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This work examines the dark energy phenomenon by studying the Renyi Holographic Dark Energy (RHDE) and pressure-less Dark
Matter (DM) within the frame-work of Saez-Ballester (SB) scalar-tensor theory of gravitation(Phys. Lett. A113, 467:1986). To achieve
a solution, we consider the viable deceleration parameter (DP), which contributes to the average scale factor 𝑎 = 𝑒

1
𝛾

√
2𝛾𝑡+𝑐1 , where 𝛾,

and 𝑐1 are respectively arbitrary, and integration constants. We have derived the field equations of SB scalar-tensor theory of gravity
with the help of Kaluza-Klein FRW Universe. We have investigated cosmological parameters namely, DP (𝑞), energy densities (𝜌𝑀 ) and
(𝜌𝑅) of DM and RHDE, scalar field (𝜙), and equation of state parameter (𝜔𝑅). The physical debate of these cosmological parameters
are investigated through graphical presentation. Moreover, the stability of the model are studied through squared sound speed (𝑣2

𝑠) and
the well-known cosmological plane 𝜔𝑅 − 𝜔

′
𝑅

and all energy conditions and also, density parameters are analyzed through graphical
representation for our model.
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1. INTRODUCTION
The cosmological observations like, type Ia Supernovae [1, 2] have provided the convincing evidence that our

Universe is dominated by two dark sectors containing dark matter and dark energy. The behavior of Dark Matter (DM)
and Dark Energy (DE) is one of the most important issues today in modern cosmology. The present Planck data says that
there is 68.3% DE of the total energy contents of the Universe. The approaches to answer this DE problems and cosmic
acceleration issues fall into two categories: (i) To introduce dynamical DE models in the RHS of Einstein’s field equations
in the background of general relativity, (ii) Modify the LHS of Einstein’s field equations, it leads to modified theories of
gravity. We refer [3, 4, 5] for the detail investigation of DE models and modified theories of gravity.

The holographic DE model (HDE) suggests, this model is originated from holographic principle and its energy
density can be expressed by 𝜌𝑑𝑒 =

3𝐶2𝑀2
𝑝

𝐿2 , here 𝐶2 is a numerical constant, 𝑀2
𝑝 is the reduced Planck mass and 𝐿 denotes

the size of the current Universe such as the Hubble scale [6, 7]. In addition, the holographic DE has some problems and
cannot explain the time line of a flat FRW Universe [8, 9]. One of the proposed solutions for the HDE problems is the
consideration of various entropies. One of the considered entropy is Tsallis entropy which has been used in many papers
[10, 11, 12, 13]. In recent years, various entropy formalism have been used to discuss the gravitational and cosmological
setups. Also, some new holographic DE models are constructed such as Tsallis HDE [14]. In literature [15, 16, 17] ADE
models are available which deal with various aspects of the evolution of the Universe. Wei and Cai [18] have proposed a
new version of this model referred as New Agegraphic Dark Energy (NADE) model, by replacing the cosmic age 𝑇 with
the cosmic conformal age 𝜂 for the time scale. Hence, in this model, the dark energy density is of the form 𝜌𝑎 = 3𝑛2𝑚2

𝑝𝜂
−2,

where the conformal time 𝜂 is defined as 𝜂 =
∫ 𝑡

0
1
𝑎
𝑑𝑡 =

∫ 𝑎

0
1

𝑎2𝐻
𝑑𝑎 here 𝑎 is the average scale factor of the Universe and

Hubble parameter 𝐻 = ¤𝑎
𝑎

, and overdot (.) represents derivative with respect to the cosmic time (𝑡) only. Sheykhi and
Setare [19] have explore NADE model with viable gravitational constant 𝐺 in a non-flat Universe. And also,they have
generalized to viscous the NADE model in the presence of interacting term between dark sectors.

A new DE model based on the holographic hypothesis, inspired by a 𝑄 generalized entropy, suggested by Renyi
[20], called RHDE [21], has proposed with IR cutoff as the Hubble radius. Maradpour et al. [22] have investigated
thermodynamic approach to HDE and the Renyi entropy. Some other researchers [23, 24, 25] have analyzed based
on Renyi entropy to investigate various cosmological phenomena. Dixit [26] have investigated RHDE models in FRW
Universe with two IR cutoffs with redshift parametrization. Chunlen and Rangdeey [27] have discussed exploring the
RHDE model with the future and the particle Horizons as IR cutoff. Sharma and Dubey [28] have discussed cosmological
behavior of interacting RHDE models. Sarfraz et al. [29] have analyzed the Study of RHDE model in framework of Chern
Simons Modified Gravity.
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Sharma and Dubey [30] have discussed statefinder diagnostic for the RHDE. Saha et al. [31] have investigated RHDE
in higher dimension cosmology. Sharma and Dubey [32] have studied RHDE model in the framework of Brans-Dicke
(BD) scalar tensor theory of gravity. Divya and Aditya [33] have investigated anisotropic RHDE models in background of
general relativity. Recently, Bhattacharjee [34] has investigated interacting Tsallis and Renyi HDE with hybrid expansion
law. Santhi and Sobhanbabu [35] have studied Bianchi type-III Tsallis holographic dark energy model in Saez–Ballester
theory of gravitation. Sobhanbabu and Santhi [36] have investigated Kantowski–Sachs Tsallis holographic dark energy
model with sign-changeable interaction. Divya and Aditya [37] have studied observational constraints on RHDE model in
anisotropic Kantowski Sachs Universe. recently, Sobhanbabu and Santhi [38] have studied Bianchi type-III RHDE models
a in scalar tensor theory. Very recently, Sobhanbabu et al. [39] have analyzed Kantowski–Sachs Barrow holographic dark
energy model in the frame-work of SB theory of gravitation.

In this paper, inspired by the above investigations, we have considered the KK FRW Universe for the RHDE model
with the frame-work of scalar-tensor theory of gravity. This model also, provides the DE model for clear and easy
cosmological evolution. The paper is organized as follows: In the next Section, we present the field equations and obtained
their solution of RHDE model in the frame-work of SB theory. In Section. 3, we study the solution of the field equations
and cosmological parameters are investigated to RHDE model. In the last Section, we have presented some conclusions.

2. METRIC AND FIELD EQUATIONS OF RHDE IN SB THEORY
We consider the non-Ricci, non-compact five-dimensional FRW type KK Universe in the form

𝑑𝑠2 = 𝑑𝑡2 − 𝑅2 (𝑡)
[

𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2
(
𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2

)
+

(
1 − 𝑘𝑟2)𝑑𝜉2

]
, (1)

where 𝑅(𝑡) is the five-dimensional scale factor of the model and 𝑘 = 0, 1, −1 represents the curvature parameter for flat,
closed and open Universe. We define the following physical parameters for KK FRW Universe: Volume 𝑉 = 𝑅3, Hubble
parameter 𝐻 =

¤𝑅
𝑅

, scalar expansion 𝜃 = 3 ¤𝑅
𝑅

, and DP 𝑞 = −𝑅 ¥𝑅
¤𝑅2 , here 𝑅 is average scale factor.

The SB field equations for matter and RHDE distribution are given by [40]

𝐺𝜇𝜈 − 𝑤𝜙𝑛
(
𝜙,𝜇𝜙,𝜈 −

1
2
𝑔𝜇𝜈𝜙,𝜆𝜙

,𝜆
)
= −(𝑇𝜇𝜈 + 𝑇𝜇𝜈), (2)

and the scalar field 𝜙 satisfies the following equation

2𝜙𝑛𝜙
,𝜇
,𝜇 + 𝑛𝜙𝑛−1𝜙,𝜆𝜙

,𝜆 = 0, (3)

where 𝐺𝜇𝜈 represents the Einstein tensor and 𝑇𝜇𝜈 & 𝑇𝜇𝜈 are energy momentum tensors for pressure-less dark matter and
RHDE respectively. For physical interpretation, the energy momentum tensors for matter and RHDE can be written as

𝑇𝜇𝜈 = 𝑑𝑖𝑎𝑔[1, 0, 0, 0]𝜌𝑀 , (4)

and
𝑇𝜇𝜈 = 𝑑𝑖𝑎𝑔[1,−𝜔𝑅,−𝜔𝑅,−𝜔𝑅]𝜌𝑅, (5)

where 𝜌𝑅, 𝜌𝑀 are energy densities of RHDE and matter and 𝑝𝑅 is the pressure of RHDE. 𝜔𝑅 =
𝑝𝑅
𝜌𝑅

is an equation of state
(EoS) parameter. So, the field equations for the discussed metric can be written as SB field Eq.(2), for KK FRW Universe
Eq.(1) with the help of Eq.(4), and (5) can be written as

6
¤𝑅2

𝑅2 + 6
𝑘

𝑅2 + 𝑤
¤

𝜙𝑛 ¤ 2
𝜙

2
= 𝜌𝑀 + 𝜌𝑅, (6)

3

(
¥𝑅
𝑅
+

¤𝑅2

𝑅2 + 𝑘

𝑎2

)
− 𝑤𝜙𝑛 ¤𝜙2

2
= −𝜔𝑅𝜌𝑅, (7)

¥𝜙 + 4
¤𝑅 ¤𝜙
𝑅𝜙

+ 𝑛 ¤𝜙2

2𝜙2 = 0, (8)

From Eq.(6), we get the continuity equation is

¤𝜌𝑅 + ¤𝜌𝑀 + 4
(
(1 + 𝜔𝑅)𝜌𝑅 + 𝜌𝑀

) ¤𝑅
𝑅

= 0, (9)

where the overhead dot indicates differentiation with respect to time 𝑡.
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3. SOLUTION AND THE MODEL
The field Eqs.(6)-(8) form a system of three highly non-linear equations with 𝑅, 𝜙, 𝜌𝑀 , 𝜌𝑅, and𝜔𝑅 five (5) unknowns.

So, we need three more physical conditions to get consistency solution. For this reason we take the following conditions:
The DP is taking as linear function of the average scale factor as [41, 42]

𝑞 = −𝑅 ¥𝑅
¤𝑅2 = 𝑘2 + 𝛾

¤𝑅
𝑅
, (10)

where 𝑘2 and 𝛾 is an arbitrary constants. For 𝑘2 = −1, we get the solution of Eq.(10),

𝑅 = 𝑒
1
𝛾

√
2𝛾𝑡+𝑐1 , (11)

where 𝑐1 is an integrating constant. Hence, KK FRW Universe Eq.(1), can be written as

𝑑𝑠2 = 𝑑𝑡2 − 𝑒
2
𝛾

√
2𝛾𝑡+𝑐1

[
𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2
(
𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2

)
+

(
1 − 𝑘𝑟2)𝑑𝜉2

]
(12)

The Volume 𝑉 , Hubble parameter 𝐻 for our model found to be

𝑉 = 𝑒
3
𝛾

√
2𝛾𝑡+𝑐1 , (13)

𝐻 =
(
2𝛾𝑡 + 𝑐1

)− 1
2 , (14)
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Figure 1. The behavior of energy density (𝜌𝑅) of RHDE
versus redshift (𝑧) for 𝛾 = 0.0052, 𝛾 = 0.0062, 𝛾 = 0.0072
and 𝑐1 = 0.000016.
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Figure 2. The behavior of energy density (𝜌𝑅) of BHDE
versus redshift (𝑧) for 𝛾 = 0.0052, 𝛾 = 0.0062, 𝛾 = 0.0072
and 𝑐1 = 0.000016.

