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Using the TiSiN/MeN (Me = Cr, Nb, W, Mo, TiZr) coatings system as an example, the analyzed results of multilayer coatings with 
nanolayers of various functional purposes require a systematic approach to understanding the role of selected materials, growth 
conditions, microstructure, and required properties. Nanoscale grain boundaries, coherent interlayer boundaries, and changes in 
columnar morphology at the micro level significantly change the physical and mechanical properties of coatings. For all coatings, an 
increase in mechanical parameters (hardness, modulus of elasticity) is observed due to the formation of a nanoscale phase (which 
additionally prevents the movement of dislocations together with nanocomposite TiSiN). In addition, there is a mismatch of crystal 
lattices between layers. Effectively contributes to strengthening due to variable fields of stresses and strains caused by deformations of 
elastic coherence. Research has determined optimal conditions for the formation of coatings in a wide range of gas (nitrogen) pressure 
and shear potential, which also allowed for establishing the factors of structural changes and operational characteristics that will be 
optimal for their industrial use. 
Key words: Cathodic vacuum arc physical vapor deposition; Multilayer coatings; TiSiN; Bias potential; Hardness; Phase state; 
Annealing 
PACS: 68.55.Jk, 68.65.Ac 

INTRODUCTION 
A complex of structural materials with enhanced physical and mechanical properties is used to improve the reliability 

and durability of modern technology in operation. However, to increase the performance of products, in particular cutting 
tools, it is relevant to create and use protective coatings, whose principle is based on a complex of tribological and 
mechanochemical effects that determine the ability of coatings to maintain their integrity and high wear resistance under 
the influence of high temperatures and contact loads [1-3]. One of the key trends in developing these coatings is to ensure 
the nanoscale of both structural elements and individual layers in multilayer compositions [4-8]. The formation of the 
nanoscale structure of the coating materials is related to the choice of graininess, which is optimal according to the strength 
criterion, the balance between the Hall-Patch dependence, and the expression that determines the rate of grain boundary 
creep with decreasing grain size. The efficiency of applying such coatings is attributed to the combination of their high 
physical and mechanical properties, resistance to oxidation, and dissociation of the chemical compounds included in their 
composition due to the peculiarities of the structure of nanocomposite film systems. Immersing nanocrystalline grains in 
the amorphous matrix of the second phase of the material, for example, Si3N4 can boost the physical and mechanical 
properties of TiN coatings, increasing their oxidation resistance and thermal stability [9, 10]. 

In work [11], it was found that the process of destruction of TiSiN nanocomposite coatings changed from brittle to 
ductile when the residual compressive stress decreased to the level at which the microcracks were activated. The residual 
stress of deposited coatings consists of three parts: the epitaxial or structural mismatch between the seed film and the 
substrate, the internal stress, and the thermal stress during the post-coating cooling process. Annealing is a common 
method of reducing residual stress as a result of reducing defects, dislocations, and vacancies [12]. However, this 
treatment also reduces the hardness of coatings obtained by ion bombardment [13]. 

For this reason, developing TiSiN coatings with a multilayer architecture is considered a more effective method to 
improve viscosity and wear resistance, reduce residual stress, and maintaining high hardness [4]. 

First and foremost, the lattice mismatch and the interface between the different layers can cause the lattice to distort 
to accommodate the applied stress and create an alternating stress field to reduce the stress concentration. Additionally, 
different stress properties in each coating can reduce overall stress [14]. 
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In work [15], the wear behavior and adhesive properties of multilayer MeN/TiSiN (Me = Ti, Cr, Zr, Mo, NbxAl1−x) 
coatings with variable second layers were studied. Multilayer coatings based on TiSiN alternated with TiN, ZrN, NbAlN, 
CrN, and MoN with a fixed number of layers were synthesized by cathodic arc ion sputtering. Multilayer coatings based 
on TiSiN exhibit a precise nanocomposite multilayer structure. Columnar grains are not observed because the growth of 
crystalline nitride grains is blocked by amorphous Si3N4 or interfaces. High adhesion (with a critical load of more than 
70 N) and a lower coefficient of friction (between 0.3 and 0.58) are achieved for all multilayer coatings. 

In work [16], the investigation of multilayer coatings of the TiSiN/CrN system by cathodic arc evaporation with 
different multilayer periods (Λ) of 8.3 nm, 6.2 nm, and 4.2 nm was reported. It revealed the formation of a typical 
columnar structure and B1-NaCl crystalline with a maximum hardness of 37±2 GPa and the lowest wear rate of 0.323 GPa 
for the coating with Λ = 8.3 nm. This suggests that the mechanical and tribological properties of TiSiN-based coatings 
can be enhanced through the design of multilayer coatings. 

To enhance the oxidation and/or mechanical properties of TiSiN-based coatings, intensive efforts have been made 
to explore multilayer structures. In work [17], nano-multilayer TiSiN/TiAlN films were reported by a dual cathodic arc 
plasma evaporation system with a hardness ranging from 32 to 38 GPa. The potentiodynamic polarization measurements 
showed that for all the multilayered coatings the corrosion potential shifted to higher values, and the corrosion current 
density decreased, indicating better corrosion resistance than that of single-layer coatings like TiAlN or TiSiN [18-20]. 

According to this principle, TiSiN-based multilayer coatings have attracted a great deal of interest. The existing 
literature shows that most scientific researchers focus on the influence of the bilayer period on the microstructure and 
mechanical properties of TiSiN-based multilayer coatings. However, there are relatively few studies devoted to the 
investigation of the properties, which is the most important factor for the application.  

To summarise data on TiSiN-based multilayers for specific applications, we decided to write this review paper, which 
concludes the results of newly published experiments on multilayer coatings TiSiN/MeN (Me = Cr, Nb, W, Mo, and TiZr). 

 
MATERIAL AND METHODS 

The architectural solution of composite multilayer coatings based on TiSiN is presented in Figure 1. 
Multilayer coating systems TiSiN/MeN (Me = Cr, Nb, W, Mo, and TiZr) were synthesized by cathodic vacuum arc 

physical vapor deposition (CVA-PVD). The scheme of the cathodic-arc deposition machine is depicted in Figure 2. 
Two evaporators were used to obtain TiSiN/MeN coatings. The cathodes were sintered from the TiSi target 

(chemical specification in at. % is Ti94Si6) and Me targets such as Cr, Nb, W, Mo (purity specification is 99.8 %) and 
sintered TiZr (chemical specification in at. % is Ti75Zr25). Nitrogen was supplied by injecting N2 gas (a purity of 99.6 %) 
into the deposition chamber. 

The coating systems were deposited on stainless steel (grade 12X18H9T or an analogue of SUS321 and 321S51) 
with dimensions of 20 mm×20 mm×2 mm.  

The specific technological parameters during the deposition of multilayer coatings are summarized in Table 1. 

 
Figure 1. The architecture scheme of composite multilayer coating systems TiSiN/MeN (Me = Cr, Nb, W, Mo, and TiZr). 
 

 
Figure 2. Scheme of the CAE-PVD machine used for the deposition of the multilayer coating systems TiSiN/MeN (Me = Cr, Nb, W, 
Mo, and TiZr). Adapted from [21]. 
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Table 1. Deposition parameters of multilayer coating systems TiSiN/MeN (Cr, Nb, W, Mo, and TiZr). 

Coating Sample 
no. 

Arc current, 
A 

Negative 
bias, V 

Gas 
pressure, Pa 

Coating 
thickness, 

µm 

Multilayer 
period, nm 

TiSiN/ CrN 

1 
110/90 -100 

0.08 

7-10 6.7-12.5 

2 0.3 
3 0.06 
4 

110/80 -200 
0.08 

5 0.3 
6 0.6 

TiSiN/NbN 

1 

110/80 

-110 0.53 5.1 56 
2 -200 4.5 50 
3 -110 0.13 6.8 75 
4 -200 6.3 70 

TiSiN/WN 1 100 -200 0.6 4.2 10.5 

TiSiN/TiZrN 

1 
 

80-85 -200 

0.6 3.61 40.1 
2 0.13 3.72 40.9 
3 0,6 3.67 20.4 
4 3.96 85.9 

TiSiN/MoN 

1 140/100 -100 0.05 

9-11 7-8 

2 -200 
3 140/100 -100 0.13 4 -200 
5 140/100 -100 0.67 6 -200 

 
DISCUSSIONS 

Coatings of TiSiN/NbN system 
Experimental results for multilayer TiSiN/NbN coatings are shown in Figure 3 and Figure 4 and adopted 

from [21-23]. The TiSi target was obtained by the vacuum-arc remelting method. The composition of targets was Ti94Si6 
and Nb99.8. As can be seen, the surface morphology of the coatings has a well-defined cellular structure (Figure 3, left 
panel). There are many shallow craters with a diameter of 0.3 to 5 μm. Solid inclusions in the form of drops are unevenly 
distributed over the surface and occupy approximately 15 % of the surface area. The diameter of the droplets varies 
between 2 to 10 nm. 

In the cross-section, the coatings are evenly deposited on the substrate and have a dense structure. A clear periodic 
arrangement of nanoscale layers in the laminar architecture is observed (Figure 3, right panel). The thickness of the NbN 
layers is 20 % greater than the thickness of the TiSiN layers. This difference in thickness can be attributed to a lower rate 
of evaporation of the TiSi cathode, which mainly consists of the refractory intermetallic compound TiSi2, compared to 
pure niobium. Additionally, the smaller thickness and higher density of TiSiN can also be explained by the lower 
formation energy of TiSiN compared to NbN. The structure of the NbN layers is more difficult to densify by ion 
bombardment, which is generated by the -110 V and -200 V bias voltages applied to the substrate during coating 
production. Thus, both phenomena lead to the formation of thinner but denser TiSiN layers. According to elemental 
analysis data, it was established that the coatings obtained at a higher bias potential of -200 V have a lower concentration 
of Si ranging between 0.8 to1.0 at. % than the coatings obtained at a lower bias potential of -110 V. 

According to XRD patterns (see Figure 4a), it was established that in the coatings obtained at low values of the bias 
potential of -110 V (samples nos. 1 and 3), two phases are formed: face-centered cubic (fcc) titanium nitride TiN (space 
group No. 225) and hexagonal close-packed (fcc) niobium nitride NbN-δ' (space group No. 194). Analysis of the intensity 
and position of the peaks indicates the presence of a (111) texture in fcc-TiN and a strong (00.2) texture in hcp-NbN-δ' 
for the coating obtained at a pressure of 0.13 Pa (sample no. 1). An increase in the gas pressure to 0.53 Pa leads to a 
redistribution of the peak intensity and a shift in their position, which indicates the practically non-textured state of the 
sample no. 3.  

An increase in the negative bias potential leads to the appearance of clear high-intensity peaks in the diffraction 
patterns, which indicate the formation of a nanocrystalline state in the coatings (see Figure 4b). For the sample obtained 
at a low pressure of 0.13 Pa (sample no. 2), two phases are formed: fcc-TiN and hcp-bN-δ'. However, with an increase in 
pressure to 0.53 Pa, structural and phase transformations occur in the coatings, leading to the appearance of the third 
phase - face-centered cubic (fcc) niobium nitride NbN (space group No. 225) (sample no. 4). Due to the complex structure 
of the samples, the diffractogram has many diffraction planes for different phases, and some peaks overlap. 
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Figure 3. Scanning electron microscopy images of the surface and cross-section of multilayer coatings TiSiN/NbN. 
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Figure 4. General research results of multilayer coatings TiSiN/NbN: XRD patterns (a), Hardness and Young’s modulus (b), results 
of sclerometric studies of the sample no. 2 (the red line corresponds to the friction coefficient (COF) and the blue line corresponds to 
the acoustic emission (AE)) (c). 

The average grain size ranges from 8 to 14 nm. The lattice parameter for TiN ranges from 0.4250 to 0.4256 nm and 
is slightly increased compared to the reference fcc-TiN (a = 0.4240 nm according to JCPDS). This indicates the formation 
of residual compressive stresses in the coatings. 

For TiSiN/NbN coatings, an increase in mechanical parameters is observed (see Figure 4b). The hardness grows up 
to 34.4 GPa, and the modulus of elasticity rises up to 412 GPa. This is due to the formation of a nano-sized NbN phase 
(which additionally prevents the movement of dislocations together with nanocomposite TiSiN). In addition, the crystal 
lattice mismatch between the TiSiN and NbN layers effectively contributes to strengthening due to variable stress and 
strain fields caused by elastic coherence deformations. The multilayer architecture contributes to the reduction of grain 
sizes and the increase of the volume fraction of atoms located at the interfaces of layers, thereby preventing the 
propagation of dislocations.  

Adhesive strength tests (see Figure 4c) indicate a cohesive failure mechanism of TiSiN/NbN coatings, which is 
associated with plastic deformation and the formation of fatigue cracks in the material. The maximum load resulting in 
plastic abrasion of sample no. 2 is greater than 49.76 N, which indicates a high degree of strength of the coating and high 
adhesive properties of the contact between the coating and the substrate. 

 
Coatings of TiSiN/CrN system 

Figure 5 shows experimental results for multilayer TiSiN/CrN coatings adopted from [24, 25]. The vacuum-arc 
remelting method was applied to sinter the TiSi target. The composition of targets were Ti94Si6 and Cr99.9. Since the TiSiN 
and CrN films have a face-centered cubic structure, in the multilayer architecture, which is depicted in Figure 5a, the 
TiSiN and CrN nanolayers tend to grow epitaxially, which will reduce the interfacial energy in the coatings. As the 
thickness of the CrN nanolayer increases, the increase in strain energy due to the different lattice parameters of TiSiN and 
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CrN disrupts the coherent interface. Thus, the structure of the epitaxial growth between TiSiN and CrN can be disturbed, 
which leads to a deterioration of crystallinity.  

The elemental analysis results established that all TiSiN/СrN coatings have a slightly higher stoichiometric 
composition, confirmed by the ratio of metal elements to nitrogen (Ti + Si + Cr)/N (see Figure 5a, insert). The coating of 
sample no.3 obtained at the bias potential of -100 V and nitrogen pressure of 0.6 Pa has the maximum silicon 
concentration. As the bias potential increases to -200 V, the silicon concentration drops several times. Apparently, this is 
due to the preferential atomization of light silicon atoms from the surface of the growing coating due to ion bombardment. 
The higher the shear potential and the lower the gas pressure in the chamber, the stronger this effect. 

The analysis of the secondary mass spectrometry is presented in Figure 5b. It confirms the presence of positive ions 
in the spectra, in particular Ti, Cr, Si (at 28–30 min with low intensity), TiN, CrN, Ti2, TiCr, Ti2N, Ti2N2 (probably TiSi 
in the case of the presence of a layer of TiSiN), as well as Ti3N, Ti3(N2)(Si), Ti3(N3)(SiN). The spectrum of negative ions 
revealed the presence of SiN, TiN, and CNI(Cr, Cr2), which shows a maximum at the beginning of the sputtering and 
decreases and reaches a plateau after 45–60 min. The intensity of the secondary ion current for TiN and Tix bonds is 
relatively small in the first five minutes of sputtering, then increases sharply, reaches a maximum, and soon (after 
45-60 minutes) reaches a plateau.  

 

a b 

 
c d 

Figure 5. General research results of multilayer coatings TiSiN/CrN: typical SEM image of cross-section with chemical analysis for sample 
nos. 1-3 (a), spectrum of positive secondary ions for sample no. 3 (b), typical XRD patterns (c), results of sclerometric studies of the sample 
no. 3 (the red line corresponds to the friction coefficient (COF) and the blue line corresponds to the acoustic emission (AE)) (d) 

 
X-ray patterns of multilayer TiSiN/CrN coatings in the initial state show the formation of three main nitride phases, 

in particular, face-centered cubic (fcc) TiN (JCPDS 38-1420) and Ti2N phase (JCPDS 23-1455) with tetragonal (anti-) 
rutile type structure (space group P42/mnm) for TiSiN layers, and face-centered cubic (fcc) CrN (JCPDS 65-2899) for 
CrN layers (see Figure 5c). For these coatings, the Ti2N phase leads to a high level of microdeformations with a value of 
7.5×10-3. The main crystalline phase is TiN with a cubic B1 (NaCl-type) structure. Applying a negative bias potential to 
the substrate during deposition leads to a highly textured state with a predominant orientation along the (111) axis. In 
addition, it increases the number of defects in the crystal structure and the level of residual compressive stresses.  

After annealing the coatings at 400 °C (see Figure 5c), the phase composition TiSiN/CrN of sample no. 1 does not 
change. Still, crystallization occurs in the CrN layers, as indicated by separating the CrN(111) peak from the highly 
intensive TiN(111) peak. Increasing the annealing temperature to 700 °С also does not lead to a change in the phase 
composition of the coatings or the texture. Still, the separation of the CrN(111) peak becomes much more noticeable. At 
the same time, low-intensity peaks of Ti2N(200), Ti2N(111), Ti2N(330), and CrN(311) appear. Annealing leads to a 
greater decrease in the lattice parameters of all phases by 2-3 % and a decrease in the level of microdeformations from 



17
A Review of Vacuum-ARC Multilayer Coatings with High-Strength Characteristics... EEJP. 4 (2024)

7.5×10-3 to 7.2×10-3. After annealing at 700 °C (see Fig. 5c), the content of Si in the upper layers of the coatings increased 
due to intensive diffusion of silicon from the depth of the coating to the surface. At the same time, at 700 °C, a change in 
the stoichiometry of the coatings accompanies the annealing process. All coatings acquire a pre-stoichiometric 
composition as the concentration of N decreases from (50.43 ÷ 53.41) to (48.18 ÷ 49.16) at. %.  

According to the mechanical tests, all TiSiN/CrN coatings are pretty hard (hardness values varied between 27.8 and 
31.1 GPa) in the initial state. Annealing the coatings at 400 °C increases the hardness to (29.1 ÷ 32.8) GPa. A further 
increase in the annealing temperature to 700 °С slightly reduces the hardness of the coatings to the range of 
(28.8 ÷ 30.9) GPa. The coating sample no. 3, obtained at a bias potential of -200 V and a working gas pressure of 0.6 Pa, 
has the best mechanical properties both in the initial and after annealing. The coating hardness and elastic modulus have 
maximum values of 31.1 GPa and 298 GPa (32.8 GPa and 311 GPa at 400 °C and 30.9 GPa and 301 GPa at 700 °C), 
respectively. The higher hardness of this sample is due to the higher level of crystallinity of the TiSiN layers in the 
multilayer structure (according to the Pathscheider model). The H3/E2 values of the coatings are also exceptionally high 
both in the initial state (0.20 ÷ 0.33) and after annealing at 400 °C (0.23 ÷ 0.36) and at 700 °C (0.23 ÷ 0.32), which 
indicates their reasonably high resistance to mechanical loads without and under the influence of temperature.  

The results of the adhesive tests, presented in Figure 5d, show that the coatings wear out under load, but do not peel 
off. Coating destruction occurs through a cohesive mechanism associated with plastic deformation and the formation of 
fatigue cracks in the coating material. It was found that the adhesive strength of TiSiN/CrN coatings obtained at a nitrogen 
pressure of 0.6 Pa and a bias potential of -100 B is higher by 10 % compared to coatings obtained at a bias potential of -
200 B. For sample no. 3, which has the best hardness indicators, we identified the highest adhesive strength of 49.54 N. 

