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In this paper, we study a non-flat Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) universe filled with cold dark matter and Barrow
holographic dark energy. We assume the Hubble horizon as IR cutoff and the scale factor to obey a hybrid expansion law to construct a
cosmological model within the framework of General Relativity. The physical and geometrical properties of the model are discussed by
studying the evolution of various parameters of cosmological importance. The behaviour of the dark energy equation of state parameter
𝜔𝐷𝐸 is also studied for both interacting and non-interacting Barrow holographic dark energy. We observe that the Barrow exponent Δ
significantly affects the dark energy equation of state parameter which in turn exhibits the behaviour of quintessence and phantom dark
energy. The evolution of the jerk parameter is also studied.
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1. INTRODUCTION
According to a number of recent cosmological and astrophysical observations, including Supernovae Type Ia (SN

Ia) [1,2], Cosmic Microwave Background (CMB) [3,4], Large Scale Structure (LSS) [5,6], and others the present universe
is thought to be dominated by a mysterious physical entity known as dark energy. This indicates that the universe has
recently undergone the transition from the matter era with decelerated expansion to the current accelerated expansion
phase. Many cosmological observations such as Wilkinson Microwave Anisotropy Probe (WMAP), Baryon Acoustic
Oscillation (BAO), Sloan Digital Sky Survey(SDSS), Gravitational Lensing etc. provided strong support to the observed
cosmic acceleration. According to Planck Collaboration results, 2018, dark energy contributes about 68.3% of the total
energy of the present observable universe. Dark energy permeats all over the space and it has large negative pressure. Since
the cosmological constant Λ, introduced by Einstein, is physically comparable to quantum vacuum energy with an equation
of state parameter 𝜔 = −1, it follows that Λ can be a good contender for dark energy. But the constant Λ is plagued with
the fine tuning and cosmic coincidence problems although it fits the observations reasonably well. As an alternative to Λ,
a wide range of scenarios with a number of dynamically evolving scaler field models have been considered in the literature
to explain the late time cosmic acceleration. Currently, an attempt for probing the true nature of dark energy has been
taken in the literature, called holographic dark energy (HDE) [7,8], that originates from the Holographic Principle [9–12].
The fundamental tenet of the Holographic Principle is that, as opposed to scaling with system volume, the number of
degrees of freedom that are directly related to entropy of a physical system scales with the system’s surrounding surface
area. G.’t Hooft [9] first presented it with the goal to explain the thermodynamics of black hole physics. The gravitational
entropy inside a closed surface shouldn’t always be greater than the particle entropy that travels through the surface’s past
light-cone, according to a later extension of this idea to the cosmological context made by Fischler and Susskind [12]. In
cosmology, a significant implications of the holographic principle is that the entropy of the universe’s horizon is directly
proportional to its surface area, similar to the Bekenstein-Hawking entropy of a black hole.

Utilizing the black hole entropy expression, one may apply the Holographic Principle to generate holographic dark
energy. Consequently, by utilizing different entropies, one can derive multiple varieties of the theory. A new black hole
entropy relation, recently suggested by Barrow, indicates that the black hole structure may acquire intricate fractal features
due to quantum gravitational processes. Due to its intricate structure, the black-hole entropy equation is distorted and has
a limited volume but an infinite (or finite) area [13]. The equation is given by

𝑆𝐵 =

(
𝐴

𝐴0

)1+ Δ
2

(1)

where 𝐴0 is the Planck area and 𝐴 is the standard horizon area. When Δ = 0, the Barrow exponent Δ corresponds to the
standard Bekenstein-Hawking entropy and with Δ = 1, it corresponds to the most complex design. Therefore, the Barrow
holographic dark energy (BHDE) is formulated [14] when holographic dark energy is described in accordance with the
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general entropy formula given in (1).

Saridakis [15] offered an alternative cosmic arrangement to the Bekenstein-Hawking one by utilizing the Barrow
entropy. Srivastava and Sharma [16] investigated the BHDE in a flat Friedmann-Lemaı̂tre-Robertson-Walker(FLRW)
universe taking the Hubble horizon as the IR cutoff. Srivastava, Kumar and Srivastava [17] also investigated the BHDE
model in the background of a flat FLRW universe. Recently many researchers examined the BHDE model in various
cosmological and gravitational setups [18–21].

The goal of the current work is to study the evolution of a non-flat Friedmann-Lemaı̂tre-Robertson-Walker (FLRW)
universe filled with pressureless cold dark matter and Barrow holographic dark energy (BHDE) with Hubble horizon
as IR cutoff. We present our work in the following sections of this paper. In section 2, we construct a cosmological
model by assuming the scale factor to obey the hybrid expansion law proposed by Akarsu et al. [22]. In section 3, we
study the properties of the constucted model by examining the geometrical and physical characteristics of a few relevant
cosmological parameters. We also study the behaviour of the dark energy equation of state parameter 𝜔𝐷𝐸 for both
interacting and non-interacting Barrow holographic dark energy. In section 4, we wrap up our paper with a conclusion.

2. THE MODEL
In this section, we consider a non-flat FLRW line element in the form

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2 (𝑡)
[

𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2𝑑Ω2
]

(2)

where 𝑎(𝑡) is the scale factor and 𝑘 = +1, 0,−1 corresponds to closed, flat and open spatial curvature respectively and
𝑑Ω2 = 𝑑𝜃2 + sin2 𝜃𝑑𝜙2.

Normally, holographic dark energy density given in reference [14] can be obtained in the framework of the holographic
model based on the Barrow entropy according to the expression (1)

𝜌𝐷𝐸 = 𝐶𝐿Δ−2 (3)

with 𝐶 being a parameter with dimensions [𝐿]−2−Δ and 𝐿 is a holographic horizon length. For Δ = 0, equation (3) gives
the standard holographic dark energy density 𝜌𝐷𝐸 = 𝐶𝐿−2, where 𝐶 = 3𝑐2𝑀2

𝑝 , 𝑐2 is standard parameter of order one that
is present in all holographic dark energy models and 𝑀𝑝 , the Planck mass. Taking the IR cutoff (𝐿 = 𝐻−1) as the Hubble
horizon, the energy density of BHDE is obtained as

𝜌𝐷𝐸 = 𝐶𝐻2−Δ (4)

We consider the universe to be filled with cold dark matter (CDM) and Barrow holographic dark energy (BHDE).
Then in natural units, we can write Einstein’s field equations as

𝑅𝑖 𝑗 −
1
2
𝑔𝑖 𝑗𝑅 = 𝑇𝑖 𝑗 + 𝑇𝑖 𝑗 (5)

where 𝑅𝑖 𝑗 is the Ricci tensor; 𝑅 is the Ricci scalar; 𝑇𝑖 𝑗 is the energy-momentum tensor for cold dark matter given by

𝑇𝑖 𝑗 = 𝜌𝑚𝑢𝑖𝑢 𝑗 (6)

and 𝑇𝑖 𝑗 is the energy-momentum tensor for Barrow holographic dark energy given by

𝑇𝑖 𝑗 = (𝜌𝐷𝐸 + 𝑝𝐷𝐸)𝑢𝑖𝑢 𝑗 + 𝑔𝑖 𝑗 𝑝𝐷𝐸 (7)

Here, 𝜌𝑚 is the energy density of cold dark matter, 𝜌𝐷𝐸 and 𝑝𝐷𝐸 are the energy density and the pressure of the Barrow
holographic dark energy respectively.

The Friedmann equations in this case are written as

3𝐻2 + 3
𝑘

𝑎2 = 𝜌𝑚 + 𝜌𝐷𝐸 (8)

3𝐻2 + 2 ¤𝐻 + 𝑘

𝑎2 = −𝑝𝐷𝐸 (9)

where 𝐻 ≡ ¤𝑎/𝑎 is the Hubble parameter and an over dot denotes differentiation with respect to cosmic time 𝑡.
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The continuity equation is given by

¤𝜌𝑚 + ¤𝜌𝐷𝐸 + 3𝐻 (𝜌𝑚 + 𝜌𝐷𝐸 + 𝑝𝐷𝐸) = 0 (10)

In view of equation (4), the field equations (8) and (9) constitute a system of non-linear differential equations in three
unknowns 𝑎, 𝜌𝑚 and 𝑝𝐷𝐸 . In order to construct a cosmological model we consider the cosmological scale factor 𝑎 to
obey the hybrid expansion law (HEL) [22]

𝑎(𝑡) = 𝑎0

(
𝑡

𝑡0

)𝛼
𝑒
𝛽

(
𝑡
𝑡0
−1

)
(11)

where 𝛼 and 𝛽 are constants and 𝑎0 and 𝑡0 denote the scale factor and the age of the present universe respectively.
The reason for using such scale factor is the fact that it will give the deceleration parameter as a function of cosmic time 𝑡.
This is amongst the models that describe the transition of the universe from a phase of deceleration to the present phase of
acceleration as suggested by the present cosmological observations. Several researchers applied HEL to study behaviour
of a number of cosmological models in different gravitational and cosmological backgrounds.

3. PROPERTIES OF THE MODEL
The Hubble parameter 𝐻 (𝑡), a cosmological parameter that shows the rate of expansion at the epoch 𝑡, corresponding

to the HEL (11) is obtained as

𝐻 =
¤𝑎
𝑎
=
𝛼

𝑡
+ 𝛽

𝑡0
(12)

The deceleration parameter, denoted by 𝑞, is a dimensionless measure of the acceleration in the expansion of the
universe and is defined by 𝑞 = − 𝑎 ¥𝑎

¤𝑎2 = − ¥𝑎
𝑎𝐻2 . Thus deceleration parameter 𝑞 is obtained as

𝑞 =
𝛼(

𝛼 + 𝛽𝑡

𝑡0

)2 − 1 (13)

Figure 1. Evolution of deceleration parameter 𝑞 vs cosmic time 𝑡

Figure 1 depicts the evolution of the deceleration parameter (𝑞) for the constructed model against cosmic time (𝑡).
With reference to the displayed graph, the outcome reveals that the deceleration parameter (𝑞) attributed a positive value at
the initial stage followed by a sharp decrease and subsequently a slow convergence towards the value of negative one. This
means that there is a transition from what is referred to as the decelerated phase of the universe which, in cosmological
terms, seems to be the initial stage to the phase that is currently an accelerating phase of the universe. The parameters
expressing rate of expansion in the earlier epoch have positive values means deceleration while moving toward negative
in the later epochs means acceleration. These behaviors are in line with the acquired observational data concerning the
validity of the late-time cosmic acceleration.

Using equations (12) in (4) we get the energy density of BHDE as

𝜌𝐷𝐸 = 𝐶

(
𝛼

𝑡
+ 𝛽

𝑡0

)2−Δ
(14)
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From equations (14),(12) and (8) we obtain the matter energy density as

𝜌𝑚 = 3
(
𝛼

𝑡
+ 𝛽

𝑡0

)2
+ 3𝑘

(
𝑎0

(
𝑡

𝑡0

)𝛼
𝑒
𝛽

(
𝑡
𝑡0
−1

) )−2

− 𝐶

(
𝛼

𝑡
+ 𝛽

𝑡0

)2−Δ
(15)

For closed (𝑘 = 1) FLRW universe, equation (15) becomes

𝜌𝑚 = 3
(
𝛼

𝑡
+ 𝛽

𝑡0

)2
+ 3

(
𝑎0

(
𝑡

𝑡0

)𝛼
𝑒
𝛽

(
𝑡
𝑡0
−1

) )−2

− 𝐶

(
𝛼

𝑡
+ 𝛽

𝑡0

)2−Δ
(16)

Figure 2. Evolution of the Barrow HDE density 𝜌𝐷𝐸 vs cosmic time 𝑡 for 𝐶 = 3, 𝑡0 = 13.8, 𝛼 = 0.5 and 𝛽 = 0.8

Figure 3. Evolution of the matter energy density 𝜌𝑚 vs cosmic time 𝑡 for 𝐶 = 3, 𝛼 = 0.5, 𝛽 = 0.8,
𝑎0 = 1 and 𝑡0 = 13.8

Figure 2 and Figure 3 clearly indicate that both 𝜌𝐷𝐸 and 𝜌𝑚 are decreasing functions of the cosmic time 𝑡. The
decrease in energy densities suggests that the volume of the universe is expanding.

The BHDE density parameter Ω𝐷𝐸 and the energy density parameter of matter Ω𝑚 are obtained as

Ω𝐷𝐸 =
𝐶

3
(
𝛼
𝑡
+ 𝛽

𝑡0

)Δ (17)

Ω𝑚 = 1 + 1(
𝛼
𝑡
+ 𝛽

𝑡0

)2
1(

𝑎0

(
𝑡
𝑡0

)𝛼
𝑒
𝛽

(
𝑡
𝑡0
−1

) )2 − 𝐶

3
(
𝛼
𝑡
+ 𝛽

𝑡0

)Δ (18)
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Hence the total energy density parameter Ω is obtained as

Ω = Ω𝑚 +Ω𝐷𝐸 = 1 + 1(
𝛼
𝑡
+ 𝛽

𝑡0

)2
1(

𝑎0

(
𝑡
𝑡0

)𝛼
𝑒
𝛽

(
𝑡
𝑡0
−1

) )2 (19)

Figure 4. Evolution of the total energy density parameter Ω vs cosmic time 𝑡 for 𝛼 = 0.5, 𝛽 = 0.8,
𝑎0 = 1 and 𝑡0 = 13.8

Figure 4 represents the evolution of the total energy density parameter Ω as a function of cosmic time 𝑡. From the
figure we observe that Ω tends to 1. This result is compatible with the observational results. Since our model predicts a
flat universe for late times, and the present day universe is very close to flat, so the derived model is also compatible with
the observational results.

Now for open (𝑘 = −1) FLRW universe, the energy density of cold dark matter 𝜌𝑚 is obtained by using the equation
(15) as

𝜌𝑚 = 3
(
𝛼

𝑡
+ 𝛽

𝑡0

)2
− 3

(
𝑎0

(
𝑡

𝑡0

)𝛼
𝑒
𝛽

(
𝑡
𝑡0
−1

) )−2

− 𝐶

(
𝛼

𝑡
+ 𝛽

𝑡0

)2−Δ
(20)

Figure 5. Evolution of the matter energy density 𝜌𝑚 vs cosmic time 𝑡 for 𝐶 = 3, 𝛼 = 0.5, 𝛽 = 0.8,
𝑎0 = 1 and 𝑡0 = 13.8

Figure 5 depicts the evolution of the matter energy density 𝜌𝑚 vs cosmic time 𝑡. The graph shows that 𝜌𝑚 is a
decreasing function of cosmic time 𝑡, this indicates the expansion of the universe as it evolves.
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The BHDE density parameter Ω𝐷𝐸 and the energy density parameter of matter Ω𝑚 are obtained as

Ω𝐷𝐸 =
𝐶

3
(
𝛼
𝑡
+ 𝛽

𝑡0

)Δ (21)

Ω𝑚 = 1 − 1(
𝛼
𝑡
+ 𝛽

𝑡0

)2
1(

𝑎0

(
𝑡
𝑡0

)𝛼
𝑒
𝛽

(
𝑡
𝑡0
−1

) )2 − 𝐶

3
(
𝛼
𝑡
+ 𝛽

𝑡0

)Δ (22)

Hence the total energy density parameter Ω is obtained as

Ω = Ω𝑚 +Ω𝐷𝐸 = 1 − 1(
𝛼
𝑡
+ 𝛽

𝑡0

)2
1(

𝑎0

(
𝑡
𝑡0

)𝛼
𝑒
𝛽

(
𝑡
𝑡0
−1

) )2 (23)

Figure 6. Evolution of the total energy density parameter Ω vs cosmic time 𝑡 for 𝛼 = 0.5, 𝛽 = 0.8,
𝑎0 = 1 and 𝑡0 = 13.8

From Figure 6, we see that Ω tends to 1. So our model approaches to flat FLRW universe at late times.

Case I: Interacting Barrow HDE

When there is an interaction between dark energy and dark matter, the energy densities do not conserve separately.
So, from the continuity equation (10), we have

¤𝜌𝑚 + 3𝐻𝜌𝑚 = 𝑄 (24)

and
¤𝜌𝐷𝐸 + 3𝐻 (𝜌𝐷𝐸 + 𝑝𝐷𝐸) = −𝑄 (25)

where 𝑄 is the coupling parameter which describes the interaction between dark energy and dark matter. A common
choice for the interaction term often takes the form 𝑄 ∝ 𝐻𝜌𝑚, 𝑄 ∝ 𝐻𝜌𝐷𝐸 or a combination of these forms. We consider

𝑄 = 3𝐻 (𝛾𝜌𝐷𝐸 + 𝛿𝜌𝑚) (26)

where 𝛾 and 𝛿 are constants.

Using equations (26), (25), (14) and (12) we get

𝑝𝐷𝐸 = −𝐶
(
𝛼

𝑡
+ 𝛽

𝑡0

)2−Δ
−
𝐶 (2 − Δ)

(
− 𝛼

𝑡2

)
3
(
𝛼
𝑡
+ 𝛽

𝑡0

)Δ −
𝛾𝐶

(
𝛼
𝑡
+ 𝛽

𝑡0

)2−Δ
+ 𝛿𝜌𝑚

3
(
𝛼
𝑡
+ 𝛽

𝑡0

) (27)

where 𝜌𝑚 is given by equation (15).
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For 𝑘 = 1, using equation (16) in (27), we get

𝑝𝐷𝐸 = −𝐶
(
𝛼

𝑡
+ 𝛽

𝑡0

)2−Δ
−
𝐶 (2 − Δ)

(
− 𝛼

𝑡2

)
3
(
𝛼
𝑡
+ 𝛽

𝑡0

)Δ
−
𝛾𝐶

(
𝛼
𝑡
+ 𝛽

𝑡0

)2−Δ
+ 3𝛿

(
𝛼
𝑡
+ 𝛽

𝑡0

)2
+ 3

(
𝑎0

(
𝑡
𝑡0

)𝛼
𝑒
𝛽

(
𝑡
𝑡0
−1

) )−2
− 𝐶

(
𝛼
𝑡
+ 𝛽

𝑡0

)2−Δ

3
(
𝛼
𝑡
+ 𝛽

𝑡0

) (28)

Using equations (28) and (14), we get the EoS parameter 𝜔𝐷𝐸 as

𝜔𝐷𝐸 = −1 + 𝛼(2 − Δ)

3
(
𝛼 + 𝛽𝑡

𝑡0

)2 −
©«
𝛾 +

3𝛿
(
𝛼
𝑡
+ 𝛽

𝑡0

)2
+ 3

(
𝑎0

(
𝑡
𝑡0

)𝛼
𝑒
𝛽

(
𝑡
𝑡0
−1

) )−2
− 𝐶

(
𝛼
𝑡
+ 𝛽

𝑡0

)2−Δ

𝐶

(
𝛼
𝑡
+ 𝛽

𝑡0

)2−Δ

ª®®®®¬
(29)

Figure 7. Evolution of EoS parameter 𝜔𝐷𝐸 vs cosmic time 𝑡 for 𝛼 = 0.5, 𝛽 = 0.8, 𝑡0 = 13.8, 𝛾 = 1 and 𝛿 = −1.

From figure 7, we observe that 𝜔𝐷𝐸 enters a high phantom region in the very early phases of the universe and as
time passes it approaches to −1 showing thereby that BHDE behaves like the cosmological constant Λ at late times.

For 𝑘 = −1, using (20) in (27), we get

𝑝𝐷𝐸 = −𝐶
(
𝛼

𝑡
+ 𝛽

𝑡0

)2−Δ
−
𝐶 (2 − Δ)

(
− 𝛼

𝑡2

)
3
(
𝛼
𝑡
+ 𝛽

𝑡0

)Δ
−
𝛾𝐶

(
𝛼
𝑡
+ 𝛽

𝑡0

)2−Δ
+ 3𝛿

(
𝛼
𝑡
+ 𝛽

𝑡0

)2
− 3

(
𝑎0

(
𝑡
𝑡0

)𝛼
𝑒
𝛽

(
𝑡
𝑡0
−1

) )−2
− 𝐶

(
𝛼
𝑡
+ 𝛽

𝑡0

)2−Δ

3
(
𝛼
𝑡
+ 𝛽

𝑡0

) (30)

Using equations (30) and (14), the EoS parameter 𝜔𝐷𝐸 is obtained as

𝜔𝐷𝐸 = −1 + 𝛼(2 − Δ)

3
(
𝛼 + 𝛽𝑡

𝑡0

)2 −
©«
𝛾 +

3𝛿
(
𝛼
𝑡
+ 𝛽

𝑡0

)2
− 3

(
𝑎0

(
𝑡
𝑡0

)𝛼
𝑒
𝛽

(
𝑡
𝑡0
−1

) )−2
− 𝐶

(
𝛼
𝑡
+ 𝛽

𝑡0

)2−Δ

𝐶

(
𝛼
𝑡
+ 𝛽

𝑡0

)2−Δ

ª®®®®¬
(31)

From figure 8, we see that for different values of Δ, 𝜔𝐷𝐸 gradually decreases and tends to −1 at late times.
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Figure 8. Evolution of EoS parameter 𝜔𝐷𝐸 vs cosmic time 𝑡 for 𝛼 = 0.5, 𝛽 = 0.8, 𝑡0 = 13.8, 𝛾 = 1 and 𝛿 = −1.

Case II: Non-interacting Barrow HDE

If there is no interaction between dark energy and dark matter, the energy densities conserved separately and therefore
from equation (10), we have

¤𝜌𝑚 + 3𝐻𝜌𝑚 = 0 (32)
and

¤𝜌𝐷𝐸 + 3𝐻 (𝜌𝐷𝐸 + 𝑝𝐷𝐸) = 0 (33)
From equations (33), (14) and (12), we get

𝑝𝐷𝐸 = −𝐶
(
𝛼

𝑡
+ 𝛽

𝑡0

)2−Δ
−
𝐶 (2 − Δ)

(
− 𝛼

𝑡2

)
3
(
𝛼
𝑡
+ 𝛽

𝑡0

)Δ (34)

Using equations (34) and (14), the EoS parameter 𝜔𝐷𝐸 is obtained as

𝜔𝐷𝐸 = −1 + 𝛼(2 − Δ)

3
(
𝛼 + 𝛽𝑡

𝑡0

)2 (35)

Since it is independent of the curvature parameter 𝑘 , therefore, for both closed and open universe, the model represents
ΛCDM model when 𝜔𝐷𝐸 = −1.

Figure 9. Evolution of EoS parameter 𝜔𝐷𝐸 vs cosmic time 𝑡 for 𝛼 = 0.5, 𝛽 = 0.8 and 𝑡0 = 13.8

From the figure 9, we observe the quintessence behaviour of BHDE for different values of Δ.
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Jerk parameter: The jerk parameter 𝑗 is a crucial tool for identifying deviations of cosmological model from the
ΛCDM model and describing the universe’s dynamical evolution. It characterizes models close to ΛCDM through a
dimensionless third derivative of the scale factor relative to the cosmic time 𝑡. In cosmology it is defined as 𝑗 (𝑡) = 1

𝑎𝐻3
𝑑3𝑎
𝑑𝑡3

and for our model it is obtained as

𝑗 = 1 +
(2𝑡0 − 3𝛽𝑡 − 3𝛼𝑡0)𝛼𝑡20

(𝛽𝑡 + 𝛼𝑡0)3 (36)

Figure 10. Evolution of jerk parameter 𝑗 vs cosmic time 𝑡 for 𝑡0 = 13.8

Figure 10 illustrates that the cosmic jerk parameter remains positive throughout the universe’s evolution, approaching
the value 1 in the later stages.

4. CONCLUSION
In this paper, a non-flat Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) universe filled with cold dark matter and

Barrow holographic dark energy (BHDE) is studied within the framework of General Relativity. Exact solution of the
Einstein field equations are obtained by considering a hybrid expansion law and the physical and geometrical properties
of the derived model are studied graphically. We also study the behaviour of the EoS parameter 𝜔𝐷𝐸 in two cases: when
the BHDE is interacting with CDM and when the BHDE does not interact with CDM. The evolution of the jerk parameter
is also studied. We observe that

• The evolution of the deceleration parameter in our model illustrates the universe’s transition from its earlier
deceleration phase to the current acceleration phase.

• Barrow holographic dark energy density 𝜌𝐷𝐸 and cold dark matter energy density 𝜌𝑚 decrease with the increase of
cosmic time 𝑡 in both closed (𝑘 = 1) and open (𝑘 = −1) universes. This indicates that the universe is expanding.

• The EoS parameter 𝜔𝐷𝐸 tends to −1 at late times for both interacting and non-interacting BHDE in a closed (𝑘 =

1) and open (𝑘 = −1) universe. However in case of interacting BHDE, 𝜔𝐷𝐸 enters into high phantom region before
the BHDE behaves like the cosmological constant.

• The Barrow holographic dark energy density parameter Ω𝐷𝐸 takes the same value in both closed and open universe.
However the energy density parameter of matter Ω𝑚 is different for closed and open universe.

• The total energy density parameterΩ tends to 1 as the universe evolves. This suggests that the universe is approaching
towards a flat universe at late times.

• The cosmic jerk parameter remains positive throughout the universe’s evolution and approaches 1 in late times. It
is consistent with the current observational data.
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НЕПЛОСКИЙ ВСЕСВIТ ФРIДМАНА-ЛЕМЕТРА-РОБЕРТСОНА-УОКЕРА З ГОЛОГРАФIЧНОЮ
ТЕМНОЮ ЕНЕРГIЄЮ БАРРОУ

Чандра Рекха Маханта, Джой Пракаш Медхi, Раджашрi Маханта
Факультет математики, Унiверситет Гаухатi, Iндiя

У цiй статтi ми вивчаємо неплоский Всесвiт Фрiдмана-Леметра-Робертсона-Уокера (FLRW), наповнений холодною темною
матерiєю та голографiчною темною енергiєю Барроу. Ми припускаємо, що горизонт Хаббла є IЧ-вiдсiканням, а масштабний
коефiцiєнт пiдкоряється гiбридному закону розширення для побудови космологiчної моделi в рамках загальної теорiї вiдно-
сностi. Фiзичнi та геометричнi властивостi моделi обговорюються шляхом вивчення еволюцiї рiзних параметрiв космологiчного
значення. Поведiнка рiвняння темної енергiї параметра стану 𝜔𝐷𝐸 також вивчається як для взаємодiючої, так i для невзаємо-
дiючої голографiчної темної енергiї Барроу. Ми спостерiгаємо, що експонента Барроу Δ суттєво впливає на рiвняння темної
енергiї параметра стану, яке, у свою чергу, демонструє поведiнку квiнтесенцiї та фантомної темної енергiї. Також вивчається
еволюцiя параметра ривка.
Ключовi слова: Всесвiт Фрiдмана-Леметра-Робертсона-Уокера, гiбридний закон розширення, голографiчна темна енергiя
Барроу, холодна темна матерiя, рiвняння параметра стану
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In this paper, the Friedmann-Lemaitre-Robertson-Walker cosmological models with a perfect fluid in the f(R,T) theory of gravity are
re-discussed. There are several ways to generate solutions. One way is to assume a barotropic equation of state. The other is to use a
deceleration parameter that varies linearly with time. An existing solution in the literature is reviewed, where solutions are obtained by
assuming, in addition to a barotropic equation of state, a linear varying deceleration parameter. It is pointed out such an assumption
leads to an over-determination of the solution. Hence, the feasibility of the solutions is a necessary condition to be satisfied. Only one
of the assumptions of an equation of state or of a linearly varying deceleration parameter is sufficient to generate solutions. The proper
solutions are given and discussed.
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1. INTRODUCTION
Recent observations from the anisotropy of the Cosmic Microwave Background (CMB) [1], supernova type Ia

(SNeIa) [2], large scale structure [3], baryon acoustic oscillations [4] and weak lensing [5] indicate the phenomenon of the
accelerated expansion of the universe at late times. At early times the universe was decelerating, and there was a transition
from deceleration to acceleration. There are bacsically two ways to try to explain this. One is that, in general relativity, the
matter of the universe contains an exotic component dubbed dark energy which causes a gravitationally repulsive force.
Several candidates have been proposed in this direction [6]-[10]. The other way is a modification of general relativity
resulting in modified gravity theories which change the Einstein-Hilbert Lagrangian, such as 𝑓 (𝑅) gravity [11].

Recently, Harko et al. [12] generalized 𝑓 (𝑅) gravity by introducing an arbitrary function of the Ricci scalar 𝑅 and
the trace 𝑇 of the energy-momentum tensor. The dependence upon 𝑇 (in addition to 𝑅 in the Lagrangian) may be due to
quantum effects (conformal anomaly) or to an exotic imperfect fluid. As a result of coupling between matter and geometry,
the motion of test particles is non-geodetic, and an extra acceleration is always present. In 𝑓 (𝑅,𝑇) gravity, where 𝑓 (𝑅,𝑇)
is an arbitrary function of 𝑅 and 𝑇 , cosmic acceleration may result not only from the geometrical contribution to the total
cosmic energy density, but from the matter content. This theory can be applied to explore several issues of current interest
and may lead to some major differences. Houndjo [13] developed the cosmological reconstruction of 𝑓 (𝑅,𝑇) gravity for
𝑓 (𝑅,𝑇) = 𝑓1 (𝑅) + 𝑓2 (𝑇) and discussed the transition of the deceleration matter dominated era to the acceleration one.

Various aspects of the theory have been explored by literally hundreds of authors since Harko et al [12] introduced
that theory. We cite a few of the key articles and also recent papers that have a relation to the work that we do in this
article. All these articles contain additional references. Akarsu and Dereli [14] studied accelerating universes with a
linearly varying deceleration parameter (LVDP). An LVDP in higher dimensions with strange quark matter and domain
walls was investigated by Caglar [15]. Bishi et al [16] have applied a quadratic deceleration parameter to 𝑓 (𝑅,𝑇) gravity,
finding bouncing cosmologies. Sofuoglu et al [17] have applied a cubic deceleration parameter to f(R,T) gravity, finding
a big-bang singularity at the beginning, and a big rip one in the future.

The LVDP, as well as other variations of it have attracted a lot of interest. Alkaound et al [18] have studied an LVDP
in Lyra’s geometry, focussing on observational constraints, and future singularities, such as the big rip. Perturbation theory
has been used [19] to study the big rip singularity with a LVDP. Ramesh and Umadevi [20] have studied Friedmann-
Lemaitre-Robertson Walker (FLRW) solutions in f(R,T) gravity, in which they obtained solutions by assuming, in addition
to a barotropic equation of state, a LVDP. In this study, we review this solution, and point out that, firstly, both those
assumptions lead to an over-determination of the solution. Only one of them is sufficient to generate a solution. Secondly,
each of the assumptions leads to a different solution. The assumption of an equation of state leads to the equivalent
solutions in general relativity. Only the second assumption of a linearly varying deceleration parameter alone leads to a
solution that exhibits a transition from deceleration to acceleration. Thirdly, there appear to be several errors in the paper,
which we correct here.

This paper is organised as follows. In section 2, we give a brief introduction to f(R,T) gravity. Section 3 provides
details of the solution by Ramesh and Umadevi [20]. In section 4, we provide the updated solution and in section 5 we
give the conclusion.
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2. REVIEW OF F(R,T) GRAVITY
The action for 𝑓 (𝑅,𝑇) gravity is:

𝑆 =
1

16𝜋

∫
𝑓 (𝑅,𝑇) √−𝑔 𝑑4𝑥 +

∫
𝐿m

√−𝑔 𝑑4𝑥 , (1)

where 𝑓 (𝑅,𝑇) is an arbitrary function of the Ricci scalar 𝑅, and of the trace 𝑇 of the energy-momentum tensor of the
matter, 𝑇𝑎𝑏. 𝐿𝑚 is the matter Lagrangian density, and the energy-momentum tensor of matter is defined as:

𝑇𝑎𝑏 = − 2
√−𝑔

𝛿
(√−𝑔𝐿𝑚

)
𝛿𝑔𝑎𝑏

, (2)

and the trace of 𝑇𝑎𝑏 by 𝑇 = 𝑔𝑎𝑏𝑇𝑎𝑏. By assuming that the Lagrangian density 𝐿m of matter depends only on the metric
tensor components 𝑔𝑎𝑏, and not on its derivatives, we obtain:

𝑇𝑎𝑏 = 𝑔𝑎𝑏𝐿𝑚 − 2
𝜕𝐿𝑚

𝜕𝑔𝑎𝑏
. (3)

By varying the action 𝑆 of the gravitational field with respect to the metric tensor components 𝑔𝑎𝑏 we get:

𝛿𝑆 =
1

16𝜋

∫ [
𝑓𝑅 (𝑅,𝑇) 𝛿𝑅 + 𝑓𝑇 (𝑅,𝑇) 𝛿𝑇

𝛿𝑔𝑎𝑏
𝛿𝑔𝑎𝑏 − 1

2
𝑔𝑎𝑏 𝑓 (𝑅,𝑇) 𝛿𝑔𝑎𝑏 + 16𝜋

1
√−𝑔

𝛿
(√−𝑔𝐿m

)
𝛿𝑔𝑎𝑏

]
√−𝑔𝑑4𝑥 , (4)

where we have denoted 𝜕 𝑓 (𝑅,𝑇) /𝜕𝑅 by 𝑓𝑅 (𝑅,𝑇) and 𝜕 𝑓 (𝑅,𝑇) /𝜕𝑇 by 𝑓𝑇 (𝑅,𝑇). For the variation of the Ricci scalar,
we obtain

𝛿𝑅 = 𝛿

(
𝑔𝑎𝑏𝑅𝑎𝑏

)
= 𝑅𝑎𝑏𝛿𝑔

𝑎𝑏 + 𝑔𝑎𝑏
(
∇𝑑𝛿Γ

𝑑
𝑎𝑏 − ∇𝑏𝛿Γ

𝑑
𝑎𝑑

)
, (5)

where ∇𝑑 is the covariant derivative with respect to the symmetric connection Γ associated with the metric 𝑔. The variation
of the Christoffel symbols yields

𝛿Γ𝑑
𝑎𝑏 =

1
2
𝑔𝑑𝑒 (∇𝑎𝛿𝑔𝑏𝑒 + ∇𝑏𝛿𝑔𝑒𝑎 − ∇𝑒𝛿𝑔𝑎𝑏) , (6)

and the variation of the Ricci scalar provides the expression

𝛿𝑅 = 𝑅𝑎𝑏𝛿𝑔
𝑎𝑏 + 𝑔𝑎𝑏□𝛿𝑔𝑎𝑏 − ∇𝑎∇𝑏𝛿𝑔

𝑎𝑏 . (7)

Therefore, for the variation of the action of the gravitational field we obtain

𝛿𝑆 =
1

16𝜋

∫ [
𝑓𝑅 (𝑅,𝑇) 𝑅𝑎𝑏𝛿𝑔

𝑎𝑏 + 𝑓𝑅 (𝑅,𝑇) 𝑔𝑎𝑏□𝛿𝑔𝑎𝑏 − 𝑓𝑅 (𝑅,𝑇) ∇𝑎∇𝑏𝛿𝑔
𝑎𝑏

+ 𝑓𝑇 (𝑅,𝑇)
𝛿
(
𝑔𝑑𝑒𝑇𝑑𝑒

)
𝛿𝑔𝑎𝑏

𝛿𝑔𝑎𝑏 − 1
2
𝑔𝑎𝑏 𝑓 (𝑅,𝑇) 𝛿𝑔𝑎𝑏 + 16𝜋

1
√−𝑔

𝛿
(√−𝑔𝐿𝑚

)
𝛿𝑔𝑎𝑏

]
√−𝑔𝑑4𝑥 . (8)

where □ = ∇𝑑∇𝑑 . We define the variation of 𝑇 with respect to the metric tensor as

𝛿
(
𝑔𝑒 𝑓𝑇𝑒 𝑓

)
𝛿𝑔𝑎𝑏

= 𝑇𝑎𝑏 + Θ𝑎𝑏 , (9)

where
Θ𝑎𝑏 ≡ 𝑔𝑑𝑒

𝛿𝑇𝑑𝑒

𝛿𝑔𝑎𝑏
. (10)

After partially integrating the second and third terms in Eq. (8), we obtain the field equations of the 𝑓 (𝑅,𝑇) gravity model
as

𝑓𝑅 (𝑅,𝑇) 𝑅𝑎𝑏 −
1
2
𝑓 (𝑅,𝑇) 𝑔𝑎𝑏 + (𝑔𝑎𝑏□ − ∇𝑎∇𝑏) 𝑓𝑅 (𝑅,𝑇) = 8𝜋𝑇𝑎𝑏 − 𝑓𝑇 (𝑅,𝑇) 𝑇𝑎𝑏 − 𝑓𝑇 (𝑅,𝑇) Θ𝑎𝑏 . (11)

Note that when 𝑓 (𝑅,𝑇) ≡ 𝑓 (𝑅), from Eqs. (11) we obtain the field equations of 𝑓 (𝑅) gravity.
By contracting, Eq. (11) gives the following relation between the Ricci scalar 𝑅 and the trace 𝑇 of the stress-energy

tensor,

𝑓𝑅 (𝑅,𝑇) 𝑅 + 3□ 𝑓𝑅 (𝑅,𝑇) − 2 𝑓 (𝑅,𝑇) = 8𝜋𝑇 − 𝑓𝑇 (𝑅,𝑇) 𝑇 − 𝑓𝑇 (𝑅,𝑇) Θ , (12)
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where we have denoted Θ = Θ
𝜇
𝜇 .

By eliminating the term □ 𝑓𝑅 (𝑅,𝑇) between Eqs. (11) and (12), the gravitational field equations can be written in
the form

𝑓𝑅 (𝑅,𝑇)
(
𝑅𝑎𝑏 −

1
3
𝑅𝑔𝑎𝑏

)
+ 1

6
𝑓 (𝑅,𝑇) 𝑔𝑎𝑏 = 8𝜋

(
𝑇𝑎𝑏 −

1
3
𝑇𝑔𝑎𝑏

)
− 𝑓𝑇 (𝑅,𝑇)

(
𝑇𝑎𝑏 −

1
3
𝑇𝑔𝑎𝑏

)
− 𝑓𝑇 (𝑅,𝑇)

(
Θ𝑎𝑏 −

1
3
Θ𝑔𝑎𝑏

)
+ ∇𝑎∇𝑏 𝑓𝑅 (𝑅,𝑇) . (13)

Taking into account the covariant divergence of Eq. (11), with the use of the following mathematical identity [21]

∇𝑎

[
𝑓𝑅 (𝑅,𝑇) 𝑅𝑎𝑏 −

1
2
𝑓 (𝑅,𝑇) 𝑔𝑎𝑏 + (𝑔𝑎𝑏□ − ∇𝑎∇𝑏) 𝑓𝑅 (𝑅,𝑇)

]
≡ 0 , (14)

where 𝑓 (𝑅,𝑇) is an arbitrary function of the Ricci scalar 𝑅 and of the trace of the energy-momentum tensor 𝑇 , we obtain
for the divergence of the stress-energy tensor 𝑇𝑎𝑏, the equation

∇𝑎𝑇𝑎𝑏 =
𝑓𝑇 (𝑅,𝑇)

8𝜋
[(𝑇𝑎𝑏 + Θ𝑎𝑏) ∇𝑎 ln 𝑓𝑇 (𝑅,𝑇) + ∇𝑎Θ𝑎𝑏] . (15)

Next we consider the calculation of the tensor Θ𝑎𝑏, once the matter Lagrangian is known. From Eq. (3) we obtain
first

𝛿𝑇𝑑𝑒

𝛿𝑔𝑎𝑏
=

𝛿𝑔𝑑𝑒

𝛿𝑔𝑎𝑏
𝐿𝑚 + 𝑔𝑑𝑒

𝜕𝐿m

𝜕𝑔𝑎𝑏
− 2

𝜕2𝐿𝑚

𝜕𝑔𝑎𝑏𝜕𝑔𝑑𝑒

=
𝛿𝑔𝑑𝑒

𝛿𝑔𝑎𝑏
𝐿m + 1

2
𝑔𝑑𝑒𝑔𝑎𝑏𝐿𝑚 − 1

2
𝑔𝑑𝑒𝑇𝑎𝑏 − 2

𝜕2𝐿𝑚

𝜕𝑔𝑎𝑏𝜕𝑔𝑑𝑒
. (16)

From the condition 𝑔𝑎𝑑𝑔
𝑑𝑏 = 𝛿𝑏𝑎, we have

𝛿𝑔𝑑𝑒

𝛿𝑔𝑎𝑏
= −𝑔𝑑 𝑓 𝑔𝑒ℎ𝛿

𝑓 ℎ

𝑎𝑏
, (17)

where 𝛿
𝑓 ℎ

𝑎𝑏
= 𝛿𝑔 𝑓 ℎ/𝛿𝑔𝑎𝑏 is the generalized Kronecker symbol. Therefore for Θ𝑎𝑏 we find

Θ𝑎𝑏 = −2𝑇𝑎𝑏 + 𝑔𝑎𝑏𝐿m − 2𝑔𝑑𝑒
𝜕2𝐿𝑚

𝜕𝑔𝑎𝑏𝜕𝑔𝑑𝑒
. (18)

We take the matter Lagrangian to be given by 𝐿m = 𝑝. Now, there is degeneracy in the choice of the matter Lagrangian
in the sense that this choice does not make any difference to the resulting field equations in general relativity. Hence one
could also choose 𝐿𝑚 = −𝜌, where 𝜌 is the energy density. [22]. We now indicate briefly how this Lagrangian leads to
the energy momentum tensor (Hawking and Ellis [23] give an excellent derivation of this). The fluid current four-vector
is defined as 𝑗𝑎 = 𝜌𝑢𝑎, where 𝑢𝑎 is the fluid four-velocity. Now it is assumed that this is conserved, i.e., 𝑗𝑎 ;𝑎 = 0. Taking
the Lagrangian to be 𝐿𝑚 = −𝜌, and varying so that the action is stationary, we get the momentum equation:

(𝜌 + 𝑝) ¤𝑢𝑎 = −𝑝;𝑏 (𝑔𝑏𝑎 + 𝑢𝑎𝑢𝑏) (19)

where 𝜌 = 𝜇(1 + 𝜖), 𝜇 is the density, 𝜖 is the internal energy and the pressure 𝑝 is given by 𝑝 = 𝜇2 (𝑑𝜖/𝑑𝜇). So ¤𝑢𝑎 is the
acceleration.

We now turn to the form of the energy momentum tensor. The conservation of current may be expressed as:

𝑗𝑎 ;𝑎 =
1

√−𝑔
𝜕

𝜕𝑥𝑎
(√−𝑔 𝑗𝑎) (20)

or
2𝜇𝛿𝜇 = ( 𝑗𝑎 𝑗𝑏 − 𝑗𝑑 𝑗𝑑𝑔

𝑎𝑏)𝛿𝑔𝑎𝑏 (21)

Now, in general, the Lagrangian 𝐿 is a scalar function of some fields Ψ𝑎. The equations of motion can be obtained by the
requirement that the action:

𝐼 =

∫
𝐿𝑑𝑣 (22)

be invariant under a variation of the fields in some suitable region. The variation of the fields can be written as an integrand
in Δ𝑔𝑎𝑏 only. Then the integral 𝜕𝐼/𝜕𝑢 is:

1
2

∫
(𝑇𝑎𝑏𝛿𝑔𝑎𝑏)𝑑𝑣 (23)
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where 𝑇𝑎𝑏 are the components of a symmetric tensor which is taken to be the energy momentum tensor of the fields. Thus,
from equations (21)-(23), we get:

𝑇𝑎𝑏 =

[
𝜇(1 + 𝜖) + 𝜇2 𝑑𝜖

𝑑𝜇

]
𝑢𝑎𝑢𝑏 + 𝜇2 𝑑𝜖

𝑑𝜇
𝑔𝑎𝑏 (24)

or, finally
𝑇𝑎𝑏 = (𝜌 + 𝑝)𝑢𝑎𝑢𝑏 + 𝑝𝑔𝑎𝑏 (25)

The four-velocity 𝑢𝑎 satisfies the conditions 𝑢𝑎𝑢𝑎 = −1 and 𝑢𝑎∇𝑏𝑢𝑎 = 0. Then, with the use of Eq. (18), we obtain
for the variation of the energy momentum of a perfect fluid the expression

Θ𝑎𝑏 = −2𝑇𝑎𝑏+𝑝𝑔𝑎𝑏 . (26)

As in the case of [20], we take 𝑓 (𝑅,𝑇) = 𝑅 + 2F (𝑇), where F (𝑇) = 𝜆𝑇 . The gravitational field equations immediately
follow from Eq. (11), and are given by

𝑅𝑎𝑏 −
1
2
𝑅𝑔𝑎𝑏 = 8𝜋𝑇𝑎𝑏 − 2F ′ (𝑇) 𝑇𝑎𝑏 − 2F ′ (𝑇)Θ𝑎𝑏 + F (𝑇)𝑔𝑎𝑏 , (27)

where the prime denotes a derivative with respect to the argument.
For the perfect fluid (25), Θ𝑎𝑏 = −2𝑇𝑎𝑏+𝑝𝑔𝑎𝑏, and the field equations become

𝑅𝑎𝑏 −
1
2
𝑅𝑔𝑎𝑏 = 8𝜋𝑇𝑎𝑏 + 2F ′ (𝑇) 𝑇𝑎𝑏 − 2𝑝F ′ (𝑇)𝑔𝑎𝑏 + F (𝑇)𝑔𝑎𝑏 . (28)

The above equation for F (𝑇) = 𝜆𝑇 , i.e., 𝑓 (𝑅,𝑇) = 𝑅 + 2𝜆𝑇 , where the trace 𝑇 = −𝜌+3𝑝 finally simplifies as follows:

𝑅𝑎𝑏 −
1
2
𝑅g𝑎𝑏 = (8𝜋 + 2𝜆)𝑇𝑎𝑏 + 𝜆(𝑝 − 𝜌)g𝑎𝑏 . (29)

3. BRIEF OUTLINE OF THE RAMESH/UMADEVI PAPER
In this section, we briefly outline the paper [20]. The FLRW metric was given by

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2 (𝑡)
[

𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜙2)
]
, (30)

where 𝑎 is the scale factor, (𝑟, 𝜃, 𝜙) are the usual spherical coordinates, and 𝑘 represents the geometrical curvature of the
universe, i.e., 𝑘 = 0 implies a flat universe, 𝑘 = +1 is a closed universe, and 𝑘 = −1 is an open universe. For the FLRW
metric (30), and the energy–momentum tensor (25), the field equations (29) in 𝑓 (𝑅,𝑇) gravity have been given as [20]:

2
(
¥𝑎
𝑎

)
+

(
¤𝑎2

𝑎2

)
+ 𝑘

𝑎2 = 𝑝(8𝜋 + 7𝜆) − 𝜆𝑝, (31)

3
(
¤𝑎2

𝑎2

)
+ 3

𝑘

𝑎2 = 𝑝(8𝜋 + 3𝜆) + 5𝜆𝑝. (32)

Ramesh and Umadevi then make two assumptions to derive their solutions, viz.,
1. A barotropic equation of state (EoS) of the form

𝑝 = 𝜖 𝜌, 𝜖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (33)

where the constant 𝜖 = −1 to describe DE, 𝜖 = 0 for pressure-free matter (dust), 𝜖 = 1/3 for radiation.
2. A linear varying deceleration parameter (LVDP) 𝑞 of the form [14]

𝑞 ≡ − ¥𝑎𝑎
¤𝑎2 = −𝑛𝑡 + 𝑚 − 1, (34)

where 𝑛 ≥ 0 and 𝑚 ≥ 0 are constants.
Solving (34), the solutions were given as the three different forms for the scale factor:

𝑎 = 𝑎0 𝑒𝑥𝑝

[
2√︁

𝑚2 − 2𝑐1𝑛
arctanh

(
𝑛𝑡 − 𝑚√︁
𝑚2 − 2𝑐1𝑛

)]
for 𝑛 > 0 and 𝑚 ≥ 0, (35)

𝑎 = 𝑎0 (𝑚𝑡 + 𝑐2)1/𝑚 for 𝑛 = 0 and 𝑚 > 0, (36)

𝑎 = 𝑎0𝑒
𝑐1𝑡 for 𝑛 = 0 and 𝑚 = 0, (37)
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where 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑐1, 𝑐2 and 𝑐3 are constants of integration.
It is then stated that by taking 𝑎0 = 0 in equation (35), the following solution is obtained:

𝑎(𝑡) = 𝑒𝑥𝑝

[
2
𝑚

arctanh
( 𝑛
𝑚
𝑡 − 1

)]
. (38)

The Hubble parameter was given as:

𝐻 =
¤𝑎
𝑎
= − 2

𝑡 (𝑛𝑡 − 2𝑚) . (39)

and the energy density as:

𝜌 =
1

[8𝜆(3𝜖 + 1) + 16𝜖𝜆]

[
24(𝑛𝑡 − 𝑚 + 1)
(𝑛𝑡2 − 2𝑚𝑡)2

]
(40)

Since they assumed the barotropic equation of state (33) where 𝜖 is a constant, the pressure is just 𝑝 = 𝜖 𝜌:

𝑝 =
𝜖

[8𝜆(3𝜖 + 1) + 16𝜖𝜆]

[
24(𝑛𝑡 − 𝑚 + 1)
(𝑛𝑡2 − 2𝑚𝑡)2

]
(41)

4. REVIEW OF THE SOLUTION IN PREVIOUS SECTION 3
In this section, we first go through the paper [20] as discussed in the previous section, correcting the equations.

• Equations (31) and (32) should read as follows:

2
(
¥𝑎
𝑎

)
+

(
¤𝑎2

𝑎2

)
+ 𝑘

𝑎2 = 𝜆𝜌 − (8𝜋 + 3𝜆)𝑝, (42)

3
(
¤𝑎2

𝑎2

)
+ 3

𝑘

𝑎2 = (8𝜋 + 3𝜆)𝜌 − 𝜆𝑝. (43)

• Then in the solutions (35), the constants 𝑎1, 𝑎2, 𝑎3 are missing.

• They state that by taking 𝑎0 = 0 in equation (35), a solution is obtained. However, if one takes 𝑎0 = 0 in equation
(35), then one gets 𝑎 = 0.

• In the paragraph just before the conclusion, it is claimed that the energy density 𝜌 us always positive iirrespective of
the curvature of the space. However, this is only true if the constants 𝑛, 𝑚, 𝜆, 𝜖 are such as to allow positivity - they
have to ensure that both numerator and denominator in the equation for the energy density (40) are both positive, or
both are negative.

• In their solutions (40) and (41), the “8𝜆” in the denominators should read “8𝜋”.

• We notice that equations (42) and (43) are two equations in the three unknowns 𝑎, 𝜌 and 𝑝. Hence only one extra
condition is necessary to solve these equations. However, in their paper, Ramesh and Umadevi [20] have chosen
two conditions, viz., (33) and (34). We now show that any one of them is sufficient to generate solutions, but that
only the second condition allows for the transition from an early decelerated universe to a late accelerated one.

Let us start with the first condition of a barotropic equation of state (33), where 𝜖 is a constant. In this case, equations
(42) and (43) can be written as:

2
(
¥𝑎
𝑎

)
+

(
¤𝑎2

𝑎2

)
+ 𝑘

𝑎2 = 𝜆𝜌 − (8𝜋 + 3𝜆)𝜖 𝜌, (44)

3
(
¤𝑎2

𝑎2

)
+ 3

𝑘

𝑎2 = (8𝜋 + 3𝜆)𝜌 − 𝜆𝜖𝜌. (45)

Without loss of generality, we now focus on the case 𝑘 = 0, which can easily be extended to the cases 𝑘 = ±1. This
assumption of the EoS (33) alone is sufficient to obtain a solution since we then have only two unknowns, viz., 𝑎 and 𝜌,
and two equations. From equations (44) and (45), we obtain the following equation for 𝜌:

[(8𝜋 + 𝜆)2 − 𝜆2]𝜌 = −2𝜆
(
¥𝑎
𝑎

)
+ (24𝜋 + 8𝜆)

(
¤𝑎2

𝑎2

)
(46)

It is possible to also write a similar equation for the pressure 𝑝 alone by eliminating the energy density 𝜌 from equations
(42) and (43).The two resulting equations will be sufficient to obtain solutions. The general solutions to these equations are
quite complicated, involving hypergeometric functions, so we do not list them here. This is quite unlike general relativity.
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We now focus on the second condition of a LVDP (34) alone. This equation alone is enough to find a solution without
the additional need for an equation of state. We first note that in the solutions given by [20], viz., (35), (36) and (37), the
constants 𝑎1, 𝑎2, 𝑎3 as well as 𝑐3 do not appear. The corrected solutions as given by Akarsu and Dereli [14] to equation
(34) are:

𝑎 = 𝑎1 𝑒𝑥𝑝

[
2√︁

𝑚2 − 2𝑐1𝑛
arctanh

(
𝑛𝑡 − 𝑚√︁
𝑚2 − 2𝑐1𝑘

)]
for 𝑛 > 0 and 𝑚 ≥ 0, (47)

𝑎 = 𝑎2 (𝑚𝑡 + 𝑐2)
1
𝑚 for 𝑛 = 0 and 𝑚 > 0, (48)

𝑎 = 𝑎3𝑒
𝑐3𝑡 for 𝑛 = 0 and 𝑚 = 0, (49)

where 𝑎1, 𝑎2, 𝑎3, 𝑐1, 𝑐2 and 𝑐3 are constants of integration. In these solutions, we see the constants 𝑎1, 𝑎2, 𝑎3 as well as 𝑐3,
and also that there is no 𝑎0. The last two of the above solutions are for constant 𝑞, which have been dealt with previously.
The new solution (47), was found by [14]. Only the solution for 𝑘 > 0 and 𝑚 > 0 is discussed further, and the integration
constant 𝑐1 has been set equal to . This sets the initial time of the universe as 𝑡i = 0. If we need early deceleration and
late-time acceleration, we have to choose 𝑛 > 0 and 𝑚 > 0 for compatibility with the observed universe. The condition
𝑛 > 0 corresponds to increasing acceleration ( ¤𝑞 = −𝑛 < 0). In order to get early deceleration, the condition 𝑚 > 0 must
hold, and it can even be 𝑚 > 1. Hence equation (47) is reduced to:

𝑎 = 𝑎1 𝑒𝑥𝑝

[
2
𝑚

arctanh
( 𝑛
𝑚
𝑡 − 1

)]
. (50)

We now have to find the energy density and pressure from equations (42) and (43). Let us first find the Hubble
parameter 𝐻 = ¤𝑎/𝑎. From equation (50), we find the Hubble parameter as:

𝐻 ≡ ¤𝑎
𝑎
= − 2

𝑡 (𝑛𝑡 − 2𝑚) . (51)

From the above two equations, we find
¥𝑎
𝑎
=

4𝑛𝑡 − 4𝑚 + 4
2𝑚𝑡 − 𝑛𝑡2

(52)

From equations (42) and (43), we can derive an expression for the energy density 𝜌 (for 𝑘 = 0):

(64𝜋2 + 16𝜋𝜆)𝜌 = (24𝜋 + 8𝜆)𝐻2 − 2𝜆( ¤𝐻 + 𝐻2) (53)

and then using equations (50) and (51), we find that:

𝜌 =
96𝜋 + 24𝜆 − 8𝜆𝑛𝑡 + 8𝜆𝑚

(64𝜋2 + 16𝜋𝜆) (𝑛𝑡 − 2𝑚)2𝑡2
(54)

This solution for 𝜌 is a generalisation of the one given by Akarsu and Dereli [14] for the case 𝑘 = 0, and it reduces to that
when 𝜆 = 0 (note the system of units we are using corresponds to that used in [20] in which they put only the gravitational
constant 𝐺 = 1. In ref [14], the condition 8𝜋𝐺 = 1 is used). The pressure may also be determined similarly, as well as for
the cases 𝑘 = ±1.