In Figures 1 & 2, corresponding equations (15) & (16), we show the variation of the energy density (𝜌𝑅) of RHDE
& matter (𝜌𝑀 ) with the Hubble’s horizon cut-off with respect to the redshift (𝑧) for the approprivate values of the model
parameter respectively. It is observed that the both 𝜌𝑅 & 𝜌𝑀 are positive throughout evolution of the Universe and
decreasing function of redshift and finally it reached to zero.
We consider Hubble horizon as a candidate for IR cutoff [43] i.e., 𝐿 = 𝐻−1 and 8𝜋 = 1, we obtain energy density of RHDE
as

𝜌𝑅 =
3𝑑2𝐻2

1 + 𝜋𝜈𝐻−2 =
3𝑑2 (2𝛾𝑡 + 𝑐1)−1

1 + 𝜋𝛿(2𝛾𝑡 + 𝑐1)
(15)

From equations (6) & (15), we have the energy density of DM is

𝜌𝑀 =
6

2𝛾𝑡 + 𝑐1
+ 6𝑘𝑒

−2
√

2𝛾𝑡+𝑐1
𝛾 + 𝑤

2
𝑒

−8
𝛾

√
2𝛾𝑡+𝑐1 − 3𝑑2

(2𝛾𝑡 + 𝑐1) + 𝜋𝛿(2𝛾𝑡 + 𝑐1)
(16)
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From equations (7), (11), (14) & (15), we have EoS parameter is

𝜔𝑅 =

[
𝑤

2𝐻2 𝑒
−8
𝛾𝐻 − 3(1 − 𝛾𝐻)𝐻 −3

2 − 3𝑘𝐻−2𝑒−
2

𝛾𝐻

] [
1 + 𝜋𝛿𝐻−2

3𝑑2

]
, (17)

𝐻 = (2𝛾𝑡 + 𝑐1)
−1
2 , and ¤𝐻 = − 𝛾√︂(

2𝛾𝑡+𝑐1
)3
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Figure 3. The behavior of equation of state parameter (𝜔𝑅) of BHDE versus redshift (𝑧) for 𝛾 = 0.0052, 𝛾 = 0.0062, 𝛾 =

0.0072 and 𝑐1 = 0.000016.

Variation of equation of state parameter (𝜔𝑅) against redshift (𝑧) in Figure 3,, corresponding to Eq. (17) for the
values of 𝛾 = 0.0052, 0.0062, 0.0072. It can be observed that the 𝜔𝑅 completely varies in aggressive phantom region
(𝜔𝑅 < −1) only. If the value of 𝛾 increases the phantom region increases.

𝜔𝑅 - 𝜔′
𝑅

plane:
In this section, 𝜔′

𝑅
is found

𝜔
′
𝑅 =

2𝜋𝛿 ¤𝐻
3𝑑2

[
3𝑘𝐻−2𝑒−

−2
𝛾𝐻 + 3(1 − 𝛾𝐻)𝐻− 3

2 − 𝑤

2
𝐻−2𝑒−

8
𝛾𝐻

]
+

(
1 + 𝜋𝛿𝐻−2

3𝑑2𝐻

)
[
𝑤

( 4
𝛾
− 𝐻

)
𝑒
− 8

𝛾𝐻

¤𝐻
𝐻4 + 9

2
(1 − 𝛾𝐻)𝐻− 5

2 ¤𝐻 + 3𝛾𝐻− 3
2 ¤𝐻 − 3𝑘 ¤𝐻

2𝛾𝐻4 (1 − 𝛾𝐻5)𝑒−
2

𝛾𝐻

]


(18)

The evolution of the 𝜔𝑅-𝜔′
𝑅

plane is shown in Figure 4 for different values of 𝛾. We observe that the 𝜔𝑅-𝜔′
𝑅

plane for
our model is in the thawing region throughout evolution of the Universe (𝜔𝑅 < 0, and 𝜔

′
𝑅
> 0).

Stability Analysis
We consider an important parameter to verify the stability of the RHDE model. If squared speed sound 𝑣2

𝑠 is (𝑣2
𝑠 >

0) positive then the model is stable whereas 𝑣2
𝑠 is (𝑣2

𝑠 < 0) negative the model is unstable. For our RHDE model 𝑣2
𝑠 is

given by

𝑣2
𝑠 =

[
𝑤

2𝐻2 𝑒
−8
𝛾𝐻 − 3(1 − 𝛾𝐻)𝐻 −3

2 − 3𝑘𝐻−2𝑒−
2

𝛾𝐻

] [
1 + 𝜋𝛿𝐻−2

3𝑑2

]
+ 1 + 𝜋𝛿𝐻−2

2 ¤𝐻
(
1 + 𝜋𝛿𝐻−2 + 𝜋𝛿𝐻2

)
[

2𝜋𝛿 ¤𝐻
3𝑑2

[
3𝑘𝐻−2𝑒−

−2
𝛾𝐻 + 3(1 − 𝛾𝐻)𝐻− 3

2 − 𝑤

2
𝐻−2𝑒−

8
𝛾𝐻

]
+

(
1 + 𝜋𝛿𝐻−2

3𝑑2𝐻

) [
𝑤

( 4
𝛾
− 𝐻

)
𝑒
− 8

𝛾𝐻

¤𝐻
𝐻4

+ 9
2
(1 − 𝛾𝐻)𝐻− 5

2 ¤𝐻 + 3𝛾𝐻− 3
2 ¤𝐻 − 3𝑘 ¤𝐻

2𝛾𝐻4 (1 − 𝛾𝐻5)𝑒−
2

𝛾𝐻

] ]


(19)

Figure 5 shows that the sound speed 𝑐2
𝑠 is decreasing function of redshift (𝑧) and it is negative (𝑐2

𝑠 < 0) throughout history
of the Universe for the varios values of 𝛾, and 𝑐1 = 0.000016 which describes our RHDE model is unstable.
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Figure 4. The behavior of 𝜔𝑅 versus 𝜔′
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for 𝛾 = 0.0052 and 𝑐1 = 0.000016.
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Figure 5. The behavior of squared speed of sound 𝑣2
𝑠 (𝑘𝑚/ℎ) versus redshift (𝑧) for 𝛾 = 0.0052, 𝛾 = 0.0062, 𝛾 = 0.0072

and 𝑐1 = 0.000016.

Density Parameters
Now we define dimensionless density parameters of dark energy as

Ω𝑀 =
𝜌𝑀

3𝐻2 , 𝑎𝑛𝑑 Ω𝑅 =
𝜌𝑅

3𝐻2 (20)

By substituting the expressions of 𝜌𝑀 and 𝜌𝑅 and Hubble parameter 𝐻 in the above equations, we get the density parameter
of dark matter (𝜌𝑀 ) and dark energy (𝜌𝑅) for our RHDE model and analyzed its behavior through graphical representation
for the various values of 𝛾. Figure 6 & 7 shows the behavior of Ω𝑀 and Ω𝑅 versus redshift (z). The density parameter
of DM observed that it increases as the universe evolves. The density parameter of RHDE observed that it decreses as
the universe evolves. Also, we have observed that the RHDE density parameter Ω𝑅 meets the [44] values which exhibits
consistent results with the recent observations for different values of 𝛾.

Energy Conditions
The study of the energy conditions came into existence from the Raychaudhuri equations which play significant role

in any discussion of the congruence of null and time like geodesics. The bounce behavior of cosmological model is also
realized using these conditions (energy conditions) as mentioned in references [45, 46, 47, 48, 49, 50, 51].
Null Energy Condition (NEC): 𝜌𝑅 (1 + 𝜔𝑅) ≥ 0,
Weak Energy Condition (WEC): 𝜌𝑅 ≥ 0, 𝜌𝑅 (1 + 𝜔𝑅),
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Figure 6. The behavior of matter density parameter (Ω𝑀 )
versus redshift (𝑧) for 𝛾 = 0.0052, 𝛾 = 0.0062, 𝛾 = 0.0072
and 𝑐1 = 0.000016.
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Figure 7. The behavior of density parameter (Ω𝑅) of
RHDE versus redshift (𝑧) for 𝛾 = 0.0052, 𝛾 = 0.0062, 𝛾 =

0.0072 and 𝑐1 = 0.000016.

Strong Energy Condition (SEC): 𝜌𝑅 (1 + 𝜔𝑅) ≥ 0, 𝜌𝑅 (1 ± 3𝑝) ≥ 0,
Dominant Energy Conditions (DEC): 𝜌𝑅 ≥ 0, 𝜌(1 ± 𝜔𝑅) ≥ 0.
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Figure 8. The behavior of NEC of RHDE versus redshift (𝑧) for 𝛾 = 0.0052, 𝛾 = 0.0062, 𝛾 = 0.0072 and 𝑐1 = 0.000016.
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Figure 9. The behavior of WEC of RHDE versus redshift
(𝑧) for 𝛾 = 0.0052, and 𝑐1 = 0.000016.
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Figure 10. The behavior of WEC of RHDE versus redshift
(𝑧) for 𝛾 = 0.0062, and 𝑐1 = 0.000016.
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From Figure 8, we observe that the NEC ((1 + 𝜔𝑅)𝜌𝑅 ≥ 0) are satisfied throughout evolution of the Universe for
different values of 𝛾 = 0.0052, 0.0062, 0.0072.
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Figure 11. The behavior of WEC of RHDE versus redshift
(𝑧) for 𝛾 = 0.0072, and 𝑐1 = 0.000016.
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Figure 12. The behavior of SEC of RHDE versus redshift
(𝑧) for 𝛾 = 0.0052, and 𝑐1 = 0.000016.
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Figure 13. The behavior of SEC of RHDE versus redshift
(𝑧) for 𝛾 = 0.0062, and 𝑐1 = 0.000016.
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Figure 14. The behavior of SEC of RHDE versus redshift
(𝑧) for 𝛾 = 0.0072, and 𝑐1 = 0.000016.
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Figure 15. The behavior of DEC of RHDE versus redshift
(𝑧) for 𝛾 = 0.0052, and 𝑐1 = 0.000016.
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Figure 16. The behavior of DEC of RHDE versus redshift
(𝑧) for 𝛾 = 0.0062, and 𝑐1 = 0.000016.

Figures 9, 10, 11, 12, 13,14, 15, 16, 17 describes variation of WEC, DEC and SEC versus redshift (z) for the various
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values of 𝛾. We observe that energy conditions WEC (𝜌𝑅 ≥ 0, 𝜌𝑅 (1 + 𝜔𝑅)), DEC ( 𝜌𝑅 (1 + 𝜔𝑅) ≥ 0, 𝜌𝑅 (1 ± 3𝑝) ≥ 0)
and SEC (𝜌𝑅 ≥ 0, 𝜌(1 ± 𝜔𝑅) ≥ 0) are not satisfied for the various values of 𝛾 = 0.0052, 0.0062, 0.0072. The violation
of the SEC condition represents the accelerated expansion of the Universe.
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Figure 17. The behavior of DEC of RHDE versus redshift (𝑧) for the values 𝛾 = 0.0072 and 𝑐1 = 0.000016.

