎥⎤ (35) 

The boundary condition used in the present case is 𝑓௦ = 0 and ௗ௙ೞௗ௭ = 0 at 𝑧 = 0. 
 

5. BACK-REFLECTIVITY 
From Eq. (19), we find that EPW is damped while travelling along the z-axis. So, with a decrease in z, the amplitude 

of the scattered wave decreases. The boundary condition used is  

 𝐸௦ = 𝐸௦଴(𝑟, 𝑧)𝑒ା௜௞ೞబ௭ + 𝐸௦ଵ(𝑟, 𝑧)𝑒ି௜௞ೞభ௭ = 0 (36) 

at 𝑧 = 𝑧௖. At 𝑧 = 𝑧௖, the amplitude for the scattered beam vanishes,  
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 𝐵ଵ = ఠ೛మఠೞேబబଶ௖మఠబேబ ாబబ௘ష೔ೖ೔೥೎ቈ௞ೞభమ ି௞ೞబమ ିഘ೛మ೎మ ቀଵିಿబ೐ಿబ ቁ቉
௙ೞ(௭೎)௙ೞ(௭೎)௙(௭೎) ୣ୶୮ (ି௜(௞బௌబା௞ೞభ௭೎))ୣ୶୮ (ା௜(௞ೞబௌ೎ା௞ೞబ௭೎)) (38) 

With condition, ଵ௕మ௙ೞమ = ଵ௔మ௙మ + ଵ௥బమ௙బమ .  
Now, SRS back-reflectivity may be derived as, 

 𝑅 = ଵସ ቀఠ೛మ௖మ ቁଶ ቀఠೞఠబቁଶ ቀேబబேబ ቁଶ (௅భି௅మି௅య)
⎣⎢⎢⎢
⎢⎡௞ೞభమ ି௞ೞమమ ିഘ೛మ೎మ ⎝⎜⎜

⎛ଵି భඨభశഀಶబబమ೑బమ ⎣⎢⎢
⎢⎡ଵିೖబమೡ೑మഘబమ ି ഃ೜ඨభశഀಶబబమ೑బమ ⎦⎥⎥

⎥⎤షభ௘௫௣቎ି೘బ೎మ೅೐ ቌඨଵାഀಶబబమ೑బమ ିଵቍ቏⎠⎟⎟
⎞
⎦⎥⎥⎥
⎥⎤మ (39) 

Where 𝐿ଵ = ቀ ௙ೞ௙బ௙ቁ௭ୀ௭೎ଶ ଵ௙ೞమ 𝑒𝑥𝑝 ቀ−2𝑘௜𝑧௖ − ௥మ௕మ௙ೞమቁ, 

𝐿ଶ = −2 ቀ ௙ೞ௙బ௙ቁ௭೎ ଵ௙௙బ௙ೞ 𝑒𝑥𝑝 ൬− ௥మଶ௕మ௙ೞమ − ௥మଶ௔మ௙మ − ௥మଶ௥బమ௙ೞమ൰ 𝑒𝑥𝑝(−𝑘௜(𝑧 + 𝑧௖))𝐶𝑜𝑠(𝑘௦଴ + 𝑘௦ଵ)ሾ𝑧 − 𝑧௖ሿ, 
𝐿ଷ = 1𝑓ଶ𝑓଴ଶ 𝑒𝑥𝑝 ቆ− 𝑟ଶ𝑎ଶ𝑓ଶ − 𝑟ଶ𝑟଴ଶ𝑓௦ଶ − 2𝑘௜𝑧௖ቇ 

 
6. DISCUSSION 

Since the analytical results of Eqs. (10), (21), (35), and (39) are not feasible. So, the well-known RK4 method is 
used for doing numerical calculations of these equations for known laser-plasma parameters;  𝛼𝐸଴଴ଶ = 2.0, 3.0, 4.0 ; ఠ೛మఠబమ = 0.15, 0.20, 0.25 ; 𝑇௙ = 10଻𝐾, 10଼𝐾, 10ଽ𝐾 

Eqs. (10), (21) and (35) contain two terms on RHS with some physical interpretation for each term. The first term 
on RHS of each equation is the diffractive term, while 2nd one is the focusing term. During the transition of these beams 
inside, there is a relative competition between these two terms. The dominance of the first term results in the defocusing 
of beams, whereas the dominance of the second term results in the focusing of beams. When these terms are exactly equal 
to each other, then the beam neither focuses nor defocuses. Then, a self-trapping case is found.  

The alteration of beam waists 𝑓଴, 𝑓 and 𝑓௦ with normalized distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at distinct beam intensity 𝛼𝐸଴଴ଶ  is 
shown in Figures 1(a), 1(b) and 1(c) respectively. Here, only the variation of beam intensity is taken, whereas other 
parameters are kept fixed. Black, green and red curves are for 𝛼𝐸଴଴ଶ = 2.0, 3.0 and 4.0 respectively. The focusing 
behavior of all the beams involved is found to get decreased with increase in beam intensity. This is as a result of 
dominance of diffractive terms over focusing terms with increase in beam intensity.  

   
(a) (b) (c) 

Figure 1. The alteration of beam waists 𝑓଴, 𝑓 and 𝑓௦ with normalized distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at distinct beam intensity 𝛼𝐸଴଴ଶ  is shown 
in figures 1(a), 1(b) and 1(c) respectively. Black, green and red curves are for 𝛼𝐸଴଴ଶ = 2.0, 3.0 and 4.0 respectively 

The alteration of beam waists 𝑓଴ , 𝑓 and 𝑓௦ with normalized distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at a distinct plasma density ఠ೛మఠబమ is 
shown in Figures 2(a), 2(b) and 2(c) respectively. Here, only the variation of plasma density is taken, whereas other 
parameters are kept fixed. Black, green, and red curves are for ఠ೛మఠబమ = 0.15, 0.20 and 0.25 respectively. The focusing 
behavior of all the beams is found to get increased with escalation in plasma density. This is due to the dominance of 
focusing terms over diffractive terms with increase in plasma density.  
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The alteration of beam waists 𝑓଴ , 𝑓 and 𝑓௦ with normalized distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at a distinct Fermi temperature 𝑇௙ values is shown in Figures 3(a), 3(b) and 3(c) respectively. Here, only the variation of the Fermi temperature is taken, 
whereas other parameters are kept fixed. Black, green and red curves are for 𝑇௙ = 10଻𝐾, 10଼𝐾 and 10ଽ𝐾 respectively. 
Focusing behavior of all the beams is found to get increased with the rise in Fermi temperature. This is due to supremacy 
of focusing terms over diffractive terms with increase in Fermi temperature.  

 
(a) (b) (c) 

Figure 2. The alteration of beam waists 𝑓଴, 𝑓 and 𝑓௦ with normalized distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at distinct plasma density ఠ೛మఠబమ is shown 

in figures 2(a), 2(b) and 2(c) respectively. Black, green and red curves are for ఠ೛మఠబమ = 0.15, 0.20 and 0.25 respectively 

(a) (b) (c) 

Figure 3. The alteration of beam waists 𝑓଴ , 𝑓 and 𝑓௦ with normalized distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at distinct Fermi temperature 𝑇௙ values 
is shown in figures 3(a), 3(b) and 3(c) respectively. Black, green and red curves are for 𝑇௙ = 10଻𝐾, 10଼𝐾 and 10ଽ𝐾 respectively 

The alteration of beam waists 𝑓଴, 𝑓 and 𝑓௦ with normalized distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at distinct plasma regimes are 
given in Figures 4(a), 4(b) and 4(c) respectively. Black, green and red curves are for RPTQP, RPCQP, and RPCRP 
respectively. From the figures, we find that focusing tendency of all waves involved is maximum in RPTQP system as 
compared to RPCQP and RPCRP systems respectively. Moreover, focusing tendency of all the waves is found to be more 
in RQCQP case in comparison to RPCRP case.  

(a) (b) (c) 

Figure 4. The alteration of beam waists 𝑓଴, 𝑓 and 𝑓௦ with normalized distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at distinct plasma regimes are given in 
figures 4(a), 4(b) and 4(c) respectively. Black, green and red curves are for RPTQP, RPCQP, and RPCRP respectively 

The alteration of SRS back-reflectivity R with normalized distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at distinct beam intensity 𝛼𝐸଴଴ଶ  is 
shown in Figure 5(a). Red and black curves are for 𝛼𝐸଴଴ଶ = 2.0 and 4.0 respectively. Increase in laser intensity results in 
decrease in SRS reflectivity on account of decrease in self-focusing of various waves at increasing beam intensity.  

f 0

0 0.5 1 1.5 2 2.5 3 3.5 4
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

f s

f 0

0 0.5 1 1.5 2 2.5 3 3.5 4
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

f s

f 0

0 0.5 1 1.5 2 2.5 3 3.5 4
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

f s



189
Stimulated Raman Scattering of High-Power Beam in Quantum Plasma: Effect of Relativistic...   EEJP. 4 (2025)

The alteration of SRS back-reflectivity R with normalized distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at distinct plasma density ఠ೛మఠబమ is 

shown in Figure 5(b). Red and black curves are for ఠ೛మఠబమ = 0.15 and 0.25 respectively. Increase in plasma density results 
in increase in SRS reflectivity which is due to enhancement in self-focusing of various waves at increasing plasma density.  

The alteration of SRS back-reflectivity R with normalized distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at distinct Fermi temperature 𝑇௙ is 
shown in Figure 5(c). Red and black curves are for 𝑇௙ = 10଻𝐾 and 10ଽ𝐾 respectively. Increase in plasma Fermi 
temperature results in increase in SRS reflectivity due to increase in self-focusing of various waves at increasing Fermi 
temperature.  

  
(a) (b) 

  
(c) (d) 

Figure 5. The alteration of SRS back-reflectivity R with 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at (a) distinct beam intensity 𝛼𝐸଴଴ଶ . Red and black curves are 
for 𝛼𝐸଴଴ଶ = 2.0 and 4.0 respectively, (b) distinct plasma density ఠ೛మఠబమ. Red and black curves are for ఠ೛మఠబమ = 0.15 and 0.25 respectively, 
(c) distinct Fermi temperature 𝑇௙. Red and black curves are for 𝑇௙ = 10଻𝐾 and 10ଽ𝐾 respectively, (d) distinct plasma regimes. Red, 
black and green curves are for RPTQP, RPCQP, and RPCRP respectively 

The alteration of SRS back-reflectivity R with normalized distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ) at distinct plasma regimes is shown 
in Figure 5(d). Red, black and green curves are for RPTQP, RPCQP, and RPCRP respectively. From the figure it is clear 
that SRS back-reflectivity is maximum in RPTQP followed by RPCQP and RPCRP. This behavior is exactly in 
accordance with self-focusing of distinct waves as observed in figures 4(a), 4(b) and 4(c) respectively. 

 
7. CONCLUSIONS 

The present research deals with the SRS of the laser beam in TQP due to the joint action of RP forces. The results 
obtained from the present problem are as follows:  

(1) Focusing tendency of distinct waves involved is increased with a rise in plasma density, Fermi temperature, and 
with a decrease in beam intensity.  

(2) Inclusion of quantum effects results in an enhancement in the focusing tendency of various waves involved.  
(3) There is a rise in SRS back-reflectivity with an increment in density of plasma, Fermi temperature, and with a 

decrease in beam intensity. 
(4) There is an enhancement in SRS back-reflectivity with the inclusion of quantum effects.  

These results are really useful in laser-driven fusion.  
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СТИМУЛЬОВАНЕ КОМБІНАЦІЙНЕ РОЗСІЯННЯ ПОТУЖНОГО ПРОМЕНЯ В КВАНТОВІЙ ПЛАЗМІ: ВПЛИВ 

РЕЛЯТИВІСТСЬКО-ПОНДЕРОМОТОРНОЇ СИЛИ 
Кешав Валья, Таранджот Сінгх 

Кафедра фізики, Університет DAV, Джаландхар, Індія 
У цій роботі досліджується вимушене комбінаційне розсіювання потужного променя в квантовій плазмі внаслідок спільної 
дії релятивістської пондеромоторної сили (RP force). RP сила створює нелінійність у діелектричній функції плазми. Це 
призводить до зміни профілю густини в поперечному напрямку до осі променя накачування. Ця зміна профілю густини має 
суттєвий вплив на всі три хвилі, що беруть участь у процесі, а саме: вхідний промінь, промінь електронної плазми та розсіяну 
хвилю. Встановлено та додатково чисельно розв'язано ODE другого порядку для всіх трьох хвиль, а також вираз для 
зворотного відбиття SRS. Досліджено вплив відомих параметрів лазерної плазми, квантового внеску та комбінованої дії 
пондемоторної сили на перетяжки пучка різних хвиль, а також на зворотне відбиття SRS. 
Ключові слова: релятивістсько-пондеромоторні сили; зворотне відбиття; електронно-плазмова хвиля; діелектрична 
функція; розсіяна хвиля 
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In this paper, a new type of instability is identified, leading to the generation of vortex motions and magnetic fields in a plasma layer with
a constant temperature gradient, subjected to uniform gravity and a vertical magnetic field. The analysis in this study is conducted within
the framework of electron magnetohydrodynamics (EMHD), taking into account thermomagnetic effects. A new large-scale instability
of the 𝛼-effect type is identified, which facilitates the generation of large-scale vortex and magnetic fields. This instability arises due to
the combined action of an external uniform magnetic field, oriented perpendicular to the plasma layer, and a small-scale helical force.
The external force is modeled as a source of small-scale oscillations in the electron velocity field, characterized by a low Reynolds
number (𝑅 ≪ 1). The presence of a small parameter in the system allows for the application of the method of multiscale asymptotic
expansions, leading to the derivation of nonlinear equations governing the evolution of large-scale vortex and magnetic perturbations.
These equations are obtained at third order in the Reynolds number. A new effect associated with the influence of thermal forces (the
Nernst effect) on large-scale instability is also discussed. It is shown that an increase in the Nernst parameter reduces the 𝛼-coefficient
and thereby suppresses the development of the large-scale instability. Using numerical analysis, stationary solutions of the vortex and
magnetic dynamo equations are obtained in the form of localized helical-type structures.

Keywords: electron magnetohydrodynamics, multiscale asymptotic expansions, small-scale force, 𝛼-effect, localized structures
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1. INTRODUCTION
The investigation of magneto-vortex structures in plasma is of significant importance for addressing challenges in

controlled thermonuclear fusion as well as for understanding the formation of ordered structures in astrophysical plasmas.
Magneto-vortex structures represent spatially localized configurations in which magnetic fields are strongly coupled with
vortical plasma flows (velocity vortices). Such structures frequently emerge in turbulent plasma environments, where
instabilities and nonlinear interactions between electric currents, magnetic fields, and hydrodynamic perturbations play
a crucial role. A notable example of these interactions is the generation of magnetic fields by small-scale turbulent
plasma motions with non-zero helicity v𝑇 rotv𝑇 ≠ 0 – this process constitutes a dynamo mechanism that is fundamental
to explaining the origin of magnetic fields in astrophysical objects such as planets, stars, and galaxies [1]-[6]. Helical
turbulence, in this context, typically refers to turbulent states with broken parity symmetry [4]. From a physical standpoint,
helical turbulence arises in systems where mirror symmetry is broken, which can occur due to various factors – most
notably, the presence of external fields with pseudovector characteristics, such as magnetic fields (Lorentz force) or the
Coriolis force.

Despite considerable progress in the theory of magnetic dynamos [5]-[6], several important issues remain insuffi-
ciently addressed. One such problem is the lack of a clear connection between the generation of seed magnetic fields and
the turbulent dynamo process, since both problems are considered separately. A potential mechanism for the spontaneous
generation of seed magnetic fields in plasmas with non-uniform temperature distributions is the Nernst effect [7]. This
phenomenon is associated with the formation of a vortex-like electric field disturbance, E′

𝑁
∼ [B′ × ∇𝑇0], which is

oriented orthogonally to both the background temperature gradient ∇𝑇0 and the magnetic field perturbation B′. Under
non-dissipative conditions, Maxwell’s equations can be employed to estimate the resulting magnetic field fluctuations
induced by this effect as

𝜕B′

𝜕𝑡
= −𝑐 rot E

′
𝑁 ⇒ 𝜕B′

𝜕𝑡
∼ rot[∇𝑇0 × B

′ ] .

Laser-produced plasmas provide a representative example where the Nernst effect plays a significant role. In such systems,
intense laser irradiation ionizes and heats the target material, giving rise to a plasma with pronounced temperature gradients.
These gradients create favorable conditions for the onset of the Nernst effect. A similar mechanism of magnetic field
generation is also expected to operate in astrophysical environments, particularly in the outer layers of hot, massive stars,
where strong temperature inhomogeneities are present [8].
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Ref. [9] investigates the spontaneous generation of magnetic fields driven by Rayleigh-Benard convection in a thin
plasma layer subjected to a uniform gravitational field. The seed magnetic fields are generated via a mechanism analogous
to the Biermann battery effect [10]. However, unlike the classical Biermann mechanism, magnetic field excitation here
occurs when temperature perturbations,𝑇 ′, act along a direction misaligned with the background gravitational stratification
g. This misalignment gives rise to an eddy-induced electromotive force (EMF):

E(𝑖) = −𝑚
𝑒

𝑇
′

𝑇0
g,

which contributes to magnetic field generation according to

𝜕B′

𝜕𝑡
≈ rotE(𝑖) =

𝑚𝑐

𝑒

[
∇𝑇 ′

𝑇0
× g

]
, ⇒ 𝐵

′
𝑦 �

𝑚𝑐

𝑒

𝑇
′

𝑇0

𝑔

𝜆
𝑡𝐵,

where 𝜆 is the characteristic scale of temperature perturbations, 𝑡𝐵 is the characteristic time of magnetic fields generation.
Then this initial seed magnetic field acts to induce convective motion of charged particles (electrons and ions) in the
stratified plasma. Thus the emergence of positive feedback between the magnetic field and temperature perturbations in
the evolution equations is a key condition for the onset of thermomagnetic instability and, as a result, the generation of
magnetic field. In a complementary study, Ref. [11] explores magnetic field generation in a fully ionized plasma, both in
the presence and absence of an external magnetic field. The analysis incorporates the effects of convective heat transport
and thermomagnetic phenomena and establishes criteria for the onset of instabilities that facilitate spontaneous magnetic
field growth.

Another unresolved issue is the absence of a fully self-consistent nonlinear theory of the magnetic dynamo. As the
magnetic field grows in strength, it begins to influence the plasma flows, thereby limiting the applicability of the kinematic
dynamo theory. However, the magnetic fields observed in real astrophysical systems typically exist in a nonlinear regime,
highlighting the necessity of developing and studying a nonlinear dynamo theory. The nonlinear theory is commonly
formulated as an extension of the mean-field dynamo approach, incorporating nonlinear feedback mechanisms. In the
review [6], a phenomenological model of the nonlinear dynamo – referred to as ”catastrophic quenching” – is discussed.
This model is grounded in energy balance arguments and posits that the Lorentz force significantly alters the velocity field
only when the magnetic energy becomes comparable to the kinetic energy of the turbulent flow. Accordingly, the model
introduces a simplified phenomenological framework that includes a nonlinear dependence of the turbulent transport
coefficients:

𝛼 =
𝛼0

1 + 𝐵2
0/B2

, 𝜂𝑇 =
𝜂0

1 + 𝐵2
0/B2

,

where 𝛼0 and 𝜂0 are the values of the transfer coefficients obtained in the kinematic approximation; 𝜂𝑇 – coefficient
of turbulent magnetic viscosity, 𝐵2

0 = B · B – mean field energy, B2 - kinetic energy of the flow. Reference [5]
provides an in-depth analysis of numerical simulation results related to geodynamo and solar dynamo processes. It also
introduces a magneto-rotational dynamo mechanism, where turbulence arises as a consequence of magnetohydrodynamic
(MHD) instabilities. Furthermore, the review addresses emerging challenges in the theory of magnetic field generation in
weakly collisional plasmas, highlighting current gaps and directions for future research. Nevertheless, Ref. [5] does not
address regimes where high-frequency, small-scale electron oscillations – such as helicon waves – induce magnetic field
restructuring in both space and laboratory plasmas. These rapid, localized processes involve only the electron component,
evolving against a quasi-static background of ions. The monograph [3] describes several examples of magnetic field
generation driven by Langmuir and ion-acoustic plasma oscillations. In turn, Ref. [12] explores the generation of mean
magnetic fields by small-scale turbulence within the framework of electron magnetohydrodynamics (EMHD) with a two
and one-half dimensional (2 1

2 D) model. In this approach, while the magnetic field retains all three spatial components, its
variation is constrained to two dimensions due to the presence of a strong background field. It is demonstrated that the
emergence of large-scale magnetic fields is intimately connected to the statistical properties of turbulence: the breaking
of reflectional symmetry gives rise to the 𝛼-effect, whereas turbulence anisotropy facilitates mechanisms akin to negative
dissipation, including negative resistivity and viscosity.