 
Coatings of TiSiN/WN system 

The results of experimental studies of the structure and properties of multilayer TiSiN/WN coatings before and after 
annealing are given in [26, 27] and depicted in Figure 6.  

 
А 

 
B 

Figure 6. General research results of multilayer coatings TiSiN/WN: SEM images of the cross-sections with chemical analyses 
before and after annealing (a) XRD patterns before and after annealing (b) 
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It was established that all coatings have a relatively dense homogeneous structure (see Figure 6a). There are no 
cracks, pores, or other structural defects at the "substrate-coating" interface. According to the results of the quantitative 
analysis of the droplet phase, the average size of droplet formations in the coatings is approximately the same. Still, their 
number in the TiSiN/WN coating is reduced by two times compared to the WN/TiN coating due to the higher melting 
temperature of the TiSi system. After annealing, the surface of the coating’s changes, while the main part, in the direction 
from the surface to the substrate, remains visually unchanged. Noticeable dimensional changes, in particular, the thickness 
of coatings decreases by 5 %.  

It is seen that the heating intensified the diffusion processes that contributed to the changes in the atomic composition 
of the components (see Figure 6a). The titanium concentration increases from 16.58 to 20.38 at. % and tungsten 
concentration rise from 18.29 to 41.46 at. %. This may be due to the additional formation of solid solutions from TiSi and 
W atoms in the near-boundary region due to the diffusion processes and mixing. The silicon concentration increased 
approximately two times, from 6.11 to 12.48 at. %.  

Experimental data show that nanosize multilayer TiSiN/WN coatings have a two-phase structure: cubic tungsten 
nitride WN-β and cubic titanium nitride TiN (see Figure 6b). The lattice parameter of WN-β is 0.4232 nm, the grain size 
is 8.2 nm, and the level of microdeformations is 6.3×10-3. The intensity of the diffraction lines from WN-β and TiN 
indicates the predominant orientation (200) in the WN layers and (311) in the TiSiN layers. The titanium nitride lattice 
parameter is 0.4155 nm, the grain size is 9.0 nm, and the level of microdeformations is 1.35×10-2. After annealing at 
700 °C, the two-phase structure remained in the WN/TiSiN multilayer coatings. The lattice parameter of WN-β decreases 
the value of 0.4192 nm, the grain size increases to 12.6 nm, and the level of microdeformations decreases to 3.6×10-3. 
The lattice parameter of TiN also reduces to 0.4124 nm, the grain size increases to 10.9 nm, and the level of microstrains 
decreases to 1.16×10-2. The preferential orientation (200) remains unchanged.  

It is obvious that annealing intensifies diffusion processes that cause changes in the atomic composition of elements. 
The Ti concentration increases from 18.29 to 20.08 at. %, and the W concentration rises from 18.29 to 41.46 at. 
Furthermore, the concentration of N decreases from 59 to 26 at. %, and Si increases almost two times (from 6.11 at. % to 
12.48 at. %).  

Diffraction lines containing silicon are absent in XRD patterns, which indicates the XRD amorphousness. The only 
change for the TiSiN/WN coating is that the reflections from WN-β are shifted to higher 2-theta values, which may be 
due to the annihilation of point defects (interstitial or substituted) often observed in vacuum-arc coatings obtained at high 
pressure of the working gas [28]. Annihilation should also affect the TiN lattice parameters. However, the diffusion effect 
of W in TiN can counteract the expected decrease in the lattice parameter, which is observed in this coating. During 
annealing, the phase state of the coatings did not change in principle, but it led to an increase in grain size and relaxation 
of internal stresses.  

The indicators of the mechanical properties show that the hardness of the annealed coatings increased by 6-7 % 
(hardness values rise up to 33 GPa, elastic modulus grows up to 422 GPa, fracture deformation, and plastic deformation 
increses up to 0.078 and 0.202, respectively). In summary, annealing multilayer TiSiN/WN coatings at a moderate 
temperature partially eliminated structural and technological defects, improving mechanical characteristics. 

 
Coatings of TiSiN/TiZrN system 

Increasing the wear resistance of TiSiN-based coatings can be achieved by applying a multicomponent alternating 
layer, for instance, TiAlN or TiVN [10, 17]. Figure 7 shows the experimental results of the study of multilayer 
TiSiN/TiZrN coatings adopted from [29-31]. We used the targets made of alloys TiZr (element ratio is 75:25 at. %) and 
TiSi (elements ratio is 94:6 at. %). The technology used in target production is vacuum-arc remelting. As can be seen in 
Figure 7a, the surface of the coatings is not smooth, and the droplet fraction on the samples of all samples is present in a 
rather noticeable amount. In addition to drops, crater-pores are visible on the surface. The cross-sectional images clearly 
show the layered architecture and the diffusion zone formed at the "coating-substrate" interface. The multilayer 
combination has good planarity and the boundaries of layers of different compositions are well distinguished. According 
to chemical analysis, the content of silicon varied between 0.56 to 0.86 at. %, which is significantly lower than its content 
in the target (5 at. %). The likely reason for these decreases is backscattering. 

According to XRD analysis (see Figure 7b), the two-phase structure with fcc crystal structure is formed. The TiZrN 
and TiN phases have reflections of the (111), (200), and (311) planes. The signal from the (111) planes is the most intense, 
which is the preferential orientation and can be considered a confirmation of the highest level of crystallinity. An increase 
in the multilayer period while maintaining the total thickness of the coating is accompanied by a similar decrease in the 
degree of crystallinity. As the multilayer period increases, splitting the (111) peak into components from the TiZrN and 
TiN phases becomes more noticeable. A similar pattern is also visible for the (311) peak. The average grain size ranges 
from 9.2 to 11.6 nm. In coatings deposited under different nitrogen pressures with the same other parameters, the grain 
size difference was only 0.2 nm, that is, only 2% on average. The architecture and structure of the coating are more 
significant influences on the grain size. Thus, an increase in the number of bilayers (in other words, a decrease in the 
multilayer period) from 90 to 180 and 360 leads to a consistent corresponding change in grain sizes along the chain: 
11.6 nm (sample no. 4) - ≈10 nm (sample no. 1 and sample no. 2) - 9.2 nm (sample no. 3) and to increasing crystallinity 
(level of texture). During coatings deposition, compressive residual stresses are formed, increasing from -3.5 to -5.3 GPa 
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with grain size. The calculated dimensions of the lattice parameters differ little (the change range is between 0.4323 and 
0.4354 nm); that is, the discrepancy does not exceed 1 %. 

According to the data of photoelectron spectroscopy (see Figure 7c), the N 1s spectrum can be separated into two 
components, of which the main (high-intensity) peak at 395.3 eV can correspond to the energy of Si-Nx type bonds, 
probably in the Si3N4 compound. The low-energy peak at 395.5 eV may correspond to the Ti-N bond energy. The Ti 2p 
spectrum also splits into two components: the high binding energy at 397.2 eV corresponds to Ti-N type bonds, and the 
low binding energy at 396.3 eV corresponds to Zr-N bonds. 

 
а 

 
b 

 
c 

Figure 7. General research results of multilayer coatings TiSiN/TiZrN: typical SEM images of the surface and cross-section (а), XRD 
patterns (b), photoelectron spectroscopy spectra (c), results of sclerometric studies of the sample nos. 2 та 4 (the red line corresponds 
to the friction coefficient (COF) and the blue line corresponds to the acoustic emission (AE)) (d, e), SEM image of the scratch on the 
surface of sample no. 4 at different critical loads Lс1 – Lс5 (f). 
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Figure 7. (continued) General research results of multilayer coatings TiSiN/TiZrN: typical SEM images of the surface and cross-
section (а), XRD patterns (b), photoelectron spectroscopy spectra (c), results of sclerometric studies of the sample nos. 2 та 4 (the red 
line corresponds to the friction coefficient (COF) and the blue line corresponds to the acoustic emission (AE)) (d, e), SEM image of 
the scratch on the surface of sample no. 4 at different critical loads Lс1 – Lс5 (f). 

Compared to TiSiN or TiZrN films, multilayer TiZrN/TiSiN coatings have increased hardness, ranging from 
24.5 GPa to 38.2 GPa. The trend of hardness increases with decreasing bilayer thickness, and the trend of hardness 
increases with decreasing bilayer thickness is evident. The coating with the thinnest multilayer period of 20 nm has the 
highest hardness of 38.2 GPa and modulus of elasticity of 430 GPa. Similar changes in friction coefficients and acoustic 
emission parameters were recorded for coatings obtained at different nitrogen pressures (see Figures 7d and 7e). When 
the load increases to ~55 N, the friction coefficients increase quite quickly and steadily to the level of ~0.5–0.52, after 
which it decreases slightly to the values of 0.46 - 0.47 and remains practically unchanged after that (not more than 0.48) 
to a maximum load of 190 N. During the entire period of loading and movement of the indenter on the coating surface, 
the level of acoustic emission (AE) is relatively low. The first pulses are recorded starting with a load of 15 N; the 
maximum level of AE is observed at loads of 25-45 N, although it does not exceed 5 %. Extreme AE peaks are not 
recorded, a characteristic feature of wear without brittle fracture. No peeling of the coating was recorded during 
scratching, indicating cohesive wear associated with plastic deformation and fatigue failure of the coating material. 
Scratches at different stages of loading indicate a smooth wear characteristic of plastic abrasion without clearly visible 
cracks (see Fig. 7f). Such wear is observed until the coating is completely worn to the substrate.  

According to the wear testing results, multilayer TiSiN/TiZrN coatings wear by an abrasive mechanism. The 
intensity of wear of sample no. 3 (multilayer period is 20.4 nm) is twice as low as in sample no. 4 (the multilayer period 
is 85.9 nm). The coefficient of friction during the tests range from 0.79 to 0.82. The improvement of wear resistance of 
TiZrN/TiSiN nanocomposites is affected by their structural and phase features, in particular, multilayer period, 
concentration of Si atoms, the level of crystallinity (texture), and stress state.  
 

Coatings of TiSiN/MoN system 
Figure 8 shows experimental results for multilayer TiSiN/MoN coatings adopted from [32-35]. The vacuum-arc 

remelting method was applied to sinter the TiSi target. The compositions of the targets were Ti94Si6 and Mo99.8. 
Microscopic analysis of the cross-section images of the coatings showed a reasonably high uniformity and low defectivity 
(see Figure 8a) of the obtained coatings by thickness. An increase in the bias potential causes more intense surface 
sputtering, while the thickness of the coating also decreases. It is shown that in the nitrogen pressure between 0.05 and 
0.67 Pa, when the pressure increases, changes occur at the elemental level: The Si content decreases and the N and Mo/Ti 
ratios increase. At the phase level, changes mainly occur in molybdenum-based layers, where the transition 
Mo → γ-Mo2N → MoN occurs with increasing pressure. The highest hardness of 37.5 GPa is achieved in this case by 
forming TiN/γ-Mo2N layers with an isostructural crystal lattice. The use of high-temperature annealing (at a temperature 
of 1023 K) makes it possible to increase the hardness of the coatings obtained at a relatively low nitrogen pressure of 
0.09 Pa when the formation of an additional solid Ti5Si3 phase is likely due to the low nitrogen content.  
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Figure 8. General research results of multilayer coatings TiSiN/МоN: cross-section SEM images (а), XRD patterns (b), dependence of 
hardness on the nitrogen partial pressure before (curve 1) and after annealing (curve 2) (c), results of sclerometric studies of the sample no. 
4 (the red line corresponds to the friction coefficient (COF) and the blue line corresponds to the acoustic emission (AE)) (d). 

The results of adhesion strength of multilayer TiSiN/MoN coatings are significantly higher compared to coatings 
based on TiAlSiN systems, TiZrSiN, and, TiHfSiN which were obtained by vacuum-arc deposition [36, 37]. Thus, the 
destruction of these coatings begins at an average load of 55-65 N, and in multilayer TiSiN/MoN coatings - at a load of 
160-180 N. The measurement of hardness shows that the partial pressure of nitrogen, which affects the formation of the 
phase composition, also has a decisive effect on hardness. The dependence of hardness on pressure reaches maximum 
values of about 37.5 GPa in the pressure range between 0.16 to 0.4 Pa (see Figure 8c). From the point of view of structural 
engineering, this state corresponds to the presence of nitride phases TiN and γ-Mo2N with an isostructural crystalline 
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lattice of the NaCl type in both layers. Annealing is accompanied by a decrease in the hardness of the coatings obtained 
in the pressure range of 0.15 to 0.7 Pa, which is associated with the characteristic growth of crystallites in the constituent 
phases. This is especially noticeable in the coatings obtained at a pressure of 0.7 Pa, when, according to phase analysis, 
the MoN phase with a hexagonal crystal lattice is formed in molybdenum-based layers. At the same time, annealing of 
the coatings obtained at a pressure of 0.7 Pa leads to a significant increase in hardness by more than 30 % (up to 40 GPa).  

 
CONCLUSIONS 

Based on the obtained research results, the main regularities of the formation of the composition and properties of 
multilayer coatings were analyzed. This allows for further development of more complex combined multilayer systems 
with improved physicomechanical and tribological properties, as well as improved biocompatibility. 

Studies of multilayer coatings, which consist of a combination of nitride or carbide multielement layers and layers of 
binary nitrides of refractory or transition metals or layers of pure metals, allow combining within one coating the best 
properties of multielement and multilayer nitride or carbide coatings. Patterns of structure formation in multilayer and 
multielement coatings under certain deposition conditions, such as nitrogen atmosphere pressure, bias potential, and substrate 
temperature, can be used to conduct further fundamental scientific research to elucidate the mechanisms of structure 
formation of more complex coatings for which these mechanisms are unknown at the moment, or to create approaches to the 
formation of new types of coatings by varying deposition parameters, architecture, and elemental composition.  

The main practical advantages of the proposed vacuum-arc coating deposition method are simplified control over 
the technological process, reduction of cost and energy consumption, good repeatability of results, and the possibility of 
relatively easy and fast industrial scaling of deposition technologies. 

Modeling the structure and properties of multielement and multilayer coatings based on first-principle molecular 
dynamics can additionally explain and confirm assumptions about specific features of the formation of the structure and 
properties of multilayer and multicomponent coatings, which allows us to predict good prospects for its application in 
further fundamental and applied research more complex from the point of view of architecture coatings. 

The results of the study of the properties presented in the review, in particular the structure, hardness, adhesive 
strength, and the effect of annealing, are the main characteristics that affect the formation of composite nano-sized 
multilayer coatings as highly efficient materials for multifunctional purpose. This opens new perspectives for the 
development of new combinations of structural materials and the optimization of their production technologies. 
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На прикладі системи покриттів TiSiN/MeN (Me = Cr, Nb, W, Mo, TiZr) проаналізовано результати створення багатошарових 
покриттів з наношарами різного функціонального призначення, які потребують системного підходу до розуміння ролі 
обраних матеріалів, умов росту, мікроструктури та необхідних властивостей. Нанорозмірні межі зерен, когерентні міжшарові 
границі та зміни стовпчастої морфології на мікрорівні суттєво змінюють фізико-механічні властивості покриттів. Для всіх 
покриттів спостерігається покращення механічних характеристик (твердість, модуль пружності) за рахунок утворення 
нанорозмірної фази (яка додатково перешкоджає руху дислокацій разом з нанокомпозитом TiSiN). Крім того, зафіксована 
невідповідність кристалічних граток окремих шарів ефективно сприяє зміцненню внаслідок утворення зміних полів 
напружень і пружних деформацій. Дослідженнями визначено оптимальні умови формування покриттів у широкому діапазоні 
тиску рекційного газу (азоту) та потенціалу зміщення, що також дозволило встановити фактори структурних змін та 
експлуатаційні характеристики, які будуть оптимальними для їх промислового використання. 
Ключові слова: вакуумно-дугове осадження; багатошарові покриття; TiSiN; потенціал зміщення; твердість; фазовий 
стан; відпал 
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This paper presents a comprehensive study in a collisionless plasma composed of charged state of heavy positive ion and light positive as
wel as negative ion. By deriving the Korteweg-de Vries (KdV) equation and by using its standard solution we analyze the characteristics
of the solitary profile under varying parameters. We found that the solution gives both rarefactive and compressive soliton. The
compressive structures are formed for the slow mode, while rarefactive solitary structures are formed for the fast mode. Furthermore,
with the application of planar dynamical systems bifurcation theory, the phase portraits have been analyzed. This dynamical system
analysis allowed us to extract important information on the stability of these structures as represented by the KdV equation.

Keywords: KdV Equation; Solitary Wave; Quantum Plasma; Dynamical System; Reductive perturbation method; Pressure Anisotropy

PACS: 02.30.Jr, 03.75.Lm, 52.30-q,45.30.+s, 52.27Lw

1. INTRODUCTION
Two key properties of plasma are nonlinearity and dispersion; nonlinearity causes the wave to steepen, while

dispersion aims to make the wave broader. A wave that propagates in the plasma without losing its identity even after
interacting with other waves is referred to as a solitary wave when the nonlinearity and dispersion are balanced. A confined
nonlinear wave with a steady-state shape is a soliton [1]. Washimi and Taniuti made the first theoretical prediction of
the presence of ion-acoustic solitary waves of modest but finite amplitudes in plasma in 1966 [2]. The fundamental
characteristics of the ion-acoustic wave would be considerably altered in the linear [3–5] and nonlinear regimes [6, 7] in
the presence of a second ion species in a plasma. They discovered that two ion acoustic modes, known as the fast and
slow ion modes, are supported by their model. These two ion wave modes are confirmed to exist by the experimental
studies [4, 5].

The physics of positive and negative-ion quantum plasmas, and in particular multi-ion plasmas, have attracted a lot
of attention lately because of their presence in plasma environments ranging from laboratory to astrophysical. [8–11]. The
constituents of the degenerate quantum plasma includes electrons, heavy ions with positive charges, and light ions [12]. It
is commonly known that negative ions exist in the Halley’s comet [13] and the Earth’s ionosphere [14]. Positive-negative
ion plasmas have also been discovered to exist in a variety of settings, including neutral beam sources [15], low-temperature
laboratory studies [16], reactors for plasma processing [17], etc. Numerous authors [11, 18–21] used positively charged
heavy and light ions in quantum plasmas to study nonlinear waves.