Deceleration Parameter

The signature of deceleration parameter (𝑞) shows whether the model either accelerates or decelerates. If 𝑞 > 0, the
model exhibits decelerating expansion, the Universe exhibits accelerating expansion, for 𝑞 < 0. The DP for our models,
is given by

𝑞 =
𝑎 ¥𝑎
¤𝑎2 = −1 + 𝛾

(
2𝛾𝑡 + 𝑐1

)− 1
2 (21)

The evolution of the deceleration parameter (𝑞) with redshift 𝑧 is shown in Fig. 6. The DP 𝑞 is observe that there is a
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Figure 18. The behavior of deceleration parameter (𝑞) versus redshift (𝑧) for𝛾 = 0.0052, 𝛾 = 0.0062, 𝛾 = 0.0072 and
𝑐1 = 0.000016.

sign change in the trajectory of 𝑞 from positive (𝑞 > 0) to negative value (𝑞 < 0). It represents that the Universe smooth
transition from early decelerating region (𝑞 > 0) to accelerating region (𝑞 < 0) at late epochs. The present value of DP is
consistent with the recent observational data [58].
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Statefinder Parameters
The DE models have been proposed for explaining the accelerated expansion phenomenon of the universe. In order

to check the viability of these models, statefinder parameters are widely used [52, 53, 54, 55, 56, 57]

𝑟 =
𝑎

𝑎𝐻3 , 𝑠 =
𝑟 − 1

3(𝑞 − 1
2 )

(22)

The importment model described by the parameters (𝑟 = 1, 𝑠 = 1) shows 𝐶𝐷𝑀 model, (𝑟 = 1, 𝑠 = 0) represents Λ𝐶𝐷𝑀

model, while 𝑟 < 1, 𝑠 > 0 indicate quintessence and phantom DE models.
In the present work, the trajectory statefinder 𝑟 − 𝑠 plane for different values of 𝛾 is shown in Figure 20. It can be

observed that the trajectory 𝑟 − 𝑠 plane approaches to Λ𝐶𝐷𝑀 (𝑟 = 1, 𝑠 = 0) model for the value of 𝛾 = 0.0052. We also,
observed that the trajectory of 𝑟 − 𝑠 plane is initially lies in quintessence region 𝑟 < 1, crosses the with quintessence and
phantom regions and finally reached to Λ𝐶𝐷𝑀 in late times for tha values of 𝛾 = 0.0062 and 0.0072. We have also
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Figure 19. The behavior of statefinder 𝑟 − 𝑞 plane for 𝛾 =

0.0052, 𝛾 = 0.0062, 𝛾 = 0.0072 and 𝑐1 = 0.000016.
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Figure 20. The behavior of Statefinder 𝑟 − 𝑞 plane for 𝛾 =

0.0052, 𝛾 = 0.0062, 𝛾 = 0.0072 and 𝑐1 = 0.000016.

shown the evolutionary trajectories of another statefinder 𝑟 − 𝑞 plane for the RHDE model in Figure 20 for the best-fit
values of 𝛾. The evolutionary curve of the 𝑟 − 𝑞 plane of RHDE model starts from the SCDM in the past and reaches
above the de-Sitter expansion in the future, and it also shows the Chaplygin gas behavior throughout the evaluation. Since
𝑞 changes its sign from positive to negative, it also represnts the recent phase transition of the Universe.

4. CONCLUSIONS
In this work, we have studied the Kaluza-Klein FRW RHDE model in SB scalar–tensor theory of gravitation. To

obtain the deterministic model of the Universe we consider some physical plausible conditions, these conditions leads to
a varying DP, which represents transition from the past decelerating Universe to the current accelerating Universe. The
main conclusions of these two models are summarized as follows:

• The variation of the energy density (𝜌𝑅) of RHDE & matter (𝜌𝑀 ) with the Hubble’s horizon cut-off observed that
the both 𝜌𝑅 & 𝜌𝑀 are positive throughout evolution of the Universe and decreasing function of redshift and finally
it reached to zero.

• Behavior of equation of state parameter (𝜔𝑅) completely varies in aggressive phantom region (𝜔𝑅 < −1) only for
the different values of 𝛾 = 0.0052, 0.0062, 0.0072. If the value of 𝛾 increases the phantom region increases.

• The evolution of the 𝜔𝑅-𝜔′
𝑅

plane for our model is in the thawing region throughout evolution of the Universe.

• The sound speed 𝑐2
𝑠 is decreasing function of redshift (𝑧) and it is negative (𝑐2

𝑠 < 0) throughout history of the
Universe for the varios values of 𝛾, and 𝑐1 = 0.000016 which describes our RHDE model is unstable.

• The density parameter of DM observed that it increases as the universe evolves. The density parameter of RHDE
observed that it decreses as the universe evolves. Also, we have observed that the RHDE density parameter Ω𝑅

meets the [44] values which exhibits consistent results with the recent observations for different values of 𝛾.

• We observe that energy conditions WEC, DEC and SEC are not satisfied for the various values of 𝛾 = 0.0052,
0.0062, 0.0072. The violation of the SEC condition represents the accelerated expansion of the Universe.
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• The evolution of the deceleration parameter (𝑞) is observe that there is a sign change in the trajectory of 𝑞 from
positive (𝑞 > 0) to negative value (𝑞 < 0). It represents that the Universe smooth transition from early decelerating
region (𝑞 > 0) to accelerating region (𝑞 < 0) at late epochs. The present value of DP is consistent with the recent
observational data [58].

• The trajectory 𝑟− 𝑠 plane approaches to Λ𝐶𝐷𝑀 (𝑟 = 1, 𝑠 = 0) model for the value of 𝛾 = 0.0052. We also, observed
that the trajectory of 𝑟 − 𝑠 plane is initially lies in quintessence region 𝑟 < 1, crosses the with DE (quintessence
and phantom) regions and finally reached to Λ𝐶𝐷𝑀 in late times for tha values of 𝛾 = 0.0062 and 0.0072. The
evolutionary curve of the 𝑟 − 𝑞 plane of RHDE model starts from the SCDM in the past and reaches above the
de-Sitter expansion in the future, and it also shows the Chaplygin gas behavior throughout the evaluation. Since 𝑞

changes its sign from positive to negative, it also represnts the recent phase transition of the Universe.
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ГОЛОГРАФIЧНА МОДЕЛЬ ТЕМНОЇ ЕНЕРГIЇ КАЛУЗА-КЛЕЙНА FRW РЕНЬЇ В
СКАЛЯРНО-ТЕНЗОРНIЙ ТЕОРIЇ ГРАВIТАЦIЇ

Ю. Собханбабуa, М. Вiджая Сантib, А. Шрiнiваса Раоb, М. Правiн Кумарa

𝑎Iнженерний коледж Сагi Рама Крiшнам Раджу (A), Бхiмаварам, 534204, Iндiя
𝑏Унiверситет Андхра, Вiшакхапатнам, 530003, Iндiя

У цiй роботi розглядається явище темної енергiї шляхом вивчення голографiчної темної енергiї Реньї (RHDE) i темної матерiї 
без тиску (DM) у рамках скалярно-тензорної теорiї гравiтацiї Саеза-Баллестера (SB) (Phys. Lett. A113). , 467:1986). Щоб знайти 
рiшення, ми розглядаємо життєздатний параметр уповiльнення (DP), який вносить внесок у середнiй масштабний коефiцiєнт

𝑎 = 𝑒
1
𝛾

√
2𝛾𝑡+𝑐1 , де 𝛾 i 𝑐1 вiдповiдно довiльнi та константи iнтегрування. Ми вивели польовi рiвняння скалярно-тензорної теорiї

гравiтацiї SB за допомогою Всесвiту Калуци-Клейна FRW. Ми дослiджували космологiчнi параметри, а саме DP (𝑞), густину
енергiї (𝜌𝑀 ) i (𝜌𝑅) DM iRHDE, скалярне поле (𝜙) i рiвняння параметра стану (𝜔𝑅). Фiзичнi дебати цих космологiчних параметрiв
дослiджуються за допомогою графiчного представлення. Крiм того, стабiльнiсть моделi дослiджується через квадрат швидкостi
звуку (𝑣2

𝑠) i добре вiдому космологiчну площину 𝜔𝑅 −𝜔
′
𝑅
i всi енергетичнi умови а також параметри щiльностi аналiзуються за

допомогою графiчного представлення нашої моделi.
Ключовi слова: Калуза-Клейн FRW Всесвiт; RHDE; енергетичнi умови; теорiя Саеза-Баллестера
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Of many extended theories of gravity, 𝑓 (𝑅,𝑇) gravity has gained reasonable interest in recent times as it provides interesting results
in cosmology. Logarithmic corrections in modified theories of gravity has been studied extensively. In this work, we considered
logarithmic correction to the trace term T and take the functional form as 𝑓 (𝑅,𝑇) = 𝑅 + 16𝜋𝐺𝛼 ln𝑇 where 𝛼 is a free parameter. The
free parameter is constrained using dark energy density parameter ΩΛ and Hubble parameter 𝐻0. The lower bound is found to be 𝛼 ≥
−9.85 × 10−29. The cosmological implications are also studied.

Keywords: 𝑓 (𝑅,𝑇) Gravity, Dark Energy
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1. INTRODUCTION
The remarkable discovery in 1998 by Riess et. al and Perlmutter et. al paused a fundamental question on the classical

General Relativity (GR) [1, 2]. The standard GR predicts that the expansion of the Universe should be decelerating with
time. Instead, it is observed that the current Universe has entered a second phase of accelerated expansion which started
around 𝑧 = 1 [1, 2]. Besides this, it is observed that nearly 70% of the total energy density of the Universe is in some
mysterious form called Dark Energy [1, 2]. Whether this Dark Energy is driving the present expansion of the Universe is
a matter of investigation.

Einstein field equations, in their original form can’t explain this late time acceleration because it gives an equation
of state (EoS) parameter 𝑤 = 0 [3]. Whereas, the present late time acceleration demands EoS parameter to be 𝑤 <

− 1
3 . Now, this can be explained if one considers the Universe filled with some exotic form of fluid with EoS parameter

𝑤 < − 1
3 [3]. That means the dominant Dark Energy constituent is driving the expansion. Apart from this, cosmological

constant with EoS parameter 𝑤 = −1 is a viable alternative explanation for Dark Energy as well as late time expansion
of the Universe [3]. In fact the ΛCDM model gives the best fit results to the present observed Universe [4]. But the
Cosmological constant Λ is into fine tuning problem [5].

𝑓 (𝑅) theory, a class of modified gravity, emerged in 1980’s and gained popularity as it can explain the early
inflationary Universe without considering the scalar fields in the theory [6]. Since then different modifications of gravity
viz. 𝑓 (𝐺), 𝑓 (𝑅, 𝐺), 𝑓 (𝐺,𝑇), 𝑓 (𝑅,𝑇), 𝑓 (𝑄), 𝑓 (𝑄,𝑇) etc. have been proposed and studied in literature where R, Q, G
and T are the Ricci scalar, non-metricity, Gauss-Bonnet scalar and Trace of the Energy momentum tensor respectively
[7, 8, 9, 10, 11, 12]. After the discovery of late time acceleration, studies of modified theories of gravity gained even
more interest as it has the potential to explain late time acceleration of the Universe without invoking Dark Energy in the
theory [13].