Now we determine the equation for the pressure using the LVDP. Again, from equations (50) and (51), we get (for
𝑘 = 0):

𝑝 = −
64𝜋(𝑘𝑡 − 𝑚 + 3

2 ) + 24𝜆 − 24𝑚𝜆 + 24𝑛𝜆𝑡
(64𝜋2 + 48𝜋𝜆 + 8𝜆2) (𝑛𝑡2 − 2𝑚𝑡)2 . (55)

The equation of state 𝜔 = 𝑝/𝜌 is given by:

𝜔 =
(64𝜋(𝑛𝑡 − 𝑚 + 3

2 ) + 24𝜆 − 24𝑚𝜆 + 24𝑛𝜆𝑡) (64𝜋2 + 16𝜋𝜆)
(64𝜋2 + 48𝜋𝜆 + 8𝜆2) (96𝜋 + 24𝜆 − 8𝜆𝑛𝑡 + 8𝜆𝑚)

(56)

It can be seen clearly that the pressure (55) is not just a multiple of the energy density (54), as can also be seen from the
equation of state (56). If we put 𝜆 = 0, then we recover general relativity, and the corresponding equations as in [14]. They
have plotted all these parameters in general relativity, and shown that with a LVDP, it is possible to obtain a transition
from deceleration to acceleration. In addition, they have shown that for the values 𝑚 = 0.097 and 𝑛 = 1.6, it is possible to
satisfy observational constraints.
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5. CONCLUSION
In this work, we have discussed the FLRW solutions in 𝑓 (𝑅,𝑇) using a linear deceleration parameter. We first began

by giving a brief review of the 𝑓 (𝑅,𝑇) theory of gravity. Then we discussed the paper by Ramesh and Umadevi [20].
Various points from that paper were been clarified. The full solutions to the equations for a linearly varying deceleration
parameter as proposed by Akarsu and Dareli were provided and discussed next. We note the following:

• The solutions with a LVDP do not have a barotropic equation of state in general.

• In the above sense, either of the assumptions made is not compatible with the other, and each has to be made
separately to generate solutions.

• The solutions in f(R,T) theory provide a transition from deceleration to acceleration.

• The kinematical quantities such as the scale factor, Hubble parameter and deceleration parameter have the same
behaviour as that discusssed by Akarsu and Dareli [14].

• f(R,T) offers a wider range of possibilities than general relativity.

• Several investigations have been made with slightly different forms of the LVDP such as linear in different forms of
time 𝑡, the redshift 𝑧, or in the scale factor 𝑎 [24]. These authors found that these models compare just as well, if not
better, than the standard ΛCDM model.
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КОСМОЛОГIЧНА МОДЕЛЬ FLRW У f(R,T) ГРАВIТАЦIЇ
Арункумар Бiшем

Технологiчний унiверситет Мангосуту, ПС 12363, Джейкобс, 4026, Пiвденна Африка
У цiй статтi обговорюються космологiчнi моделi Фрiдмана-Леметра-Робертсона-Уокера з iдеальною рiдиною в f(R,T) теорiї
гравiтацiї. Iснує кiлька способiв створення рiшень. Один iз способiв — припустити баротропне рiвняння стану. Iнший полягає
у використаннi параметра уповiльнення, який змiнюється лiнiйно з часом. Оглядається iснуюче рiшення в лiтературi, де рiше-
ння отриманi шляхом припущення, на додаток до баротропного рiвняння стану, лiнiйного змiнного параметра уповiльнення.
Зазначається, що таке припущення призводить до надмiрної визначеностi рiшення. Отже, здiйсненнiсть рiшень є необхiдною
умовою, яка повинна бути задоволена. Лише одне з припущень рiвняння стану або лiнiйно змiнного параметра уповiльнення є
достатнiм для створення рiшень. Надаються та обговорюються вiдповiднi рiшення.
Ключовi слова: f(R,T) гравiтацiя; моделi FLRW; лiнiйний змiнний параметр уповiльнення; космологiчнi рiшення; здiйснен-
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In this investigation, compressive and rarefactive solitons are demonstrated to exist in a plasma model that includes unmagnetized 
weak-relativistic positive ions, negative ions, electrons, electron beam and positron beam. For these weakly relativistic non-linear ion-
acoustic waves in unmagnetized plasma with electron inertia and relativistic beam, the existence of compressive and rarefactive soliton 
is investigated by deriving the Korteweg-de Vries (KdV) equation. It has been observed that the amplitude and width of compressive 
and rarefactive solitons vary differently in response to pressure variation and the presence of electron inertia. The research determines 
the requirements that must be met for the existence of the nonlinear ion-acoustic solitons. The fluid equations of motion governing the 
one-dimensional plasma serve as the foundation for the analysis. Various relational forms of the strength parameter (ε) are chosen to 
stretch the space and time variables, leading to a variety of nonlinearities. The findings can have implications not only for astrophysical 
plasmas but also for inertial confinement fusion plasmas. 
Keywords: Relativistic plasma; Soliton; Ion acoustic wave; Positron Beam; Perturbation theory 
PACS: 52.35.Sb, 52.27.Ny, 52.35.Fp, 41.75.Ht, 52.65.Vv  

INTRODUCTION 
Kalita, Das and Sarmah [1] have investigated the existence of relativistic compressive solitons of the fast ion acoustic 

mode in plasmas where the ion beam is drifting perpendicular to the direction of the magnetic field and Q (= mb/mi, the 
ratio of the mass of the ion beam to the mass of the ions) is greater than or equal to 1. In these considerations, however, 
the relativistic Lorentz factor γ is not taken into account by the Poisson's equation or the equation of continuity. 
Furthermore, some authors, like ElLabany and El-Taibany [2], have studied electronacoustic (EA) solitons without 
accounting for relativistic effects. Non-relativistic electron acoustic solitary waves were studied by El-Shewy and 
El-Shamy [3], taking non-thermal electrons into consideration. By using the pseudo potential approach, Alinejad [4] has 
investigated the characteristics of arbitrary amplitude dust ion acoustic solitary waves in a dusty plasma that contains 
warm adiabatic, electron following flat-trapped velocity distribution, and arbitrarily (positively or negatively) charged 
dust immobile dust. The formation of dust ion acoustic solitons in an unmagnetized plasma with the electrons drift velocity 
through the modified KdV equation has been studied by Das and Karmakar [5]. By resolving the time fractional modified 
KdV equation, Nazari-Golshan and Nourazar [6] have investigated the nonlinear propagation of small but finite amplitude 
dust ion-acoustic solitary waves in unmagnetized dusty plasma with trapped electrons and electron solitary waves have 
been investigated in [13-15] with trapped electrons. Kalita and Das [7] studied both compressive and rarefactive KdV 
solitons of interesting character in a plasma model consisting of ions and electrons with pressure variations in both the 
components in the presence of stationary dust. In multispecies plasma model, consisting of negative mobile dusts, non-
thermal ions and Boltzmann electrons, dust-ion acoustic solitary waves are studied by Das [8] through reductive 
perturbative technique by deriving corresponding KdV equation. Different modes of dust ion acoustic waves have been 
studied theoretically and numerically by Hasnan, Biswas, Habib and Sultana [9] taking into account a four-component 
magnetised collisional k-nonthermal plasma containing non-inertial k-distributed super thermal electrons, stationary dust 
grains of opposite charges, and inertial ion fluid. Das [10] investigated the role of streaming speeds of ions and relativistic 
electrons together with the immobile dust charge to form dust-ion acoustic compressive and rarefactive relativistic solitons 
in a multispecies plasma model for immobile dusty plasma. Oblique propagation of the quantum electrostatic solitary 
waves in magnetized relativistic quantum plasma is investigated using the quantum hydrodynamic equations by Soltani, 
Mohsenpour and Sohbatzadeh [11]. Singh, Kakad, Kakad, Saini [12] studied the evolution of ion acoustic solitary waves 
(IASWs) in pulsar wind. The study of nonlinear phenomena in their various manifestations is an interesting field of study 
in many physical contexts [13-16]. Solitons represent a remarkable natural example of nonlinear structure in both 
magnetised and unmagnetized plasmas [13-16]. Electron solitary wave has been investigated in [16] with resonant 
electrons. The formation of nonlinear structures like electron acoustic solitons (EAS), ion acoustic solitons (IAS), and 
double layers [17-20] is being studied by a large number of researchers worldwide. Moreover, space missions such as 
Solar Anomalous and the Magnetospheric Particle Explorer have demonstrated that relativistic electrons are a threat to 
the International Space Stations. It may be tried to balance the nonlinear effect by dispersion that leads to solitons in the 
context of wave particle interactions, in order to avoid warning of the dangers. Space observations with energies greater 
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than 150 keV confirm the existence of highly relativistic electrons associated with ions in the "Outer zone of the radiation 
belt" that stretches to distance. 

 

EQUATIONS GOVERNING DYNAMICS OF PLASMA 
The fluid equations of motion, governing the collision less dusty plasma in one dimension are: 

for positive ions, 

 డడ௧ + డ(௨)డ௫ = 0 , (1) 

 డఊ௨డ௧ + 𝑢 డఊ௨డ௫ = −  డɸడ௫, (2) 

for negative ions, 
 

డೕడ௧ + డ(ೕ௨ೕ)డ௫ = 0, (3) 

 
డఊೕ௨ೕడ௧ + 𝑢 డఊೕ௨ೕడ௫ = ଵொᇱ  డɸడ௫, (4) 

(Q´ = ୬ୣୟ୲୧୴ୣ ୧୭୬ ୫ୟୱୱ ୮୭ୱ୧୲୧୴ୣ ୧୭୬ ୫ୟୱୱ  = mj / mi) 

for electrons, 
 డడ௧ + డ(௨)డ௫ = 0 , (5) 

 డఊ௨డ௧ + 𝑢 డఊ௨డ௫ = ଵொ  డɸడ௫ −  ଵொ డడ௫ , (6) 

 డడ௧ + 𝑢 డడ௫ +  3𝑝 డఊ௨డ௫ = 0, (7) 

(Q = ୣ୪ୣୡ୲୰୭୬ ୫ୟୱୱ ୮୭ୱ୧୲୧୴ୣ ୧୭୬ ୫ୟୱୱ = me / mi) 

for electron beam, 
 డ್డ௧ + డ(್௨್)డ௫ = 0, (8) 

 డఊ್௨್డ௧ + 𝑢 డఊ್௨್డ௫ = డɸడ௫ − 3𝜎𝑛 డ್డ௫ , (9) 

where σ = Tb/Te = electron beam temperature/electron temperature, 
for positron beam, 

 డೞడ௧ + డ(ೞ௨ೞ)డ௫ = 0, (10) 

 డఊೞ௨ೞడ௧ + 𝑢௦ డఊೞ௨ೞడ௫ + ଵఉ  డɸడ௫ = 0. (11) 

(β = ୮୭ୱ୧୲୧୴ୣ ୧୭୬ିୠୣୟ୫ ୫ୟୱୱ ୮୭ୱ୧୲୧୴ୣ ୧୭୬ ୫ୟୱୱ  = ms / mi) 

The basic governing equations are the continuity and the momentum equations of acoustic mode of the plasma. 
Equations (7) provides the adiabatic response which contributes additional sources of energy to the non-linearity in the 
usual ion-electron inertial dynamical system. Electron inertia, which is usually neglected, is considered. Again, these 
equations are to be supplemented by the following Poisson equation for the charge imbalances. 

 பమɸப୶మ =  𝑛 + 𝑛 −  𝑛 + 𝑛 − 𝑛௦, (12) 

where, 𝛾 = {1 − ( ௨ೌ  )ଶ}ି భమ = 1 + ௨ೌమଶమ ,𝑎 = 𝑖, 𝑗, 𝑒, 𝑏, 𝑠 and c is the speed of light. Here, suffixes i, j,e,b and s stand for 
positive ion, negative ion, electron, electron beam and positron beam respectively. In this case, we normalize densities by 
the equilibrium plasma density n0 ; velocities ( including c ) by the acoustic speed 𝑐௦ = ( ್ ்  )భమ; time t by the inverse of 
the characteristic ion plasma frequency ωpi

-1 = (mi/4πne0e2)1/2 ; the distance x by the Debye length λDe = (kbTe/4πne0e2)1/2; 
the electron pressure pe by the characteristic electron pressure 𝑝 = 𝑛𝑘𝑇; and, the electric potential ɸ by ( ್ ்  ), 
where kb is the Boltzmann constant and Te is the characteristic electron temperature. 
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KdV Equation and its Solution 
We use the stretched variables 

 ξ = εభమ( x – Vt) and τ = εయమt  (13) 

(where V is the phase velocity) along with the expansions of the flow variables in terms of the smallness parameter ε as nk = nk0 + ɛnk1 +ɛ2nk2 + ɛ3nk3 + …, uk = uk0 + ɛuk1 +ɛ2uk2 + ɛ3uk3 + …, pe = 1 + ɛpe1 +ɛ2pe2 + ɛ3pe3 + …, ɸ = ɛɸ1 + ɛ2ɸ2 + ɛ3ɸ3 + …, (k = i,j,e,b and s), where ne0 = 1, nb0 = 1 and ue0 = 1 to derive the KdV equation from the set of 
equations (1) to (11). 

Using the transformation (13) and the expansions of n୧, n୨, nୣ, nୠ, u୧, u୨, uୣ, uୠ and pୣ in equations (1) to (11) and 
equating the coefficient of the first lowest-order of ε we get, n୧ଵ = ୬బ(ି୳బ)మஒ ɸଵ, u୧ଵ = ଵ(ି୳బ)ஒ ɸଵ, n୨ଵ = ି୬ౠబ(ି୳ౠబ)మ୕ᇱஒౠ ɸଵ, u୨ଵ = − ଵ(ି୳ౠబ)୕ᇱஒౠ ɸଵ, nୣଵ = ଵ{ଷି(ି୳బ)మ୕}ஒ ɸଵ, uୣଵ = (ି୳బ){ଷି(ି୳బ)మ୕}ஒ ɸଵ, pୣଵ = ଷ{ଷି(ି୳బ)మ୕}ɸଵ, nୠଵ = − ୬ౘబɸభ(ି୳ౘబ)మஒౘିଷ୬ౘబ , uୠଵ = − (ି୳ౘబ)(ି୳ౘబ)మஒౘିଷ୬ౘబ ɸଵ, nୱଵ = ୬౩బɸభ(ି୳౩బ)మஒஒ౩ , uୱଵ = ଵஒ(ି୳౩బ)ஒ౩ ɸଵ, 

with β୧ = 1 + ଷ୳బమଶୡమ  , β୨ = 1 + ଷ୳ౠబమଶୡమ  , βୣ = 1 + ଷ୳బమଶୡమ  , βୠ = 1 + ଷ୳ౘబమଶୡమ  and βୱ = 1 + ଷ୳౩బమଶୡమ  , 

where u୧, u୨, uୣ, uୠ and uୱ are initial streaming velocities of relativistic positive ions, relativistic negative ions, 
relativistic electrons, relativistic electron beam and relativistic electron beam respectively. 

Using the expansions of n୧ଵ, n୨ଵ, nୣଵ, nୠଵ and nୱଵ in nୣଵ + n୨ଵ −  n୧ଵ + nୠଵ − nୱଵ = 0 , the expression of phase 
velocity V is found as  ଵ{ଷି(ି୳బ)మ୕}ஒ - ୬ౠబ(ି୳ౠబ)మ୕ᇱஒౠ - ୬బ(ି୳బ)మஒ − ୬ౘబɸభ(ି୳ౘబ)మஒౘିଷ୬ౘబ − ୬౩బɸభ(ି୳౩బ)మஒஒ౩  = 0. 

Eliminating u୧ଶ, u୨ଶ, uୣଶ, uୠଶ, uୱଶ and pୣଶ from the equations obtained by equating the coefficient of second higher 
order terms of ε we get the KdV equation as, 
 

பɸభபத  + p ɸଵ பɸభபஞ  + q பయɸభபஞయ  = 0, (14) 
where p = భమ, q = ଵିమ, Kଵ = ( nୠLହDସଶβ୧ଷDଵସQ´ଶβ୨ଷDଶସβୣଷLଵଶ − 2βୠnୠDସଶβ୧ଷDଵସQ´ଶβ୨ଷDଶସβୣଷLଵଶ − 3σnୠଷβ୧ଷDଵସQ´ଶβ୨ଷDଶସ βୣଷLଵଶ −3n୧LଶLଷQ´ଶβ୨ଷDଶସβୣଷLଵଶ + 3n୨LଷLଷβ୧ଷDଵସβୣଷLଵଶ + 3(Lସ − l)Lଷβ୧ଷDଵସQ´ଶβ୨ଷDଶସ )/(Lଷβ୧ଷDଵସQ´ଶβ୨ଷDଶସβୣଷLଵଶ) 

Kଶ = −2n୧Qᇱβ୨DଶଷβୣLଵଶLଶ − 2n୨Dଵଷβ୧βୣLଵଶLଶ − 2QDଷDଵଷβ୧Qᇱβ୨DଶଷLଶ − 2nୠβୠDସDଵଷβ୧Qᇱβ୨DଶଷβୣLଵଶDଵଷβ୧Qᇱβ୨DଶଷβୣLଵଶLଶ  

and Dଵ = V − u୧, Dଶ = V − u୨, Dଷ = V − uୣ, Dସ = V − uୠ, Lଵ = 3 − Q(V − uୣ)ଶ, Lଶ = β୧ − ୳బ(ି୳బ)ୡమ , Lଷ = β୨ − ୳ౠబ(ି୳ౠబ)ୡమ , Lସ = βୣ − ୳బ(ି୳బ)ୡమ , Lହ = ଷ୳ౘబ(ି୳ౘబ)ୡమ − βୠ, L = 3σnୠ − (V − uୠ)ଶβୠ, L = ஒ(ଵାଷஒ)భ  

 
We introduce the variable η = ξ – U τ , where U is the velocity of the wave in the linear η space, to find a stationary 

solution of the KdV equation (14). Equation (14) can be integrated using the boundary conditions ɸଵ =  பɸభப =  பమɸభபమ =0 as |η| → ∞, to give 

 ɸଵ =  ɸsechଶ (η/∆)  (15) 

where ɸ = (3U/p) is the amplitude and ∆ = (4q/U)1/2 is the width of the soliton respectively. 
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RESULTS AND DISCUSSION 
Week relativistic effects are incorporated in pursuit of the formation of solitary waves in this plasma model. For 

nonlinear ion-acoustic solitary waves we have used the reductive perturbation theory to reduce the basic set of equations 
to KdV equation (14). We have investigated the effects of plasma parameters on the nature of the solitary waves in this 
model of plasma and displayed their variation graphically in figures 1 to 12. For numerical analysis, some appropriate 
values of plasma parameters are considered as: c = 300, Q = 0.00054. 

  
Figure 1. Variation of amplitude with respect to Q´ for different 
σ and fixed U = 0.03, ui0 = 1.17, V = 0.74, uj0 = 0.95, ni0 =1.06, 
nb0= 1.06, ub0= 0.95, nj0= 1.06, ue0 = 1.22, ns0= 1.27, us0= 1.01 

Figure 2. Variation of width with respect to Q´ for different V 
and fixed U = 1.01, ui0 = 1.11, uj0 = 1.17, ni0 =1.22, nb0= 1.33, 
ub0= 1.01, nj0= 0.79, σ = 0.412, ue0 = 0.74, ns0= 1.11, us0= 0.75 

Variation of amplitude with respect to mass ratio is shown in Figure 1. The figure shows that when we increase mass 
ratio while keeping other parameters mixed the amplitude increases positively. Therefore, we can say that our plasma 
model has compressive solitons whose amplitude increases as we increase the value of mass ratio. If we increase the value 
of σ from 0.049 to 0.052 we observe that the soliton amplitude gradually rises. Thus, we can say that we get compressive 
solitons of higher amplitude for greater values of σ in the comparison of amplitude with respect to mass ratio. Figure 2 
shows variation of width with respect to mass ratio. While keeping other parameters fixed as mentioned in Figure 2 we 
observe that soliton width increases as mass ratio increases. We also observe that soliton width increases when phase 
velocity increases from 0.58 to 0.61 in the comparison of width with respect to mass ratio. 

Figure 3 depicts the amplitude variation with respect to ns0. The figure illustrates how the amplitude increases 
positively when we increase ns0 while maintaining fixed values of other parameters. Therefore, we can conclude that our 
plasma model has compressive solitons whose amplitude increases as we increase the value of ns0. A gradual increase in 
the soliton amplitude is observed when the mass ratio is increased from 0.65 to 0.83. Therefore, in the comparison of 
amplitude with respect to ns0, we can say that for larger values of σ, we obtain compressive solitons of higher amplitude. 
Figure 4 illustrates how width varies in relation to ns0. Soliton width rises as ns0 increases, as shown in Figure 4, while 
other parameters remain fixed. In the comparison of width with respect to ns0, we also find that soliton width increases 
when mass ratio increases from 0.15 to 0.43. 

  
Figure 3. Variation of amplitude with respect to ns0 for different 
Q´ and fixed U = 0.37, ui0 = 0.85, v = 0.47, uj0 = 0.9, ni0 =0.85, 
nb0= 0.9, ub0= 0.42, nj0= 0.74, σ = 0.047, ue0 = 0.95, us0= 0.23 

Figure 4. Variation of width with respect to ns0 for different Q´ 
and fixed U = 1.83, ui0 = 1.82, V = 0.45, uj0 = 1.43, ni0 =1.01, 

nb0= 1.33, ub0= 1.64, nj0= 0.37, σ = 0.071, ue0 = 1.11 , us0= 1.17 

Figure 5 illustrates how the amplitude varies in relation to σ. As we hold other parameters constant, the figure 
illustrates how the amplitude varies negatively as we increase σ. We can therefore conclude the presence of rarefactive 
soliton in our plasma model which have increasing amplitude as we increase the value of σ. We find that the soliton 
amplitude gradually decreases as we increase the mass ratio from 0.87 to 0.94. Therefore, in the comparison of amplitude 
with respect to σ, we can say that for larger values of mass ratio, we obtain rarefactive solitons of lower amplitude. 
Figure 6 illustrates how width varies in relation to σ. It is observed that the soliton width increases as σ increases, while 
other parameters remain fixed as indicated in figure 6. In the comparison of width with respect to σ, we also find that 
soliton width increases when mass ratio increases from 0.21 to 0.57. 
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Figure 5. Variation of amplitude with respect to σ for different 
Q´ and fixed U = 0.9, ui0 = 1.54, V = 1.3, uj0 = 1.0, ni0 =1.06, 
nb0= 0.95, ub0= 1.43, nj0=1.27, ue0 = 1.06, ns0= 0.95, us0= 0.85 

Figure 6. Variation of width with respect to σ for different Q´ 
and fixed U = 0.85, ui0 = 0.85, v = 2.15, uj0 = 1.01, ni0 =1.01, 
nb0= 0.9, ub0= 0.95, nj0= 1.01, ns0= 0.85, ue0 = 1.11, us0= 1.01 

  
Figure 7. Variation of amplitude with respect to Q´ for different σ 
and fixed U = 0.16, ui0= 0.9, V = 0.7, uj0 = 1.17, ni0 =0.79, nb0=1.27, 
ub0= 1.17, nj0= 1.06, σ = 0.0524, ue0 = 1.11, ns0= 1.01, us0= 1.11 

Figure 8. Variation of width with respect to us0 for different Q´ 
and fixed U = 1.8, ui0 = 0.95, V = 0.1, uj0 = 1.49, ni0 =1.22, 
nb0 = 1.27, ub0= 0.95, nj0= 1.11, ns0= 1.43, ue0 = 1.17, σ = 0.016 

Figure 7 displays the variation in amplitude in relation to the mass ratio. The graph indicates that the amplitude 
increases negatively as the mass ratio climbs while the other parameters remain unchanged. As such, we can state the 
presence of rarefactive solitons in our plasma model whose amplitude increases as we increase the value of mass ratio. 
The soliton amplitude gradually decreases as we increase the value of σ from 0.0500 to 0.0524. Therefore, when 
comparing amplitude to mass ratio, we obtain rarefactive solitons with lower amplitudes for higher values of σ. Figure 8 
illustrates the variation in width in relation to us0. We note that soliton width increases as us0 increases while maintaining 
other parameters fixed, as shown in figure 8. Furthermore, we note that in the comparison of width with respect to us0, 
soliton width increases when mass ratio increases from 0.46 to 0.69. 

Variation of amplitude with respect to nb0 is shown in Figure 9. The figure shows that when we increase nb0 while 
keeping other parameters mixed the amplitude increases positively. Therefore, we can say that our plasma model has 
compressive solitons whose amplitude increases as we increase the value of nb0. If we increase the value of wave speed 
from 0.99 to 1.59, we observe that the soliton amplitude gradually rises. Thus, we can say that we get compressive solitons 
of higher amplitude for greater values of σ in the comparison of amplitude with respect to nb0. Figure 10 shows variation 
of width with respect to ui0. While keeping other parameters fixed as mentioned in figure 10, we observe that soliton 
width increases as ui0 increases. We also observe that soliton width decreases when uj0 increases from 0.53 to 0.74 in the 
comparison of width with respect to ui0. 

  
Figure 9. Variation of amplitude with respect to nb0 for different 
U and fixed ui0=0.62, V=0.21, uj0=0.39, ni0=0.69, Q´=0.85, 
ns0=0.53, ub0=0.74, nj0=0.37, σ=0.026, ue0=0.79, us0=0.53 

Figure 10. Variation of width with respect to ui0 for different uj0 
and fixed U=0.21, Q´=0.21, V=1.49, ni0=0.26, nb0=0.26, 
ub0=0.26, nj0=0.42, σ=0.018, ue0=0.16, ns0=0.26, us0=0.37 
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Finally, we have observed variation of solitary wave potential φ1 versus η for four different values of wave speed U 
as shown in Figure 11 and 12. We found that the wave potential of both compressive (Figure 11) and rarefactive 
(Figure 12) ion-acoustic soliton increases while the value of wave speed increases. 

  
Figure 11. Variation of ɸ1 with respect to η for different U and 
fixed ui0 = 4.2, V = 5.4, uj0 = 0.79, ni0 =1.17, nb0= 1.59, ub0= 1.49, 
nj0= 1.49, ns0= 1.43, ue0 = 1.54, Q´=0.47, us0= 0.47, ns0=0.16, 
σ = 0.282 

Figure 12. Variation of ɸ1 with respect to η for different U and 
fixed ui0 = 0.58, V = 3.56, uj0 = 0.47, ni0 =0.53, nb0= 0.58, 
ub0 = 0.32, nj0= 0.33, ns0= 1.43, ue0 = 0.26, Q´=0.21, ns0=0.42, 
us0=0.53, σ = 0.045 
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НЕЛІНІЙНІ ІОННО-АКУСТИЧНІ ОДИНОКІ ХВИЛІ В СЛАБОРЕЛЯТИВІСТСЬКІЙ ЕЛЕКТРОН-ПОЗИТРОН-

ІОННІЙ ПЛАЗМІ З РЕЛЯТИВІСТСЬКИМИ ПУЧКАМИ ЕЛЕКТРОНІВ І ПОЗИТРОНІВ 
Сатьендра Натх Барманa, Кінгкар Талукдарb 

aKоледж Б. Боруа, Гувахаті 781007, Ассам, Індія 
bДепартамент математики, Університет Гаухаті, Гувахаті 781014, Ассам, Індія 

У цьому дослідженні було продемонстровано існування стискаючих і розріджених солітонів у моделі плазми, яка включає 
ненамагнічені слабкі релятивістські позитивні іони, негативні іони, електрони, електронний пучок і пучок позитронів. Для 
цих слабо релятивістських нелінійних іонно-акустичних хвиль у ненамагніченій плазмі з електронною інерцією та 
релятивістським пучком існування стисливого та розрідженого солітону досліджується шляхом виведення рівняння 
Кортевега-де Фріза (KdV). Було помічено, що амплітуда та ширина солітонів стиснення та розрідження змінюються по-
різному у відповідь на зміну тиску та наявність інерції електронів. Дослідженнями визначено вимоги, які повинні бути 
виконані для існування нелінійних іонно-акустичних солітонів. Основою для аналізу є рівняння руху рідини, що керують 
одновимірною плазмою. Різні відносні форми параметра міцності (ε) вибираються для розширення просторових і часових 
змінних, що призводить до різноманітних нелінійностей. Отримані результати можуть мати наслідки не лише для 
астрофізичної плазми, але й для термоядерної плазми з інерційним утриманням. 
Ключові слова: релятивістська плазма; солітон; іонна акустична хвиля; пучок позитронів; теорія збурень 
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This work aims to investigate numerically the influence of viscous dissipation and heat source on the magnetohydrodynamics squeezing
flow of water-based ternary hybrid nanofluids between two parallel plates in a Darcy porous medium. The nanoparticles 𝐶𝑢, 𝐴𝑙2𝑂3,
and 𝑇𝑖𝑂2 are dispersed in a base fluid 𝐻2𝑂, resulting in the creation of a ternary hybrid nanofluid 𝐶𝑢 − 𝐴𝑙2𝑂3 − 𝑇𝑖𝑂2/𝐻2𝑂. This
study examines the deformation of the lower plate as the upper one advances towards it. The numerical results are computed using the
3-stage Lobatto IIIa method, which is specially implemented by Bvp4c in MATLAB. The effects of various parameters are visually
illustrated through graphs and quantitatively shown in tables. The absolute skin friction of the ternary hybrid nanofluid is seen to be
approximately 5% higher than that of the regular nanofluid at the lower plate and at most 7% higher than that of the nanofluid at the
upper plate. The heat transmission rate of the ternary hybrid nanofluid is higher at the upper plate compared to the lower plate.

Keywords: Thermal radiation; Viscous dissipation; Parallel plate; Heat source; Ternary hybrid nanofluid; Darcy porous medium; bvp

PACS: 44.05.+e, 44.25.+f, 44.27.+g, 44.40.+a, 47.11.-j, 44.30.+v

1. INTRODUCTION
Ternary hybrid nanofluids consist of three distinct kinds of nanoparticles dispersed in a base fluid. This paper describes

a study on a ternary hybrid nanofluid consisting of copper (𝐶𝑢), aluminum oxide (𝐴𝑙2𝑂3), and titanium dioxide (𝑇𝑖𝑂2)
nanoparticles, which are uniformly dispersed in a water-based fluid. This ternary hybrid nanofluid possesses distinctive
characteristics that enable it suited for a many different kinds of applications. Introducing copper (𝐶𝑢) nanoparticles into
the nanofluid has been discovered to enhance thermal conductivity, while the inclusion of aluminum oxide (𝐴𝑙2𝑂3) and
titanium dioxide (𝑇𝑖𝑂2) nanoparticles has been reported to improve heat transfer efficiency and stability. This nanofluid
can be used in a range of applications, including heat exchangers, cooling systems, and electronic devices, to improve
heat dissipation and enhance thermal management. Copper nanoparticles exhibit antibacterial properties, while (𝑇𝑖𝑂2)
nanoparticles demonstrate photocatalytic activity against bacteria and other microorganisms. The utilization of the ternary
hybrid nanofluid, consisting of 𝐶𝑢 − 𝐴𝑙2𝑂3 − 𝑇𝑖𝑂2, has great potential for creating antibacterial coatings on different
surfaces, such as textiles, medical equipment, and food packaging. These coatings efficiently hinder bacterial proliferation
and help maintain hygiene. Titanium dioxide (𝑇𝑖𝑂2) nanoparticles possess photocatalytic characteristics, enabling them
to effectively catalyze the decomposition of organic pollutants and the sterilization of water. The utilization of the 𝐶𝑢 −
𝐴𝑙2𝑂3 − 𝑇𝑖𝑂2, ternary hybrid nanofluid shows promise for implementation in water treatment processes, aiding in the
removal of contaminants and improving the overall water quality.

Choi and Eastman [1] were the innovators who first introduced the concept of nanofluids. They claimed that by
suspending metallic nanoparticles in conventional heat transfer fluids, a groundbreaking kind of heat transmission fluids
might be created. Raees et al. [2] has conducted an investigation of the unsteady squeezing flow of fluid between parallel
plates that contains both nanoparticles and gyrotactic microorganisms, one of the plates was moving and the other staying
still. Hayat et al. [3] applied the HAM approach to study the magnetohydrodynamic squeezing flow of a nanofluid across a
porous stretched surface with thermophoresis effects and Brownian motion. They have taken the lower wall of the channel
to be permeable and stretched, while the upper impermeable wall moves in the direction of the lower wall at a prescribed
time-dependent velocity. Moreover, Hayat et al. [4] discovered a novel analysis of the magnetohydrodynamic squeezing
flow of couple stress nanomaterial between two parallel surfaces. This analysis incorporates the unique characteristics of
thermophoresis and Brownian motion, which have not been previously described together with a porous lower surface in
the channel. Salehi et al. [5] has conducted research on the magnetohydrodynamic squeezing nanofluid flow of hybrid
nanoparticles composed of 𝐹𝑒3𝑂4 and 𝑀𝑜𝑆2 that are sandwiched between two infinite parallel plates. They found that
as the squeezing and Hartman numbers increased, the velocity profile decreased. Acharya [6] performed research to
determine the flow patterns and heat transmission characteristics of hybrid nano liquids in the presence of nonlinear solar
radiation. The investigation focused on several solar thermal devices that had Alumina-copper nano ingredients mixed with
water as the main fluid. Furthermore, Bio-convective nano liquid flow including gyrotactic microorganisms between two
squeezed parallel plates was investigated by Acharya et al. [7] using the classical Runge-Kutta-Fehlberg approach, taking
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into account the effects of a higher-order chemical reaction and second-order slip. Based on their research, they discovered
that the temperature reduces as the squeezing factor and first-order velocity slip parameter increase, but increases as the
second-order slip parameter increases. A micro-polar hybrid nanofluid (𝐺𝑂 − 𝐶𝑢/𝐻20) has been investigated by Ikram
et al. [8] in the presence of hall current and thermal radiations to look at how it moves and transfers heat between two
surfaces in a spinning system. The primary result of their investigation is that increasing the values of the magnetic
parameter leads to an increase in the velocity profile and a decrease in the rotational velocity profile. Also, the fractional
model of Brinkman type fluid that contains hybrid nanoparticles of 𝑇𝑖𝑂2 and 𝐴𝑔 in a base fluid of water within a confined
micro-channel has been investigated by Ikram et al. [9]. Khashi’ie et al. [10] investigated the 𝐶𝑢 − 𝐴𝑙2𝑂3/𝐻20 nanofluid
flow between two parallel plates in which a magnetic field and wall mass suction or injection are supplied to the lower
plate, allowing the bottom plate to be deformed while the upper plate flows in the opposite direction of the lower plate.
The primary finding of their investigation is that an augmentation in the squeezing parameter leads to a degradation
of the heat transfer coefficient by 4.28% (upper) and 5.35% (lower), respectively. Yaseen et al. [11] studied the heat
transfer properties of the MHD squeezing nanofluid (𝑀𝑜𝑆2/𝐻2𝑂) flow and the hybrid nanofluid (𝑀𝑜𝑆2 − 𝑆𝑖𝑂2/𝐻2𝑂 −
𝐶2𝐻6𝑂2) flow between two parallel plates, as well as their symmetrical characteristics. In their model, the upper plate
is moving downwards towards the lower plate, while the bottom plate is elongating with a constant velocity. A hybrid
nanofluid containing Ethylene glycol-water as the base fluid and nanoparticles of 𝑇𝑖𝑂2 and 𝑀𝑜𝑆2 in the presence of dust
particles and a magnetic field, flowing over a stretched sheet, was studied by Talebi et al. [12] in terms of its motion
and temperature distribution in a porous medium. By considering the effects of thermal radiation and Hall current,
Rauf et al. [13] investigated the micropolar tri-hybrid nanofluid(𝐹𝑒3𝑂4 − 𝐴𝑙2𝑂3 − 𝑇𝑖𝑂2/𝐻2𝑂) in a rotating structure
between two perpendicular permeable plates. A micro-polar fluid undergoing radiative and magnetohydrodynamic flow
across an 𝐴𝑙2𝑂3 and 𝐶𝑢 nanoparticle stretched/shrinking sheet in the presence of viscous dissipation and Joule heating
was investigated by Waini et al. [14]. Famakinwa et al. [15] studied how heat radiation and viscous dissipation affect
an unstable, incompressible flow of water-hybrid nanoparticles moving between two surfaces that are lined up and have
different viscosity. They discovered that there was no apparent alteration in fluid velocity when thermal radiation and
viscous dissipation parameters were increased, but that the temperature distribution was reduced. The combined effects of
the suction/injection, electromagnetic force, activation energy, chemical reaction, ionized fluid, inertia force and magnetic
field that influence the squeezing flow of ternary hybrid nanofluids between parallel plates are investigated numerically
by Bilal et al. [16]. Hanif et al. [17] investigated the flow of a hybrid nanofluid based on an aluminum alloy and water
across a stretchy horizontal plate with a thermal resistive effect using the Numerical Crank-Nicolson approach. The MHD
flow, heat, and mass transfer of the Jeffrey hybrid nanofluid on the squeezing channel via a permeable material in the
presence of a chemical reaction and a heat sink/source were studied by Noor and Shafie [18]. Ullah et al. [19] explored the
hydrothermal properties of a hybrid nanofluid (𝐴𝑔 + 𝑇𝑖𝑂2 + 𝐻2𝑂) in three dimensions in presence of magnetic, thermal,
and radiation fluxes between the two vertical plates. Transient free convection of a hybrid nanofluid between two parallel
plates in the presence of a magnetic field, a heat source/sink and thermal radiation was explored analytically by Roy
and Pop [20]. Moreover, the effect of radiative heat flux on the transient state electro-osmotic squeezing propulsion of a
viscous liquid via a porous material between two parallel plates has been investigated by Jayavel et al. [21]. Bhaskar et
al. [22] and Maiti and Mukhopadhyay [23] investigated the MHD squeezed flow of casson hybrid nanofluid and unstable
nanofluid flow between two parallel plates, respectively, under various effects. Madit et al. [24] studied how a chemical
reaction affects the flow of a nanofluid that is squeezed by hydromagnetism between two vertical plates. Khashi’ie et
al. [25] carried out investigations into the simultaneous impact of double stratification and buoyancy forces on the flow
of nanofluid over a surface that is either shrinking or stretching. It was observed that the heat transfer rate increases by
roughly 5.83% to 12.13% when the thermal relaxation parameter is introduced in both shrinking and stretching scenarios.
Similarly, Khashi’ie et al. [26] developed numerical solutions and conducts stability analyses for stagnation point flow
utilizing hybrid nanofluid in the presence of thermal stratification across a permeable stretching/shrinking cylinder. Nath
and Deka [27] studied the effects of thermal and mass stratification on an unsteady MHD nanofluid past a vertical plate
that accelerates exponentially with temperature variation in a porous media. Similarly, Nath and Deka [28] conducted
a numerical study to examine the combined impacts of thermal and mass stratification on the movement of unstable
magnetohydrodynamic nanofluid through an exponentially accelerated vertical plate in a porous media. The unsteady
parabolic flow across an infinite vertical plate with exponentially declining temperature and variable mass diffusion in
a porous media has been investigated by Nath and Deka [29] with respect to the thermal and mass stratification effect.
Nath and Deka [30],[31] performed a numerical investigation on the MHD ternary hybrid nanofluid around a vertically
stretching cylinder in a porous medium with thermal stratification. A numerical study was carried out by Krishna [32]
to examine the effects of heat absorption and generation on steady free convection flow around a perpendicularly wavy
surface. Additionally, Krishna and Vajravelu [33] investigated the chemical reaction, radiation absorption, Hall, and ion
slip impacts in the rotating MHD flow of second-grade fluid via a porous media between two vertical plates. In a parallel
plate channel with different pressure gradient oscillations, Krishna [34] investigated Hall effects on magnetohydrodynamic
rotational flow through a porous media.

Based on the literature review, previous research has not attempted to investigate the squeezing flow of an MHD
ternary hybrid nanofluid between two parallel plates in a porous media in presence of viscous dissipation effect. It is
assumed that the lower plate has a physically permeable and stretchable shape. The primary aim of this study is to
investigate the thermal conductivity characteristics of a ternary hybrid nanofluid composed of𝐶𝑢− 𝐴𝑙2𝑂3−𝑇𝑖𝑂2 particles
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suspended in water. This study examines the heat transfer characteristics between two parallel plates, considering the
influence of thermal radiation as well as heat sources/sinks. The bvp4c solver in MATLAB is used to transform the
non-linear PDEs into ODEs by utilizing the necessary self-similarity variables. The Bvp4c technique employed in this
research work to represent the problem is generally acknowledged, as evidenced by its discussion and implementation
in MATLAB by Hale and Moore [35]. A visual depiction of the outcomes is presented for many parameters, including
𝛿, 𝐸𝑐, 𝑆𝑞, 𝑆, 𝜆, 𝑀, 𝐷𝑎, 𝑅 and 𝑄.

Figure 1. Physical Model and Coordinate System

2. MATHEMATICAL ANALYSIS
Consider a two-dimensional unsteady ternary hybrid nanofluid (𝐶𝑢 − 𝐴𝑙2𝑂3 − 𝑇𝑖𝑂2/𝐻2𝑂) squeezing flow between

two infinite parallel plates in a Darcy porous medium, as illustrated in Fig. 1. The upper plate is positioned at a distance

of 𝑦 = ℎ(𝑡) =

√︃
(1−𝛼𝑡 )𝑣 𝑓

𝑏
from the lower plate. At the same time, the higher plate, with a velocity 𝑉ℎ =

𝑑ℎ (𝑡 )
𝑑𝑡

=

− 𝛼
2

√︃
𝑣 𝑓

(1−𝛼𝑡 )𝑏 , is moving towards the lower plate that is being squeezed. It is assumed that the lower and upper plates are
kept at constant temperatures 𝑇1 and 𝑇2, respectively. Additionally, the influence of viscous dissipation, thermal radiation
and heat source/sink are taken into consideration in this model; however, the buoyancy effect, which is also known as the
gravitational force, is not taken into account. In the meantime, the physical representation for the potential fluid suction
or injection includes the porous lower plate, where the wall mass velocity is represented as 𝑣𝑤 = − 𝑉0

1−𝛼𝑡
; for suction, 𝑉0 >

0, for injection, 𝑉0 < 0, and an impermeable plate corresponds to 𝑉0 = 0. Furthermore, the lower plate can be stretched
with a linear velocity of 𝑢𝑤 = − 𝑏𝑥

1−𝛼𝑡
, where 𝑡 < 1

𝛼
, and a time-dependent magnetic field is modeled with 𝐵(𝑡) = 𝐵0

1−𝛼𝑡
.

In light of these assumptions and with the hybrid nanofluid model that Khashi’ie et al. [10], Famakinwa et al. [15] and
Yaseen et al. [11] have proposed, we extended their model to incorporate the ternary hybrid model. Hence, the governing
conservation equations are as follows:

𝜕𝑢

𝜕𝑥
+ 𝜕𝑢
𝜕𝑦

= 0 (1)

𝜕𝑉

𝜕𝑡
+ 𝑢 𝜕𝑉

𝜕𝑥
+ 𝑣 𝜕𝑉

𝜕𝑦
=

𝜇𝑡ℎ𝑛 𝑓

𝜌𝑡ℎ𝑛 𝑓

𝜕2𝑉

𝜕𝑦2 −
𝜎𝑡ℎ𝑛 𝑓

𝜌𝑡ℎ𝑛 𝑓

𝐵(𝑡)2𝑉 −
𝜇𝑡ℎ𝑛 𝑓

𝜌𝑡ℎ𝑛 𝑓

.
𝜙∗𝑉

𝑘 𝑝
(2)

𝜕𝑇

𝜕𝑡
+ 𝑢 𝜕𝑇

𝜕𝑥
+ 𝑣 𝜕𝑇

𝜕𝑦
=

𝑘𝑡ℎ𝑛 𝑓

(𝜌𝑐𝑝)𝑡ℎ𝑛 𝑓

𝜕2𝑇

𝜕𝑦2 − 1
(𝜌𝑐𝑝)𝑡ℎ𝑛 𝑓

𝜕𝑞𝑟

𝜕𝑦
+ 𝑄0
(𝜌𝑐𝑝)𝑡ℎ𝑛 𝑓

(𝑇 − 𝑇0) +
𝜇𝑡ℎ𝑛 𝑓

(𝜌𝑐𝑝)𝑡ℎ𝑛 𝑓

(
𝜕𝑢

𝜕𝑦

)2
(3)

where 𝑉 = 𝜕𝑣
𝜕𝑥

− 𝜕𝑢
𝜕𝑦

. The boundary conditions that are associated with the lower and upper plates (Hayat et al. [3] and
Khashi’ie et al. [10]) are as follows :

𝑢 = 𝜆
𝑏𝑥

1 − 𝛼𝑡 𝑣 = − 𝑉0
1 − 𝛼𝑡 𝑇 = 𝑇1 at 𝑦 = 0 (lower plate)

𝑢 = 0 𝑣 =
𝑑ℎ(𝑡)
𝑑𝑡

𝑇 = 𝑇2 at 𝑦 = ℎ(𝑡) (upper plate)

Here, 𝑢 and 𝑣 represent the velocities in the 𝑥 and 𝑦 directions, respectively, while 𝑇 denotes the temperature of the
ternary hybrid nanofluid. In addition, the other symbol signifies the following: 𝜌 represents density, 𝜇 represents dynamic
viscosity, 𝐶𝑝 represents heat capacity, 𝑘 represents thermal conductivity, 𝐵(𝑡) represents magnetic field strength, indicates
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porosity of the porous medium, represents permeability of the porous medium, 𝜆 is the stretching/shrinking parameter, 𝑄0
represents heat absorption/generation coefficient, and 𝑏 denotes the stretching/shrinking rate of the lower plate.

Taking into consideration the Rosseland approximation [36], the value of (𝑞𝑟 ) is defined as

𝑞𝑟 = − 4𝜎∗

3𝑘𝑡ℎ𝑛 𝑓

(
𝜕𝑇4

𝜕𝑦

)
The term ”𝜎∗” represents the Stefan-Boltzmann constant, whereas ”𝑘𝑡ℎ𝑛 𝑓 ” refers to the mean absorption coefficient.

By performing basic calculations with the aforementioned term, Eqn. (3) can be reduced as follows:

𝜕𝑇

𝜕𝑡
+ 𝑢 𝜕𝑇

𝜕𝑥
+ 𝑣 𝜕𝑇

𝜕𝑦
=

1
(𝜌𝑐𝑝)𝑡ℎ𝑛 𝑓

(
𝑘𝑡ℎ𝑛 𝑓 +

16𝜎∗𝑇3
2

3𝑘

)
𝜕2𝑇

𝜕𝑦2 + 𝑄0
(𝜌𝑐𝑝)𝑡ℎ𝑛 𝑓

(𝑇 − 𝑇0) +
𝜇𝑡ℎ𝑛 𝑓

(𝜌𝑐𝑝)𝑡ℎ𝑛 𝑓

(
𝜕𝑢

𝜕𝑦

)2

The similarity transformation (Ref. Hayat et al. [3]) used in Equations (1)-(3) are as follows

𝑢 =
𝑏𝑥

1 − 𝛼𝑡 𝑓
′ (𝜂), 𝑣 = −

√︂
𝑏𝜈 𝑓

1 − 𝛼𝑡 𝑓
′ (𝜂), 𝜂 = 𝑦

√︄
𝑏

(1 − 𝛼𝑡)𝜈 𝑓
,

𝜓 =

√︂
𝑏𝜈 𝑓

1 − 𝛼𝑡 𝑥 𝑓 (𝜂), 𝜃 =
𝑇 − 𝑇0
𝑇2 − 𝑇0

and we provide non-dimensional quantities in the following:

𝑀 =
𝜎 𝑓 𝐵

2
0

𝑏𝜌 𝑓

, 𝐷𝑎 =
𝑘0𝑏

𝑣 𝑓 (1 − 𝛼𝑡)𝜙∗ , 𝐸𝑐 =
𝑢2
𝑤

𝐶𝑝 (𝑇2 − 𝑇0)
, 𝑆𝑞 =

𝛼

𝑏
, 𝑆 =

𝑉0
ℎ𝑏

𝛿 =
𝑇1 − 𝑇0
𝑇2 − 𝑇0

, 𝑄 =
𝑄0

1 − 𝛼𝑡 , 𝑅 =
4𝜎∗𝑇 ′3

2
𝑘 𝑓 𝑘

, 𝑃𝑟 =
(𝜌𝑐𝑝) 𝑓
𝑘 𝑓

where, 𝑀 is the magnetic parameter, 𝐷𝑎 is the Darcy number, 𝑆𝑞 is the squeezing parameter, 𝑆 is the suction/injection
parameter, 𝛿 is the temperature-ratio parameter, 𝐸𝑐 is the Eckert number, 𝑄 is the heat source/sink parameter, 𝑅 is the
thermal radiation parameter, 𝑃𝑟 is the Prandtl number. Moreover, if 𝜆 = 0, it means the lower plate is not moving, if
𝜆 < 0, it means the lower plate is shrinking, and if 𝜆 > 0, it means the lower plate stretching.

The non-dimensional forms of the transformed equations are given by

𝑎1𝑎2 𝑓
𝑖𝑣 + 𝑓 𝑓 ′′′ − 𝑓 ′ 𝑓 ′′ − 𝑆𝑞

2
(3 𝑓 ′′ + 𝜂 𝑓 ′′′) −

(
𝑎2𝑎3𝑀 + 𝑎1𝑎2

𝐷𝑎

)
𝑓 ′′ = 0 (4)

𝑎4
𝑃𝑟

(
𝑎5 +

4
3
𝑅

)
𝜃′′ + 𝑓 𝜃′ − 𝑆𝑞

2
𝜂𝜃′ + 𝑎4𝑄𝜃 + 𝑎1𝑎4𝐸𝑐 𝑓

′′2 = 0 (5)

where,

𝑎1 =
𝜇𝑡ℎ𝑛 𝑓

𝜇 𝑓

, 𝑎2 =
𝜌 𝑓

𝜌𝑡ℎ𝑛 𝑓

, 𝑎3 =
𝜎𝑡ℎ𝑛 𝑓

𝜎 𝑓

, 𝑎4 =
(𝜌𝐶𝑝) 𝑓

(𝜌𝐶𝑝)𝑡ℎ𝑛 𝑓

, 𝑎5 =
𝑘𝑡ℎ𝑛 𝑓

𝑘 𝑓

Here, the symbols 𝜇𝑡ℎ𝑛 𝑓 , 𝜌𝑡ℎ𝑛 𝑓 , (𝜌𝐶𝑝)𝑡ℎ𝑛 𝑓 , 𝜎𝑡ℎ𝑛 𝑓 , 𝑘𝑡ℎ𝑛 𝑓 represent the ternary hybrid nanofluid’s coefficient of vis-
cosity, electrical conductivity, heat capacity, density and thermal conductivity, respectively. Also, 𝜇 𝑓 , 𝜌 𝑓 , (𝜌𝐶𝑝) 𝑓 , 𝜎 𝑓 , 𝑘 𝑓

denote the base fluid’s coefficient of viscosity, electrical conductivity, heat capacity, density and thermal conductivity cor-
respondingly.The thermophysical characteristics of the ternary hybrid nanofluid are presented in table 1. Thermo-physical
properties of 𝐶𝑢, 𝐴𝑙2𝑂3 and 𝑇𝑖𝑂2 nanoparticles in pure water are given in table 2.

The transformed boundary conditions are as follows :

𝑓 (0) = 𝑆, 𝑓 ′ (0) = 𝜆, 𝜃 (0) = 𝛿

𝑓 (1) = 𝑆𝑞

2
, 𝑓 ′ (1) = 0, 𝜃 (1) = 1 (6)

where 𝜙1, 𝜙2 and 𝜙3 are volume fraction of𝐶𝑢(Copper), 𝐴𝑙2𝑂3 (aluminium oxide) and𝑇𝑖𝑂2 (titanium oxide) nanoparticles
respectively. The suffixes thnf, hnf, nf, f, s1, s2, s3 denote ternary hybrid nanofluid, hybrid nanofluid, nanofluid, base
fluid, solid nanoparticles of copper (𝐶𝑢), aluminum oxide (𝐴𝑙2𝑂3), and titanium dioxide (𝑇𝑖𝑂2) correspondingly.

The skin friction coefficient and local Nusselt number at lower and upper plates are defined by

Lower: 𝐶 𝑓1𝑅𝑒
1/2
𝑥 =

𝜇𝑡ℎ𝑛 𝑓

𝜇 𝑓

𝑓 ′′ (0) and Upper: 𝐶 𝑓2𝑅𝑒
1/2
𝑥 =

𝜇𝑡ℎ𝑛 𝑓

𝜇 𝑓

𝑓 ′′ (1)

Lower: 𝑁𝑢𝑥1𝑅𝑒
−1/2
𝑥 = −

(
𝑘𝑡ℎ𝑛 𝑓

𝑘 𝑓

+ 4
3
𝑅

)
𝜃′ (0) and Upper: 𝑁𝑢𝑥2𝑅𝑒

−1/2
𝑥 = −

(
𝑘𝑡ℎ𝑛 𝑓

𝑘 𝑓

+ 4
3
𝑅

)
𝜃′ (1)

where, 𝑅𝑒𝑥 =
𝑥𝑈𝑤

𝑣 𝑓
is the local Reynolds Number.
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Table 1. The thermo-physical properties of ternary hybrid nanofluid are as follows [31]:

Properties Ternary Hybrid Nanofluid
Dynamic Viscocity 𝜇𝑡ℎ𝑛 𝑓

𝜇 𝑓
= 1

(1−𝜙1 )2.5 (1−𝜙2 )2.5 (1−𝜙3 )2.5

Density 𝜌𝑡ℎ𝑛 𝑓 = (1 − 𝜙3)
[
(1 − 𝜙2)

{
(1 − 𝜙1)𝜌 𝑓 + 𝜙1𝜌𝑠1

}
+ 𝜙2𝜌𝑠2

]
+ 𝜙3𝜌𝑠3

Electrical Conductivity 𝜎𝑡ℎ𝑛 𝑓 =

[
(𝜎𝑠3+2𝜎ℎ𝑛 𝑓 )−2𝜙3 (𝜎ℎ𝑛 𝑓 −𝜎𝑠3 )
(𝜎𝑠3+2𝜎ℎ𝑛 𝑓 )+𝜙3 (𝜎ℎ𝑛 𝑓 −𝜎𝑠3 )

]
𝜎ℎ𝑛 𝑓

𝜎ℎ𝑛 𝑓 =

[
(𝜎𝑠2+2𝜎𝑛 𝑓 )−2𝜙2 (𝜎𝑛 𝑓 −𝜎𝑠2 )
(𝜎𝑠2+2𝜎𝑛 𝑓 )+𝜙2 (𝜎𝑛 𝑓 −𝜎𝑠2 )

]
𝜎𝑛 𝑓

𝜎𝑛 𝑓 =

[
(𝜎𝑠1+2𝜎 𝑓 )−2𝜙1 (𝜎 𝑓 −𝑘𝑠1 )
(𝜎𝑠1+2𝜎 𝑓 )+𝜙1 (𝜎 𝑓 −𝜎𝑠1 )

]
𝜎 𝑓

Heat Capacity (𝜌𝑐𝑝)𝑡ℎ𝑛 𝑓 = (1 − 𝜙3)
[
(1 − 𝜙2)

{
(1 − 𝜙1) (𝜌𝑐𝑝) 𝑓 + 𝜙1 (𝜌𝑐𝑝)𝑠1

}
+𝜙2 (𝜌𝑐𝑝)𝑠2

]
+ 𝜙3 (𝜌𝑐𝑝)𝑠3

Thermal Conductivity 𝑘𝑡ℎ𝑛 𝑓 =

[
(𝑘𝑠3+2𝑘ℎ𝑛 𝑓 )−2𝜙3 (𝑘ℎ𝑛 𝑓 −𝑘𝑠3 )
(𝑘𝑠3+2𝑘ℎ𝑛 𝑓 )+𝜙3 (𝑘ℎ𝑛 𝑓 −𝑘𝑠3 )

]
𝑘ℎ𝑛 𝑓

𝑘ℎ𝑛 𝑓 =

[
(𝑘𝑠2+2𝑘𝑛 𝑓 )−2𝜙2 (𝑘𝑛 𝑓 −𝑘𝑠2 )
(𝑘𝑠2+2𝑘𝑛 𝑓 )+𝜙2 (𝑘𝑛 𝑓 −𝑘𝑠2 )

]
𝑘𝑛 𝑓

𝑘𝑛 𝑓 =

[
(𝑘𝑠1+2𝑘 𝑓 )−2𝜙1 (𝑘 𝑓 −𝑘𝑠1 )
(𝑘𝑠1+2𝑘 𝑓 )+𝜙1 (𝑘 𝑓 −𝑘𝑠1 )

]
𝑘 𝑓

Table 2. Thermo-physical Properties of water and nanoparticles [31]

Physical Properties 𝐻2𝑂(base fluid) Cu (s1) 𝐴𝑙2𝑂3 (s2) 𝑇𝑖𝑂2 (s3)
𝜌 (𝑘𝑔/𝑚3) 997.1 8933 3970 4250
𝐶𝑝 (𝐽/𝑘𝑔𝐾) 4179 385 765 686.2
𝑘 (𝑊/𝑚𝐾) 0.613 401 40 8.9538
𝜎 (𝑠/𝑚) 5.5 × 10−6 59.6 × 106 35 × 106 2.6 × 106

3. METHOD OF SOLUTION
In order to obtain numerical solutions for a system of higher-order nonlinear ordinary differential equations (ODEs)

provided by Eqs. (4) and (5) and the boundary conditions, we use the bvp4c solver, built into the computational platform
MATLAB. Professionals and researchers have widely employed this technique for solving fluid flow problems. The bvp4c
solver, developed by Jacek Kierzenka and Lawrence F. Shampine from Southern Methodist University in Texas, was first
presented by Hale and Moore [35]. The bvp4c solver is an algorithm that employs the Lobato IIIA implicit Runge-Kutta
technique to provide numerical solutions with fourth-order accuracy. It achieves this by making finite modifications. This
method provides the required precision when an estimation is made for the initial mesh points and adjustments to the step
size. The investigation conducted by Waini et al. [37] shown that the bvp4c solver produced satisfactory outcomes when
compared to both the direct shooting approach and Keller box method. The syntax for using the ”bvp4c” solver is as
follows: ”sol = bvp4c (@OdeBVP, @OdeBC, solinit, options)”. Here, we must decrease the higher order derivatives in
relation to 𝜂. This can be accomplished by introducing the subsequent new variables:

𝑓 = 𝑦(1), 𝑓 ′ = 𝑦(2), 𝑓 ′′ = 𝑦(3), 𝑓 ′′′ = 𝑦(4), 𝜃 = 𝑦(5), 𝜃′ = 𝑦(6)

𝑑

𝑑𝜂



𝑦(1)
𝑦(2)
𝑦(3)
𝑦(4)
𝑦(5)
𝑦(6)


=



𝑦(2)
𝑦(3)
𝑦(4)

𝑦 (2)𝑦 (3)−𝑦 (1)𝑦 (4)+ 𝑆𝑞

2 (3𝑦 (3)+𝜂𝑦 (4) ) (𝑎2𝑎3𝑀+ 𝑎1𝑎2
𝐷𝑎 )𝑦 (3)

𝑎1𝑎2
𝑦(6)

𝑆𝑞

2 𝜂𝑦 (6)−𝑦 (1)𝑦 (6)−𝑎4𝑄𝑦 (5)−𝑎1𝑎4𝐸𝑐 𝑦 (3)2

𝑎4
𝑃𝑟

(𝑎5+ 4
3 𝑅)


and boundary condition are expressed as

𝑦0 (1) − 𝑆, 𝑦0 (2) − 𝜆, 𝑦0 (5) − 𝛿, 𝑦1 (1) −
𝑆𝑞

2
, 𝑦1 (2), 𝑦1 (5) − 1

where 𝑦0 is the condition at 𝜂 = 0 and 𝑦1 is the condition at 𝜂 = 1

4. RESULT AND DISCUSSION
The results are computed by using bvp4c in MATLAB and visually displayed in Figs (2)-(13) for the distribution

of skin friction coefficients, velocity, local Nusselt number and temperature on both the upper and bottom plates. The
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Prandtl number is set at a constant value of 6.2, indicating the utilisation of water at a temperature of 25◦C. The other
parameters are constrained within the following ranges: 0 ≤ 𝛿 ≤ 0.3 for the temperature-ratio parameter, 0 ≤ 𝑆𝑞 ≤
1.7 for the unsteadiness squeezing parameter, −1.2 ≤ 𝑆 ≤ 1.2 for the suction/injection parameter, −0.5 ≤ 𝜆 ≤ 2 for
the stretching/shrinking parameter, 0 ≤ 𝐷𝑎 ≤ 0.1 for the porous medium parameter and 0 ≤ 𝑀 ≤ 6 for the magnetic
parameter, 0 ≤ 𝐸𝑐 ≤ 1 for the Eckert number, 0 ≤ 𝑅 ≤ 3 for the thermal radiation parameter, −0.2 ≤ 𝑄 ≤ 0.2 for the
heat source/sink parameter. The comparison of 𝑓 ′′ (0) for the lower plate and 𝑓 ′′ (1) for the upper plate with Hayat et al.
[3] and Khashi’ie et al. [10] for varying values of 𝑀, 𝑆 when 𝜆 = 1, 𝜙1 = 𝜙2 = 𝜙3 = 0 is presented in Table 3. It can be
seen that the results of this study are very similar to those of the two prior investigations.