In the presence of elevated magnetic fields, the plasma ion pressure exhibits anisotropic behavior, and the plasma
behaves differently in parallel and perpendicular directions relative to the external magnetic field [22]. So, to consider
the effect of ionic pressure anisotropy pressure i.e., the parallel ion pressure (𝑃∥ ) and perpendicular ion pressure (𝑃⊥)
become very important. Numerous studies have been reported on the impact of pressure anisotropy on the propagation of
solitary and shock waves in different plasma regimes [23, 24]. For example, Almas et al. [25] investigated the properties
of ion-acoustic solitary waves composed of anisotropic pressure of electron-positron-ion(e-p-i) plasma and found that
the characteristics of such waves are more sensitive to parallel ion pressure than perpendicular ion pressure. Khalid et
al. [26] also studied the propagation of ion-acoustic electrostatic waves in a magnetized electron-ion plasma with pressure
anisotropy. Mahmood et al. [27] studied the properties of non-linear electrostatic structure in anisotropic pressure plasma
and found that only the width of the soliton depends on the perpendicular pressure (𝑃⊥), however, an increase in the
parallel pressure (𝑃∥ ) decreases both the amplitude as well as the width of the soliton. Manesh et al. [28] studied the
properties of solitary waves in an anisotropic plasma with lighter and heavier ions and found that the light ion’s pressure
anisotropy determines the polarity of solitary waves, and it is rarefactive for anisotropic lighter ion whereas compressive for
the isotropic lighter ion. Khan et al. [29] studied the properties of soliton and cnoidal wave in an anisotropic superthermal
electron-positron-ion plasma and found that the wavelength of the cnoidal wave structure is reduced on increasing the
parallel and perpendicular anisotropy of ion. Khalid and Rahman [30] studied the ion pressure anisotropy of the ion
acoustic non-linear periodic waves in a magnetized plasma. They reported that the increase of parallel pressure of ions
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decreases the amplitude and width of the ion-acoustic periodic waves and the ion-acoustic waves behave differently than
ion-acoustic periodic (cnoidal) waves in anisotropic plasmas.

Apart from classical plasmas, the effect of pressure anisotropy has been widely investigated in dense quantum
magnetized plasmas. For example, Bordbar and Karami [31] studied the structural properties of an anisotropic dense
neutron star and analyzed the compactness, redshift, etc. of such a dense matter as a function strong magnetic field of
the order of 1017 Gauss which creates the anisotropy. Patidar and Sharma [32] explored the magneto hydrodynamic
(MHD) wave modes in anisotropic relativistic degenerate plasma and found fast and slow wave modes propagating under
the combined influence of various forces such as pressure anisotropy, exchange potential, Bohm force, and magnetic field.
Irfan et al. [33] observed a strong modification of amplitude and width of weakly nonlinear ion-acoustic waves considering
the pressure anisotropy of positive ions and electron trapping effects in a dense quantum magneto-plasma. Moreover, in
the non-relativistic and ultra-relativistic regimes, the anisotropic ion pressure also affects the stability of solitary waves.

Phase plane analysis is a useful graphical method for analyzing second-order systems with respect to their initial
condition, and it is a useful tool for investigating the qualitative behavior of dynamical systems. Geometrically, a curve
or point represents the trajectory of a dynamical system for a particular initial state in a phase plane. Furthermore, we
may learn more about the system’s stability and the presence of solutions using this technique [34]. The significance
of phase plane analysis in understanding the qualitative solutions of plasma systems is commonly acknowledged and
used by researchers [35–38]. Recently, in various plasma systems, researchers have examined the bifurcation features of
small-amplitude nonlinear waves within the framework of equations such as the Burgers equation [39], ZK equation [40],
etc. [41, 42]

The objective of the present paper is to study the solitary wave propagation in collisionless quantum magneto-
plasma considering the ionic pressure anisotropy. The Korteweg-de Vries (KdV) equation is derived using the reductive
perturbation technique(RPT) to study the solitary wave nature in such plasma. These plasmas are believed to exist in white
dwarfs and neutron stars. The results obtained here may be useful for laboratory as well as space astrophysical plasma
environments wherein such plasma environments are prevalent.

2. THEORETICAL FORMULATION
We consider a collisionless plasma composed of charged state of heavy positive ion and light positive as wel as

negative ion. The normalized set of governing equations is given by [43]:

𝜕𝑁𝑙𝑛,𝑙 𝑝
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+
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Here 𝛼𝑝 = 𝛼𝑒 + 𝜇ln −1−𝑍ℎ𝑝
𝜇ℎ𝑝 , 𝜇ℎ𝑝 =

𝑛ℎ10
𝑍𝑙𝑝𝑛𝑙𝑝0
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/
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𝑚l𝑝𝑍ln
𝑍l𝑝𝑚ln

, lnΛ is the logarithm of Coulomb parameter, 𝐴𝑙𝑛(𝑙 𝑝) is the atomic weight of heavy positive ion, 𝑍ℎ𝑝 is the charged
state of heavy positive ions, 𝑍𝑙 𝑝 (𝑙𝑛) is the charged state of light positive (negative) ions, 𝑁𝑙 𝑝 (𝑙𝑛) is the normalized plasma
light positive (negative) ion density, 𝜙 is the normalized electrostatic potential. 𝑃𝑙 𝑝 (𝑙𝑛) ∥ and 𝑃𝑙 𝑝 (𝑙𝑛)⊥ are the parallel and
perpendicular pressure of light positive (negative) ion. The pressure equations for the anisotropic and adiabatic system
are given by Chew–Goldberger–Law popularly known as (CGL) or double adiabatic theory [44–46], according to which
𝑑
𝑑𝑡

(
𝑃𝑖 ∥𝐵

2/𝑛3
𝑖

)
= 0 and 𝑑

𝑑𝑡
(𝑃𝑖⊥/𝑛𝑖𝐵) = 0. In the case of electrostatic waves in a magnetized plasma, the ambient magnetic
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field 𝐵 = 𝐵0 is constant with time, i.e. 𝑑
𝑑𝑡
(𝐵) = 0 where 𝐵0 is the magnetic field at equilibrium. Moreover, the normalized

parallel and perpendicular ion pressures obtained from the CGL theory are given as 𝑃𝑖 ∥ = 3𝑃𝑖 ∥0
/
𝑛𝑖0𝜀𝐹𝑒 and 𝑃𝑖⊥ =

𝑃𝑖⊥0/𝑛𝑖0𝜀𝐹𝑒 where 𝑃𝑖 ∥0 = 𝑛𝑖0𝑇𝑖 ∥ and𝑃𝑖⊥0 = 𝑛𝑖0𝑇𝑖⊥ are the equilibrium values of parallel and perpendicular pressure
functions respectively, and 𝑛𝑖0 is the unperturbed ion density. [22, 45, 47] The variations in the ambient magnetic field

alter the ionic temperatures in parallel and perpendicular directions to the magnetic field, i.e., 𝑇𝑖 ∥ ∝ 𝐵0 and 𝑇𝑖⊥ ∝
(
𝑛𝑖0
𝐵0

)2

respectively [47, 48].
The other plasma parameters are normalized as follows:
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𝑒
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3𝜋2
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) 2
3 Where, 𝜆𝐹𝑒 is the Thomas-Fermi

length, 𝐶𝑠 is the Fermi ion sound velocity, 𝜔𝑝ℎ is the plasma frequency, 𝑚𝑙 𝑝 (𝑙𝑛) is the mass of light negative (light positive)
ions

3. DERIVATION OF KDV EQUATION
To derive the evolution equation we employed the reductive perturbation technique. The stretched coordinates [22]

used here are given by:

𝜉 = 𝜀
1/2 (
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(9)

Where M is the phase velocity (Mach number) and 𝜖 is a small nonzero constant measuring the strength of dispersion.
In terms of the expansion parameter 𝜖 , the physical variables in equations are expanded in a power series as
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(10)

Substituting the above stretched coordinates from Eq.(9) and the respective expansions from Eq. (10) in the Eqs.(1)-
(8), and then collecting the terms appearing in the lowest order of 𝜖 gives the following relations which gives the phase
velocity as

𝑀 = ±

√︄
𝑏 ±

√
𝑏2 − 4𝑎𝑐
2𝑎

(11)
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)
The second-order perturbation terms were also obtained by equating the coefficient of the next higher order of 𝜖 .

Then using standard procedure we obtain the KdV equation as
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Ω2
𝑙𝑛

+
(
𝐼2
𝑥𝑃𝑙 𝑝⊥ + 1

) (1−𝐼2
𝑥)𝑀2

(𝑀2−𝑃𝑙𝑝∥ 𝐼
2
𝑥)2

Ω2
𝑙𝑛

))
To obtain the solution of Eq. (12), the authors consider the new variable 𝜒 = 𝜉 − 𝑈𝜏 where 𝜒 is the transformed

coordinate with respect to a frame moving with velocity U. By taking 𝜙 (1) = 𝜙, Eq.(12) becomes

−𝑈
𝐴

𝑑𝜙

𝑑𝜒
+ 𝜙

𝑑𝜙

𝑑𝜒
+ 𝐷

𝑑3𝜙

𝑑𝜒3 = 0 (13)
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Where 𝐷 = 𝐵
𝐴

Now, employing the method used in [49] results the solution of equation(13) as

𝜙 = 𝜙𝑚sech2
( 𝜒
𝑊

)
(14)

Where 𝜙𝑚 = 3𝑈
𝐴

, 𝑊 = 2
√︃

𝐵
𝑈

are the amplitude and width of solitary wave respectively.

4. RESULTS AND DISCUSSION
The authors examine the properties and nature and solitary wave propagation under various physical scenarios through

the analysis of the exact solution provided by Eq. (14). The data range employed in the current paper is widely established
across diverse plasma environments. Specifically, the authors consider plasma density on the order of 1026 − 1030 and a
magnetic field on the order of 1010 − 1012 with 𝑇𝑒 ∼ 1 keV. This set of parameters corresponds to well-known plasma
environments found in various astrophysical contexts.

Figure 1. Variations in mach number for different combination of magnetic quantization, positron density and heavy
positive ion

The normalized phase velocity, also known as the Mach number, is shown in Figure 1(a) for different combinations
of the heavy positive ion, positron density, and magnetic quantization parameter for the fast mode. Figure shows that the
velocity is in the subsonic region and that it rises as the density of lighter positive ions increases. The slow mode is plotted
for the same set of parameters in Fig. 1(b). While in slow mode, the velocity is subsonic, but it decreases as the density
of lighter positive ions increases. By comparing Figs. 1(a) and 1(b), we can observe that the velocity is maximum in the
fast mode and lowest in the slow mode for 𝜂 = 0.2, 𝜇𝑝 = 0.5, 𝑍ℎ𝑝 = 35, and 𝜂 = 0.3, 𝜇𝑝 = 0.4, 𝑍ℎ𝑝 = 50, respectively.

Depending on the sign of the nonlinearity coefficient A, the soliton solution given by Eq. (29) may yield either a
positive (compressive) or a negative (rarefactive) profile.Fig2 displays solitary profiles for variation of 𝑍ℎ𝑝 for fast mode.
It is clear that when 𝑍ℎ𝑝 increases, the amplitude of the solitary profile decreases. Figures 2(a), (b), and (c) show that
when light positive ions are isotropic and light negative ions are anisotropic, the width is at its maximum. For fast mode,
the solitary profile is rarefactive. The slow mode is depicted in Fig. 3 for the same combination as in Fig. 2. The solitary
profile in this instance is compressive. The fast and slow modes are always precisely opposite to one another. This is

Figure 2. Solitary profile of fast mode with variation of heavy positive ion
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Figure 3. Solitary profile of slow mode with variation of heavy positive ion

Figure 4. Solitary profile of fast mode with different combination of perpendicular pressure of light positive ion and light
negative ion.

Figure 5. Solitary profile of slow mode with different combination of perpendicular pressure of light positive ion and
light negative ion.
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an intrinsic property of the plasma that has been investigated both theoretically and experimentaly. If the fast mode is
compressive (rarefactive), the slow mode is rarefactive (compressive).

Figures 4 and 5 depict the changes in the solitary profile for different combinations of perpendicular pressure.
Perpendicular pressure to the wave affects its width, but its amplitude stays constant. The width reaches its greatest when
when both light negative ion and light positive ions are anisotropic for 𝑃𝑙𝑛∥ > 𝑃𝑙 𝑝∥ (figs. 4a and 5a), but it is at its highest
when light negative ion is anisotropic but light positive ion is isotropic for 𝑃𝑙𝑛∥ = 𝑃𝑙 𝑝∥ (figs. 4b and 5b)

5. DYNAMICAL SYSTEM ANALYSIS
Phase plane analysis is a useful tool that is widely used in fusion research to understand the dynamics and stability

of plasma systems. A phase plane in plasma physics generally shows the development of two relevant factors, including
temperature and plasma density. Achieving controlled and persistent fusion reactions requires maintaining the stability of
plasma systems.

Regarding our research and phase plane analysis, we would like to state that the reason for this section of the manuscript
is that the phase plane technique entails visually identifying whether limit cycles are present in a differential equation’s
solutions. Scientists examine plasma state trajectories and equilibrium point locations using phase plane analysis. The
way that small deviations from these equilibrium points change over time is how stability is determined. The solutions
are interpreted as a family of functions that are graphically depicted as a two-dimensional vector field in the phase plane.
At typical points, arrows denoting the derivatives of points with respect to a parameter are drawn. The system’s behavior
throughout the examined plane regions can be seen by constructing these vectors, which makes limit cycle identification
easier. Phase portrait refers to the overall visual representation, and phase path refers to a particular trajectory along a flow
line (a path tangent to the vectors).

In order to obtain the dynamical system equation we apply the transformation of the space and variable as 𝜒 = 𝜉 −
𝑈𝜏 and finally obtain the transformed equation as

𝑑𝜙

𝑑𝜒
= 𝑧

𝑑𝑧
𝑑𝜒

= 𝑈
𝐷𝐴

𝜙 − 1
2𝐷 𝜙2 (15)

The Hamiltonian of the system (15) is

𝐻 =
1
2
𝑧2 − 𝑈

2𝐷𝐴
𝜙2 − 1

6𝐷
𝜙3 (16)

The dynamical system described by (15) involves the equilibrium points 𝑃 = (0, 0) and 𝑄 =

(
0, 2𝑈

𝐴

)
.

To derive the eigenvalues, it is essential to have the Jacobian matrix (JM) of the dynamical system. It is evident that
system (15) can be expressed as (

𝜙

𝑧

)
=

(
0 1

𝑈
𝐷𝐴

− 1
2𝐷 𝜙 0

) (
𝜙

𝑧

)
(17)

The expression for the JM is

𝐽 =

(
0 1

𝑈
𝐷𝐴

− 1
2𝐷 𝜙 0

)
(18)

The eigenvalues can be found by using the relation |𝐽 − 𝜆𝐼 | = 0. Where I indicates the identity matrix. The eigenvalues
are provided by 𝜆𝑎,𝑏 = ±

√︃
𝑈
𝐷𝐴

− 1
2𝐷 𝜙. At 𝑃 = (0, 0) as the fist equilibrium point, the eigenvalues are ±

√︃
𝑈
𝐷𝐴

and at the

second equilibrium point 𝑄 =

(
0, 2𝑈

𝐴

)
,the eigenvalues are ±

√︃
− 𝑈

𝐷𝐴
. Utilizing the concept of dynamical systems [] we can

see that the first equilibrium point is saddle and the second equilibrium point is centre if 𝑈
𝐷𝐴

> 0. If 𝑈
𝐷𝐴

< 0 the nature of
the points will reverse. Note that 𝑃 = (0, 0) must be a saddle point always in order for the results to be physically plausible.
The condition for Q to be a saddle point is when the phase speed is negative, which contradicts physically. But Q can be
positioned on either the positive or negative axis for centers, which means Q can either be

(
0, 2𝑈

𝐴

)
or

(
0, −2𝑈

𝐴

)
It is self-explanatory to see the phase portraits themselves. They display how various parameters affect the structure

of orbits and how equilibrium points shift. In figures the limit cycles are seen to travel along the z axis. Figure 6 is plotted
for the fast mode with variation 𝑍ℎ𝑝 . We see that the centre Q is in the negative z-axis as the nonlinear coefficient A is
negative. We can see in figure 8, A is positive in slow mode then Q is positioned in the positive z-axis. The centre Q
moves towards to saddle point P with increasing charge of heavy positive ion (𝑍ℎ𝑝) (figure 6 and 7). Referring to figures 8
and 9 we observe that the centre moves closest to saddle point when the light positive ion is anisotropic and light negative
ion is isotropic and when both are anisotropic, the centre moves away from the saddle point.

6. CONCLUSIONS
In this paper we have studied the effect of pressure anisotropy in a collisonless plasma composed of charged state

of heavy positive ion and light positive as well as negative ion. Using reductive perturbation technique Kdv equation is
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Figure 6. Phase portrait of the system (15) for fast mode when 𝑃𝑙𝑛∥ = 0.5, 𝑃𝑙 𝑝∥ = 0.5, 𝑃𝑙𝑛⊥ = 0.2, 𝑃𝑙 𝑝⊥ = 0.2 (i)𝑍ℎ𝑝 =

35,(ii)𝑍ℎ𝑝 = 50,(iii)𝑍ℎ𝑝 = 65

Figure 7. Phase portrait of the system (15) for slow mode when 𝑃𝑙𝑛∥ = 0.5, 𝑃𝑙 𝑝∥ = 0.5, 𝑃𝑙𝑛⊥ = 0.2, 𝑃𝑙 𝑝⊥ = 0.2 (i)𝑍ℎ𝑝 =

35,(ii)𝑍ℎ𝑝 = 50,(iii)𝑍ℎ𝑝 = 65

Figure 8. Phase portrait of the system (15) for fast mode when 𝑍ℎ𝑝 = 35, 𝑃𝑙𝑛∥ = 0.5, 𝑃𝑙 𝑝∥ = 0.5, 𝑃𝑙 𝑝⊥ = 0.2 (i)𝑃𝑙𝑛⊥ =

0.5,(ii)𝑃𝑙𝑛⊥ = 0.2,(iii)𝑃𝑙𝑛⊥ = 0.9
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Figure 9. Phase portrait of the system (15) for slow mode when 𝑍ℎ𝑝 = 35, 𝑃𝑙𝑛∥ = 0.5, 𝑃𝑙 𝑝∥ = 0.5, 𝑃𝑙 𝑝⊥ = 0.2 (i)𝑃𝑙𝑛⊥ =

0.5,(ii)𝑃𝑙𝑛⊥ = 0.2,(iii)𝑃𝑙𝑛⊥ = 0.9

derived and found the analytic solution. For the system under investigation, a biquadratic dispersion relation has been
derived, yielding the fast and slow modes.We observed that the phase velocity is within subsonic range in both fast mode
and slow mode. We found that compressive structures are formed for the slow mode, while rarefactive solitary structures
are formed for the fast mode mode. It was found that the soliton width is influenced by the perpendicular pressure but the
amplitude remains the same. However that the amplitude of the solitary profile is influenced by the charge state of heavy
positive ion. We then convert our evolutionary equation into a system of two ordinary differential equations (ODEs) in
order to do a phase plane analysis. We extract significant information about the stability of stationary structures given
by the KdV equation via dynamical system analysis. We have introduced the center and saddle points and graphically
displayed the phase portrait of the stated plasma system for various values.
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We consider subtleties of the horizon (null-hypersurface) limit in the Parikh-Wilczek Membrane Approach to Black Holes. Specifically,
we refine the correspondence between the projected Einstein equations of gravity with matter and the Raychaudhuri-Damour-Navier-
Stokes (RDNS) equations of relativistic hydrodynamics. For a general configuration of gravity with matter we obtain additional terms
in the hydrodynamic equations, which include very specific combinations of the contracted logarithmic derivatives of a parameter (the
regularization function) determining the proximity of a stretched membrane to the black hole horizon. Nevertheless, direct computations
of the new terms for exact (Schwarzschild and Kerr) black hole solutions prompt the standard form of the RDNS equations, due to the
non-expanding horizon property of these solutions. Therefore, the reduction of the extended RDNS equations to their classical form
may be viewed as an additional consistency condition in the exact black hole solutions hydrodynamics, and may serve as a non-trivial
test for various viable approximations of spacetime metrics. We compare in detail the Parikh-Wilczek Membrane Approach with the
Gourgoulhon-Jaramillo method of a null-hypersurface description, as well as give the link of the obtained results to our previous work
on the Kerr black holes.
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1. INTRODUCTION
The Membrane Paradigm [1] is one of the prominent ways to describe effective degrees of freedom on a Black

Hole (BH) horizon. According to the Paradigm, a BH horizon is modeled by a stretched, penetrable and impacted by
electromagnetic field membrane, dynamics of which is given by hydrodynamic-type equations for a viscous relativistic
fluid [2–4]. In this way, the collective dynamics of fields near the event horizon is substituted by the dynamics of the dual
fluid.