One of the drawbacks of magnetic dynamo theory is that it depends on a simplified approach called the two-scale
approximation of mean-field theory, making it harder to create a consistent nonlinear dynamo theory. An alternative
approach, based on multiscale asymptotic expansions, was proposed in [13] to describe the generation of large-scale
vortex structures (LSVSs) in non-mirror-symmetric turbulence. It was shown that small-scale parity violation due to
external forcing leads to a large-scale instability known as the anisotropic kinetic alpha (AKA) effect. Further studies [14]
explored the reverse energy cascade and nonlinear saturation of this instability. The effect is interpreted as a parametric
instability arising from external periodic forcing F0, which induces small-scale velocity fluctuations v0. Their nonlinear
interaction with large-scale flow W modifies the Reynolds stresses, allowing 𝛿𝑇𝑖 𝑗 to be expressed as a Taylor series in
gradients of W [15]:

𝛿𝑇𝑖 𝑗 = −𝛼𝑖 𝑗𝑙𝑊𝑙 − 𝜈𝑖 𝑗𝑙𝑚∇𝑙𝑊𝑚 +𝑂 (∇2W) + . . .
This expansion is valid under the condition of weak large-scale gradients, i.e., for small ∇W. To ensure the dominance of
the first term in the series, one can estimate the tensors 𝛼𝑖 𝑗𝑙 and 𝜈𝑖 𝑗𝑙𝑚 using characteristic parameters of the small-scale
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turbulence. This yields the condition that the gradient scale of the large-scale field, defined as 𝐿𝑔 = (𝑊−1 |∇W|)−1, must
be much larger than the turbulence scale 𝑙0: 𝐿𝑔 ≫ 𝑙0. The leading term in this expansion corresponds to the anisotropic
kinetic 𝛼-effect (AKA-effect), as described in [13], which accounts for the emergence of large-scale vortex structures
(LSVS). Thus, an external force breaking parity at small scales can induce significant modifications in the large-scale
flow. In contrast, Ref. [15] analyzed the case where the small-scale forcing is parity-invariant, leading to the suppression
of the AKA-effect. In this regime, the interaction between small- and large-scale motions is governed primarily by eddy
viscosity.

Using the method of multiscale asymptotic expansions, nonlinear theories of vortex dynamos have been developed
for a range of hydrodynamic media, as outlined in Ref. [16]. In particular, Ref. [17] identified a large-scale instability
in an electrically conducting, temperature-stratified medium driven by the helicity of small-scale velocity and magnetic
fields. This instability gives rise to the simultaneous generation of large-scale vortex and magnetic fields. Building upon
these results, Ref. [18] formulated a fully nonlinear, self-consistent theory of the magneto-vortex dynamo for a convective,
electrically conducting medium with helical small-scale turbulence. Remarkably, this study demonstrated for the first
time the possibility of stationary chaotic large-scale structures forming in both vortex and magnetic fields. The analysis
revealed the emergence of stationary magnetic structures, which can be categorized into three distinct types: nonlinear
waves, solitons, and kink-type solutions. Furthermore, qualitative estimates of the linear instability stage allowed for a
comparison of the characteristic scales and times of the resulting hydrodynamic structures with those observed under solar
conditions, as reported in Ref. [19], showing good agreement.

In this work, unlike [20], we investigate the generation of large-scale vortex and magnetic structures driven by
small-scale helical forcing (turbulence) in a fully ionized, temperature-stratified plasma subjected to an external vertical
magnetic field. The theoretical framework is based on the Braginskii equations for the electron component, with thermo-
magnetic effects explicitly taken into account. Plasma thermal convection is modeled using the Boussinesq approximation,
incorporating an external helical force F0. Unlike the classical anisotropic kinetic 𝛼-effect (AKA-effect), our analysis
reveals a novel plasma 𝛼-effect arising in a magnetized plasma with a constant temperature gradient and gravitational field,
induced by external helical forcing.

The structure of this paper is as follows. In Section 2, we formulate the problem and derive the governing equations
in dimensionless form. Section 3 presents the derivation of the averaged equations for large-scale velocity and magnetic
fields in a magnetized, stratified plasma using the method of multiscale asymptotic expansions. The detailed procedure
for constructing the asymptotic expansion is provided in Appendix A. The correlation functions appearing in the averaged
equations are expressed through the small-scale fields obtained in the zeroth-order approximation with respect to the
Reynolds number 𝑅. The corresponding solutions for the small-scale fields are given in Appendix B. Based on these, the
closed-form nonlinear equations describing the vortex and magnetic dynamo are derived in Appendix C. In Section 4, we
present the final system of equations governing large-scale velocity and magnetic field perturbations, which describe the
hydrodynamic 𝛼-effect instability. The conditions for the onset of this instability are analyzed as functions of the external
magnetic field strength 𝐷, the Rayleigh number 𝑅𝑎, and the Nernst effect parameter. Section 5 provides a numerical
investigation of the steady-state nonlinear magneto-vortex dynamo equations, demonstrating the formation of vortex and
magnetic structures in the form of helical kink-type solutions.

2. PROBLEM STATEMENT AND BASIC EQUATIONS
We consider a fully ionized plasma layer placed in constant gravitational and uniform magnetic fields, denoted by g

and B, respectively. The plasma is assumed to possess a steady-state temperature gradient ∇𝑇 . In the undisturbed state, no
fluid motion is present. The development of perturbations is assumed to occur on timescales short enough that ions can be
regarded as stationary and thermally inactive. The behavior of the perturbed electron component is analyzed within the
framework of the Braginskii equations [21]:

𝜕V
𝜕𝑡

+ (V∇) V = − 𝑒
𝑚

(
E + 1

𝑐
[V × B]

)
− 1
𝑚𝑁

∇𝑃 + 1
𝑚𝑁

(R𝑣 + R𝑇 ) +
F𝜂

𝑚𝑁
+

F𝑔

𝑚𝑁
, (1)

𝜕𝑇

𝜕𝑡
+ (V∇)𝑇 = −2

3
divq
𝑁

, 𝑃 = 𝑁𝑇, (2)

divV = 0. (3)

Here 𝑃, 𝑁,𝑇,V denote the pressure, average density, temperature, and velocities of electrons. In the electron momentum
equation (1), several physical effects are taken into account: electron collisions, described by the friction force R𝑣;
momentum exchange due to the temperature gradient, represented by the thermal force R𝑇 ; viscous effects in the electron
fluid, captured by the force F𝜂 ; and the gravitational contribution F𝑔. Importantly, the corresponding transport coefficients
in the presence of a magnetic field depend on the magnetization parameter 𝜔𝐵𝑒𝜏, where 𝜔𝐵𝑒 = 𝑒𝐵/𝑚𝑐 is the electron
gyrofrequency. In the strongly magnetized limit (𝜔𝐵𝑒𝜏 ≫ 1), the friction and thermal forces, R𝑣 and R𝑇 , respectively, are
expressed in specific forms:

R𝑣

𝑚𝑁
= −0.51𝜈V∥ − 𝜈V⊥ (4)
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Figure 1. The diagram shows a thin layer of plasma with a vertical equilibrium temperature gradient: 𝑇𝑑 > 𝑇𝑢 (signaling
heating from below). The induction vector B of a uniform magnetic field has direction along the 𝑧-axis, and the external
force F0 is situated in the plane (𝑥, 𝑦).

R𝑇

𝑚𝑁
= −0.71

∇∥𝑇

𝑚
− 3

2
𝑒𝜈

𝑚2𝑐𝜔2
𝐵𝑒

[B × ∇𝑇] (5)

The symbols ∥ and ⊥ denote the directional orientation along and across the magnetic field, respectively. The thermal
electron flow is similarly composed of two components, denoted as q = q𝑣 + q𝑇 :

q𝑣 = 0.71𝑁𝑇V∥ +
3𝑒

2𝑚𝑐
𝜈𝑁𝑇

𝜔2
𝐵𝑒

[B × V] (6)

q𝑇 = −3.16
𝑁𝑇𝜏

𝑚
∇∥𝑇 − 4.66

𝑁𝑇𝜈

𝑚𝜔2
𝐵𝑒

∇⊥𝑇 − 5
2

𝑒𝑁𝑇

𝑐𝑚2𝜔2
𝐵𝑒

[B × ∇𝑇] (7)

In expressions (4)-(7), the parameter 𝜈 ≈ 𝜏−1 denotes the electron collision frequency. In a fully ionized plasma, the
relative velocities involved in electron-electron and electron-ion collisions are of the same order. As a result, the frequency
of electron-electron collisions (𝜈𝑒𝑒 ≈ 𝜏−1

𝑒 or 𝜈 ≈ 𝜏−1) is comparable to the electron-ion collision frequency (𝜈𝑒𝑖 ≈ 𝜏−1
𝑒𝑖

).
Next, we supplement the equations (1)-(3) with Faraday’s law

rotE = −1
𝑐

𝜕B
𝜕𝑡
, (8)

Ampere’s law

rotB = −4𝜋𝑒𝑁
𝑐

V, (9)

and magnetic field solenoidality equation
divB = 0. (10)

We now formulate the problem, the geometry of which is illustrated in Fig. 1. To describe the dynamics of the electron
fluid, we adopt a Cartesian coordinate system with the 𝑍-axis oriented vertically upward. The system under consideration
is a horizontally extended plasma layer of finite thickness ℎ, bounded above and below by free surfaces at 𝑧 = ℎ and 𝑧 =
0, respectively. The lower boundary at 𝑧 = 0 is maintained at temperature 𝑇𝑑 , while the upper boundary at 𝑧 = ℎ is kept
at a lower temperature 𝑇𝑢, such that 𝑇𝑑 > 𝑇𝑢, implying that the layer is heated from below. The equilibrium temperature
distribution 𝑇 (𝑧) is assumed to vary linearly along the vertical direction:

𝑇 (𝑧) = 𝑇𝑑 − (𝑇𝑑 − 𝑇𝑢)
ℎ

𝑧.

Consequently, the equilibrium temperature gradient is constant and directed downward: ∇𝑇 = const = −e(𝑑𝑇/𝑑𝑧) =

−e 𝐴, where e is a unit vector along the 𝑍-axis pointing upward, and the gravitational acceleration is given by g = −𝑔e.
Initially, the plasma layer is assumed to be at rest. Convection is triggered by introducing small perturbations to the
equilibrium state. All relevant physical quantities appearing in Eqs. (1)-(3) are thus represented as the sum of a stationary
background and a small disturbance:

V = V
′
, E = E

′
, B = B + B

′
, 𝑇 = 𝑇 + 𝑇 ′

, 𝑃 = 𝑃 + 𝑃′
.
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The equilibrium electron density is assumed to be uniform throughout the layer, 𝑁 = const, and perturbations in the
density, 𝑁 ′, are related to temperature perturbations 𝑇 ′ via the Boussinesq approximation [22]: 𝑁 ′/𝑁 ≈ −𝑇 ′/𝑇 . Under
this approximation, the gravitational force term in Eq. (1) reduces to a contribution that depends linearly on the temperature
perturbation:

F𝑔

𝑚𝑁
=
𝑁

′

𝑁
g = −𝑇

′

𝑇
g. (11)

The viscous force F𝜂 in equation (1) can be written as [21]

𝜂𝑒

𝑚𝑁
∇2V

′
= 0.73

𝑇𝜏

𝑚
∇2V

′
= 𝜈∇2V

′
,

where 𝜈 is the coefficient of kinematic viscosity of the electronic fluid. Below in the text, for convenience, we omit the
”prime” sign above the perturbed values V, 𝑇, 𝑃,E, and B. In the equilibrium (unperturbed) state, the plasma satisfies the
condition of hydrostatic balance:

1
𝑚

𝑑𝑇

𝑑𝑧
= 𝑔 − 0.71

𝑚

𝑑𝑇

𝑑𝑧
,

and no background electric field is present, i.e., E = 0. The magnetic field is assumed to be uniform and directed
vertically upward, perpendicular to the (𝑥, 𝑦) plane: B = e𝐵. To model turbulent processes in the plasma, we introduce
an external force F0 into Eq. (1). This force acts as a driver of small-scale, high-frequency oscillations in the electron
velocity field, denoted by ṽ0, and operates in a regime characterized by a low Reynolds number, 𝑅 = 𝑣̃0𝑡0/𝜆0 ≪ 1. An
analogous dimensionless parameter, the Strouhal number 𝑆 = 𝑢𝜏𝑐/𝜆𝑐 – where 𝑢 is the turbulent velocity, and 𝜏𝑐 and 𝜆𝑐
are characteristic temporal and spatial correlation scales is commonly used in magnetic dynamo theory [2] to justify the
second-order correlation approximation. A relevant physical system in which the condition 𝑅 ≪ 1 (or equivalently 𝑆 ≪
1) holds is the solar convective zone. Using observational data on small-scale turbulence in solar granules [2], one obtains:

𝑣̃0 ≈ 3 · 102𝑚/𝑠, 𝑡0 ≈ 3 · 102𝑠, 𝜆0 ≈ 106𝑚,

yielding an estimate of the Reynolds number 𝑅 ≈ 10−1 ≪ 1. Let us consider an external helical force F0 with the following
properties:
1. The vector field F0 is solenoidal, i.e., it is divergence-free: divF0 = 0.
2. The vector field F0 possesses vorticity: rotF0 ≠ 0.
3. The helicity of F0 is nonzero, indicating a helical property: F0rotF0 ≠ 0.
We define the functional form of the external force as

F0 = 𝑓0F0

(
𝑥

𝜆0
;
𝑡

𝑡0

)
,

where 𝜆0 is the characteristic spatial scale, 𝑡0 is the characteristic temporal scale, and 𝑓0 denotes the typical amplitude of the
force. The external force F0 induces small-scale oscillations in the velocity field, denoted by ṽ0, which are characterized
by

ṽ0 = 𝑣̃0ṽ0

(
x
𝜆0
,
𝑡

𝑡0

)
,

where 𝑣̃0 is the characteristic velocity. Assuming that the external force F0 satisfies the properties listed in (4), it can be
explicitly prescribed in the following deterministic form:

𝐹𝑧
0 = 0, F0⊥ = 𝑓0

(
e𝑥 cos 𝜙2 + e𝑦 cos 𝜙1

)
, (12)

where the phases 𝜙1 and 𝜙2 are defined as

𝜙1 = k1x − 𝜔0𝑡, 𝜙2 = k2x − 𝜔0𝑡, k1 = 𝑘0 (1, 0, 1) , k2 = 𝑘0 (0, 1, 1) .

The dynamo mechanism operates through the process of energy transfer from small-scale turbulent motions to large-scale
flows. The role of the external small-scale force F0 incorporated into the electron motion equations is to maintain the
necessary level of turbulence as a driving source. This force can be specified statistically by defining its correlator:

𝐹0𝑖𝐹0𝑚 = 𝐴𝛿𝑖𝑚 + 𝐵𝑟𝑖𝑟𝑚 + 𝐻𝜖𝑖𝑚𝑛𝑟𝑛.

However, the statistical approach is considerably more cumbersome, as it requires specifying the functions 𝐴, 𝐵, and 𝐻,
and computing rather complex integrals. When the external force is specified dynamically (as in Eq. 12), averaging over
rapid oscillations becomes straightforward, which significantly reduces the computational complexity of the problem.
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Let us transform equations (1)-(3) and (9)-(11) into a dimensionless form by introducing the following dimensionless
variables

x → x
𝜆0
, 𝑡 → 𝑡

𝑡0
, V → V

𝑣̃0
, F0 → F0

𝑓0
, B → B1

𝑏0
, 𝑇 → 𝑇1

𝜆0𝐴
, 𝑃 → 𝑃1

𝑝0
. (13)

Here, 𝑣̃0, 𝑏0, and 𝑝0 are the characteristic values of small-scale fluctuations of velocity, magnetic field, and pressure,
respectively. When transitioning to the dimensionless form of equations (1)-(3) and (8)-(10), it is helpful to introduce a
set of relations that connect the turbulent parameters 𝑡0 and 𝜆0 of the medium:

𝑡0 =
𝜆2

0
𝜈
, 𝑓0 =

𝑣̃0𝜈

𝜆2
0
, 𝑝0 = 𝑚𝑁

𝑣̃0𝜈

𝜆0
,

𝑓0𝑡0
𝑣̃0

=
𝑐𝐸0𝑡0
𝜆0𝑏0

= 1,

𝜆2
0𝑚

0.73𝑇𝜏2
= 1,

𝑒𝐸0𝑡0
𝑚𝑣̃0

=
𝑒𝑏0𝜆0
𝑚𝑐𝑣̃0

=
𝜆0𝑣̃0𝑚𝜔

2
𝑝𝑒

𝑒𝑏0𝑐
= 𝑅2,

𝜆2
0

𝑟2
𝑑

= 𝑅4, (14)

where 𝑟𝑑 = 𝑐/𝜔𝑝𝑒 is the Debye radius, and 𝜔𝑝𝑒 =
√︁

4𝜋𝑒2𝑁0/𝑚 is the electron plasma (Langmuir) frequency. These
relations significantly simplify the resulting dimensionless equations, facilitating further mathematical treatment. The
first group of relations in (2) is derived from the Navier-Stokes equation (1). The remaining expressions are obtained by
applying scaling and dimensional analysis for convenience. The final set of relations is chosen such that a self-consistent
system of equations for large-scale perturbations emerges in the leading order of the asymptotic expansion. Upon applying
the transformations (13) and (2) to equations (1)-(3), (8)-(10), and introducing a rescaled temperature 𝑇 → 𝑇/𝑅, we arrive
at the desired system of dimensionless equations:

𝜕V
𝜕𝑡

+ 𝑅 (V∇) V = −∇𝑃 − 𝑅2E − 𝐷 [V × e] − 𝑅3 [V × B] + e𝑅𝑎𝑇 − V−

−𝑅𝑎
(
𝑉2
𝑇𝑒

𝑔𝜆0

) (
0.71∇𝑇 + 3

2
𝜉𝐷 [e × ∇𝑇]

)
+ 𝜈∇2V + F0, (15)

𝜕𝑇

𝜕𝑡
+ 𝑅(V∇)𝑇 −

(
1 + 5

3
𝑃𝑟−1𝜉𝑅

)
eV = 2.1𝑃𝑟−1∇2𝑇 + 5

3
𝑃𝑟−1𝜉 (∇𝑇rotB), (16)

divV = 0, divB = 0, (17)
𝜕B
𝜕𝑡

= −rotE, rotB = −𝑅2V. (18)

The equations (2)-(16) have the following notation: 𝜉 = (𝜔𝐵𝑒𝜏)−1 represents the reciprocal of the Hall parameter; D =

𝐷e, 𝐷 = (𝑒𝐵𝑡0)/𝑚𝑐 = (𝜔𝐵𝑒𝜆0
2)/𝜈 is the electron rotation parameter on the scale 𝜆0; 𝑅𝑎 = 𝑅𝑎

𝑃𝑟
, 𝑅𝑎 =

𝑔𝐴𝜆4
0

𝑇𝜈𝜒
is the Rayleigh

number on the scale 𝜆0; 𝜒 is the thermal diffusivity coefficient of electrons; 𝑉𝑇𝑒 is the thermal velocity of electrons, 𝑃𝑟 =
𝜈/𝜒 is the Prandtl number; 𝜉 = 𝜈/(𝜔2

𝐵𝑒
𝜆2

0𝜏) is a parameter characterizing the influence of the Nernst effect. As follows,
we call 𝜉 the Nernst parameter.

In this study, we treat the Reynolds number 𝑅 =
𝑣0𝑡0
𝜆0

as a small expansion parameter, assuming 𝑅 ≪ 1. The
parameters 𝐷, 𝑅𝑎, and 𝑃𝑟 are considered to be of arbitrary magnitude. The smallness of 𝑅 justifies the application of the
method of multiscale asymptotic expansions, as described in [4, 13]. This technique differs from the traditional mean-field
approach in that it allows for a consistent description of how perturbations evolve across various spatial and temporal scales
at each order of the expansion. At the zeroth order of 𝑅, small-scale rapidly varying velocity fluctuations v0 arise due
to the action of the external force F0 on a stationary background. The behavior of these fluctuations is shaped by factors
such as vertical stratification and the ambient magnetic field. Although the time-averaged values of these fluctuations are
zero, nonlinear effects in higher orders can generate contributions that remain finite upon averaging, thereby influencing
the dynamics of the system on larger scales.

The following section outlines the procedure for deriving solvability conditions in the framework of multiscale
expansions, which ultimately yield the governing equations for large-scale perturbations.