Table 3. Comparison of 𝑓 ′′ (0) for lower plate and 𝑓 ′′ (1) for upper plate when 𝜆 = 1, 𝜙1 = 𝜙2 = 𝜙3 = 0

M S Present Hayat et al. [3] Khashi’ie et al.[10] Present Hayat et al. [3] Khashi’ie et al.[10]
𝑓 ′′ (0) 𝑓 ′′ (0) 𝑓 ′′ (0) 𝑓 ′′ (1) 𝑓 ′′ (1) 𝑓 ′′ (1)

1 0.5 -7.591617 -7.591618 -7.591617 4.739016 4.739017 4.739016
4 0.5 -8.110334 -8.110334 -8.110334 4.820251 4.820251 4.820251
4 0.6 -8.851444 -8.851444 -8.851444 5.391247 5.391248 5.391247
4 1.0 -11.948584 -11.948584 -11.948584 7.593426 7.593426 7.593426

Figure 2. Effect of 𝐷𝑎 on 𝑓 ′ (𝜂) Figure 3. Effect of 𝑀 on 𝑓 ′ (𝜂)

Figure 4. Effect of 𝑆𝑞 on 𝑓 ′ (𝜂) Figure 5. Effect of 𝑆 on 𝑓 ′ (𝜂)

The parameters were set at fixed values for the computation of the results: 𝛿 = 0.1, 𝑆𝑞 = 1.2, 𝑀 = 2, 𝐷𝑎 = 0.05, 𝑆 =

0.4, 𝜆 = 1.2, 𝐸𝑐 = 0.5, 𝑅 = 1, 𝑄 = 0.2, 𝜙1 = 𝜙2 = 𝜙3 = 0.01. The Fig. 2 displays the impact of Darcy number (𝐷𝑎) on
velocity profile 𝑓 ′ (𝜂) of the ternary hybrid nanofluid. In close proximity to the lower plate, the velocity experiences a
sudden increase as the Darcy number increases. However, there is a distinct transition point at 𝜂 ∼ 0.5, beyond which the
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velocity exhibits contrasting behaviour. The Darcy number (𝐷𝑎) determines the ratio of the permeability of a medium to
its cross-sectional area, while permeability measures the ability of a surface to allow fluid to pass through its membrane.
The rising permeability in the surrounding area of the bottom plate hinders the movement of the fluid. Consequently, a
rise in the Darcy number (𝐷𝑎) results in velocity profiles that are closer to the upper plate due to greater flow resistance.
The impact of the magnetic parameter (𝑀) on the velocity profile is shown in Fig. 3. In close distance to the lower plate,
the velocity of the ternary hybrid nanofluid decreases as the magnetic parameter increases. Similarly to Fig 2, Fig. 3
also exhibits a transition point in the vicinity of 𝜂 ∼ 0.5. Following this transition point, the velocity exhibits opposite
behavior. The presence of a powerful magnetic field causes a significant reduction in the movement of liquids. As the
magnetic field strength (𝑀) increases, the Lorentz forces become active and cause a decrease in the flow of the liquid. The
presence of a magnetic field hinders the flow and ultimately slows down the radial velocity. As seen in Fig. 4, the addition
of the unsteadiness squeezing parameter(𝑆𝑞) improves the velocity distribution 𝑓 ′ (𝜂) for the ternary hybrid nanofluid.
Due to the movement of the upper plate towards the lower plate, the squeezing effect is initiated from the higher plate. It
has been observed that the velocity of the fluid increases in tandem with the squeezing parameter (𝑆𝑞) as it rises higher.
Fig. 5 illustrates the effect of the suction/injection parameter(𝑆) on the velocity profile 𝑓 ′ (𝜂). As seen in the figure, the
application of injection results in a higher velocity than suction. Suction/injection is frequently employed as a means
to prevent boundary layer separation. In this study, the application of injection results in an observed enhancement in
velocity. Therefore, in this study, the injection is more efficient in delaying the separation of the boundary layer. The Fig.
6 demonstrates the impact of the shrinking/stretching parameter(𝜆) on the velocity profile 𝑓 ′ (𝜂) for the ternary hybrid
nanofluid. The velocity profile 𝑓 ′ (𝜂) exhibits dual behavior with respect to shrinking/stretching parameter(𝜆). There
is a transition point located close to 𝜂 ∼ 0.3. The velocity 𝑓 ′ (𝜂), increases in the surrounding area of the lower plate,
but beyond the transition point, the velocity 𝑓 ′ (𝜂), declines. This outcome suggests that the stretching of the lower plate
increases velocity in the surrounding area of the lower plate. However, when the upper plate moves towards the lower
plate, the velocity behaves in the opposite way when the parameter(𝜆) increases.

Figure 6. Effect of 𝜆 on 𝑓 ′ (𝜂) Figure 7. Effect of 𝛿 on 𝜃 (𝜂)

Figure 8. Effect of 𝐸𝑐 on 𝜃 (𝜂) Figure 9. Effect of 𝑅 on 𝜃 (𝜂)
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Figure 10. Effect of 𝑄 on 𝜃 (𝜂) Figure 11. Effect of 𝑆𝑞 on 𝜃 (𝜂)

The impact of the temperature-ratio parameter(𝛿) on the temperature profile 𝜃 (𝜂) is shown in Fig. 7. The temperature-
ratio parameter(𝛿) is found to increase the temperature of the ternary hybrid nanofluid due to obvious and expected reasons.
In Fig 8, it is evident that the temperature of the ternary hybrid nanofluid gets raised by the Eckert number (𝐸𝑐). The
viscous dissipation, which is the process by which the fluid’s friction causes its kinetic energy to be converted into thermal
energy, becomes more important as the Eckert number(𝐸𝑐) rises. The dissipation of energy causes the nanofluid to heat
up, resulting in an increase in its temperature. The Fig. 9 displays that the temperature 𝜃 (𝜂) of the ternary hybrid nanofluid
goes down as the thermal radiation(𝑅) goes up. Thermal radiation causes the temperature of the nanofluid to decrease by
causing a net loss of energy from the fluid. This loss of energy reduces the kinetic energy of the particles inside the fluid,
leading to a lower temperature. Fig. 10 demonstrates the increasing effects of temperature as the heat generation/absorption
parameter (𝑄) increases. Greater values of a parameter (𝑄) result in an increase in temperature. The parameter (𝑄) has
positive values, indicating the production of heat in the system. Higher values of (𝑄) correspond to greater amounts of
heat being generated. Therefore, as the heat-generation parameter (𝑄) increases, the temperature also increases. Fig. 11
demonstrates the influence of the squeezing parameter(𝑆𝑞) on the temperature profile 𝜃 (𝜂). It is easy to see from the graph
that as the squeezing parameter(𝑆𝑞) goes up, the temperature goes down. This indicates that when the upper plate moves
closer to the lower plates, it limits the spread of heat, resulting in a fall in temperature. Fig. 12 illustrates the fluctuation
of the temperature,𝜃 (𝜂) for ternary hybrid nanofluid, in response to changes in the suction/injection parameter(𝑆). An
increase in parameter (𝑆) leads to an observed rise in 𝜃 (𝜂). The temperature is observed to be higher for the suction value
as compared to the injection value. Suction refers to the process of extracting the layers that are detached from the border
layer using suction. The fluid layers experience an increase in temperature as they gain momentum through the use of
suction.

Figure 12. Effect of 𝑆 on 𝜃 (𝜂) Figure 13. Effect of 𝜆 on 𝜃 (𝜂)

The influence of the stretching/shrinking parameter(𝜆) on the temperature 𝜃 (𝜂) is demonstrated in Fig. 13. This
model says that 𝜆 = 0 means the lower plate is still, 𝜆 < 0 means it is shrinking, and 𝜆 > 0 means it is stretching. It is
observed that the velocity, 𝜃 (𝜂), decreases as the values of (𝜆) increase. The findings suggest that the stretching of the
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lower plate decreases the temperature of the flow. In addition, when the degree of shrinkage of the lower plate increases,
the temperature increases.

Table 4. Skin-friction and nusselt of 𝑓 ′′ (0) for upper plate when 𝜆 = 1, 𝜙1 = 𝜙2 = 0

𝐸𝑐 𝑆𝑞 𝑀 𝐷𝑎 𝑆 𝜆 𝑅 𝑄 𝑅𝑒
1/2
𝑥 𝐶 𝑓1 𝑅𝑒

1/2
𝑥 𝐶 𝑓2 𝑅𝑒

−1/2
𝑥 𝑁𝑢𝑥1 𝑅𝑒

−1/2
𝑥 𝑁𝑢𝑥2

0.1 1.2 2 0.05 0.4 1.2 1 0.2 -6.9450 0.1994 -5.9341 -0.9706
0.5 -6.9450 0.1994 -14.8166 -0.1527
0.5 1.3 2 0.05 0.4 1.2 1 0.2 -6.5085 -0.2337 -13.4731 -0.2417

1.5 -5.6312 -1.1046 -11.0875 -0.1442
0.5 1.2 1 0.05 0.4 1.2 1 0.2 -6.8481 0.2282 -14.7150 -0.1391

1.5 -6.8967 0.2137 -14.7659 -0.1460
0.5 1.2 2 0.07 0.4 1.2 1 0.2 -6.3796 0.3712 -14.2404 -0.0618

0.1 -5.9207 0.5175 -13.8064 0.0355
0.5 1.2 2 0.05 -0.1 1.2 1 0.2 -2.3816 -4.1070 -4.3122 2.5272

0.3 -6.0088 -0.6491 -11.7957 -0.3055
0.5 1.2 2 0.05 0.4 -1 1 0.2 8.9081 -3.3656 -21.7764 2.7083

1 -5.4744 -0.1160 -10.5985 -0.5368
0.5 1.2 2 0.05 0.4 1.2 3 0.2 -6.9450 0.1994 -16.6728 -2.5177

5 -6.9450 0.1994 -18.9055 -4.9088
0.5 1.2 2 0.05 0.4 1.2 1 -0.2 -6.9450 0.1994 -13.7537 -1.2429

0 -6.9450 0.1994 -14.2561 -0.7204

Table 4 presents the values of the skin friction coefficients 𝑅𝑒1/2
𝑥 𝐶 𝑓1 and 𝑅𝑒1/2

𝑥 𝐶 𝑓2 , as well as the Nusselt numbers
𝑅𝑒

−1/2
𝑥 𝑁𝑢𝑥2 and 𝑅𝑒−1/2

𝑥 𝑁𝑢𝑥2 , for various combinations of parameters at the lower and upper plate. The Nusselt numbers
express the rates of heat transmission between the upper and bottom plates. An increase in the Eckert number(𝐸𝑐) leads
to a rise in the Nusselt number for the upper plate but decreases for the lower plates. The skin friction coefficient is
not influenced by Eckert number(𝐸𝑐), radiation (𝑅), and heat source (𝑄) at both plates, as these physical factors are
independent of the velocity profile 𝑓 ′ (𝜂). Increasing the squeezing parameter (𝑆𝑞) enhances the heat transfer rate at the
both plates. However, it reduces the skin friction coefficient at the upper plate and increases it at the lower plate. The
magnetic parameter(𝑀) causes a drop in the skin friction coefficient on both the lower and upper plates. Similarly, it
leads to an decrease in the Nusselt number on the lower plate and upper plate. Observations indicate that a rise in the
Darcy number(𝐷𝑎) leads to an increase in the skin friction coefficient on both the upper and lower plates. Likewise, it
results in a increase in the Nusselt number for the both plates. The suction/injection(𝑆) parameter reduces the skin friction
coefficient on the bottom plate, but raises it on the top plate. However, the rate of heat transmission reduces at the lower
and upper plates. The skin friction coefficient at the upper plate increases as the stretching parameter(𝜆) is increased,
whereas it decreases at the lower plate. in the contrary, the rate of heat transmission increases at the bottom plate while it
decreases at the top plate. Radiation(𝑅), causes a drop in the Nusselt number at both the lower and upper plates, while the
heat source(𝑄) results in a fall in the Nusselt number at the lower plate and an increase at the upper plate.

Table 5. Comparison of Skin friction Coefficient for lower plate

𝐶𝑢 𝐶𝑢 − 𝐴𝑙2𝑂3 Change in 𝐶𝑢 − 𝐴𝑙2𝑂3 − 𝑆𝑖𝑂2 Change in
𝜙1 Nanofluid 𝜙2 Hybrid Percentage 𝜙3 Ternary Hybrid Percentage

Nanofluid Nanofluid
−𝑅𝑒1/2

𝑥 𝐶 𝑓1 −𝑅𝑒1/2
𝑥 𝐶 𝑓1 −𝑅𝑒1/2

𝑥 𝐶 𝑓1

0.01 6.6009 0.01 6.7705 2.56% 0.01 6.9450 5.21%
0.05 7.3976 7.5841 2.52% 7.7750 5.10%
0.1 8.5447 8.7560 2.47% 8.9715 4.99%

Tables 5 and 6 present an analysis of the percentage difference between the nanofluid with hybrid nanofluid and ternary
hybrid nanofluid in terms of the absolute skin friction at the top and lower plates, respectively. Moreover, we evaluate the
heat transfer rate difference percentage between the nanofluid with hybrid nanofluid and ternary hybrid nanofluid at the
upper and lower plates in Tables 7 and 8, respectively. The absolute skin friction of the ternary hybrid nanofluid is seen to
be approximately 5% higher than that of the nanofluid at the lower plate and at most 7% higher than that of the nanofluid
at the upper plate. Additionally, the rate of heat transmission of the ternary hybrid nanofluid is decreased by 3.61% at the
bottom plate. However, the rate of heat transmission of the ternary hybrid nanofluid is increased by at most 209.11% at
the upper plate. Observations indicate that the heat transmission rate of the ternary hybrid nanofluid is higher at the upper
plate compared to the lower plate.
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Table 6. Comparison of Skin friction Coefficient for upper plate

𝐶𝑢 𝐶𝑢 − 𝐴𝑙2𝑂3 Change in 𝐶𝑢 − 𝐴𝑙2𝑂3 − 𝑆𝑖𝑂2 Change in
𝜙1 Nanofluid 𝜙2 Hybrid Percentage 𝜙3 Ternary Hybrid Percentage

Nanofluid Nanofluid
−𝑅𝑒1/2

𝑥 𝐶 𝑓2 −𝑅𝑒1/2
𝑥 𝐶 𝑓2 −𝑅𝑒1/2

𝑥 𝐶 𝑓2

0.01 0.1906 0.01 0.1950 2.31% 0.01 0.1994 4.62%
0.05 0.1896 0.1949 2.79% 0.2004 5.69%
0.1 0.1966 0.2032 3.35% 0.2103 6.96%

Table 7. Comparison of Local Nusselt number for lower plate

𝐶𝑢 𝐶𝑢 − 𝐴𝑙2𝑂3 Change in 𝐶𝑢 − 𝐴𝑙2𝑂3 − 𝑆𝑖𝑂2 Change in
𝜙1 Nanofluid 𝜙2 Hybrid Percentage 𝜙3 Ternary Hybrid Percentage

Nanofluid Nanofluid
−𝑅𝑒−1/2

𝑥 𝑁𝑢𝑥1 −𝑅𝑒−1/2
𝑥 𝑁𝑢𝑥1 −𝑅𝑒−1/2

𝑥 𝑁𝑢𝑥1

0.01 15.3716 0.01 15.0910 1.82% 0.01 14.8166 3.61%
0.05 14.3461 14.0945 1.75% 13.8468 3.48%
0.1 13.1438 12.9288 1.63% 12.7149 3.26%

Table 8. Comparison of Local Nusselt number for upper plate

𝐶𝑢 𝐶𝑢 − 𝐴𝑙2𝑂3 Change in 𝐶𝑢 − 𝐴𝑙2𝑂3 − 𝑆𝑖𝑂2 Change in
𝜙1 Nanofluid 𝜙2 Hybrid Percentage 𝜙3 Ternary Hybrid Percentage

Nanofluid Nanofluid
−𝑅𝑒−1/2

𝑥 𝑁𝑢𝑥2 −𝑅𝑒−1/2
𝑥 𝑁𝑢𝑥2 −𝑅𝑒−1/2

𝑥 𝑁𝑢𝑥2

0.01 0.0494 0.01 0.1029 108.29% 0.01 0.1527 209.11%
0.05 0.2767 0.3306 19.47% 0.3798 37.26%
0.1 0.5622 0.6176 9.85% 0.6665 18.55%

5. CONCLUSION
The present study is a comprehensive examination of the impact of viscous dissipation and thermal radiation on the

squeezing flow of a ternary hybrid nanofluid with magnetic field effect between two Parallel Plates, when a heat source/sink
is present inside a porous medium. The analysis also takes into account the flow characteristics and their impact on the
velocity 𝑓 ′ (𝜂) and temperature 𝜃 (𝜂) profiles, skin friction coefficients, and Nusselt number. The main results of the
ongoing study are summarized below:
1. The velocity profile 𝑓 ′ (𝜂) shows a decrease in pattern when the parameters 𝑆 and 𝜆 on the upper plate and 𝐷𝑎 on the

upper plate are increased. Conversely, it displays an increasing pattern with higher values of 𝑆𝑞 and 𝜆 on the lower
plate, as well as 𝐷𝑎 on the lower plate.

2. The temperature 𝜃 (𝜂) decreases as the values of 𝑅, 𝑆𝑞 and 𝜆 increase, whereas it increases with the increase of 𝛿, 𝑄
and 𝐸𝑐.

3. The absolute skin friction of the ternary hybrid nanofluid is seen to be approximately 5% higher than that of the
regular nanofluid at the lower plate and at most 7% higher than that of the nanofluid at the upper plate.

4. The ternary hybrid nanofluid demonstrates superior heat transfer efficiency compared to the hybrid nanofluid, while
the hybrid nanofluid displays higher heat transfer efficiency than standard nanofluids at the upper plate.

5. The heat transmission rate of the ternary hybrid nanofluid is higher at the upper plate compared to the lower plate.
The future potential of ternary hybrid nanofluids, which consist of copper (𝐶𝑢), aluminum oxide (𝐴𝑙2𝑂3), and

titanium dioxide (𝑇𝑖𝑂2), is significant in multiple scientific and technical fields. Ternary hybrid nanofluids provide the
possibility of greatly enhancing heat transfer efficiency in various applications, such as radiators, heat exchangers and
cooling devices. Improved heat transfer properties might be beneficial for use in geothermal power extraction, solar energy
systems and high-temperature operations.
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ЧИСЕЛЬНЕ ДОСЛIДЖЕННЯ СТИСКАЮЧОГО ПОТОКУ ПОТРIЙНОЇ ГIБРИДНОЇ НАНОРIДИНИ
(𝐶𝑢 − 𝐴𝑙2𝑂3 − 𝑇𝑖𝑂2/𝐻2𝑂) МIЖ ДВОМА ПАРАЛЕЛЬНИМИ ПЛАСТИНАМИ В ПОРИСТОМУ

СЕРЕДОВИЩI ДАРСI З В’ЯЗКОЮ ДИСИПАЦIЄЮ ТА ДЖЕРЕЛОМ ТЕПЛА
Рубул Бора, Бiдют Боруа

Факультет математики, коледж CNB, Бокахат-785612, Ассам, Iндiя
Ця робота спрямована на чисельне дослiдження впливу в’язкої дисипацiї та джерела тепла на магнiтогiдродинамiчний стиска-
ючий потiк потрiйних гiбридних нанофлюїдiв на воднiй основi мiж двома паралельними пластинами в пористому середовищi
Дарсi. Наночастинки 𝐶𝑢, 𝐴𝑙2𝑂3 i 𝑇𝑖𝑂2 диспергуються в базовiй рiдинi 𝐻2𝑂, що призводить до створення потрiйної гiбридної
нанорiдини𝐶𝑢−𝐴𝑙2𝑂3−𝑇𝑖𝑂2/𝐻2𝑂. У цьому дослiдженнi вивчається деформацiя нижньої пластини, коли верхня просувається
до неї. Чисельнi результати обчислюються за допомогою 3-етапного методу Лобатто IIIa, який спецiально реалiзовано Bvp4c
у MATLAB. Вплив рiзних параметрiв вiзуально проiлюстровано за допомогою графiкiв i кiлькiсно показано в таблицях. Вва-
жається, що абсолютне поверхневе тертя потрiйної гiбридної нанорiдини приблизно на 5% вище, нiж у звичайної нанорiдини
на нижнiй пластинi, i щонайбiльше на 7% вище, нiж у нанорiдини на верхнiй пластинi. Швидкiсть теплопередачi потрiйної
гiбридної нанофлюїду вища на верхнiй пластинi порiвняно з нижньою.
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This study examines the natural convection of a steady laminar nanofluid flow past an isothermal vertical plate with slip boundary 
conditions. A review of existing literature reveals no prior research that has explored the combined effects of thermophoresis, Brownian 
diffusion, and particle electrification while considering slip boundary conditions in nanofluid flow. Buongiorno’s revised four-equation 
non-homogeneous model, incorporating mechanisms for thermophoresis, Brownian diffusion and particle electrification, is utilized to 
address this gap. The model employs velocity, thermal, and concentration slip boundary conditions to investigate enhancing the 
nanofluid's thermal conductivity. The resulting local similar equations are tackled using MATLAB's bvp4c package. The study 
discusses the influence of key parameters, such as thermophoresis, Brownian motion, and electrification, on temperature, velocity, and 
concentration distributions, as well as on heat, mass transfer and skin friction coefficients. The findings of the simulation are consistent 
with previous studies, showing that an improvement in the electrification parameter rises the heat transfer coefficient, while 
thermophoresis and Brownian motion parameters have the opposite effect. Additionally, mass transfer coefficient values increase with 
higher Brownian motion and electrification parameters while reducing with the thermophoresis parameter. This physical model has 
potential applications in heat exchangers using nanofluids and in cooling plate-shaped products during manufacturing processes. The 
novelty of this study lies in the analysis of Brownian diffusion, thermophoresis, and particle electrification mechanisms in nanofluid 
flow under slip boundary conditions. 
Keywords: Thermal Conductivity; Nanofluid; Velocity Slip Boundary Condition; Thermal Slip Boundary Condition; Concentration 
Slip Boundary Condition 
PACS: 44.20.+b, 44.25.+f, 47.10.ad, 47.55.pb, 47.15.Cb 

1. INTRODUCTION:
Nanofluids have gained widespread use across numerous industrial applications due to the remarkable chemical and 

physical properties of nanoscale particles. These nanofluids are sophisticated composite materials composed of solid 
nanoparticles, typically between 1 and 100 nm in size, dispersed within a liquid medium. The use of nanofluids instead 
of traditional base fluids to enhance heat transfer rates has garnered significant attention from researchers worldwide, 
highlighting the distinct advantages of nanofluids over conventional fluids. Nanofluids, which consist of nanoparticles 
suspended in a base fluid, have been recognized as effective coolants for improving heat transfer performance in various 
applications. These applications include paper manufacturing, electronic devices, nuclear reactors, power generation, air 
conditioning systems, domestic refrigerators, and the automotive industry. By leveraging the unique properties of 
nanofluids, these industries can achieve more efficient thermal management, leading to better performance and energy 
savings.  

The concept of "nanofluids" was first coined by Choi [1], marking a pivotal breakthrough in the study of fluid 
dynamics at the nanoscale. Subsequent research demonstrated that even a minimal addition of nanoparticles can 
dramatically improve the thermal conductivity of fluids. Buongiorno [2] further advanced the field by investigating the 
convective transport phenomena in nanofluids, providing valuable insights into their distinctive flow behaviors. 
Buongiorno observed that the improvement in the thermal performance of nanofluids is primarily driven by the slip 
mechanisms of Brownian motion and thermophoresis. Since then, numerous studies, including those by Kuznetsov and 
Nield [3], Gasmi et al. [4], Ebrahem et al. [5], Kinyanjui et al. [6], Ahmed et al. [7], Biswal et al. [8], Khairul et al. [9], 
Sobamowo et al. [10], Sobamowo [11], Sobamowo [12], and Aziz and Khan [13] have explored the behavior of natural 
convection considering different types of nanofluid flow along a vertical plate employing a homogeneous model. 

Based on the literature reviewed (Kuznetsov and Nield [3], Mojtabi et al. [14], Abu-Nada et al. [15], Probstein [16], 
Tyndall [17], Bird et al. [18], Pakravan and Yaghoubi [19]), the slip boundary condition for velocity, temperature, and 
solute has generally been overlooked. In systems like emulsions, foams, gels, and slurries, the non-homogeneous 
properties of fluid at solid boundaries often result in "apparent wall slip." This phenomenon happens when the fluid's 
viscosity near the boundary decreases, leading to the formation of a thin layer with a steep velocity gradient, often 
described as a "slipping layer." Comprehensive studies on wall slip in shrinking sheets by Makinde et al. [20] reveal that 
true slip involves a velocity discontinuity at the wall. In contrast, for the other systems discussed, true slip is absent. 
Instead, "apparent slip" occurs, which is caused by a region with a steeper velocity gradient near the wall. In such cases, 
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the no-slip condition fails to accurately represent the physical situation, making slip conditions a more suitable choice. 
Similarly, the no-slip condition is also inadequate for non-Newtonian fluids and nanofluids. During processes like 
annealing and thinning, the final product's quality is heavily influenced by the heat transfer rate at the continuously 
stretching surface. Both the stretching kinematics and the concurrent heating or cooling are crucial factors in determining 
the final product's quality. Therefore, incorporating slip boundary conditions for concentration, temperature, and velocity 
is essential. 

In recent years, several investigations (Pati et al. [21-26], Panda et al. [27], Pattnaik et al. [28]) have explored the 
electrification of nanoparticles within nanofluid flows under various physical conditions. In all the previously mentioned 
studies on nanofluid dynamics involving the electrified nanoparticles, the slip boundary conditions have been overlooked. 

Based on the past literature, this study aims to investigate the impacts of thermophoresis, Brownian diffusion, and 
particle electrification on the transfer of heat and mass within the natural convective boundary layer nanofluid flow along 
an isothermal vertical plate with slip boundary conditions. This study takes into account various boundary conditions, 
including velocity, thermal, and concentration slip conditions. Buongiorno’s revised four-equation non-homogeneous 
model is employed in the present investigation. This particular approach to modeling the flow of nanofluids concerning 
heat and mass transport phenomena has not been explored in previous research literature. 

 
2. MATHEMATICAL FORMULATION 

An analysis is conducted on a nanofluid's laminar steady boundary layer flow over an isothermal vertical plate. The 
orientation of the plate is aligned with the vertical axis. It is assumed that both the concentration  𝐶௪ and temperature 𝑇௪  
of the plate remain invariant. The free stream parameters of 𝐶 and 𝑇 defined as 𝐶ஶ and  𝑇ஶ, respectively. The physical 
representation of the system is illustrated in Fig. 1. 
 

 
Figure 1. Coordinate system and physical model 

Based on the assumptions outlined earlier and applying boundary layer simplifications according to Pati et al. [22], 
the governing equations for the flow field in a two-dimensional Cartesian coordinate system can be derived and are given 
as follows. 

 డ௨డ௫  డ௩డ௬ ൌ 0, (1) 

 𝜌 ቂ𝑢 డ௨డ௫  𝑣 డ௨డ௬ ቃ ൌ − డడ௫  𝜇 ቂడమ௨డ௬మቃ − 𝜌  𝑔  𝐶 ቀቁ𝐸௫, (2) 

 ቂ𝑢 డ்డ௫  𝑣 డ்డ௬ቃ ൌ ሺఘሻ డమ்డ௬మ  ೞಳሺఘሻ డడ௬ డ்డ௬  ఘೞೞሺఘሻ ಮ் డ்డ௬ డ்డ௬+ቀቁ ೞ ிሺఘሻ ቀ𝐸௫ డ்డ௫  𝐸௬ డ்డ௬ቁ, (3) 

 𝑢 డడ௫  𝑣 డడ௬ ൌ 𝐷 డమడ௬మ  ఘೞ ಮ் డమ்డ௬మ  ቀቁ ଵி ቂడሺ౮ሻడ௫  డ൫౯൯డ௬ ቃ. (4) 

The electric field (E-field) is defined by the following equation. 

 డ౮డ௫  డ౯డ௬ ൌ ఘೞఢబ . (5) 
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According to the Oberbeck-Boussinesq Approximation, the equation of motion in the x-direction, represented by 
Equation (2), is expressed as follows: 𝜌 ቂ𝑢 డ௨డ௫ + 𝑣 డ௨డ௬ ቃ = 𝜇 ቂడమ௨డ௬మቃ + 𝛽ಮ𝜌ஶሺ𝑇 − 𝑇ஶሻሺ1 − 𝐶ஶሻ𝑔 −  ሺ𝐶 − 𝐶ஶሻ൫𝜌௦ − 𝜌ஶ൯𝑔  +ሺ𝐶 − 𝐶ஶሻ ቀቁ𝐸௫. (6) 

The relevant slip boundary conditions for this study are defined by 

 𝑦 = 0,𝑢 = 𝑈 + 𝑁𝜌𝜈 డ௨డ௬ , 𝑣 = 0,𝑇 = Tௐ + 𝐷 డ்డ௬   ,𝐶 = 𝐶ௐ + 𝐾 డడ௬𝑦 → ∞ ,𝑢 = 0 ,𝑣 = 0 ,𝑇 =   Tஶ   ,𝐶 =   Cஶ ቋ. (7) 

Based on Soo [29], by disregarding the variation of the electric field in the x-direction, the transverse electric 
field can be expressed as డ౯డ௬ = ఘೞఢబ  . 

Introducing the stream function and scale analysis of the governing equation (1) are satisfied following Kuznetsov and 
Nield [3].  𝑢 =  డటడ௬, 𝑣 = −డటడ௫ , 𝑠ሺ𝜂ሻ = ିಮೢିಮ, 

𝜓  = 𝛼ሺ𝑅𝑎ሻభర𝑓ሺ𝜂ሻ,  𝜃ሺ𝜂ሻ = ்ି ಮ்்ೢ ି ಮ், 

where, 𝜂 = ௬௫ ሺ𝑅𝑎ሻభర, is the local similarity variable and 𝑅𝑎௫ = ሺ்ೢ ି ಮ்ሻሺଵିಮሻఉ௫యఔఈ  , is the local Rayleigh number, we get, 

𝑢 = డటడ௬ = ఈሺோೣሻభమ௫ 𝑓′, 𝑣 = −డటడ௫   =−ఈሺோೣሻభరସ௫ ሾ3𝑓 − 𝜂𝑓′ሿ 
The equations (2), (3), (4) converted into non-dimensional equations (8), (9), (10) as follows: 
Momentum equation: 

 𝑓ᇱᇱᇱ + ఝభ  ସ ሾ3𝑓𝑓ᇱᇱ − 2ሺ𝑓′ሻଶሿ + 𝜑ଵ𝜑ଶ ெ ௌ ே್ேಷ 𝑠 + ଵఝఱ ሺ𝜃 − 𝑁𝑟𝑠 ሻ = 0. (8) 

Energy equation: 

 𝜃ᇱᇱ + ଷସ ଵఝయఝర 𝑓𝜃ᇱ + ଵఝర Pr𝑁𝑠ᇱ𝜃ᇱ + ଵఝర Pr𝑁௧ሺ𝜃ᇱሻଶ + ଵఝర 𝑆𝑐 𝑁 ቂ ேಷேೃ − ଵସ𝑀ቃ ሺ𝑠 + 𝑁𝑐ሻ𝜂𝜃ᇱ = 0. (9) 

Concentration equation: 

  𝑠ᇱᇱ + ଷସ ௌ 𝑓𝑠ᇱ + ேே್ 𝜃ᇱᇱ − ଵସ ெ ௌ 𝜂𝑠ᇱ + ேಷௌேೃ (𝜂𝑠ᇱ + 𝑠 + 𝑁𝑐)  = 0. (10) 

Similarly, the slip boundary conditions in equation (7) converted into non-dimensional form as follows: 

 𝜂 = 0;𝑓 = 0;  𝑓ᇱ = 𝐴𝑓ᇱᇱ,𝜃 = 1 + 𝜒𝜃ᇱ ;  𝑠 = 1 + 𝛾𝑠ᇱ𝜂 → ∞; 𝑓ᇱ = 0 ;𝜃 = 0 ;  𝑠 = 0 ൠ. (11) 

where, 𝛾 = 𝐾 ଵ௫ (𝑅𝑎௫)భర ;  𝜒 = 𝐷 (ோೣ)భర௫  ;   𝐴 = 𝑁𝜇 (ோೣ)భర௫ ; 

𝑀 = ቀቁ ଵ
ி൮ഀ(ೃೌೣ)భమೣ ൲ 𝐸௫,  𝑁ி = ൮ഀ(ೃೌೣ)భమೣ ൲

ி௫  , ଵேೃ = ቀቁଶ ఘೞఢబ ௫మ
൮ഀ(ೃೌೣ)భమೣ ൲మ , 𝑁𝑟 = ൫ఘೞିఘ൯(ೢିಮ)(ଵିಮ)ఘఉ(்ೢ ି ಮ்); 

𝑃𝑟 = ఔఈ, 𝑆𝑐 = ఔಳ, 𝑁 = (ఘ)ೞಳ(ೢିಮ)(ఘ)ఔ , 𝑁௧ = (ఘ)ೞ(்ೢ ି ಮ்)(ఘ)ఔ ಮ் , 𝑁 = ಮ(ೢିಮ). 
This investigation considers a copper water nanofluid which contains 1% of copper nanoparticles. Table-1 provides 

the thermophysical properties of copper-water nanofluid as outlined by Oztop and Abunada [30], while Table-2 lists the 
corresponding thermophysical constants. 
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Table 1. Thermophysical properties 

Property copper water 𝑐(𝐽/𝑘𝑔𝐾) 0.385 4.179 𝜌(𝑘𝑔/𝑚ଷ) 8933  997.1 𝑘(𝑊/𝑚𝐾) 401 0.613 

Table 2. Thermophysical constants  𝜑ଵ (1 − 𝐶ஶ)ଶ.ହ ቈ𝐶ஶ 𝜌௦𝜌 + (1 − 𝐶ஶ) 𝜑ଶ 𝑐𝑐௦ 1𝐶ஶ 𝜌௦𝜌 + (1 − 𝐶ஶ)൨ 𝜑ଷ 1𝐶ஶ𝜏 + (1 − 𝐶ஶ) 𝜑ସ 2𝑘 + 𝑘௦ − 2𝐶ஶ(𝑘 − 𝑘௦)2𝑘 + 𝑘௦ + 𝐶ஶ(𝑘 − 𝑘௦)  𝜑ହ 1(1 − 𝐶ஶ)ଶ.ହ 

The local skin friction 𝐶௫, local Sherwood number 𝑆ℎ௫ for mass transfer purpose and local Nusselt number 𝑁𝑢௫ 
for heat transfer purpose are given as   (ோೣ)భర 𝐶௫ = (𝑓ᇱᇱ)ఎୀ;     ଵ(ோೣ)భర 𝑁𝑢௫ = −(𝜃ᇱ)ఎୀ;   ଵ(ோೣ)భర 𝑆ℎ௫ = −(𝑠ᇱ)ఎୀ, 

where (′) indicates derivative with respect to 𝜂 and (𝑓ᇱᇱ)ఎୀ, −(𝜃ᇱ)ఎୀ, and −(𝑠ᇱ)ఎୀ denotes the dimensionless skin 
friction coefficient, Nusselt number and Sherwood number, respectively. 

3. METHOD OF SOLUTION 
It has been observed that Pohlhausen-Kuiken-Bejan problems (Bejan [31]) for conventional heat transfer fluids have 

one non-dimension parameter 𝑃𝑟. However, the non-dimensional equations of the present problem contain nine 
independent dimensionless parameters, such as 𝑃𝑟, 𝑁, 𝑁௧, 𝑁ோ, 𝑀, 𝑁𝑟, 𝑆𝑐, 𝑁ி, 𝑆𝑐. Thus, input selective values are 
required to solve the problem. Additionally, the processing time for each of these input parameters is quite brief. Since 
the physical domain extends infinitely while the computational domain is limited, it is essential to select an optimal finite 
value for 𝜂ஶ. Since the needed initial value 𝑓ᇱᇱ(0),−𝜃ᇱ(0),−𝑠ᇱ(0) , which are not defined for the present problem. Hence, 
some initial guesses are used at the starting point, as well as some finite values of 𝜂ஶ, for a specific range of physical 
parameters. The solution process is iteratively applied with different values of 𝜂ஶ until the successive values of 𝑓ᇱᇱ(0),−𝜃ᇱ(0),−𝑠ᇱ(0)  differ by a specified precision. The final 𝜂ஶ value obtained is considered the most suitable for 
that set of parameters. This approach is known as the shooting method. 

To address the system of local similarity equations (8)-(10) with the boundary conditions (11) using the shooting 
method, the MATLAB built-in function bvp4c, which utilizes the collocation technique (as described by Shampine and 
Kierzenka [32]), is employed to produce numerical results for the specified physical parameters. The variations of the 
computational values of (𝑓ᇱᇱ)ఎୀ, −(𝜃ᇱ)ఎୀ and −(𝑠ᇱ)ఎୀ with different values of 𝑀, 𝑁 and 𝑁௧, are presented in tabular 
form. Similarly, the variations of the non-dimensional temperature profile 𝜃(𝜂), non-dimensional velocity profile 𝑓′(𝜂) 
and dimensionless concentration distribution of nanoparticles 𝑠(𝜂) are depicted in Figures 2 to 10. 

4. COMPARISON AND VALIDATION 
The resultant quantitative data have been contrasted with those computed by Narahari et al. [33], in conjunction with 

the pertinent values for the particular context of regular fluid outlined in Table 3. The present outcomes exhibit a notable 
alignment with the prior findings. 
Table 3. Comparison of present results with existing literature 𝑃𝑟 Narahari et al. [33] Present analysis 

1 0.401 0.4010 
10 0.459 0.4649 
100 0.473 0.4900 

1000 0.474 0.4985 

5. RESULTS AND DISCUSSION 
In this subsection, the impact of 𝑀, 𝑁௧, and 𝑁 on 𝑓′(𝜂), 𝜃(𝜂) and 𝑠(𝜂) against 𝜂, illustrated and examined with the 

help of graphical analysis. Further, the impact of these parameters on 𝑓ᇱᇱ(0),−𝜃ᇱ(0),−𝑠ᇱ(0)  are presented in Tabular 
form. Additionally, the contour plots are presented to explore the combined effects of 𝑀, 𝑁௧, and 𝑁 on 𝑓ᇱᇱ(0),−𝜃ᇱ(0),−𝑠ᇱ(0). 
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5.1 Influence of electrification parameter 𝑴 on 𝒇′(𝜼), 𝜽(𝜼) and 𝒔(𝜼) with slip boundary conditions 
Figures 1 and 2 show that as the parameter 𝑀 increases, the value of 𝑓ᇱ(𝜂) rises while 𝜃(𝜂) falls throughout the boundary 

layer. This effect is attributed to the Lorentz force, which results from the electric field acting as an accelerating force that 
reduces frictional resistance. Consequently, the decrease in frictional resistance leads to a lower temperature in the boundary 
layer, as no extra thermal energy is produced. Figure 3 depicts the changes in the non-dimensional particle concentration profile 𝑠(𝜂), illustrating that the concentration decreases with increasing M because the particles are carried away by the fluid moving 
from the plate. This observed trend suggests that elevated parameter values facilitate particle transport, resulting in a more 
homogeneous distribution throughout the flow. Figures 2-4 illustrate the variation of 𝑓ᇱ(𝜂), 𝜃(𝜂) and 𝑠(𝜂) with 𝑀 while 
keeping other parameters constant (𝐴 = 𝜒 = 𝛾 = 𝑁௧ = 𝑁 =  𝑁ி = 𝑁𝑐 = 𝑁𝑟 = 0.1, 𝑆𝑐 =  𝑁ோ = 2.0, and 𝑃𝑟 = 6.2). 

   
Figure 2. Impact of 𝑀 on 𝑓′(𝜂) Figure 3. Impact of 𝑀 on 𝜃(𝜂) Figure 4. Impact of 𝑀 on 𝑠(𝜂) 

 
5.2 Influence of thermophoresis parameter 𝑁௧ on 𝒇′(𝜼), 𝜽(𝜼) and 𝒔(𝜼) with slip boundary conditions 

Figures 5, 6, and 7 show how the thermophoresis parameter 𝑁௧ affects on 𝑓ᇱ(𝜂),𝜃(𝜂) , and 𝑠(𝜂). It is noted that with 
higher values of 𝑁௧, all 𝑓′(𝜂), 𝜃(𝜂) and 𝑠(𝜂) profile increases. This is because the increased thermophoresis force causes 
hot nanoparticles to move faster from the plate region towards the fluid region, thereby raising the dimensionless velocity 
profiles as well as temperature and concentration profiles. This behaviour is crucial for optimizing the efficiency of thermal 
systems, as it allows for better heat transfer and enhanced performance in applications such as cooling and energy conversion. 
Figures 5-7 illustrates the variation of 𝑓ᇱ(𝜂), 𝜃(𝜂) and 𝑠(𝜂) with 𝑁௧ while keeping other parameters constant (𝐴 = 𝜒 = 𝛾 =𝑀 = 𝑁 =  𝑁ி = 𝑁𝑐 = 𝑁𝑟 = 0.1, 𝑆𝑐 =  𝑁ோ = 2.0, and 𝑃𝑟 = 6.2). 

   
Figure 5. Impact of 𝑁௧ on 𝑓′(𝜂) Figure 6. Impact of 𝑁௧ on 𝜃(𝜂) Figure 7. Impact of 𝑁௧ on 𝑠(𝜂) 

 
5.3. Influence of Brownian motion parameter 𝑵𝒃 on 𝒇′(𝜼), 𝜽(𝜼) and 𝒔(𝜼) with slip boundary conditions 
Brownian motion describes the erratic movement of minute particles suspended in a fluid. This unpredictable motion 

increases the frequency of collisions between nanoparticles and fluid molecules, leading to the transformation of the 
molecules' kinetic energy into heat. Smaller particles experience more intense Brownian motion, leading to higher values 
in 𝑁. In contrast, larger particles exhibit weaker Brownian motion, resulting in lower values in 𝑁. 

   
Figure 8. Impact of 𝑁 on 𝑓′(𝜂) Figure 9. Impact of 𝑁 on 𝜃(𝜂) Figure 10. Impact of 𝑁 on 𝑠(𝜂) 
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Figures 8, 9, and 10 depict the impact of 𝑁 on 𝑓ᇱ(𝜂),𝜃(𝜂), and 𝑠(𝜂) profiles. It is observed that the profiles of 𝑓ᇱ(𝜂) 
show an upward trend, while the 𝑠(𝜂) shows a downward trend as the values increase for 𝑁. The profile of 𝜃(𝜂) 
demonstrates a dual characteristic with the 𝑁. The temperature distribution increases near the surface of the plate but 
decreases away from it. As the values in 𝑁 increase, the movement of nanoparticles becomes more pronounced. 
Consequently, their activity becomes more dynamic, resulting in more frequent collisions within the system. This increased 
activity promotes a uniform distribution of nanoparticles within the medium, ultimately influencing the system's thermal 
conductivity and overall performance. Figures 8-10 illustrates the variation of 𝑓ᇱ(𝜂), 𝜃(𝜂) and 𝑠(𝜂) with 𝑁 while keeping 
other parameters constant (𝐴 = 𝜒 = 𝛾 = 𝑀 = 𝑁௧ =  𝑁ி = 𝑁𝑐 = 𝑁𝑟 = 0.1, 𝑆𝑐 =  𝑁ோ = 2.0, and 𝑃𝑟 = 6.2). 
 
5.4. Influence of 𝑴,𝑵𝒕,𝐚𝐧𝐝 𝑵𝒃 on the non-dimensional skin friction, heat and mass transfer coefficients with slip 

boundary conditions 
Table 4 illustrates the influences of 𝑀, 𝑁௧ , and 𝑁 on 𝑓ᇱᇱ(0), −𝜃ᇱ(0) and −𝑠ᇱ(0). The values of 𝑓ᇱᇱ(0) enhances with 
larger values of all the three parameters 𝑀,𝑁௧ , and 𝑁. Values of −𝜃ᇱ(0) rises as 𝑀 increases and reduces with higher 
values of 𝑁௧ , and 𝑁. However, −𝑠ᇱ(0) improves with 𝑀 and 𝑁, but reduces with higher values of  𝑁௧.  
Table 4. Effects of 𝑀,𝑁௧ , and 𝑁  on 𝑓ᇱᇱ(0), −𝜃ᇱ(0) and −𝑠ᇱ(0) when 𝑆𝑐 =  𝑁ோ = 2.0,𝑃𝑟 = 6.2,𝐴 = 𝜒 = 𝛾 = 𝑁𝑟 = 𝑁𝑐 = 𝑁ி = 0.1. 𝑴 𝑵𝒕 𝑵𝒃 𝒇ᇱᇱ(𝟎) −𝜽ᇱ(𝟎) −𝒔ᇱ(𝟎) 

0.1 0.1 0.1 1.30966 0.37392 0.12734 
0.2 0.1 0.1 1.68596 0.41169 0.15141 
0.3 0.1 0.1 2.03417 0.44147 0.16622. 
0.1 0.1 0.1 1.30966 0.37392 0.12734 
0.1 0.2 0.1 1.53577 0.34208 0.07440 
0.1 0.3 0.1 1.77814 0.28933 0.07335 
0.1 0.1 0.1 1.30966 0.37392 0.12734 
0.1 0.1 0.2 1.63950 0.32896 0.27441 
0.1 0.1 0.3 1.93596 0.27784 0.33639 

 
5.5. Combined effects of 𝑴 𝐚𝐧𝐝 𝑵𝒕 on the non-dimensional skin friction, heat and mass transfer coefficients with 

slip boundary conditions 
Combined effects of 𝑀 and 𝑁௧ on 𝑓ᇱᇱ(0), −𝜃ᇱ(0) and −𝑠ᇱ(0) are graphically examined in Figs. 11, 12 and 13, 

respectively. It is analyzed that all 𝑓ᇱᇱ(0), −𝜃ᇱ(0) and −𝑠ᇱ(0) are improves with 𝑀 for different values of  𝑁௧. However, 
only 𝑓ᇱᇱ(0) increases, whereas both −𝜃ᇱ(0) and −𝑠ᇱ(0) decreases with 𝑁௧ for varied values of 𝑀. 

  
Figure 11. Combined effects of 𝑀 and 𝑁௧ on 𝑓ᇱᇱ(0) Figure 12. Combined effects of 𝑀 and 𝑁௧ on −𝜃ᇱ(0) 

 
Figure 13. Combined effects of 𝑀 and 𝑁௧ on −𝑠ᇱ(0) 
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5.6. Combined effects of 𝑴 𝐚𝐧𝐝 𝑵𝒃 on the non-dimensional skin friction, heat and mass transfer coefficients 
with slip boundary conditions 

Combined effects of 𝑀 and 𝑁 on 𝑓ᇱᇱ(0), −𝜃ᇱ(0) and −𝑠ᇱ(0) are graphically explored in Figs. 14, 15 and 16, 
respectively. It is observed that all the values of 𝑓ᇱᇱ(0), −𝜃ᇱ(0) and −𝑠ᇱ(0) are enhanced with 𝑀 for different values of 𝑁. Additionally, it is noticed that both 𝑓ᇱᇱ(0) and −𝑠ᇱ(0) rises while −𝜃ᇱ(0) reduces with 𝑁 for varied values of 𝑀. 

  
Figure 14. Combined effects of 𝑀 and 𝑁 on 𝑓ᇱᇱ(0) Figure 15. Combined effects of 𝑀 and 𝑁 on −𝜃ᇱ(0) 

 
Figure 16. Combined effects of 𝑀 and 𝑁 on −𝑠ᇱ(0) 

 
6. CONCLUSIONS 

The study successfully examined the steady laminar flow of natural convective Copper-water nanofluid moving 
along an isothermal vertical plate while considering slip boundary conditions. The outcomes, illustrated and discussed 
through the figures, reveal a notable impact of control parameters, such as 𝑀, 𝑁௧ and 𝑁 on the non-dimensional 
temperature, concentration and velocity profiles. In addition, a comprehensive quantitative analysis was conducted on the 
skin friction, heat transfer, and mass transfer rates of copper-water nanofluid, with a focus on Brownian diffusion, 
electrification, and thermophoresis mechanisms under slip boundary conditions. This analysis was meticulously presented 
through detailed tables and contour surface graphs. These visual representations illustrate the impacts of these 
mechanisms on the reduced skin friction coefficient, heat transfer rate, and mass transfer rate, providing a clear 
understanding of how each factor influences these parameters. The main findings are as follows: 
i. The shooting method implemented in MATLAB’s bvp4c effectively addressed the local similarity equations, 

incorporating velocity, thermal, and concentration slip boundary conditions, ensuring accurate and reliable results. 
ii. Dimensionless skin friction coefficient improves with higher values of all the three parameters 𝑀, 𝑁௧ and 𝑁. 

Reduced Nusselt number enhances with only 𝑀. However, reduced Sherwood number rises with both 𝑀 and 𝑁. 
iii. An improved understanding of the interplay between electric fields, thermophoresis, and Brownian motion using 

copper water nanofluids can lead to developing more efficient cooling systems for compact and smart heat 
exchanger devices. 
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The findings of this study provide valuable insights into the behavior of electrified nanofluids with velocity, thermal, 
and concentration slip boundary conditions that can be applied to enhance thermal management in various engineering 
applications.  