𝑓 (𝑅,𝑇) theory of gravity, proposed by Harko et. al is found to be extremely sound in explaining cosmological
phenomena. It has been studied with reference to inflation [14, 15, 16, 17], dark energy [18, 19, 20, 21, 22], dark matter
[23], wormhole [24, 25, 26, 27, 28, 29, 30], pulsar [31, 32], white dwarfs [33], gravitational waves [34, 35], scalar field
models [36, 37], anisotropic models [38, 39], bouncing cosmology [40, 41], big-bang neucleosysnthesis [42], baryogenesis
[43], brane world [44, 45] etc. Further, the energy conditions and junction conditions in 𝑓 (𝑅,𝑇) gravity have also been
studied [46, 47, 48, 49]. Snehasish et. al developed a novel way to impose lower bound on the model parameter 𝜆 of
the simplest 𝑓 (𝑅,𝑇) = 𝑅 + 2𝜆𝑇 model through the equation relating the cosmological constant and critical density of the
universe [18]. This method can be applied to other complex forms of 𝑓 (𝑅,𝑇) to constrain the model parameter(s). This
might reveal interesting result.

Logarithmic correction in modified gravity theories has been studied extensively. The first Logarithmic correction
to trace term T in 𝑓 (𝑅,𝑇) theory has been proposed by Elizalde et. al where they have studied the stability conditions
& energy conditions of the model [50]. In this work, we have considered the simplest 𝑓 (𝑅,𝑇) model with logarithmic
correction to trace term T as 𝑓 (𝑅,𝑇) = 𝑅 + 16𝜋𝐺𝛼 ln𝑇 , where 𝛼 is the model parameter and will constrain the model
parameter 𝛼 using equation relating to the cosmological constant Λ and critical density of the universe 𝜌𝑐𝑟 . Recently
Maurya et. al have studied similar model and found that it shows a quintessence dark energy model and late time universe
approaches to ΛCDM model [56].
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The paper has been organised as follows: In section 2, we present a brief review of 𝑓 (𝑅,𝑇) gravity. In section 3, we
present mathematical framework to impose bound on the model parameter. In section 3, we present our conclusion. Here,
we will use (+,-,-,-) sign convention for the metric tensor.

2. A BRIEF NOTE ON 𝑓 (𝑅,𝑇) GRAVITY
In 𝑓 (𝑅,𝑇) gravity, the gravitational Lagrangian depends on a general function of Ricci scalar 𝑅 as well as of the

trace of energy momentum tensor 𝑇 . The action in 𝑓 (𝑅,𝑇) gravity reads as,

𝑆 =

∫ [
𝑓 (𝑅,𝑇)
16𝜋𝐺

+ 𝐿𝑚
]
√−𝑔𝑑4𝑥 (1)

where 𝐿𝑚 is the matter Lagrangian, g is the metric determinant and G is the Newtonian gravitational constant. On variation
of the action with respect to the metric, we obtain the modified field equations as,

𝑓𝑅 (𝑅,𝑇)𝑅𝜇𝜈 −
1
2
𝑔𝜇𝜈 𝑓 (𝑅,𝑇) + [𝑔𝜇𝜈∇𝜎∇𝜎 − ∇𝜇∇𝜈] 𝑓𝑅 (𝑅,𝑇) = 8𝜋𝐺𝑇𝜇𝜈 − 𝑓𝑇 (𝑅,𝑇) (𝑇𝜇𝜈 + Θ𝜇𝜈) (2)

where we have denoted 𝑓𝑅 (𝑅,𝑇) = 𝜕 𝑓 (𝑅,𝑇 )
𝜕𝑅

, 𝑓𝑇 (𝑅,𝑇) = 𝜕 𝑓 (𝑅,𝑇 )
𝜕𝑇

and defined 𝑇𝜇𝜈 and Θ𝜇𝜈 as,

𝑇𝜇𝜈 = 𝑔𝜇𝜈𝐿𝑚 − 2
𝛿𝐿𝑚

𝛿𝑔𝜇𝜈
(3)

Θ𝜇𝜈 = 𝑔𝛽𝛾
𝛿𝑇𝛽𝛾

𝛿𝑔𝜇𝜈
= −2𝑇𝜇𝜈 + 𝑔𝜇𝜈𝐿𝑚 − 2

𝛿2𝐿𝑚

𝛿𝑔𝜇𝜈𝛿𝑔𝛽𝛾
(4)

The term Θ𝜇𝜈 plays a significant role in 𝑓 (𝑅,𝑇) gravity. Since it contains matter Lagrangian 𝐿𝑚, depending on the nature
of the matter field, the field equation for 𝑓 (𝑅,𝑇) gravity will vary. Besides this the functional form of 𝑓 (𝑅,𝑇) will also
change the field equation. Thus, the field equations in 𝑓 (𝑅,𝑇) gravity depend both on the nature of matter field and choice
of the functional form of 𝑓 (𝑅,𝑇).

Harko proposed four different forms of the function 𝑓 (𝑅,𝑇) in his paper[10], viz.:

• 𝑓 (𝑅,𝑇) = 𝑅 + 2 𝑓 (𝑇)

• 𝑓 (𝑅,𝑇) = 𝑓1 (𝑅) + 𝑓2 (𝑇)

• 𝑓 (𝑅,𝑇) = 𝑓1 (𝑅) + 𝑓2 (𝑅) 𝑓3 (𝑇)

• 𝑓 (𝑅,𝑇 𝜙) = 𝑅 + 𝑓 (𝑇 𝜙), where 𝜙 is a self interacting scalar filed.

Beside these forms, various other forms have been proposed in literature [15, 54, 55] which are as follows:

• 𝑓 (𝑅,𝑇) = 𝑅 + 𝜙 𝑓 (𝑇), 𝜙 is scalar field.

• 𝑓 (𝑅,𝑇) = 𝑅 + 𝛼𝑒𝑅𝑇 , 𝛼 is a constant.

• 𝑓 (𝑅,𝑇) = 𝑅 + 𝛼𝑒𝛽𝑇 + 𝛾𝑇𝑛, 𝛼, 𝛽, 𝛾 are constant.

3. CONSTRAINING MODEL PARAMETER
Considering 𝑓 (𝑅,𝑇) = 𝑅 + 16𝜋𝐺𝛼 ln𝑇 , the Einstein-Hilbert action becomes,

𝑆 =

∫ √−𝑔
[

𝑅

16𝜋𝐺
+ 𝛼 ln𝑇 + 𝐿𝑚

]
𝑑4𝑥 (5)

This leads to field equations,

𝑅𝜇𝜈 −
1
2
𝑔𝜇𝜈𝑅 = 8𝜋𝐺𝑇 (𝑒 𝑓 𝑓 )

𝜇𝜈 (6)

where 𝑇 (𝑒 𝑓 𝑓 )
𝜇𝜈 is the effective stress-energy tensor given by,

𝑇
(𝑒 𝑓 𝑓 )
𝜇𝜈 = 𝑇𝜇𝜈 −

2𝛼
𝑇

(
𝑇𝜇𝜈 −

𝑇

2
𝑔𝜇𝜈 ln𝑇 + Θ𝜇𝜈

)
(7)

Clearly, depending on the nature of the matter field, the field equation for 𝑓 (𝑅,𝑇) gravity will be different. Now, assuming
the Universe is dominated by perfect fluid, the energy-momentum tensor is

𝑇𝜇𝜈 = (𝜌 + 𝑝)𝑢𝜇𝑢𝜈 − 𝑝𝑔𝜇𝜈 (8)
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and hence the matter Lagrangian density can be assumed as 𝐿𝑚 = −𝑝. Now, let us assume the Friedmann-Lemaitre-
Robertson-Walkar (FLRW) metric in spherical coordinate for flat Universe,

𝑑𝑠2 = 𝑑𝑡2 − 𝑎(𝑡)2 [
𝑑𝑟2 + 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜙2)

]
(9)

where a(t) denotes scale factor of the Universe. Now, considering the FLRW metric, the 00 component of field Eq. 6
yields first modified Friedmann equation as,

3𝐻2 = 8𝜋𝐺
[
𝜌 + 2𝛼

𝜌 − 3𝑝

(
𝜌 + 𝑝 + 𝜌 − 3𝑝

2
ln(𝜌 − 3𝑝)

)]
(10)

where H is Hubble parameter, 𝜌 is energy density and p is pressure of the Universe. Further, 𝑇 = 𝜌 − 3𝑝 is the trace of the
EM tensor. Now using equation of state parameter 𝑤 = 𝑝/𝜌, the above Friedmann equation can be rearranged as

3𝐻2 = 8𝜋𝐺
[
𝜌 + 2𝛼

(1 − 3𝑤)𝜌

(
(1 + 𝑤)𝜌 + (1 − 3𝑤)𝜌

2
ln(1 − 3𝑤)𝜌

)]
(11)

Current observation [4] suggest that 𝑤 = −1 and hence substituting this value in Friedmann Eq. yields,

3𝐻2 = 8𝜋𝐺 (𝜌 + 𝛼 ln 4𝜌) (12)

Now, Friedmann equation in GR with Cosmological Constant Λ is given by [51],

3𝐻2 = 8𝜋𝐺𝜌 + Λ𝑐2 (13)

Equating Eq.12 and Eq.13 yields,
Λ𝑐2 = 8𝜋𝐺𝛼 ln 4𝜌 (14)

Now, Cosmological Constant Λ can be defined in terms of present value of Hubble parameter 𝐻0 and dark energy density
parameter ΩΛ as [52],

Λ = 3
(
𝐻0
𝑐

)2
ΩΛ (15)

Substituting Eq.15 in Eq.14 we get,

ΩΛ =
8𝜋𝐺𝛼
3𝐻2

0
ln 4𝜌 (16)

The present Universe is spatially flat. As a result the total density parameter is Ω0 = 𝜌/𝜌𝑐𝑟 = 1 [4]. Hence we can replace
𝜌 by 𝜌𝑐𝑟 in the previous equation.

ΩΛ =
8𝜋𝐺𝛼
3𝐻2

0
ln 4𝜌𝑐𝑟 (17)

Now the critical density of the Universe is defined as [53]

𝜌𝑐𝑟 =
3𝐻2

0
8𝜋𝐺

(18)

From Eq.17 and Eq.18 we get the final expression of the model parameter 𝛼 in terms of Hubble parameter and dark energy
density parameter as

ΩΛ =
8𝜋𝐺𝛼
3𝐻2

0
ln

3𝐻2
0

2𝜋𝐺
(19)

From Planck 2018 data [4], we have 𝐻0 = 67.4± 0.5𝐾𝑚𝑠−1𝑀𝑃𝑐−1 and ΩΛ = 0.6889± 0.0056. Substituting 𝐻0 = 2.17×
10−18 𝑠−1(in SI unit) and ΩΛ = 0.6833 in Eq.19, we obtain the lower bound on the model parameter

𝛼 ≥ −9.85 × 10−29



24
EEJP. 3 (2024) B. Deb, et al.

4. CONCLUSION
Free parameters in modified gravity theories are trivial and hold significant role. It allows a particular gravity model

to be consistent with observational results. In this work we tried to constrain the simplest 𝑓 (𝑅,𝑇) model with logarithmic
correction, using Hubble parameter and dark energy density parameter. The analysis reveals that the model parameter 𝛼
can assume any non negative value.