3. EQUATIONS FOR LARGE-SCALE VORTEX AND MAGNETIC FIELDS
To derive the multiscale asymptotic equations, we introduce a set of fast (small-scale) variables 𝑥0 = (x0, 𝑡0),

alongside slow (large-scale) variables 𝑋 = (X, 𝑇). For convenience, we denote derivatives with respect to the fast spatial
and temporal variables as 𝜕𝑖 = 𝜕

𝜕𝑥𝑖0
and 𝜕𝑡 = 𝜕

𝜕𝑡0
, respectively. Correspondingly, the derivatives with respect to the slow

(large-scale) spatial and temporal coordinates are written as:

𝜕

𝜕𝑋𝑖
≡ ∇𝑖 ,

𝜕

𝜕𝑇
≡ 𝜕𝑇 .
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The scaling of slow variables relative to the fast ones is chosen as follows:

X = 𝑅2x0, 𝑇 = 𝑅4𝑡0,

where 𝑅 ≪ 1 is the small expansion parameter introduced earlier. Using these variable transformations, the differential
operators in the governing equations (2)–(18) can be rewritten in a form suitable for asymptotic expansion:

𝜕

𝜕𝑥𝑖
→ 𝜕𝑖 + 𝑅2∇𝑖 ,

𝜕

𝜕𝑡
→ 𝜕𝑡 + 𝑅4𝜕𝑇 (19)

The physical quantities V,E,B, 𝑃, and 𝑇 are expressed as asymptotic expansions in powers of the small parameter 𝑅:

V (x, 𝑡) = 1
𝑅

W−1 (𝑋) + v0 + 𝑅v1 + 𝑅2v2 + 𝑅3v3 + · · ·

E (x, 𝑡) = 1
𝑅

E−1 (𝑋) + E0 + 𝑅E1 + 𝑅2E2 + 𝑅3E3 + · · ·

B (x, 𝑡) = 1
𝑅

B−1 (𝑋) + B0 + 𝑅B1 + 𝑅2B2 + 𝑅3B3 + · · · (20)

𝑇 (x, 𝑡) = 1
𝑅
𝑇−1 (𝑋) + 𝑇0 (𝑥0) + 𝑅𝑇1 + 𝑅2𝑇2 + 𝑅3𝑇3 + · · ·

𝑃(x, 𝑡) = 1
𝑅3 𝑃−3 +

1
𝑅2 𝑃−2 +

1
𝑅
𝑃−1 + 𝑃0 (𝑥0) + 𝑅(𝑃1 + 𝑃1 (𝑋))+

+𝑅2𝑃2 + 𝑅3𝑃3 + · · ·
In the asymptotic expansions (20), the large-scale components depend solely on the slow variables 𝑋 , whereas the
remaining terms involve both the fast variables 𝑥0 and the slow variables 𝑋 . We now substitute the expansions (19) and
(20) into the system of equations (2)–(18), and collect terms up to and including order 𝑅3. The resulting set of equations
is rather lengthy and is therefore presented in Appendix A. The main secular equations (solvability conditions), which
ensure the consistency of the multiscale asymptotic expansion for the system (2)–(18), are given by:

𝜕𝑇𝑊
𝑖
−1 + ∇𝑘

(
𝑣𝑘0𝑣

𝑖
0

)
= −∇𝑖𝑃1 − 𝐸

𝑖

1 + ∇2
𝑘𝑊

𝑖
−1, (21)

𝜕𝑇𝑇−1 − 2.1𝑃𝑚−1∇2𝑇−1 = −1.47∇𝑘

(
𝑣𝑘0𝑇0

)
, (22)

𝜕𝑇𝐵
𝑖
−1 = −𝜀𝑖 𝑗𝑘∇ 𝑗𝐸

𝑘

1 . (23)

Equations (21)–(23) are supplemented by the secular equations derived in Appendix A:

−∇𝑖𝑃−3 − 𝐷𝜀𝑖 𝑗𝑘𝑊 𝑗𝑒𝑘 + 𝑒𝑖𝑅𝑎𝑇−1 −𝑊 𝑖
−1 = 0, (24)

𝑊 𝑧
−1 = 0, ∇𝑖𝑊

𝑖
−1 = 0, ∇𝑖𝐵

𝑖
−1 = 0, (∇ × B−1)𝑧 = 0 (25)

𝑊 𝑘
−1∇𝑘𝑊

𝑖
−1 = −∇𝑖𝑃−1 − 𝐸 𝑖

−1 − 𝜀𝑖 𝑗𝑘𝑊
𝑗

−1𝐵
𝑘
−1−

−𝑅𝑎1

(
0.71∇𝑖𝑇−1 +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗∇𝑘𝑇−1

)
, (26)

𝑊 𝑘
−1∇𝑘𝑇−1 = 0, 𝜀𝑖 𝑗𝑘∇ 𝑗𝐸

𝑘
−1 = 0, 𝜀𝑖 𝑗𝑘∇ 𝑗𝐵

𝑘
−1 = −𝑊 𝑖

−1. (27)

The primary secular equations that dictate the development of large-scale vortex and magnetic perturbations are represented
by Eqs. (21)-(23). In these equations, the overbar signifies averaging over the rapid variables. The extensive temperature
𝑇−1 does not influence the dynamics of the extensive velocity field W−1 or the magnetic field B−1. Consequently, our
analysis will concentrate on equations (21) and (23). In this paper, we focus on large-scale structures characterized by
horizontal dimensions 𝐿𝑋, 𝐿𝑌 that are much greater than the vertical dimension 𝐿𝑍 :

𝐿𝑋, 𝐿𝑌 ≫ 𝐿𝑍 ≫ 𝜆0, or 𝜀 �

(
𝐿𝑍

𝐿𝑋

,
𝐿𝑍

𝐿𝑌

)
≪ 1,

𝜆0
𝐿𝑍

≪ 1, (28)

where 𝜀 denotes the scale anisotropy parameter. This scaling relationship clearly indicates that derivatives with respect to
𝑍 dominate over those with respect to the horizontal coordinates:

∇𝑍 ≡ 𝜕

𝜕𝑍
≫ 𝜕

𝜕𝑋
,
𝜕

𝜕𝑌
.
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Given that the two equations in (25) imply that the large-scale velocity field is two-dimensional and incompressible, and
taking into account the scale relations in (28), we assume that all large-scale perturbations depend solely on the vertical
coordinate 𝑍 . Thus, the velocity and magnetic fields are represented as

W−1 =
(
𝑊 𝑥

−1 (𝑍), 𝑊
𝑦

−1 (𝑍), 0
)
, B−1 =

(
𝐵𝑥
−1 (𝑍), 𝐵

𝑦

−1 (𝑍), 0
)
. (29)

Then, taking into account the expressions (29), the equations for the large-scale fields (21)-(23) take the following form:

𝜕𝑇𝑊1 + ∇𝑍

(
𝑣𝑧0𝑣

𝑥
0

)
= −𝐸 𝑥

1 + ∇2
𝑍𝑊1, 𝑊 𝑥

−1 ≡ 𝑊1, (30)

𝜕𝑇𝑊2 + ∇𝑍

(
𝑣𝑧0𝑣

𝑦

0

)
= −𝐸 𝑦

1 + ∇2
𝑍𝑊2, 𝑊

𝑦

−1 ≡ 𝑊2, (31)

𝜕𝑇𝐵1 = ∇𝑍𝐸
𝑦

1 , 𝐵𝑥
−1 ≡ 𝐵1, (32)

𝜕𝑇𝐵2 = −∇𝑍𝐸
𝑥

1 , 𝐵
𝑦

−1 ≡ 𝐵2, (33)

∇𝑍𝐵2 = 𝑊1, ∇𝑍𝐵1 = −𝑊2. (34)

The derivation of the closed form of equations (30)-(31) requires the computation of the Reynolds stress terms 𝑇31 =

𝑣𝑧0𝑣
𝑥
0 and 𝑇32 = 𝑣𝑧0𝑣

𝑦

0 . This, in turn, involves determining the small-scale velocity field v0, as outlined in Appendix B. By
substituting equations (32)-(34) into equations (30)-(31), the mean electric field 𝐸 𝑥,𝑦

1 is eliminated. As a result, equations
(30)-(31) are transformed into a system resembling a nonlinear vortex dynamo:

𝜕𝑇 (∇2
𝑍𝑊1 −𝑊1) + ∇3

𝑍𝑇
31 = ∇4

𝑍𝑊1,

𝜕𝑇 (∇2
𝑍𝑊2 −𝑊2) + ∇3

𝑍𝑇
32 = ∇4

𝑍𝑊2. (35)

According to Ampere’s law (34), large-scale perturbations of the magnetic field are driven by large-scale vortical motions
of electrons. Consequently, the nonlinear evolution of large-scale magnetic fields is governed by the following set of
nonlinear equations:

𝜕𝑇 (∇2
𝑍𝐵1 − 𝐵1) − ∇2

𝑍𝑇
32 = ∇4

𝑍𝐵1,

𝜕𝑇 (∇2
𝑍𝐵2 − 𝐵2) + ∇2

𝑍𝑇
31 = ∇4

𝑍𝐵2. (36)

Appendix C presents the calculation of the Reynolds stresses (6), which enables the closure of system (3), and, consequently,
(3). The nonlinear magnetic-vortex dynamo is described by the following set of equations:

𝜕𝑇 (∇2
𝑍𝑊1 −𝑊1) − ∇4

𝑍𝑊1 =

=
𝑓 2
0
8
∇3
𝑍


𝐷2

36(1 −𝑊1)2 +
[
𝐷2

2 + 9 − (1 −𝑊1)2
]2

+ Ξ
(1)
1 − 𝜉Ξ(2)

1 + 𝜉Ξ(3)
1

 +
+
𝑓 2
0
2
∇3
𝑍


𝐷

(
3
2 − 1.05𝑅𝑎

17.64+𝑃𝑟2 (1−1.47𝑊2 )2

)
36(1 −𝑊2)2 +

[
𝐷2

2 + 9 − (1 −𝑊2)2
]2

+ Ξ
(1)
2 − 𝜉Ξ(2)

2 + 𝜉Ξ(3)
2

 , (37)

𝜕𝑇 (∇2
𝑍𝑊2 −𝑊2) − ∇4

𝑍𝑊2 =

=
𝑓 2
0
8
∇3
𝑍


𝐷2

36(1 −𝑊2)2 +
[
𝐷2

2 + 9 − (1 −𝑊2)2
]2

+ Ξ
(1)
2 − 𝜉Ξ(2)

2 + 𝜉Ξ(3)
2

 −
−
𝑓 2
0
2
∇3
𝑍


𝐷

(
3
2 − 1.05𝑅𝑎

17.64+𝑃𝑟2 (1−1.47𝑊1 )2

)
36(1 −𝑊1)2 +

[
𝐷2

2 + 9 − (1 −𝑊1)2
]2

+ Ξ
(1)
1 − 𝜉Ξ(2)

1 + 𝜉Ξ(3)
1

 , (38)

where

Ξ
(1)
1,2 = 𝑅𝑎(9 + (1 −𝑊1,2)2) ·

𝑃𝑟𝑊1,2
˜̃
𝑊1,2 − 12.6 + 𝑅𝑎

4

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

, 𝑊1,2 = 1 −𝑊1,2,
˜̃
𝑊1,2 = 1 − 1.47𝑊1,2,
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Figure 2. The 𝛼-effect’s dependence versus a) magnetic parameter 𝐷, b) stratification parameter 𝑅𝑎, and c) Nernst
parameter 𝜉.

Ξ
(2)
1,2 =

3
2
𝐷2𝑅𝑎1 ·

25.2𝑊1,2 + 𝑃𝑟 (9 −𝑊2
1,2)

˜̃
𝑊1,2

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

, Ξ
(3)
1,2 =

𝐷4

4
· 𝑅𝑎1

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

(
9
4
𝜉𝑅𝑎1 − 3𝑃𝑟 ˜̃𝑊1,2

)
.

As seen from equations (3)-(3), the vortex dynamo effect in a stratified plasma can emerge under the combined influence
of an external small-scale helical force and a magnetic field. In the absence of an external magnetic field, even in the
presence of turbulence, large-scale perturbations of the electron velocity undergo ordinary viscous damping.

We first address the linear stability of small field perturbations, followed by an analysis of potential stationary
structures.

4. LARGE-SCALE INSTABILITY
In this section, we address the stability of small-scale perturbations in both the velocity and magnetic fields. By

applying expressions (6) to equations (3), we obtain the following set of linear equations describing the vortex dynamo:

𝜕𝑇 (∇2
𝑍𝑊1 −𝑊1) − ∇4

𝑍𝑊1 = 𝛼1∇3
𝑍𝑊1 + 𝛼2∇3

𝑍𝑊2,

𝜕𝑇 (∇2
𝑍𝑊2 −𝑊2) − ∇4

𝑍𝑊2 = 𝛼1∇3
𝑍𝑊2 − 𝛼2∇3

𝑍𝑊1, (39)

here,

𝛼1 =
𝑓 2
0
8
𝐷2𝛼, 𝛼2 =

𝑓 2
0
2
𝐷 (𝛼𝜎0 − 𝛼0𝜎1),

𝛼0 =
4

(𝐷2 + 16)2 + 144 + 40𝑎0𝑅𝑎 + 4𝜉 (𝑚0 − 𝑐0)
,

𝛼 =
32(20 − 𝐷2 + 𝑅𝑎(𝑎0 − 5𝑏0) + 𝜉

2 (𝑑0 − 𝑛0))[
(𝐷2 + 16)2 + 144 + 40𝑎0𝑅𝑎 + 4𝜉 (𝑚0 − 𝑐0)

]2 .

The explicit form of the coefficients 𝜎0, 𝜎1, 𝑎0, 𝑏0, 𝑐0, 𝑑0, 𝑚0, 𝑛0 can be found in Appendix C. We seek a solution to the
linear system of equations (4) in the form of plane waves with a wave vector 𝐾 aligned along the 𝑍-axis, i.e.,

𝑊1,2 = 𝐴𝑊1,2 exp (−𝑖𝜔𝑇 + 𝑖𝐾𝑍) (40)

Substituting expression (40) into the system of equations (4), we obtain the corresponding dispersion relation:(
𝑖𝜔(1 + 𝐾2) − 𝐾4 + 𝑖𝛼1𝐾

3
)2

− 𝛼2
2𝐾

6 = 0 (41)

By representing 𝜔 = 𝜔0 + 𝑖Γ in equation (41), we get:

𝜔0 = − 𝛼1𝐾
3

1 + 𝐾2 , Γ1,2 =
∓𝛼2𝐾

3 − 𝐾4

1 + 𝐾2 . (42)

The solutions given by (42) indicate the presence of unstable oscillatory modes associated with large-scale vortex distur-
bances. It is important to emphasize that, within the framework of linear theory, the coefficients 𝛼1 and 𝛼2 are independent
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Figure 3. Left: instability region in the (𝐷, 𝑅𝑎) plane (gray: 𝛼2 > 0, white: 𝛼2 < 0). Right: growth rate Γ(𝐾) for 𝜉 =

0.00015 and 𝜉 = 15 at 𝐷 = 2, 𝑅𝑎 = 10.

Figure 4. Phase portrait of the dynamical system defined by Eqs. (5)-(5) for 𝐶5 = −0.005 and 𝐶6 = 0.005.

of the velocity field amplitudes; instead, they depend solely on the magnetic rotation parameter 𝐷, the Rayleigh number
𝑅𝑎, the Nernst parameter 𝜉, and the amplitude of the external forcing 𝑓0. Thus, magnetorotational and thermomagnetic
effects may play an important role in the development of large-scale instabilities and the emergence of self-organized
structures in stratified magnetized plasma.

We consider the effect of an external magnetic field (characterized by the parameter 𝐷) on the gain 𝛼2, which
determines the generation of large-scale vortex disturbances. For this analysis, the other parameters are fixed as follows:
𝑓0 = 10, 𝑅𝑎 = 5, 𝑃𝑟 = 1, 𝑅𝑎1 = 0.15, and 𝜉 = 0.15. Fig. 2a shows that 𝛼2 attains a maximum at a certain value of 𝐷. As
𝐷 increases further, 𝛼2 decreases monotonically, indicating suppression of the 𝛼-effect by the magnetic field. Interestingly,
the 𝛼2 (𝐷) curve also demonstrates that vortex generation can be completely inhibited at specific nonzero values of 𝐷,
where 𝛼2 vanishes.

Let us now examine how the value of 𝛼2 varies with the plasma heating parameter 𝑅𝑎, while keeping the other
parameters fixed: 𝐷 = 2, 𝑃𝑟 = 1, 𝑅𝑎1 = 0.15, 𝜉 = 0.15, and the amplitude of the external force 𝑓0 = 10. The functional
dependence 𝛼2 (𝑅𝑎) is presented in Fig. 2b. For 𝑅𝑎 = 0, the coefficient 𝛼2 = 0.258 corresponds to a plasma without
a temperature gradient (i.e., no heating). In this regime, the generation of large-scale vortex structures is driven solely
by the external helical small-scale forcing and the Lorentz force. As can be seen from Fig. 2b, the presence of thermal
stratification (𝑅𝑎 ≠ 0) can enhance the value of 𝛼2, thereby accelerating the formation of large-scale vortex disturbances
compared to the non-stratified case. However, beyond a certain critical value of the stratification parameter 𝑅𝑎𝑐, the
generation process is suppressed, as indicated by 𝛼2 = 0. For 𝑅𝑎 > 𝑅𝑎𝑐, the sign of the gain coefficient 𝛼2 reverses. As a
result, the previously growing mode becomes damped, and vice versa.

In a similar manner, we can examine the influence of the Nernst parameter 𝜉 on the gain 𝛼2. Fig. 2c clearly shows
that the gain coefficient 𝛼2 decreases with increasing 𝜉, starting from 𝛼2 ≈ 0.43 at 𝜉 = 0. This reduction can be attributed
to the Nernst effect, wherein part of the thermal force is directed perpendicular to both the magnetic field vector B and the
temperature gradient 𝜕𝑖𝑇0. This transverse component of the thermal force impedes the motion of the electron component
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of the plasma, thereby leading to a suppression of the 𝛼-effect and a consequent decrease in 𝛼2.
The left part of Fig. 3 shows the combined effect of the external magnetic field and thermal stratification in the

(𝐷, 𝑅𝑎) plane. The instability region (𝛼2 > 0) is marked in gray. The right part of Fig. 3 shows the dependence of the
growth rate Γ on the wave number 𝐾 as given by Eq. (42). As the Nernst parameter increases, the instability increment
decreases, reflecting the reduction of 𝛼2 with increasing 𝜉 (see Fig. 2c).

As equations (4) demonstrate, helicity of the small-scale field alone is insufficient for dynamo operation. Efficient
generation of large-scale magnetic fields requires some critical parameters to fall within specific ranges, including the
external magnetic field parameter 𝐷 and the thermal driving characterized by the Rayleigh number 𝑅𝑎. Additionally, the
geometric configuration plays a crucial role, particularly the vertical upward orientation of the external magnetic field
vector B.

5. STATIONARY NONLINEAR STRUCTURES
As the large-scale instability develops, the exponential growth of small perturbations𝑊1,2 renders the linear approx-

imation invalid. With increasing disturbance amplitude, nonlinear effects become dominant. This leads to a suppression
of the nonlinear 𝛼-effect coefficients and a transition to a saturated, steady-state regime. In this regime, stable nonlinear
vortex and magnetic structures emerge. To identify such stationary structures, we set 𝜕𝑇 = 0 in Eqs. (3)-(3), and perform
integration with respect to 𝑍 . This procedure yields the following set of nonlinear equations:

𝑑𝑊1
𝑑𝑍

= −
𝑓 2
0
8

· 𝐷2

36(1 −𝑊1)2 +
[
𝐷2

2 + 9 − (1 −𝑊1)2
]2

+ Ξ
(1)
1 − 𝜉Ξ(2)

1 + 𝜉Ξ(3)
1

−

−
𝑓 2
0
2

·
𝐷

(
3
2 − 1.05𝑅𝑎

17.64+𝑃𝑟2 (1−1.47𝑊2 )2

)
36(1 −𝑊2)2 +

[
𝐷2

2 + 9 − (1 −𝑊2)2
]2

+ Ξ
(1)
2 − 𝜉Ξ(2)

2 + 𝜉Ξ(3)
2

+ 𝐶1
𝑍2

2
+ 𝐶3𝑍 + 𝐶5, (43)

𝑑𝑊2
𝑑𝑍

= −
𝑓 2
0
8

· 𝐷2

36(1 −𝑊2)2 +
[
𝐷2

2 + 9 − (1 −𝑊2)2
]2

+ Ξ
(1)
2 − 𝜉Ξ(2)

2 + 𝜉Ξ(3)
2

+

+
𝑓 2
0
2

·
𝐷

(
3
2 − 1.05𝑅𝑎

17.64+𝑃𝑟2 (1−1.47𝑊1 )2

)
36(1 −𝑊1)2 +

[
𝐷2

2 + 9 − (1 −𝑊1)2
]2

+ Ξ
(1)
1 − 𝜉Ξ(2)

1 + 𝜉Ξ(3)
1

+ 𝐶2
𝑍2

2
+ 𝐶4𝑍 + 𝐶6. (44)

Here, the integration constants 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, and 𝐶6 are arbitrary. For the purpose of qualitative analysis of Eqs.
(5)-(5), the physical parameters are fixed as follows: 𝑓0 = 1, 𝑅𝑎 = 5, 𝐷 = 2, 𝑃𝑟 = 1, and 𝜉 = 𝑅𝑎1 = 0.15. To simplify the
analysis, we set 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 0 and consider the stationary case by equating the left-hand sides of Eqs. (5)-(5) to
zero. Under these conditions, the coordinates of the four fixed points 𝐸 (1,2,3,4) can be determined numerically:

𝐸1 (−1.363, 4.68), 𝐸2 (3.345,−2.635), 𝐸3 (3.345, 4.646), 𝐸4 (−1.358,−2.669). (45)

By linearizing the right-hand sides of Eqs. (5)-(5) in the vicinity of the stationary points, we can determine their nature
and construct the corresponding phase portrait. This analysis reveals that the system possesses two hyperbolic (saddle)
points (𝐸1, 𝐸2), one stable focus (𝐸3), and one unstable focus (𝐸4). The phase portrait of the resulting dynamical system,
obtained for the constants𝐶5 = −0.005 and𝐶6 = 0.005, is shown in Fig. 4. The trajectories in the phase space demonstrate
characteristic behavior near these points: solutions are repelled from the unstable focus and attracted toward the stable one,
while the saddle points form separatrices that partition the phase space into distinct dynamical regions. Physically, these
fixed points correspond to stationary nonlinear vortex structures, whose stability or instability determines the long-term
evolution of the flow.

The most physically relevant localized solutions correspond to trajectories in the phase portrait that connect stationary
points on the phase plane. In particular, the separatrix linking a hyperbolic point to a stable focus represents a solution
describing a localized vortex structure, such as a kink with rotational features. An example of such a solution is shown
on the left side of Fig. 5, obtained by numerically integrating Eqs. (5)-(5) with the initial conditions 𝑊1 (0) = 3.345 and
𝑊2 (0) = −2.625.

Another type of helical kink corresponds to a solution in which the separatrix on the phase plane connects the unstable
and stable foci. This solution, shown in the right side of Fig. 5, was obtained by numerically integrating Eqs. (5)-(5)
with initial conditions 𝑊1 (0) = 3.345 and 𝑊2 (0) = 4.63. All of these solutions – representing large-scale, localized,
kink-type vortex structures with rotational features – are generated as a result of the instability mechanisms in the stratified,
magnetized plasma with helical force analyzed in this study.

We now turn to the analysis of solutions corresponding to localized magnetic structures. To facilitate this, it is
convenient to reformulate the stationary equations for the magnetic field components, Eq. (3), in terms of the current
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Figure 5. Left: kink-type solution corresponding to a separatrix connecting a hyperbolic point to a stable focus. Right:
kink connecting an unstable focus to a stable focus, exhibiting an internal helical structure.

components. This can be done using the relation between the current density and the large-scale electron velocity, J =

−W, together with Ampere’s law written as:

𝑑𝐵2
𝑑𝑍

= −𝐽1,
𝑑𝐵1
𝑑𝑍

= 𝐽2.