Nomenclature 𝐴 Velocity slip parameter 𝑁௧ Thermophoresis parameter 𝜒 Temperature slip parameter 𝑁𝑟 Buoyancy ratio 𝛾 Concentration slip parameter 𝑁𝑐 Concentration ratio 𝑁 Velocity slip factor 𝑁ி Momentum transfer number 𝐷 Thermal slip factor 𝑁ோ Electric Reynolds number 𝐾 Concentration slip factor 𝑆𝑐 Schmidt number 𝑈,𝐶,𝑇 Local velocity, concentration & temperature 𝛽 Volumetric thermal expansion coefficient Cஶ, Tஶ Free stream concentration & temperature 𝐹 Momentum transfer time constant between the fluid and nanoparticles C௪ , T௪ Wall Surface concentration & temperature 𝜖 Permittivity 𝑢, 𝑣 Velocity Component in direction x, y 𝜌௦ Density of solid particles 𝐸௫ ,𝐸௬ Electric Intensity Component in direction x, y 𝜌 Density of base fluid 𝑔 Gravitational acceleration 𝜌 Density of nanofluid 𝐷் Thermophoretic diffusion coefficient 𝜇 Viscosity of base fluid 𝐷 Brownian diffusion coefficient 𝜇 Viscosity of nanofluid 𝑚 Mass of the nanoparticle 𝑘௦ Thermal conductivity of solid particles 𝑞 Charge of the nanoparticle 𝑘 Thermal conductivity of base fluid 𝑝 Pressure 𝑘 Thermal conductivity of nanofluid 𝑃𝑟 Prandtl number 𝑐௦ Specific heat capacity of solid particles 𝑀 Electrification parameter 𝑐 Specific heat capacity of base fluid 𝑁 Brownian motion parameter 𝑐 Specific heat capacity of nanofluid 
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ТЕПЛОВІ ХАРАКТЕРИСТИКИ ПОТОКУ НАНОРІДИНИ ВЗДОВЖ ІЗОТЕРМІЧНОЇ ВЕРТИКАЛЬНОЇ 
ПЛАСТИНИ З ГРАНИЧНИМИ УМОВАМИ ШВИДКОСТІ, ТЕПЛОВОГО ТА КОНЦЕНТРАЦІЙНОГО КОВЗАННЯ 

ЗА ВИКОРИСТАННЯ ПЕРЕГЛЯНУТОЇ НЕОДНОРІДНОЇ МОДЕЛІ БУОНДЖОРНО 
Суджит Мішра, Адітя Кумар Паті, Ашок Місра, Сародж Кумар Мішра 

Університет технології та менеджменту Центуріон, Паралахемунді, Одіша, Індія 
У цій роботі досліджується природна конвекція постійного ламінарного потоку нанофлюїду повз ізотермічну вертикальну 
пластину з граничними умовами ковзання. Огляд існуючої літератури не виявив жодних попередніх досліджень, які б 
досліджували комбіновані ефекти термофорезу, броунівської дифузії та електризації частинок при розгляді граничних умов 
ковзання в потоці нанорідин. Переглянута неоднорідна модель із чотирьох рівнянь Буонджорно, що включає механізми 
термофорезу, броунівської дифузії та електризації частинок, використовується для усунення цієї прогалини. Модель 
використовує граничні умови швидкості, тепла та концентраційного ковзання для дослідження підвищення теплопровідності 
нанофлюїду. Отримані локальні аналогічні рівняння обробляються за допомогою пакета bvp4c MATLAB. У дослідженні 
обговорюється вплив ключових параметрів, таких як термофорез, броунівський рух і електризація, на температуру, швидкість 
і розподіл концентрації, а також на тепло-, масообмін і коефіцієнти тертя шкіри. Результати моделювання узгоджуються з 
попередніми дослідженнями, показуючи, що покращення параметра електризації підвищує коефіцієнт теплопередачі, тоді як 
параметри термофорезу та броунівського руху мають протилежний ефект. Крім того, значення коефіцієнта масопередачі 
збільшуються з вищими параметрами броунівського руху та електризації, одночасно зменшуючись із параметром 
термофорезу. Ця фізична модель має потенційне застосування в теплообмінниках з використанням нанофлюїдів і в 
охолодженні пластинчастих продуктів під час виробничих процесів. Новизна цього дослідження полягає в аналізі механізмів 
броунівської дифузії, термофорезу та електризації частинок у потоці нанофлюїдів за граничних умов ковзання. 
Ключові слова: теплопровідність; нанофлюїд; гранична умова швидкісного ковзання; граничний стан термічного ковзання; 
гранична умова концентраційного ковзання 
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The current study explores the fluid dynamics and heat transfer characteristics of micropolar fluids within a channel filled with
anisotropic porous media. The governing equations for the fluid flow, microrotation, and temperature profiles are numerically solved
using Spectral Quasi-Linearization Method (SQLM). The research examines the influence of various key parameters such as the
anisotropic permeability ratio, anisotropic angle, Darcy number, Reynolds number, Brinkman number, Prandtl number, and coupling
number. Key findings indicate that the anisotropic permeability ratio and anisotropic angle significantly affect fluid flow and heat
distribution, with increased anisotropy leading to enhanced microrotation and temperature, albeit with reduced velocity at the channel
center. Higher Darcy numbers result in less restricted flow, increasing velocity and reducing microrotation effects, while increasing the
coupling number contributes to a more uniform temperature profile. These results provide significant insights into the optimization of
heat transfer and flow control in engineering applications that involve micropolar fluids in porous media.

Keywords: Micropolar fluid; Anisotropic porous media; Anisotropic permeability; Microrotation; Heat transfer; Spectral Quasi-
Linearization method
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1. INTRODUCTION
The advent of the micropolar fluid theory occurred in recent decades due to the necessity to model a fluid with

rotating micro-components. Micropolar fluids are fluids that display a correlation between the rotational dynamics of
particles and the overall velocity structure at a large scale. Suspension of hard particles in a viscous medium forms these
fluids. Liquid Crystals, magnetic fluids(ferrofluids), blood, and lubricants with additives are examples of micropolar
fluids. Other industrial applications, including biological structures, lubricant fluids, and polymer solutions, utilise
micropolar fluids. Micropolar fluids theory has been extensively investigated by researchers worldwide. Eringen [1]
revolutionised the micropolar fluid framework and polymer solutions which make use of these fluids. He derived the
micropolar fluid flow governing equations and boundary conditions and implemented them in analysis of channel flow,
taking into account the thermodynamic limitations. Researchers have investigated the kinetics of both natural and combined
convection flows of micropolar fluids on flat and cylindrical surfaces [2]–[5]. Mirzaaghaian et al. [6] analysed the flow
characteristics of a micropolar fluid and the dynamics of heat transfer in a porous conduit. To solve nonlinear equations
the Differential Transformation Method (DTM) [7]–[11] was utilised. In this study, the influencing factors were the Peclet
number, Reynolds number, and the micro-rotation/angular velocity. The findings showed that while the temperature and
concentration fields will only slightly alter, the stream function will be greatly altered by varying the Reynolds number.
An analysis was conducted by Mabood et al. [12] to investigate the flow and heat transfer properties of a micropolar fluid
across a stretchable sheet in a porous media. The flow was exposed to a magnetic field, thermodiffusion, and variable
heat sources in their work and solutions were obtained for the resultant equations. A comparison of outcomes with earlier
research revealed very good agreement. The research revealed that the distribution of velocity decreased as the parameter
for the magnetic field increased, despite the fact that the thermal and concentration distribution were elevated.

Extensive research conducted globally on the use of micropolar and nanofluid fluids has shown promising results for
various industrial processes and scientific research oriented applications, including heat exchangers, combined propulsion
systems, and medical procedures. Many researchers [13]–[18] have conducted an in-depth review of the fundamental
principles governing micropolar fluid flow in porous conduits. The behaviour of micropolar fluid in a conduit confined
by two parallel permeable walls was analysed by Jalili et al. [19]. The fluid flow was considered two-dimensional,
and steady. It was observed that with the exception of the dimensionless microrotation profile, all of the mentioned
dimensionless parameters have increasing average values when the values of coupling number increase. Moreover,
temperature distribution is the most significant parameter that can be affected by Peclet number for heat diffusion. The
solution for this problem shows that the averages of the dimensionless parameters reduce if the ratio of micropolar-inertia
density is increased along channel, with the exception of the non-dimensional flow function characteristics. Under the
presumptions of heat radiation and reaction rate coefficients, Shamshuddin et al. [20] analysed the dynamics of a micropolar
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fluid flow through a conduit considering both combined and non-linear heat transfer. It was shown how the temperature,
concentration, and dimensionless velocity of micropolar fluid reached their peak values near the channel’s centre. The
dynamics of mass and heat tranfer in micropolar fluids are determined by their thermal and solution properties.

Abdalbagi [21] examined the dynamics of a micropolar fluid flow and characteristics of heat transfer in a porous
conduit, applying the method of iterative linearization. This study showed that fluid flow, mass transport, microrotation
and heat transfer are all positively impacted by increasing coupling and spin-gradient viscosity parameters. Conversely,
these profiles exhibit a decline as micro-inertia density increases. While an increased Peclet number indicates optimised
heat transfer by convection and mass transfer, higher Reynolds numbers reduce the distributions of velocity, microrotation,
and temperature. Micropolar fluid framework, which is applicable to non-Newtonian fluids, accounts for microrotation
and also couple stresses. The research explores how the magnetic force field slows down the flow of fluid, while channel
permeability increases velocity. Heat radiation enhances the temperature distribution, impacting heat transfer. The findings
have practical significance in the domains of engineering like temperature control systems, and MHD generators, where
these conditions are frequently encountered. A study by Shah et al. [22] provided a description of the fluid flow dynamics
and heat transfer of blood-infused gold micropolar nanofluids in a porous conduit. The channel contained thermal radiation
whether the walls were in motion or rest. Blood was considered as the base fluid, and microgold was thought to be the polar
nanofluid. The study conducted by Ahmad et al. [23] investigated the problem of mass and heat transfer in a micropolar
fluid flow within a porous conduit using a Quasi-linearization approach. At fluid temperatures above a certain threshold,
the concurrent phenomena of heat radiation buildup, absorption heat, heat exchange, and Brownian flow were observed.
When it comes to magnetic parameters and materials, supportive engineering forces like velocity, skin friction, and heat
exchange have proven to be beneficial. However, the transfer rate of mass showed an opposite response. Akbarzadeh et
al. [24] analysed the flow of a nanofluid which was considered laminar and forced convective heat transport within a
wavy channel. In their study, it was demonstrated that if the aspect ratio of the conduit is increased, the average Nusselt
number becomes more sensitive to the Reynolds number and also to the aspect ratio of the channel. The gradient of the
temperature on the left sheet will decrease as the motion parameter increases. However, the gradient exhibits a positive
correlation with Lorentz forces. The effects of thermal radiation and also thermo-diffusion on Williamson model nanofluid
along a porous and stretchable surface were examined by Rashidi, and Bhatti [25]. Their findings showed that the fluid’s
magnitude increases with large porosity and Williamson fluid parameters. On the other hand, the gradient on the left sheet
increases as Lorentz forces do. In a transverse magnetic force field presence, Rashidi et al. [26] examined the exchange of
heat for a nanofluid flow along a stretchable sheet while considering buoyancy effects, and heat radiation into account. It
has been noticed that nanofluid’s velocity rises when the buoyancy factor is increased while the distribution of temperature
decreases. Assuming the fluid is incompressible and steady, Takhar et al. [27] analysed the problem of axisymmetric
flow of micropolar fluid and heat transfer between two permeable discs. A finite analysis method was employed to solve
the flow governing equations, which describes the velocity, temperature and also microrotation. Quantitative simulations
have been conducted to determine the axial, radial, microrotation velocities, temperature, couple stress coefficient, skin
friction, and heat transfer rate on the discs, for varying values of injection Reynolds number and micropolar parameter.

The empirical study conducted by Pathak et al. [28] examined the flow and heat transfer properties of micropolar
fluids along a stretchable sheet in a Darcy porous media. The flow governing system of equations, which are nonlinear, were
solved by the authors using a quasi-uniform mesh in conjunction with a nonstandard finite difference approach. Validation
of the results was achieved by a comparison with those computed using the RK method of order four. The results indicate
that the boundary layer thickness was reduced with an increase in the values of the Reynolds number, micropolar parameter,
and injection/suction parameter. Additionally, a rise in the Prandtl number, heat index parameter, and the micropolar and
injection/suction parameters enhances microrotation, indicating a more pronounced effect of the micropolar characteristics
on the dynamics of fluid flow and heat transfer. In their study, Cutis [29] examined the phenomenon of a creeping flow
in an incompressible, micropolar fluid bounded over a permeable shell. Empirical evidence demonstrated that when
hydraulic resistivity is low and the sphere is completely porous, efficient circulation occurs between the porous area and
the surrounding fluid. This finding can be utilised for efficient drug delivery by using a fully porous sphere with outstanding
permeability as the carrier for the drug.

Recent progress has centered on creating effective numerical techniques to address the complex, nonlinear differential
equations that control fluid flow dynamics. The Spectral Quasi-Linearization Method (SQLM) is one such technique,
combining quasilinearization with spectral methods to achieve high accuracy in linearizing and solving nonlinear terms.
This method is effectively used for investigating boundary layer flows over stretching/shrinking sheets in non-Darcy porous
media and other fluid flow applications. Srinivasacharya et al. [30] have examined the process of production of entropy
and heat exchange in a micro-polar fluid flow inside an annular region subjected to a magnetic field. The two geometry
walls in this study, one acting as suction and the other as injection, have the same velocity. The solution was obtained
using a spectral Chebyshev collocation method. These findings demonstrate that the interior cylinder exhibited the greatest
entropy production, whereas the exterior cylinder displayed the lowest entropy production. Alharbey et al. [31] employed
Structural Equation Modelling (SQLM) to investigate the dynamics of a micropolar fluid along a horizontal plate within
a non-Darcy porous media. Similarity variables in SQLM convert flow-governing equations into ODE, resulting in
numerical solutions with rapid convergence. Entropy production decreases with Reynolds and Brinkman numbers, while
velocity profiles increase with material parameters, demonstrating the method’s resilience and effectiveness in complex
fluid dynamics applications.
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Majority of the studies reported in the literature focused on the study of micropolar fluid flow with regard to stretching
sheets or within porous conduits. This work presents a mathematical model for the analysis of flow and heat transfer
phenomena in a micropolar fluid in between a channel with parallel and permeable walls, saturated with anisotropic
porous media. The momentum and energy equations, together with the boundary conditions, are initially transformed into
a non-dimensional form by similarity transformation. Subsequently, a numerical solution is obtained using the Spectral
Quasi-Linearization Method (SQLM). A systematic investigation is conducted to examine the influence of several key
parameters, including the anisotropic permeability ratio, anisotropic angle, Darcy number, Reynolds number, Brinkmann
number, Prandtl number, and coupling number on the velocity, microrotation, and temperature distributions within the
boundary layer.

2. MATHEMATICAL FORMULATION OF THE PROBLEM
Consider a 2-D channel filled with anisotropic porous media, where the flow of a steady, laminar, incompressible

micropolar fluid is observed. This work assumes that the channel walls are permeable, enabling the steady flow of fluid
into or out of the channel at a constant velocity of 𝑣0. The 𝑋-axis is aligned parallel to the surface of the channel walls,
while the 𝑌 -axis exhibits a perpendicular orientation to them. Moreover, the channel walls are situated at 𝑦 = ±ℎ and
the temperatures near the boundaries are represented as 𝑇1 and 𝑇2, respectively (see Figure 1). As the porous media is
considered anisotropic the permeability matrix which is a second-order tensor K, is given by [32]

K =

[
𝑘2 cos2 𝜙 + 𝑘1 sin2 𝜙 (𝑘2 − 𝑘1) sin 𝜙 cos 𝜙
(𝑘2 − 𝑘1) sin 𝜙 cos 𝜙 𝑘2 sin2 𝜙 + 𝑘1 cos2 𝜙

]
. (1)

𝑘1 and 𝑘2 are the vertical and horizontal permeabilities which are assumed constant. 𝜙 is the anisotropic angle formed by
the intersection of the main axis and the horizontal permeability 𝑘2. The governing equations for micropolar fluid with
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Figure 1. A physical interpretation of micropolar fluid flow problem.

anisotropic porous permeability are stated below, taking into account the aforementioned factors:

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

= 0, (2)

𝜌

[
𝑢
𝜕𝑢
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+ 𝑣 𝜕𝑢
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]
= − 𝜕𝑝
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2
(𝑘1 − 𝑘2) sin(2𝜙))𝑣

]
,

(3)

𝜌
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𝑘1𝑘2

[
( 1
2
(𝑘1 − 𝑘2) sin 2(𝜙))𝑢 + (𝑘1 sin2 (𝜙) + 𝑘2 cos2 (𝜙))𝑣

]
,

(4)
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𝜌 𝑗

[
𝑢
𝜕𝑊

𝜕𝑥
+ 𝑣 𝜕𝑊

𝜕𝑦

]
= −𝜅

[
2𝑊 + 𝜕𝑢

𝜕𝑦
− 𝜕𝑣

𝜕𝑥

]
+ 𝛾

[ 𝜕2𝑊

𝜕𝑥2 + 𝜕
2𝑊

𝜕𝑦2

]
, (5)

(𝜌𝑐𝑝)
[
𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣 𝜕𝑇

𝜕𝑦

]
= 𝐾 𝑓

[ 𝜕2𝑇

𝜕𝑥2 + 𝜕
2𝑇

𝜕𝑦2

]
+ 𝜅

2

[ 𝜕𝑣
𝜕𝑥

− 𝜕𝑢

𝜕𝑦
− 2𝑊

]2
+ 𝛾

[ ( 𝜕𝑊
𝜕𝑥

)2
+
(
𝜕𝑊

𝜕𝑦

)2 ]
+ (2𝜇 + 𝜅)

[
( 𝜕𝑢
𝜕𝑥

)2 + ( 𝜕𝑣
𝜕𝑦

)2 + 1
2
( 𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

)2
]

+ 𝜇 + 𝜅
𝑘1𝑘2

[
(𝑘1 cos2 (𝜙) + 𝑘2 sin2 (𝜙))𝑢2 + (𝑘1 − 𝑘2) sin 2(𝜙)𝑢𝑣 + (𝑘2 cos2 (𝜙) + 𝑘1 sin2 (𝜙))𝑣2

]
.

(6)

Mathematical formulations for boundary conditions of a micropolar fluid flow problem are as below:

𝑢 = 0, 𝑣 = −𝑣0, 𝑊 = 0, 𝑇 = 𝑇1, at 𝑦 = −ℎ,
𝑢 = 0, 𝑣 = 𝑣0, 𝑊 = 0, 𝑇 = 𝑇2, at 𝑦 = +ℎ. (7)

The variables 𝑢 and 𝑣 in the equations above represent the dimensional components of fluid velocity in 𝑋 and𝑌 coordinate
directions. Furthermore, the variables considered are: 𝑝 denotes pressure,𝑇 denotes temperature,𝑊 denotes microrotation
velocity, 𝜅 denotes vortex viscosity, 𝛾 denotes spin-gradient viscosity, 𝑗 denotes micro-inertia density, 𝜌 denotes the
effective density of the micropolar fluid, 𝜇 denotes effective dynamic viscosity of micropolar fluid, 𝑐𝑝 denotes specific
heat of micropolar fluid, and 𝐾 𝑓 denotes the thermal conductivity of micropolar fluid.
Following dimensionless parameters are introduced:

𝜉 =
𝑥

ℎ
, 𝜂 =

𝑦

ℎ
, 𝑢 = −𝑣0𝑥

ℎ
𝑓 ′ (𝜂), 𝑊 =

𝑣0𝑥

ℎ2 𝑔(𝜂), 𝑣 = 𝑣0 𝑓 (𝜂), 𝜃 =
(𝑇 − 𝑇1)
(𝑇2 − 𝑇1)

= 𝜃1 (𝜂) + 𝜉2𝜃2 (𝜂). (8)

In these equations, 𝑣0 is the cross-flow transpiration velocity, which remains constant. 𝑣0 < 0 stands for suction and 𝑣0 >
0 for injection. After substituting the above into the flow governing equations (3)- (6) and after the pressure gradient is
removed, and upon equating the coefficients of 𝜉0, 𝜉, and 𝜉2 we get:( 1

1 − 𝑁

)
𝑓 𝑖𝑣 − 𝑁

1 − 𝑁 𝑔
′′ + 𝑅𝑒[ 𝑓 ′ 𝑓 ′′ − 𝑓 𝑓 ′′′] − 1

(1 − 𝑁)𝐷𝑎 [𝐾 cos2 𝜙 + sin2 𝜙] 𝑓 ′′ = 0, (9)

(2 − 𝑁
𝑚2

)
𝑔
′′ − 2𝑔 + 𝑅𝑒 𝑎 𝑗

(1 − 𝑁
𝑁

)
( 𝑓 ′𝑔 − 𝑓 𝑔

′ ) + 𝑓 ′′ = 0, (10)

𝜃′′1 + 2𝜃2 − 𝑃𝑟 𝑅𝑒[ 𝑓 𝜃1
′] + 𝑁 (2 − 𝑁)

1 − 𝑁
𝐵𝑟

𝑚2 𝑔
2 + 𝐵𝑟

𝐷𝑎
[cos2 𝜙 + 𝐾 sin2 𝜙] 𝑓 2

+2
(2 − 𝑁
1 − 𝑁

)
𝐵𝑟 𝑓

′2 = 0,
(11)

𝜃′′2 + 𝐵𝑟
2

( 𝑁

1 − 𝑁

)
[ 𝑓 ′′2 + 4𝑔2 − 4 𝑓 ′′𝑔] + 𝐵𝑟

𝑚2 𝑔
′2
(𝑁 (2 − 𝑁)

1 − 𝑁

)
+ 2𝑃𝑟 𝑅𝑒 𝜃2 𝑓

′ − 𝑃𝑟 𝑅𝑒 𝑓 𝜃′2

+𝐵𝑟
2

(2 − 𝑁
1 − 𝑁

)
𝑓 ′′2 + 𝐵𝑟

(1 − 𝑁)𝐷𝑎 [𝐾 cos2 𝜙 + sin2 𝜙] 𝑓 ′2 = 0.
(12)

The boundary conditions are:

𝑓 (𝜂) = −1, 𝑓 ′ (𝜂) = 0, 𝑔(𝜂) = 0, 𝜃1 (𝜂) = 0, 𝜃2 (𝜂) = 0 at 𝜂 = −1,
𝑓 (𝜂) = 1, 𝑓 ′ (𝜂) = 0, 𝑔(𝜂) = 0, 𝜃1 (𝜂) = 1, 𝜃2 (𝜂) = 0, at 𝜂 = 1.

(13)

Here 𝐵𝑟 represents Brinkman number, 𝑃𝑟 represents Prandtl number, 𝑅𝑒 represents Reynolds number, 𝐷𝑎 represents
Darcy number, 𝑁 represents coupling number, 𝑎 𝑗 represents micro-inertia parameter, 𝑚2 represents micropolar parameter,
𝐾 represents anisotropic permeability ratio. These parameters are defined as below:

𝐵𝑟 =
𝜇𝑣0

2

𝐾 𝑓 (𝑇2 − 𝑇1)
, 𝑃𝑟 =

𝜇𝑐𝑝

𝐾 𝑓

, 𝑅𝑒 =
𝜌𝑣0ℎ

𝜇
, 𝐷𝑎 =

𝑘1

ℎ2 ,

𝑁 =
𝜅

(𝜅 + 𝜇) , 𝑎 𝑗 =
𝑗

ℎ2 , 𝑚
2 =

(𝜅 + 2𝜇)ℎ2𝜅

(𝜅 + 𝜇)𝛾 , 𝐾 =
𝑘1
𝑘2
.

(14)
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3. METHOD OF SOLUTION
A numerical solution was obtained for the non-linear equations (9) - (12) by applying the Spectral Quasi-Linearization

approach, while considering the boundary conditions in equation (13). This iterative approach combines a spectral
framework with a Quasi-linearization method for solving nonlinear differential equations. Bellman and Kalaba [33]
developed the Quasilinearization Method (QLM) as an extension of the Newton-Raphson method, specifically designed
to address nonlinear boundary value problems. On applying the above procedure, the linear equations are obtained as:

𝑒1,𝑟 𝑓
𝑖𝑣
𝑟+1 + 𝑒2,𝑟 𝑓

′′′
𝑟+1 + 𝑒3,𝑟 𝑓

′′
𝑟+1 + 𝑒4,𝑟 𝑓

′
𝑟+1 + 𝑒5,𝑟 𝑓𝑟+1 + 𝑒6,𝑟𝑔

′′
𝑟+1 = 𝑆1, (15)

𝑓 ′′𝑟+1 + 𝑒7,𝑟 𝑓
′
𝑟+1 + 𝑒8,𝑟 𝑓𝑟+1 + 𝑒9,𝑟𝑔

′′
𝑟+1 + 𝑒10,𝑟𝑔

′
𝑟+1 + 𝑒11,𝑟𝑔𝑟+1 = 𝑆2, (16)

𝑒12,𝑟 𝑓
′
𝑟+1 + 𝑒13,𝑟 𝑓𝑟+1 + 𝑒14,𝑟𝑔𝑟+1 + (𝜃1)′′𝑟+1 + 𝑒15,𝑟 (𝜃1)′𝑟+1 + 𝑒16,𝑟 (𝜃2)𝑟+1 = 𝑆3, (17)

𝑒17,𝑟 𝑓
′′
𝑟+1 + 𝑒18,𝑟 𝑓

′
𝑟+1 + 𝑒19,𝑟 𝑓𝑟+1 + 𝑒20,𝑟𝑔

′
𝑟+1 + 𝑒21,𝑟𝑔𝑟+1 + (𝜃2)′′𝑟+1 + 𝑒22,𝑟 (𝜃2)′𝑟+1 + 𝑒23,𝑟 (𝜃2)𝑟+1 = 𝑆4. (18)

The obtained boundary conditions are :

𝑓𝑟+1 = −1, 𝑓 ′𝑟+1 = 0, 𝑔𝑟+1 = 0, (𝜃1)𝑟+1 = 0, (𝜃2)𝑟+1 = 0 at 𝜂 = −1,
𝑓𝑟+1 = 1, 𝑓 ′𝑟+1 = 0, 𝑔𝑟+1 = 0, (𝜃1)𝑟+1 = 1, (𝜃2)𝑟+1 = 0, at 𝜂 = 1.

(19)

The coefficients obtained are as follows:

e1,𝑟 = 1
1−𝑁 , 𝑒2,𝑟 = −𝑅𝑒 𝑓𝑟 , 𝑒3,𝑟 = − 1

(1 − 𝑁)𝐷𝑎 [𝐾 cos2 𝜙 + sin2 𝜙] + 𝑅𝑒 𝑓 ′𝑟 , 𝑒4,𝑟 = 𝑅𝑒 𝑓 ′′𝑟 ,

𝑒5,𝑟 = −𝑅𝑒 𝑓 ′′′𝑟 , 𝑒6,𝑟 = − 𝑁

1 − 𝑁 , 𝑒7,𝑟 = 𝑅𝑒 𝑎 𝑗 (
1 − 𝑁
𝑁

)𝑔𝑟 , 𝑒8,𝑟 = −𝑅𝑒 𝑎 𝑗 (
1 − 𝑁
𝑁

)𝑔′𝑟 , 𝑒9,𝑟 =
2 − 𝑁
𝑚2 ,

𝑒10,𝑟 = −𝑅𝑒 𝑎 𝑗 (
1 − 𝑁
𝑁

) 𝑓𝑟 , 𝑒11,𝑟 = 𝑅𝑒 𝑎 𝑗 (
1 − 𝑁
𝑁

) 𝑓 ′𝑟 − 2, 𝑒12,𝑟 = 4( 2 − 𝑁
1 − 𝑁 )𝐵𝑟 𝑓 ′𝑟 ,

𝑒13,𝑟 = −𝑃𝑟 𝑅𝑒(𝜃′1)𝑟 + 2
𝐵𝑟

(1 − 𝑁)𝐷𝑎 [cos2 𝜙 + 𝐾 sin2 𝜙] 𝑓𝑟 , 𝑒14,𝑟 =
2𝑁 (2 − 𝑁)

1 − 𝑁
𝐵𝑟

𝑚2 𝑔𝑟 , 𝑒15,𝑟 = −𝑃𝑟𝑅𝑒 𝑓𝑟 ,

𝑒16,𝑟 = 2, 𝑒17,𝑟 =
𝑁

1 − 𝑁 𝐵𝑟 ( 𝑓
′′)𝑟 −

2𝑁
1 − 𝑁 𝐵𝑟 𝑔𝑟 +

2 − 𝑁
1 − 𝑁 𝐵𝑟 ( 𝑓

′′
𝑟 ),

𝑒18,𝑟 = 2𝑃𝑟 𝑅𝑒(𝜃2)𝑟 +
2𝐵𝑟

(1 − 𝑁)𝐷𝑎 [𝐾 cos2 𝜙 + sin2 𝜙] 𝑓 ′𝑟 , 𝑒19,𝑟 = −𝑃𝑟𝑅𝑒(𝜃′2)𝑟 , 𝑒20,𝑟 =
2𝑁 (2 − 𝑁)

1 − 𝑁
𝐵𝑟

𝑚2 𝑔
′
𝑟 ,

𝑒21,𝑟 =
4𝑁

1 − 𝑁 𝐵𝑟 𝑔𝑟 −
2𝑁

1 − 𝑁 𝐵𝑟 ( 𝑓
′′)𝑟 , 𝑒22,𝑟 = −𝑃𝑟 𝑅𝑒 𝑓𝑟 , 𝑒23,𝑟 = 2𝑃𝑟 𝑅𝑒 𝑓 ′𝑟 ,

𝑆1 = 𝑅𝑒[ 𝑓 ′𝑟 𝑓 ′′𝑟 − 𝑓𝑟 𝑓
′′′
𝑟 ], 𝑆2 = 𝑅𝑒 𝑎 𝑗 (

1 − 𝑁
𝑁

) [ 𝑓 ′𝑟 𝑔𝑟 − 𝑓𝑟𝑔
′
𝑟 ],

𝑆3 = −𝑃𝑟 𝑅𝑒( 𝑓 )𝑟 (𝜃′1)𝑟 +
𝑁 (2 − 𝑁)

1 − 𝑁
𝐵𝑟

𝑚2 (𝑔)
2
𝑟 +

𝐵𝑟

(1 − 𝑁)𝐷𝑎 [cos2 𝜙 + 𝐾 sin2 𝜙] ( 𝑓 )2
𝑟 +

2(2 − 𝑁)
1 − 𝑁 𝐵𝑟 ( 𝑓 ′)2

𝑟 ,

𝑆4 =
1
2
( 𝑁

1−𝑁 )𝐵𝑟 [( 𝑓 ′′)2
𝑟 + 4(𝑔)2

𝑟 − 4( 𝑓 ′′)𝑟𝑔𝑟 ] +
𝑁 (2 − 𝑁)

1 − 𝑁
𝐵𝑟

𝑚2 (𝑔′)2
𝑟 + 2𝑃𝑟𝑅𝑒( 𝑓 ′)𝑟 − 𝑃𝑟𝑅𝑒( 𝑓 )𝑟 (𝜃′2)𝑟

+ 1
2
( 2 − 𝑁
1 − 𝑁 )𝐵𝑟 ( 𝑓 ′′2)𝑟 +

𝐵𝑟

(1 − 𝑁)𝐷𝑎 [𝐾 cos2 𝜙 + sin2 𝜙] ( 𝑓 ′)2
𝑟 .

To solve the linearised equations (15)-(18), a Chebyshev spectral collocation approach [34, 35] is used. Chebyshev
interpolating polynomials are used to estimate the unknown functions. These polynomials are collocated at the Gauss-
Lobatto points, which are defined as 𝜁 𝑗 = cos (𝜋 𝑗/𝑀), where 𝑗 = 1, 2, · · ·𝑀 of collocation points. The derivatives of
𝑓 (𝜂), 𝑔(𝜂), 𝜃1 (𝜂), and 𝜃2 (𝜂) are determined by using the differential matrix D to calculate Chebyshev polynomials from
the collocation nodes. At the collocation nodes, the derivatives of 𝑓𝑟+1, 𝑔𝑟+1, (𝜃1)𝑟+1, and (𝜃2)𝑟+1 are represented as:

𝜕 𝑝 𝑓𝑟+1
𝜕𝜂𝑝

=

(
2
𝐿

) 𝑝 𝑀∑︁
𝑖=0

𝐷
𝑝

𝑀,𝑖
𝑓𝑟+1 (𝜂𝑖) = D𝑝𝐹,

𝜕 𝑝𝑔𝑟+1
𝜕𝜂𝑝

=

(
2
𝐿

) 𝑝 𝑀∑︁
𝑖=0

𝐷
𝑝

𝑀,𝑖
𝑔𝑟+1 (𝜂𝑖) = D𝑝𝐺,

𝜕 𝑝 (𝜃1)𝑟+1
𝜕𝜂𝑝

=

(
2
𝐿

) 𝑝 𝑀∑︁
𝑖=0

𝐷
𝑝

𝑀,𝑖
(𝜃1)𝑟+1 (𝜂𝑖) = D𝑝Θ1,

𝜕 𝑝 (𝜃2)𝑟+1
𝜕𝜂𝑝

=

(
2
𝐿

) 𝑝 𝑀∑︁
𝑖=0

𝐷
𝑝

𝑀,𝑖
(𝜃2)𝑟+1 (𝜂𝑖) = D𝑝Θ2.

(20)



112
EEJP. 4 (2024) R. Vijaya Sree, et al.

Where D is Chebyshev differentiation matrix which is scaled by 𝐿/2 and is of order (𝑀 + 1) × (𝑀 + 1) with derivative of
order 𝑝 . On substituting the equation (20) into equations (15) - (18), we obtain

[𝑒1,𝑟D4 + 𝑒2,𝑟D3 + 𝑒3,𝑟D2 + 𝑒4,𝑟D + 𝑒5,𝑟 𝐼] 𝑓𝑟+1 + 𝑒6,𝑟D2𝑔𝑟+1 = 𝑆1, (21)

[D2 + 𝑒7,𝑟D + 𝑒8,𝑟 𝐼] 𝑓𝑟+1 + [𝑒9,𝑟D2 + 𝑒10,𝑟D + 𝑒11,𝑟 𝐼]𝑔𝑟+1 = 𝑆2, (22)

[𝑒12,𝑟D + 𝑒13,𝑟 𝐼] 𝑓𝑟+1 + [𝑒14,𝑟 𝐼]𝑔𝑟+1 + [D2 + 𝑒15,𝑟D] (𝜃1)𝑟+1 + [𝑒16,𝑟 𝐼] (𝜃2)𝑟+1 = 𝑆3, (23)

[𝑒17,𝑟D2 + 𝑒18,𝑟D + 𝑒19,𝑟 𝐼] 𝑓𝑟+1 + [𝑒20,𝑟D + 𝑒21,𝑟 𝐼]𝑔𝑟+1 + [D2 + 𝑒22,𝑟D + 𝑒23,𝑟 𝐼] (𝜃2)𝑟+1 = 𝑆4. (24)

On applying the spectral method to boundary conditions we get:

𝑓𝑟+1 (𝜁0) = 1,
𝑀∑︁
𝑘=0

D𝑀,𝑘 𝑓𝑟+1 (𝜁0) = 0,

𝑓𝑟+1 (𝜁𝑀 ) = −1,
𝑀∑︁
𝑘=0

D𝑀,𝑘 𝑓𝑟+1 (𝜁𝑀 ) = 0,

𝑔𝑟+1 (𝜉0) = 0, 𝑔𝑟+1 (𝜁𝑀 ) = 0,
(𝜃1)𝑟+1 (𝜁0) = 1, (𝜃1)𝑟+1 (𝜁𝑀 ) = 0,
(𝜃2)𝑟+1 (𝜁0) = 0, (𝜃2)𝑟+1 (𝜁𝑀 ) = 0.

(25)

The matrix form of the aforementioned equation system is written as
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

 ×

𝐹𝑟+1
𝐺𝑟+1
Θ1𝑟+1
Θ2𝑟+1

 =

𝑆1
𝑆2
𝑆3
𝑆4

 , (26)

Boundary conditions are placed on separate matrices as follows:

A11 =



1 0 · · · 0 0
D1,0 D1,1 · · · D1,M−1 D1,M

𝐴11
DM−1,0 DM−1,1 · · · DM−1,M−1 DM−1,M

0 0 · · · 0 1


, A12 =



0 0 · · · 0 0
0 0 · · · 0 0

𝐴12

0 0 · · · 0 0
0 0 · · · 0 0


,

A13 =



0 0 · · · 0 0
0 0 · · · 0 0

𝐴13

0 0 · · · 0 0
0 0 · · · 0 0


, A14 =



0 0 · · · 0 0
0 0 · · · 0 0

𝐴14

0 0 · · · 0 0
0 0 · · · 0 0


, A21 =


0 0 · · · 0 0

𝐴21

0 0 · · · 0 0


,

A22 =


1 0 · · · 0 0

𝐴22

0 0 · · · 0 1


, A23 =


0 0 · · · 0 0

𝐴23

0 0 · · · 0 0


, A24 =


0 0 · · · 0 0

𝐴24

0 0 · · · 0 0


,

A31 =


0 0 · · · 0 0

𝐴31

0 0 · · · 0 0


, A32 =


0 0 · · · 0 0

𝐴32

0 0 · · · 0 0


, A33 =


1 0 · · · 0 0

𝐴33

0 0 · · · 0 1


,

A34 =


0 0 · · · 0 0

𝐴34

0 0 · · · 0 0


, A41 =


0 0 · · · 0 0

𝐴41

0 0 · · · 0 0


, A42 =


0 0 · · · 0 0

𝐴42

0 0 · · · 0 0


,
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A43 =


0 0 · · · 0 0

𝐴43

0 0 · · · 0 0


, A44 =


1 0 · · · 0 0

𝐴44

0 0 · · · 0 1


, F𝑟+1 =



𝑓𝑟+1,0
𝑓𝑟+1,1

...

𝑓𝑟+1,𝑀−1
𝑓𝑟+1,𝑀


,

G𝑟+1 =


𝑔𝑟+1,0

...

𝑔𝑟+1,𝑀


, 𝚯1𝑟+1 =


𝜃1𝑟+1,0

...

𝜃1𝑟+1,𝑀


,𝚯2𝑟+1 =


𝜃2𝑟+1,0

...

𝜃2𝑟+1,𝑀


, 𝑆1 =



1
0

s1
0
−1


,

𝑆2 =


0

s2
0

 , 𝑆3 =


1

s3
0

 , 𝑆4 =


0

s4
0

 .
where

𝐴11 = [diag(e1,𝑟 ) diag(e2,𝑟 ) diag(e3,𝑟 ) diag(e4,𝑟 ) diag(e5,𝑟 )] [D4 D3 D2 D 𝐼]𝑇 ,
𝐴12 = [diag(e6,𝑟 )] [D2]𝑇 , 𝐴13 = 0, 𝐴14 = 0,
𝐴21 = [1 diag(e7,𝑟 ) diag(e8,𝑟 )] [𝐷2 D 𝐼]𝑇 ,
𝐴22 = [diag(e9,𝑟 ) diag(e10,𝑟 ) diag(e11,𝑟 )] [D2 D 𝐼]𝑇 , 𝐴23 = 0,
𝐴24 = 0, 𝐴31 = [diag(e12,𝑟 ) diag(e13,𝑟 )] [𝐷 𝐼]𝑇 , 𝐴32 = [diag(e13,𝑟 )] [𝐼]𝑇 ,
𝐴33 = [diag(e14,𝑟 ) diag(e15,𝑟 )] [D2 𝐷]𝑇 , 𝐴34 = [diag(e16,𝑟 )] [𝐼]𝑇 ,
𝐴41 = [diag(e17,𝑟 ) diag(e18,𝑟 ) diag(e19,𝑟 )] [D2 D 𝐼]𝑇 ,
𝐴42 = [diag(e20,𝑟 ) diag(e21,𝑟 )] [D 𝐼]𝑇 , 𝐴43 = 0,
𝐴44 = [1 diag(e22,𝑟 ), diag(e23,𝑟 )] [𝐷2 𝐷 𝐼] .

Here, e, I, and 0 represent the diagonal, unit, and null matrices, respectively which are of order (𝑀 + 1) × (𝑀 + 1).
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Figure 2. Influence of iterations on (a) ∥Res( 𝑓 (𝜂))∥∞ and (b) ∥Res(𝜃1)∥∞
for collocation points when 𝑎 𝑗 = 1, 𝑚 = 2 𝜙 = 𝜋/4, 𝑅𝑒 = 0.4, 𝑁 = 0.4, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5 .

4. CONVERGENCE ANALYSIS AND RESULTS
Convergence analysis entails demonstrating that the iterative procedure converges to an exact solution for the nonlinear
differential equations (9) and (11), by taking the boundary conditions (13) into account. The calculation of residual errors
is performed to guarantee the precision of the numerical results. Inaccuracies measure the extent of discrepancy between
the numerical solution and the precise original solution. These errors quantify the degree of deviation experienced by the
numerical solution from the original solution. For equations (9) and (11), the residual errors are obtained as follows:

Res( 𝑓 ) =
( 1
1 − 𝑁

)
𝑓 𝑖𝑣 − 𝑁

1 − 𝑁 𝑔
′′ + 𝑅𝑒[ 𝑓 ′ 𝑓 ′′ − 𝑓 𝑓

′′′ ] − 1
(1 − 𝑁)𝐷𝑎 [𝐾 cos2 𝜙 + sin2 𝜙] 𝑓 ′′ , (27)
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Figure 3. Axial velocity profile for different values of (a) Anisotropic permeability ratio 𝐾 (b) Anisotropic angle 𝜙 for
𝑎 𝑗 = 1, 𝑚 = 2, 𝑅𝑒 = 0.4, 𝑁 = 0.4, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.

Res(𝜃1) = 𝜃′′1 + 2𝜃2 − 𝑃𝑟 𝑅𝑒[ 𝑓 𝜃′1] +
𝑁 (2 − 𝑁)

1 − 𝑁
𝐵𝑟

𝑚2 𝑔
2 + 𝐵𝑟

(1 − 𝑁)𝐷𝑎 [cos2 𝜙 + 𝐾 sin2 𝜙] 𝑓 2 + 2
(2 − 𝑁
1 − 𝑁

)
𝐵𝑟 𝑓 ′2. (28)

The infinite norms of (27) and (28) are represented as ∥Res( 𝑓 )∥∞, and ∥Res(𝜃1)∥∞ respectively which indicate the largest
absolute value of the error over the whole domain. Increasing the values of 𝑀(number of collocation points), affects the
accuracy of the solution generated by SQLM, as illustrated in Figure (2). The residual error in 𝑓 over 30 iterations for
different collocation points (𝑀 = 30, 35, 40) is displayed in figure 2(a). The optimal accuracy is achieved with collocation
points between 30 and 40, with residual errors around 10−6. The residual error in 𝜃1 over 30 iterations is depicted in figure
2(b). Furthermore, the convergence becomes increasingly evident after the fifth iteration, as the residual error norms fall
in between 10−9 to 10−10. Effects of various key parameters on micropolar fluid flow and heat transfer characteristics are
investigated. These parameters include Darcy number, Reynolds number, Prandtl number, Brinkman number, anisotropic
ratio, anisotropic angle, and the coupling number.

Figures in (3) and (4), depict the axial velocity distribution 𝑓 ′ (𝜂) against the dimensionless distance 𝜂. In figure 3(a),
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Figure 4. Axial velocity profile for different values of (a) Darcy number 𝐷𝑎 (b) Coupling number 𝑁 for 𝑎 𝑗 = 1, 𝑚 = 2,
𝑅𝑒 = 0.4, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.

it is evident that the velocity rises near the vicinity of the boundaries as the values of permeability ratio 𝐾 are increased.
Whereas near the centre line, a decline can be noted, and maximum velocity is attained at the centre. This is due to the
fact that the value of 𝑘 = 𝑘1/𝑘2 increases which implies the horizontal permeability decreases and so the velocity at the
walls. Figure 3(b) depicts the variation of velocity with an anisotropic angle. Optimal velocity is attained when 𝜙 = 0,
while the lowest velocity is seen when 𝜙 = 𝜋

2 . This behaviour is consistent with the concept that when the value of 𝐾
is less than or equal to 1 and keeps 𝐷𝑎 or 𝑘1 constant, a value of 𝜙 = 0 indicates a higher horizontal permeability 𝑘2.
Conversely, if the value of 𝐾 is greater than 1, the behaviour will be the opposite. The value of 𝜙 = 0 is equivalent to
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Figure 5. Transverse velocity profile for different values of (a) Anisotropic permeability ratio 𝐾 (b) Anisotropic angle 𝜙
for 𝑎 𝑗 = 1, 𝑚 = 3, 𝑅𝑒 = 0.2, 𝑁 = 0.2, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.2, 𝜙 = 𝜋/4.

𝑘2 the horizontal permeability, resulting in a reduction in permeability along the flow direction. The velocity exhibits
an upward trend in the vicinity of the walls and a downward trend at the centre as the angle increases. The graph in
figure 4(a) illustrates a reduction in the velocity at boundaries and an increase at the centre of channel as the values of
𝐷𝑎 are raised. As 𝐷𝑎 increases from 0.001 to 1, the velocity profile shifts from uniform to parabolic, indicating less
restricted fluid flow and increased velocity near the center. In the graph of figure 4(b), it can be observed that the velocity
distribution is decreasing near the boundaries, whereas it is increasing at the centre. With increasing 𝑁 , the influence
of microrotations becomes more pronounced, leading to a flatter, more uniform velocity distribution across the channel.
Figures (5)-(6), depict the transverse velocity profile 𝑓 (𝜂) against the dimensionless distance 𝜂. Figure 5(a) illustrates
that the transverse velocity rises at the lower boundary and reduces at the upper boundary, as the value of 𝐾 is increased.
Maximum velocity is attained at the upper wall. For a constant 𝐷𝑎 (constant 𝑘1), an increase in 𝐾 results in a decrease in
𝑘2, the horizontal permeability. As 𝑘2 diminishes, the shear resistance in the horizontal direction escalates, consequently
enhancing the energy dissipation attributed to internal friction within the flow. This energy dissipation influences the
overall decrease in fluid momentum and, indirectly, the transverse velocity as well. In figure 5(b), the velocity is seen
rising near the lower boundary and decreasing towards upper boundary with an increase in 𝜙. Elevating anisotropic angle
𝜙 causes the permeability of the porous media to align with the transverse direction. This alignment reduces resistance
and induces redistributing of the fluid flow, so enhancing the transverse velocity component near the lower wall and a
decrease at the upper wall. Figures in 6(a) and 6(b) show the effect of 𝐷𝑎 and 𝑁 on the transverse velocity. The velocity
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Figure 6. Transverse velocity profile for different values of (a) Darcy number 𝐷𝑎 (b) Coupling number 𝑁 for 𝑎 𝑗 = 1, 𝑚 =

3, 𝑅𝑒 = 0.2, 𝑁 = 0.2, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.2, 𝜙 = 𝜋/4.

is observed to reduce near the lower boundary and rises from the centre towards the upper wall as values of 𝐷𝑎 and 𝑁
are increased. This is expected because a higher Darcy number typically implies a more permeable medium, allowing
fluid to move more freely. As 𝑁 increases, the velocity profiles are almost overlapping with a slight shift upward. This
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overlap suggests that variations in the coupling number have a relatively small impact on the transverse velocity. The
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Figure 7. Microrotation profile for different values of (a) Anisotropic permeability ratio 𝐾 (b) Aisotropic angle 𝜙 for 𝑎 𝑗 =
1, 𝑚 = 2, 𝑅𝑒 = 0.2, 𝑁 = 0.2, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.

microrotation profile in figure 7(a) shows a wave-like pattern with distinct peaks and troughs. The amplitude of these
oscillations, especially at the centre of the channel, can be seen to decrease. This is due to the dampening effects of rotation
in the fluid as the anisotropic permeability 𝐾 increases. Figure 7(b) demonstrates that increasing the anisotropic angle
also reduces microrotation, affecting the rotational dynamics in the fluid. In figure 8(a), as 𝐷𝑎 increases, an increase in
microrotation near the vicinity of lower wall is observed, which declines towards the upper wall. A higher Darcy number,
corresponding to more permeable media, reduces microrotation effects. Understanding this relationship is crucial for
accurately modelling fluid behaviour in micropolar systems, especially in industrial and biomedical applications where
porous media play a significant role. Figure 8(b) demonstrates that increasing the values of coupling number 𝑁 leads
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Figure 8. Microrotation profile for different values of (a) Darcy number 𝐷𝑎 (b) Coupling number 𝑁 for 𝑎 𝑗 = 1, 𝑚 = 2,
𝑅𝑒 = 0.2, 𝑁 = 0.2, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.

to reduction in microrotation located near the upper channel wall. This phenomenon occurs because an increase in the
coupling number leads to a decrease in the thickness of the boundary layer. Furthermore, the microrotation is unimpeded
by the microelements distributed over the metal plate. The microrotation profile in the boundary layer thickness is not
hindered by the microelements that are dispersed away from the plate. Therefore, the distribution of microrotation is an
increasing function of the coupling number till 𝜂 = 0 and opposite from 𝜂 = 0 to 𝜂 = 1. Figures in (9) depict the reverse
trend for increasing the values of 𝑅𝑒, 𝑃𝑟 , and 𝐵𝑟 . Figures in (10)- (12) depict the variation of temperature profile against
the non-dimensional distance 𝜂. It can be seen from figure 10(a) the flatter curve is a result of increased permeability,
which raises K values and results in a more uniform temperature distribution. Figure 10(b) shows that the temperature is
decreasing when the anisotropic angle 𝜙 is increased. A wider and more uniform temperature distribution is indicated by
the peak temperature’s slight decrease with increasing anisotropic angle. According to this, better heat diffusion throughout
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Figure 9. Microrotation profile for different values of (a) Reynold’s number 𝑅𝑒 (b) Prandtl number 𝑃𝑟 (c) Brinkman
number 𝐵𝑟 , for 𝑎 𝑗 = 1, 𝑚 = 2.4, 𝑅𝑒 = 0.75, 𝑁 = 0.2, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.
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Figure 10. Temperature profile for different values of (a) Anisotropic permeability ratio 𝐾 (b) Anisotropic angle 𝜙 for
𝑎 𝑗 = 1, 𝑚 = 2, 𝑅𝑒 = 0.4, 𝑁 = 0.4, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.

the fluid is produced by larger anisotropic angles. The temperature reaches its maximum at the center of the wall and
for 𝜙 = 0. Figure 11(a) shows that higher 𝐷𝑎 values typically correspond to more permeable media, allowing for more
efficient heat transfer. Figure 11(b) illustrates that higher values of 𝑁 indicate more significant coupling effects, which
enhance thermal diffusion, leading to a more uniform temperature profile. As 𝑅𝑒 increases, in figure 12(a), we observe
that the temperature profile peaks near the center and reduces towards the boundaries. This indicates higher Reynold’s



118
EEJP. 4 (2024) R. Vijaya Sree, et al.

2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

3
1(2

)

0

1

2

3

4

5

6

7

8

Da=0.001, 0.01,0.1, 1, 100

(a)
2

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

3
1(2

)

0

1

2

3

4

5

6

7

8

9

N = 0.1, 0.3, 0.5, 0.7

(b)

Figure 11. Temperature profile for different values of (a) Darcy number 𝐷𝑎 (b) Coupling number 𝑁 for 𝑎 𝑗 = 1, 𝑚 = 2,
𝑅𝑒 = 0.4, 𝑁 = 0.4, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.95, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.
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Figure 12. Temperature profile for different values of (a) Reynold’s number 𝑅𝑒 (b) Prandtl number 𝑃𝑟 for 𝑎 𝑗 = 1, 𝑚 = 2,
𝑅𝑒 = 0.4, 𝑁 = 0.4, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.
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Figure 13. Temperature profile for different values of Brikman number 𝐵𝑟 for 𝑎 𝑗 = 1, 𝑚 = 2, 𝑅𝑒 = 0.4, 𝑁 = 0.4, 𝑃𝑟 =
0.7, 𝐷𝑎 = 0.1, 𝐾 = 0.5, 𝜙 = 𝜋/4.

number leads to more uniform temperature distribution, resulting in enhanced heat transfer. Higher 𝑅𝑒 corresponds to
higher flow rates or lower viscosity due to which the temperature gradient becomes less steep. Figure 12(b) illustrates
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that the temperature peaks near 𝜂 = 0 and decreases towards the boundaries as the value of 𝑃𝑟 increases. Greater Prandtl
number 𝑃𝑟 values result in decreased thermal diffusion and more pronounced temperature gradients, which results in more
localised changes near the center. Figure (13) shows that increasing the value of Brinkman number 𝐵𝑟 , results in a higher
temperature peak, indicating that viscous dissipation effects become more significant.

5. CONCLUSIONS
The present work introduces a mathematical model that describes the dynamics of fluid flow and the heat transfer of

a micropolar fluid within a conduit that is saturated with anisotropic porous media. The numerical solutions are obtained
using a Spectral Quasi-Linearization Method (SQLM). An in-house developed MATLAB program is used to generate
graphs that depict the impacts of some important physical parameters identified in the review. The results obtained are
summarized as follows:

• Anisotropic permeability ratio and angle significantly impact the fluid flow and heat characteristics. As 𝐾 , 𝜙
increases, the microrotation and temperature increase, whereas the velocity reduces at the centre of the wall, and
rises near the end of the walls.

• Higher values of Darcy number (𝐷𝑎) indicate less restricted flow, leading to decreased axial velocity near the walls
and increased transverse velocity at the upper wall due to higher vertical permeability. This also reduces microrotation
effects. Understanding this relationship is essential for accurately modelling fluid behavior in micropolar systems,
particularly in industrial and biomedical applications involving porous media. Additionally, the temperature tends
to rise near the centre of the channel.

• Increasing coupling number 𝑁 leads to a reduction in velocity and microrotation in conjunction with an increase in
temperature, mostly due to the substantial micropolar effects.

• As the Brinkmann number 𝐵𝑟 increases, the viscous dissipation effects cause microrotation at the upper channel
wall and temperature to decrease.

• Increase in Reynolds number 𝑅𝑒, causes the microrotation to decrease after the middle of channel and the temperature
distribution becomes less pronounced, indicating stronger convective effects.

• Higher Prandtl number 𝑃𝑟 leads to reduced microrotation and increased temperature, indicating improved heat
transfer efficiency attributed to increased thermal conductivity.

The convergence analysis demonstrated that the SQLM is effective. The residual errors for velocity and temperature
profiles showed rapid convergence, with accuracy significantly improving after the fifth iteration. Accuracy reached its
peak at 35-40 collocation points, but then gradually declined. The numerical method proved robust and efficient, with
residual error norms ranging from 10−6 to 10−7 and 10−9 to 10−10 for various parameters.

The present work addresses a research gap by investigating the impact of micropolar fluid dynamics on fluid flow and
heat transfer. The paper offers valuable recommendations for enhancing the transfer of heat and flow control in engineering
applications that involve micropolar fluids. The numerical method is found to be robust and efficient.
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ВПЛИВ АНIЗОТРОПНОЇ ПРОНИКНОСТI НА МIКРОПОЛЯРНУ ДИНАМIКУ РIДИНИ ТА
ТЕПЛОПЕРЕНОС У ПОРИСТИХ КАНАЛАХ

Р. Вiджая срia,b, В. К. Нарлаb
𝑎Iнженерний коледж ACE, Гхаткесар Мандал, округ Медчал, Телангана, 501301, Iндiя

𝑏GITAM, факультет математики, Хайдарабад, 502329, Iндiя
У поточному дослiдженнi вивчається динамiка рiдин та характеристики теплопередачi мiкрополярних рiдин у каналi, запов-
неному анiзотропним пористим середовищем. Керiвнi рiвняння для профiлiв потоку рiдини, мiкрообертання та температури
розв’язуються чисельно за допомогою методу спектральної квазiлiнеаризацiї (SQLM). Дослiдження вивчає вплив рiзних клю-
чових параметрiв, таких як коефiцiєнт анiзотропної проникностi, анiзотропний кут, число Дарсi, число Рейнольдса, число
Брiнкмана, число Прандтля та число зв’язку. Ключовi висновки вказують на те, що коефiцiєнт анiзотропної проникностi та
анiзотропний кут значно впливають на потiк рiдини та розподiл тепла, при цьому пiдвищена анiзотропiя призводить до по-
силеного мiкрообертання та температури, хоча й зi зниженою швидкiстю в центрi каналу. Вищi числа Дарсi призводять до
менш обмеженого потоку, збiльшення швидкостi та зменшення ефектiв мiкрообертання, тодi як збiльшення числа сполучення
сприяє бiльш рiвномiрному температурному профiлю. Цi результати дають суттєве уявлення про оптимiзацiю теплопере-
дачi та керування потоком у iнженерних додатках, якi включають мiкрополярнi рiдини в пористих середовищах. Ключовi
слова: мiкрополярнi рiдини, анiзотропнi пористi середовища, анiзотропна проникнiсть, мiкроротацiя, теплопередача, метод
спектрально-квазiлiнеаризацiї.
Ключовi слова: мiкрополярна рiдина; анiзотропнi пористi середовища; анiзотропна проникнiсть; мiкроротацiя; теплооб-
мiн; спектральний квазiлiнеаризацiйний метод
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The significance of Ree-Eyring ternary hybrid nanofluid flow lies in its potential applications in various fields. By incorporating three 
different types of nanoparticles into a base fluid using the Ree-Eyring model, this innovative fluid offers enhanced thermal conductivity, 
heat transfer efficiency, and rheological properties. These characteristics are particularly valuable in industries such as electronics 
cooling, solar energy systems, and heat exchangers, where efficient heat management is crucial. Additionally, the unique rheological 
behavior of Ree-Eyring nanofluids can provide advantages in processes like drilling, lubrication, and drug delivery. Under Thompson-
Troian boundary conditions, this study aims to theoretically analyse 2D radiative flow of the Ree-Eyring ternary hybrid nanofluid over 
an angled sheet with Cattaneo-Christov heat flux and higher order chemical reaction parameters. In order to express them as ordinary 
differential equations (ODEs), flow-driven equations undergo suitable similarity transformations. The ensuing system is resolved by 
employing a bvp4c approach. The main takeaway from this study is that the thermal relaxation parameter reduces the width of the 
temperature profile and the fluid velocity is minimized by adjusting the slip parameter. The concentration profile is minimized by the 
chemical reaction parameter and the Ree-Eyring fluid parameter increases with the same (fluid velocity). In addition, we found that 
the skin friction coefficient is strongly correlated negatively with the Ree-Eyring fluid parameter, positively with the (thermal) 
relaxation parameter, and significantly correlated positively with the chemical reaction through the Nusselt number. When Brinkman 
number increases, Bejan number drops. Furthermore, a rise in thermal radiation parameter leads to the escalation in both entropy 
generation and Bejan number. We observed a worthy agreement when we checked the outcomes of this investigation with prior effects. 
Keywords: Viscous dissipation; Thermal Radiation; MHD; Non-Fourier Heat Flux; Nanofluid 
PACS: 47.15.-x, 47.50.-d 

Nomenclature 𝑢, 𝑣 – Components of velocity in 𝑥,𝑦 
directions respectively 𝜌 – Fluid density 𝜇 – Dynamic viscosity 𝑔 – Acceleration due to gravity 𝛼 – Angle of inclination 𝜈௪ – Permeability of porous surface 𝜎 – Electric conductivity 𝑇 – Fluid temperature (dimensional) 𝜉∗ - Critical shear rate  𝛽, 𝑐 – fluid constants 𝛽் – Thermal expansion coefficient 𝛽  – Concentration expansion coefficient 𝐶 – Specific heat capacity 𝑘 – Chemical reaction parameter 𝐵 – Initial magnetic strength 𝑀 – Magnetic field parameter 

𝛾∗- Navier’s slip length  𝜈 – Kinematic viscosity 𝐶 – Fluid concentration (dimensional) 𝑘∗ - Mean absorption coefficient 𝜎∗ - Stefan-Boltzmann constant 𝐷 – Molecular diffusivity 𝛬 – Thermal relaxation parameter 𝑆𝑐 – Schmidt number 𝑊𝑒 – Ree-Eyring fluid parameter 𝜆ଵ – Mixed convection parameter 𝜆ଵ∗ – Buoyancy ratio parameter 𝑅 – Radiation parameter 𝐸 – Eckert number 𝐵𝑛 – Bejan number 𝐵𝑟 – Brinkman number 𝜃 – Fluid temperature (non-dimensional) 𝜙 – Fluid concentration (non-dimensional) 

1. INTRODUCTION
Nanofluids are the colloidal mixtures of ordinary liquid particles having a dimension of less than one nanometre. 