This method of imposing lower bound on the model parameter by relating equation to the cosmological constant and
critical density of the Universe developed by Snehasish et. al is exclusively model dependent. For more complex forms
of 𝑓 (𝑅,𝑇), more input parameters are required to constraint the model. Further, this method can be applied to constrain
other modified gravity models but it may require more constraining parameters beside dark energy density parameter.

Snehasish et. al obtained the lower bound for 𝑓 (𝑅,𝑇) = 𝑅 + 2𝜆𝑇 model which is of the order of 10−8. In case
𝑓 (𝑅,𝑇) = 𝑅 + 16𝜋𝐺𝛼 ln𝑇 , the lower bound obtained is of the order of 10−29. In both the cases, the lower bound on the
model parameter is quite small. As a result, these bounds need to be validated from other sources like spectral indices,
tensor-to-scalar ratio etc which is beyond the scope of this work.

As a possible extension of this work, one can apply this methodology to other 𝑓 (𝑅,𝑇) models, specially non-
minimally coupled ones. Further, this method can also be applied to other modified gravity theories like 𝑓 (𝑅, 𝐺), 𝑓 (𝐺,𝑇)
etc. which may generate interesting results.
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ОБМЕЖУВАЛЬНА ЛОГАРИФМIЧНА МОДЕЛЬ 𝑓 (𝑅, 𝑇 ) IЗ ВИКОРИСТАННЯМ ПАРАМЕТРА
ЩIЛЬНОСТI ТЕМНОЇ ЕНЕРГIЇ ΩΛ I ПАРАМЕТРА ХАББЛА 𝐻0

Бiсваджит Деб, Атрi Дешамукх’я
Факультет фiзики, Ассамський унiверситет, Сiлчар, Iндiя

З багатьох розширених теорiй гравiтацiї гравiтацiя 𝑓 (𝑅, 𝑇) останнiм часом викликала розумний iнтерес, оскiльки вона дає 
цiкавi результати в космологiї. Логарифмiчнi поправки в модифiкованих теорiях гравiтацiї були широко вивченi. У цiй роботi 
ми розглянули логарифмiчну поправку до члена слiду T i прийняли функцiональну форму як 𝑓 (𝑅, 𝑇) = 𝑅 + 16𝜋𝐺𝛼 ln 𝑇 , де 𝛼 є 
вiльним параметром. Вiльний параметр обмежується за допомогою параметра щiльностi темної енергiї ΩΛ i параметра Хаббла 
𝐻0. Нижня межа становить 𝛼 ≥ −9, 85 × 10−29. Також вивчаються космологiчнi наслiдки.
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In this paper, we have constructed a five-dimensional Bianchi type I cosmological model with strange quark matter in the context of 
Saez-Ballester theory of gravitation. We have discussed a five-dimensional cosmological model by using the special rule of variation 
for the Hubble’s parameter in the shape of 1H Da and the equation of state for strange quark matter. Two different models for 0n 
and 0n   has been discussed. Furthermore, the accelerated expansion of the universe has been discussed by using different physical 
parameters along with their graphical representations.  
Keywords: Bianchi Type-I; Strange Quark Matter; Saez and Ballester Theory 
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1. INTRODUCTION
In recent years, analysis of diverse observational data has revealed that the universe is experiencing a rapid 

expansion. This phenomenon has sparked significant interest in formulating cosmological models within different 
gravitational theories. The general theory of relativity (GTR) offers a mathematically precise and physically robust 
explanation of gravity, serving as a foundation for developing cosmological models of the universe. But, describing the 
present state of the universe requires more than what is GTR explained. As a result, numerous efforts have been 
undertaken to modify Einstein's GTR, incorporating alternative and modified theories of gravitation. Hence, recently, 
researchers have shown significant interest in formulating cosmological models by employing alternative theories of 
gravitation such as Lyra Geometry, Brans Dicke Theory, Barber’s first, second self-creation theory and Saez - Ballester 
theory [1-4]. 

Saez and Ballester [4] have formulated a theory in which the metric is interconnected with a dimensionless scalar 
field  , and this coupling of   provides a satisfactory explanation for weak fields. The scalar-tensor theory contributes 
to resolving issues within non-flat Friedmann-Robertson-Walker (FRW) cosmologies. Bali and Chandnani [5-6], studied 
the cosmological model of Bianchi type-I, considering a time-varying gauge function β to accommodate a perfect fluid 
distribution and string dust magnetized in the context of Lyra geometry. 

Many authors have explored cosmological models using Saez and Ballester's scalar-tensor theory of gravitation. The 
Bianchi type- I, III, V, VI0, and Kantowski-Sachs type models were examined within a scalar tensor theory by Singh and 
Agrawal [7]. Ram and Singh [8-9] have investigated a metric that exhibits spatially homogeneity, local rotational 
symmetry (LRS), and allows for a group of motions conforming to the Bianchi-I pattern on hypersurfaces with constant 
time t . Also, an investigation is conducted on a Robertson-Walker model of the universe that is both spatially 
homogeneous and isotropic, and possesses zero-curvature in the context of the Saez-Ballester scalar-tensor theory of 
gravity. Reddy [10] investigated Bianchi type-I metric together with cosmic string in a scalar – tensor theory of gravity. 
He observed that scalar field and the density are free from initial singularity and the universe is expanding with cosmic 
time. Mohanty and Sahu [11-12] have studied Bianchi type-VI0 and Bianchi type-I cosmological models in the context 
of scalar- tensor theory of gravitation. Reddy, Subba Rao and Koteswara Rao [13] investigated exact solutions for a 
spatially homogeneous and LRS Bianchi type-I space time with negative constant deceleration parameters by employing 
special law of variations for Hubble parameter in the Saez-Ballester scalar tensor theory. Samanta et al. [14] discussed 
LRS Bianchi type-I cosmological models with bulk viscosity in the Saez-Ballester theory of gravitation and found that 
cosmic strings do not sustain when 0   , but they do sustain for Takabayasi and Geometric strings. Pawar and 
Agrawal [15] examined cosmological models with five dimensions within the Kaluza-Klein space-time in the framework 
Saez and Ballester theory of gravity. Mahurley et al. [16] focused on examination of cosmological models in scalar-tensor 
theory of gravitation. Specifically, the study explores spatially homogeneous anisotropic five-dimensional Bianchi type-I 
model with a perfect fluid. 

Strange quark matter (SQM) in the influence of magnetic flux with five-dimensional Bianchi type-I cosmological 
model in Saez-Ballester theory has been considered. The SQM has been important and interesting topic in nuclear, 
astrophysics and cosmology due to its far-reaching theoretical significance and determine primitive magnetic fields. The 
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SQM is possibly produced by energetic heavy-ion collision experiments [17], or exists in cosmic rays and in the interior 
of compact stars. A magnetic field has strong effects on the properties and stability of SQM [18,19]. The surface of a 
pulsar may exhibit a characteristic strength approaching approximately 1012 Gauss. In comparison, certain magnets can 
possess even higher magnetic fields, reaching surface values as extensive as 1013–1015 Gauss. At present, our 
understanding of the genesis of these intense magnetic fields is lacking. The magneto hydrodynamic dynamo mechanism, 
in which a protoneutron star's revolving plasma creates a strong magnetic field, is a widely accepted theory. Many 
investigations have been carried out to explain the primordial magnetic field and quark-gluon matter in the early universe. 
In exploring the initial phase of the cosmos, examining the quark-gluon plasma proves to be a valuable approach. 
Following the Big Bang, the universe experienced a transition to quark-gluon plasma at the crucial temperature 
Tc ≡ 100−200 MeV, leading to the expulsion of quark matter (QM). Quark-gluon plasmas have many diverse implications 
for cosmology and astrophysics. The challenge in isolating a quark stems from the fact that quarks are never found in 
isolation; rather, they always exist in groups. There are mainly six types of quarks: charm (c), top (t), bottom (b), up (u), 
down (d) and strange (s) [20-23]. The suggestion that a theoretical concept known as strange quark matter (SQM) could 
exhibit complete stability at zero temperature and in β-equilibrium has sparked significant research and exploration. 

The equation of state (EoS) of SQM is given by 4 3cp B  , where cB  is Bag constant and the difference 
between the energy density of the perturbative and non-perturbative QCD vacuum and ρ, p are the energy density and 
thermodynamic pressure of the QM, respectively. Fundamentally, this is the EoS of a gas of massless particles with 
corrections due to the QCD trace glitch and perturbative interactions. At the surface of the star as p → 0, we have ρ → 4Bc. 
The characteristic value of the bag constant is of the order B = 57MeV/fm3 ≈1015 g/cm3. Several researchers have 
explored SQM with General relativity (GR), scalar tensor theory and other modified theories of gravity [24-28].  

Motivated by the above discussion and work done by Pawar et al. [28], here we consider five-dimensional 
Bianchi type-I cosmological model with strange quark matter the framework of Saez-Ballester theory of gravity. The 
paper organized as follows: Section 2 contains field equations of Saez and Ballesters theory. Section 3 deals with metric 
and field equations. In section 4 we have obtained the solutions of field equations. Section 5 deals with the model for 

0n   with some physical and kinematical parameter of the model. Again, Section 6 deals with the model for 0n   with 
some physical and kinematical parameter of the model. In Section 7 we have kept the graphical representation of 
dynamical parameters of Model-I and Model-II. Lastly, in section 8 is the discussion and conclusion are provided. 

 
2. FIELD EQUATION OF SAEZ AND BALLESTER THEORY 

The field equations given by Saez and Ballester (1985) for the combined scalar and tensor fields are  

 , ,
, ,

1
2

j n j j k j
i i i k iG T          

  . (1) 

The scalar field   satisfies the equation  

 1 '
; '2 0n i n k
i kn      , (2) 

where,  1
2

j j j
i i iG R R   is the Einstein’s tensors,   and n  are constants, j

iT  is stress energy-momentum tensor, comma 

and semicolon represents partial and covariant differentiation respectively. 
The energy-momentum tensor for Strange Quark Matter is given by 

  
2

2

2
j j j j

i i i i

h
T p h u u p h h 

 
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 
, (3) 

where,  is the density, p is the pressure, 2h  is the magnetic flux. The magnetic flux is considered in the x-direction with 
0i

ih u  . The four velocity vectors are given by  0,0,0,0,1iu   with 1i
iu u  . 

 
3. THE METRIC AND FIELD EQUATIONS 

The homogeneous five-dimensional Bianchi type-I metric is given as  

 2 2 2 2 2 2 2 2 2( )ds dt A dx B dy dz C dm      , (4) 

where, A, B, and C are functions of cosmic time t only. 
From equation (1) - (3) for the equation (4) we have obtained, 
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
 

 
        

   
, (7) 

 
... .. . .
2 22.2 2

2 2
nA B A B B h

p
A B AB B


 

 
      

 
, (8) 

 

2. . . .
.. . 2 0

2
A B C n

A B C


 



 
     
 
 

. (9) 

The contracted covariant derivative of energy-momentum tensor vanishes. i. e. from the energy conservation equation we 
get 
 , 0ij

jT  , (10) 

which yield to 

  
. . .