Substituting these expressions into the stationary equations (3) yields the following system for the current components 𝐽1
and 𝐽2:

𝑑𝐽1
𝑑𝑍

=
𝑓 2
0
8

· 𝐷2

36(1 + 𝐽1)2 +
[
𝐷2

2 + 9 − (1 + 𝐽1)2
]2

+ Ξ̃
(1)
1 − 𝜉Ξ̃(2)

1 + 𝜉Ξ̃(3)
1

+

+
𝑓 2
0
2

·
𝐷

(
3
2 − 1.05𝑅𝑎

17.64+𝑃𝑟2 (1+1.47𝐽2 )2

)
36(1 + 𝐽2)2 +

[
𝐷2

2 + 9 − (1 + 𝐽2)2
]2

+ Ξ̃
(1)
2 − 𝜉Ξ(2)

2 + 𝜉Ξ̃(3)
2

+ 𝐶1𝑍 + 𝐶3, (46)

𝑑𝐽2
𝑑𝑍

=
𝑓 2
0
8

· 𝐷2

36(1 + 𝐽2)2 +
[
𝐷2

2 + 9 − (1 + 𝐽2)2
]2

+ Ξ̃
(1)
2 − 𝜉Ξ̃(2)

2 + 𝜉Ξ̃(3)
2

−

−
𝑓 2
0
2

·
𝐷

(
3
2 − 1.05𝑅𝑎

17.64+𝑃𝑟2 (1+1.47𝐽1 )2

)
36(1 + 𝐽1)2 +

[
𝐷2

2 + 9 − (1 + 𝐽1)2
]2

+ Ξ̃
(1)
1 − 𝜉Ξ̃(2)

1 + 𝜉Ξ̃(3)
1

+ 𝐶2𝑍 + 𝐶4, (47)

where

Ξ̃
(1)
1,2 = 𝑅𝑎(9 + (1 + 𝐽1,2)2) ·

𝑃𝑟𝐽1,2
˜̃
𝐽1,2 − 12.6 + 𝑅𝑎

4

17.64 + 𝑃𝑟2˜̃𝐽2
1,2

, 𝐽1,2 = 1 + 𝐽1,2,
˜̃
𝐽1,2 = 1 + 1.47𝐽1,2,

Ξ̃
(2)
1,2 =

3
2
𝐷2𝑅𝑎1 ·

25.2𝐽1,2 + 𝑃𝑟 (9 − 𝐽2
1,2)

˜̃
𝐽1,2

17.64 + 𝑃𝑟2˜̃𝐽2
1,2

, Ξ̃
(3)
1,2 =

𝐷4

4
· 𝑅𝑎1

17.64 + 𝑃𝑟2˜̃𝐽2
1,2

(
9
4
𝜉𝑅𝑎1 − 3𝑃𝑟˜̃𝐽1,2

)
.

Equations (5)-(5) contain arbitrary integration constants 𝐶1, 𝐶2, 𝐶3, and 𝐶4. To simplify the qualitative analysis, we set
𝐶1 = 𝐶2 = 0. Under this assumption, we analyze the system by setting the left-hand sides of Eqs. (5)-(5) to zero, which
allows us to numerically identify the fixed points and determine their locations in phase space:

𝐸1 (−3.34, 2.635), 𝐸2 (1.363,−4.68), 𝐸3 (1.358, 2.669), 𝐸4 (−3.345,−4.646). (48)

As in the case of vortex structures, the system exhibits four stationary points: two hyperbolic points (𝐸1, 𝐸2), a stable focus
(𝐸3), and an unstable focus (𝐸4). The corresponding phase portrait of the dynamical system governed by Eqs. (5)-(5),
with constants 𝐶3 = −0.005 and 𝐶4 = −0.005, is presented in Fig. 6. Localized magnetic structures naturally correspond
to phase trajectories in Fig. 6 that connect equilibrium points in the phase space. The left side of Fig. 7 illustrates such a
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Figure 6. The phase plane of the dynamical system equations (5)-(5) with 𝐶3 = −0.005 and 𝐶4 = −0.005.

Figure 7. Localized magnetic kink structures analogous to vortex kinks in Fig. 6.

structure in the form of a magnetic kink, obtained through numerical integration of Eqs. (5)-(5) with the initial conditions
𝐽1 (0) = 1.363 and 𝐽2 (0) = −4.68. This kink represents a separatrix connecting the hyperbolic point 𝐸2 to the stable focus
𝐸3.

Another type of localized magnetic structure – a spiral kink – is obtained by numerically integrating the system of
Eqs.(5)-(5) with initial conditions 𝐽1 (0) = −3.345 and 𝐽2 (0) = −4.65. This solution corresponds to a separatrix trajectory
on the phase plane that connects the unstable focus 𝐸4 to the stable focus 𝐸3, as shown in the right side of Fig. 7.

As a result of numerically solving the stationary equations (5)-(5) and (5)-(5), we identified localized helical structures
of both vortex and magnetic nature.

6. CONCLUSIONS
In this study, a nonlinear dynamo theory has been developed for a fully ionized, temperature-stratified plasma

subjected to an external vertical magnetic field and a uniform gravitational field. The plasma dynamics are considered
within the framework of electron magnetohydrodynamics (EMHD), assuming immobile and cold ions. The proposed
dynamo mechanism incorporates thermomagnetic effects and is based on the 𝛼-effect, which arises due to the joint action
of a small-scale external helical force and the Lorentz force. The external forcing sustains weak velocity fluctuations in
the electron component, forming a low-Reynolds-number turbulence regime (𝑅 ≪ 1). Applying an asymptotic expansion
in terms of this small parameter, we derived closed-form equations describing the evolution of large-scale vortex and
magnetic perturbations. The linear stage of large-scale instability development was thoroughly analyzed. The regions of
instability on the parameter plane (𝐷, 𝑅𝑎), defined by the Lorentz and Rayleigh numbers respectively, were determined.
It is shown that the extent and structure of the instability domain are sensitive to the intensity of the small-scale forcing.
A key result of this work is the identification of the suppressing role of the Nernst effect on large-scale instability. As
the Nernst parameter increases, the growth rate of the instability decreases, owing to the thermomagnetic part of the
electron force counteracting the generation process. Conversely, stronger thermal stratification (larger Rayleigh number)
enhances the instability until it transitions to convective instability at high values of 𝑅𝑎. In the nonlinear regime, as
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the amplitude of perturbations grows, saturation occurs and the system reaches a stationary state. Numerical integration
of the nonlinear equations reveals the formation of localized vortex and magnetic structures in the form of spiral kinks.
These coherent structures represent the final stage of nonlinear evolution driven by the large-scale dynamo instability in a
stratified magnetized plasma.

APPENDIX A. ALGEBRAIC STRUCTURE OF THE ASYMPTOTIC EXPANSIONS
Let us present the algebraic structure of the asymptotic expansion for equations (2)-(18) at different orders in 𝑅,

starting with the smallest.
At the 𝑅−3 order, we have just one equation:

𝜕𝑖𝑃−3 = 0 ⇒ 𝑃−3 = 𝑃−3 (𝑋) (49)

In order 𝑅−2 we get the equation:
𝜕𝑖𝑃−2 = 0 ⇒ 𝑃−2 = 𝑃−2 (𝑋) (50)

Equations (49) and (50) are automatically fulfilled as 𝑃−3 and 𝑃−2 solely depend on slow variables.
In order 𝑅−1 we obtain the system of equations:

𝜕𝑡𝑊
𝑖
−1 +𝑊

𝑘
−1𝜕𝑘𝑊

𝑖
−1 = −𝜕𝑖𝑃−1 − ∇𝑖𝑃−3 + 𝜕2

𝑘𝑊
𝑖
−1 − 𝐷𝜀𝑖 𝑗𝑘𝑊 𝑗𝑒𝑘 + 𝑒𝑖𝑅𝑎𝑇−1 −𝑊 𝑖

−1 + 𝜕
2
𝑘𝑊

𝑖
−1,

𝜕𝑡𝑇−1 − 2.1𝑃𝑟−1𝜕2
𝑘𝑇−1 = −1.47𝑊 𝑘

−1𝜕𝑘𝑇−1 +𝑊 𝑧
−1 −

5
3
𝑃𝑟−1𝜉𝑒𝑖𝜀𝑖 𝑗𝑘𝜕𝑖𝐵

𝑘
0 , (51)

𝜕𝑖𝑊
𝑖
−1 = 0, 𝜕𝑖𝐵

𝑖
−1 = 0.

Upon averaging equations (51) over the ”fast” variables, we obtain the secular equations:

−∇𝑖𝑃−3 − 𝐷𝜀𝑖 𝑗𝑘𝑊 𝑗𝑒𝑘 + 𝑒𝑖𝑅𝑎𝑇−1 −𝑊 𝑖
−1 = 0, 𝑊 𝑧

−1 = 0, (52)

At zero order 𝑅0, we have:

𝜕𝑡𝑣
𝑖
0 +𝑊

𝑘
−1𝜕𝑘𝑣

𝑖
0 = −𝜕𝑖𝑃0 − ∇𝑖𝑃−2 − 𝐷𝜀𝑖 𝑗𝑘𝑣 𝑗0𝑒𝑘 + 𝑒𝑖𝑅𝑎𝑇0−

−𝑅𝑎1

(
0.71𝜕𝑖𝑇0 +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗𝜕𝑘𝑇0

)
− 𝑣𝑖0 + 𝜕

2
𝑘𝑣

𝑖
0 + 𝐹

𝑖
0,

where 𝑅𝑎1 = 𝑅𝑎

(
𝑉𝑇𝑒

𝑔𝜆0

)
is the modified Rayleigh number,

𝜕𝑡𝑇0 − 2.1𝑃𝑟−1𝜕2
𝑘𝑇0 = −1.47𝑊 𝑘

−1𝜕𝑘𝑇0 + 𝑣𝑧0+

+5
3
𝑃𝑟−1𝜉𝜕𝑖𝑇0𝜀𝑖 𝑗𝑘𝜕 𝑗𝐵

𝑘
0 − 5

3
𝑃𝑟−1𝜉𝑒𝑖𝜀𝑖 𝑗𝑘 (𝜕 𝑗𝐵𝑘

1 + ∇ 𝑗𝐵
𝑘
−1), (53)

𝜕𝑡𝐵
𝑖
0 = −𝜀𝑖 𝑗𝑘𝜕 𝑗𝐸 𝑘

0 , 𝜀𝑖 𝑗𝑘𝜕 𝑗𝐵
𝑘
0 = 0, 𝜕𝑖𝑣𝑖0 = 0, 𝜕𝑖𝐵𝑖

0 = 0.

These equations give secular terms:

∇𝑃−2 = 0 ⇒ 𝑃−2 = const, (∇ × B−1)𝑧 = 0.

Let us look at the first-order approximation 𝑅1:

𝜕𝑡𝑣
𝑖
1 +𝑊

𝑘
−1𝜕𝑘𝑣

𝑖
1 + 𝑣

𝑘
0𝜕𝑘𝑣

𝑖
0 +𝑊

𝑘
−1∇𝑘𝑊

𝑖
−1 = −∇𝑖𝑃−1−

−𝜕𝑖
(
𝑃1 + 𝑃1

)
− 𝐸 𝑖

−1 − 𝐷𝜀𝑖 𝑗𝑘𝑣
𝑗

1𝑒𝑘 − 𝜀𝑖 𝑗𝑘𝑊
𝑗

−1𝐵
𝑘
−1 + 𝑒𝑖𝑅𝑎𝑇1−

−𝑅𝑎1

(
0.71(𝜕𝑖𝑇1 + ∇𝑖𝑇−1) +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗 (𝜕𝑘𝑇1 + ∇𝑘𝑇−1)

)
− 𝑣𝑖1 + 𝜕

2
𝑘𝑣

𝑖
1 + 2𝜕𝑘∇𝑘𝑊

𝑖
−1,

𝜕𝑡𝑇1 − 2.1𝑃𝑟−1𝜕2
𝑘𝑇1 − 4.2𝑃𝑟−1𝜕𝑘∇𝑘𝑇−1 = −1.47(𝑊 𝑘

−1𝜕𝑘𝑇1 +𝑊 𝑘
−1∇𝑘𝑇−1 + 𝑣𝑘0𝜕𝑘𝑇0) + 𝑣𝑧+

+5
3
𝑃𝑟−1𝜉𝜀𝑖 𝑗𝑘 (𝜕𝑖𝑇0 (𝜕 𝑗𝐵𝑘

1 + ∇ 𝑗𝐵
𝑘
−1) + 𝜕𝑖𝑇1𝜕 𝑗𝐵

𝑘
0 ) −

5
3
𝑃𝑟−1𝜉𝑒𝑖𝜀𝑖 𝑗𝑘𝜕 𝑗𝐵

𝑘
2 , (54)

𝜕𝑡𝐵
𝑖
1 = −𝜀𝑖 𝑗𝑘 (𝜕 𝑗𝐸 𝑘

1 + ∇ 𝑗𝐸
𝑘
−1), 𝜀𝑖 𝑗𝑘 (𝜕 𝑗𝐵

𝑘
1 + ∇ 𝑗𝐵

𝑘
−1) = −𝑊 𝑖

−1,

𝜕𝑖𝑣
𝑖
1 + ∇𝑖𝑊

𝑖
−1 = 0, 𝜕𝑖𝐵

𝑖
1 + ∇𝑖𝐵

𝑖
−1 = 0.
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From this system of equations, secular equations are derived in the form

𝑊 𝑘
−1∇𝑘𝑊

𝑖
−1 = −∇𝑖𝑃−1 − 𝐸 𝑖

−1 − 𝜀𝑖 𝑗𝑘𝑊
𝑗

−1𝐵
𝑘
−1 − 𝑅𝑎1

(
0.71∇𝑖𝑇−1 +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗∇𝑘𝑇−1

)
, (55)

𝜀𝑖 𝑗𝑘∇ 𝑗𝐸
𝑘
−1 = 0, 𝜀𝑖 𝑗𝑘∇ 𝑗𝐵

𝑘
−1 = −𝑊 𝑖

−1, (56)

𝑊 𝑘
−1∇𝑘𝑇−1 = 0, ∇𝑖𝑊

𝑖
−1 = 0, ∇𝑖𝐵

𝑖
−1 = 0. (57)

At second order 𝑅2, we get

𝜕𝑡𝑣
𝑖
2 +𝑊

𝑘
−1𝜕𝑘𝑣

𝑖
2 + 𝑣

𝑘
0𝜕𝑘𝑣

𝑖
1 +𝑊

𝑘
−1∇𝑘𝑣

𝑖
0 + 𝑣

𝑘
0∇𝑘𝑊

𝑖
−1 + 𝑣

𝑘
1𝜕𝑘𝑣

𝑖
0 =

= −𝜕𝑖𝑃2 − ∇𝑖𝑃0 − 𝐸 𝑖
0 − 𝐷𝜀𝑖 𝑗𝑘𝑣

𝑗

2𝑒𝑘 − 𝜀𝑖 𝑗𝑘𝑣
𝑗

0𝐵
𝑘
−1 + 𝑒𝑖𝑅𝑎𝑇2−

−𝑅𝑎1

(
0.71𝜕𝑖𝑇2 +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗𝜕𝑘𝑇2

)
− 𝑣𝑖2 + 𝜕

2
𝑘𝑣

𝑖
2 + 2𝜕𝑘∇𝑘𝑣

𝑖
0,

𝜕𝑡𝑇2 − 2.1𝑃𝑟−1𝜕2
𝑘𝑇2 − 4.2𝑃𝑟−1𝜕𝑘∇𝑘𝑇0 = −1.47(𝑊 𝑘

−1𝜕𝑘𝑇2+

+𝑊 𝑘
−1∇𝑘𝑇0 + 𝑣𝑘0𝜕𝑘𝑇1 + 𝑣𝑘0∇𝑘𝑇−1 + 𝑣𝑘1𝜕𝑘𝑇0) + 𝑣𝑧2 +

5
3
𝑃𝑟−1𝜉𝜀𝑖 𝑗𝑘×

×(𝜕𝑖𝑇0𝜕 𝑗𝐵
𝑘
2 + 𝜕𝑖𝑇1 (𝜕 𝑗𝐵𝑘

1 + ∇ 𝑗𝐵
𝑘
−1) + 𝜕𝑖𝑇2𝜕 𝑗𝐵

𝑘
0 )−

−5
3
𝑃𝑟−1𝜉𝑒𝑖𝜀𝑖 𝑗𝑘 (𝜕 𝑗𝐵𝑘

3 + ∇ 𝑗𝐵
𝑘
1 ), (58)

𝜕𝑡𝐵
𝑖
2 = −𝜀𝑖 𝑗𝑘𝜕 𝑗𝐸 𝑘

2 , 𝜀𝑖 𝑗𝑘𝜕 𝑗𝐵
𝑘
2 = −𝑣𝑖0,

𝜕𝑖𝑣
𝑖
2 + ∇𝑖𝑣

𝑖
0 = 0, 𝜕𝑖𝐵

𝑖
2 + ∇𝑖𝐵

𝑖
0 = 0.

The system (6) is averaged over the fast variables, and no secular terms of order 𝑅2 are found. Finally, the order 𝑅3 is
reached, where the equations are

𝜕𝑡𝑣
𝑖
3 + 𝜕𝑇𝑊

𝑖
−1 +𝑊

𝑘
−1𝜕𝑘𝑣

𝑖
3 + 𝑣

𝑘
0𝜕𝑘𝑣

𝑖
2 +𝑊

𝑘
−1∇𝑘𝑣

𝑖
1 + 𝑣

𝑘
0∇𝑘𝑣

𝑖
0+

+𝑣𝑘1𝜕𝑘𝑣
𝑖
1 + 𝑣

𝑘
1∇𝑘𝑊

𝑖
−1 + 𝑣

𝑘
2𝜕𝑘𝑣

𝑖
0 = −𝜕𝑖𝑃3 − ∇𝑖

(
𝑃1 + 𝑃1

)
−

−
(
𝐸 𝑖

1 + 𝐸
𝑖

1

)
− 𝐷𝜀𝑖 𝑗𝑘𝑣 𝑗3𝑒𝑘 − 𝜀𝑖 𝑗𝑘𝑊

𝑗

−1𝐵
𝑘
1 − 𝜀𝑖 𝑗𝑘𝑣 𝑗1𝐵

𝑘
−1 + 𝑒𝑖𝑅𝑎𝑇3−

−𝑅𝑎1

(
0.71(𝜕𝑖𝑇3 + ∇𝑖𝑇1) +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗 (𝜕𝑘𝑇3 + ∇𝑘𝑇1)

)
− 𝑣𝑖3 + 𝜕

2
𝑘𝑣

𝑖
3 + 2𝜕𝑘∇𝑘𝑣

𝑖
1 + ∇2

𝑘𝑊
𝑖
−1,

𝜕𝑡𝑇3 + 𝜕𝑇𝑇−1 − 2.1𝑃𝑟−1 (𝜕2
𝑘𝑇3 + 2𝜕𝑘∇𝑘𝑇1 + ∇2𝑇−1) =

= −1.47(𝑊 𝑘
−1𝜕𝑘𝑇3 +𝑊 𝑘

−1∇𝑘𝑇1 + 𝑣𝑘0𝜕𝑘𝑇2 + 𝑣𝑘0∇𝑘𝑇0 + 𝑣𝑘1∇𝑘𝑇1+

+𝑣𝑘1∇𝑘𝑇−1 + 𝑣𝑘2𝜕𝑘𝑇0) + 𝑣𝑧3 +
5
3
𝑃𝑟−1𝜉𝜀𝑖 𝑗𝑘 (𝜕𝑖𝑇0 (𝜕 𝑗𝐵𝑘

3 + ∇ 𝑗𝐵
𝑘
1 )+

+𝜕𝑖𝑇1𝜕 𝑗𝐵
𝑘
2 + 𝜕𝑖𝑇2 (𝜕 𝑗𝐵𝑘

1 + ∇ 𝑗𝐵
𝑘
−1) + 𝜕𝑖𝑇3𝜕 𝑗𝐵

𝑘
0 ) −

5
3
𝑃𝑟−1𝜉𝑒𝑖𝜀𝑖 𝑗𝑘∇ 𝑗𝐵

𝑘
2 , (59)

𝜕𝑡𝐵
𝑖
3 + 𝜕𝑇𝐵

𝑖
−1 = −𝜀𝑖 𝑗𝑘 (𝜕 𝑗𝐸 𝑘

3 + ∇ 𝑗𝐸
𝑘
1 ),

𝜀𝑖 𝑗𝑘 (𝜕 𝑗𝐵𝑘
3 + ∇ 𝑗𝐵

𝑘
1 ) = −𝑣𝑖1,

𝜕𝑖𝑣
𝑖
3 + ∇𝑖𝑣

𝑖
1 = 0, 𝜕𝑖𝐵

𝑖
3 + ∇𝑖𝐵

𝑖
1 = 0.