These particles will enhance the thermal properties of typical liquids with low thermal conductivity. The latest generations 
have used a number of innovative techniques to increase the heat transfer rates, which has allowed them to achieve 
different degrees of thermal adeptness. Enhancing heat conduction is necessary to do this. Thus, many attempts were 
made to increase heat conductivity in the liquids by dispersing higher, solid thermally conductive components throughout 
them. The goal of developing nanofluids to meet industrial demands has been attempted multiple times. While efforts to 
develop a superior fluid are still on, researchers and experts in energy use might discover that nanofluids meet their 
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requirements. For instance, Sheikholeslami and Rokni [1] has been studied the behaviour of heat transfer of a nanofluid 
along with magnetic effect. Ganvir et al. [2] discussed the characteristics of transmission of heat in a nanofluid. 
Revathi et al. [3] conducted research on the flow of Darcy–Forchheimer power-law (Ostwald-de Waele type) nanofluid 
past an inclined plate subject to the influences of thermal radiation, activation energy. Recently, Rasool et al. [4] reported 
the results for the MHD radiative Darcy-Forchheimer nanofluid flow. Along a porous rotating disk, a stagnant Maxwell 
nanofluid flow and heat transfer is another study of Li et al. [5]. Radiative motion of a Water-Al2O3 based nanoliquid past 
a Riga surface with thermal radiation is reported by Madhukesh et al. [6]. Modelling of nanofluids with a mixture of two 
or more special types of nanoparticles treating as hybrid as well as ternary hybrid nanofluids based on their greater heat 
transfer production is another interesting aspect in the present literature. Huge amount of research can be observed from 
the recent literature on it. For instance, Yasir et al. [7] conducted research on a mixed convective radiative Hybrid 
nanofluid with heat generation/absorption impacts. Kho et al. [8] discussed the impacts of viscous dissipation and thermal 
radiation in a MHD flow of hybrid nanofluid. Abbas et al. [9] presented the numerical findings on a convective motion 
of a hybrid nanofluid along an infinite disk. Focusing on the very recent articles Khan et al. [10], Mishra and Pathak [11], 
Najafpour et al. [12], Farooq et al. [13], Mahboobtosi et al. [14] and Mohanty et al. [15], one can notice the similar 
attempts which are noteworthy. 

The Cattaneo-Christov heat flux model is a mathematical approach, which can be utilized to describe transfer of 
heat in fluids and materials. It represents an improvement over the classical Fourier's law on conduction of heat. In contrast 
to the instantaneous heat transmission assumed by Fourier's law, the Cattaneo-Christov model includes a thermal 
relaxation time. This time constant reflects the finite time it takes for a material's temperature to adjust to a change in heat 
flux. This is particularly important for studying heat transfer at the microscopic level or in situations with rapid 
temperature variations. The model is used to analyze heat transfer in boundary layer flows, where thin layers of fluid 
develop near surfaces with different temperatures. This is applicable in various engineering contexts like heat ex-changers 
and fluid flow over objects. Most relevant applications of said model particularly occurs in engineering and biomedical 
processes. Metal spinning, nuclear reactor cooling, magnetic drug targeting, hot rolling, drawing copper wires, heat 
conduction in tissues and in energy production etc. Hayat et al. [16] included Cattaneo-Christov (C-C) mass flux model 
to scrutinize the features of heat transmission in the investigation of non-Newtonian fluid flow. Ahmad et al. [17] 
considered a wedge and numerically examined micropolar fluid flow by using bvp4c technique in MATLAB with thermal 
relaxation time and observed that it alleviates fluid temperature. Ibrahim and Gadisa [18] considered CCHF and examined 
the Oldroyd-B fluid flow by an irregular elongating sheet. They emphasized that this fluid model is good at examining 
the dilute polymetric solutions for visco-elastic behaviour. Reddy et al. [19] and Gireesha et al. [20] discussed various 
dusty fluid flows by a stretching sheet with CCHF model. They identified the fact that radiation parameter is predominant 
in cooling procedure and observed that the melting parameter lessens fluid temperature. Ali et al. [21] applied variational 
FEM (finite element method) to unriddle the mathematical model in the rotational Casson fluid flow examination through 
an extendable surface with double diffusive Cattaneo-Christov and detected diminution in secondary velocity with larger 
magnetic field parameter. Tassaddiq [22] considered elastic body and elucidated a micropolar-hybrid fluid flow with 
CCHF and Ohmic heating. Jakeer et al. [23] identified that the larger Darcy number ameliorates the fluid velocity in the 
scrutiny of HNF within a porous cavity with CCHF model. Examination of HNF (water with graphene and silver) flow 
among rotating disks with CCHF is done by Mahesh et al. [24] and amelioration in tangential velocity with larger 
Reynolds number is one of their results. Ali et al. [25] utilized Galerkin technique to theoretically examine the rotational 
nanofluid flow by an elastic surface and discovered that the Lewis number escalates the value of Sherwood number. 
Recently, several authors [26-33] considered various geometries and scrutinised diverse fluid flows with CCHF model. 

Surface stretching mechanism in flow dynamical problems has become widely accepted in many industrial and 
technological processes. In particular, the quantity and quality of industrial processes heavily rely on the stretching of 
sheets. Rubber sheeting, hot rolling, glass blowing, drawing of wires, manufacturing of glass, processes like 
polymerization of sheets are some of the usages of stretching mechanisms. By using numerical simulations, 
Khan et al. [34] were able to observe that the Soret effect improves the concentration profile when MHD nanofluid flows 
through an extending sheet. Activation energy included Nanofluid flow was studied by Rasool et al. [35], who found that 
it reduces the mass flux rate. Abbas et al. [36] applied HAM method to elucidate MHD flow of Carreau fluid with varying 
thermal conductivity. Yasmin et al. [37] examined the features of heat transfer in the flow of MHD micropolar fluid by a 
tilted stretchable surface and detected that fluid velocity is minified with larger curvature parameter. Sankar Giri et al. 
[38] considered stretching cylinder and scrutinized MHD nanofluid (CNT nanoparticles) flow with chemical reaction. 
Gayatri et al. [39] considered nonuniform elongating sheet and discussed MHD dissipative Carreau fluid flow with Ohmic 
heating. Kumar et al. [40] used FEM to unriddle the mathematical model in their study on MHD fluid flows with various 
spherical nanoparticles by a vertical plate and noticed an inverse relationship among magnetic field parameter and Nusselt 
number. Newly, several researchers [41-52] discussed various MHD fluid flows through a variety of stretchable 
geometries. 

Upon reviewing the aforementioned literature, it became apparent that the Ree-Eyring ternary hybrid nanofluid flow 
across an angled stretchable sheet subjected to Thompson-Troian boundary conditions has not been previously 
investigated. The originality of this study is in its examination of the dissipative magnetohydrodynamic Ree-Eyring 
ternary hybrid nanofluid flow via an angled plate with boundary conditions imposed by Thompson Troian theory. Entropy 
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optimization and Bejan number calculation were also included in this study. Two events, suction and injection, are 
depicted graphically to show the consequences. Findings of this study are well agreed with already published results 
which was shown in validation section. 

 
2. FORMULATION 

A radiative and chemically reactive motion of a Ree-Eyring ternary hybrid nanofluid across an elastic surface 
(angled) in addition to Thompson-Troian boundary conditions is investigated theoretically in the present analysis. The 
following hypotheses form the basis of the current inquiry: 
(i) The utilisation of non-Fourier heat flux is aptly applied in the examination of thermal 
conduction processes. 
(ii) kindly see Table 1 for exact numerical calculations of the thermo-physical properties of water (𝐻ଶ𝑂), 𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒, 𝑆𝑖𝑂ଶ, and 𝐶𝑢𝑂. 
(iii) Sheet is inclined by an angle α  (observe Fig. 1). 
(iv) An external magnetic field applied vertically with an intensity 0B  influences the flow. 
(v) In this work, the influence of induced magnetic fields is ignored. 

 
Figure 1 Schematic representation of the present situation 

Table 1. Key parameters' values of 2H O , 𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒, 𝑆𝑖𝑂ଶ, and 𝐶𝑢𝑂 

S. No. Properties 2H O ( )f  𝐺𝑟𝑎𝑝ℎ𝑒𝑛𝑒 ( )GΦ  𝑆𝑖𝑂ଶ ( )SΦ  𝐶𝑢𝑂 ( )CΦ  

1 ( )/S mσ  0.005 107 10ିଶହ 2.7 ൈ 10ି଼ 

2 ( )/  k W m K  0.613 2500 1.38 76.5 

3 ( )3/Kg mρ  997.1 2250 2200 6320 

4 ( )/  pC J Kg K  4179 2100 703 531.8 

Here are the conditions (prerequisites) and basic equations required for the study, based on these presumptions: 
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The following similarity transmutations for transforming controlling equations were offered by Rafique et al. [54]:  
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Through the use of (6), the continuity equation (1) is satisfied in a straightforward manner. Then (6) was skilfully 
used to alter (2, 3, 4 and 5) in the following procedure: 

 ( )2 3
1 1

1 2 1

1 1 ''' '' ' ' * Cos 0SWe f ff f Mf
S S S

λ θ φλ α
 

+ + − − + + = 
 

 (7) 

 
( ) ( ) ( )4 2 2

5 2 5

1'' ' ' ' '' 1 '' Pr 0
Pr

a
c

S R
f ff f E We f

S S S
θ θ θ θ

+  
+ − + Λ + + = 
 

 (8) 

 1 '' ' 0m f
Sc

φ φ φ− Γ + =  (9) 

 ( ) ( ) ( )( ) ( ) ( ) ( )
( ) ( ) ( )

0.5at 0 : , ' 1 1 '' '' , 1,  

as : ' 0, 0,  0. 

f S f f f

f

η η η δ η ξ η θ η φ η

η η θ η φ η

− = = = + − = = 


→ ∞ → → → 
 (10) 

Here 

( )
( )

( ) ( )

2

1 12

32 3
0

2

13
0

2

, , , * , * , * ,
Re

*1 16Pr , , , , , ,
3

, , ,Re .

w w
c

p wx

p T w
a

m
C w w w

x
m

v uGr Gc b bS E b x
C T T Grb

C gx T TB TM b We R Gr
k b c kk

gx C C k C C xu
Sc Gc

D b

λ λ δ γ ξ ξ
υ υυ

μ βσ σγ
ρ μβ υ

βυ
υυ

∞

∞∞

∞
−

∞ ∞


= = − = = = = − 

− = = Λ = = = = 

− − = = Γ = =


 

and 

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )

( )
( )

1 411

2.5 2.5 2.5
2 311

411 411
41 3

411 411

2 2
1 1 1 , ,

2

2 2
1 1 1 , ,

2

2 2
,

2

C f C f CC S G
G S C C S G

f f f C f C f C

C f C C f
G S C

C f C C f

S f S f S

S f S f S

k k k k
S S

k k k k

S

k S k S k k
S

k S k S k k

ρ ρ ρ
ρ ρ ρ

σ σ σ σ
σ

σ σ σ σ

σ

  + − Φ − 
 = − Φ − Φ − Φ + Φ + Φ + Φ =   + + Φ −   

− − Φ +
= − Φ − Φ − Φ =

+ − Φ +

+ − Φ −
=

+ + Φ −
( )
( )

( ) ( ) ( )
( )
( )

( )
( )

( )
( )

( )
( )

( )

311 311
1

311 311

5

41 41 31 31
4 3

41 41 31 31

2 2
,

2

1 1 1 ,

2 2 2 2
,

2 2

S f S f S

S f S f S

p p pC S G
G S C C S G

p p pf f f

G f G f G G f G f G

G f G f G G f G f

S S

S S

C C C
S

C C C

k S k S k k S S
S

k S k S k k S S

σ σ σ σ

σ σ σ σ

ρ ρ ρ

ρ ρ ρ

σ σ σ σ
σ

σ σ σ

+ − Φ −
=

+ + Φ −

  
  = − Φ − Φ − Φ + Φ + Φ + Φ
  

  

+ − Φ − + − Φ −
= =

+ + Φ − + + Φ −( )

.

.
Gσ






















 



126
EEJP. 4 (2024) Gadamsetty Revathi, et al.

Friction factor, Nusselt and Sherwood numbers are outlined as: 
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Equation (6) allows us to rewrite (11) as 
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2.1. Entropy generation and Bejan number 

The formula below constitutes the dimensional representation used to calculate the entropy generation in the current work: 
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By applying (6), equation (12) can be rewritten as follows:  
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The mathematical expression to find the Bejan number is:  
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3. VALIDATION 

We verified our results with previous results under specific conditions (e.g., 0We = ) and found a satisfactory 
agreement (see Table 2).  

Table 2. Consistency with prior findings for ( )'' 0f  and ( )' 0θ−  to validate our findings 

M  
( )'' 0f  ( )' 0θ−  

Devi and Kumar [55] Current result Devi and Kumar [55] Current result 
0 -0.5608 -0.56081123 1.0873 1.08733452 

0.1 -0.5659 -0.56590213 1.0863 1.08633192 
0.2 -0.5810 -0.58101087 1.0833 1.08337829 
0.5 -0.6830 -0.68300657 1.0630 1.06300176 
1 -1.0000 -1.00000000 1 1 
2 -1.8968 -1.89687214 0.8311 0.83118274 
5 -4.9155 -4.91554536 0.4703 0.47030201 
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4. RESULTS AND DISCUSSION 
Equations (7-9) along with (10) are puzzled out with the bvp4c solver. In this study, solutions are rendered for 

suction and injection cases. 
 

4.1. Velocity profile 
As displayed in Fig. 2, the fluid velocity declines as M upsurges. The Lorentz force grows in amplitude in proportion 

to the strength of the magnetic field. It leads to a greater reduction in the fluid's velocity. The increment in the Ree-Eyring 
fluid parameter corresponds to a decrement in the fluid's effective viscosity at higher shear rates. This reduction in 
viscosity lowers the resistance to flow, allowing the fluid to move more freely and resulting in an increase in fluid velocity 
[see Fig. 3]. The rise in the volume fraction of nanoparticles in a fluid causes to a rise in viscosity, enhanced inertia, 
increased drag, and potential microstructure formation. These factors collectively increase the resistance to flow, thereby 
reducing the overall velocity of the fluid [see Fig. 4]. 

Figure 2. Situation in which ( )'f η  is impacted by Gφ  Figure 3. Situation in which ( )'f η  is impacted by M  

 
Figure 4. Situation in which ( )'f η  is impacted by We  

 
4.2. Temperature profile 

A rise in the Eckert number corresponds to a hike in the relative importance of kinetic energy compared to thermal 
energy. This results in more kinetic energy being converted into heat through viscous dissipation, causes to a rise in the 
fluid's temperature [see Fig. 5]. A rise in the thermal relaxation parameter causes the fluid to respond more slowly to 
thermal disturbances, reducing the rate of heat conduction and energy dispersal within the fluid. As a result, there is a 
reduction in temperature [see Fig. 6]. An increase in the thermal radiation parameter enhances the amount of radiant 
energy absorbed by the fluid. This absorbed energy raises the internal energy of the fluid, resulting in a higher temperature 
[see Fig. 7]. The effect is particularly significant in systems where thermal radiation plays a major role in the heat transfer 
process, such as in high-temperature applications or in fluids with strong radiative properties. 
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Figure 5. Situation in which ( )θ η  is impacted by cE  Figure 6. Situation in which ( )θ η  is impacted by Λ  

 
Figure 7. Situation in which ( )θ η  is impacted by aR  

 
4.3. Concentration profile 

Raising the value of Sc  causes the fluid's concentration to decline, as can be seen in Fig. 8. An increment in the 
parameter of chemical reaction accelerates the rate at which reactants are altered into products. This heightened reaction 
rate leads to a more rapid depletion of the reactants, thereby reducing their concentration in the fluid. The balance between 
mass transfer and chemical reaction shifts towards greater consumption, resulting in a lower overall concentration of the 
reactant species in the fluid (see Fig. 9). 

  

Figure 8. Situation in which ( )φ η  is impacted by Sc  Figure 9. Situation in which ( )φ η  is impacted by Γ  
 

4.4. Engineering quantities of interest 
Figs. 10-15 explains the impression of pertinent parameters on heat transmission rate, surface friction drag and mass 

transmission rate. 

(
)

(
)

(
)

(
)

(
)



129
Entropy Generation Optimization in a Ree-Eyring Ternary Hybrid Nanofluid Flow... EEJP. 4 (2024)

  

Figure 10. Situation in which friction factor is impacted by We  Figure 11. Situation in which friction factor is impacted by M  

It is detected that both Ree-Eyring fluid parameter, magnetic field parameters minimize the surface friction drag 
(Fig. 10-11). As the Ree-Eyring fluid parameter increases, the fluid exhibits more pronounced shear-thinning behaviour, 
leading to a reduction in viscosity near the wall where shear rates are high. This reduction in viscosity lowers the wall 
shear stress, which directly reduces the skin friction coefficient. An increase in the Eckert number enhances viscous 
dissipation in the fluid, which generates additional heat and reduces the temperature gradient between the heated surface 
and the fluid. This reduction in the temperature gradient weakens the convective heat transfer, leading to a lower Nusselt 
number. In essence, the higher the Eckert number, the less efficient the heat transfer becomes, resulting in a reduced 
Nusselt number (Fig. 12). Rise in thermal relaxation parameter enhances the heat transmission rate as seen in Fig. 13. 
Furthermore, it is seen that chemical reaction and Schmidt numbers are cooperative to improve mass transmission rate of 
the fluid (Figs. 14-15).  

  

Figure 12. Situation in which Nusselt number is impacted by cE  Figure 13. Situation in which Nusselt number is impacted by Λ  

  

Figure 14. Situation in which Sherwood number is impacted by Γ  Figure 15. Situation in which Sherwood number is impacted 
by Sc  
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4.5. Bejan number and other profiles 
As the Brinkman number rises, indicating a higher ratio of viscous dissipation to thermal conduction, the internal 

heat generation in the fluid increases. This results in larger temperature gradients and greater irreversibility in the heat 
transfer processes, leading to increased entropy generation (see Fig. 16). 

  
Figure 16. Situation in which entropy generation is impacted 

by Br  
Figure 17. Situation in which Bejan number is impacted by 

Br  
An increase in the Brinkman number highlights the growing significance of viscous dissipation within the fluid, 

leading to greater irreversibility associated with fluid flow. This shift in the balance of irreversibility reduces the Bejan 
number, indicating that viscous dissipation becomes the dominant source of entropy generation in the system, 
overshadowing the irreversibility due to heat transfer (see Fig. 17). From Figs. 18-19, it is clear that the rise in thermal 
radiation parameter leads to the escalation in both entropy generation and Bejan number. 

  
Figure 18. Situation in which entropy generation is impacted 

by aR  
Figure 19. Situation in which Bejan number is impacted 

by aR  
 

5. CONCLUSIONS 
Entropy generation optimization in Ree-Eyring ternary hybrid nanofluid flow across an angled stretched sheet 

subject to Thompson Troian boundary conditions has been investigated numerically. Careful observations from the 
numerical results, the following are the main takeaways from this study:  
• Ree-Eyring parameter elevates fluid velocity. 
• Raise in the slip parameter of velocity leads to the decrement in fluid velocity. 
• Eckert number and thermal relaxation parameter exhibited different influences on temperature. 
• Concentration profile contracts with bigger chemical reaction parameter. 
• Friction factor is bearing a considerable negative connection with We . 
• Sherwood number is bearing a significant progressive correlation with ,Sc Γ . 
• When Br enhances, Viscous dissipation's contribution to overall irreversibility becomes increasingly noticeable. 

So that Bejan number declines.  
• Enhanced thermal radiation parameter causes to the escalation in both entropy generation and Bejan number. 
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ОПТИМІЗАЦІЯ ГЕНЕРАЦІЇ ЕНТРОПІЇ В ПОТРІЙНІЙ ГІБРИДНІЙ НАНОРІДИНІ РІ-ЕЙРІНГА ПО ПРУЖНІЙ 

ПОВЕРХНІ З НЕ ФУР’Є ТЕПЛОВИМ ПОТОКОМ 
Гадамсетті Реватіa, Д. Пурначандра Раоb, С. Рамалінгесвара Раоc, К.С. Шрініваса Бабуc, Т.Р.К.Д. Вара Прасадc, 

М. Джаячандра Бабуd 
aДепартамент математики, Інститут інженерії та технології Гокараджу Рангараджу, Бачупаллі, Хайдарабад, Індія 

bФакультет математики, Інженерний коледж Матрусрі, Саїдабад, Хайдарабад, Телангана, Індія 
cДепартамент EM&H, S.R.K.R. Інженерний коледж, Бхімаварам, Андхра-Прадеш, Індія 

dФакультет математики Державного коледжу, Раджампета, район Аннамайя, Андхра-Прадеш, Індія 
Значення потрійного гібридного потоку нанорідин Ree-Eyring полягає в його потенційному застосуванні в різних областях. 
Завдяки введенню трьох різних типів наночастинок в базову рідину за допомогою моделі Рі-Айрінга ця інноваційна рідина 
забезпечує покращену теплопровідність, ефективність теплопередачі та реологічні властивості. Ці характеристики особливо 
цінні в таких галузях, як охолодження електроніки, сонячні енергетичні системи та теплообмінники, де ефективне керування 
теплом має вирішальне значення. Крім того, унікальна реологічна поведінка нанофлюїдів Рі-Айрінга може забезпечити 
переваги в таких процесах, як свердління, змащення та доставка ліків. У граничних умовах Томпсона-Трояна це дослідження 
має на меті теоретично проаналізувати двовимірний радіаційний потік потрійної гібридної нанорідини Рі-Айрінга над 
кутовим листом з тепловим потоком Каттанео-Крістова та параметрами хімічної реакції вищого порядку. Щоб виразити їх як 
звичайні диференціальні рівняння (ОДУ), рівняння, керовані потоком, зазнають відповідних перетворень подібності. 
Наступна система вирішується за допомогою підходу bvp4c. Основний висновок цього дослідження полягає в тому, що 
параметр теплової релаксації зменшує ширину температурного профілю, а швидкість рідини мінімізується шляхом 
регулювання параметра ковзання. Профіль концентрації мінімізується параметром хімічної реакції, а параметр рідини Рі-
Айрінга зростає з тим самим (швидкістю рідини). Крім того, ми виявили, що коефіцієнт шкірного тертя сильно негативно 
корелює з параметром рідини Рі-Айрінга, позитивно з параметром (термічної) релаксації та значно позитивно корелює з 
хімічною реакцією через число Нуссельта. Коли число Брінкмана збільшується, число Бежана падає. Крім того, підвищення 
параметра теплового випромінювання призводить до ескалації як генерації ентропії, так і числа Бежана. Ми помітили гідну 
згоду, коли перевіряли результати цього розслідування з попередніми наслідками. 
Ключові слова: в'язка дисипація; теплове випромінювання; МГД; не Фур'є тепловий потік; нанофлюїд 
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The study of MHD heat and mass transfer dissipative free convective flow past a semi-infinite porous vertical plate through porous 
medium in presence of thermal radiation is considered. The novelty of the present work is to examine radiation effect (Rosseland 
Approximation) on the flow transport characteristics. The equations governing the flow of heat and mass transfer are solved by 
asymptotic series expansion method to evaluate the expressions for velocity, temperature, concentration fields, skin-friction, rate of 
heat and mass transfer. The influence of various physical parameters on the flow is discussed through graphs and in tabular form. It is 
found that an increase in radiation parameter to decrease the velocity and temperature. Further, it is seen that the skin -friction at the 
plate decreased with increasing values of radiation parameter. 
Keywords: Radiation; MHD; Porous medium; Free convection 
PACS: 44.25.+f  

1. INTRODUCTION
The motion of fluid due to buoyancy forces is known as free or natural convection that occurs in the region of hot 

and cold through the method of heat transfer. Heat transfer is a exchange of energy through conduction, convection or 
radiation from high to low where conduction is through solid materials, convection is through liquids and gases and 
radiation is through electromagnetic waves. Mass transfer is the net movement of mass from one point to another. MHD 
refers to electrically conducting motion of fluids and nowadays it plays an important role in the application field of 
engineering and biomedical sciences. 

Many authors contributed some works related to the MHD heat and mass transfer problems. Some of them are 
Jaluria [1], Javaherdeh et.al [2], Raju et al. [3], etc. The unsteady MHD free convection flow past a vertical plate with 
thermal diffusion and chemical reactions have been discussed by Hossain et.al [4]. Lavanya [5] analyzed the radiation 
and chemical reaction effects on a steady laminar forced convection flow of a viscous incompressible electrical conducting 
fluid over a plate embedded in a porous medium in the presence of heat generation. An exact solution of unsteady MHD 
free convective mass transfer flow past an infinite inclined plate embedded in a saturated porous medium has been 
presented by Agarwalla et.al [6]. Chamkha et.al [7] considered the problem of coupled heat and mass transfer by natural 
convection from a vertical, semi-infinite flat plate embedded in a porous medium.  Sharma et.al [8] also considered the 
Soret and Dufour effects on unsteady MHD mixed convection flow past an infinite radiative vertical porous plate 
embedded in a porous medium in presence of chemical reaction. The investigation of Dufour effect and radiation effects 
on unsteady MHD free convection flow past an impulsively started infinite vertical plate with variable temperature and 
uniform mass diffusion in the presence of transverse applied magnetic field through porous medium is carried out by 
Prakash et.al [9]. Thermal radiative effects on moving infinite vertical plate in the presence of variable temperature and 
mass diffusion is considered by Muthucumaraswamy [10]. Ahmed e.al [11] also investigated the effect of thermal 
diffusion on unsteady free convective flow of an electrically conducting fluid over an infinite vertical oscillating plate 
immersed in porous medium. Seth et.al [12] investigated the unsteady hydromagnetic natural convection flow with heat 
and mass transfer of a viscous, incompressible, electrically conducting, chemically reactive and optically thin radiating 
fluid past an exponentially accelerated moving vertical plate with arbitrary ramped temperature is carried out with Laplace 
transform technique. The problem of a hydromagnetic convective flow of an electrically incompressible viscous 
conducting fluid past a uniformly moving vertical porous plate is investigated by Chamuah et.al [13]. An attempt has 
been made by Ahmed et.al [14] to perform a finite difference analysis to study the effects of the magnetic field, thermal 
radiation, Reynold’s number, chemical reaction and of dissipating heat on the MHD transient dissipative flow past a 
suddenly started infinite vertical porous plate with ramped wall temperature. Ahmed et .al [15] also studied theoretically 
a three-dimensional mixed convective mass transfer flow past a semi-infinite vertical plate embedded in a porous medium. 
To analyze the effects of various parameters such as Soret and Dufour effects, chemical reaction, magnetic field, porosity 
on the fluid flow and heat and mass transfer of an unsteady Casson fluid flow past a flat plate is considered by Das 
et.al [16]. Kataria et.al [17] is considered with the study of flow, heat and mass transfer characteristics in the unsteady 
natural convective magnetohydrodynamics Casson fluid flow past over an oscillating vertical plate. Babu et.al [18] carried 
out to study the effects radiation and heat sink. Ragunath et.al [19] considered the heat and mass transfer on MHD flow 

Cite as: S. Sharma, K. Choudhury, H.A. Rashid, East Eur. J. Phys. 4, 134 (2024), https://doi.org/10.26565/2312-4334-2024-4-12 
© S. Sharma, K. Choudhury, H.A. Rashid, 2024; CC BY 4.0 license 

https://periodicals.karazin.ua/eejp/index
https://portal.issn.org/resource/issn/2312-4334
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0001-1119-9698
https://orcid.org/0000-0003-2809-8428
https://doi.org/10.26565/2312-4334-2024-4-12


135
Radiation Effect on MHD Free Convective Flow Past a Semi-Infinite Porous... EEJP. 4 (2024)

through porous medium between two vertical plates. The study of the heat and mass transfer on MHD boundary layer 
flow of a viscous incompressible and radiating fluid over an exponentially stretching sheet is carried out by Devi et.al 
[20]. Ravikumar et.al [21] investigated the heat and mass transfer effects on MHD flow of viscous incompressible and 
electrically conducting fluid through a non-homogeneous porous medium in presence of heat source, oscillatory suction 
velocity is considered. Very recently Mopuri et.al [22] investigated in the presence of a diffusion thermal and coupled 
magnetic field effect, this manuscript seeks continuous free convective motion by a viscous, incompressible fluid that 
conducts electrically past a sloping platform via a porous medium. By using perturbation technique, Choudhury et.al [23] 
investigated the heat and mass transfer in MHD convective flow past an infinite plate, through a porous media in presence 
of radiation, diffusion-thermo effect, and heat sink.  

The main objective of the present work is to investigate the effects of diffusion-thermo and heat sink in MHD free 
convective flow through a porous media in presence of thermal radiation (Rosseland Approximation). The equations 
governing the flow, heat and mass transfer are transformed into non-dimensional forms by using some similarity 
parameters. The perturbation technique is used to solve the non-dimensional governing equations and the results obtained 
have been discussed through graphs and tables. 

 
2. MATHEMATICAL FORMULATION 

The equations which describe the motion of steady, incompressible, viscous, electrically conducting fluid in the 
existence of a uniform magnetic field in vector form are as: 
Equation of continuity: 

 ∇.ሬሬሬ⃗ �⃗� ൌ 0. (1) 

Gauss’s law of magnetism: 

 ∇ሬሬ⃗ ∙ 𝐵ሬ⃗ ൌ 0. (2) 

Ohm’s law: 

 𝐽 ൌ 𝜎൫𝐸ሬ⃗  �⃗� ൈ 𝐵ሬ⃗ ൯. (3) 

Momentum equation: 

 𝜌൫�⃗� ∙ ∇ሬሬ⃗ ൯�⃗� ൌ 𝜌�⃗� − ∇ሬሬ⃗ 𝑝  𝐽 ൈ 𝐵ሬ⃗  𝜇∇ଶ�⃗� − ఓሬ⃗ᇲ . (4) 

Energy equation 

 𝜌𝐶൫�⃗� ∙ ∇ሬሬ⃗ ൯𝑇 ൌ 𝜅∇ଶ𝑇  𝜑  ⃗మఙ  ఘಾೄ ∇ଶ𝐶  𝑄ᇱ൫்ᇲି்ᇲಮ൯ − ∇ሬሬ⃗ ∙ �⃗�. (5) 

Species continuity equation: 

 ൫�⃗� ∙ ∇ሬሬ⃗ ൯𝐶𝛼 ൌ 𝐷ெ∇ଶ𝐶  𝐾ഥ𝑐ሺ𝐶ஶ − 𝐶ሻ. (6) 

Equation of state: 

 𝜌ஶ ൌ 𝜌ൣ1  𝛽ሺ𝑇 − 𝑇ஶሻ  �̅�ሺ𝐶 − 𝐶ஶሻ൧. (7) 

All the physical quantities are defined in the list of symbols. 
We consider the two-dimensional natural convective flow of viscous, steady, incompressible, and radiating fluid 

through a porous vertical plate with uniform suction. The investigation is based on the following basic premises: 
1. The entire fluid properties excluding the density are constant. 
2. The plate is electrically insulated. 
3. No external electric field is applied to the system. 
4. Fluid motion is parallel to the plate. 
We now introduce a Cartesian coordinate system (x’, y’, z’) with x’-axis along the plate in the upward vertical 

direction, y’-axis normal to the plate directed into the fluid region, and z’-axis along the width of the plate and the induced 
magnetic field is negligible. A uniform magnetic field 𝐵ሬ⃗ ° ൌ ሺ0,𝐵°, 0ሻ is applied transversely to the plate, along the y-axis. 
The fluid is subjected to a constant heat flux at the plate. With usual boundary layer conditions and above assumptions, 
we have the boundary layer equations as 
Continuity Equation  
 డ௩ᇲడ௬ᇲ ൌ 0. (8) 

MHD Equation 

 𝑣ᇱ డ௨ᇲడ௬ᇲ ൌ 𝑔𝛽ሺ𝑇ᇱ − 𝑇ᇱஶሻ  𝑔𝛽ሺ𝐶ᇱ − 𝐶ᇱஶሻ  𝑣 డమ௨ᇲడ௬ᇲమ − ఙ°మ௨ᇲఘ − ௩௨ᇲᇲ . (9) 
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Energy Equation  

 𝜌𝐶𝑣ᇱ డ்ᇲడ௬ᇲ = 𝜅 డమ்ᇲడ௬ᇲమ + 𝜇 ቀడ௨ᇲడ௬ᇲቁଶ + 𝜎𝐵°ଶ𝑢ᇱଶ − డᇲೝడ௬ᇲ − 𝑄ᇱ൫்ᇲି்ᇲಮ൯ + ఘಾೄ డమᇲడ௬ᇲమ. (10) 

Species continuity equation 

 𝑣ᇱ డᇲడ௬ᇲ = 𝐷ெ డమᇲడ௬ᇲమ + 𝐾ഥሺ𝐶ஶᇱ − 𝐶ᇱሻ. (11) 

The relevant boundary conditions are: 

 y’=0 :   u’=U,  డ்ᇱడ௬ᇱ = −∗ ,  C’=𝐶′௪ (12) 

 y’→ ∞ :  u’→ 0, T’→ 𝑇′ஶ, C’→ 𝐶′ஶ (13) 

Equation (8) yields 

 v’= a constant= −𝑉ሺ𝑉 > 0ሻ . (14) 

To make the mathematical model normalized, the following non-dimensional parameters are introduced 𝑦 = బ௬ᇱణ , 𝑢 = ௨ᇲ , 𝜃 = ்ᇲି்ᇲಮ∗ೡഉೡబ , ∅ = ᇲିಮᇲᇲೢ ିಮᇲ , 𝐺𝑟 = ௩మఉ∗బయ , 𝐸 = ఘమబ∗ , 𝑃𝑟 = ఓು , 𝐾 = ഥ௩బమ , 𝐺𝑚 = ఉഥ൫ᇲೢ ିಮᇲ ൯బమ , 𝑆𝑐 = ௩ಾ, 𝐾 = ௩ᇲబమ, 𝑀 = ఙబమ௩ఘబమ , 𝑅 = ସ௩ூ∗ఘು∗బమ, 𝑄 = ொᇲ௩ఘುబమ, 𝐷𝑢 = ಾబ൫ᇲೢ ିಮᇲ ൯ೄು௩మ∗  

Radiative heat flux under Rosseland Approximation �⃗� = − 4𝜎∗3𝐾∗  ∇ሬሬ⃗ 𝑇ସ 𝑇ସ = ሺ𝑇 − 𝑇ஶ + 𝑇ஶሻସ = ሾ𝑇ஶ + ሺ𝑇 − 𝑇ஶሻሿସ = 𝑇ஶସ + 4𝑇ஶଷሺ𝑇 − 𝑇ஶሻ = 𝑇ஶସ + 4𝑇ஶଷ𝑇 − 4𝑇ஶସ = 4𝑇ஶଷ𝑇 − 3𝑇ஶସ  

Therefore, ∇ሬሬ⃗ ∙ �⃗� = − 4𝜎∗3𝐾∗ ∇ଶ𝑇ସ = − 4𝜎∗3𝐾∗ 4𝑇ஶଷ∇ଶ𝑇 𝜕𝑞∗𝜕𝑦∗ = − 16𝜎∗𝑇ஶଷ3𝐾∗ ∇ଶ𝑇 

Where 𝜎∗ and 𝐾∗ are respectively the Seltan-Boltzmann constant and the mean absorption coefficient. 
In dimensionless form, the governing equations are as follows: 

 ௗమ௨ௗ௬మ + ௗ௨ௗ௬ − 𝜆ଵ𝑢 = −𝐺𝑟𝜃 − 𝐺𝑚∅. (15) 

 ௗమఏௗ௬మ + 𝜆ଷ ௗఏௗ௬ − 𝜆ସ𝜃 = −ொఒమ 𝑢ଶ − ாఒమ 𝑢ᇱమ − ௨ఒమ ௗమథௗ௬మ. (16) 

 ௗమ∅ௗ௬మ + 𝑆𝑐 ௗ∅ௗ௬ − 𝐾𝑆𝑐∅ = 0. (17) 

Where 𝜆ଵ = 𝑀 + ଵ , 𝜆ଶ = 1 + ସଷோ , 𝜆ଷ = ఒమ  and  𝜆ସ = ொఒమ ; 
with boundary conditions 

 𝑦 = 0 ∶ 𝑢 = 1, ௗఏௗ௬ = −1,∅ = 1, (18) 

 𝑦 → ∞ ∶ 𝑢 → 0,𝜃 → 0,∅ → 0. (19) 
 

3. METHOD OF SOLUTION 
The solution of (17) under its boundary conditions (18) and (19) is 

                                         ∅ሺ𝑦ሻ = 𝑒ିୟభ௬ , where aଵ = ௌାඥௌమାସௌଶ . (20) 
But the system of equations (15) and (16) are non-linear. Assuming the asymptotic form of the solutions to equations 

(15) and (16) are as follows:  

 𝑢 = 𝑢ሺ𝑦ሻ + 𝐸𝑢ଵሺ𝑦ሻ + 𝑂ሺ𝐸ଶሻ, (21) 

 𝜃 = 𝜃ሺ𝑦ሻ + 𝐸𝜃ଵሺ𝑦ሻ + 𝑂ሺ𝐸ଶሻ. (22) 
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Here, E denotes the Eckert number (E<< 1). By substituting equations (21)-(22) into equations (15)-(16) and equating the 
coefficient values of similar terms while neglecting the terms of O(𝐸ଶ), the following equations are derived. 

 ௗమ௨బௗ௬మ + ௗ௨బௗ௬ − 𝜆ଵ𝑢 = −𝐺𝑟𝜃 − 𝐺𝑚∅, (23) 

 ௗమఏబௗ௬మ + 𝜆ଷ ௗఏబௗ௬ − 𝜆ସ𝜃 = −𝐴ௗమ∅బௗ௬మ , (24) 

 ௗమ௨భௗ௬మ + ௗ௨భௗ௬ − 𝜆ଵ𝑢ଵ = −𝐺𝑟𝜃ଵ, (25) 

 ௗమఏభௗ௬మ + 𝜆ଷ ௗఏభௗ௬ − 𝜆ସ𝜃ଵ = −𝐵𝑢ଶ − 𝐶𝑢ᇱమ. (26) 

Subject to the boundary conditions 

 𝑦 = 0 ∶  𝑢 = 1; 𝜃ᇱ = −1; 𝑢ଵ = 0; 𝜃ଵᇱ = 0; (27) 

 𝑦 → ∞ ∶  𝑢 → 0; 𝜃 → 0; 𝑢ଵ → 0; 𝜃ଵ → 0. (28) 

The solutions to the equations (23)-(26) under the conditions (27) and (28) are 

 𝜃 = 𝐾ଵ𝑒ିమ௬ − 𝑆ଵ𝑒ିభ௬                                     (29) 

 𝑢 = 𝐾ଶ𝑒ିయ௬ − 𝑆ଶ𝑒ିమ௬ + 𝑆ଷ𝑒ିభ௬                     (30) 

 𝜃ଵ = 𝐾ଷ𝑒ିళ௬ − 𝑆ସ𝑒ିଶయ௬ − 𝑆ହ𝑒ିଶమ௬ − 𝑆𝑒ିଶభ௬ + 𝑆𝑒ିర௬ + 𝑆଼𝑒ିఱ௬ − 𝑆ଽ𝑒ିల௬, (31) 

 𝑢ଵ = 𝐾ସ𝑒ିఴ௬ − 𝑆ଵ𝑒ିళ௬ + 𝑆ଵ଼𝑒ିଶయ௬ + 𝑆ଵଽ𝑒ିଶమ௬ + 𝑆ଶ𝑒ିଶభ௬ − 𝑆ଶଵ𝑒ିర௬ − 𝑆ଶଶ𝑒ିఱ௬ + 𝑆ଶଷ𝑒ିల௬, (32) 

where 𝑎ଶ = 𝜆ଷ + ඥ𝜆ଷଶ + 4𝜆ସ2  ,𝑎ଷ = 1 + ඥ1 + 4𝜆ଵ2  ,𝑎ସ = 𝑎ଷ + 𝑎ସ , 𝑎ହ = 𝑎ଶ + 𝑎ଵ ,𝑎 = 𝑎ଵ + 𝑎ଷ , 𝐾ଵ = 1−𝑚ଶ ሺ1 + 𝑆ଵ𝑎ଵሻ , 𝑆ଵ = 𝐴𝑎ଵଶ𝑎ଵଶ − 𝜆ଷ𝑎ଵ − 𝜆ସ  ,𝐾ଶ = 1 + 𝑆ଶ − 𝑆ଷ , 
𝑆ଶ = 𝐷𝑎ଶଶ − 𝑎ଶ − 𝜆ଵ  , 𝑆ଷ = 𝐸𝑎ଵଶ − 𝑎ଵ − 𝜆ଵ  , 𝑆ସ = 𝐹4𝑎ଷଶ − 2𝑎ଷ𝜆ଷ − 𝜆ସ , 
𝑆ହ = 𝐺4𝑎ଶଶ − 2𝑎ଶ𝜆ଷ − 𝜆ସ  , 𝑆 = 𝐻4𝑎ଵଶ − 2𝑎ଵ𝜆ଷ − 𝜆ସ  , 𝑆 = 𝐼𝑎ସଶ − 𝑎ସ𝜆ଷ − 𝜆ସ , 
𝑆଼ = 𝐽𝑎ହଶ − 𝑎ହ𝜆ଷ − 𝜆ସ  , 𝑆ଽ = 𝐾𝑎ଶ − 𝑎𝜆ଷ − 𝜆ସ  , 𝑆ଵ = 𝐺𝑟𝐾ଷ , 𝑆ଵଵ = 𝐺𝑟𝑆ସ , 𝑆ଵଶ = 𝐺𝑟𝑆ହ , 𝑆ଵଷ = 𝐺𝑟𝑆 , 𝑆ଵସ = 𝐺𝑟𝑆 , 𝑆ଵହ = 𝐺𝑟𝑆଼ , 𝑆ଵ = 𝐺𝑟𝑆ଽ, 𝑆ଵ = 𝑆ଵ𝑎ଶ − 𝑎 − 𝜆ଵ  , 𝑆ଵ଼ = 𝑆ଵଵ4𝑎ଷଶ − 2𝑎ଷ − 𝜆ଵ  , 𝑆ଵଽ = 𝑆ଵଶ4𝑎ଶଶ − 2𝑎ଶ − 𝜆ଵ , 
𝑆ଶ = 𝑆ଵଷ4𝑎ଵଶ − 2𝑎ଵ − 𝜆ଵ  , 𝑆ଶଵ = 𝑆ଵସ𝑎ସଶ − 𝑎ସ − 𝜆ଵ  , 𝑆ଶଶ = 𝑆ଵହ𝑎ହଶ − 𝑎ହ − 𝜆ଵ , 
𝑆ଶଷ = 𝑆ଵ𝑎ଶ − 𝑎 − 𝜆ଵ  ,𝐾ଷ = 1𝑚ଶ ሺ2𝑎ଷ𝑆ସ + 2𝑎ଶ𝑆ହ + 2𝑎ଵ𝑆 − 𝑎ସ𝑆 − 𝑎ହ𝑆଼ + 𝑎𝑆ଽሻ , 𝐾ସ = 𝑆ଵ − 𝑆ଵ଼ − 𝑆ଵଽ − 𝑆ଶ + 𝑆ଶଵ + 𝑆ଶଶ − 𝑆ଶଷ ,𝐷 = 𝐺𝑟𝐾ଵ ,𝐸 = 𝐺𝑟𝑆ଵ − 𝐺𝑚 , 𝐹 = 𝐵𝐾ଶଶ + 𝐶𝑎ଷଶ𝐾ଶଶ ,𝐺 = 𝐵𝑆ଶଶ + 𝐶𝑎ଶଶ𝑆ଶଶ ,𝐻 = 𝐵𝑆ଷଶ + 𝐶𝑎ଵଶ𝑆ଷଶ , 𝐼 = 2𝐵𝐾ଶ𝑆ଶ + 2𝐶𝐾ଶ𝑆ଶ𝑎ଷ𝑎ଶ , 𝐽 = 2𝐵𝑆ଶ𝑆ଷ + 2𝐶𝑆ଶ𝑆ଷ𝑎ଶ𝑎ଵ ,𝐾 = 2𝐵𝑆ଷ𝐾ଶ + 2𝐶𝑆ଷ𝐾ଶ𝑎ଵ𝑎ଷ . 

 
3.1. Skin friction 

The coefficient of skin friction is a dimensionless quantity obtained from the shear stress at the wall given by 
Newton’s law of viscosity  𝜏 = −𝜇∇ሬሬ⃗ 𝑢ᇱ , 
where 𝜏 is the shear stress. 
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The coefficient of skin friction is given by 𝜏 = −ௗ௨ௗ௬ |𝑦ୀ = −ሾ𝐾ଶ𝑎ଷ + 𝑆ଶ𝑎ଶ − 𝑆ଷ𝑎ଵ + 𝐸ሺ−𝐾ସ𝑎଼ + 𝑆ଵ𝑎 − 2𝑆ଵ଼𝑎ଷ − 2𝑆ଵଽ𝑎ଶ − 2𝑆ଶ𝑎ଵ + 𝑆ଶଵ𝑎ସ + 𝑆ଶଶ𝑎ହ − 𝑆ଶଷ𝑎ሻሿ . (33) 
 

3.2. Plate temperature 
The dimensionless temperature field is given by, 𝜃ሺ𝑦ሻ = 𝜃ሺ𝑦ሻ + 𝐸𝜃ଵሺ𝑦ሻ. 
The non-dimensional plate temperature is given by,  

 𝜃௪ = 𝜃ሺ0ሻ + 𝐸𝜃ଵሺ0ሻ. (34) 
 

3.3. Sherwood number 
Sherwood number represents the ratio of the convective mass transfer to the rate of diffusive mass transport. It is a 
dimensionless quantity obtained from Fick’s law of diffusion: 𝐽 = −𝐷ெ∇ሬሬ⃗ 𝐶ᇱ , 
where J is the diffusion flux. 

The rate of mass transfer in terms of Sherwood number is given by 

 𝑆ℎ = ௗ∅ௗ௬ |𝑦ୀ    = −𝑎ଵ.   (35) 
 

3.4. Nusselt number 
The rate of heat transfer in terms of the Nusselt number quantified by Fourier’s law of conduction is as follows:  �⃗� = −𝜅∇ሬሬ⃗ 𝑇ᇱ , 

where �⃗� is the heat transfer rate. 
Nusselt number is defined as 

 ௗఏௗ௬ |𝑦ୀ  = ሾ−𝐾ଵ𝑎ଶ + 𝑆ଵ𝑎ଵ + 𝐸ሺ−𝐾ଷ𝑎 + 2𝑆ସ𝑎ଷ + 2𝑆ହ𝑎ଶ + 2𝑆𝑎ଵ − 𝑆𝑎ସ − 𝑆଼𝑎ହ + 𝑆ଽ𝑎ሻሿ. (36) 
 

4. RESULTS AND DISCUSSIONS 
The diffusion-thermo effect in MHD convective flow past a vertical plate through a porous media in presence of 

heat sink and thermal radiation have been presented in this work. Computational estimations of velocity, temperature and 
concentration for a variety of relevant non-dimensional flow parameters have been obtained to establish the physical 
relevance of the problem and graphically presented in Figures 1-10. In the Table 1, the numerical calculations that depict 
the effects of the flow parameters on skin friction and rate of heat transfer (at plate temperature) have been tabulated. In 
this section, the effects of the magnetic field, thermal Grashof number, mass Grashof number, permeability parameter, 
Schmidt number, Prandtl number, Dufour number, heat sink and radiation parameter are discussed. The default values for 
the flow parameters as Pr = 0.71, Sc =0.6, R =5, 𝐾 = 5, Du =0.10, Gr =10, Gm =5, M =1.5, K =1, E =0.01, Q =5. 

  
Figure 1. Velocity profile for variations in R 

when Pr = 0.71; Q = 5; Du = 0.1; Sc = 0.6; Kc=1; M = 1.5; 
Gr = 10; Gm = 5; E = 0.01; k = 1 

Figure 2. Velocity profile for variations in M 
When Pr = 0.71; R = 1; Q = 5; Du = 0.1; Sc = 0.6; Kc = 1; 

Gr = 10; Gm = 5; E = 0.01; k = 1 

The effects of radiation parameter R on the fluid velocity indicates by Figure 1. It may be noted to determine the 
relative importance of thermal energy on the fluid flow, the radiation parameter is used. Thermal energy results in a fall 
in thermal energy, which then depicts a loss in the fluid of kinetic energy, as a result of which the fluid velocity decreases. 
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The significance of the application of the magnetic field in a fluid flow display in Figure 2 and from the figure it is 
observed that as the value magnetic field parameter M increases the fluid velocity declines. This results that when a 
magnetic field is applied to an electrically conducting fluid, a resistive type of force is generated known as Lorentz force 
which has the tendency to retard the fluid motion. 
Table 1. Skin friction 𝜏 at the plate for the values of M = 1.5; Pr = 0.71; Q = 5; Du = 0.1; Sc = 0.6; Kc = 1; Gr = 10;  Gm = 5; E = 
0.01; k = 1 

M k R Du 𝝉 
2 1 1 0.1 1.4338 
4 1 1 0.1 1.2055 
6 1 1 0.1 0.0980 

1.5 1 1 0.1 1.9428 
1.5 2 1 0.1 2.5402 
1.5 3 1 0.1 2.7655 
1.5 1 5 0.1 1.2370 
1.5 1 10 0.1 1.1033 
1.5 1 15 0.1 1.0573 
1.5 1 1 0.1 1.9428 
1.5 1 1 0.2 1.0514 
1.5 1 1 0.3 0.1601 

Figure 3 depicts the effects of permeability. Fluid velocity is increased with the increasing values of the permeability 
parameter. Figure 4 and Figure 5 respectively shows the effects of the thermal Grashof number Gr and mass Grashof 
number Gm. The ratio of thermal buoyancy force and viscous hydrodynamic force in the boundary layer is the Thermal 
Grashof number. The thermal buoyancy force dominates over the viscosity of the fluid as Gr increases. Likewise. The 
mass Grashof number is the relative effect of mass buoyancy force and viscous hydrodynamic force and thus the fluid 
motion enhances with the increase of Gm. 

  
Figure 3. Velocity profile for variations in k 

when Pr = 0.71; R = 1; Q = 5; Du = 0.1; Sc = 0.6; Kc = 1; M = 
1.5; Gr = 10; Gm = 5; E = 0.01 

Figure 4. Velocity profile for variations in Gr 
when Pr = 0.71; R = 1; Q = 5; Du = 0.1; Sc = 0.6; Kc = 1; M 

= 1.5; E = 0.01; k =1 

 
Figure 5. Velocity profile for variations in Gm  

when Pr = 0.71; R =1; Q =5; Du = 0.1; Sc= 0.6; Kc =1; M = 1.5; Gr = 10; E = 0.01; k = 1 
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The Figures 6-8 displays the effects of various parameters on temperature. Figure 6 indicates that due to thermal 
radiation the temperature of the fluid diminishes. This result qualitatively meets the expectations as the effect of radiation 
is to decrease the rate of energy transport to the fluid, thereby decreasing the temperature of the fluid. A fall in temperature 
profile occurs with heat absorption which is demonstrated in Figure 7.  Figure 8, depicts the Dufour’s effect on the 
temperature profile. It is obvious that the temperature of the fluid falls with the diffusion-thermo effect. All these figures 
clearly indicates that at the plate, the fluid temperature is maximum.  

In Figure 9 and Figure 10 respectively, the variations of concentration in the flow domain due to Schmidt number 
and permeability parameter are illustrated. Figure 10 displays with the increasing values of Schimdt number diminish the 
fluid concentration. Schimdt number is the ratio of the momentum diffusivity to the mass diffusivity. So, as Sc increases, 
the fluid concentration reduces. Figure 11 depicts that it lowers the concentration of the fluid as the porosity of the medium 
increases. 

  
Figure 6. Temperature profile for variations in R  

when Pr = 0.71; Q = 5; Du = 0.1; Sc = 0.6; Kc = 1; M = 1.5; Gr 
= 10; Gm = 5; E = 0.01; K =1 

Figure 7. Temperature profile for variations in Q  
when Pr = 0.71; R = 5; Du = 0.1; Sc = 0.6; Kc = 1; M = 1.5; 

Gr = 10; Gm = 5; E = 0.01; k = 1 

  
Figure 8.  Temperature profile in variations Du  

when Pr = 0.71; Q = 5; R = 5; Sc = 0.6; Kc= 1; M = 1.5; 
Gr = 10; Gm = 5; E = 0.01; k =1 

Figure 9. Concentration profile for variations in Sc 
when Kc =5 

 
Figure 10. Concentration profile for variations in Kc when Sc = 0.30 
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Table 1 shows that the change of skin friction coefficient for different values of the parameters. It is seen from the 
table that skin friction gets decreased in the increasing values of magnetic parameter, radiation and Dufour number. But 
viscous drag is increased due to the increasing values of permeability parameter. 

 
5. CONCLUSION 

The present investigation leads to the following conclusions: 
 The fluid velocity increases as the Dufour number increases whereas it decreases with thermal radiation and heat sink. 
 The fluid motion decelerates as the strength of the magnetic field increases whereas it enhances with thermal Grashof 

number and mass Grashof number. 
 The temperature of the fluid falls under the influence of Prandtl number, Dufour number, thermal radiation and heat 

absorption. 
 The concentration level of the fluid drops with the Schmidt number and permeability of the porous medium. 
 Skin friction at the plate increases as the Dufour number and heat sink parameter values increases. Viscous drag at 

the plate was reduced for increasing values of the magnetic parameter. 
 Plate temperature of the body’s surface decreased due to the effect of the Dufour number and Prandtl number. 
 