.
2 22 0A B C

p h
A B C

 
 
      
 
 

. (11) 

 
4. SOLUTIONS OF THE FIELD EQUATIONS 

Einstein’s field equations (5) - (9) are system of highly non-linear differential equations which contains five 
independent equations containing seven unknowns A, B, C, p,   ,   and 2h . To obtain the solution of system of 
equations we have to consider two additional conditions. Initially, we examine the variation law for the generalized 
Hubble’s parameter in space-time (4), as provided by Berman (1983). This law yields a constant deceleration parameter. 
Cosmological models with a constant deceleration parameter have been examined by numerous authors. Kumar and 
Singh [29] have investigated Bianchi type-I models in general relativity, where a constant deceleration parameter was 
maintained. This was achieved by employing a specific law for the variation of Hubble's parameter, resulting in constant 
value of deceleration parameter. 

The special law of variation for the Hubble’s parameter given by Berman (1983) is expressed as  

 2 4( )
n

nH Da D AB C
  , (12) 

where, 0D  and 0n   are constants. 
On solving equation (12), we get 

 
1

2 4( )a AB C . (13) 

The dynamical parameters for metric (4) are given as follows: 
The spatial volume is defined as  

 4 2( )V a AB C  ,  (14) 

The mean Hubble’s parameter is given by 

 
. . .

1 2
4

a A B C
H

a A B C

 
    
 
 


, (15) 

The Expansion Scalar  is obtained by 

 4H  , (16) 

The mean Anisotropy Parameter mA is given by 

 
24

1

1 1
4

i
m

i

H
A

H

   
 

 , (17) 
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The Shear Scalar is  

 2 23
2 mA H  , (18) 

The deceleration parameter (q) is defined to be  

 2

aa
q

a
 




, (19) 

Solving equation (15), we get 

 
1
4

1( )a nDt c  , 0n  , (20) 

 2
Dta c e , 0n  , (21) 

where, 1 2&c c are integrating constants. 
From equations (5) to (8), the metric potentials are obtained as follows, 

 
4

1

1
b a dt

A a ae
 , (22) 

 
4

2

2
b a dt

B a ae
 , (23) 

 
4

3

3
b a dt

C a ae
 , (24) 

where, 
1 1 1 1 1 1
2 4 4 4 4 2

1 1 2 2 1 3 3 2 3, ,a k k a k k a k k
  

     and 3 11 2
1 2

2 , ,
4 4

d dd d
b b


  2 3

3
2

4
d d

b
 

  

which satisfy the relations 

 2
1 2 3 1 2 31, 2 0.a a a b b b      (25) 

Equation (9) gives 

 
2

2
44 ( 2)( )

2

nk n
t a dt


     , (26) 

here, 4k  is constant of integration.  
 

5. MODEL I: when 0n  . 
Using equation (20) in (22) - (24) and (26), we get the metric potentials and scalar field as follows: 

 

4

1
1

( )
1 ( 4)

1 1( )

n

nnDt c
b

D n
nA a nDt c e

 
 
 

 
   , (27) 

 

4

1
2

( )
1 ( 4)

2 1( )

n

nnDt c
b

D n
nB a nDt c e

 
 
 

 
   , (28) 

 

4

1
3

( )
1 ( 4)

3 1( )

n

nnDt c
b

D n
nC a nDt c e

 
 
 

 
   , (29) 

  
2

2( 4)24 ( 2)
1

( 2)( )
2

nn
n n

k n
t nDt c




    
. (30) 

Equation (27) to (30) satisfy the equation of conservation of energy (11) and hence the metric in (4) can be expressed as 
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            
      
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 
 
  

 

2

2dm


. (31) 

The EoS for SQM given by Pawar et al, [28] as 

 4
3

cB
p

 
 , (32) 

where, , , cp B represents pressure, energy density and Bag constant respectively.  
Using equation (27) - (30) in (5) and (8) with (32) we get, 2, ,p h  as 

 
8

2 2 2
1 1 1

42 [3 6] [2( ) ] ( )
3

n
cp D n D nDt c Q nDt c B

       , (33) 
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2 2
1 2 1

43 [( 2) ( ) ] ( )
3

n
cD n nDt c Q nDt c B

       , (34) 
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2 2 2
1 3 1

4[2( ) (3 6)] ( )
3

n
ch D nDt c n Q nDt c B

       , (35) 

where, 
2 2 2

1 1 2 1 2 2 3 1 3 4
19 13 2 1 12
3 3 3 3 6

Q b b b b b b b b k      . 

2 2 2
2 1 2 1 2 2 3 1 3 4

3 11 3 36 3
2 2 2 2

Q b b b b b b b b k      . 

2 2 2
3 1 2 1 2 2 3 1 3 4

10 7 2 1 2
3 3 3 3 3

Q b b b b b b b b k      . 

The directional Hubble’s parameters ( 1,2,3,4)iH i  in x, y, z and m direction are obtained as  

 
4

1
1 1( ) ( ) n

i iH D nDt c b nDt c
    . (36) 

Using (15) we get, 
 1

1( )H D nDt c   . (37) 

The Expansion Scalar   using (16) is obtained as 

 1
14 ( )D nDt c   . (38) 

The mean Anisotropy parameter mA  given by (17) is 

 
2 8

1
2

( )
4

n

n

m

nDt c
A

D




 . (39) 

Using (14), the spatial volume is given by 

 
1

4
1( )nV a nDt c   . (40) 

On solving (18), the Shear scalar is given by 
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n
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From (19) and (20) we get, 

 ( 1)q n  , (42) 

From the above findings, it is observed that the volume of the universe is zero at 1( / )t c nD   and expansion scalar 
tends to infinity which indicates that the universe evolved with zero volume with infinite rate of expansion. As time t 
increases, the scale factors and spatial volume increases but expansion scalar decreases. Thus, the rate of expansion of 
universe slows down with increasing time. Also, as t tends to infinity the scalar field, pressure, density, magnetic flux, 
mean Hubble’s Parameter, Shear scalar, mean anisotropic parameter tends to 0. Hence, the model initially shows an empty 
universe for large time t. Thus, the from equation (42) it is observed that the model representing accelerating expansion 
of the universe for non-zero values of 1n   and shows decelerating nature for 1n  . 

 
6. Model II: when 0n   

Using equation (21) in (22) - (24) and (26), we get the metric potentials and scalar field as follows: 
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24
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  
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. (46) 

Equation (43) - (46) satisfy the equation of conservation of energy (11) and hence, the metric in (4) can be expressed as 

 
4 4 41 2 3

4 4 4
2 2 2
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4 4 42 2 2 2 2 2
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       
          

     
          
     
     

. (47) 

Using equation (43) - (46) in (5) and (8) with (32) we get the values of 2, ,p h  as 

 2 8 8
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22
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where, 
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The directional Hubble’s parameters ( 1,2,3,4)iH i  in x, y, z and m direction are obtained as 
 4 4

2( )Dt
i iH D b c e   . (51) 

Using (15) the mean Hubble’s parameter is given by  

 H D . (52) 

Using (16), the Expansion scalar   is obtained as 
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 4D  . (53) 

Using (17), the anisotropy parameter mA is given by 

 2 2 2 8 4
1 2 3 22

1 ( 2 )
4

Dt
mA b b b c e

D
    . (54) 

Using (14), the spatial volume is given by 

 4 4
2( )DtV a c e  . (55) 

Using (18), the shear scalar is given by 

 2 2 8 8 2 2 2
2 1 2 3

3 3 ( 2 )
2 8

Dt
mA H c e b b b      . (56) 

Using (19) and (21), the deceleration parameter turns out to be 

 1q   . (57) 

The spatial volume, scale factors, scalar field, pressure, density, magnetic flux, and other kinematical parameters are 
all constant at 0t  . Hence, the universe begins with a constant volume and expands exponentially. As t increases, the 
scale factors and spatial volume increases and scalar field, pressure, density, magnetic flux, and other kinematical 
parameters decrease. The expansion scalar and deceleration parameter are constant and hence the universe is expanding 
and accelerating for 0n  . 
 

7. GRAPHICAL REPRESENTATION OF DYNAMICAL PARAMETERS 
FOR THE MODEL-I AND MODEL-II 

  
Figure 1. Pressure verses Time has been plotted by considering 

the values 0.2,D   1 10.9, 1, 10n c Q      
Figure 2. Energy density verses Time has been plotted by 

considering the values 0.2,D   0.9,n    1 1,c   3
2 10 10Q     

  
Figure 3. Magnetic flux verses Time has been plotted by 

considering the values 1 30.2, 0.9, 1, 10D n c Q       
Figure 4. Volume verses time has been plotted by considering 

the values 10.2, 0.9, 1D n c     
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Figure 5. Pressure verses time has been plotted by considering 

the values 2 40.2, 0.9, 1, 5D n c Q       
Figure 6. Energy density verses time has been plotted by 

considering the values 4
2 50.2, 0.9, 1, 10 10D n c Q        

  
Figure 7. Magnetic flux verses time has been plotted by 

considering the values 2 60.2, 0.9, 1, 10D n c Q        
Figure 8. Volume verses time has been plotted by considering 

the values 20.2, 1,D c    
 

8. CONCLUSION 
In this paper, we have investigated a five-dimensional model by considering five-dimensional Bianchi Type-I 

spacetime with strange quark matter in the framework of Saez and Ballester theory of gravity. By using special law of 
variation of Hubble’s parameter, we have solved the field equations to obtain the values of metric potentials ,A B and .C

Here we have discussed two models, for 0n  and for 0n  , by considering the equation of state for strange quark matter 
and obtained the physical parameters pressure p , density  , magnetic flux 2h , mean Hubble’s parameter H , expansion 
scalar  , mean anisotropy parameter mA , shear scalar 2 , spatial volume V  and discussed their physical behavior in 
details. We have observed that for model-I ( 0n  ) as t   the scale factors and volume of the universe became infinitely 
large, whereas the scalar field  , mean anisotropy parameter, shear scalar tends to 0 . For large value of time t , the 
model approaches to isotropy, the pressure, density, mean Hubble’s parameter becomes constant. Thus, the constructed 
model resembles with the accelerating expansion of the universe. 

In model-II ( 0n  ), we have obtained the deceleration parameter 1q   which leads to 0dH dt  . This gives the 
maximum value of the mean Hubble’s parameter, which shows the fastest rate of accelerating expansion of the universe. 
Thus, the graphical results of the obtained models are in good agreement with the observational data. 
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The present work deals with the study of a locally rotationally symmetric (LRS) Bianchi type-I cosmological model in the framework
of a scalar-tensor theory of gravity formulated by Sáez and Ballester with time varying cosmological constant. To obtain the explicit
solutions of the Sáez-Ballester field equations we assume the average scale factor to obey a power law expansion and the cosmological
constant to be proportional to the energy density of the cosmic fluid. The dynamical behaviour of relevant cosmological parameters
including the Hubble parameter, the deceleration parameter, the energy density, the pressure, the equation of state parameter, the
cosmological constant, the shear scalar, the expansion scalar etc. are investigated graphically by examining their evolution versus the
redshift parameter. The validation of the four energy conditions are also checked. We find the outcomes of the constructed model to be
in good agreement with the recent observational data.