Interest in the hydrodynamic dual description of non-gravitational fields was increased after the AdS/CFT Duality
foundation, and, as it was realized, some of the predictions of the Membrane Paradigm are directly related to outcomes of
the AdS/CFT. Nevertheless, the Membrane Paradigm is in no way equated to the AdS/CFT correspondence [5,6]. Though
a similarity between these approaches was mentioned since the early stages of the dual CFT hydrodynamics development
[7, 8], mainly due to the universal character of the transport coefficients of the dual fluid [7–10], the Membrane Paradigm
can, at best, be treated as a leading AdS/CFT approximation, or as its low-energy limit (see [11, 12] in this respect). Yet,
further advances of the Membrane Paradigm may open new prospects in the AdS/CFT Duality progress.

In our previous work, Ref. [13], we extended the Membrane Paradigm to the case of rotating BHs. (Strictly speaking,
in [13] we used the Membrane Paradigm in part, since we solely focused on the external part of the Kerr spacetime. We
thank Prof. O.B. Zaslavskii for comments in this respect. Note, however, that this restriction is enough in solving for
the problem how a black hole is viewed for an external observer as a “fluid”.) Operating with the Kerr solution in the
Boyer-Lindquist coordinates, we came to the conclusion on the divergence of the momentum density of the dual fluid on
the horizon. In General Relativity the divergence of a quantity on the horizon may be caused by the coordinates choice.
So that one of the motivations for this paper is to re-derive the main characteristics of the dual fluid in the Eddington-
Finkelstein parametrization of the Kerr metric, and to study their behavior in the vicinity of the horizon.

Accomplishing our goals requires the revision of main equations for the dual fluid, containing as the transport
coefficients, as well as other basic characteristics – energy, pressure, expansion, the momentum vector and the shear
tensor – of the medium. Previously, in [13], we derived the transport coefficients etc. of the effective dual medium by
comparing the energy-momentum tensor (EMT) of the stretched membrane with the conventional EMT of a relativistic
viscous fluid. Here, we will recover the characteristics of the fluid from hydrodynamic-type equations, to which the
projected, onto a null hypersurface, Einstein equations with matter are reduced.
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Specifically, 1+3 decomposition of time-like and space-like directions reduces the GR equations to external/internal
geometry of a hypersurface, embedded into the target space. These equations are well-known as the Gauss and Codazzi-
Mainardi equations (see, e.g., [14–17]).1 Further division of spatial directions [4] makes it possible to present the
projected, onto a 2D hypersurface, Gauss-Codazzi equations as the Raychaudhuri and the Navier-Stokes type equa-
tions [3, 4, 15, 16, 18–20]. The system of these equations2 determines the transport coefficients and other mentioned
characteristics of the dual to the stretched membrane effective substance. But there is a subtlety, related to the fact, that
the Gauss-Codazzi equations become the hydrodynamic-type equations only in the null-hypersurface limit. Taking this
limit is a non-trivial task, that should be performed with additional care.

Indeed, there is the apparent conceptual difference in the geometric description of space-like (a stretched membrane
type) and null (a BH horizon type) hypersurfaces, embedded into 4D space-time of the Minkowski signature. For a
space-like hypersurface one needs two orthogonal to the hypersurface time-like and space-like vectors. These vectors
can be represented in terms of two linearly independent null vectors, which makes the description more universal. The
case of a null-hypersurface, the intrinsic metric of which degenerates, requires coincidence of two linear-independent null-
vectors. Therefore, in the null-hypersurface limit, when the stretched membrane becomes the event horizon, it comes to be
important to obtain null-vectors from the originally time- and space-like ones, and to make them equal on the null-surface
in the last step.

On the way to this end, we want to revise, first, the procedure of getting the Raychaudhuri and the Damour-Navier-
Stokes (RDNS) equations [3, 4, 15, 16] from the projected Gauss-Codazzi equations in the Parikh-Wilczek Membrane
Approach. The main revision concerns the way of taking the horizon (the null-hypersurface) limit, i.e., of transition to
finite on the horizon quantities by the regularization. Details of this procedure can be found, e.g., in [4, 13].

Within the Membrane Approach of Ref. [4], the null-hypersurface limit is organized as setting the regularization
factor (some coordinate function) to zero. The role of this function is to provide the finiteness of the divergent on the
event horizon stress-energy tensor of a stretched membrane. On the other hand, this regularization factor can be viewed
as a degree of proximity of the membrane to the true horizon. The outcome of taking the null-hypersurface limit in the
Membrane Approach, without a reference to the specific type of space-time, consists in the extension of the RDNS-type
equations by terms with the contracted logarithmic derivatives of the regularization factor. This result can be found in
Section 2. In this section we also formulate two conditions on the regularization factor, called hereafter as the “consistency
conditions”, the fulfillment of which reduces the extended RDNS equations to their classical version [3, 18].3

Second, we want to verify the validity of the obtained consistency conditions on two exact solutions to the Einstein
equations. This part of our studies is presented in Section 3. Here we consider the Schwarzschild and the Kerr solutions
in the Eddington-Finkelstein coordinates. The simplicity of the Schwarzschild metric does not allow us to fully evaluate
possible limitations associated with the consistency conditions: they satisfy identically in the case. Performing the relevant
computations for the Kerr solution is a less trivial task. However, our consistency conditions hold even in this case. Since
the fulfillment of these conditions requires the tight coordination of different elements of a space-time metric, we can
expect the same outcome for any exact BH solution to the Einstein equations, where such coordination takes place. The
ground for such expectations is based on the ideology of the Membrane Approach to regularize the divergent on the
horizon quantities, and to construct in this way the effective dynamical description of the horizon hypersurface in terms
of the finite variables. Therefore, the established consistency conditions should hold for various viable approximations of
spacetime metrics in the appropriate approximation order as well.4

Conclusions contain a summary of our findings, their applications and further developments. Appendix A includes
details on the surface gravity, computation of which is another non-trivial check of the consistency of a BH-type solution.
Since our research focuses on the description of null-hypersurfaces, we pay special attention to comparing the approach
used here with the approach of [15,16]. In Appendix B we demonstrate the equivalence of the generalized Damour-Navier-
Stokes equation of Ref. [15] to the DNS-type equation from Section 2.1, obtained within the Membrane Approach [4].
Appendix C contains the overview of taking the null-hypersurface limit of the generalized DNS equation from Ref. [15],
that again leads us to the consistency conditions from Section 2.2. Recall, nothing special to recover the standard form
of the DNS equation was required in Ref. [15] upon taking the horizon limit. We briefly comment on the nature of
discrepancies between two approaches in this respect.

We use the following notation throughout the paper. The 4D metric signature is chosen to be the mostly positive
one. All indices (no matter what kind of, Latin or Greek) are supposed to be the indices of 4D target space. gab, hab and
γab are the 4D metric, 3D and 2D induced metric tensors, respectively. The induced metrics of low-dimensional spaces
are used as projection operators. Then, ▽a symbol denotes 4D covariant (w.r.t. gab) derivative; 3Da and 2

Da are the

1Following Misner, Thorne and Wheeler [14], we will refer to these equations as the Gauss-Codazzi equations.
2Since the expansion and the shear tensor are also characteristics of the fluid, we refer to the Raychaudhuri equation as to a hydrodynamic-type

equation.
3Note that the generalization of the Damour-Navier-Stokes equation in the vicinity of the horizon has been obtained in Ref. [15]. In two added

Appendices B and C we give the detailed comparison of the approach of [15] and the Membrane Approach we follow in the paper, as well as we outline
the correspondence of the obtained by us consistency conditions to the null-hypersurface limit of [15].

4Then, the viability of an approximate solution for the space-time metric can be evaluated comparing the approximation orders of the solution and
of the consistency conditions: the approximation order of the consistency conditions has to be the same, or higher than that of the solution.
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covariant derivates w.r.t. 3D and 2D induced metrics. The explicit form of 3Da and 2
Da is given in the main text of the

paper. In Appendices B and C we use the conventions of Refs. [15,16] to simplify the comparison of different approaches
to each other.

2. RELATIVISTIC HYDRODYNAMICS OF THE MEMBRANE APPROACH
2.1. From the Gauss-Codazzi to the Damour-Navier-Stokes and the Raychaudhuri equations

The starting point of our consideration (see [4] for details) is the Gauss-Codazzi equation in the 1+3 decomposition
of metric:

3Db
tab = −h

c
aTcdn

d
. (1)

Here tab is the 3D stretched membrane energy-momentum tensor,

tab =
1

8π
(Khab −Kab); (2)

Tab denotes the energy-momentum tensor (EMT) of matter fields. The space-like unit vector na (nan
a
= 1) is orthogonal

to the hypersurface of the stretched membrane, endowed with the induced metric hab = gab − nanb. The extrinsic
curvature tensor of the membrane hypersurface is determined by

Kab = h
α
ah

β
b ▽β nα; (3)

K = g
ab
Kab is its trace. The l.h.s. of eq. (1) also involves the 3D covariant derivative 3Da, whose action is specified by

3Dc
tab ≡ h

cγ
ha

α
hb

β
▽γ tαβ . (4)

To bridge the Membrane Approach [4] to relativistic hydrodynamics, we have to introduce the time-like unit vector ua

(ua
ua = −1) and to form the 2D (Euclidean) induced metric γab = hab + uaub. Then, by means of ua and γab, the

membrane EMT tab is equivalently presented as

t̂ab ≡ 8π tab = Euaub + Pγab + qaub + qbua + τab. (5)

From the point of view of the original four-dimensional metric, eq. (5) requires the 1 + 1 + 2 metric decomposition

gab = −uaub + nanb + γab, (6)

where, by construction,

n
a
hab = 0, tabn

b
= 0, u

a
na = 0, γab = hab + uaub γabn

b
= γabu

b
= 0. (7)

The physical meaning of quantities on the r.h.s. of eq. (5) is easy to derive from the Eckart approach to relativistic
irreversible thermodynamics (see, e.g., Section 7.8 of [21] in this respect). The first two terms on the r.h.s. of (5) are treated
as the energy density and the pressure; they form the EMT of an ideal fluid. A viscous fluid description requires adding
the shear tensor τab, responsible for anisotropic stresses, the heat flow vector qa, as well as adding an extra contribution
to the pressure due to the fluid viscosity. The heat flow vector and the shear tensor are characterized, in particular, by

q
b
ub = 0, τabu

a
= 0, τab = τba, Tr τab = 0.

However, it is convenient to consider the other set of common for the Membrane Approach variables

θ̂ = −E , ĝ = P −
θ̂

2
, qa = −Ω̂a, τab = −σab , (8)

in terms of which t̂ab takes the following form:

t̂ab = −θ̂uaub − σ̂ab + ( θ̂
2
+ ĝ) γab − Ω̂aub − Ω̂bua . (9)

On account of the orthonormality/orthogonality conditions (7), for θ̂, Ω̂a, ĝ and σ̂ab we get

θ̂ = −t̂abu
a
u
b
, Ω̂a = t̂cbu

b
γ
c
a , ĝ =

1

2
(t̂abγab

+ t̂abu
a
u
b) ,

σ̂ab = − (t̂cdγc
aγ

d
b −

1

2
γab (t̂cdγcd)) . (10)
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We now have everything we need to write eq. (1) as equations of a 2D viscous fluid. We project eq. (1) onto the
transverse and the longitudinal with respect to u

a directions to this end:

γ
c
a
3Db

t̂cb = −8πγ
c
aTcdn

d
, u

a 3Db
t̂ab = −8πTcdu

c
n
d
. (11)

Inserting the membrane EMT (9) into the orthogonal to u
a part of the Gauss-Codazzi equations, and taking into account

the orthogonality of ua and n
a to hab and γab, the orthogonality of Ω̂a to u

a and n
a, and the definition of the Lie derivative

along a vector field ξ
a, we arrive at

γ
b
a∂b (

θ̂

2
+ ĝ) −

2
D

b
σ̂ab + [γac (ĝ −

θ̂

2
) − σ̂ac]ub

▽b u
c
+ 8πγ

c
aTcdn

d
= γ

c
aLuΩ̂c + Ω̂a

3Db
ub

+ γ
c
aΩ̂

b(▽buc −▽cub) .
(12)

Here 2
Da is the 2D (contracted) covariant derivative determined by

2
D

b
σ̂ab = γ

δ
aγ

βρ
▽β σ̂δρ . (13)

For the part of eqs. (11) along the time-like direction, after some algebra we get

u
b
∂bθ̂ + ( θ̂

2
− ĝ) 3Db

ub + σ̂ab
3Db

u
a
+

3Db
Ω̂b + Ω̂au

b
▽b u

a
+ 8π u

a
n
b
Tab = 0. (14)

To outline the correspondence of eq. (14) to the Raychaudhuri equation, it is convenient to introduce a symmetric tensor

Θ̂ab = σ̂ab +
θ̂

2
γab, (15)

and to take into account that 3Db
ub = hab

3Db
u
a
= (γab − uaub)3Db

u
a
= γab

3Db
u
a. Then eq. (14) becomes

u
b
∂bθ̂ − ĝ

3Db
ub + Θ̂ab

3Db
u
a
+

3Db
Ω̂b + Ω̂au

b
▽b u

a
+ 8π u

a
n
b
Tab = 0. (16)

The so obtained eqs. (12) and (16) turn out to be the Damour-Navier-Stokes and Raychaudhuri equations of 2D
relativistic hydrodynamics in the null-hypersurface (horizon) limit. Let us see how it happens.

2.2. The Null-Hypersurface Limit
General analysis of the stretched membrane EMT (9) leads to the conclusion on its divergence on the horizon [4].

Geometrically, this fact is related to the degeneration of the stretched membrane hypersurface to null-hypersurface, that,
in particular, means the divergence of time-like and space-like vectors ua and n

a on the event horizon H. The Membrane
Approach [4] suggests introducing a regularization factor (a function of coordinates) α, which vanishes on the horizon,
and whose role is to provide the finiteness of quantities in the null-hypersurface (α → 0) limit. The choice of this
regularization factor is determined by the requirements

lim
α→0

αu
a
= l

a
, lim

α→0
αn

a
= l

a
, l

a
la = 0, (17)

where l
a is a null geodesic generator of H. This null-vector obeys the equation

l
b
▽b l

a
= gH l

a
, (18)

which can be treated as a definition of the surface gravity gH.5

Now we have to regularize the EMT (9), and to write down eqs. (12) and (16) in terms of the regularized (in the
α → 0 limit) quantities on the horizon. The regularization comes as follows:6

θ̂ = α
−1
θ, ĝ = α

−1
g, Θ̂ab = α

−1
Θab, σ̂ab = α

−1
σab, Ω̂a = Ωa. (19)

Then, in terms of the regular on the horizon variables θ, g, Θab and Ωa, eq. (12) comes into

α
−1 (γb

a∂b (
θ

2
+ g) − 2

D
b
σab + [γac (g −

θ

2
) − σac]ub

▽b u
c
− [γab (

θ

2
+ g) − σab] ∂b

lnα)

+ 8πγ
c
aTcdn

d
= γ

c
aLuΩc + Ωa

3Db
ub + γ

c
aΩ

b(▽buc −▽cub) .
(20)

5More on computations of the surface gravity for the Kerr BH can be found in Appendix A.
6The scaling in α of different variables depends on their physical interpretation. The Hájiček field [22] Ω̂a is a measure of rotation, and it does not

depend on a specific spacetime point, though it depends on the chosen frame.
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Whereas eq. (16) becomes

α
−1 (ub

∂bθ − thu
b
∂b lnα − g

3Db
ub +Θab

3 Db
u
a) + 3Db

Ωb + Ωau
b
▽b u

a
+ 8π u

a
n
b
Tab = 0 . (21)

The next step in completing the task is to take the limit α → 0. Here we have to use both relations (17) with care,
since two operations – taking the limit and acting by derivatives on u

a and n
a – do not commute. And final expressions

will be simplified by use of various orthogonality relations.
Consider, for instance, two combinations with the 3D covariant derivative acting on u

a. The first combination, which
occurs in both eqs. (20), (21), is 3Db

ub. In the null-hypersurface limit we get

lim
α→0

3Db
ub = lim

α→0
h
ab

▽a ub = lim
α→0

(γab
− u

a
u
b)▽a ub = lim

α→0
γ
ab

▽a ub = − lim
α→0

ub ▽a γ
ab

≃ −α
−1
lb ▽a γ

ab
= α

−1
γ
ab

▽a lb = α
−1
θ, (22)

where we have used the orthogonality relations γab
ub = 0 and γ

ab
lb = 0 to rearrange the action of the derivative and to

take the limit directly. To arrive at the final answer, we have used the definition of the expansion θ on the horizon, i.e., on
the hypersurface, where relations (17) hold: θ = γ

ab ▽a lb.
The second combination, 3Db

u
a, admits the following representation in the limit:

lim
α→0

3Db
u
a
= lim

α→0
h
bβ
h
aα

▽β uα = lim
α→0

h
bβ
γ
aα

▽β uα = − lim
α→0

h
bβ
uα ▽β γ

aα

≃ −α
−1
h
bβ

lα ▽β γ
aα

= α
−1
h
bβ
γ
aα

▽β lα.
(23)

It can be used to write down Θab
3Db

u
a as α−1

ΘabΘ
ba on the horizon. Indeed,

lim
α→0

Θab
3Db

u
a
≃ α

−1
Θab h

bβ
γ
aα

▽β lα = α
−1
Θab γ

bβ
γ
aα

▽β lα = α
−1
ΘabΘ

ba
, (24)

where we have applied the definition of Θab on the horizon: Θab = γ
α
a γ

β
b ▽α lβ . Therefore, at this stage of our consider-

ation, eq. (21) turns into

l
b
∂bθ − θ l

b
∂b lnα − gθ +Θab Θ

ab
+ 8π l

a
l
b
Tab + lim

α→0
α
2
Ωa u

b
▽b u

a
= 0. (25)

And the non-triviality of the last term on the l.h.s. of (25) strongly depends on the scaling, with respect to the regularization
factor α, properties of limα→0 u

b ▽b u
a.