The fundamental secular equations that describe the development of large-scale disturbances in a stratified plasma with a
vertical external magnetic field are obtained by averaging this system of equations over fast variables:

𝜕𝑇𝑊
𝑖
−1 + ∇𝑘

(
𝑣𝑘0𝑣

𝑖
0

)
= −∇𝑖𝑃1 − 𝐸

𝑖

1 + ∇2
𝑘𝑊

𝑖
−1, (60)

𝜕𝑇𝑇−1 − 2.1𝑃𝑟−1∇2𝑇−1 = −1.47∇𝑘

(
𝑣𝑘0𝑇0

)
, (61)

𝜕𝑇𝐵
𝑖
−1 = −𝜀𝑖 𝑗𝑘∇ 𝑗𝐸

𝑘

1 . (62)
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APPENDIX B. SMALL-SCALE FIELDS
Let us now examine the zero-order equations in 𝑅, presented in Appendix A (see Eq. (6)). By introducing the

differential operators
𝐷𝑊 = 𝜕𝑡 + 1 − 𝜕2 +𝑊 𝑘

−1𝜕𝑘 , 𝐷𝑇 = 𝜕𝑡 + 1.47𝑊 𝑘
−1𝜕𝑘 − 2.1𝑃𝑟−1𝜕2, (63)

the system (6) can be conveniently rewritten in the following form:

𝐷𝑊𝑣
𝑖
0 = −𝜕𝑖𝑃0 − 𝐷𝜀𝑖 𝑗𝑘𝑣 𝑗0𝑒𝑘 + 𝑒𝑖𝑅𝑎𝑇0 − 𝑅𝑎1

(
0.71𝜕𝑖𝑇0 +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗𝜕𝑘𝑇0

)
+ 𝐹𝑖

0 (64)

𝐷𝑇𝑇0 = 𝑒𝑘𝑣
𝑘
0 (65)

𝜕𝑖𝑣
𝑖
0 = 𝜕𝑘𝐵

𝑘
0 = 𝜕𝑖𝐹

𝑖
0 = 0 (66)

By substituting Eq. (65) into Eq. (64) and applying the solenoidality condition for the fields (Eq. (66)), we obtain the
following expression for the pressure 𝑃0:

𝑃0 = 𝑃1𝑢0 + 𝑃2𝑣0 + 𝑃3𝑤0 (67)

where
𝑣𝑥0 = 𝑢0, 𝑣

𝑦

0 = 𝑣0, 𝑣
𝑧
0 = 𝑤0,

𝑃1 =
𝐷𝜕𝑦

𝜕2 , 𝑃2 = −𝐷𝜕𝑥
𝜕2 , 𝑃3 = 𝑅𝑎

𝜕𝑧

𝐷𝑇𝜕
2
− 0.71

𝑅𝑎1

𝐷𝑇

.

Utilizing the representation given in Eq. (67), the pressure term in Eqs. (64) can be eliminated, yielding the system of
equations that governs the velocity fields in the zeroth-order approximation:

(
𝐷𝑊 + 𝑝1𝑥

)
𝑢0 + (𝑝2𝑥 + 𝐷) 𝑣0 +

(
𝑝3𝑥 + 𝐷𝑅𝑥

)
𝑤0 = 𝐹𝑥

0 ,(
𝑝1𝑦 − 𝐷

)
𝑢0 +

(
𝐷𝑊 + 𝑝2𝑦

)
𝑣0 +

(
𝑝3𝑦 + 𝐷𝑅𝑦

)
𝑤0 = 𝐹

𝑦

0 ,

𝑝1𝑧𝑢0 + 𝑝2𝑧𝑣0 +
(
𝐷𝑊 + 𝑝3𝑧 −

𝑅𝑎

𝐷𝑇

+ 𝐷𝑅𝑧

)
𝑤0 = 0,

(68)

where

𝐷𝑅𝑥 =
𝑅𝑎1

𝐷𝑇

(
0.71𝜕𝑥 −

3
2
𝜉𝐷𝜕𝑦)

)
, 𝐷𝑅𝑦 =

𝑅𝑎1

𝐷𝑇

(
0.71𝜕𝑦 +

3
2
𝜉𝐷𝜕𝑥

)
, 𝐷𝑅𝑧 = 0.71𝑅𝑎1

𝜕𝑧

𝐷𝑇

,

𝑝1𝑥 = 𝜕𝑥𝑃1, 𝑝2𝑥 = 𝜕𝑥𝑃2, 𝑝3𝑥 = 𝜕𝑥𝑃3, 𝑝1𝑦 = 𝜕𝑦𝑃1, 𝑝2𝑦 = 𝜕𝑦𝑃2, 𝑝3𝑦 = 𝜕𝑦𝑃3,

𝑝1𝑧 = 𝜕𝑧𝑃1, 𝑝2𝑧 = 𝜕𝑧𝑃2, 𝑝3𝑧 = 𝜕𝑧𝑃3.

The solution of the system of equations (68) can be obtained by applying Cramer’s rule:

𝑢0 =
1
Δ

(
𝑑1 · 𝐹𝑥

0 + 𝑑2 · 𝐹𝑦

0

)
, 𝑣0 =

1
Δ

(
𝑑3 · 𝐹𝑥

0 + 𝑑4 · 𝐹𝑦

0

)
, 𝑤0 =

1
Δ

(
𝑑5 · 𝐹𝑥

0 + 𝑑6 · 𝐹𝑦

0

)
. (69)

where

𝑑1 =

(
𝐷𝑊 + 𝑝2𝑦

) (
𝐷𝑊 + 𝑝3𝑧 −

𝑅𝑎

𝐷𝑇

+ 𝐷𝑅𝑧

)
− 𝑝2𝑧

(
𝑝3𝑦 + 𝐷𝑅𝑦

)
,

𝑑2 =

(
𝑝3𝑥 + 𝐷𝑅𝑥

)
𝑝2𝑧 − (𝑝2𝑥 + 𝐷)

(
𝐷𝑊 + 𝑝3𝑧 −

𝑅𝑎

𝐷𝑇

+ 𝐷𝑅𝑧

)
,

𝑑3 =

(
𝑝3𝑦 + 𝐷𝑅𝑦

)
𝑝1𝑧 −

(
𝑝1𝑦 − 𝐷

) (
𝐷𝑊 + 𝑝3𝑧 −

𝑅𝑎

𝐷𝑇

+ 𝐷𝑅𝑧

)
,

𝑑4 =

(
𝐷𝑊 + 𝑝1𝑥

) (
𝐷𝑊 + 𝑝3𝑧 −

𝑅𝑎

𝐷𝑇

+ 𝐷𝑅𝑧

)
−

(
𝑝3𝑥 + 𝐷𝑅𝑥

)
𝑝1𝑧 ,

𝑑5 =
(
𝑝1𝑦 − 𝐷

)
𝑝2𝑧 −

(
𝐷𝑊 + 𝑝2𝑦

)
𝑝1𝑧 , 𝑑6 = (𝑝2𝑥 + 𝐷) 𝑝1𝑧 −

(
𝐷𝑊 + 𝑝1𝑥

)
𝑝2𝑧 .

Here, the symbol Δ denotes the determinant of the system of equations (68):

Δ =

(
𝐷𝑊 + 𝑝1𝑥

)
· 𝑑1 + (𝑝2𝑥 + 𝐷) · 𝑑3 +

(
𝑝3𝑥 + 𝐷𝑅𝑥

)
· 𝑑5. (70)
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All operators involved in (69)-(70) are mutually commutative, which simplifies the evaluation of these expressions. To
compute expressions (69)-(70), we rewrite the external force (12) in complex form:

F0 = i
𝑓0
2
𝑒𝑖𝜙2 + j

𝑓0
2
𝑒𝑖𝜙1 + 𝑐.𝑐. (71)

It follows from substituting (71) into (69)-(70) that the operators act on the exponential term from the left, such that
𝑝 exp(𝑖kx − 𝑖𝜔0𝑡) = exp(𝑖kx − 𝑖𝜔0𝑡)𝑝(k,−𝜔0). Therefore, we make use of the following properties of the eigenfunctions
𝑝(k,−𝜔0):

𝐷𝑊,𝑇𝑒
𝑖𝜙1 = 𝑒𝑖𝜙1𝐷𝑊,𝑇 (k1,−𝜔0) , 𝐷𝑊,𝑇𝑒

𝑖𝜙2 = 𝑒𝑖𝜙2𝐷𝑊,𝑇 (k2,−𝜔0) ,

Δ𝑒𝑖𝜙1 = 𝑒𝑖𝜙1Δ (k1,−𝜔0) , Δ𝑒𝑖𝜙2 = 𝑒𝑖𝜙2Δ (k2,−𝜔0) . (72)

To simplify the formulas, let us set 𝑘0 = 1 and 𝜔0 = 1, introducing new designations:

𝐷𝑊 (k1,−𝜔0) = 𝐷∗
𝑊1

= 3 − 𝑖 (1 −𝑊1) ,

𝐷𝑊 (k2,−𝜔0) = 𝐷∗
𝑊2

= 3 − 𝑖 (1 −𝑊2) ,

𝐷𝑇 (k1,−𝜔0) = 𝐷∗
𝑇1

= 4.2𝑃𝑟−1 − 𝑖 (1 − 1.47𝑊1) ,

𝐷𝑇 (k2,−𝜔0) = 𝐷∗
𝑇2

= 4.2𝑃𝑟−1 − 𝑖 (1 − 1.47𝑊2) . (73)

Δ (k1,−𝜔0) = Δ∗
1 = 𝐷∗

𝑊1

(
𝐷∗

𝑊1

(
𝐷∗

𝑊1
− 𝑅𝑎

2𝐷∗
𝑇1

)
+ 𝐷2

2

(
1 + 3

2
𝜉
𝑖𝑅𝑎1
𝐷∗

𝑇1

))
,

Δ (k2,−𝜔0) = Δ∗
2 = 𝐷∗

𝑊2

(
𝐷∗

𝑊2

(
𝐷∗

𝑊2
− 𝑅𝑎

2𝐷∗
𝑇2

)
+ 𝐷2

2

(
1 + 3

2
𝜉
𝑖𝑅𝑎1
𝐷∗

𝑇2

))
.

Here and throughout the text, the superscript ∗ denotes complex conjugation. Based on formulas (6), we can determine
the zeroth-order approximation of the velocity field:

𝑢0 = 𝑒𝑖𝜙2
𝑓0
2

𝐴∗
2

𝐷∗
𝑊2
𝐴∗

2 +
𝐷2

2 𝐵
∗
2

− 𝑒𝑖𝜙1
𝑓0
2

𝐷/2
𝐷∗

𝑊1
𝐴∗

1 +
𝐷2

2 𝐵
∗
1

+ 𝑐.𝑐. =

= 𝑢01𝑒
𝑖𝜙1 + 𝑢02𝑒

−𝑖𝜙1 + 𝑢03𝑒
𝑖𝜙2 + 𝑢04𝑒

−𝑖𝜙2 , (74)

𝑣0 = 𝑒𝑖𝜙2
𝑓0
2

𝐷/2
𝐷∗

𝑊2
𝐴∗

2 +
𝐷2

2 𝐵
∗
2

+ 𝑒𝑖𝜙1
𝑓0
2

𝐴∗
1

𝐷∗
𝑊1
𝐴∗

1 +
𝐷2

2 𝐵
∗
1

+ 𝑐.𝑐. =

= 𝑣01𝑒
𝑖𝜙1 + 𝑣02𝑒

−𝑖𝜙1 + 𝑣03𝑒
𝑖𝜙2 + 𝑣04𝑒

−𝑖𝜙2 , (75)

𝑤0 = 𝑒𝑖𝜙1
𝑓0
2

𝐷/2
𝐷∗

𝑊1
𝐴∗

1 +
𝐷2

2 𝐵
∗
1

− 𝑒𝑖𝜙2
𝑓0
2

𝐷/2
𝐷∗

𝑊2
𝐴∗

2 +
𝐷2

2 𝐵
∗
2

+ 𝑐.𝑐. =

= 𝑤01𝑒
𝑖𝜙1 + 𝑤02𝑒

−𝑖𝜙1 + 𝑤03𝑒
𝑖𝜙2 + 𝑤04𝑒

−𝑖𝜙2 , (76)

where

𝐴∗
1,2 = 𝐷∗

𝑊1,2
− 𝑅𝑎

2𝐷∗
𝑇1,2

, 𝐵∗
1,2 = 1 + 3

2
𝜉
𝑖𝑅𝑎1
𝐷∗

𝑇1,2

. (77)

The indices (1, 2) in the expressions for 𝐴, 𝐵 are written in accordance with the components 𝑊1 and 𝑊2. The following
relationships are satisfied between the velocity components:

𝑢02 = (𝑢01)∗ , 𝑢04 = (𝑢03)∗ , 𝑣02 = (𝑣01)∗ , 𝑣04 = (𝑣03)∗ , 𝑤02 = (𝑤01)∗ , 𝑤04 = (𝑤03)∗ .
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APPENDIX C. CALCULATIONS OF THE REYNOLDS STRESSES
In order to close the system of equations (30)-(31) governing the evolution of large-scale velocity fields W−1, it is

essential to compute correlators of the following form:

𝑇31 = 𝑤0𝑢0 = 𝑤01 (𝑢01)∗ + (𝑤01)∗ 𝑢01 + 𝑤03 (𝑢03)∗ + (𝑤03)∗ 𝑢03 (78)

𝑇32 = 𝑤0𝑣0 = 𝑤01 (𝑣01)∗ + (𝑤01)∗ 𝑣01 + 𝑤03 (𝑣03)∗ + (𝑤03)∗ 𝑣03 (79)

Substituting the expressions for the small-scale velocity fields (6)-(6) into the definitions (78)-(79) yields the following:

𝑇31 = −
𝑓 2
0
8

𝐷 (𝐴2 + 𝐴∗
2)���𝐷𝑊2𝐴2 + 𝐷2

2 𝐵2

���2 −
𝑓 2
0
8

𝐷2���𝐷𝑊1𝐴1 + 𝐷2

2 𝐵1

���2 , (80)

𝑇32 = −
𝑓 2
0
8

𝐷 (𝐴1 + 𝐴∗
1)���𝐷𝑊1𝐴1 + 𝐷2

2 𝐵1

���2 −
𝑓 2
0
8

𝐷2���𝐷𝑊2𝐴2 + 𝐷2

2 𝐵2

���2 . (81)

Using the expressions given in (77), we derive a set of useful relations for calculating 𝑇31 and 𝑇32 as follows:��𝐷𝑊1,2

��2 = 𝐷𝑊1,2𝐷
∗
𝑊1,2

= 9 + (1 −𝑊1,2)2 = 9 +𝑊2
1,2,

��𝐷𝑇1,2

��2 = 𝐷𝑇1,2𝐷
∗
𝑇1,2

=

= 17.64𝑃𝑟−2 + (1 − 1.47𝑊1,2)2 = 17.64𝑃𝑟−2 + ˜̃
𝑊

2
1,2,��𝐴1,2

��2 = 𝐴1,2𝐴
∗
1,2,

��𝐴1,2
��2 = 9 +𝑊2

1,2 +
𝑅𝑎

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

(
𝑃𝑟𝑊1,2

˜̃
𝑊1,2 − 12.6 + 𝑅𝑎

4

)
,

��𝐵1,2
��2 = 𝐵1,2𝐵

∗
1,2,

��𝐵1,2
��2 = 1 + 𝜉𝑅𝑎1

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

(
9
4
𝜉𝑅𝑎1 − 3𝑃𝑟 ˜̃𝑊1,2

)
,

𝐴1,2 + 𝐴∗
1,2 = 6 − 4.2𝑅𝑎

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

, Π1,2 =

����𝐷𝑊1,2𝐴1,2 +
𝐷2

2
𝐵1,2

����2 =

= 36(1 −𝑊1,2)2 +
[
𝐷2

2
+ 9 − (1 −𝑊1,2)2

]2

+ Ξ
(1)
1,2 − 𝜉Ξ(2)

1,2 + 𝜉Ξ(3)
1,2 ,

Ξ
(1)
1,2 = 𝑅𝑎(9 + (1 −𝑊1,2)2) ·

𝑃𝑟𝑊1,2
˜̃
𝑊1,2 − 12.6 + 𝑅𝑎

4

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

,

Ξ
(2)
1,2 =

3
2
𝐷2𝑅𝑎1 ·

25.2𝑊1,2 + 𝑃𝑟 (9 −𝑊2
1,2)

˜̃
𝑊1,2

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

, Ξ
(3)
1,2 =

𝐷4

4
· 𝑅𝑎1

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

(
9
4
𝜉𝑅𝑎1 − 3𝑃𝑟 ˜̃𝑊1,2

)
.

Substituting the above relations into (80)-(81), we derive the general form of the Reynolds stress expressions:

𝑇31 = −
𝑓 2
0
8
𝐷2

Π1
−
𝑓 2
0
2
𝐷

Π2

(
3
2
− 1.05𝑅𝑎

17.64 + 𝑃𝑟2 (1 − 1.47𝑊2)2

)
,

𝑇32 = −
𝑓 2
0
8
𝐷2

Π2
+
𝑓 2
0
2
𝐷

Π1

(
3
2
− 1.05𝑅𝑎

17.64 + 𝑃𝑟2 (1 − 1.47𝑊1)2

)
. (82)

At small𝑊1,2, module Π1,2 can be expanded into a series in𝑊1,2:

Π−1
1,2 ≈ 𝛼0 + 𝛼𝑊1,2, 𝛼0 =

4
(𝐷2 + 16)2 + 144 + 40𝑎0𝑅𝑎 + 4𝜉 (𝑚0 − 𝑐0)

,

𝛼 =
32(20 − 𝐷2 + 𝑅𝑎(𝑎0 − 5𝑏0) + 𝜉

2 (𝑑0 − 𝑛0))[
(𝐷2 + 16)2 + 144 + 40𝑎0𝑅𝑎 + 4𝜉 (𝑚0 − 𝑐0)

]2 , (83)
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where
𝑎0 =

𝑃𝑟 − 12.6 + 𝑅𝑎/4
17.64 + 𝑃𝑟2 , 𝑏0 =

2.94𝑃𝑟2 (𝑃𝑟 − 12.6 + 𝑅𝑎/4)
(17.64 + 𝑃𝑟2)2 − 2.47𝑃𝑟

17.64 + 𝑃𝑟2 ,

𝑐0 =
3
2
𝐷2𝑅𝑎1 ·

25.2 + 8𝑃𝑟
17.64 + 𝑃𝑟2 , 𝑑0 =

3
2
𝐷2𝑅𝑎1 ·

[
2.94𝑃𝑟2 (25.2 + 8𝑃𝑟)

(17.64 + 𝑃𝑟2)2 − 25.2 + 9.76𝑃𝑟
17.64 + 𝑃𝑟2

]
,

𝑚0 =
𝐷4

4
𝑅𝑎1 ·

9
4𝜉𝑅𝑎1 − 3𝑃𝑟
17.64 + 𝑃𝑟2 , 𝑛0 =

𝐷4

4
𝑅𝑎1 ·


4.41𝑃𝑟

17.64 + 𝑃𝑟2 +
2.94𝑃𝑟2

(
9
4𝜉𝑅𝑎1 − 3𝑃𝑟

)
(17.64 + 𝑃𝑟2)2

 .
At small values of𝑊1.2, the Reynolds stresses given in (6) take the following form:

𝑇31 ≈ −
𝑓 2
0
8
𝐷2 (𝛼0 + 𝛼𝑊1) −

𝑓 2
0
2
𝐷 (𝛼0𝜎0 + (𝛼𝜎0 − 𝛼0𝜎1)𝑊2),

𝑇32 ≈ −
𝑓 2
0
8
𝐷2 (𝛼0 + 𝛼𝑊2) +

𝑓 2
0
2
𝐷 (𝛼0𝜎0 + (𝛼𝜎0 − 𝛼0𝜎1)𝑊1), (84)

𝜎0 =
3
2
− 1.05𝑅𝑎

17.64 + 𝑃𝑟2 , 𝜎1 =
3.087𝑅𝑎𝑃𝑟2

(17.64 + 𝑃𝑟2)2 .

Expression (6) for the coefficient of the 𝛼-effect shows great similarity to the previously obtained results for a rotating
viscous fluid [16], the key difference being that the parameter 𝐷 is due to the Lorentz force rather than the Coriolis force
as in Ref. [16].
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ВИНИКНЕННЯ ВЕЛИКОМАСШТАБНИХМАГНIТО-ВИХРОВИХ СТРУКТУР
ДРIБНОМАСШТАБНОЮ СПIРАЛЬНIСТЮ В СТРАТИФIКОВАНIЙ ЗАМАГНIЧЕНIЙ ПЛАЗМI

М.Й. Копп1, В.В. Яновський1,2
1Iнститут монокристаллов, Нацiональна Академiя Наук України, пр. Науки 60, 61072, Харкiв, Україна

2Харкiвський нацiональний унiверситет iм. В.Н. Каразiна, майдан Свободи, 4, 61022, Харкiв, Україна
В роботi виявлено новий тип нестiйкостi, що призводить до генерацiї вихрових рухiв та магнiтних полiв у плазмовому шарi з
постiйним градiєнтом температури пiд дiєю однорiдної сили тяжiння та вертикального магнiтного поля. Аналiз проводиться
у межах електронної магнитогидродинамики (ЕМГД) з урахуванням термомагнiтних ефектiв. Отримано нову великомасшта-
бну нестiйкiсть типу 𝛼-ефекту, що сприяє генерацiї великомасштабних вихрових i магнiтних полiв. Ця нестiйкiсть виникає
внаслiдок спiльної дiї зовнiшнього однорiдного магнiтного поля, орiєнтованого перпендикулярно до плазмового шару, i мало-
масштабної спiральної сили. Зовнiшня сила моделюється як джерело дрiбномасштабних коливань у полi швидкостi електронiв,
що характеризується малим числом Рейнольдса (𝑅 ≪ 1). Наявнiсть малого параметра у системi дозволяє застосувати метод
багатомасштабних асимптотичних розкладiв. У третьому порядку за кiлькiстю Рейнольдса отримано систему нелiнiйних рiв-
нянь, що описують еволюцiю великомасштабних вихрових та магнiтних збурень. Обговорюється також новий ефект, пов’язаний
iз впливом термосили (ефект Нернста) на великомасштабну нестiйкiсть. Показано, що збiльшення параметра Нернста змен-
шує коефiцiєнт 𝛼 i тим самим пригнiчує розвиток великомасштабної нестiйкостi. За допомогою чисельного аналiзу отримано
стацiонарнi рiшення рiвнянь вихрового та магнiтного динамо у виглядi локалiзованих структур спiрального типу.
Ключовi слова: електронна магнiтогiдродинамiка; багатомасштабнi асимптотичнi розкладання; дрiбномасштабна сила;
𝛼-ефект; локалiзованi структури
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This paper retrieves shock waves and solitary wave solutions to the modified Kawahara equation in the presence of perturbation terms.
The generalized 𝐺′/𝐺–expansion approach is the adopted integration methodology for the model. The parameter constraints naturally
emerge during the course of derivation of the solutions which guarantee the existence of such waves.
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1. INTRODUCTION
There are several popular models in shallow water waves that govern the dynamics of such flows along lake shores

and sea beaches. A few such popular models are the Korteweg-de Vries (KdV) equation, the modifies KdV equation,
Boussinesq equation, Camassa–Holmes equation [1–15]. Such equations have been studied in detail over the years and
their solitary wave solutions as well as shock-like wave solutions have been retrieved. Their conservation laws have also
been identified.