Keywords: Cosmological constant; Deceleration parameter; Hubble parameter; LRS Bianchi type-I; Sáez-Ballester theory
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1. INTRODUCTION
Throughout the last few decades, a number of observations in the field of cosmology and astrophysics have been

indicating that our universe is currently passing through a phase of accelerated expansion. The list of the observations
includes Supernova type Ia (SNIa), Large Scale Structure (LSS), Cosmic Microwave Background (CMB), Wilkinson
Microwave Anisotropy Probe (WMAP) [1]- [10] etc. These observations have contradicted the earlier beliefs of the
cosmologists that the expansion of the universe would be decelerating due to the gravitationally attractive nature of the
matter in the universe. As a result of the contradiction in the belief, cosmologists become more inquisitive to know the
root cause of the accelerated cosmic expansion. Within the framework of General Relativity, the leading cause behind the
late time acceleration in the expansion of the universe is considered to be a mysterious form of energy with anti-gravity
effect and tremendous negative pressure. This exotic form of energy is named dark energy which consists of nearly 68.3%
of the total energy budget of the present universe. Another exotic component of the universe is the dark matter which
takes approximately 26.8% of the total matter-energy content of the universe. The yet unknown nature of these two exotic
components consisting of more than 95% of the universe raises some fundamental questions which can not be explained
from the General Theory of Relativity although this theory is very successful in describing many gravitational phenomena
up to cosmological scales. In order to ascertain the true nature of dark energy and the root cause of the observed cosmic
acceleration, a variety of theoretical models are proposed in the literature which can be classified into two broad categories
- the dark energy models and the modified gravity models. The dark energy models are constructed by modifying the
matter part of the Einstein-Hilbert action. On the other hand, the modified gravity models are constructed by modifying
the gravitational part of the Einstein-Hilbert action.

Among the several dark energy models, ΛCDM model is the simplest and the best fit model of the universe but
it is plagued with some theoretical challenges such as the fine-tuning and cosmic coincidence problems. To overcome
these problems, different dynamical scalar field models such as quintessence, k-essence, phantom, tachyons etc. [11],
Chaplygin gas models [12], Holographic dark energy models [13]- [17] etc. are proposed in the literature. Several
modified gravity models are also proposed in the literature such as the 𝑓 (𝑅) gravity, 𝑓 (𝐺) gravity, 𝑓 (𝑄) gravity, 𝑓 (𝑅,𝑇)
gravity, 𝑓 (𝑅, 𝐺) gravity, 𝑓 (𝑄,𝑇) gravity etc., where 𝑅 is the Ricci scalar curvature, 𝐺 is the Gauss–Bonnet invariant,
𝑄 is the non-metricity scalar, 𝑇 is the trace of the energy-momentum tensor and some scalar-tensor theories of gravity
such as Brans-Dicke theory [18], Sáez-Ballester theory [19] etc. in order to unfold the mystery behind the late time
acceleration in the cosmic expansion as well as to study various other aspects of the universe. The Sáez-Ballester theory
of gravity was formulated by Sáez and Ballester in 1986. This theory is a scalar-tensor theory in which the metric is
coupled with a dimensionless scalar field 𝜙 in a simple manner. The coupling satisfactorily describes the weak fields and
also provides a possible way of removing the missing matter problem in non-flat Friedmann-Lemaı̂tre-Robertson-Walker
cosmologies. After the discovery of the acceleration in the rate of expansion of the universe, many researchers have
constructed different cosmological models in Sáez-Ballester theory and investigated various aspects of the universe as it
can be shown that there exists an antigravity regime in this theory. Rao 𝑒𝑡 𝑎𝑙. [20] presented exact string cosmological
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models for Bianchi type II, VIII and IX. Rao 𝑒𝑡 𝑎𝑙. [21] also discussed the exact Bianchi type II, VIII and IX perfect
fluid cosmological models. Naidu 𝑒𝑡 𝑎𝑙. [22] investigated a Bianchi type-III universe in the presence of anisotropic dark
energy. Mishra and Chand [23] studied the dynamical nature of Bianchi type-I model considering a bilinearly varying
deceleration parameter. Mishra and Dua [24] investigated a Bianchi type-I model with cosmological constant, considering
the deceleration parameter to be a linear function of the Hubble parameter. They have also studied the statefinder diagnostic
and some cosmographic parameters graphically. Naidu 𝑒𝑡 𝑎𝑙. [25] investigated the dynamical behaviour of FRW type
Kaluza-Klein (KK) cosmological model taking the Planck Collaboration data as a special reference and discussed three
different models by using hybrid expansion law and varying deceleration parameters. Singh, 𝑒𝑡 𝑎𝑙. [26] examined a
FRW model with bulk viscous fluid. Mishra and Dua [27] examined the behaviours of bulk viscous string cosmological
models in the tilted Bianchi type-VI0 universe. Wath and Nimkar [28] studied a Bianchi type VIII anisotropic dark matter
fluid cosmological model. Dabgar and Bhabor [29] investigated a five-dimensional Bianchi type-III model with string
cosmology considering both power law and exponential law models.

In the present work, we also consider the Sáez-Ballester theory of gravity and study the cosmological dynamics
of a locally rotationally symmetric Bianchi type-I universe with a time varying cosmological constant Λ. The paper is
organised as follows: In section 2, we derive the Sáez-Ballester field equations corresponding to a locally rotationally
symmetric Bianchi type-I line-element. In section 3, we obtain cosmological solution of Sáez-Ballester field equations by
considering the cosmological constant Λ to be proportional to the energy density 𝜌, and by using a power law expansion for
the average scale factor. In section 4, we express the relevant cosmological parameters in terms of the redshift parameter
and study their physical behaviour as the universe evolves. In section 5, the validity of the energy conditions are checked.
The paper is concluded in section 6 with a brief summary of the main outcomes of our model.

2. BASIC EQUATIONS GOVERNING THE MODEL
The action for the Sáez-Ballester theory of gravity along with time-varying cosmological constant Λ can be expressed

as

𝑆 =

∫
Σ

[
(𝑅 − 2Λ) + 16𝜋L −𝑊𝜙𝑛𝜙,𝑖𝜙

,𝑖
] √−𝑔 𝑑𝑋1𝑑𝑋2𝑑𝑋3𝑑𝑋4 (1)

where, 𝑅 is the Ricci scalar curvature, L is the matter Lagrangian, 𝑊 and 𝑛 are arbitrary dimensionless constants, 𝜙 is a
dimensionless scalar field, 𝜙,𝑖 is the partial derivative of 𝜙 with respect to the coordinate 𝑋 𝑖 , 𝜙,𝑖 is the contraction 𝜙,𝛼𝑔

𝛼𝑖

and 𝑔 =
��𝑔𝑖 𝑗 ��.

By considering the scalar field 𝜙 to be vanishing at the boundary of the arbitrary region Σ of integration, the variation of
the action (1) with respect to the tensor 𝑔𝑖 𝑗 and the scalar field 𝜙 leads to the field equations

𝑅𝑖 𝑗 −
𝑅

2
𝑔𝑖 𝑗 + Λ𝑔𝑖 𝑗 −𝑊𝜙𝑛

(
𝜙,𝑖𝜙, 𝑗 −

1
2
𝑔𝑖 𝑗𝜙,𝑘𝜙

,𝑘

)
= −8𝜋𝑇𝑖 𝑗 (2)

and

2𝜙𝑛𝜙,𝑘
;𝑘 + 𝑛𝜙𝑛𝜙,𝑘𝜙

,𝑘 = 0 (3)

where 𝑅𝑖 𝑗 is the Ricci tensor, 𝑇𝑖 𝑗 is the energy-momentum tensor and semicolon represents the covariant derivative.
Now, in order to construct a cosmological model, we consider a locally rotationally symmetric (LRS) Bianchi type-I
space-time characterised by the metric

𝑑𝑠2 = 𝑑𝑡2 − 𝐴2𝑑𝑥2 − 𝐵2
(
𝑑𝑦2 + 𝑑𝑧2

)
(4)

where 𝐴 and 𝐵 are the functions of the cosmic time 𝑡.
We assume the matter-energy distribution of the universe to be as isotropic perfect fluid of density 𝜌 and pressure 𝑝 so
that the energy-momentum tensor 𝑇𝑖 𝑗 can be taken as

𝑇𝑖 𝑗 = (𝜌 + 𝑝) 𝑢𝑖𝑢 𝑗 − 𝑝𝑔𝑖 𝑗 (5)

where 𝑢𝑖 is the four velocity with 𝑢𝑖𝑢
𝑖 = 1.

In a comoving coordinate system, the field equations (2) and (3) with equations (5) for the metric (4) lead to the following
set of field equations:

2
¥𝐵
𝐵
+

¤𝐵2

𝐵2 − 𝑊

2
𝜙𝑛 ¤𝜙2 − Λ = −8𝜋𝑝 (6)

¥𝐴
𝐴
+

¥𝐵
𝐵
+

¤𝐴
𝐴

¤𝐵
𝐵
− 𝑊

2
𝜙𝑛 ¤𝜙2 − Λ = −8𝜋𝑝 (7)
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2
¤𝐴
𝐴

¤𝐵
𝐵
+

¤𝐵2

𝐵2 + 𝑊

2
𝜙𝑛 ¤𝜙2 − Λ = 8𝜋𝜌 (8)

¥𝜙
¤𝜙
+

¤𝐴
𝐴
+ 2

¤𝐵
𝐵
+ 𝑛

2
¤𝜙
𝜙
= 0 (9)

Integration of equation (9) yields

𝜙 =

[
𝐸

(𝑛
2
+ 1

)] 2
𝑛+2

, 𝑛 ≠ −2 (10)

where 𝐸 (𝑡) =
∫

𝑘1
𝑎3 𝑑𝑡, 𝑘1 is a constant of integration.

From the equations (6) and (7), we have
¥𝐵
𝐵
−

¥𝐴
𝐴
+

¤𝐵
𝐵

( ¤𝐵
𝐵
−

¤𝐴
𝐴

)
= 0 (11)

On integration, it gives
𝐵

𝐴
= 𝐷 (𝑡) (12)

where 𝐷 (𝑡) = 𝑒

∫ 𝑘2
𝑎3 𝑑𝑡 , 𝑘2 is an integrating constant.