Nomenclature �⃗� fluid velocity (m/s) �̅� solutal expansion coefficient (k𝑚𝑜𝑙ିଵ) 𝐽 current density (A/𝑚ଶ) 𝑇ஶ free stream concentration (k) �⃗� acceleration vector due to gravity (m/𝑠ଶ) 𝐶ஶ free stream concentration (kmol) 𝐵ሬ⃗  magnetic flux density vector (Wb/𝑚ଶ) 𝐵 applied magnetic field strength (T) 𝐽ଶ 𝜎⁄  energy of ohmic dissipation per unit volume (𝐴ଶΩ/𝑚ଷ) 𝜇 viscosity coefficient (kg/m s) 𝑝 fluid pressure (N/𝑚ଶ) 𝐾 porosity parameter 𝑈 velocity of free stream (m/s) 𝑞∗ heat flux (W/𝑚ଶ) 𝐶௪ plate species concentration (kmol/𝑚ଷ) 𝑇 fluid temperature (K) 𝐶ஶ  free stream concentration (kmol/𝑚ଷ) 𝐶 concentration (kmol/𝑚ଷ) 𝐷ெ mass diffusivity (𝑚ଶ/𝑠) 𝜃 nondimensional temperature 𝐾் thermal diffusion ratio, m(kmol). ∅ nondimensional concentration 𝜌ஶ fluid density far away from the plate (kg/𝑚ଷ) 𝑔 acceleration due to gravity 𝜑 energy viscous dissipation per unit volume (J/𝑚ଶS) E Eckert number 𝐶ௌ concentration susceptibility (k𝑚𝑜𝑙ଶ𝑠ଶ/𝑚ଶ) Pr Prandtl number �⃗�  radiation heat flux vector (W/𝑚ଶ) Q heat sink parameter 𝐾ഥ first order chemical reaction rate (𝑠ିଵ) Sc Schmidt number 𝜌 fluid density (kg/𝑚ଷ) Gr thermal Grashof number 𝑣 kinematic viscosity (𝑚ଶ/𝑠) M magnetic parameter 𝜅 thermal conductivity (W/m K) Gm solutal Grashof number 𝜅∗ mean absorption coefficient (𝑚ିଵ) R radiation parameter 𝜎 electrical conductivity (Ωିଵ𝑚ିଵ) Du Dufour number 𝐸ሬ⃗  electrical field intensity vector (N/C) 𝐾 chemical reaction parameter 𝛽 thermal expression coefficient (𝑘ିଵ)   
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ВПЛИВ ВИПРОМІНЮВАННЯ НА МГД ВІЛЬНИЙ КОНВЕКТИВНИЙ ПОТІК ПОВЗ НАПІВНЕСКІНЧЕННУ 

ПОРИСТУ ВЕРТИКАЛЬНУ ПЛАСТИНУ ЧЕРЕЗ ПОРИСТЕ СЕРЕДОВИЩЕ 
Світі Шармаa, Кангкан Чоудхуріa, Харун Аль Рашидb 

aФакультет математики, Університет науки і технологій Мегхалая, Індія 
bДепартамент математики, коледж Біласіпара, Ассам, Індія 

Розглянуто дослідження МГД-тепломасообміну дисипативного вільного конвективного обтікання напівнескінченної пористої 
вертикальної пластини через пористе середовище за наявності теплового випромінювання. Новизна даної роботи полягає в 
дослідженні впливу випромінювання (наближення Росселанда) на транспортні характеристики потоку. Рівняння, що керують 
потоком тепло- та масообміну, розв’язуються за допомогою методу розкладання в асимптотичний ряд для оцінки виразів для 
швидкості, температури, полів концентрації, поверхневого тертя, швидкості тепло- та масообміну. Вплив різних фізичних 
параметрів на потік обговорюється за допомогою графіків і в табличній формі. Встановлено, що збільшення параметра 
випромінювання зменшує швидкість і температуру. Далі видно, що шкірне тертя на пластині зменшувалося зі збільшенням 
значень параметра випромінювання. 
Ключові слова: радіація; МГД; пористе середовище; вільна конвекція 
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This study looks at how radiation and heat move through a two-dimensional, unsteady Darcy-Forchheimer MHD flow that flows across 
a porous, stretched plate that is vertically inclined and has a transverse magnetic field applied to it. We use the MATLAB bvp4c 
approach to numerically translate the controlling boundary layer nonlinear PDEs, which are partial differential equations, into a set of 
nonlinear ODEs, which are ordinary differential equations, using the similarity transformation. We quantitatively assess the velocity 
and temperature profiles using graphs that represent the problem's various characteristics, including unsteadiness, Prandtl number, 
magnetic, Grashoff number, radiation parameter, and Eckert number. Tables illustrate the effects on skin friction (τ) and Nusselt 
number (Nu). The velocity profile decreases as the magnetic and inertial parameters increase, and the temperature profile decreases 
with the increases in the radiation parameters. 
Keywords: Magnetohydrodynamics (MHD); Radiation; Darcy-Forchheimer; Porous medium; Heat transfer; Unsteady 
PACS: 47.55.P-, 44.25.+f, 44.05.+e, 47.11.-j, 44.20.+b, 47.56.+r 

INTRODUCTION 
The study of magnetohydrodynamics (MHD) examines how magnetic fields affect the behavior of electrically 

conducting fluids, such as liquid metal and plasmas. This transdisciplinary area of study examines how fluid motion produces 
electric currents, which in turn produce magnetic fields that interact with the fluid by fusing concepts from electromagnetism 
and fluid dynamics. Applications for MHD may be found in geophysics, engineering, and astrophysics. In astrophysics, it 
explains phenomena like solar flares and star formation. In geophysics, it helps with the understanding of Earth's magnetic 
field and magnetospheric dynamics. MHD is crucial for researching phenomena ranging from space weather to industrial 
processes because of its intricate nonlinear equations regulating fluid motion, electric currents, and magnetic fields. 

Any substance with holes or pores in it that let liquids through is called a porous media. These materials can be 
manufactured, like ceramics and foams made for certain uses, or they can be natural, like soils, rocks, and biological 
tissues. Numerous disciplines, including geology, hydrology, petroleum engineering, environmental science, and 
biomedical engineering, depend heavily on the study of fluid flow through porous media. The link between the fluid 
velocity and the pressure gradient inside the porous medium is described by Darcy's law, which controls the behavior of 
fluids in porous media. Fluid flow characteristics are influenced by variables including porosity (the percentage of empty 
space in the medium), permeability (a measure of how readily fluids may flow through the medium), and tortuosity (the 
increase in route length caused by obstructions). Porous media are useful in many different contexts. They have an impact 
on soil and aquifer contamination transfer as well as groundwater flow in hydrology. Understanding fluid movement 
through reservoir rocks is essential to petroleum engineering in order to maximize the extraction of oil and gas. Porous 
scaffolds are utilized in biomedical engineering to enhance cell development and enable waste and nutrition exchange in 
tissue engineering. Complicated mathematical and numerical simulations are frequently used to model fluid flow in 
porous media in order to forecast characteristics including fluid distribution, transport phenomena, and filtration 
procedures. Comprehending and refining these procedures is crucial in addressing pragmatic issues pertaining to resource 
allocation, environmental restoration, and technological progress. 

Fluid motion in a porous material when viscous and inertial effects are important is described by Darcy-Forchheimer 
flow. In order to account for non-linear flow behavior at higher velocities or through extremely porous materials, it adds 
a term to Darcy's law. The resistance resulting from inertial forces is represented by the Forchheimer term in this model, 
and it becomes dominant as fluid velocities rise or the porosity of the porous medium increases. This phrase usually 
contains coefficients pertaining to the fluid density and viscosity, as well as the permeability and porosity of the medium. 
In order to represent fluid flow in porous tissues or scaffolds, Darcy-Forchheimer equations are used in a variety of 
domains, including groundwater hydrology, petroleum reservoir engineering, filtration processes, and biomedical 
engineering. Comprehending Darcy-Forchheimer flow is essential for precise fluid dynamics prediction and process 
optimization when fluid flow through porous media is important. 
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The flow field resulting from a continuous surface flowing at a constant speed was established by Saikiadis [1]. He 
[2] then examined the flow of fluid across a continuous, flat surface. Crane [3] examined the flow and heat transmission 
across a stretched sheet of an electrically conducting viscous fluid's boundary layer. Boundary-layer equations for flow 
driven exclusively by a stretched surface were introduced and studied by Banks [4]. Numerous scientists study radiation 
and transverse magnetic field effects, realizing the benefits of using MHD to solve a wide range of technical issues and 
natural phenomena. Wang [5] then looked at the flow that an expanded flat surface produced in three dimensions. A 
perfect similarity solution was discovered via the Navier-Stokes equations. The fluid motion arising from the expansion 
of a flat surface was represented in three dimensions by the solution. Viscoelastic fluid flow over a stretched sheet in the 
presence of a transverse magnetic field was investigated by Andersson [6]. Viscoelasticity is shown to affect flow in a 
manner akin to that of an external magnetic field by providing an accurate analytical solution to the governing non-linear 
boundary layer equation. Elbashbeshy [7] investigated how injection and suction affected heat transport across a stretched 
surface with a constant and fluctuating surface heat flux. Furthermore, in the presence of suction, Siri et al. [8] investigated 
heat transfer across a continuous stretched surface. Researchers Andersson et al. [9] looked at how a horizontal sheet 
affected the heat transmission in a liquid film. Researchers Raptis et al. [10], Ghaly [11], Ishak et al. [12], and a few others 
evaluated the effect of heat radiation on MHD flow problems using a stretched sheet. Ariel [13] investigated the effects 
of axisymmetric stretching on boundary layer flows using the Homotopy perturbation method. The behavior of an 
incompressible fluid passing through a stretched surface in an unstable boundary layer with a heat source present was 
studied by Elbashbeshy et al. [14]. The increasing velocity associated with the surface and the time dependency of the 
heat flux lead to the instability of the temperature and flow fields. The mobility of the boundary layer and heat transfer 
across an extended plate with variable thermal conductivity were examined by Ahmad et al. [15]. Heat transmission via 
a stretched plate in combination with unstable MHD laminar flow was also studied by Ishak et al. [16]. Expanding on 
Ishak's work, Jhankal et al. [17] studied the stretched plate in the presence of a porous material. Research on the issue of 
unstable viscous flow on a curved surface was done by Natalia Rosca et al. [18]. In order to account for a transverse 
magnetic field of constant intensity, Choudhary et al. [19] conducted a theoretical study to explain a 2-dimensional 
unsteady flow over a stretched permeable surface of a viscous, incompressible electrically conducting fluid. Alarifi et al. 
[20] looked at the source influence as well as the MHD flow across a vertically extending sheet. When thermal radiation, 
fluctuating heat flow, and porous media are present, the MHD fluid movement generated by a stretched sheet that is not 
constant is examined by Megahed et al. [21]. The effects of a porous media on the flow of MHD heat transfer fluid across 
a stretched cylinder were examined by Reddy et al. [22]. The effect of thermal radiation on convective heat transport in 
Carreau fluid was examined by Shah et al. [23].  

Rasool et al. [24] used the Darcy-Forchheimer relationship to investigate the Casson-type MHD nanofluid flow that 
occurred on a nonlinear stretching surface. Patil et al. [25] did a study on unstable mixed convection over an exponentially 
stretched surface. They looked at the effects of cross diffusion and the Darcy-Forchheimer porous medium. Al-Kouz et 
al. [26] explored MHD Darcy-Forchheimer nanofluid flow and entropy optimization in an atypically shaped container 
filled with MWCNT-Fe3O4/water. They did this by using Galerkin finite element analysis. Mandal et al. [27] studied the 
steady two-dimensional laminar mixed convective flow, heat transfer, and mass transfer for a Newtonian fluid that 
conducts electricity but not very well on an isothermal stretched semi-infinite inclined plate in a Darcy porous medium. 
Recent years have seen a number of researchers [28-30] focusing their attention on the investigation of Darcy-
Forchheimer MHD flow with a variety of flow effects. 

The work by Ishak at al. [16] is generalised in this paper. We have examined the problem of 2D, laminar flow that 
is unstable when radiation and a transverse magnetic field occur across a vertically inclined porous stretching plate in a 
Darcy Forchheimer MHD flow. 
 

MATHEMATICAL FORMULATION 
We investigate the flow of a porous vertically stretched plate inclined at an angle α with the vertical across an 

unstable, laminar, 2D MHD boundary layer flow in the presence of heat radiation. It's a viscous incompressible fluid that 
conducts electricity. The Hall effect and the polarization of charges are neglected. Externally applied transverse magnetic 
field 𝐵 is perpendicular to the x-axis in the positive direction of the y-axis. While the x-axis is parallel to the stretching 
plate, the y-axis is normal to it. The origin is held fixed as the surface is extended along the x-axis with a velocity of U୵ = ୟ୶ଵିୡ୲. The problem is formulated in presence of radiation and Joule’s heating [24] effect which has been incorporated 
in the energy equation (3). The graphical representation of the problem is depicted in Figure 1. 

Under these conditions and Boussinesq’s approximation, the governing continuity, momentum and energy equations 
[16][29] are: 

 డ௨డ௫ + డ௩డ௬ = 0, (1) 

 డ௨డ௧ + 𝑢 డ௨డ௫ + 𝑣 డ௨డ௬ = 𝜈 డమ௨డ௬మ − ఙబమ௨ఘ + 𝑔βሺ𝑇 − 𝑇ஶሻ𝑐𝑜𝑠α − ఔ௨୩ − ᇲ√ 𝑢ଶ, (2) 

 డ்డ௧ + 𝑢 డ்డ௫ + 𝑣 డ்డ௬ = ச డమ்డ௬మ + ఙబమ௨మఘ − ଵఘ డೝడ௬ . (3) 
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by virtue of boundary conditions [16] given by: 

0 : , 0, , andw wy u U v T T= = = =  

 : 0,y u T T∞→ ∞ → → , (4) 𝑞 [12][30] is expressed as follows 

 𝑞 = −ସభଷభ ப்రப௬ , (5) 

where α indicates Stefan-Boltzmann constant, 𝑘ଵ represents Rosseland mean absorption coefficient. 

 

Figure 1. Graphical representation of the problem 

Assuming that the difference in internal flow temperature is appropriately small, 𝑇ସ may be represented by the 
Taylor series around 𝑇ஶ, omitting the components of higher order. 

 4 3 44 3T T T T∞ ∞= − . (6) 

We consider the extending velocity ( , )wU x t  and surface temperature ( , )wT x t  are as follows: 

 ,
1 1w w

ax bxU T T
ct ct∞= = +

− −
. (7) 

Continuity equation (1) is fulfilled, by using a stream function ψ  such that u
y
ψ∂

=
∂

 and v
x
ψ∂= −

∂
. 

The given nonlinear PDEs (2)- (3) are transformed to a set of nonlinear ODEs using following similarity variables 
and nondimensional quantities given as follows:   

𝜂 = ቀ ఔሺଵି௧ሻቁభమ 𝑦, 𝜓 = ቀ ఔ௫మሺଵି௧ሻቁభమ 𝑓ሺ𝜂ሻ, 𝜃ሺ𝜂ሻ = ்ି ಮ்்ೢ ି ಮ் , 𝐴 = . 

𝑀 = ఙబమሺଵି௧ሻఘ , 𝑆 = ఔሺଵି௧ሻ , 𝐸𝑐 = ౭మେ౦ሺ౭ିಮሻ, 𝐹 = ᇲ√, 

𝑁 = భସఙభ்యಮ , 𝜆 = ସାଷேଷே , 𝑃𝑟 = ఓ ,  𝐺𝑟 = ஒሺଵି௧ሻమሺ்ೢ ି ಮ்ሻమ௫ . 

The transformed nonlinear ODEs are: 𝑓ᇱᇱᇱ + 𝑓𝑓ᇱᇱ − ሺ𝐹 + 1ሻ𝑓ᇱమ − (𝑀 + 𝑆)𝑓ᇱ − 𝐴 ቀ𝑓ᇱ + ଵଶ 𝜂𝑓ᇱᇱቁ + 𝐺𝑟θcosα = 0, (8) 

 ఒ 𝜃ᇱᇱ + 𝑀𝐸𝑐𝑓ᇱమ + 𝑓𝜃ᇱ − 𝜃𝑓ᇱ − 𝐴(𝜃 + ଵଶ 𝜂𝜃ᇱ) = 0. (9) 

Also, the transformed initial and boundary conditions are: 𝑓(0) = 0, 𝑓ᇱ(0) = 1, 𝜃(0) = 1 and 

 ( ) 0, ( ) 0f θ′ ∞ → ∞ → . (10) 
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METHOD OF SOLUTION 
Equations (1) to (3) with boundary conditions (4) are converted into non-dimensional equations (8) and (9) with 

boundary conditions (10) by applying the dimensionless quantities. MATLAB's bvp4c technique is then used to solve 
those equations. To apply finite difference-based solver bvp4c the equations (8), (9) and (10) are transformed respectively 
as follows: 

 1 1 2 2 3 4 4 5, , , ,f y f y y f y y y y yθ θ′ ′ ′′ ′ ′ ′= = = = = = = = , (11) 

 𝑦ଷᇱ = −𝑦ଵ𝑦ଷ + (𝐹 + 1)𝑦ଶଶ + 𝑀𝑦ଶ + 𝑆𝑦ଶ + 𝐴 ቀ𝑦ଶ + ଵଶ 𝜂𝑦ଷቁ − 𝐺𝑟𝑦ସ𝑐𝑜𝑠α, (12) 

 𝑦ହᇱ = ఒ [−𝑀𝐸𝑐𝑦ଶଶ − 𝑦ଵ𝑦ହ + 𝑦ସ𝑦ଶ + 𝐴(𝑦ସ + ଵଶ 𝜂𝑦ହ)]. (13) 

Also, the initial and boundary conditions (10) are transformed as follows: 

 1 2 4(0) 0, (0) 1, (0) 1y y y= = = , (14) 

 2 4( ) 0, ( ) 0y y∞ = ∞ = . (15) 

The above transformed results are used by the MATLAB solver bvp4c to perform the numerical computation. 
 

RESULTS AND DISCUSSION 
The aforementioned factors are taken into account when solving the problem numerically, and the results are 

displayed in graphs in Figures 2 to 13 for various parameters, such as the unsteadiness parameter (A), radiation parameter 
(N), Grashoff number (Gr) owing to heat transfer, angle of inclination (α), Eckert number (Ec), Hartmann number (M), 
Prandtl number (Pr), inertial parameter (F) and Porosity parameter (Sp). Table 1 depicts the effects of the various 
parameters on Skin friction and Nusselt number. 

Figures 2, 3, 4, 5, 6 and 7 show the variation in the velocity profile for different values of A, M, SP, F, Gr and α, 
respectively, while the other parameters remain unchanged. As can be seen, the velocity profile constantly rises as Gr 
increases and decreases as A, M, SP, F and α increases. 

  
Figure 2. Velocity profile vs A Figure 3. Velocity profile vs M 

  
Figure 4. Velocity profile vs SP Figure 5. Velocity profile vs F 

From Fig. 2 it can be noticed that the velocity profile decreases with the rise in unsteadiness parameter because the 
parameter reflects the temporal changes in the flow. High unsteadiness implies rapid fluctuations in the flow's velocity 
over time, which tends to reduce the average velocity. These fluctuations cause increased energy dissipation and mixing, 
leading to a reduction in the momentum of the flow. This results in a flattened velocity profile, with lower peak velocities 
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and a more uniform distribution across the flow's cross-section. Fig. 3 depicts that when the magnetic parameter increases, 
the velocity profile in a conductive fluid decreases due to the Lorentz force. This force opposes the fluid motion and 
generates a magnetic drag, which resists the fluid's flow. As the magnetic parameter rises, the Lorentz force becomes 
stronger, enhancing the drag effect. This suppresses the fluid's momentum and slows down the flow, leading to a reduction 
in the overall velocity profile. Additionally, the interaction between the magnetic field and the electric currents within the 
fluid can increase the viscous dissipation, further decreasing the velocity. Fig. 4 shows that the velocity profile decreases 
with a rise in the porosity parameter because increased porosity enhances the resistance to fluid flow through a porous 
medium. Higher porosity reduces the effective area available for fluid to pass, increasing frictional resistance and drag 
forces within the medium. This results in greater energy dissipation and slower fluid movement. Consequently, as the 
porosity parameter rises, the ability of the fluid to maintain its momentum diminishes, leading to a reduction in the overall 
velocity profile through the porous structure. The increased resistance also disrupts the fluid’s streamline, causing a more 
pronounced decline in velocity. Fig. 5 depicts that the velocity profile decreases with a rise in the inertial parameter 
because this parameter represents the ratio of inertial forces to viscous forces in fluid flow. As the inertial parameter 
increases, the influence of inertial forces becomes more significant relative to viscous forces. This leads to greater 
momentum diffusion and turbulence, which disrupts the orderly flow and reduces the fluid's velocity. Higher inertial 
forces also cause more resistance against the fluid's motion, contributing to a flattening and lowering of the velocity 
profile. The flow's instability and increased energy dissipation further contribute to the decreased velocity as the inertial 
parameter rises. Fig. 6 shows that the velocity profile increases with a rise in the Grashof number due to heat transfer 
because the Grashof number quantifies the buoyancy forces relative to viscous forces in a fluid. Higher Grashof numbers 
signify stronger buoyancy forces resulting from thermal gradients. This increase in buoyancy force enhances natural 
convection, driving the fluid more vigorously. The intensified buoyancy-driven flow contributes to higher velocities as 
warmer, less dense fluid rises, and cooler, denser fluid sinks. This promotes increased movement and momentum in the 
fluid, steepening the velocity profile and resulting in faster overall flow, especially in regions where buoyancy forces 
dominate over viscous resistance. Fig. 7 depicts that with the rise in α the fluid’s velocity decreases. The velocity profile 
decreases with a rise in the angle of inclination because the gravitational component along the inclined surface increases, 
which opposes the fluid flow. As the angle of inclination increases, gravity acts more strongly against the direction of the 
flow, creating additional resistance and reducing the fluid's momentum. This leads to a decrease in velocity, as the fluid 
must work harder against the gravitational pull. Moreover, the increased gravitational component enhances the vertical 
stratification of the fluid, leading to more pronounced variations in the velocity profile and further flattening or lowering 
the average velocity across the inclined plane. 

  
Figure 6. Velocity profile vs Gr Figure 7. Velocity profile vs α 

Figures 8, 9, 10, 11, 12 and 13 shows the variation in the temperature profile for different values of A, M, Pr, Ec, N 
and Gr, respectively, while the other parameters remain unchanged. As it can be seen that the temperature profile rises as 
M and Ec increases and decreases as A, Pr, N and Gr increases. Fig. 8 depicts that the temperature profile decreases with 
the unsteadiness parameter because this parameter reflects temporal variations in the heat transfer within the fluid. As 
unsteadiness increases, the temperature field fluctuates more rapidly, leading to enhanced mixing and diffusion of thermal 
energy. These fluctuations disrupt the temperature gradients, causing the heat to spread more uniformly throughout the 
fluid. This results in a more uniform and lower average temperature profile, as the thermal energy is distributed more 
evenly over time. Additionally, rapid changes in the flow's velocity and temperature can increase convective heat transfer, 
further contributing to the overall decrease in the temperature profile. Fig. 9 shows that the temperature profile increases 
with the magnetic parameter because the Lorentz force induced by the magnetic field slows down the fluid's motion, 
reducing convective heat transfer. This deceleration diminishes the ability of the fluid to carry heat away from the heated 
region efficiently. As a result, heat accumulates near the heat source, leading to higher temperatures in that area. 
Additionally, the magnetic field can induce Joule heating, where electrical currents generated by the magnetic field 
increase the internal energy of the fluid. This combined effect of reduced convective cooling and additional heating results 
in a rise in the temperature profile as the magnetic parameter increases. The temperature curve and Pr's influence are 
displayed in Fig. 10. As Pr increases, temperature is seen to drop, indicating a relationship between velocity and thermal 
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boundary layer thickness. It is believed that large values of Pr suggest a thermal diffusivity preponderance and, 
consequently, a smaller thermal boundary layer than a velocity boundary layer. As the surface distance grows, the 
temperature in the zone of unrestricted stream flow actually drops and asymptotically approaches zero. Fig. 11 shows the 
effect of Ec on temperature. When the fluid's temperature rises, the fluid's enthalpy decreases and its kinetic energy 
increases, as indicated by the rising Eckert number. 

  
Figure 8. Temperature profile vs A Figure 9. Temperature profile vs M 

  
Figure 10. Temperature profile vs Pr Figure 11. Temperature profile vs Ec 

Fig. 12 shows how radiation affects temperature profiles. It may be observed that as N grows, the fluid's temperature 
drops. This is due to the fact that rising N denotes rising radiation in the thermal boundary surface where temperature 
description declines. Fig. 13 shows the alteration of the temperature profile with respect to the change in Gr. It is clear 
that the fluid's temperature decreases as Gr values rise. As the Grashof number (Gr) increases in natural convection, 
buoyancy forces become stronger relative to viscous forces. This results in more vigorous fluid motion and enhanced 
convective heat transfer. The increased fluid movement facilitates more efficient mixing of temperature within the fluid. 
Consequently, the temperature gradient decreases because heat is distributed more evenly throughout the fluid volume. 
Near the heated surface, temperatures may still be higher due to direct heat input, but as Gr increases, the overall 
temperature profile becomes smoother with less steep variations. This phenomenon reflects the improved thermal 
homogenization and heat transfer efficiency characteristic of higher Grashof numbers in natural convection systems. 

  
Figure 12. Temperature profile vs N Figure 13. Temperature profile vs Gr 

The effects of various parameters on the Skin friction and Nusselt number are shown in Table 1. The magnitude of 
the Skin friction escalates with the rise in A, M, Sp ,F, 𝛼 , Pr and N, while it decreases with the rise in Gr and Ec. The 
magnitude of rate of heat transfer escalates with the rise in A, Gr, Pr and N, while it decreases with the rise in M, Sp F, 𝛼 
and Ec. 
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Table 1. Variation of Skin Friction and Nusselt number for 𝐴, M, S୮, F, Gr,α, Pr, Ec, N. 𝑨 𝑴 𝑺𝒑 𝑭 𝑮𝒓 𝛂 𝑷𝒓 𝑬𝒄 𝑵 𝒇ᇱᇱ(𝟎) 𝛉ᇱ(𝟎) 

1 0.5 0.4 0.1 1 0 1.0 0.05 1 -1.2580 -0.8519 
2         -1.5311 -1.0189 
3         -1.7672 -1.1680 
1 0.5        -1.2580 -0.8519 
 1.0        -1.4194 -0.8473 
 1.5        -1.5683 -0.8255 
 0.5 0.4       -1.2580 -0.8519 
  0.6       -1.3244 -0.8473 
  0.8       -1.3884 -0.8430 
  0.4 0.1      -1.2580 -0.8519 
   0.5      -1.3507 -0.8475 
   1.0      -1.4595 -0.8425 
   0.1 1     -1.2580 -0.8519 
    2     -0.8886 -0.8786 
    3     -0.5343 -0.9079 
    1 π/6    -1.3089 -0.8480 
     π/3    -1.4498 -0.8369 
     π/2    -1.6474 -0.8204 
     0 0.7   -1.2401 -0.7199 
      1.2   -1.2685 -0.9327 
      1.5   -1.2823 -1.0452 
      1.0 0.05  -1.2580 -0.8519 
       1.0  -1.2514 -0.7862 
       1.5  -1.2479 -0.7513 
       0.05 1 -1.2580 -0.8519 
        2 -1.2779 -1.0087 
        3 -1.2872 -1.0862 

 
CONCLUSIONS 

The findings are translated into the following conclusions, which are given below: 
• The velocity profile decreases with the rise in A. M. SP, F and α. 
• The velocity profile increases as Gr increases. 
• The temperature profile falls with rise in A, Pr , N and Gr. 
• The temperature profile escalates with the rise in M and Ec.. 
• The magnitude of the Skin friction escalates with the rise in A, M, Sp ,F, 𝛼 , Pr and N, while it decreases with the 

rise in Gr and Ec. 
• The magnitude of rate of heat transfer escalates with the rise in A, Gr, Pr and N, while it decreases with the rise in 

M, Sp F, α and Ec. 
 

Nomenclature 

a,b,c Constant 𝑣 Fluid’s velocity along y-direction, (m/s) 𝐴 Unsteady parameter (c/a), (x,y) Cartesian coordinates 𝐵 Constant Magnetic field, (N m/A) 𝐺𝑟 Grashoff number due to heat transfer 𝐶 Specific heat at constant pressure, (  ) Greek Symbols 𝑓 Dimensionless stream function, ρ density of fluid, ( య ) 
Ec Eckert number, μ dynamic viscosity, (Pa s) 𝑘 Permeability of porous medium, (m2) σ Electrical conductivity, ( ଵஐ ) 𝑘ᇱ Forchheimer resistance factor, η Dimensionless similarity variable, 𝑞 radiative heat flux, (𝑊/𝑚ଶ) ν Kinematic viscosity, (𝑚ଶ/𝑠) 𝑀 Magnetic parameter (Hartmann number), κ Thermal conductivity, ( ௐ ) 𝑃𝑟 Prandtl number, ψ Stream function, 𝑆 Porosity parameter, τ Skin friction, 𝑁 Radiation parameter, θ Dimensionless temperature 
Nu Nusselt number, Superscript 
F Inertial parameter, ′ With regard to η, differentiation 
t Dimensionless time, (K) Subscript 𝑇 Fluid’s temperature, (K) 𝑤 values at the plate 𝑢 Fluid’s velocity along x-direction, (m/s) ∞ conditions at the free stream 
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РАДІАЦІЙНИЙ ЕФЕКТ НА НЕСТАЦІОНАРНИЙ МГД-ПОТІК ДАРСІ ФОРХГЕЙМЕРА ПО ВЕРТИКАЛЬНОМУ ПОХИЛОМУ 

ЛИСТУ, ЩО РОЗТЯГУЄТЬСЯ У ПРИСУТНОСТІ ПОРИСТОГО СЕРЕДОВИЩА 
Анкур Кумар Сармаa,e, Сунмоні Мудоіa, Палаш Натb, Панкадж Калітаc, Гаураб Бардханd 

aФакультет математики, університет Коттона, Пан Базар, Гувахаті, Індія 
bКафедра математики, коледж Барбаг, Калаг-781351, Індія 
cКафедра математики, коледж ADP, Нагаон-782002, Індія 

dФакультет математики, коледж Тягбір Хем Баруа, Джамугуріхат, Сонітпур, 784189, Індія 
eФакультет математики, Коледж Баосі Баніканта Какаті, Нагаон, Барпета-781311, Індія 

У цьому дослідженні розглядається, як випромінювання та тепло переміщуються через двовимірний, нестаціонарний МГД-
потік Дарсі-Форхгеймера, який протікає через пористу розтягнуту вертикально нахилену пластину, до якої прикладено 
поперечне магнітне поле. Ми використовуємо підхід MATLAB bvp4c для чисельного перетворення нелінійних PDE 
керуючого граничного шару, які є рівняннями в часткових похідних, у набір нелінійних ODE, які є звичайними 
диференціальними рівняннями, використовуючи перетворення подібності. Ми кількісно оцінюємо профілі швидкості та 
температури за допомогою графіків, які представляють різні характеристики проблеми, включаючи нестаціонарність, число 
Прандтля, магнітне поле, число Грашоффа, параметр випромінювання та число Екерта. Таблиці ілюструють вплив на тертя 
шкіри (τ) і число Нуссельта (Nu). Профіль швидкості зменшується зі збільшенням магнітних та інерційних параметрів, а 
профіль температури зменшується зі збільшенням параметрів випромінювання. 
Ключові слова: магнітогідродинаміка (МГД); випромінювання; Дарсі-Форххаймер; пористе середовище; теплообмін; 
нестабільність 
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This study investigates the effects of first-order chemical reaction, thermophoresis, electrification, and Brownian motion on 𝐶𝑢 
nanoparticles within a free convective nanofluid flow past a vertical plane surface, focusing on skin friction, heat and mass transfer. 
The unique combination of chemical reaction and electrification effects sets this study apart from previous research on nanofluid flow. 
By utilizing similarity functions, the governing PDEs of the flow are converted into a system of locally similar equations. These 
equations are then solved using MATLAB's bvp4c function, incorporating dimensionless boundary conditions. The findings are 
verified through a comparison with previous studies. Graphical illustrations show the numerical explorations for concentration, 
velocity, and temperature profiles in relation to the electrification parameter, thermophoresis parameter, chemical reaction parameter, 
and Brownian motion parameter. The computational results for heat transfer, mass transfer and dimensionless skin friction coefficients 
are presented in tabular form. The primary finding indicates that the electrification parameter accelerates heat transfer, while the 
electrification parameter, Brownian motion parameter, and chemical reaction parameter enhance the rate of mass transfer from the 
plane surface to the nanofluid. This indicates encouraging potential for cooling plane surfaces in manufacturing industries. 
Keywords: Chemical Reaction; Thermophoresis; Electrification; Brownian Motion; Nanofluid 
PACS: 47.70.Fw, 44.20.+b, 44.25.+f, 47.10.ad, 47.15.Cb 

Nomenclature  𝑐 specific heat capacity  𝐶 local concentration   𝐶 Local skin friction coefficient  𝐷 Brownian diffusion coefficient  𝐷் Thermophoresis diffusion coefficient  (𝐸௫,𝐸௬) electric intensity components  𝑓 dimensionless stream function 𝐹 time constant for momentum transfer between the fluid and 
nanoparticles 𝑔 gravitational acceleration 𝑘 thermal conductivity  𝑘ଵ rate of chemical reaction 𝑚 nanoparticle mass 𝑀 electrification parameter 𝑁𝑏 Brownian motion parameter 𝑁𝑐 concentration ratio 𝑁ி   momentum transfer number 𝑁𝑟   buoyancy ratio  𝑁ோ   electric Reynolds number 𝑁𝑡  thermophoresis parameter  𝑁𝑢௫ local Nusselt number 𝑃𝑟 Prandtl number 𝑞 charge of the nanoparticle 

𝑅𝑎௫ local Rayleigh number 𝑠 dimensionless concentration 𝑆𝑐 Schmidt number 𝑆ℎ௫ local Sherwood number 𝑇 local temperature (𝑢, 𝑣) velocity components  𝛼 thermal diffusivity 𝛽 volumetric thermal expansion coefficient 𝜀 permittivity 𝜂 similarity variable 𝛾 chemical reaction parameter 𝜇 dynamic viscosity 𝜃 temperature in dimensionless form 𝜌 density 𝜐 kinematic viscosity 𝜓 stream function 
Subscripts 𝑠 nanoparticle phase 𝑛𝑓 nanofluid phase 𝑓 base fluid phase 𝑤 condition at the plane surface ∞ free stream condition 

1. INTRODUCTION
Recent progress in nanoscience arises from exploring the physical properties of matter on the nanoscale. One notable 

area of industrial application is nanofluids, which have become prominent in the field of heat transfer. These nanofluids 
have garnered significant attention because of their exceptional thermal transport properties and their fascinating uses 
across several industries. The motivation for researching nanofluids stems from the improved heat transfer in applications 
such as nuclear engineering, computer processor microchips, air conditioning and refrigeration systems, space cooling, 
micromanufacturing, and fuel cells. The classical theory of single-phase fluids can be adapted for nanofluids by treating 
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their thermophysical properties as dependent on both the base fluids and their individual components. It is crucial to 
recognize that factors such as thermal conductivity, volume fraction, particle size, and temperature all play a role in 
enhancing the thermal conductivity of nanofluids. Buongiorno [1] formulated a dual-phase framework aimed at 
investigating thermal energy transfer utilizing nanofluids. Subsequently, Tiwari and Das [2] introduced a more 
streamlined approach where the thermophysical characteristics varied with the nanoparticle volume fraction. These 
models have proven highly effective in addressing diverse flow challenges related to nanofluids. For example, Kuznetsov 
and Nield [3] were the first to use the Buongiorno model to study the effects of thermophoresis and Brownian motion on 
free convective nanofluid flow near a vertical plate. Since then, numerous researchers (Khan and Aziz [4], Ibrahim and 
Makinde [5], Khan et al. [6], Ganga et al. [7], Mohamed et al. [8], Goyal and Bhargava [9], Rana et al. [10], and Dey et 
al. [11]) have examined the impacts of Brownian motion and thermophoresis on nanofluid flow past a plate surface. Some 
researchers (Dey et al. [11], Padmaja and Kumar [12], Padmaja and Kumar [13], Dey et al. [14]) have recently reported 
on the influences of chemical reaction on nanofluids. 

The effect of electrification on nanofluid flow has recently garnered significant interest. The pioneering examination 
of the improvement in heat and mass transfer due to nanoparticle electrification was conducted by Pati et al. [15] in a 
study of nanofluid flow over a stretching cylinder. Further investigations into the impact of nanoparticle electrification 
on nanofluid flow have been carried out by researchers such as Panda et al. [16], Pati et al. [17, 18] and Pattanaik et al. 
[19]. In a more recent study, Pati et al. [20] explored the effects of electrified nanoparticles and the electric Reynolds 
number on nanofluid flow past a vertical flat surface, concluding that the electrification mechanism significantly enhances 
both heat and mass transfer. 

Previous studies have rarely explored the impact of nanoparticle electrification on nanofluid flow. Additionally, 
there are no existing studies that consider both electrification and chemical reaction effects on nanofluid flow. This study 
aims to investigate the combined effects of electrification and chemical reaction on the free convective flow of 𝐶𝑢 -water 
nanofluid past a vertical plane surface. It incorporates Brownian motion and thermophoresis, using Buongiorno’s model. 
 

2. MATHEMATICAL FORMULATION 
A laminar incompressible steady free convective flow is analyzed, with the vertical plane surface aligned along the 

x-axis. The plane surface consistently maintains fixed values for both concentration (𝐶௪)  and temperature (𝑇௪). A 
schematic representation is shown in Fig. 1. 

 
Figure 1. Schematic representation 

The governing equations (Pati et al. [21]) incorporating first-order chemical reaction, thermophoresis, electrification, 
and Brownian motion, and utilizing the Oberbeck-Boussinesq approach, can be formulated as follows: 

 డ௨డ௫ + డ௩డ௬ = 0, (1) 

 𝑢 డ௨డ௫ + 𝑣 డ௨డ௬ = ఓఘ ቀడమ௨డ௬మቁ + ఘೞఘ  𝐸௫(𝐶 − 𝐶ஶ) + ఘಮఘ (1 − 𝐶ஶ)𝛽ಮ𝑔(𝑇 − 𝑇ஶ) − ଵఘ (𝐶 − 𝐶ஶ)൫𝜌௦ − 𝜌ಮ൯𝑔, (2) 

 𝑢 డ்డ௫ + 𝑣 డ்డ௬ = (ఘ)ೞ(ఘ) 𝐷 డడ௬ డ்డ௬ + (ఘ)ೞ(ఘ)  ி ቀ𝐸௫ డ்డ௫ + 𝐸௬ డ்డ௬ቁ + (ఘ) ቀడమ்డ௬మቁ + (ఘ)ೞ(ఘ) ಮ் ቀడ்డ௬ቁଶ, (3) 

 𝑢 డడ௫ + 𝑣 డడ௬ = ಮ் డమ்డ௬మ + 𝐷 డమడ௬మ + ቀቁ ଵி ቂడ(ாೣ)డ௫ + డ൫ா൯డ௬ ቃ − 𝑘ଵ(𝐶 − 𝐶ஶ), (4) 

along with the boundary conditions:  

 𝑦 =  0,   𝑣 = 0,𝑢 = 0, 𝑇 = 𝑇௪ ,   𝐶 = 𝐶௪𝑦 → ∞,𝑣 = 0,𝑢 = 0, 𝑇 → 𝑇ஶ,𝐶 → 𝐶ஶ ൠ. (5) 

The electric field equation is expressed as follows: 

 డாడ௬ = ఘೞఌబ . (6) 
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The equations are converted into a non-dimensional format by defining the following dimensionless functions: 

 𝜓 = (𝑅𝑎௫)భర𝛼𝑓(𝜂), 𝜂 = ௬௫ (𝑅𝑎௫)భర,𝜃(𝜂) = ்ି ಮ்்ೢ ି ಮ் , 𝑠(𝜂) = ିಮೢିಮ, (7) 

where 𝑅𝑎௫ = (ଵିಮ)௫య(்ೢ ି ಮ்)ఉఔఈ . 

The stream function, denoted by 𝜓, can be defined as follows: 

 𝑣 = −డటడ௫  and 
డటడ௬ = 𝑢. (8) 

By substituting equations (6), (7), and (8) into equations (1) to (4), the non-dimensional equations are obtained as follows: 

 𝑓ᇱᇱᇱ = − ఝభ  ସ ሾ3𝑓𝑓ᇱᇱ − 2(𝑓ᇱ)ଶሿ − ఝభఝమெ  ே ௌேಷ 𝑠 − ଵఝఱ (𝜃 − 𝑁𝑟 𝑠 ), (9) 

 𝜃ᇱᇱ = − ଵఝర 𝑃𝑟 𝑁𝑡(𝜃ᇱ)ଶ − ଵఝర 𝑆𝑐 𝑁𝑏 ቂ ேಷேೃ − ଵସ𝑀ቃ (𝑠 + 𝑁𝑐)𝜂𝜃ᇱ − ଵఝర 𝑃𝑟 𝑁𝑏𝑠ᇱ𝜃ᇱ − ଷସ ଵఝయఝర 𝑓𝜃ᇱ, (10) 

  𝑠ᇱᇱ = − ே௧ே 𝜃ᇱᇱ + ଵସ ெ ௌ 𝜂𝑠ᇱ − ேಷௌேೃ (𝜂𝑠ᇱ + 𝑠 + 𝑁𝑐) + ௌ 𝛾𝑠 − ଷସ ௌ 𝑓𝑠ᇱ , (11) 

where prime (′) denotes differentiation with respect to 𝜂. 
The equations (5) are transformed to 

 𝐴𝑡 𝜂 = 0, 𝑓 = 0, 𝑓ᇱ = 0,𝜃 = 1, 𝑠 = 1𝐴𝑠 𝜂 → ∞, 𝑓ᇱ → 0,𝜃 → 0, 𝑠 → 0 ൠ. (12) 

The nondimensional parameters are represented as 

𝛾 = భ௫ഀ(ೃೌೣ)భమೣ
, 𝑀 = ቀቁ ଵ

ி൮ഀ(ೃೌೣ)భమೣ ൲𝐸௫, 𝑁𝑏 = (ఘ)ೞಳ(ೢିಮ)(ఘ)ఔ , 𝑁𝑡 = (ఘ)ೞ(்ೢ ି ಮ்)(ఘ)ఔ ಮ் , 𝑁ி = ൮ഀ(ೃೌೣ)భమೣ ൲
ி௫ , 

𝑁𝑟 = ൫ఘೞିఘ൯(ೢିಮ)(ଵିಮ)ఘఉ(்ೢ ି ಮ்), 𝑆𝑐 = ఔಳ, 𝑁𝑐 = ಮ(ೢିಮ),  𝑃𝑟 =  ఔఈ, ଵேೃ = ቀቁଶ ఘೞఢబ ௫మ
൮ഀ(ೃೌೣ)భమೣ ൲మ. 

The thermophysical constants 𝜙ଵ, 𝜙ଶ, 𝜙ଷ, 𝜙ସ and 𝜙ହ are expressed according to Pati et al. [20]. This study employs 
a nanofluid with a 1% concentration of 𝐶𝑢 nanoparticles. The thermophysical properties of both pure water and the 
nanoparticles are assessed following the data provided by Oztop and Abu-Nada [22]. 𝐶, 𝑁𝑢௫ and 𝑆ℎ௫ are presented for use in skin friction, heat and mass transfer applications as follows: 𝐶 = ௫మఛೢఓఈ(ோೣ)యర , where 𝜏௪ = 𝜇 ቀడ௨డ௬ቁ௬ୀ, 

𝑁𝑢௫ = ௫ೢ(்ೢ ି ಮ்) , where 𝑞௪ = −𝑘 ቀడ்డ௬ቁ௬ୀ, 𝑆ℎ௫ = ௫(ೢିಮ)ಳ , where 𝑞 = −𝐷 ቀడడ௬ቁ௬ୀ. 

The reduced skin friction coefficient ൫𝑓ᇱᇱ(0)൯, heat transfer coefficient ൫−𝜃ᇱ(0)൯ and mass transfer coefficient ൫−𝑠ᇱ(0)൯ in non-dimensional form are expressed as follows: 𝐶 = 𝑓ᇱᇱ(0), −𝜃ᇱ(0) = 𝑁𝑢௫/𝑅𝑎௫ଵ ସ⁄  , −𝑠ᇱ(0) = 𝑆ℎ௫/𝑅𝑎௫ଵ ସ⁄ . 
 

3. NUMERICAL SOLUTION AND COMPARISON OF RESULTS 
The MATLAB bvp4c function is used to derive numerical solutions of the equations (9) to (11) along with boundary 

condition (12), which are recognized as local similarity equations since the parameters 𝛾, 𝑀, 𝑁ோ and 𝑁ி depend on 𝑥. 
Numerical results are considered valid as long as they produce a locally similar solution, as highlighted by Farooq et al. 
[23]. In this context, 𝛾, 𝑀, 𝑁ோ and 𝑁ி are treated as constants, as per [23]. 
The computed numerical values of the non-dimensional heat transfer coefficient for a regular fluid without considering 
chemical reaction, thermophoresis, electrification, or Brownian motion have been compared and validated against the 
results obtained by Bejan [24]. Table 1 demonstrates a significant agreement between both results. 
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Table 1. Comparison of –𝜃ᇱ(0). 𝑃𝑟 −𝜃ᇱ(0) [Bejan] –𝜃ᇱ(0) [present] 
1.0 0.40100 0.40099 
10.0 0.46500 0.46267 

 
4. ANALYSIS OF RESULTS 

The influence of key governing parameters, including 𝛾, 𝑁𝑏, 𝑀 and 𝑁𝑡 on the dimensionless profiles of velocity 
(𝑓ᇱ(𝜂)), temperature (𝜃(𝜂)), and nanoparticle concentration (𝑠(𝜂)) with respect to 𝜂 were examined numerically. The 
findings are illustrated through graphs. Additionally, the impact of these parameters on 𝑓ᇱᇱ(0), −𝜃ᇱ(0) and −𝑠ᇱ(0)  is 
displayed in a table. 
 

4.1 Velocity Profiles 𝑓ᇱ(𝜂) profiles are shown in Figures 2 to 5. These figures explore the effect of 𝛾, 𝑁𝑏, 𝑀 and 𝑁𝑡 on 𝑓ᇱ(𝜂) against 𝜂. 
Figure 2 shows that dimensionless velocity decreases as 𝛾 increases. Figure 3 illustrates that dimensionless velocity 
increases with 𝑁𝑏 due to the rise in the number of fluid particles colliding with nanoparticles. In Figure 4, 𝑓ᇱ(𝜂) increases 
with an increase in 𝑀. Finally, Figure 5 shows that 𝑓ᇱ(𝜂) increases with an increase in 𝑁𝑡. This is because the increased 
thermophoresis force causes nanoparticles to move faster, thereby raising the dimensionless velocity profiles. 

  
Figure 2. Effects of 𝛾 on 𝑓ᇱ(𝜂) when 𝑁ோ = 2.0,𝑁ி = 0.1 Figure 3. Effects of 𝑁𝑏 on 𝑓ᇱ(𝜂) when 𝑁ோ = 2.0,𝑁ி = 0.1 

  
Figure 4. Effects of 𝑀 on 𝑓ᇱ(𝜂) when 𝑁ோ = 2.0,𝑁ி = 0.1 Figure 5. Effects of 𝑁𝑡 on 𝑓ᇱ(𝜂) when 𝑁ோ = 2.0,𝑁ி = 0.1 

 
4.2 Temperature Profiles 

Figures 6 to 9 illustrate 𝜃(𝜂) profiles corresponding to 𝑓ᇱ(𝜂) profiles depicted in Figures 2 to 5. In every illustration, 
the surface's peak temperature is standardized to one, gradually diminishing to the free stream temperature (𝜃 = 0) at the 
thermal boundary layer's outer edge. 

  
Figure 6. Effects of 𝛾 on 𝜃(𝜂) when 𝑁ோ = 2.0,𝑁ி = 0.1 Figure 7. Effects of 𝑁𝑏 on 𝜃(𝜂) when 𝑁ோ = 2.0,𝑁ி = 0.1 
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Figure 6 shows the temperature profiles for 𝛾, while Figure 7 demonstrates the impact of 𝑁𝑏. Increasing 𝛾 slightly 
enhances the dimensionless temperature, as depicted in Fig. 6. Figure 7 illustrates that increasing 𝑁𝑏 enhances 
temperature, attributed to increased diffusion of nanoparticles due to higher Brownian motion. The presence of 
nanoparticles induces Brownian motion in the nanofluid, which intensifies with higher 𝑁𝑏 values. This motion enhances 
thermal conduction through two mechanisms: direct heat transfer via nanoparticles and indirect micro-convection around 
them. Brownian motion exerts significant influence on small particles under high 𝑁𝑏 conditions, whereas it has the 
opposite effect on large particles under low 𝑁𝑏 conditions. Figure 8 reveals that increasing 𝑀 decreases 𝜃(𝜂). The 
parameter 𝑁𝑡, highlighted in Figure 9, enhances thermophoresis force, prompting nanoparticles to migrate from warmer 
to cooler regions and amplifying temperature profiles. 

  
Figure 8. Effects of 𝑀 on 𝜃(𝜂) when 𝑁ோ = 2.0,𝑁ி = 0.1 Figure 9. Effects of 𝑁𝑡 on 𝜃(𝜂) when 𝑁ோ = 2.0,𝑁ி = 0.1 

 
4.3 Concentration Profiles 

Figures 10 to 13 illustrate the impact of 𝛾, 𝑁𝑏, 𝑀 and 𝑁𝑡 on 𝑠(𝜂). Figure 10 shows that 𝑠(𝜂) decreases with 
increasing 𝛾. Figure 11 demonstrates that as 𝑁𝑏 increases, the concentration of nanoparticles decreases, primarily due to 
enhanced Brownian motion warming the boundary layer and leading to increased nanoparticle deposition away from the 
fluid region (onto the plane surface), thus reducing 𝑠(𝜂). Figure 12 indicates that nanoparticle concentration decreases 
with increasing 𝑀, attributed to heightened electrification causing nanoparticles to migrate from the fluid region towards 
the plane surface, thereby lowering their concentration. Figure 13 reveals that increasing 𝑁𝑡 results in higher nanoparticle 
concentration, as greater 𝑁𝑡 intensifies forces on nanoparticles away from the heated plane surface, enhances nanoparticle 
diffusion into the nanofluid region, and ultimately increases concentration magnitude. 

  
Figure 10. Effects of 𝛾 on 𝑠(𝜂) when 𝑁ோ = 2.0,𝑁ி = 0.1 Figure 11.  Effects of 𝑁𝑏 on 𝑠(𝜂) when 𝑁ோ = 2.0,𝑁ி = 0.1 

  
Figure 12. Effects of 𝑀 on 𝑠(𝜂) when 𝑁ோ = 2.0,𝑁ி = 0.1 Figure 13. Effects of 𝑁𝑡 on 𝑠(𝜂) when 𝑁ோ = 2.0,𝑁ி = 0.1 

 
4.4 Non-dimensional Skin Friction, Heat and Mass Transfer Coefficients 

Table 2 illustrates how changes in 𝛾, 𝑀, 𝑁𝑏 and 𝑁𝑡 affect 𝑓ᇱᇱ(0), −𝜃ᇱ(0) and −𝑠ᇱ(0) while keeping other 
parameters fixed (𝑆𝑐 =  𝑁ோ = 2.0, 𝑁ி = 𝑁𝑟 = 𝑁𝑐 = 0.1 and 𝑃𝑟 = 6.2). 𝑓ᇱᇱ(0) increases with higher values of 𝑀,𝑁𝑏 
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and 𝑁𝑡, but decreases as 𝛾 rises. This trend is attributed to the velocity distribution near the plane surface, which intensifies 
with 𝑀,𝑁𝑏 and 𝑁𝑡, but diminishes with 𝛾. Similarly, −𝜃ᇱ(0) increases as 𝑀 rises and decreases with higher values of 𝛾,𝑁𝑏 and 𝑁𝑡. This trend occurs because increasing 𝑀 reduces the temperature distribution near the surface, whereas 
higher values of 𝛾,𝑁𝑏 and 𝑁𝑡 enhance temperature. Values of −𝑠ᇱ(0) increases with 𝛾, 𝑀, and 𝑁𝑏, but decreases with 
increasing 𝑁𝑡. This pattern arises because the nanoparticle concentration near the surface decreases with higher values of 𝛾, 𝑁𝑏, and 𝑀, thereby enhancing −𝑠ᇱ(0). Conversely, increasing 𝑁𝑡 leads to higher nanoparticle concentrations near the 
surface, resulting in a decrease in −𝑠ᇱ(0). 
Table 2. The effects of 𝛾, 𝑀, 𝑁𝑏 and 𝑁𝑡 on 𝑓ᇱᇱ(0),  −𝜃ᇱ(0) and  −𝑠ᇱ(0) 𝜸 𝑴 𝑵𝒃 𝑵𝒕 𝒇ᇱᇱ(𝟎) −𝜽ᇱ(𝟎) −𝒔ᇱ(𝟎) 

0.0  
 

0.1 

 
 

0.1 

 
 

0.1 

1.41442 0.36235 0.14057 
0.1 1.40370 0.35248 0.20466 
0.5 1.37049 0.32358 0.41039 
1.0 1.34253 0.30120 0.59803 

 
 

0.1 

0.0  
 

0.1 
 

 
 

0.1 

0.97884 0.30109 0.17498 
0.1 1.40370 0.35248 0.20466 
0.2 1.79457 0.38830 0.22064 
0.3 2.16287 0.41670 0.23155 

 
0.1 

 
0.1 

0.1  
0.1 

1.40370 0.35248 0.20466 
0.2 1.58380 0.32715 0.28574 
0.3 1.75312 0.29981 0.33132 

 
0.1 

 
0.1 

 
0.1 

0.1 1.40370 0.35248 0.20466 
0.2 1.45044 0.32904 0.17859 
0.3 1.49351 0.30635 0.17309 

 
5. CONCLUSIONS 

The influences of some key governing parameters, such as 𝛾, 𝑁𝑏, 𝑀 and 𝑁𝑡 on velocity, concentration and temperature 
profiles are graphically demonstrated in free convective nanofluid flow past a plane surface. Numerical results for 𝑓ᇱᇱ(0),  −𝜃ᇱ(0) and −𝑠ᇱ(0) are highlighted in tabular form. The study yields the following conclusions:  

• An increase in 𝑁𝑏, 𝑁𝑡 and 𝑀 enhances velocity within the boundary layer, while velocity reduces with 
increasing 𝛾.  