Let us consider this expression in more detail. Taking the α → 0 limit of va ≡ γ
c
a u

b ▽b uc, we get:

lim
α→0

va ≡ lim
α→0

γ
c
a u

b
▽b uc = − lim

α→0
u
b
uc ▽b γ

c
a ≃ −α

−2
l
b
lc ▽b γ

c
a = α

−2
γ
c
a l

b
▽b lc . (26)

Were we use eq. (18) as is, the introduced vector va would be always equal to zero on the horizon, due to the orthogonality
of the null-vector la to the induced metric γab. However, in the vicinity of the horizon, eq. (18) can be generalized to

l
b
▽b l

c
= gHl

c
+ λ

c
, (27)

where λc is a vector, which vanishes on the event horizon:

lim
α→0

λ
a
= 0. (28)

If λa vanishes as α2 (e.g., λc
= α

2
γ
cd
ξd), then limα→0 va ≠ 0, so that va remains finite on the horizon.7 Nevertheless,

even with such a generalization, the last term on the l.h.s. of (25) becomes equal to zero.
To take the null-hypersurface limit of eq. (20), one needs to write down the r.h.s. of this equation. Straightforward

computations which take into account the orthogonality of Ωa to l
a, symmetry of Θab tensor, and the outcome of eq. (22),

result in
lim
α→0

[γc
aLuΩc + Ωa

3Db
ub + γ

c
aΩ

b(▽buc −▽cub)] ≃ α
−1 (LlΩa + Ωaθ) . (29)

So that, the null-hypersurface limit of eq. (20) leads to

γ
b
a∂b (

θ

2
+ g) − 2

D
b
σab + [γac (g −

θ

2
) − σac] vc − [γab (

θ

2
+ g) − σab] ∂b

lnα

+ 8πγ
c
aTcdl

d
= γ

c
aLlΩc + Ωaθ.

(30)

7In Section 3 we justify the finiteness of va in the horizon limit for the Kerr BH solution by direct computations.
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Summing up, in the null-hypersurface limit the projected Gauss-Codazzi equations (12) and (16) are rearranged into

l
b
∂bθ − gθ +Θab Θ

ab
+ 8π l

a
l
b
Tab = θ l

b
∂b lnα, (31)

and

γ
b
a∂b (

θ

2
+ g) − 2

D
b
σab + 8πγ

c
aTcdl

d
− γ

c
aLlΩc − Ωaθ

= [γab (
θ

2
+ g) − σab] ∂b

lnα − [γac (g −
θ

2
) − σac] vc.

(32)

These equations coincide (cf., e.g., Ref. [15, 16]) with the Raychaudhuri and the Damour-Navier-Stokes (RDNS) equa-
tions, if the following conditions are satisfied:

[γac (g −
θ

2
) − σac] vc = [γab (

θ

2
+ g) − σab] ∂b

lnα , l
b
∂b lnα = 0. (33)

Since these conditions contain the potentially divergent on the horizon parts, while the proposed regularization procedure
of [4] was oriented toward making the quantities finite on the horizon, we arrive at the apparent contradiction. Therefore,
we have to verify the fulfillment of these consistency conditions on a specific spacetime geometry. We will use two exact
solutions to the Einstein equations – the Schwarzschild and the Kerr black holes – to this end.

3. EXPLORING THE RDNS-TYPE EQUATIONS OF THE NULL-HYPERSURFACE LIMIT
3.1. The Schwarzshild solution

We get started with a warm-up exercise of the Schwarzschild solution, on the example of which we will estab-
lish/discuss: (i) the origin of different choices in the 1+1+2 metric decomposition within the Membrane Approach of [4];
(ii) triviality of the consistency conditions (33) for the Schwarzschild BH solution; (iii) the relation between the null-
hypersurface limit of the Membrane Approach and the null-hypersurface description of [15, 16].

To achieve our goals, we will use the Eddington-Finkelstein coordinates (v, r, θ, φ), which are related to the original
coordinates of the standard Schwarzschild metric (tS , r, θ, φ) as8

v = tS + r
∗
= tS + r + 2M ln

»»»»»»
r

2M
− 1

»»»»»». (34)

The “tortoise” coordinate r
∗ is the solution to the connection equation

dr
∗
=

dr

f(r) , f(r) = 1 −
2M
r , (35)

and the Schwarzschild metric in the Eddington-Finkelstein coordinates becomes

ds
2
= −f(r)dv2 + 2dvdr + r

2(dθ2 + sin
2
θ dφ

2). (36)

To proceed further, we introduce a new time-like coordinate t = v − r, in terms of which the interval (36) turns into

ds
2
= − (1 − 2M

r ) dt2 + 4M
r dtdr + (1 + 2M

r ) dr2 + r
2(dθ2 + sin

2
θ dφ

2). (37)

Now, let’s present the encoded in (37) metric as gab = −uaub + nanb + γab. The structure of (37) suggests two
possible alternatives to this end:

• First, we can choose

ua =

⎛
⎜
⎝
−

√
1 −

2M
r ,

2M

r
√
1 − 2M

r

, 0, 0
⎞
⎟
⎠
, na =

⎛
⎜
⎝
0,

1√
1 − 2M

r

, 0, 0
⎞
⎟
⎠
, −u

a
ua = n

a
na = 1, (38)

γab =

⎛
⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0

0 0 r
2

0

0 0 0 r
2
sin

2
θ

⎞
⎟⎟⎟⎟⎟⎟
⎠
. (39)

This choice corresponds to forming the perfect square from the 1st and the 2nd term on the r.h.s. of (37).
8We set G = c = 1.
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• Second, we can present the metric as gab = −ũaũbdx
a
dx

b + ñañbdx
a
dx

b + γabdx
a
dx

b with vectors

ũa =

⎛
⎜
⎝
−

1√
1 + 2M

r

, 0, 0, 0
⎞
⎟
⎠
, ña =

⎛
⎜
⎝
2M
r

1√
1 + 2M

r

,

√
1 +

2M
r , 0, 0

⎞
⎟
⎠
, −ũ

a
ũa = ñ

a
ña = 1, (40)

and the same angle part γab as before. This presentation of the metric follows from forming the perfect square out
of the 2nd and the 3rd term on the r.h.s. of eq. (37).

These two representations of the same metric are not unrelated to each other since the vectors are related by Lorentz
transformations in the plane transversal to the angular coordinates:

ũa = Λa
b
ub, ña = Λa

b
nb; ΛΛ

T
= 1. (41)

Eqs. (17), crucial for the Membrane Approach, hold for the regularization factor9 α =

√
f(r), and time/space-like

vectors (38):
lim
α→0

αu
a
= l

a
, lim

α→0
αn

a
= l

a
, l

a
= (1, 0, 0, 0). (42)

The vector la is a null-vector on the horizon (i.e., at f(r) = 0).10 As one can see, the regularization factor depends only
on the radial coordinate. Therefore, the consistency conditions (33) are trivially satisfied, so that for the Schwarzschild
geometry the RDNS-type equations (31), (32) coincide with that of originally derived in [3, 4] and [18].

Now, let us briefly discuss the correspondence of the Membrane Approach to the null-hypersurface description
of [15, 16]. To define a time-like hypersurface, one can specify two null-vectors transversal/longitudinal to it. These
null-vectors are constructed out of linear combinations of ũa and ñ

a (see [16]),

l
a
= N(ũa

+ ñ
a), k

a
=

1

2N
(ũa

− ñ
a),

ũ
α
=

⎛
⎜
⎝

√
1 +

2M
r ,−

2M
r

1√
1 + 2M

r

, 0, 0
⎞
⎟
⎠
, ñ

a
=

⎛
⎜
⎝
0,

1√
1 + 2M

r

, 0, 0
⎞
⎟
⎠
,

(43)

with a lapse function N . To equate l
a of (43) to l

a
= (1, 0, 0, 0) on the event horizon rH = 2M , one fixes N =

1/
√
1 + 2M/r. Then, after recovering the exact form of the second null-vector ka, it is easy to verify that l2 = 0, k2 = 0

and l
a
ka = −1 everywhere.

Apparently, the same consideration is applicable to u
a and n

a vectors

u
a
=

⎛
⎜
⎝

1√
1 − 2M

r

, 0, 0, 0
⎞
⎟
⎠
, n

a
=

⎛
⎜
⎝

2M

r
√
1 − 2M

r

,

√
1 −

2M
r , 0, 0

⎞
⎟
⎠
, (44)

which are the contravariant counterpart of (38). In this case, the lapse function N is given by N =

√
(1 − 2M/r)/(1 +

2M/r). Therefore, following [15,16], one may recover the corresponding null-vectors for any reasonable form of 1+1+2
metric decomposition. However, to describe a null-hypersurface the same conditions must be met as in eqs. (42).

To sum up, different rearrangements of the diagonal and non-diagonal terms in the non-angular part of metric (37)
lead to different forms of its 1+1+2 decomposition. Just one of them falls into the criteria of the null-hypersurface
description, and can be used in computing characteristics of the dual, to the stretched membrane near the BH horizon,
fluid. There are various approaches to reach this goal, examples of which are that of [4] and [15, 16]. They are slightly
different in details, but comparing them to each other11 we draw the conclusion that they lead to the same outcomes.

Unfortunately, the Schwarzschild solution is plain to reveal all sides of the RDNS equations extension. It can be
done in the analysis of a more complicated example, like the Kerr BH solution, to the consideration of which we now
turn.

3.2. The Kerr Black Hole
The Kerr metric in the Eddington-Finkelstein coordinates (v, r, θ, φ) is given by

ds
2
= − (1 − 2Mr

ρ2
) dv2 + 2dvdr − 2a sin

2
θdφdr −

4aMr

ρ2
sin

2
θdvdφ + ρ

2
dθ

2

+ (r2 + a
2
+

2Mr

ρ2
a
2
sin

2
θ) sin2 θdφ2

, ρ
2
= r

2
+ a

2
cos

2
θ.

(45)

9More on the choice of α can be found, e.g., in [4, 13].
10Outside (in the vicinity of) the horizon, la becomes either a time-like vector, if it is associated with u

a, or a space-like one, if it is associated with
n
a.

11We refer the reader for two Appendices B and C, where we establish the equivalence between the generalized DNS equations near the event
horizon of this paper and of Ref. [15], and re-derive the established here consistency conditions from the construction of [15, 16].
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As in the Schwarzschild BH case, we introduce the time coordinate t = v − r, so that, in terms of (t, r, θ, φ),

ds
2
= − (1 − 2Mr

ρ2
) dt2 + 4Mr

ρ2
dtdr −

4aMr

ρ2
sin

2
θdtdφ + (1 + 2Mr

ρ2
) dr2

− 2a sin
2
θ (1 + 2Mr

ρ2
) drdφ + ρ

2
dθ

2
+ (r2 + a

2
+

2Mr

ρ2
a
2
sin

2
θ) sin2 θ dφ2

.

(46)

The metric (46) contains three cross-terms, that apparently complicates the 1 + 1 + 2 decomposition. Its inverse
contains merely two cross-terms,

ds̃
2
≡ g

ab
∂a∂b = − (1 + 2Mr

ρ2
) ∂2

t +
4Mr

ρ2
∂t∂r +

∆

ρ2
∂
2
r +

2a

ρ2
∂r∂φ +

1

ρ2
∂
2
θ +

1

ρ2 sin2 θ
∂
2
φ, (47)

that slightly simplifies the computations. In writing the inverse metric we have used the dual basis notation

dx
b
∂a = δ

b
a. (48)

∆ is the standard for the Kerr solution function of the radial direction,

∆ = r
2
+ a

2
− 2Mr, (49)

used for determining the radial locations (r±H) of the black hole horizons: ∆(r±H) = 0.
As in the case of the Schwarzschild spacetime, there are two possible rearrangements of the inverse Kerr metric (47)

as gab = −ua
u
b + n

a
n
b + γ

ab suggested by its structure:
i) The first option refers to forming the perfect square from the 1st and the 2nd terms on the r.h.s. of (47) at the first

step, and going along this line further on.
ii) The second option supposes combining the 2nd and the 3rd terms on the r.h.s. of (47) at the first stage, with developing

this line after.12

However, within the Membrane Approach, we have to choose the way, along which we will be able to produce eqs. (17)
with the appropriately chosen α. Thus, we have to determine the null-vector la for the Kerr geometry first.

According to the Kerr metric structure, there are two associated Killing vectors (in t and φ directions), that specifies
non-trivial components of the null-vector la:

l
a
= (lt, 0, 0, lφ) = (1, 0, 0, X). (50)

The function X is fixed from the null-vector condition, lala = 0 . For the metric (46), the null-vector condition leads to

X =
2aMr

A
±

ρ sin θ

A

√
(A − (2Mr)2) − 2Mr∆ , (51)

where we have introduced

A = ρ
2(r2 + a

2) + 2a
2
Mr sin

2
θ = (ρ2 + 2Mr)∆ + (2Mr)2. (52)

On the horizon, where ∆ = 0 and A = (2MrH)2, eq. (51) turns into X = a/(2MrH); hence13

l
a
= (1, 0, 0, a

2MrH
) . (53)

It is easy to check that the metric decomposition “i)” does not lead to limα→0 αu
a
= limα→0 αn

a
= l

a, required in
the Membrane Approach, whatever the α factor would be. For this reason, we have to turn to the option “ii)”. Rearranging
the metric (47) in this way, we arrive at

ds̃
2
=

1

ρ2

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−(

√
A

∆
∂t +

2Mra√
A∆

∂φ)
2

+ (2Mr√
∆

∂t +
√
∆ ∂r +

a√
∆

∂φ)
2

+ ∂
2
θ +

ρ
4

A sin2 θ
∂
2
φ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (54)

Now, for getting g
ab

= −ua
u
b + n

a
n
b + γ

ab, with ∆ of (49) and A of (52), we take

u
a
= ∆

−1/2 (
√
A
ρ , 0, 0,

2Mra

ρ
√
A

) , n
a
= ∆

−1/2 (2Mr
ρ ,

∆
ρ , 0,

a
ρ) , (55)

12In the Schwarzschild (i.e., zero-rotation) limit, the option “i)” corresponds to ũ
a and ñ

a of (43), while the option “ii)” leads to (44).
13Note that here we consider the external part of the Kerr spacetime. Therefore, rH = M +

√
M2 − a2 is the outer horizon (the largest root of

∆(r) = 0 algebraic equation).
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γ
ab

=

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0
0 0 0 0

0 0 ρ
−2

0

0 0 0 ρ
2

A sin2 θ

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠
. (56)

And, to equate (53) and (55) in the null-hypersurface limit, the regularization function has to be

α = ρ

√
∆

A
. (57)

Having fixed all the needed ingredients, we can compute the energy-momentum tensor t̂ab (cf. eqs. (2), (3), (5) and
(9)):

t̂
ab

=
1

∆1/2ρ3(r, θ)

⎛
⎜⎜⎜⎜⎜⎜
⎝

−(r −M)a2 cos2 θ − a
2(M + r) − 2r

3
0 0 −aM

0 0 0 0
0 0 r −M 0

−aM 0 0 r−M
sin2 θ

⎞
⎟⎟⎟⎟⎟⎟
⎠
. (58)

After that, taking into account eqs. (55), (56), and (10), we get

θ̂ =
∆

1/2

Aρ
h(r, θ), h(r, θ) = 2r

3
+ a

2(r +M) + (r −M)a2 cos2 θ;

Ω̂
a
= (0, 0, 0, aM

ρ2A3/2 ω(r, θ)) , ω(r, θ) = a
2(a2 − r

2) cos2 θ − 3r
4
− a

2
r
2
;

ĝ =
M

∆1/2ρ3A
((r2 + a

2)2(r2 − a
2
cos

2
θ) − 4a

2
Mr

3
sin

2
θ) ;

σ̂
ab

= diag (0, 0, ∆
1/2

ρ3
( r

ρ2
−

h(r, θ)
2A

) , ∆
1/2

a
2

2ρA2
(a2(M − r) cos2 θ − r

2(3M + r))) .

(59)

Recall, ∆, A and ρ have been introduced in (45), (49) and (52). The tensor Θ̂ab, introduced in (15), then becomes

Θ̂
ab

= diag (0, 0, ∆
1/2

r

ρ5
,

∆
1/2

ρ sin2 θ

ρ
2
h(r, θ) −Ar

A2
) . (60)

A brief inspection of (59) and (60) leads to the conclusion that the only ĝ turns out to be singular on the horizon.
After the regularization, g = αĝ becomes

g =
M

ρ2A3/2 ((r2 + a
2)2(r2 − a

2
cos

2
θ) − 4a

2
Mr

3
sin

2
θ) , (61)

and, in the null-hypersurface limit, it coincides with the surface gravity on the horizon:

lim
α→0

g = gH, gH =

√
M2 − a2

2M(M +
√
M2 − a2)

. (62)

The other non-trivial quantity on the horizon is the vector field Ω̂a, which, according to (19), does not need to be regular-
ized: Ω̂a = Ωa.

To figure out the form of the RDNS-type equations in the case, we have to verify the consistency conditions (33). For
the null-vector la (see eq. (53)) and the regularization function α (see eq. (57)), the second condition of (33) is satisfied.
Verifying the first condition of (33), one needs the exact form of the projected acceleration vector va = γ

c
a u

b ▽b uc, a
direct computation of which results in

va = (0, 0,−2a
2
Mr(r2 + a

2) cos θ sin θ
ρ2A

, 0) . (63)

According to (63), va is finite on the horizon, that has been assumed upon the derivation of the consistency conditions
(33). Straightforward computations show that, with va from (63) and α from (57), the first of the conditions (33) is also
satisfied.

Thus, as in the Schwarzschild case, the Kerr BH geometry keeps the standard form (cf., e.g., [16]) of the Raychaud-
huri and the Damour equations of a (1+2) null-hypersurface. (I.e., eqs. (31) and (32) have trivial right hand sides in the
case.)
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We end up this section with recalling how the l.h.s. of the Damour equation (32) is related to the Navier-Stokes
equation for a viscous fluid [3]. Let us introduce a force surface density fa = −γc

aTcdl
d, the momentum density πa, the

pressure p, the shear and bulk viscosities η and ζ of the fluid as

πa = −
1

8π
Ωa, p =

g

8π
, η =

1

16π
, ζ = −

1

16π
. (64)

Then, the l.h.s. of (32) can be presented in the form of the Navier-Stokes equation

γ
c
aLlπc + θπa = −

2
Dap + 2η

2
D

b
σba + ζ

2
Daθ + fa. (65)

The correspondence of the momentum density π
a to the Hájiček field Ω

a
= Ω̂

a makes the former finite on the horizon.
(Cf. eqs. (59)). Comparing this result with the early obtained divergence of πa on the horizon of the Kerr BH in the
Boyer-Lindquist coordinates [13], we conclude on the frame dependence of the momentum density: the correct choice of
coordinates makes the quantity finite on the horizon.