One additional model to address shallow water waves, is the Kawahara equation (KE) and the modified KE that
predominantly models dispersive shallow water waves [1]. Lately, KE was addressed using the generalized 𝐺′/𝐺–
expansion approach, in presence of perturbation terms [6]. It must be noted that there exists several integration schemes
that can recover solirary waves, shock waves and soliton solutions to a wide range of nonlinear evolution equations [16–20].
The current paper is a follow–up of the previous work on KE. The present work addresses the perturbed modified KE and
the solitary waves and shock-like wave solutions are recovered with the implementation of the generalized𝐺′/𝐺–expansion
scheme. The parameter constraints also emerged from this integration scheme during the course of the derivation of the
solutions. Such parameter restrictions are an important necessity for the existence of the waves. The details are enumerated
and exhibited in the rest of the paper.

The Kawahara and modified Kawahara equations are canonical dispersive models describing shallow-water, plasma,
and optical pulse dynamics. Exact tanh- and coth-type solutions have been obtained for unperturbed or standard forms
using analytic schemes such as generalized (𝐺′/𝐺), mapping, and bilinear-type methods [21–24]. In contrast, the present
study investigates the perturbed modified Kawahara equation, where additional Hamiltonian-type and mixed-gradient
terms modify the cubic nonlinearity and the fifth-order dispersion. Compared to earlier works, our analysis yields closed-
form hyperbolic families constrained by explicit algebraic relations and reveals two distinct regimes (𝑚 = 1) and (𝑚 = 2)
that differ in parameter freedom and tunability. We also examine how the discriminant (Θ = 𝜆2 − 4𝜇) governs wave width
and admissible parameter space (see Sections 2–4).

1.1. GOVERNING MODEL
An essential model for explaining the propagation of long waves in a variety of physical media, including shal-

low water, plasma, and nonlinear optical systems, is the modified KE, a dispersive nonlinear evolution equation that
incorporates both cubic nonlinearity and higher-order dispersion. Richer wave phenomena, such as oscillatory solitons,
non-monotonic wave profiles, and multi-soliton interactions, can be modeled with the modified form of the KE, which
takes into account more intricate nonlinear interactions than the conventional version. Recent research has concentrated
on achieving exact analytical solutions, such as solitary, periodic, and rational-type waves. Furthermore, the impact of
nonlinearities and higher-order effects on the dynamics of wave propagation in realistic settings has been investigated
using numerical simulations, modulation theory, and stability analysis.
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KE is structured as:
𝑞𝑡 + 𝑎1𝑞

2𝑞𝑥 + 𝑎2𝑞𝑥𝑥𝑥 − 𝑎3𝑞𝑥𝑥𝑥𝑥𝑥 = 0, (1)
here 𝑎1, 𝑎2, 𝑎3 represents cubic nonlinear coefficient, third-order and fifth order dispersion coefficient respectively.

By adding physically relevant perturbation terms, we have introduced a perturbed form of the modified KE for the first
time in this work. In practical physical contexts, when idealized assumptions are not true, these perturbations take into
consideration the impacts of inhomogeneity, dissipation, and external influences. In addition to increasing the model’s
mathematical complexity, the addition of these components offers a more precise framework for examining the stability,
evolution, and interaction of nonlinear dispersive waves in less than ideal circumstances.

The modified KE with perturbation terms is introduced as follows:

𝑞𝑡 + 𝑎1𝑞
2𝑞𝑥 + 𝑎2𝑞𝑥𝑥𝑥 − 𝑎3𝑞𝑥𝑥𝑥𝑥𝑥 = 𝜃𝑞𝑥𝑞𝑥𝑥 + 𝛿𝑞𝑚𝑞𝑥 + Λ𝑞𝑞𝑥𝑥𝑥

+ 𝜈𝑞𝑞𝑥𝑞𝑥𝑥 + 𝜉𝑞𝑥𝑞𝑥𝑥𝑥 + 𝜓𝑞𝑥𝑥𝑥𝑥𝑥 + 𝜅𝑞𝑞𝑥𝑥𝑥𝑥𝑥 ,
(2)

with 𝑞 = 𝑞(𝑥, 𝑡), depicts amplitude of wave with independent variables 𝑡 and 𝑥 act as representing temporal and spatial
variables.

2. MATHEMATICAL ANALYSIS
The perturbed modified KE (2) is investigated herein to find analytical solutions that demonstrate the impact of

nonlinearity and higher-order dispersion in the presence of external factors. This analytical framework enables the
construction of solitary, periodic, and rational-type solutions, providing deeper insight into how cubic nonlinearity,
higher-order dispersion, and perturbative effects jointly influence the stability, amplitude, and velocity of nonlinear wave
structures. We have implemented the generalized 𝐺′/𝐺–expansion technique to model (2) in order to derive its exact
solutions.

The considered model with perturbation terms (2) has been reduced to an ordinary differential equation in terms
of the new variable 𝐻 (𝜎) by applying the wave transformation 𝜎 = −𝜒𝑡 + 𝑥 and assuming a solution of the form with
𝑞(𝑥, 𝑡) = 𝐻 (𝜎). This transformation simplifies the analysis of wave structures by basically converting the spatiotemporal
dynamics into a stationary frame moving with wave speed 𝜒. Consequently, the following ordinary differential equation
is reduced from the modified KE (2):

(−𝑎3 − 𝜅 𝐻 (𝜎) − 𝜓) 𝐻′′′′′ (𝜎) + (𝑎2 − 𝜉 𝐻′ (𝜎) − Λ𝐻 (𝜎)) 𝐻′′′ (𝜎) + (−𝜈 𝐻 (𝜎) − 𝜃) 𝐻′ (𝜎) 𝐻′′ (𝜎)

+
(
−𝜒 − 𝛿 (𝐻 (𝜎))𝑚 + 𝑎1𝐻 (𝜎)2

)
𝐻′ (𝜎) = 0.

(3)

A thorough strategic investigation of equation (2) has been done by utilizing the generalized 𝐺′/𝐺–expansion technique.
Then, after it yielded several solitary and shock-like wave solutions, equipped with free parameters. Given the complexity,
nonlinearity, and computing demands of the model (2), this study is aimed at 𝑚 = 1, 2, resulting into a variety of solutions
with structured dynamics.

3. SOLITARY AND SHOCK-LIKE (SMOOTH KINK) WAVES
Throughout this section, the term “shock-like” refers to a shock-like smooth kink with a continuous tanh-type core.

The steepness, proportional to
√
Θ, is constraint-limited in Case I and tunable in Case II.

Case I (𝑚 = 1): condition (Θ > 0)
Equation (2) has been recasted as follows after considering m = 1 for find its explicit solutions:

(−𝑎3 − 𝜅 𝐻 (𝜎) − 𝜓) 𝐻′′′′′ (𝜎) + (𝑎2 − 𝜉 𝐻′ (𝜎) − Λ𝐻 (𝜎)) 𝐻′′′ (𝜎) + (−𝜈 𝐻 (𝜎) − 𝜃) 𝐻′ (𝜎) 𝐻′′ (𝜎)

+
(
−𝜒 − 𝛿 𝐻 (𝜎) + 𝑎1𝐻 (𝜎)2

)
𝐻′ (𝜎) = 0.

(4)

The following solution structure for equation (4) has been generated by appraising the homogeneous balance between its
highest order derivative term and extremely nonlinear terms:

𝐻 (𝜎) = 𝑃0 + 𝑃1

(
𝐺′ (𝜎)
𝐺 (𝜎)

)
+ 𝑃2

(
𝐺′ (𝜎)
𝐺 (𝜎)

)2
, (5)

with 𝐺 (𝜎) satisfying following auxiliary equation:

𝐺′′ (𝜎) + 𝜆𝐺′ (𝜎) + 𝜇𝐺 (𝜎) = 0, (6)
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here, 𝑃𝑖 , 𝑖 = 0, 1, 2 are arbitrary parameters that need to be determined algebraically in mean computational process. The
exact solutions of equation (2) are obtained by inserting the expression from (5) into equation (4), along with auxiliary
condition (6) and followed by systematic collection of coefficients of similar powers of

(
𝐺′ (𝜎)
𝐺 (𝜎)

)
. The following parameter

values are determined from the collection of algebraic relations, that this technique produced:

𝜈 = − 60𝜅
𝑃2

, 𝜉 = −10 𝜅
√
Θ, 𝑃1 =

(
𝜆 +

√
Θ

)
𝑃2,

𝜃 =
61 𝜅 𝑃2𝜆

2+24 𝜅 𝑃2𝜆
√
Θ−168 𝜓−48 𝜅 𝑃0−196 𝜇 𝜅 𝑃2−3Λ 𝑃2−168 𝑎3

2𝑃2
,

𝑎1 =
3(21 𝜅 𝑃2𝜆

2+24 𝜅 𝑃2𝜆
√
Θ+Λ 𝑃2−48 𝑎3−48 𝜓−48 𝜅 𝑃0−36 𝜇 𝜅 𝑃2 )

𝑃2
2 ,

𝑎2 = −52 𝜇2𝜅 𝑃2 − 52 𝜇 𝑎3 + 𝜇Λ 𝑃2 − 52 𝜇 𝜓 + 13 𝑎3𝜆
2 + Λ 𝑃0 + 13𝜓 𝜆2 + 39 𝜇 𝜅 𝑃2𝜆

2 + 13 𝜅 𝑃0𝜆
2 − 52 𝜇 𝜅 𝑃0

−13/2 𝜅 𝑃2𝜆
4 − 13/2 𝜅 𝑃2𝜆

3√Θ + 26 𝜇 𝜅 𝑃2𝜆
√
Θ − 1/2Λ 𝑃2𝜆

2 − 1/2Λ 𝑃2𝜆
√
Θ,

𝛿 = − 𝑍1
𝑃2

2 , 𝜒 = − 𝑍2
2𝑃2

2 , Θ = 𝜆2 − 4 𝜇, (7)

with
𝑍1 = 2𝜇Λ𝑃2

2 + Λ𝑃2
2𝜆

2 + 24𝜓𝑃2𝜆
2 − 6Λ𝑃0𝑃2 + 24𝑎3𝑃2𝜆

2 − 384𝜇𝜓𝑃2

− 296𝜇2𝜅𝑃2
2 − 384𝜇𝑎3𝑃2 + 61𝜅𝑃2

2𝜆
4 − 98𝜇𝜅𝑃2

2𝜆
2 − 102𝜅𝑃0𝑃2𝜆

2

− 168𝜇𝜅𝑃0𝑃2 + 84𝜇𝜅𝑃2
2𝜆
√
Θ − 288𝜅𝑃0𝜆𝑃2

√
Θ

+ 51𝜅𝑃2
2𝜆

3√Θ − 144𝜓𝜆𝑃2
√
Θ − 144𝑎3𝜆𝑃2

√
Θ

+ 3Λ𝜆𝑃2
2
√
Θ + 288𝑃0𝑎3 + 288𝑃0𝜓 + 288𝑃2

0𝜅,

(8)

and
𝑍2 = − 13𝑃3

2𝜆
5𝜅
√
Θ − 24𝜓𝜆3𝑃2

2
√
Θ − 24𝑎3𝜆

3𝑃2
2
√
Θ

− Λ𝜆3𝑃3
2
√
Θ + 552𝜇𝜅𝑃0𝜆𝑃

2
2
√
Θ − Λ𝜆4𝑃3

2

− 13𝑃3
2𝜆

6𝜅 + 288𝑃2
0𝑎3 + 288𝑃2

0𝜓 + 288𝑃3
0𝜅 + 48𝜓𝑃2

2𝜆
4 + 10Λ𝑃3

2𝜇
2

− 6Λ𝑃2
0𝑃2 + 96𝜇2𝑎3𝑃

2
2 + 344𝜇3𝑃3

2𝜅 + 96𝜇2𝜓𝑃2
2 + 48𝑎3𝑃

2
2𝜆

4

− 340𝜇𝜅𝑃0𝑃
2
2𝜆

2 + 6Λ𝜆𝑃2
2𝑃0

√
Θ − 2Λ𝜆𝑃3

2𝜇
√
Θ

− 432𝜅𝑃2
0𝜆𝑃2

√
Θ − 288𝑃0𝜓𝜆𝑃2

√
Θ − 288𝑃0𝑎3𝜆𝑃2

√
Θ

+ 384𝜇𝑎3𝜆𝑃
2
2
√
Θ − 118𝜇𝜅𝑃3

2𝜆
3√Θ + 248𝜇2𝜅𝑃3

2𝜆
√
Θ

+ 78𝜅𝑃0𝜆
3𝑃2

2
√
Θ + 384𝜇𝜓𝜆𝑃2

2
√
Θ − 144𝜇𝜓𝑃2

2𝜆
2

− 144𝜇𝑎3𝑃
2
2𝜆

2 + 48𝑃0𝑃2𝜆
2𝑎3 + 48𝑃0𝑃2𝜆

2𝜓 − 768𝑃0𝜇𝑎3𝑃2

− 768𝑃0𝜇𝜓𝑃2 + 170𝜅𝑃0𝑃
2
2𝜆

4 − 496𝜇2𝜅𝑃0𝑃
2
2 + 418𝜅𝜇2𝑃3

2𝜆
2

− 92𝜇𝜅𝑃3
2𝜆

4 − 78𝜅𝑃2
0𝑃2𝜆

2 − 552𝜅𝑃2
0𝑃2𝜇 + 2Λ𝑃0𝑃

2
2𝜆

2

+ 4𝜇Λ𝑃0𝑃
2
2,

(9)

equipped with 𝜓, Λ, 𝑃0, 𝑃2, 𝜅 as all free parameters in acquired parameter values.

By replicating (5) using the solution of equation (6) and parameter values found in (7), and then transforming to original
variables 𝑥, 𝑡, the following solution structure for equation (2) has been retrieved.

The solution structure for equation (2) has been determined as follows:

𝑞 (𝑥, 𝑡) =
(
𝜆 +

√
Θ

)
𝑃2

©­­«
√
Θ

(
𝑤1 sinh

(
1
2 𝜎

√
Θ

)
+ 𝑤2 cosh

(
1
2 𝜎

√
Θ

))
2𝑤2 sinh

(
1
2 𝜎

√
Θ

)
+ 2𝑤1 cosh

(
1
2 𝜎

√
Θ

) − 1
2
𝜆
ª®®¬

+ 𝑃0 + 𝑃2
©­­«

√
Θ

(
𝑤1 sinh

(
1
2 𝜎

√
Θ

)
+ 𝑤2 cosh

(
1
2 𝜎

√
Θ

))
2𝑤2 sinh

(
1
2 𝜎

√
Θ

)
+ 2𝑤1 cosh

(
1
2 𝜎

√︁
𝜆2 − 4 𝜇

) − 1
2
𝜆
ª®®¬

2

,

(10)

here 𝑤1, 𝑤2 as arbitrary parameters and 𝜎 = 𝑥 − 𝜒𝑡 with 𝜒 given by (7).

Category–I: We have set up parameters choices as 𝑤1 to zero and 𝑤2 ≠ 0 in order to find singular solitary wave



Solitary Wave and Shock Wave Perturbation for the Modified Kawahara Equation
215

EEJP. 4 (2025)

solutions from the obtained solution (10) for equation (2). The resultant solution offers important information on the
behavior of solution structures under particular physical conditions, featuring soliton dynamics.

𝑞(𝑥, 𝑡) = 𝑃0 +
(
𝜆 +

√
Θ

)
𝑃2

(
1
2
√
Θ coth

(
1
2
(𝑥 − 𝜒𝑡)

√
Θ

)
− 1

2
𝜆

)
+ 𝑃2

(
1
2
√
Θ coth

(
1
2
(𝑥 − 𝜒𝑡)

√
Θ

)
− 1

2
𝜆

)2
.

(11)

Category–II: By taking a particular values into consideration for the parameters 𝑤1 ≠ 0 and 𝑤2 = 0, the shock-like wave
solutions are retrieved from the resultant solution (10). This results into a term elimination, making the expression simpler
and increases the dominance of nonlinear steepening, as a crucial aspect of shock-like wave production.

𝑞(𝑥, 𝑡) = 𝑃0 +
(
𝜆 +

√
Θ

)
𝑃2

(
1
2
√
Θ tanh

(
1
2
(𝑥 − 𝜒𝑡)

√
Θ

)
− 1

2
𝜆

)
+ 𝑃2

(
1
2
√
Θ tanh

(
1
2
(𝑥 − 𝜒𝑡)

√
Θ

)
− 1

2
𝜆

)2
.

(12)

All hyperbolic-type families considered here require Θ > 0. The algebraic consistency relations summarized in (7) tie
𝜆 and 𝜇 (hence Θ) to the remaining coefficients; therefore Θ is not freely tunable but acts as a constraint on admissible
parameter sets. Consequently, the inverse width

√
Θ—and thus the steepness of the coth/tanh cores in (10)–(12)—is fixed

once a feasible coefficient set is chosen.
It is worth noting that the equation (3) results into more computationally demanding analysis and a significantly more

complex equation structure due to the higher-order nonlinear term interacting with both third- and fifth-order dispersive
effects, as well as the introduced perturbation terms. This enhances the degree of involved computations, leading to larger
algebraic systems with multiple coupled nonlinear parameter relations that require higher end symbolic computations.
Thus next in this study, equation (2) is analyzed with 𝑚 = 2 for generating new exact solutions.

Case II (𝑚 = 2): condition (Θ > 0)
The equation (3) is recited as follows with 𝑚 = 2:

(−𝑎3 − 𝜅 𝐻 (𝜎) − 𝜓) 𝐻′′′′′ (𝜎) + (𝑎2 − 𝜉 𝐻′ (𝜎) − Λ𝐻 (𝜎)) 𝐻′′′ (𝜎) + (−𝜈 𝐻 (𝜎) − 𝜃) 𝐻′ (𝜎) 𝐻′′ (𝜎)

+
(
−𝜒 − 𝛿 (𝐻 (𝜎))2 + 𝑎1𝐻 (𝜎)2

)
𝐻′ (𝜎) = 0.

(13)

The homogeneous balancing method is being utilized for equation (13) in order to find a balance between the equation’s
highest-order linear derivative term and its highest-order nonlinear term. As a result, following solutions structure is being
proposed for equation (13):

𝐻 (𝜎) = 𝑃0 + 𝑃1

(
𝐺′ (𝜎)
𝐺 (𝜎)

)
+ 𝑃2

(
𝐺′ (𝜎)
𝐺 (𝜎)

)2
, (14)

Here, 𝐺 (𝜎) is a function that satisfies the auxiliary equation (6), while 𝑃𝑖 , 𝑖 = 0, 1, 2 are arbitrary parameters that must be
found via algebraic calculations. The expression (14) is substituted into equation (13) along with the auxiliary condition
(6) and thenafter coefficients of like powers of

(
𝐺′ (𝜎)
𝐺 (𝜎)

)
are collected, to produce the exact solutions of equation (2). As

stated below, this process produces a set of algebraic relations from which the parameter values required for the solutions
to exist are derived:

𝜒 = 1
252 𝑃2

(
276𝜆4𝜇 𝜅 − 312 𝜃 𝜆2𝜇 − 23𝜆6𝜅 + 39 𝜃 𝜆4 + 624 𝜃 𝜇2 − 1104𝜆2𝜇2𝜅 + 1472 𝜇3𝜅

)
,

𝜈 = − 60𝜅
𝑃2

, 𝜓 = − 32
21 𝜅 𝜇 𝑃2 + 8

21 𝜅 𝜆2𝑃2 − 1
84 𝜃 𝑃2 − 𝑎3,

𝜉 = −10 𝜅
√
Θ,Λ = − 1

3 𝜅
(
4 𝜇 − 𝜆2) ,

𝛿 =
−148𝜆2𝜅+592 𝜅 𝜇−12 𝜃+7 𝑎1𝑃2

7𝑃2
,

𝑃0 = − 7
12 𝜆

2𝑃2 + 4/3 𝑃2𝜇 +
(

1
2 𝜆 + 1

2
√
Θ

)
𝑃2𝜆, 𝑃1 =

(
𝜆 +

√
Θ

)
𝑃2,

𝑎2 = − 1
252 𝑃2

(
712 𝜅 𝜆4 + 39 𝜃 𝜆2 + 11392 𝜅 𝜇2 − 156 𝜃 𝜇 − 5696 𝜅 𝜆2𝜇

)
,

(15)

accompanied by 𝑃2, 𝑎3, 𝑎1, 𝜅, 𝜃 as free parameters in obtained parameter values.

The relations reported in (15) allow additional freedom in choosing 𝜆 and 𝜇, soΘ = 𝜆2−4𝜇 becomes a design-tunable
quantity. Accordingly,

√
Θ directly controls the front steepness and packet width in the expressions (16)–(18): as Θ ↓ 0+

the structures broaden, whereas larger Θ yields steeper, more localized profiles.
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Rewriting (14) using the solution of equation (6) and parameter values (15), we have yielded the following solution
structure for equation (2)

𝑞 (𝑥, 𝑡) =
(
𝜆 +

√
Θ

)
𝑃2

©­­«
√
Θ

(
𝑤1 sinh

(
1
2 𝜎

√
Θ

)
+ 𝑤2 cosh
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1
2 𝜎

√
Θ

))
2𝑤2 sinh
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1
2 𝜎

√
Θ

)
+ 2𝑤1 cosh

(
1
2 𝜎

√
Θ

) − 1
2
𝜆
ª®®¬

+ 𝑃0 + 𝑃2
©­­«
√
Θ

(
𝑤1 sinh

(
1
2 𝜎

√
Θ

)
+ 𝑤2 cosh

(
1
2 𝜎

√
Θ

))
2𝑤2 sinh

(
1
2 𝜎

√
Θ

)
+ 2𝑤1 cosh

(
1
2 𝜎

√
Θ

) − 1
2
𝜆
ª®®¬

2

,

(16)

here 𝑤1, 𝑤2 as arbitrary parameters and 𝜎 = 𝑥 − 𝜒𝑡 with 𝜒 given by (15).