• Higher values of 𝑁𝑏, 𝑁𝑡 and 𝛾 intensify temperature, whereas increasing 𝑀 reduces temperature. 
• Increasing 𝑁𝑡 enhances concentration, whereas 𝑁𝑏, 𝛾 and 𝑀 lead to decreased concentration. 
• 𝑁𝑏, 𝑁𝑡 and 𝑀 all enhance the dimensionless reduced skin friction coefficient, while 𝛾 reduces it. 
• The dimensionless heat transfer coefficient diminishes with increasing 𝑁𝑏, 𝑁𝑡 and 𝛾, but significantly rises with 

an increase in 𝑀.  
• The rate of heat transfer from the plane surface to nanofluid rises with increasing 𝑀 and conducts heat into the 

cooler fluid, cooling the plane surface.  
• The dimensionless mass transfer coefficient improves with 𝛾, 𝑁𝑏 and M but diminishes with  𝑁𝑡. 
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ХІМІЧНА РЕАКЦІЯ, ЕЛЕКТРИЗАЦІЯ, БРОУНІВСЬКИЙ РУХ ТА ТЕРМОФОРЕЗНИЙ ЕФЕКТ НАНОЧАСТИНОК 

МІДІ НА ПОТОК НАНОРІДИНИ З ПОВЕРХНЕВИМ ТЕРТЯМ, ТЕПЛО-ТА МАСОПЕРЕНОСОМ 
Адітья Кумар Патіa, Мадан Мохан Роутa, Руну Сахуb, І. Сіва Рамакотіa, Коустава Кумар Пандаa, Крушна Чандра Сетіa 

aУніверситет технології та менеджменту Центуріон, Паралахемунді, Одіша, Індія 
bУніверситет NIST, Берхампур, Ганджам, Одіша, Індія 

У цьому дослідженні досліджується вплив хімічної реакції першого порядку, термофорезу, електризації та броунівського 
руху на наночастинки Cu у вільному конвективному потоці нанофлюїду повз вертикальну плоску поверхню, з тертям 
поверхні, тепло- та масообміном. Унікальне поєднання хімічної реакції та ефектів електризації відрізняє це дослідження від 
попередніх досліджень потоку нанорідини. Використовуючи функції подібності, керуючі PDE потоку перетворюються на 
систему локально подібних рівнянь. Потім ці рівняння розв’язуються за допомогою функції bvp4c MATLAB, що включає 
безрозмірні граничні умови. Висновки підтверджуються шляхом порівняння з попередніми дослідженнями. Графічні 
ілюстрації показують чисельні дослідження профілів концентрації, швидкості та температури у зв’язку з параметром 
електризації, параметром термофорезу, параметром хімічної реакції та параметром броунівського руху. Результати 
розрахунків коефіцієнтів теплообміну, масообміну та безрозмірного шкірного тертя подано у вигляді таблиці. Основне 
відкриття вказує на те, що параметр електризації прискорює передачу тепла, тоді як параметр електризації, параметр 
броунівського руху та параметр хімічної реакції збільшують швидкість передачі маси від плоскої поверхні до нанорідини. Це 
вказує на обнадійливий потенціал для охолодження плоских поверхонь у промисловості. 
Ключові слова: хімічна реакція; термофорез; електрифікація; броунівський рух; нанофлюїд 



EAST EUROPEAN JOURNAL OF PHYSICS. 4. 159–176 (2024)
159

DOI: 10.26565/2312-4334-2024-4-15 ISSN 2312-4334

A BIOMAGNETIC COUPLE STRESS FLUID FLOW IN AN ANISOTROPIC POROUS
CHANNEL WITH STRETCHING WALLS

R. Vijaya Sreea,b, V. K. Narlab*, K. Suresh Babuc

aACE Engineering College, Department of Mathematics, Hyderabad, Telangana, 501301, India.
bGITAM Deemed to be University, Department of Mathematics, Hyderabad, 502329, India.

cGokaraju Rangaraju Institute of Engineering & Technology, Department of Mathematics, Hyderabad, 500090, India.
∗Corresponding Author e-mail: vnarla@gitam.edu

Received September 2, 2024; revised November 8, 2024; accepted November 18, 2024

The present study investigates the dynamics of a biomagnetic couple stress fluid within an anisotropic porous channel where the
channel walls are stretchable. This study examines the flow behavior under the influence of an external magnetic field generated by a
magnetic dipole. Appropriate dimensionless parameters are introduced to simplify the equations of the problem. A suitable numerical
approach based on the Spectral Quasi-Linearization Method is utilized to obtain a solution to the problem. In this work, influence
of several important parameters like the anisotropic permeability ratio, couple stress parameter, anisotropic angle, Darcy number,
ferromagnetic interaction parameter, Reynolds number, and Prandtl number are examined. The results indicate that ferromagnetic
interaction parameter and couple stress parameter significantly impact heat transfer and fluid flow. Permeability ratio and angle also
affect the flow dynamics. Furthermore, the coefficient of skin friction and rate of heat transfer were examined, varying the couple stress
and ferromagnetic interaction parameters. The findings demonstrate that an existence of magnetic dipole and anisotropic permeability
significantly influences the flow and thermal properties of ferrofluids, providing valuable insights for optimizing heat transfer and
controlling fluid flow in diverse engineering and medical applications.

Keywords: Couple stress fluid; Magnetic dipole; Anisotropic porous media; Anisotropic permeability; Heat transfer; Spectral Quasi-
Linearization method
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1. INTRODUCTION
The research on biomagnetic ferrofluids has gained remarkable significance in recent times owing to their distinctive
characteristics and possible uses in diverse domains including biomedical engineering, pharmaceutical administration,
and thermal transport systems [1]. A key area of interest in biomagnetic ferrofluid research is understanding the be-
haviour of these fluids when subjected to a magnetic dipole, especially in confined geometries such as channels with
stretching walls. The stretching walls introduce a shear force, which can significantly influence the flow dynamics within
the channel. Understanding these interactions is crucial for optimizing the design and operation of devices that utilize
biomagnetic fluids, particularly in processes where efficient heat transfer and fluid control are essential like applications
related to engineering, biomedicine, and materials science [2, 3]. Ferrofluids demonstrate controllable flow behaviour
and enhanced thermal conductivity under magnetic influence, and have a range of fascinating applications across various
fields which include magnetic resonance imaging (MRI) enhancement, drug delivery systems, cooling systems, magnetic
separation and filtering, optical devices, magnetic sensors and actuators [4]–[7]. A mathematical model of magnetic
field-induced blood flow was developed by E.E. Tzirtzilakis [8]. The magnetic dipole-induced dynamics of visco-elastic
fluid were examined by Misra and Shit [9, 10]. They examined the variation in the velocity of blood with respect to a
magnetic field, viscoelastic parameter and thermal diffusivity using the method of finite difference. They concluded that
by enhancing the intensity of magnetic force field, regulation of wall temperature can be achieved by eliminating occur-
rence of flow reversal. An observation was made that larger magnetic strength corresponds to higher temperature. The
applicability of these analyses was demonstrated by studying blood flow in arteries within walls, which are stretchable. A
second-grade electrically conducting fluid, which is both steady and incompressible, was investigated by Misra et al. [11]
in channel while a transverse uniform magnetic field was present. All the studies carried out by Misra et al. are driven
by various potential uses in the biomedical engineering domain. Couple stress fluids, which are a particular category of
non-Newtonian fluids, have a nonsymmetric stress tensor and microstructure in their fluid structure, which makes them
defy the Newtonian fluid theory. Stokes[12] developed the theory of couple stress fluids in 1966, expanding classical fluid
mechanics to account for couple stresses. Because of their potential applications in a wide range of fluid flow systems,
couple stress fluids have garnered significant interest from many researchers [13]–[15]. Ramesh [16] examined the prop-
agation of a couple stress fluid having peristaltic behaviour, in an inclined asymmetrical porous channel. It was noted
in the study that the pressure gradient declines as the Reynolds number and the channel’s angle of inclination are raised.
Studies have shown that the heat transfer and temperature exhibit positive correlations with the Darcy number and also

Cite as: R. Vijaya Sree, V.K. Narla, K. Suresh Babu, East Eur. J. Phys. 4, 159 (2024), https://doi.org/10.26565/2312-4334-2024-4-15
© R. Vijaya Sree, V.K. Narla, K. Suresh Babu, 2024; CC BY 4.0 license

https://periodicals.karazin.ua/eejp/index
https://doi.org/10.26565/2312-4334-2024-4-15
https://portal.issn.org/resource/issn/2312-4334
https://orcid.org/0009-0002-0047-302X
https://orcid.org/0000-0003-0994-3497
https://orcid.org/0000-0003-1538-1072
mailto:vnarla@gitam.edu
https://doi.org/10.26565/2312-4334-2024-4-15
https://creativecommons.org/licenses/by/4.0/


160
EEJP. 4 (2024) R. Vijaya Sree, et al.

angle of inclination. A study conducted by Ramanamurthy and Pavan Kumar [17] examined couple stress fluid flow in
a channel of rectangular shape formed due to a magnetic field applied transversely. Some more studies on couple stress
fluids and power-law fluids which are subjected to magnetic field can be found in [18]–[22]. In their study, Nadeem et
al. [23] analysed impact of nanoparticles on magnetohydrodynamic (MHD) flow of a Casson fluid over an exponentially
permeable shrinking sheet. Coupled stress fluids in curved porous channels were investigated by Pramod et al.[24]. The
flow governing equations, which are highly non-linear, were solved by HAM(Homotopy Analysis Method). They con-
cluded that when compared with the Newtonian fluids, for couple stress fluids the magnitude of velocity and temperature
profiles are smaller. Ishaq et al. [25] investigated the behaviour of couple stress fluid traversing a porous slit which is
linear in a Darcy porous media. The flow was considered creeping and the solution was obtained using an Inverse method
technique. Their research explored kidney disease’s impact on renal tubule fluid flow, highlighting potential clogging by
fibers, lipids, and waste particles, aiding in disease management and improving renal medicine development. Using a
Boussinesq couple stress fluid, Patra et al. [26] analysed the characteristics of flow across a stretched sheet in porous me-
dia. The flow was exposed to varying magnetic fields and thermal radiation. An order-4 RK method was applied to obtain
the solution numerically. They discovered that the distributions of velocity and temperature were impacted by parameters
like Darcy number, magnetic field strength, and couple stress parameter. Recent advanced research has primarily focused
on developing effective numerical methods to solve the intricate, nonlinear differential equations that govern fluid flow
dynamics. To linearise and solve nonlinear terms with high accuracy, one such method is Spectral Quasi-Linearization
Method (SQLM), which combines the Quasilinearization technique with spectral methods. Numerous fluid flow appli-
cations, such as the investigation of flows across boundary layer over stretching/shrinking sheets in non-Darcy porous
media, have benefited from the successful application of this technique [27]–[29]. With a focus on nanofluid flow, Rai
and Mondal [30] examined modern spectral approaches for solving nonlinear fluid flow problems. It consists of various
spectral-based techniques such as Spectral Quasi-Linearization (SQLM), spectral relaxation (SRM), and spectral local
linearisation (SLLM) which are most effective and precise than finite difference methods, in solving both ordinary and
partial differential equations.

Most studies on ferrofluid flow dynamics and heat transfer do not take into account the impact of coupled stress fluid
dynamics, magnetic dipoles, and anisotropic porous medium. Using a mathematical model and solving the governing
equations, this work aims to elucidate the impact of the interaction among magnetic dipole, stretching walls, anisotropic
permeability and ferrofluid characteristics on the system’s overall performance. The flow governing equations, which
take into account couple stresses and magnetic forces, are numerically solved by applying Spectral Quasi-Linearization
Method (SQLM), after making similarity transformations. Our study examines how the key parameters, including couple
stress, ferromagnetic interaction, Prandtl number, Reynolds number, Darcy number, anisotropic permeability, and angle
affect velocity and temperature profiles in boundary layers. The findings give a thorough understanding of the intricate
interactions between these variables and show how they impact the flow and thermal properties of ferrofluids. The re-
sults demonstrate the method’s resilience and efficacy in handling challenging fluid dynamics applications by providing
insightful guidance for optimising heat transfer and flow control in various engineering applications involving magnetic
fluids.

2. MATHEMATICAL FORMULATION
A two-dimensional flow of a couple stress fluid within a channel bounded by parallel plates located at y = ±h is

considered. The channel is saturated with anisotropic porous media and the temperature of channel walls maintained at
(Tw), a constant. A magnetic dipole is positioned at a distance a above the channel wall, exerting an influence on the flow.
The walls of the channel, which are assumed to be stretching, induce the flow, with the surface velocity being directly
proportional to the horizontal axis X . The porous medium is assumed to be anisotropic, and consequently, the anisotropic
permeability matrix K is defined as [31]–[39]

K =

[
k22 cos

2(ϕ) + k11 sin
2(ϕ) (k22 − k11) sin(ϕ) cos(ϕ)

(k22 − k11) sin(ϕ) cos(ϕ) k22 sin
2(ϕ) + k11 cos

2(ϕ)

]
. (1)

k11 and k22, the permeabilities along the two main axes are taken to be constant. The angle formed by positive X
axis and horizontal permeability k22 is the anisotropic angle ϕ. Figure (1) depicts the above consideration. The governing
equations for couple stress fluid with consideration of anisotropic porous permeability are stated below, taking into account
the aforementioned factors:

∂u

∂x
+

∂v

∂y
= 0, (2)

ρ
[
u
∂u

∂x
+ v

∂u

∂y

]
= −∂p

∂x
+ µ

[∂2u

∂x2
+

∂2u

∂y2

]
− γ

[∂4u

∂x4
+

∂4u

∂y4
+ 2

∂4u

∂x2∂y2

]
+ µ0M

∂H

∂x

− µ

k11k22

[
(k11 cos

2(ϕ) + k22 sin
2(ϕ))u+ (

k11 − k22
2

sin(2ϕ))v
]
,

(3)
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Figure 1. Illustration of physical problem.

ρ
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u
∂v

∂x
+ v

∂v
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= −∂p

∂y
+ µ

[∂2v

∂x2
+

∂2v

∂y2

]
− γ

[∂4v

∂x4
+

∂4v

∂y4
+ 2

∂4v

∂x2∂y2

]
+ µ0M

∂H

∂y

− µ

k11k22

[k11 − k22
2

sin(2ϕ)u+ (k11 sin
2(ϕ) + k22 cos

2(ϕ))v
]
,

(4)

ρcp

[
u
∂T

∂x
+ v

∂T

∂y

]
= k

[∂2T

∂x2
+

∂2T

∂y2

]
− µ0T

∂M

∂T

[
u
∂H

∂x
+ v

∂H

∂y

]
+ µ

[
2

(
∂u

∂x

)2

+

2

(
∂v

∂y

)2

+

(
∂u

∂y
+

∂v

∂x

)2 ]
+ γ

[(∂2u

∂x2
+

∂2u

∂y2

)2

+

(
∂2v

∂x2
+

∂2v

∂y2

)2 ]
+

µ

k11k22

[
(k11 cos

2(ϕ) + k22 sin
2(ϕ))u2 + (k11 − k22) sin(2ϕ)uv

+(k22 cos
2(ϕ) + k11 sin

2(ϕ))v2
]
.

(5)

In the context of the flow problem, the boundary conditions can be mathematically expressed as:

∂u

∂y
= 0, v = 0,

∂T

∂y
= 0, at y = 0, (6)

∂2u

∂y2
= 0, u = cx, v = 0, T = Tw, p+

1

2
ρ(u2 + v2) = 0 at y = h. (7)

In equations aforementioned variables u, v represent fluid velocity’s dimensional components in the direction of X , Y
axes. Additionally p, µ0, µ, ρ, γ, k, H , M , T and cp denotes the pressure, magnetic permeability, dynamic viscosity, bio-
magnetic fluid density, couple stress coefficient, thermal conductivity, magnetic field strength, magnetisation, temperature
and fluid’s specific heat respectively. In equations (3) and (4), the terms µ0M

∂H
∂x , µ0M

∂H
∂y on the right side represent the

magnetic field’s influence in fluid flow, the terms γ
[
∂4u
∂x4 + ∂4u

∂y4 + 2 ∂4u
∂x2∂y2

]
, γ

[
∂4v
∂x4 + ∂4v

∂y4 + 2 ∂4v
∂x2∂y2

]
reflect the inter-

nal frictional forces within the fluid and additional couple stresses of the fluid which lead to higher order stress effects
that are crucial for accurately describing behavior of non-Newtonian fluids, and the last terms in the equations reflect the
Darcy resistance to flow due to the porous medium, modulated by its anisotropic permeability characteristics. In equation
(5), the term µ0T

∂M
∂T

[
u∂H

∂x + v ∂H
∂y

]
, represents the magneto-caloric effect, where the magnetic field influences the dis-

tribution of temperature and heat transfer in fluid.
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The biomagnetic fluid flow is influenced by magnetic dipole which produces a magnetic field. The scalar potential that
represents the magnetic force field is given by:

Φ(x, y) =
α

2π

[
x

x2 + (y − b)2

]
(8)

where b = a+ h and α represents the strength of magnetic force field at the point (0, b). The elements corresponding to
the magnetic field intensity H are :

Hx = −∂Φ

∂x
=

α

2π
.
x2 − (y − b)2

[x2 + (y − b)2]2
(9)

Hy = −∂Φ

∂y
=

α

2π
.

2x(y − b)

[x2 + (y − b)2]2
(10)

The resultant magnitude of intensity of magnetic field is

H =
√
H2

x +H2
y =

α

2π.[x2 + (y − b)2]
(11)

∂H

∂x
= − α

2π
.

2x

(y − b)4
(12)

considering only x and neglecting higher powers

∂H

∂y
=

α

2π
.
[
− 2

(y − b)3
+

4x2

(y − b)5

]
(13)

Magnetisation M , is shown to be a function of temperature T and exhibits linear variation according to the principle of
FHD[40]. Thus we consider M = kfT , where kf is the pyromagnetic constant.

2.1. Transformation of equations
We present the following dimensionless variables:

Ψ(ξ, η) = ch2ξf(η) (14)

P (ξ, η) =
p

ρc2h2
= −P1(η)− ξ2P2(η), (15)

θ(ξ, η) =
T

Tw
= θ1(η) + ξ2θ2(η), (16)

ξ(x) =
x

h
(17)

η(y) =
y

h
(18)

where Ψ(ξ, η), P (ξ, η), θ(ξ, η) are the stream function, the pressure function and the temperature function respectively.
Non-dimensionalization of u, v can be made as :

u =
∂Ψ

∂y
= chξf ′(η) (19)

v = −∂Ψ

∂x
= −chf(η) (20)

The continuity equation is clearly satisfied by the variables u and v. After equations (14)- (20) are substituted in equations
(3)-(5), and thereafter equating the coefficients of ξ0, ξ, and ξ2, we derive the subsequent equations:

− 1

Γ2
fV + f ′′′ +Re[ff ′′ − (f ′)2] + 2ReP2 −

2βθ1
Re(η − d)4

− 1

Da

[
K cos2(ϕ) + sin2(ϕ))

]
f ′(η) = 0, (21)

1

Γ2
f IV − f ′′ −Reff ′ +ReP ′

1 −
2βθ1

Re(η − d)3
+

1

Da

[
K sin2(ϕ) + cos2(ϕ))

]
f(η) = 0, (22)

ReP ′
2 +

4βθ1
Re(η − d)5

− 2βθ2
Re(η − d)3

= 0 (23)
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θ′′1 + 2θ2 +RePrfθ′1 −
2λβ(θ1)f

(η − d)3
+

λ

Γ2
(f ′′)2 + 4Reλ(f ′)2 +

1

Da
λRe[cos2(ϕ) +K sin2(ϕ)]f2 = 0 (24)

θ′′2 −RePr[2f ′θ2 − fθ′2] + λβθ1

[
2f ′

(η − d)4
+

4f

(η − d)5

]
− 2λβfθ2

(η − d)3
+ λ

1

Γ2
(f ′′′)2 + λRe(f ′′)2

+
1

Da
λRe[K cos2(ϕ) + sin2(ϕ)]f2 = 0.

(25)

The boundary conditions in equations (6) and (7) get transformed as:

f(0) = 0, f ′′(0) = 0, θ′1(0) = 0, θ′2(0) = 0

f(1) = 0, f ′(1) = 1, f ′′′(1) = 0, θ1(1) = 1, θ2(1) = 0, P1(1) = 0, P2(1) =
1

2
.

(26)

In the transformed equations written above, the other non-dimensional parameters present are outlined as follows:

Γ =

√
µ

γ
h, β =

αµ0Twρkf
2πµ2

, P r =
µcp
k

, λ =
µ2c

ρkfTw
,

Da =
k11
h2

, Re =
ρch2

µ
, d =

b

h
and K =

k11
k22

.

where the couple stress parameter is denoted as Γ, ferromagnetic interaction parameter as β, Prandtl number as Pr,
viscous dissipation parameter as λ, Darcy number as Da, Reynolds number as Re, dimensionless distance as d, and
anisotropic permeability ratio as K.

3. METHOD OF SOLUTION
A fifth-order coupled nonlinear system is established by the sets of equations (21)–(25) together with the boundary

conditions (26). This system characterises the dynamics of the problem under consideration. A numerical solution to
the problem considered is obtained by applying the Spectral Quasi-Linearization Method. For the set of equations (21)
to (25), the approximate current solution and the improved solution are considered as fr, (θ1)r, (θ2)r, (P1)r, (P2)r and
fr+1, (θ1)r+1, (θ2)r+1, (P1)r+1, (P2)r+1 respectively. The procedure yields the linear differential equations shown
below:

a1,rf
V
r+1 + f ′′′

r+1 + a2,rf
′′
r+1 + a3,rf

′
r+1 + a4,rfr+1 + a5,r(θ1)r+1 + a6,r(P2)r+1 = S1, (27)

a7,rf
IV
r+1 − f ′′

r+1 + a8,rf
′
r+1 + a9,rfr+1 + a10,r(θ1)r+1 + a11,r(P1)

′
r+1 = S2, (28)

a12,r(θ1)r+1 + a13,r(θ2)r+1 + a14,r(P2)
′
r+1 = S3, (29)

a15,rf
′′
r+1 + a16,rf

′
r+1 + a17,rfr+1 + (θ1)

′′
r+1 + a18,r(θ1)

′
r+1 + a19,r(θ1)r+1 + a20,r(θ2)r+1 = S4, (30)

a21,rf
′′′
r+1 + a22,rf

′′
r+1 + a23,rf

′
r+1 + a24,rfr+1 + a25,r(θ1)r+1 + (θ2)

′′
r+1 + a26,r(θ2)

′
r+1 + a27,r(θ2)r+1 = S5, (31)

The transformed boundary conditions are found as below:

fr+1 = 0, f ′′
r+1 = 0, (θ1)

′
r+1 = 0, (θ2)

′
r+1 = 0 at η = 0,

fr+1 = 0, f ′
r+1 = 1, f ′′′

r+1 = 0, (θ1)r+1 = 1, (θ2)r+1 = 0, (P1)r+1 = 0, (P2)r+1 =
1

2
at η = 1.

(32)

The coefficients obtained are:

a1,r = − 1

Γ2
, a2,r = Refr, a3,r = −2Ref ′

r −
1

Da
(K cos2(ϕ) + sin2(ϕ)), a4,r = Ref ′′

r ,

a5,r =
−2β

Re(η − d)4
, a6,r = 2Re, a7,r =

1

Γ2
, a8,r = −Ref,

a9,r = −Ref ′
r +

1

Da
(cos2(ϕ) +K sin2(ϕ)), a10,r =

−2β

(η − d)3
, a11,r = Re,

a12,r =
4β

(η − d)5
, a13,r =

−2β

(η − d)3
, a14,r = Re, a15,r =

2λf ′′
r

Γ2
, a16,r = 8Reλf ′

r,

a17,r = RePrθ′1 −
2λβθ1
(η − d)3

+
2

Da
λfrRe[cos2(ϕ) +K sin2(ϕ)], a18,r = RePrfr,

a19,r =
−2βλfr
(η − d)3

, a20,r = 2, a21,r = 2λ
1

Γ2
f ′′′
r , a22,r = 2λRef ′′

r ,
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a23,r =
2

Da
λRef ′

r[(K cos2(ϕ) + sin2(ϕ))] +
2λβθ1
(η − d)4

− 2RePrθ2,

a24,r = RePr(θ′2)r −
2λβ(θ2)r
(η − d)3

+
4λβ(θ1)r
(η − d)5

, a25,r =
2λβf ′

r

(η − d)4
+

4λβfr
(η − d)5

,

a26,r = RePrfr, a27,r = −2RePrf ′
r −

2λβfr
(η − d)3

,

S1 = Re(frf
′′
r − f ′

r
2), S2 = −Refrf

′
r, S3 = 0,

S4 = RePrfrθ
′
1 −

2λβfrθ1
(η − d)3

+ 4Reλf ′
r
2 +

λf ′′
r
2

Γ2
+

λRe

Da
[cos2(ϕ) +K sin2(ϕ)]f2

r ,

S5 = −2RePrf ′
r(θ2)r +RePrfr(θ

′
2)r −

2λβfr(θ2)r
(η − d)3

+
2λβf ′

r(θ1)r
(η − d)4

+
4λβ(θ1)rfr
(η − d)5

+ λ
1

Γ2
(f ′′′

r )2 +Reλ(f ′′
r )

2 +
λRe

Da
[cos2(ϕ) +K sin2(ϕ)]f ′

r
2.

To solve the linearised equations (21) to (25), a Chebyshev spectral collocation approach is used. Chebyshev interpolating
polynomials are used to estimate the functions unknown. The Gauss-Lobatto points are defined as ζj = cos (πj/N),
where j = 1, 2, · · ·N of collocation points at which these polynomials are collocated. Derivatives of f(η), θ1(η), θ2(η),
P1(η), and P2(η) are determined by using the differential matrix D to calculate Chebyshev polynomials at the collocation
points. Near collocation nodes the derivatives of fr+1, (θ1)r+1, (θ2)r+1, (P1)r+1, and (P2)r+1 are represented as:

∂pfr+1

∂ηp
=

(
2

L

)p N∑
i=0

Dp
N,ifr+1(ηi) = DpF,

∂p(θ1)r+1

∂ηp
=

(
2

L

)p N∑
i=0

Dp
N,i(θ1)r+1(ηi) = DpΘ1,

∂p(θ2)r+1

∂ηp
=

(
2

L

)p N∑
i=0

Dp
N,i(θ2)r+1(ηi) = DpΘ2,

∂p(P1)r+1

∂ηp
=

(
2

L

)p N∑
i=0

Dp
N,i(P1)r+1(ηi) = DpP1,

∂p(P2)r+1

∂ηp
=

(
2

L

)p N∑
i=0

Dp
N,i(P2)r+1(ηi) = DpP2.

(33)

where the Chebyshev differentiation matrix D scaled by L/2, is of order (M +1)× (M +1) with p derivative order. On
substituting equation(33) into equations (27)- (31), we obtain

[a1,rD
5 +D3 + a2,rD

2 + a3,rD+ a4,rI]fr+1 + a5,r(θ1)r+1 + a6,r(P2)r+1 = S1, (34)

[a7,rD
4 −D2 + a8,rD+ a9,rI]fr+1 + [a10,rI](θ1)r+1 + a11,rD(P1)r+1 = S2, (35)

a12,r(θ1)r+1 + a13,r(θ2)r+1 + a14,rD(P2)r+1 = S3 (36)

[a15,rD
2 + a16,rD+ a17,rI]fr+1 + [D2 + a18,rD+ a19,rI](θ1)r+1 + [a20,rI](θ2)r+1 = S4, (37)

[a21,rD
3 + a22,rD

2 + a23,rD+ a24,rI]fr+1 + a25,r(θ1)r+1 + [D2 + a26,rD+ a27,rI](θ2)r+1 = S5. (38)

Applying spectral method on the boundary conditions gives:

fr+1(ζ0) = 0,

N∑
k=0

DN,kfr+1(ζ0) = 1,

fr+1(ζN ) = 0,

N∑
k=0

D2
N,kfr+1(ζN ) = 1,

N∑
k=0

D3
N,kfr+1(ζ0) = 0,

N∑
k=0

DN,k(θ1)r+1(ζN ) = 0,

N∑
k=0

DN,k(θ2)r+1(ζN ) = 0, (θ1)r+1(ζ0) = 1, (θ2)r+1(ζ0) = 0,

(P1)r+1(ζ0) = 0, (P2)r+1(ζ0) =
1

2
.

(39)
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The matrix form of the aforementioned equation system is written as


B11 B12 B13 B14 B15

B21 B22 B23 B24 B25

B31 B32 B33 B34 B35

B41 B42 B43 B44 B45

B51 B52 B53 B54 B55

×


Fr+1

Θ1r+1

Θ2r+1

P1r+1

P2r+1

 =


S1

S2

S3

S4

S5

 , (40)

The boundary conditions are placed on the separate matrices as follows:

B11 =



1 0 · · · 0 0
D1,0 D1,1 · · · D1,N−1 D1,N

D3
2,0 D3

2,1 · · · D3
2,N−1 D3

2,N

B11

D2
N−1,0 D2

N−1,1 · · · D2
N−1,N−1 D2

N−1,N

0 0 · · · 0 1


, B12 =



0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0

B12

0 0 · · · 0 0
0 0 · · · 0 0


,

B13 =



0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0

B13

0 0 · · · 0 0
0 0 · · · 0 0


, B14 =



0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0

B14

0 0 · · · 0 0
0 0 · · · 0 0


, B15 =



0 0 · · · 0 0
0 0 · · · 0 0
0 0 · · · 0 0

B15

0 0 · · · 0 0
0 0 · · · 0 0


,

B21 =


0 0 · · · 0 0

B21

0 0 · · · 0 0

 , B22 =


1 0 · · · 0 0

B22

DN,0 DN,1 · · · DN,N−1 DN,N

 ,

B23 =


0 0 · · · 0 0

B23

0 0 · · · 0 0

 , B24 =


0 0 · · · 0 0

B24

0 0 · · · 0 0

 , B25 =


0 0 · · · 0 0

B25

0 0 · · · 0 0

 ,

B31 =

0 0 · · · 0 0

B31

0 0 · · · 0 0

 , B32 =

0 0 · · · 0 0

B32

0 0 · · · 0 0

 , B33 =

 1 0 · · · 0 0

B33

DN,0 DN,1 · · · DN,N−1 DN,N

 ,

B34 =


1 0 · · · 0 0

B34

0 0 · · · 0 1

 , B35 =


1 0 · · · 0 0

B35

0 0 · · · 0 1

 , B41 =


0 0 · · · 0 0

B41

0 0 · · · 0 0

 ,

B42 =


0 0 · · · 0 0

B42

0 0 · · · 0 0

 ,B43 =


0 0 · · · 0 0

B43

0 0 · · · 0 0

 , B44 =


1 0 · · · 0 0

B44

0 0 · · · 0 0

 ,

B45 =


0 0 · · · 0 0

B45

0 0 · · · 0 0

 ,B51 =


0 0 · · · 0 0

B51

0 0 · · · 0 0

 , B52 =


0 0 · · · 0 0

B52

0 0 · · · 0 0

 ,
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B53 =


0 0 · · · 0 0

B53

0 0 · · · 0 0

 ,B54 =


0 0 · · · 0 0

B54

0 0 · · · 0 0

 , B55 =


1 0 · · · 0 0

B55

0 0 · · · 0 0

 ,

Fr+1 =



fr+1,0

fr+1,1

...
fr+1,N−2

fr+1,N−1

fr+1,N


,Θ1r+1 =


θ1r+1,0

...

...
θ1r+1,N

 , Θ2r+1 =


θ2r+1,0

...

...
θ2r+1,N

 , P1r+1 =


P1r+1,0

...

...
0

 ,

P2r+1 =


P2r+1,0

...

...
0

 , S1 =



0
1
0

s1
1
0


, S2 =


0

s2
1

 , S3 =


0

s3
0

 , S4 =


0

s4
0

 , S5 =


1
2

s5
0

 ,

where

B11 = [diag(a1,r) 1 diag(a2,r) diag(a3,r) diag(a4,r)][D5 D3 D2 D I]T ,

B12 = diag(a5,r), B13 = 0, B14 = 0, B15 = diag(a6,r),

B21 = [diag(a7,r)− 1 diag(a8,r) diag(a9,r)][D4 D2 D I]T ,

B22 = diag(a10,r), B23 = 0, B24 = [diag(a11,r)]D, B25 = 0,

B31 = 0, B32 = diag(a12,r), B33 = [diag(a13,r), B34 = 0, B35 = [diag(a14,r)][D],

B41 = [diag(a15,r) diag(a16,r) diag(a17,r)][D2 D I]T ,

B42 = [1 diag(a18,r) diag(a19,r)][D2 D I]T , B43 = diag(a20,r), B44 = 0, B45 = 0,

B51 = [diag(a21,r) diag(a22,r) diag(a23,r) diag(a24,r)][D3 D2 D I]T , B52 = diag(a25,r),

B53 = [1 diag(a26,r) diag(a27,r)][D2 D I]T , B54 = 0, B55 = 0,

where a, I, 0 are diagonal, unit, and null matrices, respectively, of order (N + 1)×(N + 1).

4. CONVERGENCE ANALYSIS AND RESULTS
Convergence analysis entails demonstrating that the iterative approach converges to an exact solution for the non-

linear system of equations (21) and (25), by taking boundary conditions (26) into account. The calculation of residual
errors is performed to guarantee the precision of the numerical results. Inaccuracies measure the extent of discrepancy
between the numerical and the precise original solution. These errors quantify the degree of deviation experienced by the
numerical solution from the original solution. For equations (27) and (29), the residual errors obtained are as follows:

Res(f) = − 1

Γ2
fV + f ′′′ +Re[ff ′′ − (f ′)2] + 2ReP2 −

2βθ1
Re(η − d)4

− 1

Da

[
(K cos2(ϕ) + sin2(ϕ))

]
f ′(η),

(41)

Res(θ1) = θ′′1 + 2θ2 +RePrfθ′1 −
2λβ(θ1)f

(η − d)3
+

λ

Γ2
(f ′′)2 + 4Reλ(f ′)2

+
1

Da
λRe[cos2(ϕ) +K sin2(ϕ)]f2.

(42)

∥Res(f)∥∞, ∥Res(θ1)∥∞, are the infinity norms (or maximum norm) of equations (41) and (42), which quantify the
largest absolute value of the error throughout the domain. The impact of increasing the count of collocation points (N )
on the accuracy of the solution produced by the SQLM (Spectral Quasi-linearization Method) is examined in Fig (2).
In figure 2(a), the residual error in f over 30 iterations for various numbers of collocation points (N = 25, 30, 35) is
displayed. Collocation points between 25 and 35 yield the best accuracy, with residual errors of about 10−6. Similarly,
for the residual error in θ1 that is shown in 2(b), the ideal residuals are obtained with values of about 10−9. The accuracy
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Figure 2. Influence of iterations on (a) ∥Res(f(η))∥∞ and (b) ∥Res(θ1)∥∞ for collocation points when Γ = 2, d = 2, β
= 5, λ = 0.01, Da = 1, Pr = 1, K = 0.05, ϕ = π/4, Re = 1.

steadily decreases after this range of collocation points. According to these findings, the numerical approach achieves
maximum accuracy with 30-35 collocation points and performs optimally after the fifth iteration. Beyond this range, the
accuracy is observed to decrease, as the number of collocation points are increased, and the residual errors stabilise at
values that suggest optimal convergence.

Theoretical estimates of the influence of couple stress parameter, ferromagnetic interaction parameter, anisotropic
permeability ratio, anisotropic angle, Reynolds number, Darcy number, and Prandtl number on the distributions of velocity
and temperature have been determined. Additionally, the influence of β and Pr on the distribution of pressure is also
determined. Figures in (3) - (5) depict the variation of the dimensionless axial velocity f ′(η) for a given cross-section η of
channel for different parameters. In figure 3(a), it is observed that higher values of Γ lead to an increase of axial velocity
up to a certain height and a slow decrease towards the upper channel wall. An increase of couple stress parameter leads
to increase in viscosity, thereby reducing the flow of fluid, and also indicates that the wider the channel, the smaller the
magnitude of velocity. This is consistent with the concept that the couple stress fluids experience additional resistance or
internal friction due to microstructural interactions. From figure 3(b), it can be noticed that higher values of ferromagnetic
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Figure 3. Axial velocity profile for different values of (a) Couple stress parameter Γ (b) Ferromagnetic interaction
parameter β for Γ = 3, d = 2, β = 5, λ = 0.2, Da = 0.01, Pr = 1, K = 0.005, ϕ = π/4, Re = 1.

interaction parameter β lead to an increase in velocity up to a certain height, after which it reduces. A magnetic force
generated by an applied magnetic field opposes the fluid motion. Figures in (4) illustrate the impact of K and Da on
f ′(η), the axial velocity. Figure 4(a) depicts a reduction in magnitude of velocity with a rise in values of anisotropic ratio
K = k11/k22 and fixed Da(< 1) towards the upper boundary. As anticipated, for a given Da, increasing the permeability
ratio K lowers the permeability in the flow direction and consequently, declines the velocity’s magnitude. Figure 4(b)
illustrates that higher values of Da result in a decrease of velocity in vicinity of the center line and then gradually increase
from the centre line towards the upper boundary. When Darcy number is high, viscous effects dominate inertial effects
which result in decrease of fluid’s total velocity. Figures in (5) depict the impacts of ϕ, Pr, and Re upon axial velocity.
The profile of axial velocity for various anisotropic angles ϕ is illustrated in figure 5(a). Optimal velocity is attained
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Figure 4. Axial velocity profile for different values of (a) Anisotropic permeability ratio K (b) Darcy number Da for Γ =
2, d = 2, β = 5, λ = 0.2, Da = 0.01, Pr = 1, K = 0.005, ϕ = π/4, Re = 1.
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Figure 5. Axial velocity profile for different values of (a) Anisotropic angle ϕ (b) Prandtl number Pr for Γ = 2, d = 2, β
= 1, λ = 0.2, Da = 0.01, Pr = 1, K = 0.005, ϕ = π/4, Re = 0.5 (c) Reynolds number Re for Γ = 2, d = 2, β = 5, λ =
0.2, Da = 0.01, Pr = 2, K = 0.005, ϕ = π/4.
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when ϕ = 0, while the lowest velocity is seen when ϕ = π
2 . This behaviour is consistent with the concept that when

the value of K is less than or equal to 1 and keeps Da or k11 constant, a value of ϕ = 0 indicates a higher horizontal
permeability k22. Conversely, if the value of K is greater than 1, the behaviour will be the opposite. The value of ϕ =
0 is equivalent to k22 the horizontal permeability, resulting in the permeability to reduce in the flow direction. With an
increase in values of anisotropic angle, velocity increases up to a certain height and then decreases towards the upper
wall. In figure 5(b), up to a certain channel height, axial velocity is noticed to increase and decrease thereafter towards
the boundary with an increase of Prandtl number Pr. Prandtl number Pr is a dimensionless number that charaterises the
relative thickness of the boundary layers formed by both momentum and heat. Fluid accelerates more effectively within
a thicker momentum boundary layer. Figure 5(c) illustrates the increase of velocity up to a certain height and a gradual
decrease towards the upper wall, as Reynolds number Re increases. The magnetic force exerts a substantial influence on
the flow near the vicinity of magnetic field within a channel, leading to reduction in velocity. Figures (6)-(7) illustrate the
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Figure 6. Transverse velocity profile for different values of (a) Ferromagnetic interaction parameter β (b) Anisotropic
permeability ratio K (c) Anisotropic angle ϕ for Γ = 2, d = 2, β = 5, λ = 0.2, Da = 0.01, Pr = 5, K = 0.005, ϕ = π/4,
Re = 2.

distribution of dimensionless transverse velocity −f(η) for different values of β, K, ϕ, Γ, and Re. Figure 6(a) depicts
that transverse velocity decreases with increasing values of β. Transverse motion is reduced when β increases because it
strengthens the relation between ferromagnetic particles and the magnetic field. In practical situations, this phenomenon
controls the motion and stability of magnetic fluids. In figure 6(b) the velocity is seen reducing for higher values of
anisotropic permeability ratio K. For a fixed Da (fixed k11), an increase in K implies a reduction or decrease in k22 the
horizontal permeability. As k22 decreases, the shear resistance increases in the horizontal direction, thereby increasing
the dissipation of energy due to internal friction in the flow. This energy dissipation affects the overall reduction of the
momentum of fluid and indirectly, the transverse velocity also. In figure 6(c) the velocity is seen reducing for higher values
of anisotropic angle ϕ. Elevating anisotropic angle ϕ has dampening effect on velocity, which may be due to permeability
ratio K and magnetic parameter that inhibits the flow. Figure 7(a) shows that higher values of Γ result in reduction
of velocity. The decrease in transverse velocity within a fluid is due to the increased rotational resistance experienced
by the fluid. Figure 7(b), demonstrates a reduction in transverse velocity as the Prandtl number Pr is increased. This
phenomenon is because the higher momentum diffusivity compared to thermal diffusivity amplifies thermal gradients and
buoyancy effects, resulting in stronger convective currents in the transverse direction. Moreover, the increased viscosity
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aids in maintaining these lateral movements. Figure 7(c) illustrates that higher values of Reynolds number Re lead to a
reduction in velocity. Generally this is due to the growing influence of inertia in the flow. This leads to a stabilisation in
the primary flow direction and a decrease in contribution of viscous forces that facilitate transverse motion.
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Figure 7. Transverse velocity profile for different values of (a) Couple stress parameter Γ (b) Prandtl number Pr (c)
Reynolds number Re for Γ = 2, d = 2, β = 5, λ = 0.2, Da = 0.01, Pr = 5, K = 0.005, ϕ = π/4, Re = 0.5.
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Figure 8. Temperature profile for different values of (a) Couple stress parameter Γ for d = 2, β = 1, λ = 0.2, Da = 0.01,
Pr = 1, K = 0.005, ϕ = π/4, Re = 21 (b) Ferromagnetic interaction parameter β for Γ = 2, d = 2, λ = 0.2, Da = 0.01,
Pr = 1, K = 0.005, ϕ = π/4, Re = 0.01.

The variation of temperature profile for different parameters is illustrated in figures (8)-(10). Figure 8(a) illustrates
that higher values of couple stress parameter Γ result in an increase in temperature. A greater temperature gradient
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Figure 9. Temperature profile for different values of (a) Anisotropic permeability ratio K (b) Anisotropic angle ϕ for Γ =
2, d = 2, β = 1, λ = 0.2, Da = 0.01, Pr = 1, K = 0.5, ϕ = π/4, Re = 1.
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Figure 10. Temperature profile for different values of (a) Darcy number Da (b) Prandtl number Pr (c) Reynolds number
Re for Γ = 2, d = 2, β = 1, λ = 0.2, Da = 0.01, Pr = 1, K = 0.005, ϕ = π/4, Re = 0.05.
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results from a thinner thermal boundary layer, which is indicated by a rise in Γ. This leads to enhanced heat transfer
at the wall’s surface and contributes to the deceleration of fluid. Figure 8(b) depicts an increase of temperature with
an increase of ferromagnetic interaction parameter β. A more pronounced temperature difference resulting from an
increase in β suggests a reduced thermal boundary layer in close proximity to wall. Enhancement of effective heat transfer
from the fluid’s surface to its interior occurs at higher values of β. The findings indicate that when the ferromagnetic
interaction parameter β is increased, boundary layer temperature and velocity profiles have a significant impact. The
findings depicted in figure 8(b) hold significant implications for the management of tumours and cancer therapy, as the
aim of hyperthermia is to elevate the temperature of malignant tissues beyond the therapeutic range of 42°C. Plasma
protein undergoes irreversible damage when blood temperatures rise above 42°C. Figure 9(a) shows a rise in temperature,
with increase in values of K. Increased permeability results in enhanced convection, improved mixing, and consistent
temperatures. On the other hand, when permeability is reduced, it limits the movement of fluids, resulting in more
pronounced variations in temperature. Figure 9(b) illustrates the increase of temperature when the anisotropic angle ϕ
is raised. Figure 10(a) shows that higher Da values typically correspond to more permeable media, allowing for more
efficient heat transfer. Figures 10(b) and 10(c) show that higher values of Prandtl number Pr and Reynolds number Re
lead to an increase in temperature. A high Pr value, exceeding 5, suggests that fluid momentum is a more advantageous
means of heat transfer compared to thermal diffusion. Stated differently, a large Pr value suggests that fluid momentum,
rather than fluid conduction, is more prone to induce heat transfer. An illustration of the pressure profile variation for
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Figure 11. Pressure profile for different values of (a) Ferromagnetic interaction parameter β (b) Prandtl number Pr (c)
Couple stress parameter Γ (d) Anisotropic permeability ratio K for Γ = 2, d = 2, β = 7, λ = 0.2, Da = 0.1, Pr = 1, K =
0.5, ϕ = π/2, Re = 2.

different values of β, Pr, Γ, and K can be seen in figure (11). This figure demonstrates that higher values of β, Pr,
and K result in pressure drops while a rise in pressure when Γ is increased. Hypothetical findings in figure 11(a) are
highly relevant for clinical interventions, where the application of a suitably powerful magnetic force field can be utilized
to control blood pressure. As the fluid resists both thermal and momentum diffusion more strongly, higher values of Pr
(fig.11(b)) generally lead to greater pressure drops across the channel, so increasing the overall resistance to flow. In
figure 11(c), we observe the rise in pressure with an increase of Γ. The pressure profile can be noticed to be flattened,
indicating less and smoother variation. Figure 11(d) depicts a decline in pressure as the values of K are increased which
suggests a more streamlined flow and maximum pressure can be noticed at the upper boundary wall. The parameters of
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local skin friction and rate of heat transfer are essential for the analysis of flow and heat transfer. The following relations
are used to define these quantities:

Cf =
τω

ρc2x2
, Nux =

x

Tw

∂T

∂y
|y=1 (43)

Using equations (16-20) in equation (43) we get:

CfRe
1
2
x = [f ′′(1)− 1

Γ2
f ′′′′(1)], NuxRe

−1
2

x = (θ′1(1) + ξ2θ′2(1)) (44)

In the above equations τω =
[
µ(∂u∂y )− γ(∂

3u
∂y3 )

]
y=1

represents shear stress at wall, Nux is local Nusselt number, and

Rex = ρcx2

µ is local Reynolds number. Also θ
′
(1) = (θ′1(1) + ξ2θ′2(1)) is the dimensionless heat transfer parameter

at wall. It is evident that the ferromagnetic interaction parameter β has an impact on the flow field. However, the flow
problem is separated from the thermal energy problem in the hydrodynamic case (β=0), where P2 becomes constant and
zero (See Equations (23) and (26)). Therefore it is more intriguing and practical to replace the dimensionless wall heat
transfer parameter θ

′
(1) = (θ′1(1) + ξ2θ′2(1)) by the ratio θ∗(1) =

θ′
1(1)

θ′
1(1)|β=0

which is dimensionless and independent of
ξ and represents coefficient of heat transfer rate at the wall.

Γ f ′′(1)− 1
Γ2 f

′′′′(1)
β=0 β=3 β=5 β=7 β=9 β = 11

0.2 123.3324773 127.257181 129.8463308 132.4148978 134.9635621 137.4935335
0.3 56.6660337 59.61461236 61.56274982 63.49615971 65.41650618 67.32454648
0.4 33.333494 35.93842135 37.65954421 39.36947234 41.06914359 42.75847324
0.5 22.53442963 24.97755792 26.59253685 28.19715192 29.79325785 31.38089637
1 8.140794606 10.34148191 11.79708708 13.24627189 14.69095588 16.13263003

10 3.433573507 5.00769968 6.06391105 7.133794256 8.219453759 9.322318935
100 3.292810745 4.83203191 5.871098686 6.930397385 8.012385729 9.118768452

Table 1. Distribution of dimensionless wall shear parameter f ′′(1)− 1
Γ2 f

′′′′(1)

Tables (1) and (2) display variations in Skin friction cofficient and heat transfer rate for different values of Γ and β.
The other parameters are maintained at following values: d = 2, λ = 0.2, Da = 0.1, Pr = 1, K = 0.05, ϕ = π/4, Re = 1.

Γ θ∗(1) =
θ′
1(1)

θ′
1(1)|β=0

β=0 β=3 β=5 β=7 β=9
0.2 -3.4970961551 -3.4986914879 -3.4997561776 -3.5008218082 -3.5018883853
0.3 -1.5708573035 -1.5724195493 -1.5734629036 -1.5745077275 -1.5755540441
0.4 -0.8966478411 -0.8981991396 -0.8992365341 -0.9002764930 -0.9013190138
0.5 -0.5845572012 -0.5861041374 -0.5871404232 -0.5881807258 -0.5892250551
1 -0.1681483019 –0.1696977885 -0.1718171673 -0.1718171673 -0.1729002803
10 -0.0278343318 -0.0299616020 -0.0313761276 -0.0328310790 -0.0343730535

Table 2. Distribution of coefficient of heat transfer rate θ∗(1)

Table (1) presents variations of the local skin friction coefficient for various values of the parameters Γ and β. At
the surface, the drag force is decreased by higher couple stress parameters, as Table (1) shows. Microstructural effects of
couple stress fluids can reduce the total frictional resistance against fluid flow, producing a smoother fluid motion. Higher
values of the ferromagnetic interaction parameter result in an increase in the magnetic force, which acts as a resistive force
like drag force, within the fluid. Consequently, the velocity gradient near the wall becomes more pronounced, resulting
in an elevation in the shear stresses. Hence the coefficient of skin friction rises with increase of magnetic parameter. The
variations in heat transfer rate at channel wall’s surface for different values of Γ and β are summarised in Table (2). It
can be inferred from this that higher values of Γ lead to an increased heat transfer rate near the surface. For a given Γ,
increasing β leads to a reduction in heat transfer rate. The microstructural effects in a couple stress fluids obstruct thermal
conductivity and hence reduce heat transfer efficiency. This table supports the conclusion that microstructural effects from
couple stress and ferromagnetic interaction parameters significantly influence heat transfer behaviour.

5. CONCLUSION
In this paper, the dynamics of biomagnetic couple stress fluid in a channel with stretchable walls, are analysed. The

channel is saturated with an anisotropic porous medium. The governing equations, accounting for couple stresses and
magnetic forces, are solved using the Spectral Quasi-Linearization Method (SQLM). To examine how key parameters,
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including couple stress, ferromagnetic interaction, Prandtl number, Reynolds number, Darcy number, anisotropic perme-
ability, and angle affect velocity, temperature, and pressure profiles in boundary layers, graphs were created using an
in-house developed MATLAB program. The findings are outlined below:

• Couple stress parameter and ferromagnetic interaction parameter significantly impact the flow characteristics of
fluid. Higher values of Γ and β lead to a reduction in both axial and transverse velocities and a rise in temperature.

• Higher values of K and ϕ result in a reduction in both axial and transverse velocities and a rise in temperature.

• Higher values of Da indicate less restricted flow, so the axial velocity increases near the upper boundary and the
temperature increases.

• A higher Prandtl number Pr results in the decrease of both axial and transverse velocities near the upper boundary
and the temperature increases.

• Higher β, Pr, and K values result in pressure drops whereas a rise in Γ leads to a rise in pressure. As the fluid
resists both thermal and momentum diffusion more strongly, higher values of Pr generally lead to greater pressure
drops across the channel, so increasing the overall resistance to flow.

• Higher values of Γ lead to a reduction in skin friction coefficient and an enhancement in rate of heat transfer.

• Higher values of β result in an enhancement in both skin friction and rate of heat transfer coefficient.

The convergence analysis demonstrated that the SQLM was effective. The velocity and temperature profiles’ residual
errors showed quick convergence, with accuracy greatly increasing after the fifth iteration. Accuracy was optimal with
25-35 collocation points but gradually declined after that. The numerical method is robust and efficient, as evidenced by
residual error norms ranging from 10−6 to 10−9 for different parameters. Overall, this work fills a gap in the literature by
providing in-depth insights into the combined impacts of couple stress fluid dynamics, magnetic dipoles, and anisotropic
porous media on fluid flow and heat transfer. The current study offers valuable recommendations for enhancing heat
transfer and flow control in engineering applications that involve couple stress ferrofluids.
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ПОТIК РIДИНИ В УМОВАХ ПОДВIЙНОГО БIОМАГНIТНОГО СТРЕСУ В АНIЗОТРОПНОМУ
ПОРИСТОМУ КАНАЛI З РОЗТЯГНУТИМИ СТIНКАМИ

П. Вiджая Срia,b, В. К. Нарлаb*, К. Суреш Бабуc
aIнженерний коледж ACE, математичний факультет, Хайдарабад, Телангана, 501301, Iндiя

bGITAM, факультет математики, Хайдарабад, 502329, Iндiя
cIнженерно технологiчний iнститут Гокараджу Рангараджу, кафедра математики, Гайдарабад, 500090, Iндiя

У цiй роботi дослiджується динамiка потоку рiдини в умовах подвiйного бiомагнiтного стресу в анiзотропному пористому
каналi, де стiнки каналу розтягуються. Це дослiдження вивчає поведiнку потоку пiд впливом зовнiшнього магнiтного поля,
створюваного магнiтним диполем. Для спрощення рiвнянь задачi вводяться вiдповiднi безрозмiрнi параметри. Щоб отримати
рiшення проблеми, використовується вiдповiдний чисельний пiдхiд, заснований на методi спектральної квазiлiнеаризацiї. У
цiй роботi дослiджується вплив кiлькох важливих параметрiв, таких як коефiцiєнт анiзотропної проникностi, параметр парних
напруг, анiзотропний кут, число Дарсi, параметр феромагнiтної взаємодiї, число Рейнольдса та число Прандтля. Результати
вказують на те, що параметр феромагнiтної взаємодiї та параметр напруги з’єднання суттєво впливають на теплообмiн i потiк
рiдини. Коефiцiєнт проникностi та кут також впливають на динамiку потоку. Крiм того, дослiджували коефiцiєнт поверхневого
тертя та швидкiсть теплообмiну, змiнюючи параметри парних напруг та феромагнiтної взаємодiї. Отриманi данi демонструють,
що iснування магнiтного диполя та анiзотропної проникностi значно впливає на течiю та тепловi властивостi феррорiдини,
надаючи цiнну iнформацiю для оптимiзацiї теплопередачi та контролю потоку рiдини в рiзноманiтних iнженерних i медичних
застосуваннях.
Ключовi слова: рiдина пiд парним стресом; магнiтний диполь; анiзотропнi пористi середовища; анiзотропна проникнiсть;
теплообмiн; метод спектральної квазiлiнеаризацiї
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This study explores the combined effects of magnetohydrodynamics (MHD) and bio-convection on the flow dynamics of hybrid 
Nanofluids over an inverted rotating cone with different base fluids. The hybrid Nanofluids, composed of nanoparticles suspended in 
various base fluids, exhibit unique thermal and flow characteristics due to the interplay between magnetic fields and bio-convection 
phenomena. The governing equations, incorporating the principles of MHD and bio-convection, are derived and solved using numerical 
methods. The analysis considers the impact of key parameters such as magnetic field strength, the rotation rate of the cone, nanoparticle 
volume fraction, and types of base fluids on the flow behaviour, heat transfer, and system stability. Results indicate that the MHD 
significantly influences the velocity and temperature profiles of the hybrid Nanofluids, while bio-convection contributes to enhanced 
mixing and heat transfer rates. Additionally, the choice of base fluid plays a critical role in determining the overall performance of the 
hybrid Nano fluid system. This study provides valuable insights into optimizing the design and operation of systems utilizing hybrid 
Nanofluids in applications where MHD and bio-convection effects are prominent. 
Keywords: Magnetohydrodynamics (MHD); Bio-convection; Hybrid nanofluids; Inverted rotating cone; Base fluids; Nanoparticles; 
Flow dynamics 
PACS: 47.65.-d, 47.63.-b,47.35. Pq,83.50.-v  

1. INTRODUCTION
The movement of heat studied in different fields through cones has acquired remarkable research attention owing to 

its realistic applications in modern life. Appropriate design and application information are crucial for achieving industrial 
and technological goals. This study explores the combined effects of magnetohydrodynamics (MHD) and bio-convection 
on the flow dynamics of hybrid nanofluids over an inverted rotating cone with different base fluids. The hybrid nanofluids, 
composed of nanoparticles suspended in various base fluids, exhibit unique thermal and flow characteristics due to the 
interplay between magnetic fields and bio-convection phenomena. The governing equations, incorporating the principles 
of MHD and bio-convection, are derived and solved using numerical methods. The analysis considers the impact of 
critical parameters such as magnetic field strength, the rotation rate of the cone, nanoparticle volume fraction, and types 
of base fluids on the flow behaviour, heat transfer, and system stability. Results indicate that the MHD significantly 
influences the velocity and temperature profiles of the hybrid nanofluids, while bio-convection contributes to enhanced 
mixing and heat transfer rates. Additionally, the choice of base fluid plays a critical role in determining the overall 
performance of the hybrid nanofluid system. This study provides valuable insights into optimizing the design and 
operation of systems utilizing hybrid nanofluids in applications where MHD and bio-convection effects are prominent. 

Many researchers have studied the natural convective heat transfer phenomena over vertical cones, focusing on the 
effects of cone geometry. These investigations have provided valuable insights into optimizing heat transfer in various 
engineering and industrial applications [1-4]. Liu et al.[5]compared cerebral hemodynamic metrics from CFD models 
using Newtonian and non-Newtonian fluid assumptions to simulate blood flow in intracranial atherosclerotic stenosis 
(ICAS). Aloliga et al.[6] investigates the magnetohydrodynamic boundary layer flow of non-Newtonian Casson fluids 
over a magnetised, exponentially stretching sheet. Loganathan et al. [7] examine the thermally radiative flow of a Casson 
fluid over a cylinder with velocity slip, suction/injection, and Newtonian heating. Fatunmbi et al.[8]Investigates quadratic 
thermal convection in Magneto-Casson fluid flow influenced by stretchy material, tiny particles, and viscous dissipation 
effects. Shankar et al.[9] investigate Casson fluid flow over an inclined, stretching cylindrical surface, incorporating heat 
generation, viscous dissipation, thermal radiation, magnetic fields, and mixed convection. Raja et al. [10] investigate free 
convection heat transfer in hybrid nanofluids over an inclined porous plate, considering asymmetrical flow behaviour and 
sinusoidal heat transfer boundary conditions with an angled magnetic field. Elattar et al.[11] studied three-dimensional 
heat transfer induced by a non-Newtonian Eyring–Powell fluid containing sodium alginate-based CoFe2O4 nanoparticles 
over a deformable horizontal surface. 