4. CONCLUSIONS
Let us summarize our findings. At the first stage of our studies, following the Parikh-Wilczek Membrane Approach to

black holes, we have presented the Gauss-Codazzi equations on the horizon as hydrodynamic-type equations. We expected
to derive the standard Raychaudhuri and the Damour-Navier-Stokes (RDNS) equations of a viscous fluid in this way.
However, our actual result looks slightly different: the final equations are extensions of the RDNS equations. Specifically,
there appears new terms, containing derivatives of a function of the regularization parameter. Recall, this parameter is
used for making the energy-momentum tensor of a stretched membrane finite on the horizon. The explicit form of this
function – the logarithm in the case of the standard regularization within the Membrane Approach – depends on the way
of regularization. Anyway, the established new terms can not be ignored in the null-hypersurface limit, upon building
the bridge between geometry (the Gauss-Codazzi equations) and dynamics (the RDNS equations). Getting the “classical”
RDNS equations back two non-trivial conditions must be met. And the fulfillment of these consistency conditions requires
the tight coordination of different elements (metric, null-vectors, projected acceleration vector, regularization function) of
the chosen space-time geometry.

To investigate this issue in more detail, we have examined two notable examples of exact solutions to the Einstein
equations: the Schwarzschild and the Kerr black holes. The case of the Schwarzschild solution has been considered
as a warm-up exercise, aimed at establishing the machinery, which could be further applied to the Kerr solution in the
Eddington-Finkelstein parametrization. In view of simplicity of the Schwarzschild solution, the mentioned consistency
conditions are trivially satisfied. The established consistency conditions have been verified, to the full extent, in the case
of the Kerr metric in the Eddington-Finkelstein parametrization. The verification requires more technical efforts, due to a
complicated structure of the metric tensor, but we arrive at the conclusion on the fulfillment of the consistency conditions
in this case. Therefore, for the Schwarzschild and the Kerr solutions, the RDNS equations of the Membrane Approach
do not change. We can expect the same effect for exact BH solutions to the Einstein equations with the required tight
coordination of the spacetime geometry components which results in the non-expanding (isolated) horizon [23–26], and,
consequently, in the classical form of the RDNS equations on the horizon. As we have mentioned in Introduction, the
ground for such expectations is based on the ideology of the Membrane Approach to regularize the divergent on the
horizon quantities, and to construct in this way the effective dynamical description of the horizon hypersurface in terms
of the finite variables.

In the course of our studies we paid a special attention to the relation of the Membrane Approach [4] to the
Gourgoulhon-Jaramillo [15, 16] method of a null-hypersurface description. Note that within the approach of [15, 16]
it was obtained the generalization of the Damour-Navier-Stokes (DNS) equation in the vicinity of the event horizon of
a BH-type solution to the Einstein equations. However, in the null-hypersurface limit, the authors of [15, 16] drew the
conclusion that on the horizon the generalized DNS equation is reduced to its classical form. This fact motivates us to
investigate the correspondence between the Membrane Approach used in the paper and the approach of [15, 16] in more
detail. In two added Appendices we establish the equivalence of the DNS equation generalizations near the horizon in
the approaches of [4] and [15, 16] for the specific metric parametrization used by Gourgoulhon and Jaramillo. (This
parametrization supposes the trivial vorticity tensor of a geodesic congruence.) Also, the detailed consideration of the
null-hypersurface limit within the approach of [15, 16] leads to the same set of the consistency conditions as in the Mem-
brane Approach. It turns out that both consistency conditions follow from the generalized DNS equation without the need
to consider an additional equation like the Raychaudhuri equation. This emphasizes the self-consistency of the Einstein
equations, from which the RDNS equations follow. And again, the main condition to keep the classical form of the DNS
equations on the horizon is the requirement of having the non-expanding horizon.

Since the non-expanding/isolated horizon is common for exact BH solutions [23–26], a more interesting situation
arises for non-exact solutions of the BH type, like, for instance, slowly rotating BHs, metrics mimicking black holes,
post-Newtonian corrected BHs etc., examples of which can be found in [27–33]. If these approximations of the spacetime
metric are used in the construction of the relativistic hydrodynamics within the Membrane Approach, the established
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consistency conditions should hold for them as well, to the same order of the approximation as for the Einstein equations.
(Cf. footnote 5 in this respect.) So that, the established here consistency conditions can be served as an additional tool in
verifying the viability of such approximations. It would be interesting to find examples of metrics where the consistency
conditions fails, and to analyze reasons for that. We hope to report on this and other results of our studies in future
publications.
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A. THE SURFACE GRAVITY FOR THE KERR SOLUTION
Let us consider the surface gravity calculation for a rotating BH in more detail.
There are several ways to compute the surface gravity. One may use, for instance, eq. (18). Another way is to take

into account the fact that the null-vector la (53) is nothing but the Killing vector of the Kerr BH metric, ξa = ∂t + Ω∂φ,
on the horizon. Ω is the angular velocity, defined by

Ω ≡
dφ

dt
=

dφ/ds
dt/ds =

u
φ

ut
=

2Mra

A
, (A.1)

where we have used the components of ua from (55). Note, preliminarily, that (A.1) points to the following details:
i) the vector ua is the velocity of the so-called stationary observer, which possesses arbitrary, but uniform, angular

velocity Ω;
ii) this angular velocity coincides with the ZAMO (zero angular momentum observer) angular velocity, defined by L̂ ≡

uφξ
φ
= 0. For metric (46), the zero angular momentum is realized as uφ = u

t
gtφ + u

φ
gφφ = 0. Hence,

ω ≡
u
φ

ut
= −

gtφ
gφφ

. (A.2)

With metric (46),

ω =
2aMr

A
, (A.3)

that is the same as Ω of (A.1). Therefore, the 4-velocity u
a from (55) is that of a ZAMO;

iii) the angular velocity Ω coincides with the angular velocity of the black hole on the black hole horizon

ΩH ≡ ω(rH) = a

2MrH
≡

a

r2H + a2
. (A.4)

By use of the Killing vector nature of ξa, one may easy verify the relation

▽a (ξbξb) = −2gH ξa, ξ
a
= ∂t + ΩH∂φ, (A.5)

which we will use in computations of the surface gravity gH.
The norm of ξa for the Kerr metric in the Eddington-Finkelstein coordinates is given by

ξ
a
ξa =

A sin
2
θ

ρ2
(ΩH − ω)2 − ρ

2
∆

A
. (A.6)

Then the covariant derivative of ξaξa on the horizon, where ΩH = ω(rH), is equal to

▽a (ξbξb) = −
ρ
2

A

»»»»»»H ∂a∆. (A.7)

Or, with ∆ = r
2 + a

2 − 2Mr, eq. (A.7) becomes

▽a (ξbξb) = −
2ρ

2

A
(r −M)»»»»»»H∂ar. (A.8)



46
EEJP. 4 (2024) A.M. Arslanaliev, et al.

Now, we compare the r.h.s. of (A.8) with ξa, and take both quantities on the horizon. We get

ξa
»»»»»»H = lim

α→0
αua

»»»»»»H = (0, 2Mrρ
2

A

»»»»»»H, 0, 0) , (A.9)

so that, combining (A.5), (A.7) and (A.9), and taking all of these quantities on the horizon, we arrive at

2ρ
2

A
(r −M) »»»»»»H = gH

2Mrρ
2

A

»»»»»»H.

Therefore,

gH =
rH −M

2MrH
. (A.10)

Since rH = M +
√
M2 − a2, we recover eq. (62). Equivalently, the surface gravity can be presented as

gH =
r+ − r−

2(r2+ + a2)
, r± = M ±

√
M2 − a2. (A.11)

B. ON THE GOURGOULHON’S GENERALIZATION OF THE DNS EQUATION
In this Appendix we provide the link between the RDNS equations (31), (32) and the generalization of the DNS

equation in the vicinity of a BH horizon, derived in Ref. [15].
Let’s start with an overview of basics in the construction of [15]. Suppose we are dealing with a hypersurface H̃,

which is foliated by a family of 2D space-like surfaces. The orthogonal to these 2d surfaces plane can be generated by
basic vectors (h,m), one of which (say, the vector h) is inside of H̃, and the other one is orthogonal to H̃. We refer
the reader to Ref. [15] for more details on the basic vectors (h,m). For our purposes it would be enough to use the
representation of these vectors in terms of null vectors (l,k) on the whole 4D space-time:

h
a
= l

a
− Ck

a
, m

a
= l

a
+ Ck

a
. (B.1)

From the properties of (l,k), l2 = 0, k2 = 0 and l
a
ka = −1 it follows that

C =
1

2
h
a
ha = −

1

2
m

a
ma. (B.2)

Since we are interested in a time-like hypersurface H̃, C < 0.
In [15] it was established the following generalization of the DNS equation on the hypersurface H̃:

q
c
aLhΩ

(l)
c + θ

(h)
Ω

(l)
a =

2
Da⟨κ(l)

,h⟩ − 2
D

b
σ
(m)
ba +

1

2
2
Daθ

(m)
− θ

(k) 2
DaC + 8πq

c
aTcdm

d
, (B.3)

where qab is the 2D induced metric on the space-like foliation of H̃. In (B.3) Lh defines the Lie derivative along the vector
h
a; 2

Da is the covariant, w.r.t. the 2D induced metric qab, derivative; Tab denotes the EMT of matter fields. For the rest
of quantities and symbols entering eq. (B.3) we use the notation of [15]. For instance, the “surface gravity” 1-form is
determined in [15] as

κ
(l)
a = − (δba − q

b
a) kc ▽b l

c
. (B.4)

The definitions of the remaining quantities and operations will be given as needed when comparing equation (B.3) with
the obtained in the main text equation (32).

To restate eq. (B.3) as eq. (32), we will introduce the orthonormal basis, related to the vectors (h,m):

h
a
= λû

a
, m

a
= λn̂

a
, λ

2
= −2C. (B.5)

Apparently,
û
a
ûa = −1, n̂

a
n̂a = 1, û

a
n̂a = 0. (B.6)

Then, in terms of ûa and n̂
a, the null-vectors (l,k) become

l
a
=

λ

2
(ûa

+ n̂
a) , k

a
=

1

λ
(ûa

− n̂
a) , (B.7)

so that

û
a
=

1

λ
l
a
+

λ

2
k
a
, n̂

a
=

1

λ
l
a
−

λ

2
k
a
. (B.8)
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Now, we have to write down eq. (B.3) in the basis of (u,n). For Ω(l)
a (see eq. (3.21) in Ref. [15]) we get

Ω
(l)
a ≡

1

kele
q
b
a kc ▽b l

c
= q

b
a λ

−1
∂bλ − Ω

(n̂)
a , (B.9)

where Ω
(n̂)
a has the same structure as Ω(l)

a with l → n̂ replacement. Getting eq. (B.9), we have used the identities ûa ▽b

û
a
= n̂a ▽b n̂

a
= 0 and ûa ▽b n̂

a
= −n̂a ▽b û

a. The first on the r.h.s. of (B.9) term is equal, on the hypersurface H̃, to
v̂a ≡ q

c
aû

b ▽b ûc, so that Ω(l)
a = v̂a − Ω

(n̂)
a . (It directly follows from eq. (B.8), and eqs. (4.22), (4.24), (4.25), (4.28) and

(4.29) of Ref. [15].) Therefore, with such an identification, the first term on the l.h.s. of (B.3) becomes

q
c
aLhΩ

(l)
c = q

c
aLh(v̂c − Ω

(n̂)
c ) = q

c
aLhv̂c − q

c
aLhΩ

(n̂)
c = λ [qcaLûv̂c − q

c
aLûΩ

(n̂)
c ] . (B.10)

The second term on the l.h.s. of (B.3) is

θ
(h)

Ω
(l)
a ≡ q

ab
▽a hb (v̂a − Ω

(n̂)
a ) = »»»»»»hb = λûb

»»»»»» = λ θ
(û) (v̂a − Ω

(n̂)
a ) . (B.11)

Here we have used q
ab
ûb = 0 and the following definition for θ(h) = q

ab ▽a hb and θ
(û)

≡ θ
(h→û).

Let’s turn to the r.h.s. of eq. (B.3). In the first term on the r.h.s. we meet the scalar product of vectors κ(l)
a and h

a:

⟨κ(l)
,h⟩ ≡ h

a
κa = −λû

b
ka ▽b l

a
= û

a
▽a λ − λû

b
û
a
▽b n̂a, (B.12)

where we have used the definition of the “surface gravity” one-form (B.4), eqs. (B.5), (B.7), and the identity ûa ▽b n̂
a
=

−n̂a ▽b û
a. Hence, the action of the 2D covariant derivative on ⟨κ(l)

,h⟩ turns into

2
Da⟨κ(l)

,h⟩ = 2
Da (ûb

∂bλ) − (ûb
û
c
▽b n̂c) [2Daλ] − λ [2Da (ûb

û
c
▽b n̂c)] . (B.13)

The second term on the r.h.s. of (B.3) contains

σ
(m)
ba = Θ

(m)
ba −

qba
2

θ
(m)

= Θ
(n̂)
ba −

qba
2

θ
(n̂)

= σ
(n̂)
ba . (B.14)

Here we have used the definitions Θ
(m)
ab = q

c
aq

d
b ▽c md, θ(m)

= TrΘ
(m)
ab , and the corresponding relation from (B.5).

Then, the action of 2
Da on σ

(m)
ab results in

2
D

b
σ
(m)
ba = λ (σ(n̂)

ba v̂
b
+

2
D

b
σ
(n̂)
ba ) . (B.15)

Next, for θ(m) and 2
Daθ

(m) we have

θ
(m)

= λθ
(n̂)

,
2
Daθ

(m)
= λ (θ(n̂)v̂a + 2

Daθ
(n̂)) . (B.16)

For the fourth term on the r.h.s. of (B.3), on account of C = −λ2/2 and the definition of θ(k), we get

θ
(k) 2

DaC = −
1

2
q
ab

▽b ka
2
Daλ

2
= q

c
a∂cλ (θ(n̂) − θ

(û)) = λ (θ(n̂) − θ
(û)) v̂a. (B.17)

Finally, taking into account (B.5) in the last term of (B.3), and dividing both sides on , we arrive at

q
c
aLû(−Ω(n̂)

c ) + θ
(û)(−Ω(n̂)

a ) = q
b
a∂b (

θ
(n̂)

2
− û

c
û
d
▽c n̂d) −

2
D

b
σ
(n̂)
ba + 8πq

c
aTcdn̂

d

− (qbaûc
û
d
▽c n̂d +

θ
(n̂)

2
qba + σ

(n̂)
ba ) v̂b − q

c
aLûv̂c + λ

−1
q
c
a∂c(ûb

∂bλ) .
(B.18)

It is straightforward to verify that λ−1
q
c
a∂c(ûb

∂bλ) = q
c
aLûv̂c, so that two last terms on the r.h.s. of (B.18) cancel

each other. Therefore, under the following replacements in eq. (B.18),

−Ω
(n̂)
c ↝ Ω̂a, θ

(n̂)
↝ θ̂, −û

b
û
a
▽b n̂a ↝ ĝ, σ

(n̂)
ba ↝ σ̂ba, qab ↝ γab, (B.19)

with omitting hats over the basic vectors (û, n̂), we get the following equation outside of the horizon:

γ
b
a∂b (

θ̂

2
+ ĝ) −

2
D

b
σ̂ba + (γac (ĝ −

θ̂

2
) − σ̂ac) v̂c + 8πγ

c
aTcdn

d
= γ

c
aLuΩ̂c + Ω̂a θ̂. (B.20)
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Comparing this equation to eq. (12), we note that, modulo terms γc
aΩ̂

b(▽buc−▽cub), two equations coincide. However,
in the particular representation for ua and na used in [15, 16],

ua = −Uh
b
a ▽b τ, na = N ▽a ρ, (B.21)

with scalar functions U , τ , N and ρ, it is easy to verify γ
c
aΩ̂

b(▽buc −▽cub) = 0.
To sum up, we have proved the equivalence of the generalized DNS equation of Ref. [15] (eq. (B.3)) to the general-

ization of the DNS equation (eq. (12)) obtained within the Membrane Approach of [4].

C. THE NULL-HYPERSURFACE LIMIT OF THE GOURGOULHON’S GENERALIZATION OF THE DNS
EQUATION

It was claimed in Ref. [15] that in the null-hypersurface limit eq. (B.3) turns into the standard version of the DNS
equation. In this Appendix we will take this limit for the equivalent to (B.3) equation,

γ
c
aLuΩ̂c + θ

(u)
Ω̂a = γ

b
a∂b (

θ
(n)

2
+ ĝ) −

2
D

b
σ
(n)
ba + 8πγ

c
aTcdn

d
+ (γba (ĝ −

θ
(n)

2
) − σ

(n)
ba ) vb . (C.1)

The null-hypersurface limit is realized by eqs. (17) and (18), that are

lim
α→0

αu
a
= l

a
, lim

α→0
αn

a
= l

a
, l

b
▽b l

a
= gH l

a
.

In this limit, geometric quantities become divergent (if so) as inverse degrees of α. We will regularize them by turning to
finite on the horizon variables, which are

θ
(u)

= α
−1
θ̄, θ

(n)
= α

−1
θ̄, ĝ = α

−1
ḡ, σ

(n)
ab = α

−1
σ̄ab, Ωa = Ω̄a. (C.2)

The bar over quantities means their regularity (finiteness) in the α → 0 limit.
Near the event horizon (on the stretched horizon, where α is small but not equal to zero) the vectors ua and n

a admit
the form

u
a
= α

−1
l
a
+ αδ

a
, n

a
= α

−1
l
a
+ αβ

a
. (C.3)

By use of the orthonormality relations between u
a and n

a, similar to eqs. (B.6), up to the 2nd order in α, we get

l
a
δa = −

1

2
+O(α2), l

a
βa =

1

2
+O(α2), (C.4)

from which it follows laδa = −laβa. Also, due to the orthogonality of ua and n
a to the 2D induced metric γab, the same

property is translated onto the vectors δa and β
a. The representation (C.3) allows one to recover the regularized on the

horizon θ
(u), θ(n), σ(n)

ab , and ĝ. For instance,

θ
(u)

≡ γ
ab

▽b ua = α
−1
θ
(l)

+O(α), (C.5)

θ
(n)

≡ γ
ab

▽b na = α
−1
θ
(l)

+O(α), (C.6)

where we have used the orthogonality of δa and β
a to γab, and the definition of θ(l) ≡ γ

ab▽b la. Comparing the obtained
results to (C.2), we conclude that

θ̄ = θ
(l)

+O(α2). (C.7)

Next, for σ(n)
ab , we arrive at

σ
(n)
ab = α

−1
σ
(l)
ab +O(α) ↝ σ̄ab = σ

(l)
ab +O(α2). (C.8)

Computations of ĝ are more involved. Here we have

ĝ = −u
a
u
b
▽b na = −(α−1

l
a
+ αδ

a)(α−1
l
b
+ αδ

b)▽b na

= −(α−2
l
a
l
b
▽b na + l

a
δ
b
▽b na + l

b
δ
a
▽b na + α

2
δ
a
δ
b
▽b na),

(C.9)

after that we have to use eqs. (C.4), together with the relations lb ▽b l
a
= gH l

a, lala = 0 and l
a ▽ βa = −βa ▽ la. As a

result, we arrive at
ĝ = α

−1 (gH − l
b
∂b lnα +O(α2)) , (C.10)
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that gives
ḡ = gH − l

b
∂b lnα +O(α), (C.11)

with the surface gravity gH. Also, one can see that va = γ
c
au

b ▽b uc = v
finite
a +O(α2).