Category–I: The singular solitary wave solutions are recovered from obtained solution (16) for equation (2), by tak-
ing into account 𝑤1 = 0 and 𝑤2 ≠ 0 as follows:

𝑞(𝑥, 𝑡) = 𝑃0 +
(
𝜆 +

√
Θ

)
𝑃2

(
1
2
√
Θ coth

(
1
2
(𝑥 − 𝜒𝑡)

√
Θ

)
− 1

2
𝜆

)
+ 𝑃2

(
1
2
√
Θ coth

(
1
2
(𝑥 − 𝜒𝑡)

√
Θ

)
− 1

2
𝜆

)2
.

(17)

Category–II: Embedding the parameter values as 𝑤1 ≠ 0 and 𝑤2 = 0 in solution (16), we have procured the shock-like
wave solutions for equation (2) as described below:

𝑞(𝑥, 𝑡) = 𝑃0 +
(
𝜆 +

√
Θ

)
𝑃2

(
1
2
√
Θ tanh

(
1
2
(𝑥 − 𝜒𝑡)

√
Θ

)
− 1

2
𝜆

)
+ 𝑃2

(
1
2
√
Θ tanh

(
1
2
(𝑥 − 𝜒𝑡)

√
Θ

)
− 1

2
𝜆

)2
.

(18)

4. RESULTS AND DISCUSSION
In Case I (𝑚 = 1), perturbation-induced algebraic constraints fix (𝜆, 𝜇,Θ), producing specialized localized or kink-

type profiles with fixed inverse width (
√
Θ). In Case II (𝑚 = 2), Θ remains tunable, enabling continuous adjustment of

front steepness and packet width for a given background level (𝑃0). Physically, Case I corresponds to a calibrated medium
with fixed material or flow properties, whereas Case II models a design scenario where front thickness and localization
can be engineered.

Now, we interpret the closed–form families obtained in Secs. 3, quantify the parameter regimes under which each
family exists, and relate the formulas to their physical content and to limiting or benchmark cases. Throughout we use the
traveling coordinate 𝜎 = 𝑥 − 𝜒𝑡 with wave speed 𝜒 given by (7) for 𝑚 = 1 and by (15) for 𝑚 = 2, and the discriminant
Θ = 𝜆2 − 4𝜇. The hyperbolic families discussed below require Θ > 0.

For both 𝑚 = 1 and 𝑚 = 2 we obtained the ansatz

𝐻 (𝜎) = 𝑃0 + 𝑃1

(
𝐺′

𝐺

)
+ 𝑃2

(
𝐺′

𝐺

)2
, 𝐺′′ + 𝜆𝐺′ + 𝜇𝐺 = 0,

with 𝑃1 = (𝜆 +
√
Θ)𝑃2 and Θ = 𝜆2 − 4𝜇. When Θ > 0 the auxiliary solution yields the hyperbolic representation (10) (for

𝑚 = 1) and (16) (for 𝑚 = 2). Two canonical parameter selections

(𝑤1, 𝑤2) = (0, 𝑤2 ≠ 0), (𝑤1 ≠ 0, 0)

produce, respectively, the singular solitary profiles (11), (17) (with a coth core) and the shock–type or kink–like profiles
(12), (18) (with a tanh core). A rigid shift 𝜎 ↦→ 𝜎 −𝜎0 (absorbed into 𝑤1, 𝑤2) relocates the crest or front without altering
amplitude or width.

The roles of the key parameters can be summarized as follows in prose. The coefficient 𝑃2 scales the overall amplitude
of the nonlinear part, while 𝑃0 sets the background offset level. The parameter

√
Θ controls the inverse width of the wave;

larger values of
√
Θ yield narrower structures. The sign and magnitude of 𝜅 couple the field 𝑞 into the highest–order

dispersion and appear explicitly in the algebraic constraints (7) and (15), thereby tuning both the steepening (shock) and
localization (solitary) tendencies.
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(a) Three-dimensional representation of
𝑞(𝑥, 𝑡). (b) Contour illustration of 𝑞(𝑥, 𝑡).
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(c) Cross-sectional profiles at several 𝑡
values.

Figure 1. Category–I singular solitary wave pattern derived from Eq. (11).

Figure 1 illustrates the Category–I singular solitary wave solution of the perturbed modified Kawahara equation.
Subfigure 1a shows the three-dimensional structure of 𝑞(𝑥, 𝑡), highlighting its strongly localized profile with sharp varia-
tions in amplitude. The contour plot in Subfigure 1b further emphasizes the persistence of this localized structure across
the spatiotemporal domain. Cross-sectional in Subfigure 1c confirm that the wave maintains its shape over time, a defining
property of solitary waves. Physically, these solutions represent stable energy packets arising from the balance between
higher-order dispersion and cubic nonlinearity, relevant in shallow water dynamics, plasma propagation, and nonlinear
optics.

(a) Three-dimensional visualization of
𝑞(𝑥, 𝑡). (b) Contour depiction of 𝑞(𝑥, 𝑡).
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(c) Snapshots of wave profiles for multi-
ple 𝑡 values.

Figure 2. Category–II shock-type wave solution corresponding to Eq. (12).

Figure 2 presents the Category–II shock-type wave solution. The three-dimensional visualization in Subfigure 2a
reveals the steep front of the shock profile, while the contour map in Subfigure 2b shows the abrupt transitions characteristic
of nonlinear steepening. Subfigure 2c illustrate how these sharp wave fronts evolve over time. Physically, such solutions
capture the role of strong nonlinearity and perturbative effects that drive shock formation, representing phenomena like
breaking waves in hydrodynamics, compression waves in plasmas, and intense pulse propagation in nonlinear optical
media. Together, Figures 1 and 2 demonstrate the contrasting interplay of dispersion and nonlinearity: the former yielding
localized solitary waves, and the latter producing steep shock fronts under stronger nonlinear dominance. Figures 1 and
2 display the two canonical families for 𝑚 = 1 (the 𝑚 = 2 families have the same functional form with the speed and
coefficients given by (15)).

The solution (11) (and (17)) is localized with an algebraic singularity at the center when 𝜎 = 0, reflecting a pole
inherited from coth. Physically, this corresponds to a strongly localized structure supported by the balance of cubic
nonlinearity and fifth–order dispersion, with the perturbations (𝜃, 𝛿,Λ, 𝜈, 𝜉, 𝜓, 𝜅) renormalizing the amplitude, width, and
speed. The singularity can be shifted off the physical domain by choosing the origin so that 𝜎 ≠ 0 in the region of interest.

The solution (12) (and (18)) is a monotone front connecting two asymptotic states determined by (𝑃0, 𝑃2, 𝜆,Θ).
Nonlinear steepening is reinforced by the mixed–gradient terms (𝜃, 𝜈, 𝜉) and the 𝑞–dependent highest–order dispersion
(𝜅), while fifth–order dispersion (𝑎3 and 𝜓) spreads the front, yielding a finite transition width proportional to Θ−1/2.

To clearly visualize the contrast between both studied regimes, a concise comparative summary is provided in Table
titled ”Summary Table: Case I vs. Case II”. This table highlights the algebraic, structural, and physical differences between
the two cases, emphasizing how tunability of Θ and wave localization properties distinguish the calibrated (Case I) and
design–oriented (Case II) media.
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Summary Table: Case I vs. Case II

Aspect Case I (𝑚 = 1) Case II (𝑚 = 2)
Consistency relations Algebraic constraints summarized near

Eq. (7)
Algebraic constraints summarized near
Eq. (15)

Discriminant Θ = 𝜆2 − 4𝜇 Constrained by coefficients; Θ > 0 restricts
admissible sets

Effectively design-tunable (choose 𝜆, 𝜇 so
Θ > 0)

Core profile coth (singular solitary) Eq. (11); tanh
(shock-like) Eq. (12)

coth Eq. (17); tanh Eq. (18)

Width / steepness Fixed by
√
Θ (set by constraints) Tunable via

√
Θ (design parameter)

Wave speed 𝜒 Explicit relation from Eq. (7) Explicit relation from Eq. (15)
Physical meaning Calibrated medium with fixed material/flow

properties (restricted set)
Design/tunable medium where front thick-
ness and localization can be engineered

In the unperturbed limit, setting all perturbations to zero,

𝜃 = 𝛿 = Λ = 𝜈 = 𝜉 = 𝜓 = 𝜅 = 0,

reduces (2) to the modified Kawahara equation (1). In this limit the algebraic constraints collapse to the familiar relations
for the pure modified KE and the hyperbolic families reduce to the standard tanh and coth profiles reported for the
(modified) KE [1].

From (7) (for 𝑚 = 1) and (15) (for 𝑚 = 2), the wave speed 𝜒 is an explicit polynomial in (𝜆, 𝜇) modulated by 𝜅 and by
the perturbation strengths. Two robust qualitative trends hold. Increasing

√
Θ, which produces narrower waves, increases

|𝜒 | when the 𝑘5 dispersion (𝑎3 + 𝜓) reinforces the cubic term (same sign), and decreases |𝜒 | otherwise. This echoes the
linear dispersion balance visible in 𝜔(𝑘). Moreover, positive 𝜅, which strengthens the 𝑞–dependence in 𝑞𝑥𝑥𝑥𝑥𝑥 , increases
the magnitude of both steepening (Category–II) and localization (Category–I), manifesting in larger |𝜉 | and |𝜈 | via (7)
and (15).

For reproducibility it is useful to summarize the most influential controls in narrative form. The wave width is set
by

√
Θ, and choosing 𝜆, 𝜇 with 𝜆2 −4𝜇 large produces narrow structures. The amplitude scales with 𝑃2, while 𝑃0 shifts the

baseline asymptote. The choice (𝑤1, 𝑤2) = (1, 0) yields shock–type tanh fronts, while (0, 1) yields singular solitary coth
pulses. The high–𝑘 tailing is controlled by 𝑎3 +𝜓, and changing its sign flips the curvature of 𝜔(𝑘) and the propensity for
oscillatory overshoots near the front.

The perturbed terms in (2) also play clear roles. The terms 𝜃𝑞𝑥𝑞𝑥𝑥 and 𝜈𝑞𝑞𝑥𝑞𝑥𝑥 enhance local steepening and promote
shock formation (Category–II). The couplings Λ𝑞𝑞𝑥𝑥𝑥 and 𝜉𝑞𝑥𝑞𝑥𝑥𝑥 mediate nonlinear dispersive effects, modifying the
front width and generating mild oscillations depending on the sign of 𝑎3 + 𝜓. The 𝜓𝑞𝑥𝑥𝑥𝑥𝑥 term renormalizes the
fifth–order dispersion in the linear limit, directly influencing the selection of

√
Θ via the consistency relations. Finally,

𝜅𝑞𝑞𝑥𝑥𝑥𝑥𝑥 couples amplitude to the highest–order dispersion and provides an additional lever to stabilize or destabilize
steep structures without changing the background. These roles align with the contrasting morphologies shown in Figs. 1–2:
dispersion versus nonlinearity determines whether energy remains localized (singular solitary waves) or organizes into a
persistent transition layer (shock or kink).

5. CONCLUSIONS
The current paper recovered singular solitary wave and shock-like wave solutions to the perturbed modified KE. The

perturbation terms are of Hamiltonian type which made this retrieval possible. The generalized 𝐺′/𝐺–expansion scheme
has made this retrieval possible along with the parameter constraints that guarantees the existence of such waves. It is
visibly obvious of the shortcoming with this integration algorithm. The scheme fails to recover solitary wave solutions
to the model. Therefore, later additional integration approaches will be adopted that would recover the solitary wave
solutions in addition to the singular solitary waves and shock-like wave solutions. Such studies are under way and the
results will be disseminated shortly.
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The present problem investigates Stimulated Raman Scattering of high-power beam in Collisional magnetoplasma. The laser beam 
has two propagation modes viz. extraordinary and ordinary modes, while its transition along the direction of static magnetic fields. 
The carrier redistribution affected due to modification in static magnetic field. The carrier redistribution will take place due to non-
uniform heating, which results in variation in density profile in a transverse direction to axis of main beam. This density profile 
further causes modification in all the three waves involved in the process viz. incident beam, electron plasma wave and scattered 
wave. Here, 2nd order ODE for beam waists of pump beam, EPW and back-scattered wave and also expression for reflectivity will be 
obtained and further their numerical simulations will be carried out in order to explore impact of change in laser and plasma 
parameters and also externally applied magnetic field on beam waists of various waves and on SRS back-reflectivity. 
Keywords: Stimulated Raman Scattering; Static magnetic field; Non-uniform heating; Scattered Wave; Back-reflectivity 
PACS: 52.38.Hb, 52.35.Mw, 52.38.Dx 

1. INTRODUCTION
New developments in laser technology resulted in generation of laser beams of small duration having peak power 

up to petawatt range are available [1, 2]. Researchers are interested in exploring lasers interaction with plasma medium 
as a result of its diverse applications such as particle acceleration, laser driven fusion and new radiation sources [3-8]. 
Much deeper lasers transition through plasmas is chief concern in accomplishing success in these applications. Further, 
laser-plasma interaction generates various instabilities such as self-focusing, scattering instabilities, harmonic 
generation and two plasmon decay [9-22]. The laser energy is not properly transferred to plasma medium due to these 
instabilities [23]. The coupling efficiency between lasers and plasma can be improved by controlling these instabilities. 
Self-focusing and Scattering instabilities play crucial role in laser driven fusion. In Self-focusing, laser beam transition 
through plasmas results in change in plasma’s refractive index [24]. The density gradient created in plasmas is main 
cause behind self-focusing. There is rise in beam’s irradiance due to self-focusing. Self-focusing causes variation in 
beam’s angular divergence. [25]. SRS causes the breaking of main beam in to electron plasma wave (EPW) and 
scattered wave. SRS causes reduction in amount of laser energy transferred to plasma target. Excited EPW due to SRS 
has phase velocity equivalent to light’s speed.  It could in fact accelerate electrons that can preheat fusion fuel and 
reduce implosion efficiency.  There is major effect of focusing of beam on SRS back-reflectivity [26]. The reduction in 
laser-plasma coupling efficiency is found due to both self-focusing and SRS. It is essential to have some control on 
these instabilities for success of inertial confinement fusion. Researchers have investigated Self-focusing and Scattering 
instabilities of intense laser pulses in plasmas in the past [27-34]. Barr et al. [35] investigated that SRS growth rate is 
greatly affected due to self-focusing. Short et al. [36] investigated effect of self-focusing on SRS instability in laser 
driven plasmas. In their investigation, they find that self-focusing greatly enhances SRS growth rate. The novel method 
has been proposed for control of SRS and electron production by Dodd and Umstadter [37]. Kalmykova and Shvets 
have explored SRS of laser radiation in deep plasma channels [38]. They explored that there is great reduction in 
growth rate of SRS on account of localization of EPW. The impact of beam irradiance and electron temperature on SRS 
growth rate has been explored with Kirkwood et al. [39]. The impact of filamentation of beam on SRS has been 
explored using non-paraxial approach by using Sharma et al. [40]. The impact of filamentation of beam on EPW and 
SRS back-reflectivity has been explored by Purohit et al. [41]. Singh and Walia [42] investigated effect of self-focusing 
on SRS and observed that focusing tendency of waves involved enhances SRS back-reflectivity. Rawat et al. [43] 
explored joint action of relativistic-ponderomotive forces on ring rippled beam transition in unmagnetized plasma and 
its effect on SRS. In their case, SRS back-reflectivity is greatly reduced at larger intensities. Sharma et al. [44] explored 
SRS of dark hollow Gaussian beam in unmagnetized plasma. They found that there is focusing tendency and scattered 
power are decreased with increment in hollow Gaussian beam’s order. In fact, it has been revealed from the literature 
that various beam profiles have been used for exploring self-focusing and SRS [45-57]. But, impact of self-focusing on 
SRS has not been investigated yet in cylindrical Gaussian beams in collisional magnetized plasma. So, in present work, 
we are investigating for first time impact of self-focusing of Gaussian laser beams in collisional magnetized plasma. 
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EPW (𝜔, 𝑘) interacts with main beam (𝜔଴,𝑘଴) to produce scattered wave (𝜔଴ − 𝜔, 𝑘଴ − 𝑘). The case of backscattering 
for 𝑘 ≈ 2𝑘଴ is considered in present case. The carrier’s redistribution take place due to non-uniform heating thereby 
causing self-focusing. There is modification in dispersion relation connected with EPW and hence EPW also gets self-
focused under suitable boundary conditions. Irradiance associated with scattered wave is directly proportional to 
irradiance related with main wave and EPW. So, self-focusing results in improvement in back-scattering.   
 

2. SOLUTION OF WAVE EQUATION FOR PUMP WAVE 
The laser beam having Gaussian profile is assumed to be propagating along z-axis. The direction of static 

magnetic field is also along z-axis.  There are basically two transition modes viz. extraordinary mode and ordinary 
mode. The RH circularly polarized beam is described by extra-ordinary mode while LH circularly polarized beam is 
described by ordinary mode.  

 𝐴ଵ = 𝐸௫ + 𝑖𝐸௬ (1) 

 𝐴ଶ = 𝐸௫ − 𝑖𝐸௬ (2) 

The field vector ′𝐸′ of beam obeys following wave equation  

 ∇ଶ𝐸 − ∇ሺ∇ ∙ 𝐸ሻ + ఠమ௖మ 𝜖𝐸 = 0 (3) 

In Component form, we can express Eq. (3) as  

 డమாೣడ௭మ + డమாೣడ௬మ − డడ௫ ቀడா೤డ௬ + డா೥డ௭ ቁ = −ఠమ௖మ ሺ𝜖𝐸ሻ௫ (4) 

 డమா೤డ௭మ + డమா೤డ௫మ − డడ௬ ቀడாೣడ௫ + డா೥డ௭ ቁ = −ఠమ௖మ ሺ𝜖𝐸ሻ௬ (5) 

 డమா೥డ௭మ + డమா೥డ௬మ − డడ௭ ቀడாೣడ௫ + డா೤డ௬ ቁ = −ఠమ௖మ ሺ𝜖𝐸ሻ௭ (6) 

Here, we have considered that ሺ∇ ∙ 𝐸ሻ = 0 and further we make use of the assumption that alteration in field along z-
direction is more rapid.  
 
 డா೥డ௭ = − ଵఢ೥ ቀ𝜖௫ డாೣడ௫ + 𝜖௫ డா೤డ௫ + 𝜖௬ డாೣడ௬ + 𝜖௬ డா೤డ௬ ቁ (7) 
 
The term ±𝑖 is multiplied with Eq. (7) and resultant is added to Eq. (4), one can easily get 

 డమ஺భడ௭మ + ଵଶ ቀ1 + ఢబశఢబ೥ቁ ቀ డమడ௫మ + డమడ௬మቁ 𝐴ଵ + ଵଶ ቀ−1 + ఢబశఢబ೥ቁ ቀ డడ௫ + 𝑖 డడ௬ቁଶ 𝐴ଶ + ఠమ௖మ × ሾ𝜖଴ା + 𝜙ାሺ𝐴ଵ𝐴ଵ∗ ,𝐴ଶ𝐴ଶ∗ሻሿ𝐴ଵ = 0 (8) 

 డమ஺మడ௭మ + ଵଶ ቀ1 + ఢబషఢబ೥ቁ ቀ డమడ௫మ + డమడ௬మቁ 𝐴ଶ + ଵଶ ቀ−1 + ఢబషఢబ೥ቁ ቀ డడ௫ − 𝑖 డడ௬ቁଶ 𝐴ଵ + ఠమ௖మ × ሾ𝜖଴ି + 𝜙ିሺ𝐴ଵ𝐴ଵ∗ ,𝐴ଶ𝐴ଶ∗ሻሿ𝐴ଶ = 0 (9) 

Eqs. (8) and (9) are coupled with each other, but there exists a very weak coupling between them. So, one of the term 
can be set equal to zero. Assuming  𝐴ଶ ≈ 0. We can write for Eq. (8) as  

 డమ஺భడ௭మ + ଵଶ ቀ1 + ఢబశఢబ೥ቁ ቀ డమడ௫మ + డమడ௬మቁ 𝐴ଵ + ఠమ௖మ × ሾ𝜖଴ା + 𝜙ାሺ𝐴ଵ𝐴ଵ∗ ,𝐴ଶ𝐴ଶ∗ሻሿ𝐴ଵ = 0 (10) 

In Eq. (10), if we substitute  𝐴ଵ = 𝐴 𝑒𝑥𝑝ሾ𝑖ሺ𝜔𝑡 − 𝑘ା𝑧ሻሿ and further make use of WKB approach, one can get  

 −2𝑖𝑘ା డ஺డ௭ + ଵଶ ቀ1 + ఌబశఌబ೥೥ቁ ቀడమ஺డ௫మ + డమ஺డ௬మቁ + ఠమ௖మ 𝜙ାሺ𝐴𝐴∗ሻ𝐴 = 0 (11) 

In Eq. (11), 𝜀଴ା = 1 − ఠ೛మఠబሺఠబିఠ೎ሻ , 𝜀଴௭௭ = 1 − ఠ೛మఠబమ.  𝜔௣ = ටସగ௡೚௘మ௠  is known as plasma frequency. The nonlinear part of 
the dielectric function for collisional magnetized plasma may be expressed as [58] 

 𝜑ାሺ|𝐴.𝐴∗|ሻ = ఠ೛మఠబ ሺఠబିఠ೎ሻ ൮ 1 − ଶଶା ഀಲ.ಲ∗൬భషഘ೎ഘబ൰మ
൲ (12) 

In Eq. (12), the nonlinear coefficient ′𝛼′ is expressed as α = ଷ଼ ቀெ௠ቁ α଴ with 𝛼଴ = ௘మ଼௠ఠబమ௄ಳ బ். Here, electronic mass, ionic 
mass, Boltzmann constant and plasma equilibrium temperature are expressed as  𝑚, M, 𝐾஻ and 𝑇଴ respectively. Now, 
following [58-59], Eq. (11) has solution given by 
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 𝐴 = 𝐴଴ሺ𝑟, 𝑧ሻ𝑒ି௜௞బௌሺ௥,௭ሻ (13) 

 𝐴଴ଶ = ாబబమ௙బమ 𝑒𝑥𝑝 ቂ− ௥మ௥బమ௙బమቃ (14) 

 𝑆 = ଵଶ 𝑟ଶ ଵቀଵା ഄ೚ഄ೚೥೥ቁ ଵ௙బ ௗ௙బௗ௭ + 𝛷଴(𝑧) (15) 

 𝑘଴ = ఠబ௖ ඥ𝜀଴ (16) 

In Eq. (15), the symbols ' 𝑆 ' and 𝛷଴(𝑧) denote Eikonal of beam and phase shift respectively. The phase shift analysis is 
not required in current problem. The beam width 𝑓଴ satisfied the following 2nd order differential equation,  

 ௗమ௙ௗ௭మ = ቀ1 + ఌ೚ఌೀ೥೥ቁଶ ଵ௥బర௙బయ௞బమ − ቀ1 + ఌ೚ఌೀ೥೥ቁ ఠ೛మఌ೚ఠబమ ఈாబబమ௥బమ௙య ൮ ቀଵିഘ೎ഘబቁቆଶቀଵିഘ೎ഘబቁమାഀಶబబమ೑మ ቇమ൲ (17) 

In Eq. (17), ‘z’ denotes propagation axis. The boundary condition used in this case is 𝑓 = 1 and ௗ௙ௗ௭ = 0 at z=0. 
 