Bio-convection, a captivating phenomenon in nanofluids, arises from the motion of microorganisms propelled by 
swimming. These microorganisms generate a thicker boundary layer that breaks into bio-convection cells, inducing 
instability and higher density gradients at the surface. Gyrotactic and oxytactic microorganisms represent two distinct 
types influencing this behaviour. Applications of bio-convection span diverse fields, including pharmaceutical 

Cite as: B. Padhy, A. Senapati, G.K. Mahato P.K. Rath, East Eur. J. Phys. 4, 177 (2024), https://doi.org/10.26565/2312-4334-2024-4-16 
© B. Padhy, A. Senapati, G.K. Mahato, P.K. Rath, 2024; CC BY 4.0 license 

https://doi.org/10.26565/2312-4334-2024-4-16
https://periodicals.karazin.ua/eejp/index
https://portal.issn.org/resource/issn/2312-4334
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-3447-2917
https://orcid.org/0009-0001-7180-5194
https://orcid.org/0000-0003-4549-0042
https://orcid.org/0000-0002-3869-9705


178
EEJP. 4 (2024) Balaji Padhy, et al.

manufacturing, gas-bearing processes, hydrodynamics research, and wine-making, highlighting its relevance across 
industrial and scientific domains. Mkhatshwa et al. [12] investigates the bio-convective flow of magneto-Williamson 
nanofluids with motile microbes through a porous medium in a horizontal circular cylinder. Alhussain et al. [13] examine 
the bioconvective flow of magneto-Williamson nanofluids with motile microbes through a porous medium in a horizontal 
circular cylinder. Zohra et al.[14] analyses about convective anisotropic slip boundary layer flow from a rotating vertical 
cone in ethylene glycol nanofluid, considering Stefan blowing. The study of Hiemenz and Homann flow over a plate was 
explored by Sarfraz et al. [15]. 

Upon review, it is evident that the impact of bioconvection on magnetohydrodynamic hybrid nanofluid flow through 
a rotating cone with distinct base fluids remains unexplored. This study aims to investigate the influence of bioconvection 
on MHD hybrid nanofluid flow modelled with the Casson fluid approach over a spinning cone. 

 
Key novel aspects of this study include: 
• Introduction of motile microorganisms into the flow over a rotating cone. 
• Application of MHD effects to a hybrid nanofluid comprising H2O and NaC6H9O7 base fluids. 
• In the hybrid nanofluid flow, which consists of Aluminum oxide – Titanium oxide, Titanium oxide – Copper, and 

Aluminum oxide – Copper hybrid nanoparticles, along with Newtonian (H2O) and non-Newtonian (NaC6H9O7) base 
fluids, the interactions between these nanoparticles and fluids influence the thermal and flow characteristics 
significantly. These combinations are crucial for studying enhanced heat transfer and fluid dynamics in various 
industrial and technological applications. 

 
2. PROPOSED MATHEMATICAL MODEL 

Let us consider the incompressible, steady-state boundary layer flow combined with bio-convection phenomena 
around a rotating downward-pointing vertical cone. The system employs two novel base fluids: Ethanol (C₂H₅OH) and 
Propylene Glycol (C₃H₈O₂), integrated with hybrid nanoparticles composed of Zinc Oxide (ZnO) – Silicon Dioxide 
(SiO₂), Copper (Cu) – Silver (Ag), and Zinc Oxide (ZnO) – Silver (Ag) combinations. The analysis incorporates surface 
temperature and concentration gradients and evaluates the system under a generalized magnetic field. Both thermal and 
concentration boundary conditions are considered, with Newtonian base fluids serving as a reference point. The spatial 
setup includes the modified Cartesian coordinates where the 𝜉-axis is along the cone surface, and the 𝜂-axis is 
perpendicular to it. The azimuthal angle 𝛼 describes the plane rotation around the vertical symmetry axis. A magnetic 

field of strength 𝐵 = 𝐵 𝑓(𝜉) ට1 − 𝜉ᇱଶൗ  is applied along the 𝜂-axis, and the radius of the cone is given by 𝑟 =  𝜉 𝑐𝑜𝑠𝛿 where 𝛿 is the cone's half-angle. We assume thermal equilibrium between the base fluids and nanoparticles, and no slip 
conditions apply. The study begins with an overview of the bio-convection and hybrid nanofluid systems within the 
boundary layer. The two novel base fluids, Ethanol and Propylene Glycol, are mixed with nanoparticles for improved 
heat transfer characteristics. This exploration is conducted under boundary-layer approximations, ensuring that the base 
fluids and nanoparticles remain in thermal equilibrium with no relative slip by Hassan et al.[16]. 
The boundary layer equations are derived based on the following assumptions and flow conditions: 

 డడక (𝑟 𝑢) + డడఎ (𝑟𝑣) = 0. (1) 

where 𝑢 and 𝑣 are velocity components along ξ and η axis, respectively, and 𝑟 =  𝜉 𝑐𝑜𝑠𝛿 represents the cone radius. 
Now the momentum equation (for the axial component) is given by  

 𝜌ℎ𝑛𝑓 ቀ𝑢 డ௨డక + 𝑣 డ௨డఎ − ௪మక ቁ = ቀ1 + ଵఊቁ 𝜇ℎ𝑛𝑓 డమ௨డఎమ + (𝜌𝛽்)ℎ𝑛𝑓𝑔 𝑐𝑜𝑠𝛿(𝑇 − 𝑇) + (𝜌𝛽)ℎ𝑛𝑓𝑔 𝑐𝑜𝑠𝛿(𝐶 − 𝐶) − 𝜎𝐵ଶ𝑢. (2) 

The Azimuthal momentum equation is given by  

 𝜌ℎ𝑛𝑓 ቀ𝑢 డ௪డక + 𝑣 డ௪డఎ − ௨௪క ቁ = ቀ1 + ଵఊቁ 𝜇 డమ௪డఎమ − 𝜎𝐵ଶ𝑤. (3) 

The Energy equation (temperature distribution) is given by 

 ൫𝜌𝐶൯ℎ𝑛𝑓 ቀ𝑢 డ்డక + 𝑣 డ்డఎቁ = 𝑘 డమ்డఎమ. (4) 

The Species concentration equation is given by 

 𝑢 డడక + 𝑣 డడఎ = 𝐷 డమడఎమ. (5) 

The Microorganism concentration equation is given by 
 𝑢 డడక + 𝑣 డడఎ − డడఎ ቀ𝑛 డడఎቁ ௐೝିబ క = 𝐷 డమడఎమ. (6) 

The boundary condition for current flow system are as follows: 
At the cone surface 𝜂 = 0; 
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 𝑢 = 0, 𝑣 = 0,𝑤 = 𝑟Ω,𝑇 = 𝑇 + (𝑇 − 𝑇) క ,𝐶 = 𝐶 + (𝐶 − 𝐶) క ,𝑛 = 𝑛 + (𝑛 + 𝑛) క. (7) 
At 𝜂 → ∞: 
 u→ 0,𝑤 → 0,𝑇 → 𝑇 ,𝐶 → 𝐶 𝑎𝑛𝑑 𝑛 → 𝑛.  (8) 

The hybrid nanofluid properties are redefined in terms of the volume fractions 𝜑ଵ (for the first nanoparticle) and 𝜑ଶ (for the second nanoparticle): 
 𝜇 = ఓ൫ଵିథభ൯మ.ఱ൫ଵିథమ൯మ.ఱ.  (9) 

 𝜌 = ൛൫1 − 𝜙ଶ൯ൣ൫1 − 𝜙ଵ൯𝜌 + 𝜙ଵ𝜌ଵ൧ൟ + 𝜙ଶ𝜌ଶ  (10) 

 𝛼 = ൫ఘ൯. (11) 

The heat capacity of a hybrid nanofluid is calculated by using a weighted average of the specific heat capacities of 
the base fluid and the nanoparticles. 

 ൫𝐶൯ = ൫ଵିథభିథమ൯൫ఘ൯ାథభቀఘቁభାథమቀఘቁమ൫ଵିథభିథమ൯ఘାథభఘభାథమఘమ . (12) 

The thermal expansion coefficient of the hybrid nanofluid can be approximated as a volume-weighted sum of the 
thermal expansion coefficients of the base fluid and the nanoparticles: 

 (𝛽்) = ൫1 − 𝜙ଵ − 𝜙ଶ൯(𝛽்) + 𝜙ଵ(𝛽்)ଵ + 𝜙ଶ(𝛽்)ଶ. (13) 

The thermal conductivity of a hybrid nanofluid is more complex to model due to the interaction between 
nanoparticles and the base fluid. A common model is based on Maxwell's effective medium theory, which can be extended 
to hybrid nanofluids as follows: 

 𝑘 = 𝑘 భାଶିଶథభ(ିభ)భାଶାథభ(ିభ) ൨ మାଶିଶథమ(ିమ)మାଶାథమ(ିమ) ൨. (14) 

The electrical conductivity of hybrid nanofluids is enhanced due to the addition of nanoparticles, and can also be 
modelled using Maxwell's effective medium theory, similar to the thermal conductivity. The electrical conductivity 𝜎is 
given by: 

 𝜎 = 𝜎 ఙభାଶఙିଶథభ(ఙିఙభ)ఙభାଶఙାథభ(ఙିఙభ) ൨ ఙమାଶఙିଶథమ(ఙିఙమ)ఙమାଶఙାథమ(ఙିఙమ) ൨. (15) 

To further simplify the equations, the following dimensionless variables are introduced: (Alhussain et al.0, Aghamajidi 
et al. [17]) 

 𝜉 = క∗  , 𝜂 = ఎ∗   ,𝑢 = ௨∗   , 𝑣 = ௩∗   ,𝑤 = ௪∗ఆ  ,𝛩 = ்ି బ்ೝ்ି బ்   ,𝜑 = ିబೝିబ  , 𝜒 = ିబೝିబ. (16) 

Solve the equation from 1-6 and applying equation (16), we get  

 𝑢 డ௪డక + 𝑣 డ௪డఎ + 𝑢𝑤 ᇲ = ଵቈ൫ଵିథమ൯ቈଵିథభାథభഐభഐ ାథమഐమഐ  ቊ ଵ൫ଵିథభ൯మ.ఱ൫ଵିథమ൯మ.ఱ ቀ1 + ଵఉቁ డమ௪డఎమ − ఙఙ 𝑀𝛬ଶ𝑤ቋ. (17) 

 𝑢 డ௵డక + 𝑣 డ௵డఎ = ଵ ൞ ଵ൫ଵିథమ൯ଵିథభାథభ൫ഐ൯భ൫ഐ൯ ൩ାథమ൭൫ഐ൯మ൫ഐ൯ ൱ൢ  డమ௵డఎమ. (18) 

 𝑢 డఝడ௫ + 𝑣 డఝడ௬ = ଵௌ డమఝడ௬మ. (19) 

 𝑢 డఞడ௫ + 𝑣 డఞడ௬ = ଵ డమఞడ௬మ − ଵ௫  ቂడఞడ௬ . డఝడ௬ + 𝜒 డమఝడ௬మቃ. (20) 

After applying initial conditions, we get the following differential equations 

  ଵ൫ଵିథభ൯మ.ఱ൫ଵିథమ൯మ.ఱ ቀ1 + ଵఉቁ𝑊ᇱᇱ + ሾ2𝑉𝑊ᇱ − 2𝑉ᇱ𝑊ሿ ൫1 − 𝜙ଶ൯ 1 − 𝜙ଵ + 𝜙ଵ ఘభఘ ൨ + 𝜙ଶ ఘమఘ ൨  − ఙఙ 𝑀𝛬ଶ𝑊 = 0. (21) 
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 𝑋ᇱᇱ + 𝑃𝑟 ቈ൫1 − 𝜙ଶ൯ ቈ1 − 𝜙ଵ + 𝜙ଵ ൫ఘ൯భ൫ఘ൯  + 𝜙ଶ ቆ൫ఘ൯మ൫ఘ൯ ቇ  ൨ ሾ2𝑉𝑋ᇱ − 𝑉ᇱ𝑋ሿ = 0. (22) 

 𝑌ᇱᇱ + 𝑆𝑐 ሾ2𝑉𝑌ᇱ − 𝑉ᇱ𝑌ሿ = 0. (23) 

 𝑍ᇱᇱ − 𝑃𝑒 ሾ𝑍ᇱ𝑌ᇱ + 𝑍𝑌ᇱᇱሿ + 𝐿𝑏ሾ2𝑉𝑍ᇱ − 𝑉ᇱ𝑍ሿ = 0. (24) 

Again, apply the following boundary conditions we obtained  𝑉 = 0, 𝑉ᇱ = 0, 𝑊 = 1, 𝑋 = 1, 𝑌 = 1, 𝑍 = 1   𝑎𝑡   𝑦 = 0, 

 𝑉ᇱ → 0, 𝑊 → 0, 𝑋 → 0,        𝑌 → 0,       𝑍 → 0   𝑎𝑠   𝑦 → ∞. (25) 
 

3. Numerical Method: 4th-Order Runge-Kutta and Shooting Technique 

The 4th-order Runge-Kutta method is used to solve this system of first-order ODEs. The steps of this method are as 
follows: 

Step 1: Start with initial guesses for the unknown boundary values at 𝑦 = 0(for example, 𝑦ଶ,𝑦ସ,𝑦, ….etc., for the 
velocity, temperature, etc.). 

Step 2: Integrate the system of ODEs using the Runge-Kutta method from 𝑦 = 0 to a large value of 𝑦 (denoted as 𝑦 = ∞) where the boundary conditions at infinity are applied. 
Step 3: Compare the computed values at 𝑦 = ∞  with the boundary conditions at infinity (e.g. 𝑦ଶ(∞),  𝑦ସ(∞),  𝑦(∞), …, etc.). 
Step 4: Adjust the initial guesses iteratively using the shooting technique until the boundary conditions at infinity 

are satisfied to a desired level of accuracy. 
 

4. Transformation of Governing Equations to First-Order ODEs 
To apply numerical methods such as the 4th-order Runge-Kutta method, the system of second- and third-order ODEs 

needs to be transformed into a system of first-order ODEs. 
The ODEs derived from the governing equations are expressed in terms of the functions V(y), W(y), X(y), Y(y), 

and Z(y), which describe the radial velocity, axial velocity, temperature, concentration, and microorganism distribution, 
respectively. These functions are transformed into first-order ODEs using the following designations: 𝑉 = 𝑦ଵ,𝑉ᇱ = 𝑦ଶ,𝑉ᇱᇱ = 𝑦ଷ,𝑊 = 𝑦ସ,𝑊ᇱ =  𝑦ହ ,𝑋 = 𝑦,𝑋ᇱ = 𝑦,𝑌 = 𝑦଼,  𝑌ᇱ = 𝑦ଽ, 𝑍 = 𝑦ଵ,  𝑍ᇱ = 𝑦ଵଵ . 
Using these designations, the system of equations (21)-(25) is transformed into the following set of first-order ODEs: 

1. For the radical velocity V: 𝑦ଵᇱ = 𝑦ଶ  ,𝑦ଶᇱ = 𝑦ଷ   𝑦ଷᇱ = ൬1 + 1𝛽൰ିଵ ቀ൫1 − 𝜙ଵ൯ଶ.ହ൫1 − 𝜙ଶ൯ଶ.ହቁ 

൞−ሾ2𝑦ଵ𝑦ଷ − 𝑦ଶଶ + 𝜀𝑦ସଶሿ ൫1 − 𝜙ଶ൯ 1 − 𝜙ଵ + 𝜙ଵ ఘభఘ ൨ + 𝜙ଶ ఘమఘ ൨ + ఙఙ 𝑀𝛬ଶ𝑦ଶ− ൫1 − 𝜙ଶ൯ 1 − 𝜙ଵ + 𝜙ଵ (ఘఉ)భ(ఘఉ) ൨ + 𝜙ଶ (ఘఉ)మ(ఘఉ) ൨ ሾ𝑦 + 𝑁𝑐𝑦଼ + 𝑁𝑛𝑦ଵሿ ൢ (26) 

2. For the axial velocity W: 𝑦ସᇱ = 𝑦ହ 𝑦ହᇱ = ቀ1 + ଵఉቁିଵ ቀ൫1 − 𝜙ଵ൯ଶ.ହ൫1 − 𝜙ଶ൯ଶ.ହቁ ቈఙఙ 𝑀𝛬ଶ𝑦ସ − ൫1 − 𝜙ଶ൯ 1 − 𝜙ଵ +                                       𝜙ଵ ఘభఘ ൨ + 𝜙ଶ ఘమఘ ൨ ሾ2𝑦ଵ𝑦ହ − 2𝑦ଶ𝑦ସሿ. (27) 

3. For the temperature X: 𝑦ᇱ = 𝑦 𝑦ᇱ = −Pr  ൨ ሾ2𝑦ଵ𝑦 − 𝑦ଶ𝑦ሿ ቈ൫1 − 𝜙ଶ൯ ቈ1 − 𝜙ଵ + 𝜙ଵ ൫ఘ൯భ൫ఘ൯  + 𝜙ଶ ቆ൫ఘ൯మ൫ఘ൯ ቇ. (28) 

4. For the concentration Y: 
 𝑦଼ᇱ = 𝑦ଽ, 𝑦ଽᇱ = −𝑆𝑐ሾ2𝑦ଵ𝑦ଽ − 𝑦ଶ𝑦଼ሿ. (29) 

5. For the microorganism distribution Z: 𝑦ଵᇱ = 𝑦ଵଵ 𝑦ଵଵᇱ = 𝑃𝑒ሾ𝑦ଵଵ𝑦ଽ + 𝑦ଵ(−𝑆𝑐ሾ2𝑦ଵ𝑦ଽ − 𝑦ଶ𝑦଼ሿ)ሿ − 𝐿𝑏ሾ2𝑦ଵ𝑦ଵଵ − 𝑦ଶ𝑦ଵሿ. (30) 
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The boundary conditions are translated into the following form for the system of first-order ODEs: 
At 𝑦 = 0, 𝑦ଵ(0) = 0, 𝑦ଶ(0) = 0,𝑦ସ(0) = 1,  𝑦(0) = 1,   𝑦଼(0) = 1,   𝑦ଵ(0) = 1, 

At 𝑦 =  ∞, 𝑦ଶ(∞) = 0,   𝑦ସ(∞) = 0,   𝑦(∞) = 0,     𝑦଼(∞) = 0,   𝑦ଵ(∞) = 0. 
 

5. NUMERICAL EXAMPLE 
In this section, we will analyse the sensitivity of the system to various flow parameters by examining their effects 

on Sherwood number, Nusselt number, and skin friction. The parameters considered include: 
1. Magnetic Parameter (M) 
2. Volume Fraction of Nanoparticles (ϵ) 
3. Bioconvection Parameters (Nc,Nn) 
4. Schmidt Number (Sc) 

Example: Consider the following parameter values based on the typical setup for nanofluid flow: 𝑀 = 1,𝑁𝑐 = 0.1 = 𝑁𝑛, 𝑆𝑐 = 0.6,𝑃𝑟 = 6.5,𝜑ଵ = 0.005,𝜑ଶ = 0.015, 𝜖 = 1 ,⋀ = 1,𝛽 = 1 

These values represent a non-Newtonian fluid with bio-convection and magnetohydrodynamic. 
Sol: The 4th-order Runge-Kutta method is used to integrate the system from 𝑦 = 0 to a sufficiently large value of 𝑦ஶ = 10. To apply iteration procedure, we get numerical solution for 𝑦ଵ(𝑦),𝑦ଶ(𝑦),𝑦ଷ(𝑦), … . ,𝑦ଵ(𝑦),𝑦ଵଵ(𝑦). These 
correspond to the velocity, temperature, concentration, and microorganism profiles. 
Table 1. The effect of varying flow parameters on the Sherwood number for both Newtonian and non-Newtonian base fluids. This 
analysis focuses on how changes in parameters such as M, ϵ, Nc, Nn, and Sc influence the Sherwood number in the presence of different 
nanoparticle combinations. 

M 𝑵𝒄 𝑵𝒏 𝑺𝒄 𝑨𝒍𝟐𝑶𝟑 − 𝑻𝒊𝑶𝟐 𝑻𝒊𝑶𝟐 − 𝑪𝒖 𝑨𝒍𝟐𝑶𝟑 − 𝑪𝒖 𝜖 𝐹ᇱᇱ(0) Ajhamajidi 𝐹ᇱᇱ(0) Modified 

1 
0.1 

0.1 0.1 
0.20434 0.20490 0.20489 

0.0 0.65 0.65 0.5 0.19424 0.19457 0.19456 
0.9 0.18905 0.18928 0.18928 

1 0.1 
0.1 

0.1 
0.20434 0.20490 0.20489 

0.2 0.73 0.70 0.3 0.21337 0.21382 0.21382 
0.6 0.22576 0.22604 0.22604 

1   
0.1 0.20434 0.20490 0.20489 

0.4 0.82 0.77 0.4 0.30051 0.30244 0.30242 
0.7 0.37883 0.38183 0.38179 

1 0.1 0.1 0.1 0.20395 0.20451 0.20451 0.6 0.89 0.85 
1 0.1 0.1 0.1 0.20375 0.20430 0.20429 0.8 0.96 0.93 
1 0.1 0.1 0.1 0.20734 0.20774 0.20774 1.0 1.02 1.00 

 
6. SENSITIVITY ANALYSIS 

This section has explored the impact of different factors on bio-convection and steady two-dimensional 
magnetohydrodynamic (MHD) free convection in Casson nanofluid flow over a spinning cone. 
Figure 1. (a-c), Figure 2. (a-c), and Table 1. 

   
a b c 

Figure 1. (a-c) Graph of M on the temperature profile 
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a b c 

Figure 2. (a-c) Graph of M on the microorganism profile 

• Figs. 1(a-c) and 2(a-c) were analyzed to observe heat and motile microorganism profiles across a wide range of 
magnetic parameters (M = 1, 2, 3) in hybrid nanofluids. 

• As the magnetic parameter (M) increases, both temperature and motile microorganism profiles show an increase in 
hybrid nanofluids. 

• it is demonstrated that the thermal and motile microorganism boundary layer thicknesses increase due to the release 
of additional heat in the hybrid nanofluids as the magnetic parameter (M) is increased. 

• Furthermore, it is demonstrated that non-Newtonian-based hybrid nanofluids outperform Newtonian-based ones. 
This superiority is attributed to sodium alginate, which exhibits a significantly higher Prandtl number and thermal 
diffusivity compared to water-based hybrid nanofluids. 

Figure 3. (a-c), Figure 4. (a-c) and Table 1. 

   
a b c 

Figure 3. (a-c) Graph of ε on the temperature profile 
 

   
a b c 

Figure 4. (a-c) Graph of ε on the microorganism profile 
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• It illustrates the impact of spin parameter (ε = 0, 0.5, 1) on temperature and microorganism species density profiles 
in hybrid nanofluids. 

• The heat profiles (Fig. 3 (a-c)) and microorganism profiles (Fig. 4 (a-c)) show a decreasing trend across all three 
hybrid nanofluids as the spin parameter ε increases. 

• This decline is attributed to the thinning of the boundary layer as ε increases. The Newtonian base fluid exhibits a 
similar decline in thermal expansion within the hybrid nanofluids. 

• Graph depict variations in microorganism species density for different values of Nc (Nc = 0.1, 0.5, 0.9) (from 
Fig. 5.). 

•  The microorganism profiles show symmetrical motion of hybrid nanoparticles with various base fluids and a 
tendency to aggregate. Non-Newtonian base fluids exhibit faster acceleration compared to Newtonian base fluids, 
resulting in a reduction in flow patterns within hybrid nanofluids. 

• Figure 5. (a-c) and Table 1. 

a b c 

Figure 5. (a-c) Graph of Nc on the microorganism profile 

Figure 6. (a-c) and Table 1. 

   
a b c 

Figure 6. (a-c) Graph of Nn on the microorganism profile 

• Graph (Fig-6) illustrate the impact of hybrid nanoparticles with Nn values (Nn = 0.1, 0.3, 0.6) on the microorganism 
species density profile using two base fluids. 

• The buoyancy effects associated with increasing Nn result in a significant decrease in microorganism species density 
across all three hybrid nanofluids. Non-Newtonian base fluids exhibit more excellent acceleration, leading to 
stiffening of the boundary layer as Nn increases in the three hybrid nanoparticles. 
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Figure 7. (a-c) and Table 1. 

   
a b c 

Figure 7. (a-c) Graph of Sc on the concentration profile 
• Graph illustrates the influence of Schmidt number Sc (Sc = 0.1, 0.4, 0.7) on the concentration flow fields in hybrid 

nanofluids. The concentration profiles (Fig. 7(a-c)) show a decrease as Sc increases, reflecting a reduction in mass 
diffusion due to the ratio of momentum diffusivity to mass diffusivity. 

Figure 8 (a-c) and Table 1. 

   
a b c 

Figure 8. (a-c) Graph of Sc on the microorganism profile 
• Graph depict the impact of Schmidt number Sc on the microorganism species density flow fields in hybrid 

nanofluids. The microorganism species density profiles (Fig. 8(a-c)) decrease with increasing Sc, indicating that 
advection transport dominates over diffusive transport rates. 

•  Non-Newtonian base fluids exhibit enhanced kinematic viscosity in concentration and microorganism species 
density profiles. 

 
Figure 9. Comparative study of  𝜖 and 𝐹ᇱᇱ(0) . 



185
Magneto Hydrodynamic and Bio-Convection Effects on Hybrid Nanofluid Dynamics... EEJP. 4 (2024)

Figure 9 and Table 1. 
• Demonstrates comparing the current study's results and those published previously [17], showing excellent 

agreement under limited considerations. 
• It Provides numerical values of local Sherwood numbers across three hybrid nanoparticles with two base fluids, 

categorised by variables such as M, ε, Nc, Nn, and Sc. The local Sherwood number increases with larger values of 
ε, Nc, Nn, and Sc and decreases with increasing M. Additionally, it is noted that Newtonian base fluids exhibit higher 
mass transfer rates in Aluminum oxide – Titanium oxide, Titanium oxide – Copper and Aluminum oxide – Copper 
hybrid nanoparticles. 

 
7. CONCLUSION 

This study analysed the magnetic bio-convective flow of Casson hybrid nanofluids through a spinning cone, 
presenting thermal, mass, and microorganism profiles graphically and tabulating physical quantities. Key findings 
indicate that an increase in the magnetic parameter (M) enhances heat and motile microorganism profiles, while a more 
significant spin parameter reduces the temperature profile. The microorganism flow field decreases with increasing Sc 
values for all hybrid nanofluids. Mass transfer rates in a non-Newtonian base fluid improve with higher β values. For 
Newtonian base fluids, mass transfer rates increase with ascending ε, Nc, Nn, and Sc. Notably, TiO2-Cu hybrid 
nanoparticles exhibit superior Sherwood numbers. The potential applications of hybrid nanofluids in rotating cones span 
food technology, aeronautical engineering, the pharmaceutical industry, and endoscopy scanning, suggesting future 
exploration of the benefits and limitations of these nanofluids in such fields. 
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МАГНІТОГІДРОДИНАМІЧНИЙ ТА БІОКОНВЕКЦІЙНИЙ ВПЛИВ НА ГІБРИДНУ ДИНАМІКУ НАНОРІДИН 

НАД ПЕРЕВЕРНУТИМ ОБЕРТОВИМ КОНУСОМ З РІЗНИМИ ОСНОВНИМИ РІДИНАМИ 
Баладжі Падхіa, Арчана Сенапатіb, Гутам Кумар Махатоa, П.К. Ратa 
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У цій роботі досліджується комбінований вплив магнітогідродинаміки (МГД) і біоконвекції на динаміку потоку гібридних 
нанофлюїдів над перевернутим обертовим конусом з різними базовими рідинами. Гібридні нанофлюїди, що складаються з 
наночастинок, суспендованих у різних базових рідинах, демонструють унікальні теплові та текучі характеристики завдяки 
взаємодії між магнітними полями та явищами біоконвекції. Основні рівняння, що включають принципи МГД та біоконвекції, 
отримані та розв’язані чисельними методами. Аналіз розглядає вплив ключових параметрів, таких як напруженість магнітного 
поля, швидкість обертання конуса, об’ємна частка наночастинок і типи базових рідин на поведінку потоку, теплопередачу та 
стабільність системи. Результати показують, що МГД суттєво впливає на профілі швидкості та температури гібридних 
нанофлюїдів, тоді як біоконвекція сприяє підвищенню швидкості змішування та теплопередачі. Крім того, вибір базової 
рідини відіграє вирішальну роль у визначенні загальної продуктивності гібридної системи Nano fluid. Це дослідження дає 
цінну інформацію щодо оптимізації дизайну та роботи систем, що використовують гібридні нанофлюїди в програмах, де МГД 
та біоконвекційні ефекти є помітними. 
Ключові слова: магнітогідродинаміка (МГД); біоконвекція; гібридні нанофлюїди; перевернутий обертовий конус; базові 
рідини; наночастинки; динаміка течії 
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There are extensive range of applications related to nuclear industry, industrial manufacturing, science and engineering processing, in 
which the boundary layer hydromagnetic motion of Casson liquids perform vital role. Casson liquid is a useful liquid in the nuclear 
industry for optimizing the design and operation of nuclear reactors. Researchers have investigated transfer of heat in liquid motions 
with linear stratification, which is a phenomenon where the temperature varies linearly with height, affecting various fields such as 
medical equipment, glass fiber production, electronic devices, polymer sheets, paper production, filaments, and medicine. However, 
the most discussion of heat transfer problems is to get numerical solutions of a comprehensive Casson liquid model with heat generation 
described by the BVP4 via shooting method. In this study, a new velocity slip boundary condition is applied at the stretching or 
shrinking surface. These conditions are grounded in the previously established Buongiorno model, providing a more practical and 
realistic approach compared to previous study. The time independent Gov. Eqs. changed into a set of couple non-linear ODEs with 
help of suitable similarity conversions. The equations are evaluating via R-K-F by help of MATLAB software programming.  
Keywords: Magnetohydrodynamic; Shrinking/stretching surface; Velocity slip; Heat Generation/absorption; Casson fluid; 3D 
PACS: 04.25.D, 47.50.-d, *43.28.JS, 62.60. +v. 

INTRODUCTION 
Till date, lots of plentiful fields (such as astrophysics, oceanography) in analytical, experimental and exact solutions 

are studied to describe the NNF because in view of their real time applications existing in biological lubricants and 
biomedical flows, industrial processes (“Metal extrusion, drawing of plastics and rubber sheets, coal-oil slurries, blowing, 
manufacturing, extrusion of polymeric fluids”), polymer and metal extrusion mechanisms and technological applications 
like coating of wires, oil recovery. Therefore, the upcoming research scholars and scientists are doing towards rheological 
features of NNF. In 1959, Casson [1] introduce Casson liquid as a NN model. The laminar motion of pseudo-plastic NN 
NFs (“Al2O3 + CMC”) within the porous circular concentric region was examined by Barnoon and Toghraie [2]. Peri 
P.K. Kameswaran et al. [3] developed the SP motion of NN Casson liquid via SS with Soret and Dufour effects. The 
transfer of heat of Casson viscous gad motion on linear SS was created by Mahabaleswar et al. [4]. Duguma et al. [5] 
described the 2D BL motion of incompressible viscous Casson NFs via permeable SS. Himanshu et al. [6] exhibited the 
SP motion of Au-blood liquid via SS. The non-linear mixed convective HMT features of a NN Casson liquid motion via 
SS was explored by Vishnu Ganesh et al. [7]. Shankar Goud et al. [8] studied the streamline BL Casson liquid motion via 
wedge inspired by magnetic effect. Recently some of scientists respectively, NNF model [9], Eyring-Powell fluid model 
[10], Casson nanofluid with mixed convection model [11], Maxwell fluid with Cattaneo-Christov model [12], Williamson 
nanofluid model [13], Walter’s nanofluid model [14], and Casson NFs with convective condition [15]. 

Recently, Adel et al. [16] exhibited the behavior of a slippery NFs flowing via permeable SS. The rate of HMT in 
an MHD viscoelastic NFs via SS with HG was described by Raja Sekhar et al. [17]. Ali et al. [18] described the motion 
of a Ree-Eyring HNFs by a stretch motion. Akolade et al. [19] created the heat source and generalized Fourier’s law on 
Carreau liquid motion via NLSS. Saleem et al. [20] examine and comparison of the effects of momentum fields. The 
Artificial neural networks are applied in Casson liquid motion past via SS was examination by Srinivasacharya and 
Shravan Kumar [21]. Ouyang et al. [22] developed the thermal conductivity and stability by delving into VD via SS with 
velocity slip. Biswal et al. [23] created an exciting and rapidly developing field takes thermal radiation in blood motion. 
Eid et al. [24] presented the MF and ohmic dissipation on NN Casson liquid motion via VSS. Some of the numerical 
solutions in SS medals [25-31]. 

The heat generation effect on fluid motion has been expansive motivation research work in heat transfer problems 
and it is attractive applications in practical, numerical fields and industrial (“such as the storage of nuclear wastes, heaters 
and coolers of electrical and mechanical devices, thermal insulation, chemical factories etc.”). In general, the term “Heat 
Generation” is occurring high temperature variation between the surface and ambient liquid. Some of the problem of HG 
on Casson liquid motion is considered to be a constant, space dependent or temperature dependent. The 3D motion and 
transfer of heat caused by a bidirectional SS with HG was created by Khan et al. [32]. Javed and Siddiqui [33] presented 
the numerical computation for mixed convection transfer of heat motion of micropolar NFs. Some of authors [34-42] 
described the numerical computation for HG effect on NNNFs motions via linear or non-linear SS. 
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MATHEMATICAL ANALYSIS 

The 3D NFs motion via shrinking or SS with VS with MHD is considered. The physical model of the coordinate 
system is explored in Fig. 1.  

 
Figure 1. Flow Chart of the Problem 

1. The problem created by the SS in 1 1x y − surface area with VS. 
2. The 1z  directional area is orthogonally to SS 1 0b >  or SHS 1 0b < .  
3. The NFs motion occupies area at 1 0z >  and VC of the surface trough 1x and 1y  directional areas are 1 1( )wu x a x=  

and 1 1 1(y )wv b y= , respectively.  
4. The liquid is EC under influence of UMF 1B  as well as VMF is 1 0w w= , where 0 0w < then it is called suction and 

0 0w >  then it is known as injection.  

 
Figure 4. Problem Layout  

Under the above considerations, the basic Gov. Eqs are: 
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Corresponding B.Cs. are 
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The below dimensionless functions and translated variables are: 

 
( )

1
1 1 1 1 1 1 1 1 1 1

1

1 1
1 1 1 1 1 1 1

, '( ), '( ),

w ( ) ( ) , ( ) , ( ) .
f w

az u a x f v a y g

T T C Ca f g
T T C C

η η η
υ

υ η η θ η φ η∞ ∞

∞ ∞
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− − = − + = = − − 

. (6) 

Utilizing the above dimensions, Eq. (6) is identically satisfied and translate Eqs. (2)- (4) becomes: 

 ( ) ( )2''' ''( g) ' ' 1f f f f M P f= − + + + + − , (7) 

 ( ) ( )2''' ''( g) ' ' 1g g f g M P g= − + + + + − , (8) 

 ( )'' Pr ( ) 'f g Hθ θ θ= − + − . (9) 

With subject to the B.Cs. are: 

 

1 1 1 1 1

(0) 0, g(0) 0, '(0) 1 A ''(0), g'(0) Bg''(0),
(0) 1, '(0) (1 (0)),
'( ) 0, g'( ) 0, ( ) 0, ( ) 0 as

f f f
Bi

f

λ
θ θ θ

η η θ η φ η η

= = = + = + 
= = − − 
→ → → → → ∞

. (10) 

The physical quantities of practical interest are 
1fxC  and

1fyC , and 
1x

Nu , it is defined as 

 1 1 1 1

1 1 1
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Defines the SF via 1 1,x y  directional area, HF 
1wq  and MF mq from SS are 

 
1 1 1 1 1

1 1 1 1

1 1 1 1
1 1

1 1 1 10 0 0 0

, , ,wx w y w w B
z z z z

u v T Cq k q D
z z z z

τ μ τ μ
= = = =

       ∂ ∂ ∂ ∂
= = = − = −       ∂ ∂ ∂ ∂       

. (12) 

Substituting the 1 1 1, ,u v T  from the Eq. (11) onto Eq. (12) and using Eq. (6), we getting  

 
1 1 1 1 1 1 1 1

1/2 1/2 1/2 1/2Re ''(0), Re ''(0), Re '(0), Sh Re '(0),x fx x fy x x x xC f C g Nu θ φ−= = = − = −  (13) 

where ( )
1 1 1 1Re /x wU x v=  and ( )

1 1 1 1Re y /y wU v= are LRN. 
 

RESULTS AND DISCUSSION 
To discuss the outstanding variations of velocity of NN motion and 1/2Rex xNu− (“Heat Transfer Rate”) due to relevant 

physical parameters involved in this study with statistical solutions are explained through their plotted graphs: 2-10. The 
present work is considering different cases, like pure fluid, NN liquid, stretching ( )0λ ≥  and shrinking cases ( )0λ < .  

The physical parameter Pr  (“Prandtl number”) on 1( )θ η  (“Temperature Profile”) and 1/2Rex xNu  (“Heat transfer 
rate”) as predict Figs. 2(a)-2(b) with higher statistical values of Pr for the cases of Pure liquid ( )0β = , NN liquid 

(“Casson liquid”) ( )0.5β = and presence of slip parameter on axial direction ( )0.1A B= = , absence of ( )0A B= = slip 

parameter on transverse direction. It is perceived, the 1( )θ η  decline the layer in region 10.02 1.5η≤ ≤  as well as 1/2Rex xNu
with distinct statistical values of Pr . We noticed that the temperature is more in pure fluid when compared with NN liquid, 
because of thermal conductivity is more in Casson liquid. 

Figs. 3(a)-3(b) presented 1( )θ η  (“Temperature Profile”), 1/2Rex xNu  (“Heat Transfer Rate”) with higher numerical 
values of H for the cases of Pure liquid ( )0β = and non-Newtonian liquid (“Casson Liquid”) ( )0.5β = respectively. It 

is perceived, the 1( )θ η  decline the layer in region 10.0015 1η≤ ≤  as well as 1/2Rex xNu . We noticed that the temperature, 
heat transfer is more in pure fluid when compared with NN liquid, because of thermal conductivity is more in Casson 
liquid. 
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Figure 2(a). Outline of Pr on 1( )θ η  Figure 2(b). Outline of Pr on 1/2Rex xNu  

  
Figure 3(a). Outline of H on 1( )θ η  Figure 3(b). Outline of H on 1/2Rex xNu  

The main characteristics of this model is β (“Casson Parameter”) on 1( )f η  (“Axial Direction”), 1g( )η (“Transverse 
Direction”) as predict Fig. 4. It is perceived, the decline of both axial and transverse direction with distinct numerical 
values of β . We observe that, the Casson liquid motion is very high motion in axial direction on stretching surface while 
compare to transverse direction. Because, the plastic dynamic viscosity of Casson liquid motion is very high. Due to this, 
the Casson liquid is slow motion on surface in axial direction.  

The physical parameter M  (“Magnetic Field Parameter”) on 1( )f η  (“Axial Direction”), 1g( )η (“Transverse 
Direction”) as predict Fig. 5. It is perceived, the decline of both axial and transverse direction with high distinct numerical 
values of M . We observe that, the magnetic field parameter is very high motion in transverse direction on SS while 
compare to axial direction. Because, the magnetic force applied to Casson liquid which has generate drag force named as 
“Lorentz force”. This force acts Casson liquid in opposite direction to the motion. 

  
Figure 4. Outline of β on 1 1'( ), g'( )f η η  Figure 5. Outline of M on 1 1'( ), g'( )f η η  
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The characteristics of Bi  (“Stretching/Shrinking Parameter”) on 1( )θ η  (“Temperature Profile”) and B  (“Slip Parameter 
on Transverse Direction”) for Stretching ( )0Bi ≥  and shrinking ( )0Bi < cases as depicted Fig. 6(a)-6(b). It is perceived, the 
Bi  improves temperature while opposite direction of B with distinct enlarge statistical values. We observe that, the Casson 
liquid flow is very high temperature motion in case of ( )0Bi ≥ (“Stretching”) while compare to ( )0Bi < (“Shrinking”). 
Because, the viscosity of Casson liquid motion in stretching sheet is very high.  

  
Figure 6(a). Outline of Bi on 1( )θ η  Figure 6(b). Outline of B on 1( )θ η  

Figs. 7(a)-7(b) illustrate the characteristics of A  (“Slip Parameter on Axial Direction”) on 1/2Rex fxC  (“Skinfriction” 

coefficient along axial direction”), 1/2Rex fyC  (“Skinfriction” Coefficient along Transverse Direction”) respectively. It is 
clear that, the A  (“Slip Parameter on Axial Direction”) declined both axial and transverse directions of Skinfriction 
coefficient foe higher enlarge statistical values of " "A . We noticed that, the Skinfriction is less movement in Casson 
liquid flow via stretching surface. 

  

Figure 7(a). Outline of A on 1/2Rex fxC  Figure 7(b). Outline of A on 1/2Rex fyC  

The Table 1 and 2 presented that, the comparison study of present and previous study for Skinfriction coefficient 
with various numerical cases of magnetic parameter M. 
Table. 1 Evaluation of SFC ''(0)f−  for 0A B Bi= = =  

M  Present study Sarah et al. [36] Nadeem et al. [37] Gupta and Sharma [38] Ahmad and Nazar [39] 
0.0 1.000000 1.00000 1.0004 1.0003181 1.0042 
10 3.316624 3.31662 3.3165 3.3165824 3.3165 
100 10.04987 10.04987 10.049 10.049864 10.049 

Table. 2 Comparison of SFC ''( )f− ∞  for 0A B Bi= = =   

M  Present study Nadeem et al. [37] 
0.0 1.173719 -- 
10 3.367222224 3.3667 
100 10.06646642 10.066 
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CONCLUSIONS 
A statistical analysis has been done for HG effect on 3D MHD motion of Casson liquid via SS with VS Condition. 

The main contribution of the present investigations is mentioned below: 
 The 1/2Rex xNu  is very less motion in Casson liquid when   presence of slip parameter while comparing with absence 

of slip parameter for higher values of Pr. 
 The temperature is less transfer in NN liquid motion when compares with pure liquid motion with higher statistical 

values of Pr. 
 The HG is high in pure fluid while opposite motion in HTR when compared with Casson liquid for escalate values 

of H.  
 

Nomenclature 
1 1( , )x y  Cartesian coordinate’s wT  Constant fluid Temperature of the wall 

1 1 1, ,u v w  velocity components along 1 1 1, , zx y -axis wU  Stretching velocity 

A  Velocity slip along x-axes 0 1a Nγ  U∞  Free stream velocity 

B  Velocity slip along y-axes 0 2a Nγ  
Greek symbols 

f  Dimensionless stream function 1ρ  Density 
'f  Dimensionless velocity 1σ  Boltzmann constant 

H  Heat Generation Parameter 0

1 1( ) f

Q
a cρ

 
  
 

 
λ  Constant stretching/shrinking parameter 1 1b a  

M  Magnetic field parameter
2

1 0

1 f

B
a
σ

ρ
=  1υ  Kinematic viscosity of the fluid 

P Porous Parameter e

v
μ
ρ

 =  
 

 
θ  Dimensionless temperature 

Pr  Prandtl number 1

1

υ
α
 

=  
 

 1α  Thermal diffusivity ( )p fk cρ=  

Rex  Reynolds number Subscripts 

1T  Temperature of the fluid ∞  condition at free stream 

T∞  fluid temperature far away from the surface  

Abbreviations 
NFs Nanofluids HTR Heat Transfer Rate 
HT Heat TRansfer SS Stretching Sheet 
HMT Heat and Mass Transfer VD Viscous Dissipation 
HG Heat generation SHS Shrinking Sheet 
MHD Magnetohydrodynamic 3D Three Dimensional 
MF Magnetic Field NN non-Newtonian 
BL Boundary Layer B.Cs. Boundary Conditions 
SP Stagnation Point HNFs Hybrid Nanofluids 
BVP Boundary Value Problem RKF  Range Kutta Fehlberg 
SFC Skinfriction Coefficient NNF non-Newtonian Nanofluid 
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ВПЛИВ ГЕНЕРАЦІЇ ТЕПЛА НА 3D МГД ПОТІК КАССОНОВОЇ РІДИНИ ЧЕРЕЗ ПОРИСТУ ПОВЕРХНЮ 

ЩО РОЗТЯГУЄТЬСЯ/СКОРОЧУЄЬСЯ З УМОВОЮ ШВИДКІСНОГО КОВЗАННЯ 
Б. Джагадіш Кумар, Найнару Таракараму 

Факультет математики, школа вільних мистецтв і наук, Університет Мохана Бабу, 
Срі Сайнат Нагар, Тірупаті-517102, Андрападеш, Індія 

Існує широкий спектр застосувань, пов’язаних з ядерною промисловістю, промисловим виробництвом, наукою та 
інженерною обробкою, у яких гідромагнітний рух прикордонного шару рідин Кассона відіграє життєво важливу роль. Рідина 
Casson є корисною рідиною в атомній промисловості для оптимізації конструкції та роботи ядерних реакторів. Дослідники 
досліджували передачу тепла в русі рідини з лінійною стратифікацією, яка є явищем, коли температура змінюється лінійно з 
висотою, впливаючи на різні галузі, такі як медичне обладнання, виробництво скловолокна, електронні пристрої, полімерні 
листи, виробництво паперу, ниток і медицина . Проте найбільше обговорення проблем теплообміну полягає в тому, щоб 
отримати чисельні рішення комплексної рідинної моделі Кассона з утворенням тепла, описаним BVP4 за допомогою методу 
зйомки. У цьому дослідженні нова гранична умова швидкісного ковзання застосована на поверхні розтягування або звуження. 
Ці умови ґрунтуються на раніше встановленій моделі Буонгіорно, що забезпечує більш практичний і реалістичний підхід 
порівняно з попереднім дослідженням. Незалежне від часу Gov. Eqs. змінено на набір пари нелінійних ODE за допомогою 
відповідних перетворень подібності. Рівняння оцінюються через R-K-F за допомогою програмного забезпечення MATLAB. 
Ключові слова: магнітогідродинаміка; поверхня, що скорочується/розтягується; швидкісне ковзання; генерація/поглинання 
тепла; Кассонова рідина; 3D 
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The breakup of projectile has been understood using a Montecarlo simulation at low energy, which indicates a wider breakup cone is 
present for near target breakup whereas at far target breakup there are well localized breakup cone is present. The simulations indicate 
the requirement of wider solid angle in experiment and localized kinematic solid angle to study the breakup phenomena. The case study 
of 7Li+208Pb has been considered and found well agreement of simulated results with experimental data. 
Keywords: ES (Elastic scattering); CF (Complete Fusion); ICF (Incomplete fusion); CN (Compound Nucleus); BU (Break up) 
PACS: 25.60.Dz, 25.10.+s, 25.40.Hs, 25.60.Gc, 25.60.Pj, 25.60.Je, 25.70.Gh 

INTRODUCTION 
Study of nuclear reaction involving loosely bound projectile is a subject of current study and interest in specific [1-5]. 

This is because when one can use a loosely bound projectile there is a possibility that the projectile can fuse with the 
target or it can break before the fusion leads to an incomplete fusion (ICF) process. Including ICF there can be a break up 
escape, transfer and pickup can also possible [6]. Many experimental studies [7-9] has been done and found that using 
loosely bound projectiles if complete fusion can be measured there is a fusion suppression of complete fusion above the 
barrier and enhancement bellow the barrier has been reported compared to the Single barrier penetration model 
calculation. The exact reason is still far from understanding. Not only the enhancement and suppression has observed but 
there can be proton transfer and n pickup has also been observed including main breakup channel [10]. All the above-
mentioned feature has been observed only by using the projectile a loosely bound projectile 
(7Liα+t,6Liα+d,9Beα+α+n…etc). Recently there are reports which indicates the breakup from the resonant states 
including the excited states of projectiles are important [20]. In addition, with the breakup the location (near/far) where 
the breakup occurs also effects the crossection and it is difficult to measure experimentally all the times as it requires 
higher solid angle coverage experiment [16-19]. To understand these phenomena presently limited theoretical models are 
available for example CDCC, FRESCO, CCFULL [11-12]. All the models are complex quantum mechanical models. 
People are trying to develop simplified model which can explain all the phenomena simultaneously.  

Our work is also on the same way. In the present paper we tried to understand the reaction specially the breakup of 
the projectile around the coulomb barrier using a classical approach and Monte Carlo modeling. 

The present approach will be helpful to understand near /far breakup mechanism. Since experimentally it is always 
difficult to get the data in all 4π, So a model has been adopted (using classical trajectory under Monte Carlo modeling) to 
understand the breakup mechanism. 

Specially we tried to understand the mechanism around the coulomb barrier regions. Because around the barrier, 
(below the barrier) the fusion will not possible, the nuclear reaction can happen because of tunneling phenomena. So, it 
is interesting to see a classical approach bellow the barrier to understand the breakup mechanism. 

The paper has been organized as follows in the Section 1 experimental detail has been provided, Section 2 contains 
the modeling (classical trajectory approach using Montecarlo modeling) with results. The Summary with future outlook 
has been explained in Section 3. 

EXPERIMENTAL DETAIL 
The experiment was performed long time back with the projectile 7Li and a target of 208Pb of thickness 200 μg/cm2. 

It was a self-supporting target. The experiment was done at 8PLP set up [13]. The projectile energies vary from 31 to 
39 MeV. The beam intensity was around 10 nA. The Coulomb barrier is ~31 MeV with fusion radius RB~10.69fm 
provided by Proximity potential [14]. In the present paper we have focused only on one energy, that is 31 MeV which is 
around the barrier. The other energies are above the barrier so it has not considered presently. The detail experimental 
approach has been reported in [14]. There are ΔE vs Time and E vs ΔE graph has been generated to identify the particles 
ejected during the reaction. 
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A typical experimental spectrum has been shown in Fig. 1 for 31 MeV. It can be observed from Fig. 1 that there are 
different particles (alpha, triton, deuteron, proton) are present which come out from the reaction because of many 
reactions’ mechanism. The particles have been identified very clearly. 

 
Figure 1. Typical raw spectra of particles detected during the experiment for 31MeV of 7Li. All the particles are clearly visible 

 
CALCULATION AND MODEL SIMULATIONS 

A theoretical calculation including a Montecarlo modeling has been performed to understand the breakup mechanism. 
As a first work we have generated the coulomb barrier which is the addition of nuclear plus coulomb potential as shown in 
Fig. 2. The proximity potential [14] has been chosen for nuclear one which is a Wood-Saxon type in nature. The form of the 
wood Saxon potential is V(r) = -V0/(1+exp(r-r0)/a), where V0 is the depth of the nuclear potential, a0 is the diffuseness 
parameter which has taken as 0.63 fm for the present case, r is the radial distance between the interacting nuclei and r0 is 1.02fm. 

For our simulation and modeling the breakup fragments of projectile (7Li α+t) has been detected in coincidence 
mode and the coincidence spectrum of alpha and triton for a beam energy of 31 MeV has been shown in Fig. 3. 

  
Figure 2. The effective potential for 7Li+208Pb using proximity 
potential. The barrier radius RB and different contribution has 
been shown. (Vcol is the Coloumb potential; Vnucl is the 
nuclear potential, Vtot is the addition of Coloumb+ nuclear 
potential. VB – the barrier height which will be taken as the 
barrier of the system) 

Figure 3. Coincidence experimental data of alpha and triton for 
31 MeV projectile energy 

From Fig. 3 one can see that there are different bands and the different bands results from the different break up 
process. (breakup from GS, breakup from excited state, breakup from resonant state, Ex: Ex = 4.630 MeV, 7/2- for 
7Li …etc). The same structure of the band in coincidence mode keeping the detector geometry in mind has been simulated 
using Montecarlo technique and shown in Fig. 4. 

In the simulation the target excitation has not included as our aim is to see the effect of projectile breakup only. If we 
see the value of the loci of the 2d spectra (Fig. 4) and compare with the loci of Fig. 3 for the projectile breakup we will 
see the patches matches at the same values which indicates the reproduction of the experimental data for the projectile 
breakup. No contribution of the target excited states has considered as it makes the situation complex. The same can be 
tried later. 

In the present case to understand the interaction/breakup mechanism of the projectile we have considered only around 
the barrier points i.e 31 MeV data only. From Fig. 2 one can see that the barrier radius (RB) ~ 10.6 Fm. This indicates that if 
the projectile wants to fuse with the target it has to cross that barrier radius and below the barrier energy it is difficult for the 
projectile to reach that barrier radius. So, it has assumed that the maximum break up point after which the particle can fuse 
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with the target is the barrier radius (RB). In the below barrier energy in addition with tunneling the projectile can scattered to 
different direction. For each scattering the scattered angle has been randomly samples between the angle 0° to 1800. For a 
given randomly generated scattering angle the distance of closest approach has been calculated as prescribe in [15]. 
The randomly generated scattering angle with the distance of closet approach has been shown in Fig. 5. 

  

Figure 4. Montecarlo simulation keeping the geometry in mind. 
The coincidence of alpha and triton has been considered only. The 
different patch leads to the different excited states of the projectile 

Figure 5. Randomly generated Rmin w.r.t. the scattering angle 
for a given energy 

After determining the distance of closest approach, a breakup point has been chosen randomly between the distance 
of closest approach and the barrier radius by doing a random sampling with a probability of breakup exponential decaying 
in nature ( ( )min BURand R -R

buP αe ). Once the breakup point has been identified then the particle can be scattered and two break 
up fragments can be detected in coincidence. Here two types of break up has been considered 1) near target breakup 2) far 
or asymptotic breakup. In the above expression α is the proportionality constant, Pbu- breakup probability, Rand (RBU - 
Rmin) is the randomly generated point between breakup radius (RBU) and Rmin. Rmin is the distance of closest approach for 
a given energy and angle. 

In case of near target breakup, the influence of the coulomb potential may provide a wider breakup cone which 
translates to a wider Δθ, where as in case of asymptotic breakup the influence of the coulomb potential will be negligible 
and the breakup may have a narrow breakup cone as shown in Fig. 6.  

 

Figure 6. Pictorial diagram of the breakup of the projectile near target and far away from the target 

When the projectile breaks near the target it has assumed that it breaks instantly from the breakup point. where as 
when breakup happens asymptotically, far from target, its breakup happens from the excited state of a specific energy and 
time. So, when the projectile breaks from the excited states or resonance states (For 7Li the resonance state considered for 
simulation are 4.652 MeV, 7/2-, & 6.67 MeV, 5/2-). The Δθ with the breakup angle (β) has been shown schematically in 
Fig. 7. 
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Figure 7. Schematic diagram to represent the Dq and b (b). The ejectile can break in to two fragment C, D and the fragments move 
in opposite direction in their c.m. frame of projectile from the point o/ 

The breakup fragments have been detected coincidently for both the case near target and far away from the target. 
The full simulation has been done using the present geometry in consideration and the result has been shown in Fig. 8. 

 
Figure 8. [a] – the result of Montecarlo simulation for the two resonant states of 7Li. i.e. the breakup has happened far away from 
the target and one can see a well-defined localized distribution of the fragments with narrow detection cone; [b] - The breakup near 
the target which indicates wider angle of detection cone w.r.t β breakup angle). 

One can see from the Fig. 8 that if we consider the near target breakup then there is a wider distribution of the Δθ 
with respect to β. In case of a far or asymptotic breakup the breakup fragments have a narrow angle of detection that 
means the Δθ will be more localized whereas the near target breakup the distribution is wider as shown from Fig. 8. 
 

SUMMARY & FUTURE WORK 
A Montecarlo simulation has been performed to understand the breakup at low energy and it has found that there 

are wider cones for near target breakup compared to asymptotic breakup. This provides an important input to 
experimentalist to setup their experimental apparatus for experiment to catch the breakup fragments. In addition, a 
coincidence energy spectrum has also simulated and presented. In future the time evolution of the trajectory will be 
simulated under the potential surface.  
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Розпад ядра був з’ясований за допомогою моделювання Монте-Карло при низькій енергії, що вказує на наявність ширшого 
конуса розпаду для розпаду поблизу цілі, тоді як при розпаді далекої цілі присутній добре локалізований конус розпаду. 
Симуляції вказують на необхідність ширшого тілесного кута в експерименті та локалізованого кінематичного тілесного кута 
для вивчення явищ розпаду. Було розглянуто приклад 7Li+208Pb і виявлено добре узгодження результатів моделювання з 
експериментальними даними. 
Ключові слова: ES (пружне розсіювання); CF (повний синтез); ICF (неповний синтез); CN (складне ядро); BU (розпад) 