Now, in terms of the regular on the horizon variables (up to the leading order in α), eq. (C.1) turns out to be

γ
c
aLlΩc + θ

(l)
Ωc ≅ γ

b
a∂b (gH − l

b
∂b lnα +

θ
(l)

2
) −

2
D

b
σ
(l)
ba + 8πγ

c
aTcdl

d

+ (σ(l)
ba − (θ

(l)

2
+ gH − l

b
∂b lnα) γba) γbc

∂c lnα + ((gH − l
b
∂b lnα −

θ
(l)

2
) γba − σ

(l)
ba ) v

b
.

(C.12)

Comparing the so obtained eq. (C.12) with the original DNS equation

γ
c
aLlΩc + θ

(l)
Ωc = γ

b
a∂b (gH +

θ
(l)

2
) −

2
D

b
σ
(l)
ba + 8πγ

c
aTcdl

d
, (C.13)

we derive the same conditions on the regularization function α as in the main text of the paper (cf. eqs. (33)):

((gH −
θ
(l)

2
) γab − σ

(l)
ab ) v

b H
= ((θ

(l)

2
+ gH) γab − σ

(l)
ab ) γ

bc
∂c lnα, l

b
∂b lnα

H
= 0 . (C.14)

Here the symbol “
H
=” is reserved for computing quantities and their derivatives on the horizon.

Now, let’s fix the particular choice of ua and n
a vectors from Appendix B (eq. (B.8)):

û
a
=

1

λ
l
a
+

λ

2
k
a
, n̂

a
=

1

λ
l
a
−

λ

2
k
a
, (C.15)

and let’s assume that la is the event horizon null-generator, i.e., lb ▽b l
a
= gH l

a. Since the parameter λ in (C.15) is free,
we can identify it with the regularization function α. Then, since as an outcome of Appendix B we have obtained v̂a =

γ
c
aλ

−1
∂bλ, we will have v

b H
= γ

bc
∂c lnα on the horizon.

The second condition of (C.14) is always satisfied with the given choice of the regularization function. The rest of
(C.14) is

θ
(l)
γ
c
b∂c lnα

H
= 0, (C.16)

which requires either space-time configurations with the trivial vector va, or, in the case of finite-valued va on the horizon,
the trivial on the horizon expansion θ

(l) H
= 0. For example,

• for the Kerr BH, lb∂b ln α̂ = 0, γ
c
b∂c ln α̂

H
= finite ≠ 0, and θ

(l) H
= 0,

• for the Schwarzschild BH, lb∂b ln α̂ = 0, γ
c
b∂c ln α̂ = 0, and θ

(l) H
= 0.

Now, it becomes clear that the claim of [15] on the equivalence of eq. (B.3) to eq. (C.13) in the horizon (null-
hypersurface) limit is based on the possibility, within the approach of [15, 16], to fix C = 0 and h

a
= m

a
= l

a (see eq.
(B.3)). Put it differently, in terms of the vector va and the regularization function α, in Ref. [15] it is silently supposed
that we can always fix va = 0 in the α → 0 limit. However, as we have convinced on the example of the Kerr Black Hole,
it is not always possible for a general Black Hole spacetime metric.
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ЛIМIТ НУЛЬОВОЇ ГIПЕРПОВЕРХНI В МЕМБРАННОМУ ПIДХОДI ПАРIХА-ВIЛЬЧЕКА
А.М. Арсланалiєвa, О.Ю. Нурмагамбетовa,b,c
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cIнститут радiофiзики та електронiки iменi О.Я. Усикова, вул. Ак. Проскури, 12, Харкiв, 61085, Україна
Ми розглядаємо тонкощi взяття лiмiту нуль-гiперповерхнi (горiзонту подiй) в мембранному пiдходi Парiха-Вiльчека до чор-
них дiр. Зокрема, уточнено вiдповiднiсть мiж спроектованими рiвняннями гравiтацiї Ейнштейна з речовиною та рiвняннями
релятивiстської гiдродинамiки Райчаудхурi-Дамура-Нав’є-Стокса (РДНС). Для загальної конфiгурацiї гравiтацiї з речовиною
ми отримуємо додатковi члени в гiдродинамiчних рiвняннях, якi включають специфiчнi комбiнацiї згорнутих логарифмiчних
похiдних параметра (функцiї регуляризацiї), що визначає близькiсть розтягнутої мембрани до горизонту чорної дiри. Про-
те прямi обчислення нових членiв для точних (Шварцшильда i Керра) розв’язкiв чорних дiв пiдказують стандартну форму
рiвнянь РДНС через властивiсть нерозширюваного горизонту цих розв’язкiв. Тому зведення розширених рiвнянь РДНС до
їхньої класичної форми можна розглядати як додаткову умову узгодженостi в гiдродинамiцi точних розв’язкiв чорних дiр, а
також як нетривiальний тест для рiзних життєздатних наближень метрики простору-часу. Ми детально порiвнюємо мембранний
пiдхiд Парiха-Вiльчека з методом Гургулона-Харамiльйо для опису нульової гiперповерхнi, а також даємо зв’язок отриманих
результатiв з нашою попередньою роботою щодо керрiвськiх чорних дiр.
Ключовi слова: чорнi дiри; мембранна парадiгма; релятивiстська гiдродинамiка
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Recently, there has been much interest in investigating outstanding problems of cosmology with modified theories of gravity. The
Brans-Dicke theory of gravity is one such theory developed by Brans and Dicke absorbing Mach’s principle into the General Theory of
Relativity. In Brans-Dicke theory, gravity couples with a time-dependent scalar field 𝜙 through a coupling parameter 𝜔. This theory
reduces to the General Theory of Relativity if the scalar field 𝜙 is constant and the coupling parameter 𝜔 → ∞. In this paper, we consider
a flat Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) universe with a time-dependent cosmological constant in Brans-Dicke theory of
gravity. Exact solutions of the field equations are obtained by using a power law relation between the scale factor and the Brans-Dicke
scalar field 𝜙 and by taking the Hubble parameter 𝐻 to be a hyperbolic function of the cosmic time 𝑡. We study the cosmological
dynamics of our model by graphically representing some important cosmological parameters such as the deceleration parameter, energy
density parameter, equation of state parameter, jerk parameter, snap parameter, lerk parameter etc. The statefinder diagnostic pair of the
model is also obtained and the validity of the four energy conditions, viz. the Strong energy condition (SEC), Weak energy condition
(WEC), Dominant energy condition (DEC) and Null energy condition (NEC), is examined. We find that the universe corresponding
to our model is expanding throughout its evolution and exhibits late time cosmic acceleration, which is in agreement with the current
observational data.

Keywords: Brans-Dicke theory; Friedmann-Lemaı̂tre-Robertson-Walker universe; Cosmological constant; Hubble parameter; Decel-
eration parameter

PACS: 04.20.Jb, 04.50.Kd, 98.80.-k, 98.80.Jk

1. INTRODUCTION
Recent cosmological and astrophysical observations such as SNIa, CMB (Cosmic Microwave Background), LSS

(Large Scale Structure), WMAP (Wilkinson Microwave Anisotropy Probe), SDSS (Sloan Digital Sky Survey) etc. [1]-
[10] strongly suggest that our universe is currently undergoing a phase of accelerated expansion. Within the framework of
General Relativity, an exotic component with large negative pressure, dubbed dark energy, is considered to be responsible
for this expansion. There is also no dearth of candidate for dark energy, the cosmological constant Λ being the simplest
and the most natural one which fits the observations well. Another possibility in explaining the observed cosmic accel-
eration is that at large scales the gravity model of General Relativity breaks down and an action more general than the
Einstein-Hilbert action describes the gravitational field.

In recent years, a number of modified gravity theories are considered in literature, and one such theory is the
Brans-Dicke theory [11] in which gravity couples with a time-dependent scalar field 𝜙 through a dimensionless coupling
constant 𝜔. The scalar field 𝜙 plays the role of the inverse of Newton’s gravitational constant 𝐺, and for a constant 𝜙, the
Brans-Dicke theory reduces to the General Theory of Relativity where 𝐺 plays the role of coupling between the gravity of
space-time and matter in it. The Brans-Dicke theory has passed solar system experimental tests [12], CMB data [13] and
Planck data [14]. Many cosmological models are also constructed by several authors by utilizing this theory in different
contexts. Very recently, Song 𝑒𝑡 𝑎𝑙. [15] have studied alternative dynamics in loop quantum Brans-Dicke cosmology,
Tripathy 𝑒𝑡 𝑎𝑙. [16] have studied a bouncing scenario in the framework of generalised Brans-Dicke theory, Sharif and
Majid [17] constructed anisotropic spherical solutions from some known isotropic solutions in the background of self-
interacting Brans-Dicke theory and Hatkar 𝑒𝑡 𝑎𝑙. [18] have explored viscous holographic dark energy in the context of
Brans-Dicke theory. Yadav [19] has investigated power-law variation of the scalar field 𝜙 with the scale factor 𝑎 of FRW
universe filled with dark matter and Tsallis type holographic dark energy. Yadav 𝑒𝑡 𝑎𝑙. [20] have investigated a Bianchi
type-I transitioning universe with hybrid scalar field, Mishra and Dua [21] have examined the dynamics of flat FLRW
model of universe with time varying cosmological constant Λ(𝑡) and Santhi 𝑒𝑡 𝑎𝑙. [22] have analyzed some Bianchi
type viscous holographic dark energy models in Brans-Dicke theory of gravity. Various authors have also constructed
hyperbolic cosmological models in different contexts.
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Chand 𝑒𝑡 𝑎𝑙., [23] investigated the flat, open and closed Friedmann-Robertson-Walker model within the framework
of the Brans-Dicke theory of gravity. The authors have constructed cosmological models for a hyperbolic scale factor and
a hybrid scale factor. They have obatined the negative pressure throughout the cosmic evolution for a closed universe in
case of the hyperbolic scale factor model whereas in case of hybrid scale factor model, pressure is negative throughout
the evolution for both flat and closed universe. Also a negative Λ is obtained throughout the cosmic evolution for an
open universe in the hyperbolic scale factor model, and in case of the hybrid scale factor model negative Λ is obtained
in the early phases of evolution for open, flat and closed universe. Also their model initially starts from Chaplygin gas
region and approaches to ΛCDM model at late times. Esmaeili [24] has constructed two cosmological models in 𝑓 (𝑅,𝑇)
theory using the scale factor 𝑎 in a hyperbolic form, and a power law form as a fraction of exponential function. Esmaeili
and Mishra [25] have constructed a Bianchi type VIℎ cosmological model in the framework of 𝑓 (𝑅,𝑇) theory, using a
hyperbolic scale factor. Mishra 𝑒𝑡 𝑎𝑙. [26] have presented a few cosmological models in the 𝑓 (𝑅,𝑇) theory. They have
also studied two cosmological models: (i) a hyperbolic scale factor model and (ii) a model with specific form of the Hubble
parameter. Mishra 𝑒𝑡 𝑎𝑙. [27] have also presented and analyzed a Bianchi type I cosmological model in the 𝑓 (𝑅,𝑇) gravity
theory with an anisotropic variable parameter in the form of hyperbolic function. Esmaeili [24], Esmaeili and Mishra [25]
and Mishra 𝑒𝑡 𝑎𝑙. [27] have found the SEC to violate throughout the cosmic evolution.

In this work we study the cosmological dynamics of a flat FLRW universe filled with a perfect fluid in Brans-Dicke
theory of gravity with a time dependent cosmological constant by considering the Hubble parameter 𝐻 to be a hyperbolic
function of cosmic time 𝑡. This paper is organised as follows: In section 2, we derive the Brans-Dicke field equations
with time-dependent cosmological cosntant Λ corresponding to a flat Friedmann-Lemaı̂tre-Robertson-Walker metric. In
section 3, we obtain cosmological solutions of Brans-Dicke field equations by assuming the Hubble parameter to be a
hyperbolic function of the cosmic time t, and by using a power law relation between the Brans-Dicke scalar field 𝜙 and
the scale factor 𝑎. In section 4, we study the physical and kinematical properties of the model by graphically representing
some parameters of cosmological importance. In section 5, we study the evolution of some cosmographic parameters. In
section 6, the statefinder diagnostic pair is obtained. In section 7, we examine the validity of the energy conditions. We
conclude the paper in section 8 with a brief discussion.

2. METRIC AND THE FIELD EQUATIONS
We consider the Brans-Dicke action in the form

𝑆 =

∫
[(𝑅 − 2Λ)𝜙 + 16𝜋L + 𝜔

𝜙
𝜙,𝑖𝜙

,𝑖]√−𝑔𝑑4𝑥 (1)

where 𝑅 is the Ricci scalar, Λ is the time-dependent cosmological constant, 𝜙 is a scalar field, L is the matter-Lagrangian
density, 𝜔 is the dimensionless Brans-Dicke coupling constant, 𝑔 is the determinant of the metric tensor 𝑔𝑖 𝑗 and coma (, )
represents the ordinary derivative.
Taking variations of the action (1) with respect to 𝑔𝑖 𝑗 and 𝜙, the Brans-Dicke field equations are obtained as

𝑅𝑖 𝑗 −
𝑅

2
𝑔𝑖 𝑗 + Λ𝑔𝑖 𝑗 = −

8𝜋𝑇𝑖 𝑗
𝜙

− 𝜔

𝜙2 (𝜙,𝑖𝜙, 𝑗 −
1
2
𝑔𝑖 𝑗𝜙,𝑘𝜙

,𝑘) − 1
𝜙
(𝜙,𝑖; 𝑗 − 𝑔𝑖 𝑗□𝜙) (2)

and
□𝜙 =

8𝜋𝑇 + 2Λ𝜙
(3 + 2𝜔) (3)

where 𝑅𝑖 𝑗 is the Ricci tensor, 𝑇𝑖 𝑗 is the energy-momentum tensor, □ is the D’Alembert operator, 𝑇 = 𝑔𝑖 𝑗𝑇𝑖 𝑗 is the trace of
the energy-momentum tensor and semicolon (; ) represents the covariant derivative.
We consider the universe to be filled with a perfect fluid of density 𝜌 and pressure 𝑝. The energy-momentum tensor 𝑇𝑖 𝑗
for a perfect cosmic fluid is given by

𝑇𝑖 𝑗 = (𝜌 + 𝑝)𝑢𝑖𝑢 𝑗 − 𝑝𝑔𝑖 𝑗 (4)

where 𝑢𝑖 is the four velocity.
The line-element for a flat Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) universe is given by

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2 (𝑑𝑟2 + 𝑟2𝑑𝜃2 + 𝑟2sin2𝜃𝑑𝜙2) (5)

where 𝑎 = 𝑎(𝑡) is the scale factor.
For the line element (5), the Brans-Dicke field equations (2) and (3) give

2
¥𝑎
𝑎
+ ¤𝑎2

𝑎2 + 𝜔

2
¤𝜙2

𝜙2 + 2
¤𝑎
𝑎

¤𝜙
𝜙
+

¥𝜙
𝜙
− Λ = −8𝜋𝑝

𝜙
(6)

3
¤𝑎2

𝑎2 − 𝜔

2
¤𝜙2

𝜙2 + 3
¤𝑎
𝑎

¤𝜙
𝜙
− Λ =

8𝜋𝜌
𝜙

(7)
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(3 + 2𝜔)
( ¥𝜙
𝜙
+ 3

¤𝑎
𝑎

¤𝜙
𝜙

)
− 2Λ =

8𝜋(𝜌 − 3𝑝)
𝜙

(8)

where ¤𝑎 is the derivative of the scale factor 𝑎 with respect to cosmic time 𝑡.

3. COSMOLOGICAL SOLUTIONS OF THE BRANS-DICKE FIELD EQUATIONS
We have three field equations with five unknowns 𝑎, 𝜙, Λ, 𝑝 and 𝜌. In order to determine an exact solution of the

field equations, we need two more equations relating the unknowns.
We consider a power law relation between the scalar field 𝜙 and the scale factor 𝑎 as

𝜙 = 𝜙0𝑎
𝑚 (9)

where 𝜙0 is the proportionality constant and 𝑚 is an arbitrary constant.
Also, we consider the Hubble parameter 𝐻 to be a hyperbolic function of cosmic time 𝑡 and take

𝐻 (𝑡) = 𝛼𝛽coth(2𝛼𝑡) (10)

where 𝛼 > 0, 𝛽 > 0 are constants. The Hubble parameter 𝐻 is defined as 𝐻 = ¤𝑎
𝑎

. Therefore, from (10), we obtain the
scale factor 𝑎 as

𝑎(𝑡) = 𝑎0 {sinh(2𝛼𝑡)}
𝛽

2 (11)

where 𝑎0 is the present value of the scale factor 𝑎.
Using relations (9) and (11) in (6)-(8), we obtain

Λ(𝑡) =2𝛼2𝛽(𝑚𝜔 − 3) {cosech(2𝛼𝑡)}2 + 𝛼2𝛽2
(
6 − 𝑚2𝜔

2
− 3𝑚𝜔

)
{coth(2𝛼𝑡)}2 (12)

𝑝(𝑡) =𝜙0𝑎0
𝑚

8𝜋
{sinh(2𝛼𝑡)}

𝑚𝛽

2
[
2𝛼2𝛽(𝑚 + 𝑚𝜔 − 1){cosech(2𝛼𝑡)}2]

+ 𝜙0𝑎0
𝑚

8𝜋
{sinh(2𝛼𝑡)}

𝑚𝛽

2
[
𝛼2𝛽2 (3 − 2𝑚 − 3𝑚𝜔 − 𝑚2 − 𝑚2𝜔){coth(2𝛼𝑡)}2] (13)

𝜌(𝑡) =𝜙0𝑎0
𝑚

8𝜋
{sinh(2𝛼𝑡)}

𝑚𝛽

2
[
2𝛼2𝛽(3 − 𝑚𝜔){cosech(2𝛼𝑡)}2]

+ 𝜙0𝑎0
𝑚

8𝜋
{sinh(2𝛼𝑡)}

𝑚𝛽

2
[
3𝛼2𝛽2 (𝑚 + 𝑚𝜔 − 1){coth(2𝛼𝑡)}2] (14)

From (9), we obtain the expression for the scalar field 𝜙 as

𝜙 = 𝜙0 [𝑎0{sinh(2𝛼𝑡)}]
𝑚𝛽

2 (15)

4. PHYSICAL AND KINEMATICAL PROPERTIES OF THE MODEL
The spatial volume parameter 𝑉 (𝑡) of the model is obtained as

𝑉 (𝑡) = {𝑎(𝑡)}3 = 𝑎0
3{sinh(2𝛼𝑡)}

3𝛽
2 (16)

The deceleration parameter 𝑞 , which indicates whether the cosmic expansion is uniform, decelerating or accelerating, is
defined by 𝑞(𝑡) = − 1

𝑎𝐻2
𝑑2𝑎
𝑑𝑡2 = −1 − ¤𝐻

𝐻2 .
For our model,

𝑞(𝑡) = 2
𝛽
{sech(2𝛼𝑡)}2 − 1 (17)

The expansion scalar 𝜃 (𝑡), defined by 𝜃 = 3𝐻, is obtained as

𝜃 (𝑡) = 3𝛼𝛽coth(2𝛼𝑡) (18)

Using the relations (13) and (14), we obtain the equation of state (EoS) parameter 𝜂(𝑡) = 𝑝 (𝑡 )
𝜌(𝑡 ) as

𝜂(𝑡) = 2𝛼2𝛽(𝑚 + 𝑚𝜔 − 1){cosech(2𝛼𝑡)}2 + 𝛼2𝛽2 (3 − 2𝑚 − 3𝑚𝜔 − 𝑚2 − 𝑚2𝜔){coth(2𝛼𝑡)}2

2𝛼2𝛽(3 − 𝑚𝜔){cosech(2𝛼𝑡)}2 + 3𝛼2𝛽2 (𝑚 + 𝑚𝜔 − 1){coth(2𝛼𝑡)}2 (19)
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Now, in order to study the physical and kinematical properties of the constructed model, we represent the evolution
of various parameters graphically by using the expressions obtained above in figure 1 to figure 10, which enables us to
have a better understaning about the evolving universe corresponding to our model.