3. Electron Plasma Wave Excitation 
Nonlinear interaction of EPW and pump wave leads to its excitation.  The excitation process of EPW in collisional 
magnetized plasma can be studied through following standard equations;  
(a) Continuity Equation  

 డேడ௧ + ∇ ∙ (𝑁𝑉) = 0 (18) 

(b) Equation of motion 

 𝑚ቂడ௏డ௧ + (𝑉 ∙ ∇)𝑉ቃ = −𝑒 ቂ𝐸 + ଵ௖ (𝑉 × 𝐵)ቃ − 2𝛤𝑚𝑉 − ఊ೐ே ∇𝑃 (19) 

(c) Poisson’s equation 

 ∇ ∙ 𝐸 = −4𝜋𝑒𝑁 (20) 

In above Eqs., instantaneous electron density, fluid velocity, Landau damping parameter and pressure term are 
expressed by 𝑁, 𝑉, 𝛤,  and 𝑃 respectively. For electron gas  𝛾௘ = 3. Further, by using perturbation analysis and standard 
approach, one can obtain the following equation denoting the change in electron density as  

 డమ௡డ௧మ + 2𝛤 డ௡డ௧ − 3𝑣௧௛ଶ ∇ଶ𝑛 + 𝜔௣ଶ ேబ೐ேబ 𝑛 = 0 (21) 

Following [58-59], Solution of Eq. (21) is shown as  

 𝑛 = 𝑛଴(𝑟, 𝑧)𝑒𝑥𝑝ሾ𝑖(𝜔𝑡 − 𝑘(𝑧 + 𝑆(𝑟, 𝑧)))ሿ (22) 

 𝑛଴ଶ = ௡బబమ௙మ exp ቀ− ௥మ௔మ௙మ − 2𝑘௜𝑧ቁ (23) 

 𝑆 = ଵଶ 𝑟ଶ ଵ௙ ௗ௙ௗ௭ + 𝛷(𝑧) (24) 

 𝜔ଶ = 𝜔௣ଶ ேబ೐ேబ + 3𝑘ଶ𝑣௧௛ଶ  (25) 

In above Eqs., 𝑘,  𝜔 and 𝑆 are for wave vector, angular frequency and Eikonal for the EPW. Here, 𝑘௜ is damping factor 
and  ′𝑓′  denotes beam width of EPW and 2nd order ODE satisfied by it is expressed as 

 ௗమ௙ௗ௭మ = ଵ௞మ௔ర௙య − ఠ೛మ௙ଷ௞మ௩೟೓మ ఈாబబమଶ௥బమ௙బర ൮ ቀଵିഘ೎ഘబቁቆଶቀଵିഘ೎ഘబቁమାഀಶబబమ೑మ ቇమ൲ (26) 

Here, the boundary condition used is 𝑓 = 0 and ௗ௙ௗ௭ = 0 at 𝑧 = 0 
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4. Stimulated Raman Scattering 
The total field vector 𝐸் is expressed as sum of fields of main wave  𝐸 and scattered wave  𝐸௦. i.e. 

 𝐸் = 𝐸 exp(𝑖𝜔଴𝑡) + 𝐸௦ exp(𝑖𝜔௦𝑡) (27) 

Now, field vector 𝐸் satisfies following wave equation 

 ∇ଶ𝐸் − ∇(∇ ∙ 𝐸்) = ଵ௖మ డమா೅డ௧మ + ସగ௖మ డ௃೅డ௧  (28) 

Here, 𝐽் is known as total current density. One can equate the scattered frequency terms to obtain following differential 
equation  

 ∇ଶ𝐸௦ + ఠೞమ௖మ ቂ1 − ఠ೛మఠೞమ ேబ೐ఊேబቃ 𝐸௦ = ቂ ఠ೛మఠೞ௡∗ଶ௖మఠబேబቃ 𝐸௜ − ∇(∇ ∙ 𝐸௜) (29) 

Eq. (29) has solution given by  

 𝐸௦ = 𝐸௦଴(𝑟, 𝑧)𝑒ା௜௞ೞబ௭ + 𝐸௦ଵ(𝑟, 𝑧)𝑒ି௜௞ೞభ௭ (30) 

Where 𝑘ௌ଴ଶ = ఠೄమ௖మ ൤1 − ఠ೛మఠೄమ൨ = ఠೞమ௖మ 𝜖ௌ଴, with 𝜔ௌ = 𝜔଴ − 𝜔 and 𝑘ௌଵ = 𝑘଴ − 𝑘. 
Now, substituting Eq. (30) in Eq. (29), one can obtain  

 −𝑘ௌ଴ଶ 𝐸ௌ଴ଶ + 2𝑖𝑘ௌ଴ డாೄబడ௭ + ቀడమாೄబడ௥మ + ଵ௥ డாೄబడ௥ ቁ + ఠೄమ௖మ ൤𝜖ௌ଴ + ఠ೛మఠೄమ ቀ1 − ேబ೐ேబ ቁ൨ 𝐸ௌ଴ = 0 (31) 

 −𝑘ௌଵଶ 𝐸ௌଵଶ + 2𝑖𝑘ௌଵ డாೄభడ௭ + ቀడమாೄభడ௥మ + ଵ௥ డாೄభడ௥ ቁ + ఠೄమ௖మ ൤𝜖ௌ଴ + ఠ೛మఠೄమ ቀ1 − ேబ೐ேబ ቁ൨ 𝐸ௌଵ = ଵଶ ఠ೛మ௖మ ௡∗ேబ ఠೄఠబ 𝐸଴𝑒𝑥𝑝(−𝑖𝑘଴𝑆଴) (32) 

Now, solution of Eq. (32) is written as 

 𝐸ௌଵ = 𝐸ௌଵᇱ (𝑟, 𝑧)𝑒ି௜௞బௌబ (33) 

 
Now, put Eq. (33) in Eq. (32) and ignoring space derivatives 

 𝐸ௌଵᇱ = −ଵଶ ఠ೛మ௖మ ௡∗ேబ ఠೞఠబ ா෠ாబቈ௞ೞభమ ି௞ೞబమ ିഘ೛మ೎మ ቀଵିಿబ೐ಿబ ቁ቉ (34) 

Following [58-59], Eq. (31) has solution denoted as 

 𝐸ௌ଴ = 𝐸ௌ଴଴𝑒௜௞ೄబௌ೎ (35) 

 𝐸ௌ଴଴ଶ = ஻భమ௙ೄమ 𝑒𝑥𝑝 ቂ− ௥మ௕మ௙ೞమቃ (36) 

 𝑆௖ = ଵଶ 𝑟ଶ ଵ௙ೄ ௗ௙ೄௗ௭ + 𝛷ௌ(𝑧) (37) 

In Eq. (36), initial beam radius for scattered wave is denoted by 𝑏 and beam width of scattered wave is represented 
by 𝑓௦ and 2nd order ODE satisfies by it is represented as 

 ௗమ௙ೞௗ௭మ = ଵ௞ೞబమ ௕ర௙ೞయ − ఠ೛మఠೄమఌೞబ ఈாబబమ ௙ೞଶ௥బమ௙బర ൮ ቀଵିഘ೎ഘబቁቆଶቀଵିഘ೎ഘబቁమାഀಶబబమ೑మ ቇమ൲ (38) 

The boundary condition used in present case is 𝑓௦ = 0 and ௗ௙ೞௗ௭ = 0 at 𝑧 = 0. 
 

5. Back-reflectivity 
From Eq. (23), we find that EPW is damped as it transits through z-axis. So, scattered wave amplitude is decreased 

with increase in z. The boundary condition used is  

 𝐸௦ = 𝐸௦଴(𝑟, 𝑧)𝑒ା௜௞ೞబ௭ + 𝐸௦ଵ(𝑟, 𝑧)𝑒ି௜௞ೞభ௭ = 0 (39) 
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at 𝑧 = 𝑧௖. At 𝑧 = 𝑧௖, scattered wave amplitude becomes zero. 

 𝐵ଵ = ఠ೛మఠೞேబబଶ௖మఠబேబ ாబబ௘ష೔ೖ೔೥೎ቈ௞ೞభమ ି௞ೞబమ ିഘ೛మ೎మ ቀଵିಿబ೐ಿబ ቁ቉
௙ೞ(௭೎)௙ೞ(௭೎)௙(௭೎) ୣ୶୮ (ି௜(௞బௌబା௞ೞభ௭೎))ୣ୶୮ (ା௜(௞ೞబௌ೎ା௞ೞబ௭೎)) (40) 

With the condition that  ଵ௕మ௙ೞమ = ଵ௔మ௙మ + ଵ௥బమ௙బమ .   Now, SRS back-reflectivity is expressed as,
 

 𝑅 = ଵସ ቀఠ೛మ௖మ ቁଶ ቀఠೞఠబቁଶ ቀேబబேబ ቁଶ (௅భି௅మି௅య)
⎣⎢⎢
⎢⎡௞ೞభమ ି௞ೞమమ ିഘ೛మ೎మ ⎝⎜

⎛ଵି ൬భషഘ೎ഘబ൰ቆమ൬భషഘ೎ഘబ൰మశഀಶబబమ೑మ ቇమ⎠⎟
⎞
⎦⎥⎥
⎥⎤మ (41) 

Where 𝐿ଵ = ቀ ௙ೞ௙బ௙ቁ௭ୀ௭೎ଶ ଵ௙ೞమ 𝑒𝑥𝑝 ቀ−2𝑘௜𝑧௖ − ௥మ௕మ௙ೞమቁ, 

𝐿ଶ = −2 ቀ ௙ೞ௙బ௙ቁ௭೎ ଵ௙௙బ௙ೞ 𝑒𝑥𝑝 ൬− ௥మଶ௕మ௙ೞమ − ௥మଶ௔మ௙మ − ௥మଶ௥బమ௙ೞమ൰ 𝑒𝑥𝑝(−𝑘௜(𝑧 + 𝑧௖))𝐶𝑜𝑠(𝑘௦଴ + 𝑘௦ଵ)ሾ𝑧 − 𝑧௖ሿ,  𝐿ଷ = ଵ௙మ௙బమ 𝑒𝑥𝑝 ൬− ௥మ௔మ௙మ − ௥మ௥బమ௙ೞమ − 2𝑘௜𝑧௖൰. 

 
6. DISCUSSION 

Eqs. (17), (26), (38) and (41) can’t be solved analytically. So, RK4 method is used for doing their numerical 
calculations for the following well-established parameters;  𝛼𝐸଴଴ଶ = 3.0, 4.0, 5.0 ; ఠ೛మఠబమ = 0.10, 0.15, 0.20 ; ఠ೎ఠబ = 0.04, 0.08 and 0.12 

Eqs. (17), (26) and (38) are the 2nd order ODE representing the focusing/defocusing behavior of main beam, EPW 
and scattered wave as they transit inside plasma. In each equation, two terms are present on RHS of each equation. 1st 
term being diffractive term, while 2nd term being nonlinear refractive term. When 1st term is dominating, then 
defocusing of beams take place. When 2nd term is dominating, then focusing of beam takes place. It must also be noted 
that there is always change in relative magnitudes of these terms with propagation distance. All the equations have been 
numerically solved using RK4 method.  

Figures 1, 2 and 3 denote variation of beam widths 𝑓଴ , 𝑓 and 𝑓௦ with dimensionless propagation distance 𝜂(=𝑧/𝑘଴𝑟଴ଶ). Here, only change in beam intensity parameter 𝛼𝐸଴଴ଶ  is considered whereas other parameters are kept fixed. 
Here, 𝛼𝐸଴଴ଶ = 3.0, 4.0 and 5.0 are denoted by Black, Green and Red curves. The focusing tendency of various beams 
involved is decreased with increase in beam intensity 𝛼𝐸଴଴ଶ  as a result of supremacy of divergence term over converging 
term with rise in 𝛼𝐸଴଴ଶ  parameter. The refractive index gets reduced with rise in 𝛼𝐸଴଴ଶ  parameter thereby weakening 
beam focusing.  

Figures 4, 5 and 6 denote variation of beam widths 𝑓଴ , 𝑓 and 𝑓௦ with dimensionless propagation distance 𝜂(=𝑧/𝑘଴𝑟଴ଶ). Here, only change in plasma density parameter ఠ೛మఠబమ is considered whereas other parameters are kept fixed. 

Here, ఠ೛మఠబమ = 0.10, 0.15, 0.20  are denoted by Black, Green and Red curves. The focusing tendency of various beams is 

increased with increase in plasma density ఠ೛మఠబమ as a result of supremacy of converging term over diffraction term with rise 

in ఠ೛మఠబమ parameter. The refractive index gets enhanced with rise in ఠ೛మఠబమ parameter thereby strengthening beam focusing. 
Figures 7, 8 and 9 denote variation of beam widths 𝑓଴ , 𝑓 and 𝑓௦ with dimensionless propagation distance 𝜂(=𝑧/𝑘଴𝑟଴ଶ). Here, only change in cyclotron frequency parameter ఠ೎ఠబ is considered whereas other parameters are kept fixed. 

Here, ఠ೎ఠబ = 0.04, 0.08 and 0.12  are denoted by Black, Green and Red curves. The focusing tendency of various beams 

involved is increased with increase in cyclotron frequency ఠ೎ఠబ as a result of supremacy of converging term over 

diffraction term with rise in ఠ೎ఠబ parameter. The refractive index gets enhanced with rise in ఠ೎ఠబ  parameter thereby 
strengthening beam focusing.  

Figure 10 denotes variation of SRS back-reflectivity with dimensionless propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, 
only change in beam intensity parameter 𝛼𝐸଴଴ଶ  is considered whereas other parameters are kept fixed. Here, 𝛼𝐸଴଴ଶ =
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3.0 and 5.0 are denoted by Blue and Red curves. SRS back-reflectivity is found to decrease with increase in laser 
intensity 𝛼𝐸଴଴ଶ . The reason behind it is that SRS back-reflectivity is directly linked with focusing tendency of waves 
involved. Since, focusing tendency of waves is decreased with rise in laser intensity 𝛼𝐸଴଴ଶ . So, SRS back-reflectivity is 
decreased accordingly.  

  
Figure 1. Variation of beam width 𝑓଴ with dimensionless 
propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, 𝛼𝐸଴଴ଶ =3.0, 4.0 and 5.0 are denoted by Black, Green and Red curves 

Figure 2. Variation of beam width 𝑓 with dimensionless 
propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, 𝛼𝐸଴଴ଶ =3.0, 4.0 and 5.0 are denoted by Black, Green and Red curves 

  
Figure 3. Variation of beam width 𝑓௦ with dimensionless 
propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, 𝛼𝐸଴଴ଶ =3.0, 4.0 and 5.0 are denoted by Black, Green and Red curves 

Figure 4. Variation of beam width 𝑓଴ with dimensionless 
propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, ఠ೛మఠబమ =0.10, 0.15, 0.20  are denoted by Black, Green and Red curves 

  

Figure 5. Variation of beam width 𝑓 with dimensionless 
propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, ఠ೛మఠబమ =0.10, 0.15, 0.20  are denoted by Black, Green and Red curves 

Figure 6. Variation of beam width 𝑓௦ with dimensionless 
propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, ఠ೛మఠబమ =0.10, 0.15, 0.20  are denoted by Black, Green and Red curves 

Figure 11 denotes variation of SRS back-reflectivity with dimensionless propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, 
only change in plasma density ఠ೛మఠబమ  is considered whereas other parameters are kept fixed. Here, ఠ೛మఠబమ = 0.10 and  0.20  
are denoted by Blue and Red curves respectively. SRS back-reflectivity is increased with rise in plasma density ఠ೛మఠబమ. The 
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reason behind it is that SRS back-reflectivity is directly linked with focusing tendency of waves involved. Since, 
focusing tendency of waves is increased with rise in plasma density ఠ೛మఠబమ. So, SRS back-reflectivity is increased 
accordingly.  

  
Figure 7. Variation of beam width 𝑓଴ with dimensionless 
propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, ఠ೎ఠబ =0.04, 0.08 and 0.12  are denoted by Black, Green and Red 
curves 

Figure 8. Variation of beam width 𝑓 with dimensionless 
propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, ఠ೎ఠబ =0.04, 0.08 and 0.12  are denoted by Black, Green and Red 
curves 

  
Figure 9. Variation of beam width 𝑓௦ with dimensionless 
propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, ఠ೎ఠబ = 0.04,  0.08 and 0.12 are denoted by Black, Green and Red curves 

Figure 10. Variation of SRS back-reflectivity with 
dimensionless propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, 𝛼𝐸଴଴ଶ = 3.0 and 5.0 are denoted by Blue and Red curves 

  
Figure 11. Variation of SRS back-reflectivity with 
dimensionless propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, ఠ೛మఠబమ =0.10 and  0.20  are denoted by Blue and Red curves 
respectively 

Figure 12. Variation of SRS back-reflectivity with 
dimensionless propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, ఠ೎ఠబ =0.04  and 0.12  are denoted by Blue and Red curves 
respectively 

Figure 12 denotes variation of SRS back-reflectivity with dimensionless propagation distance 𝜂(= 𝑧/𝑘଴𝑟଴ଶ). Here, 
only change in cyclotron frequency ఠ೎ఠబ  is considered whereas other parameters are kept fixed. Here, ఠ೎ఠబ =0.04  and 0.12  are denoted by blue and red curves respectively. SRS back-reflectivity is increased with rise in 
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cyclotron frequency ఠ೎ఠబ. The reason behind it is that SRS back-reflectivity is directly linked with focusing tendency of 

waves involved. Since, focusing tendency of waves is increased with rise in cyclotron frequency ఠ೎ఠబ.  So, SRS back-
reflectivity is increased accordingly. 
 

7. CONCLUSIONS 
The present research deals with SRS of high-power beam in Collisional magnetoplasma. The results obtained from 

present problem are as follows:   
(1) Focusing ability of various waves involved is increased with increase in plasma density, cyclotron frequency and 

with decrease in laser intensity. This is due to enhancement in net refractive index gradient, which strengthens 
beam focusing. 

(2) SRS back-reflectivity is increased with rise in plasma density, cyclotron frequency and with decrease in beam 
intensity.  This is due to enhancement in net refractive index gradient, which strengthens beam focusing and 
consequently amplifies SRS back-reflectivity. 

Present results are really helpful in knowing physics of laser driven fusion.  
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ВИМУШЕНЕ КОМБІНАЦІЙНЕ РОЗСІЮВАННЯ ПОТУЖНОГО ПУЧКА У МАГНІТОПЛАЗМІ ІЗ ЗІТКНЕННЯМИ 

Кешав Валья1, Таранджот Сінгх1, Анудж Віджай2, Діпак Тріпаті3 
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У цій задачі досліджується вимушене комбінаційне розсіювання потужного променя в зіткнювальній магнітоплазмі. 
Лазерний промінь має два режими поширення, а саме: незвичайний та звичайний, під час його переходу вздовж напрямку 
статичних магнітних полів. Перерозподіл носіїв відбувається через модифікацію статичного магнітного поля. Перерозподіл 
носіїв відбувається через неоднорідне нагрівання, що призводить до зміни профілю густини в поперечному напрямку до осі 
основного променя. Цей профіль густини додатково викликає модифікацію всіх трьох хвиль, що беруть участь у процесі, а 
саме: падаючого променя, електронної плазмової хвилі та розсіяної хвилі. Тут будуть отримані ЗДР 2-го порядку для 
перетяжок пучка накачування, електроплівкової хвилі та хвилі зворотного розсіяння, а також вираз для відбивної здатності, 
і далі буде проведено їх числове моделювання, щоб дослідити вплив зміни параметрів лазера та плазми, а також 
зовнішнього прикладеного магнітного поля на перетяжки пучка різних хвиль та на зворотну відбивну здатність ВКР. 
Ключові слова: вимушене комбінаційне розсіювання; статичне магнітне поле; неоднорідний нагрів; розсіяна хвиля; 
зворотна відбивна здатність 
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