We plot the scale factor 𝑎, spatial volume 𝑉 and scalar field 𝜙 against the cosmic time 𝑡 for 𝛼 = 0.107, 𝛽 = 0.603 in
figures 1, 2 and 3 respectively. These figures show that the scale factor 𝑎, spatial volume 𝑉 and scalar field 𝜙 relates to the
cosmic time 𝑡 with direct proportionality, thereby showing the increasing behaviour throughout the universe’s evolution,
hinting about the evolution of the observable universe at an accelerated rate at late times.

Figure 1. Evolution of the scale factor 𝑎 vs cosmic time
𝑡 for 𝛼 = 0.107, 𝛽 = 0.603, 𝑎0 = 1

Figure 2. Evolution of the spatial volume 𝑉 vs cosmic
time 𝑡 for 𝛼 = 0.107, 𝛽 = 0.603, 𝑎0 = 1

Figure 3. Evolution of the scalar field 𝜙 vs cosmic time
𝑡 for 𝛼 = 0.107, 𝛽 = 0.603, 𝑎0 = 𝜙0 = 1, 𝑚 = 0.001

Figure 4. Evolution of the Hubble parameter 𝐻 vs cosmic
time 𝑡 for 𝛼 = 0.107, 𝛽 = 0.603

Figure 4 displays the variation of Hubble parameter 𝐻 against the cosmic time 𝑡 and figure 5 displays the expansion
scalar plots against the cosmic time 𝑡. The Hubble parameter 𝐻 and expansion scalar 𝜃, which provides information
regarding the expansion rate of the evolving universe, relates to the cosmic time 𝑡 with an inverse proportionality like rela-
tion, which in turn results in the continuous decreasing nature and fading away of the Hubble parameter 𝐻 and expansion
scalar 𝜃, signifying the late time phases of accelerated cosmic expansion.

Evolution of the deceleration parameter 𝑞 against the cosmic time 𝑡 is displayed in the figure 6. It undergoes a
transition from an early phase with positive values to attain negative ones at a later phase (𝑡 ∼ 5.64) of cosmic evolution.
The transition is an evident hint of the decelerating phase of evolution of the universe turning into an accelerating one at
a later phase. At late times, 𝑞 tends to −1, which indicates that the evolving universe undergoes the phase of accelerated
expansion at late times.

Figure 7 displays the graphical representation of the cosmological constant Λ against the cosmic time 𝑡. It is seen
that, Λ is negative in the early phases of cosmic evolution, which later attains the positive values.

Figure 8 shows the variation of the pressure of the cosmic fluid with the increasing cosmic time 𝑡. A decreasing
behaviour of 𝑝(𝑡) is seen transitioning from positive values at early phases to negative values at a later phase of the cosmic
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Figure 5. Evolution of the expansion scalar 𝜃 vs cosmic
time 𝑡 for 𝛼 = 0.107, 𝛽 = 0.603

Figure 6. Evolution of the deceleration parameter 𝑞 vs
cosmic time 𝑡 for 𝛼 = 0.107, 𝛽 = 0.603

Figure 7. Evolution of the cosmological constant Λ vs
cosmic time 𝑡 for 𝛼 = 0.107, 𝛽 = 0.603, 𝑚 = 0.001, 𝜔 =

1628

Figure 8. Evolution of the pressure 𝑝 vs cosmic time 𝑡

for 𝛼 = 0.107, 𝛽 = 0.603, 𝑎0 = 𝜙0 = 1, 𝑚 = 0.001, 𝜔 =

1628

evolution. Thus the graph of 𝑝(𝑡) versus cosmic time 𝑡 is indicating the early era of radiation domination transitioning
to the era of dark energy domination at future phases of cosmic evolution, passing through the era of matter domination
(𝑝 = 0 at 𝑡 ∼ 1.49). The negative pressure indicates the presence of some exotic component in the universe, dubbed dark
energy, which could possibly be responsible for the late time cosmic acceleration.

In figure 9, it is seen that the energy density 𝜌 is inversely proportional to the cosmic time 𝑡. 𝜌(𝑡) decreases gradually
but remain positive throughout the evolution of the universe which eventually tends to zero at late times, hinting that the
universe will keep expanding forever.

Figure 10 illustrates the evolution of the EoS parameter 𝜂 which decreases as the universe evolves. It is positive in
the early universe, signifying the radiation dominating era of the early universe, which later crosses the fixed point 𝜂 = 0
at 𝑡 ∼ 1.49 signifying the matter dominating era, and attains the negative values signifying the dark energy dominating
era. Upto a certain period of time, our model lies in the region of quintessence phase (−1 < 𝜂 < − 1

3 ), within 𝑡 ∼ 5.22 −
𝑡 ∼ 24.55 , later 𝜂(𝑡) attains the value −1 at 𝑡 ∼ 22.8 till the future phases of evolution indicating the ΛCDM behaviour of
the model at future phases of cosmic evolution. At the current epoch, 𝜂 ∼ −0.96 for 𝛼 = 0.107, 𝛽 = 0.603.

5. EVOLUTION OF THE COSMOGRAPHIC PARAMETERS
The cosmographic parameters enable us in exploring the phenomena of cosmic evolution in a model independent

manner. Hence we study the evolution of the cosmographic parameters viz., the jerk parameter 𝑗 (𝑡), snap parameter 𝑠(𝑡)
and lerk parameter 𝑙 (𝑡) which are defined as [28]
𝑗 (𝑡) = 1

𝑎𝐻3
𝑑3𝑎
𝑑𝑡3 , 𝑠(𝑡) = 1

𝑎𝐻4
𝑑4𝑎
𝑑𝑡4 and 𝑙 (𝑡) = 1

𝑎𝐻5
𝑑5𝑎
𝑑𝑡5 .

These parameters obtained from the Taylor series expansion of the scale factor 𝑎(𝑡) containing the third, fourth and
fifth order cosmic time derivative of the scale factor 𝑎(𝑡) are dimensionless and are useful in understanding the cosmic
evolution in a better way.
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Figure 9. Evolution of the energy density 𝜌 vs cosmic
time 𝑡 for 𝛼 = 0.107, 𝛽 = 0.603, 𝑎0 = 𝜙0 = 1, 𝑚 = 0.001,
𝜔 = 1628

Figure 10. Evolution of the Eos parameter 𝜂 vs cosmic
time 𝑡 for 𝛼 = 0.107, 𝛽 = 0.603, 𝑚 = 0.001, 𝜔 = 1628

For our model, these parameters are obtained as

𝑗 (𝑡) =
(
−6𝛽 + 8

𝛽2

)
{sech(2𝛼𝑡)}2 + 1 (20)

𝑠(𝑡) =
(
−12𝛽2 + 44𝛽 − 48

𝛽3

)
{sech(2𝛼𝑡)}2 +

(
−12𝛽 + 16

𝛽3

)
{sech(2𝛼𝑡)}2{tanh(2𝛼𝑡)}2 + 1 (21)

𝑙 (𝑡) =
(
−20𝛽3 + 140𝛽2 − 400𝛽 + 384

𝛽4

)
{sech(2𝛼𝑡)}2

+
(
−60𝛽2 + 240𝛽 − 256

𝛽4

)
{sech(2𝛼𝑡)}2{tanh(2𝛼𝑡)}2 + 1 (22)

Figure 11. Evolution of the jerk ( 𝑗), snap (𝑠) and lerk (𝑙) parameters vs cosmic time 𝑡 for 𝛼 = 0.107, 𝛽 = 0.603

From the graphical representation of the cosmographic parameters in figure 11, we observe that the universe corre-
sponding to our model is expanding throughout its evolution and it exhibits the late time cosmic acceleration. The jerk,
snap and lerk parameters tend to 1 at late times, agreeing with the current observational data.

6. STATEFINDER DIAGONSTIC
The dimensionless geometric pair {𝑟, 𝑠}, known as the statefinder pair [29], are defined as 𝑟 (𝑡) = 1

𝑎𝐻3
𝑑3𝑎
𝑑𝑡3 and 𝑠(𝑡) =

2(1−𝑟 )
3(1−2𝑞) . These are useful in distinguishing various dark energy models including quintessence, Chaplygin gas, braneworld
and other interacting models of dark energy successfully in a model independent manner. The pair helps in characterizing
the dark energy properties. In particular, the ΛCDM and SCDM model behaviours of convergence or divergence can
be found out with the help of the fixed position of the pair {𝑟, 𝑠}. The fixed point {𝑟 = 1, 𝑠 = 0} resembles the ΛCDM
behaviour of the model and the fixed point {𝑟 = 1, 𝑠 = 1} resembles the SCDM behaviour of the model, while the regions
{𝑟 < 1, 𝑠 > 0} and {𝑟 > 1, 𝑠 < 0} respectively represents the phase of quintessence and Chaplygin gas like behaviour of
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the model.

As our model indicates the presence of some exotic component in the universe with negative pressure, so it will be
interesting to study the behaviour of this unknown component and its resemblance with various dark energy candidates
proposed in the literature.

For the present model, the pair {𝑟, 𝑠} is obtained in terms of cosmic time 𝑡 as

𝑟 (𝑡) =
(
−6𝛽 + 8

𝛽2

)
{sech(2𝛼𝑡)}2 + 1 (23)

𝑠(𝑡) =4
3

3𝛽 − 4
3𝛽2{cosh(2𝛼𝑡)}2 − 4𝛽

(24)

Figure 12. Plot of the statefinder pair {𝑟, 𝑠} vs cosmic time 𝑡 for 𝛼 = 0.107, 𝛽 = 0.603

Figure 12 shows the statefinder pair {𝑟, 𝑠} plot in the evolving universe. It shows that our model begins with Chaplygin
gas behaviour {𝑟 > 1, 𝑠 < 0} and ends up with ΛCDM behaviour {𝑟 = 1, 𝑠 = 0}.

7. ENERGY CONDITIONS:
The four energy conditions viz, the Strong Energy Condition (SEC), Weak Energy Condition (WEC), Dominant En-

ergy Condition (DEC) and Null Energy Condition (NEC) are simply some constraints on some of the linear combinations
of the energy density 𝜌 and the pressure 𝑝. These four conditions are satisfied by all the normal matter in the universe,
because of the postive energy density and the positive pressure of the normal matter. For that reason, violation of any of
the energy conditions implies the presence of some non-normal matter in the universe [30]. The validity of SEC is the
implication of decelerating universe, independent of whether the universe is open, flat, or closed. The validity of WEC is
the implication of the ever positive and non-increasing nature of the energy density. The DEC provides an upper bound
on the energy density and the rate of cosmic expansion. The validity of NEC is the implication of a weak upper bound on
the Hubble parameter and inverse proportionality of the energy density and the size of the universe.

These energy conditions are given by:

SEC : 𝜌 + 3𝑝 ≥ 0, 𝜌 + 𝑝 ≥ 0
WEC : 𝜌 + 𝑝 ≥ 0, 𝜌 ≥ 0
DEC : 𝜌 + 𝑝 ≥ 0, 𝜌 − 𝑝 ≥ 0, 𝜌 ≥ 0
NEC : 𝜌 + 𝑝 ≥ 0
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For our model,

(𝜌 + 3𝑝) (𝑡) =𝜙0𝑎0
𝑚

8𝜋
{sinh(2𝛼𝑡)}

𝑚𝛽

2
[
2𝛼2𝛽(3𝑚 + 2𝑚𝜔) {cosech(2𝛼𝑡)}2]

+ 𝜙0𝑎0
𝑚

8𝜋
{sinh(2𝛼𝑡)}

𝑚𝛽

2
[
3𝛼2𝛽2 (2 − 𝑚 − 2𝑚𝜔 − 𝑚2 − 𝑚2𝜔) {coth(2𝛼𝑡)}2] (25)

(𝜌 + 𝑝) (𝑡) =𝜙0𝑎0
𝑚

8𝜋
{sinh(2𝛼𝑡)}

𝑚𝛽

2
[
2𝛼2𝛽(2 + 𝑚) {cosech(2𝛼𝑡)}2]

+ 𝜙0𝑎0
𝑚

8𝜋
{sinh(2𝛼𝑡)}

𝑚𝛽

2
[
𝛼2𝛽2 (𝑚 − 𝑚2 − 𝑚2𝜔) {coth(2𝛼𝑡)}2] (26)

(𝜌 − 𝑝) (𝑡) =𝜙0𝑎0
𝑚

8𝜋
{sinh(2𝛼𝑡)}

𝑚𝛽

2
[
2𝛼2𝛽(4 − 𝑚 − 2𝑚𝜔) {cosech(2𝛼𝑡)}2]

+ 𝜙0𝑎0
𝑚

8𝜋
{sinh(2𝛼𝑡)}

𝑚𝛽

2
[
𝛼2𝛽2 (−6 + 5𝑚 + 6𝑚𝜔 + 𝑚2 + 𝑚2𝜔) {coth(2𝛼𝑡)}2] (27)

Figure 13. Evolution of the energy conditions vs cosmic time 𝑡 for 𝛼 = 0.107, 𝛽 = 0.603, 𝑎0 = 𝜙0 = 1, 𝑚 = 0.001, 𝜔 =

1628

Figure 13 illustrates the validity of the energy conditions. We observe that for 𝛼 = 0.107, 𝛽 = 0.603, all of the four
energy conditions are satisfied in the early universe. But in the long run (𝑡 ∼ 5.22), SEC is violated. Violation of the SEC
indicates the accelerating expansion of the universe.

8. CONCLUDING REMARKS
In this paper, we investigate a flat FLRW universe filled with a perfect fluid within the framework of Brans-Dicke

theory of gravity with a time dependent cosmological constant. For the purpose of obtaining an exact solution of the field
equations, so as to construct a cosmological model, the extra conditions taken into consideration are: (i) the scale factor
𝑎 has a power law relation with the scalar field 𝜙 and (ii) the Hubble parameter 𝐻 is a hyperbolic function of the cosmic
time 𝑡. We examine the physical and kinematical properties of the constructed model by studying the evolution of some
important parameters such as the scale factor 𝑎, scalar field 𝜙, spatial volume parameter𝑉 , Hubble parameter 𝐻, expansion
scalar 𝜃, deceleration parameter 𝑞, cosmological constant Λ, pressure 𝑝, energy density 𝜌, EoS parameter 𝜂, jerk parameter
𝑗 , snap parameter 𝑠, lerk parameter 𝑙, and by examining the statefinder pair {𝑟, 𝑠} and validity of the four energy conditions.

We observe that the universe corresponding to our model is expanding throughout its evolution and it exhibits the
late time cosmic acceleration.
The Hubble parameter, the expansion scalar and the energy density decrease as the universe evolves but remain positive
throughout the evolution of the universe.
The pressure is initially positive but attains negative values later in the evolving universe. The negative pressure indicates
the presence of some exotic component in the universe which could be responsible for the late time cosmic acceleration
and hence can be considered to be the so called dark energy.
The cosmological constant shows negative behaviour in the early universe which transits into positive one at a later phase
of the cosmic evolution.
The EoS parameter attains the value −1 at late times, hinting that our model behaves like ΛCDM model in the late phases
of the cosmic evolution.
Further, the jerk, snap and lerk parameters tend to 1 at late times which asserts the current observational data.
The statefinder pair {𝑟, 𝑠} identifies the constructed model’s behaviour resembleing the ΛCDM at late times.
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Violation of the SEC indicates presence of some non-normal matter in the universe which could possibly be the reason
for the accelerating expansion of the universe at late times.
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ПЛОСКА КОСМОЛОГIЧНА МОДЕЛЬ ФРIДМАНА-ЛЕМЕТРА-РОБЕРТСОНА-УОКЕРА
IЗ ЗАЛЕЖНОЮ ВIД ЧАСУ КОСМОЛОГIЧНОЮКОНСТАНТОЮ

В ТЕОРIЇ ГРАВIТАЦIЇ БРАНСА-ДIККЕ
Анiндiта Басуматарi, Чандра Рекха Маханта

Факультет математики, Унiверситет Гаухатi, Гувахатi -781014, Iндiя
Останнiм часом виник великий iнтерес до дослiдження видатних проблем космологiї за допомогою модифiкованих теорiй
гравiтацiї. Теорiя гравiтацiї Бранса-Дiкке є однiєю з таких теорiй, розроблених Брансом i Дiкке, якi ввiбрали принцип Маха в
Загальну теорiю вiдносностi. У теорiї Бранса-Дiкке гравiтацiя пов’язана з залежним вiд часу скалярним полем 𝜙 через параметр
зв’язку𝜔. Ця теорiя зводиться до загальної теорiї вiдносностi, якщо скалярне поле 𝜙 є постiйним, а параметр зв’язку𝜔 → ∞. У
цiй статтi ми розглядаємо плоский Всесвiт Фрiдмана-Леметра-Робертсона-Уокера (FLRW) iз залежною вiд часу космологiчною
константою в теорiї гравiтацiї Бранса-Дiкке. Точнi розв’язки рiвнянь поля отриманi за допомогою степеневого спiввiдношення
мiж масштабним фактором i скалярним полем Бранса-Дiкке 𝜙 i за допомогою параметра Хаббла 𝐻 як гiперболiчної функцiї
космiчного часу 𝑡 . Ми вивчаємо космологiчну динамiку нашої моделi шляхом графiчного представлення деяких важливих
космологiчних параметрiв, таких як параметр уповiльнення, параметр щiльностi енергiї, параметр рiвняння стану, параметр
ривка, параметр миттєвого примикання, параметр lerk тощо. Також отримано дiагностичну пару моделi вимiрювача стану i
справедливiсть чотирьох енергетичних умов, а саме. Дослiджується сильний енергетичний стан (SEC), слабкий енергетичний
стан (WEC), домiнуючий енергетичний стан (DEC) i нульовий енергетичний стан (NEC).Мивиявили,щоВсесвiт, який вiдповiдає
нашiй моделi, розширюється протягом своєї еволюцiї та демонструє пiзнє космiчне прискорення, що узгоджується з поточними
даними спостережень.
Ключовi слова: теорiя Бренса-Дiкке; Всесвiт Фрiдмана-Леметра-Робертсона-Уокера; космологiчна стала; параметр Хаб-
бла; параметр уповiльнення
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