Therefore, the average scale factor, 𝑎 (𝑡) can be expressed as

𝑎 =

(
𝐴𝐵2

) 1
3
= 𝐴𝐷

2
3 (13)

Equations (6)-(8) can be written in terms of the average scale factor 𝑎 as

2
¥𝑎
𝑎
+ ¤𝑎2

𝑎2 + 𝑘2
2

3𝑎6 − 𝑊

2
𝑘1

2

𝑎6 − Λ = −8𝜋𝑝 (14)

3
¤𝑎2

𝑎2 − 𝑘2
2

3𝑎6 + 𝑊

2
𝑘1

2

𝑎6 − Λ = 8𝜋𝜌 (15)

3. ASSUMPTIONS AND SOLUTION OF THE FIELD EQUATIONS
We have three equations and five unknowns 𝑎, Λ, 𝑝, 𝜌 and 𝜙, which allows us to take two conditions in consideration

in order to find the exact solutions of the field equations.
We assume the average scale factor 𝑎 to obey a power law expansion as

𝑎 = 𝑎0𝑡
𝛼 (16)

where 𝛼 > 0, 𝑎0 is a constant and represents the present value of 𝑎.
In view of equation (15), we consider the cosmological constant Λ (𝑡) to be proportional to the energy density 𝜌 (𝑡) with
ℎ as the constant of proportionality as

Λ = ℎ𝜌 (17)

Then, from the equations (10) and (14)-(17) the expressions for 𝜙, Λ, 𝑝 and 𝜌 are obtained as

𝜙 (𝑡) =
[
𝑘1

𝑎03

(𝑛
2
+ 1

) ( 𝑡1−3𝛼

1 − 3𝛼

)] 2
𝑛+2

, 𝑛 ≠ −2 (18)

Λ (𝑡) = ℎ

8𝜋 + ℎ

[
3𝛼2

𝑡2
− 𝑘2

2

3 (𝑎0𝑡𝛼)6 + 𝑊

2
𝑘1

2

(𝑎0𝑡𝛼)6

]
(19)

𝑝 (𝑡) = 1
8𝜋

[
2𝛼
𝑡2

− 2𝑘2
2

3 (𝑎0𝑡𝛼)6 +𝑊
𝑘1

2

(𝑎0𝑡𝛼)6

]
− 1

8𝜋 + ℎ

[
3𝛼2

𝑡2
− 𝑘2

2

3 (𝑎0𝑡𝛼)6 + 𝑊

2
𝑘1

2

(𝑎0𝑡𝛼)6

]
(20)

𝜌 (𝑡) = 1
8𝜋 + ℎ

[
3𝛼2

𝑡2
− 𝑘2

2

3 (𝑎0𝑡𝛼)6 + 𝑊

2
𝑘1

2

(𝑎0𝑡𝛼)6

]
(21)

4. PROPERTIES OF THE MODEL
The Hubble parameter 𝐻 measures the rate of expansion of the universe. It is related to the scale factor 𝑎 by the

relation 𝐻 = ¤𝑎
𝑎

and therefore, 𝐻 > 0 infers the expanding universe. The deceleration parameter 𝑞 reveals whether the
expansion of the universe is uniform, accelerating or decelerating. It is defined by the relation 𝑞 = − 𝑎 ¥𝑎

¤𝑎2 and therefore, 𝑞 is
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related to the Hubble parameter 𝐻 through the relation 𝑞 = −1 − ¤𝐻
𝐻2 .

For our model, these two parameters are obtained as

𝐻 (𝑡) = ¤𝑎
𝑎
=
𝛼

𝑡
(22)

𝑞 (𝑡) = −1 + 1
𝛼

(23)

The spatial volume (𝑉), the expansion scalar (𝜃), the shear scalar (𝜎2), the mean anisotropy parameter (𝐴𝑚) and the
equation of state (EoS) parameter (𝜂) are obtained as

𝑉 (𝑡) = 𝑎3 = (𝑎0𝑡
𝛼)3 (24)

𝜃 (𝑡) = 3𝐻 = 3
𝛼

𝑡
(25)

𝜎2 (𝑡) = 1
3

𝑘2
2

(𝑎0𝑡𝛼)6 (26)

𝐴𝑚 (𝑡) = 2
9

( 𝑡
𝛼

)2 𝑘2
2

(𝑎0𝑡𝛼)6 (27)

𝜂 (𝑡) = 𝑝 (𝑡)
𝜌 (𝑡) =

(8𝜋 + ℎ)
[

2𝛼
𝑡2 − 2𝑘2

2

3(𝑎0𝑡𝛼 )6 +𝑊
𝑘1

2

(𝑎0𝑡𝛼 )6

]
8𝜋

[
3𝛼2

𝑡2 − 𝑘2
2

3(𝑎0𝑡𝛼 )6 + 𝑊
2

𝑘1
2

(𝑎0𝑡𝛼 )6

] − 1 (28)

The scale factor redshift relation is given by
𝑎 =

𝑎0
1 + 𝑧

(29)

Using equation (16), we obtain
𝑡 = (1 + 𝑧)−

1
𝛼 (30)

Therefore, the cosmic time 𝑡 dependent cosmological parameters of our model can be expressed in terms of the redshift 𝑧
as
Hubble parameter,

𝐻 (𝑧) = 𝛼 (1 + 𝑧)
1
𝛼 (31)

Deceleration parameter,

𝑞(𝑧) = −1 + 1
𝛼

(32)

Spatial volume,
𝑉 (𝑧) = 𝑎3 = 𝑎0

3 (1 + 𝑧)−3 (33)

Expansion scalar,
𝜃 (𝑧) = 3𝐻 = 3𝛼 (1 + 𝑧)

1
𝛼 (34)

Shear scalar,

𝜎2 (𝑧) = 1
3
𝑘2

2

𝑎06 (1 + 𝑧)6 (35)

Mean anisotropy parameter,

𝐴𝑚 (𝑧) = 2
9𝛼2

𝑘2
2

𝑎06 (1 + 𝑧)6− 2
𝛼 (36)

Also, scalar field,

𝜙 (𝑧) =
[
𝑘1

𝑎03

(𝑛
2
+ 1

) ( 1
1 − 3𝛼

)
(1 + 𝑧)

3𝛼−1
𝛼

] 2
𝑛+2

, 𝑛 ≠ −2 (37)

Cosmological constant,

Λ (𝑧) = ℎ

8𝜋 + ℎ

[
3𝛼2 (1 + 𝑧)

2
𝛼 − 𝑘2

2

3𝑎06 (1 + 𝑧)6 + 𝑊

2
𝑘1

2

𝑎06 (1 + 𝑧)6
]

(38)

Pressure,

𝑝 (𝑧) = 1
8𝜋

[
2𝛼 (1 + 𝑧)

2
𝛼 − 2𝑘2

2

3𝑎06 (1 + 𝑧)6 +𝑊
𝑘1

2

𝑎06 (1 + 𝑧)6
]
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− 1
8𝜋 + ℎ

[
3𝛼2 (1 + 𝑧)

2
𝛼 − 𝑘2

2

3𝑎06 (1 + 𝑧)6 + 𝑊

2
𝑘1

2

𝑎06 (1 + 𝑧)6
]

(39)

Energy density,

𝜌 (𝑧) = 1
8𝜋 + ℎ

[
3𝛼2 (1 + 𝑧)

2
𝛼 − 𝑘2

2

3𝑎06 (1 + 𝑧)6 + 𝑊

2
𝑘1

2

𝑎06 (1 + 𝑧)6
]

(40)

The EoS (equation of state) parameter,

𝜂 (𝑧) =
8𝜋 + ℎ

[
2𝛼 (1 + 𝑧)

2
𝛼 − 2𝑘2

2

3𝑎06 (1 + 𝑧)6 +𝑊
𝑘1

2

𝑎06 (1 + 𝑧)6
]

8𝜋
[
3𝛼2 (1 + 𝑧)

2
𝛼 − 𝑘2

2

3𝑎06 (1 + 𝑧)6 + 𝑊
2

𝑘1
2

𝑎06 (1 + 𝑧)6
] − 1 (41)

Figure 1. Plot of the cosmic time 𝑡 v/s redshift 𝑧 for 𝛼 =

1.233
Figure 2. Evolution of the Hubble parameter 𝐻 v/s red-
shift 𝑧 for 𝛼 = 1.233

Figure 3. Evolution of the pressure 𝑝 v/s
redshift 𝑧 for 𝛼 = 1.233, ℎ = 1,𝑊 = 1, 𝑎0 = 𝑘1 = 𝑘2 = 1

Figure 4. Evolution of the energy density 𝜌 v/s redshift
𝑧 for 𝛼 = 1.233, ℎ = 1,𝑊 = 1, 𝑎0 = 𝑘1 = 𝑘2 = 1

Figure 1 shows the graphical plot of cosmic time 𝑡 v/s redshift 𝑧. From Figure 2 and Figure 8 we can see the decreasing
and positive nature of the Hubble parameter 𝐻 and the expansion scalar 𝜃. In Figure 3, we observe that the pressure
𝑝 of the cosmic fluid has a peculiar behaviour. It is positive in the early phases of the universe, subsequently becomes
negative in the later phase and keeps increasing to attain the zero value at far future. Figure 4 depicts the behaviour of
the energy density 𝜌. It decreases as the universe evolves, remains positive throughout the evolution of the universe and
tends to zero at far future, thereby hinting about the expanding universe during the cosmic evolution. Figure 5 shows that
the cosmological constant Λ is an increasing function of the redshift 𝑧, or equivalently it is a decreasing function of the
cosmic time 𝑡. The Figure also depicts the positive nature of Λ in the evolving universe which fades away at far future.
In Figure 6 we observe the decreasing nature of the EoS parameter 𝜂 with the universe’s evolution. The Figure indicates
that the model starts in the radiation-dominated phase and subsequently it enters into the matter-dominated phase. At the
late phase of universe’s evolution, the model behaves as in the quintessence phase

(
−1 < 𝜂 < − 1

3

)
. Figure 7 depicts the

increasing nature of the spatial volume𝑉 , with the evolution of the universe, which gives the indication of the acceleration
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Figure 5. Evolution of the cosmological constant Λ v/s
redshift 𝑧 for 𝛼 = 1.233, ℎ = 1,𝑊 = 1, 𝑎0 = 𝑘1 = 𝑘2 = 1

Figure 6. Evolution of the EoS parameter 𝜂 v/s redshift
𝑧 for 𝛼 = 1.233, ℎ = 1,𝑊 = 1, 𝑎0 = 𝑘1 = 𝑘2 = 1

Figure 7. Evolution of the spatial volume 𝑉 v/s redshift
𝑧 for 𝑎0 = 1

Figure 8. Evolution of the expansion scalar 𝜃 v/s redshift
𝑧 for 𝛼 = 1.233

in the expansion rate of the universe at late times. Figure 9 and Figure 10 show the decreasing nature of the shear scalar
𝜎2 and the mean anisotropy parameter 𝐴𝑚 which tends to zero at late times, thereby indicating the transition from early
anisotropic phase to an isotropic phase at late time.

5. ENERGY CONDITIONS:
Energy conditions are simply some linear combinations of the energy density and the pressure with constraints.

These conditions are helpful in studying the characteristics of the universe. A normal matter always satisfies all the energy
conditions, for the reason that the energy density and the pressure of the normal matter are positive. Violation of the
energy conditions hints about the presence of some unknown matter energy which is not normal in the universe. The four
energy conditions are: Strong Energy Condition (SEC), Weak Energy Condition (WEC), Dominant Energy Condition
(DEC) and Null Energy Condition (NEC).

The SEC suggests that the rate of expansion of the universe decelerates, independent of whether the universe is open,
flat, or closed [30]. The WEC suggests that the energy density is always positive and non-increasing. The DEC provides
an upper bound on the energy density and therefore an upper bound on the rate of expansion. The NEC implies a (very
weak) upper bound on the Hubble parameter and indicates that the energy density of the universe goes down as its size
increases.
The energy conditions are given as:
SEC: 𝜌 + 3𝑝 ≥ 0 and 𝜌 + 𝑝 ≥ 0
WEC: 𝜌 + 𝑝 ≥ 0 and 𝜌 ≥ 0
DEC: 𝜌 + 𝑝 ≥ 0, 𝜌 − 𝑝 ≥ 0 and 𝜌 ≥ 0
NEC: 𝜌 + 𝑝 ≥ 0
For our model,

(𝜌 + 3𝑝) (𝑧) = 3
8𝜋

[
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2
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2
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Figure 9. Evolution of the shear scalar 𝜎2 v/s redshift 𝑧
for 𝑎0 = 𝑘2 = 1

Figure 10. Evolution of the mean anisotropy parameter
𝐴𝑚 v/s redshift 𝑧 for 𝛼 = 1.233, 𝑎0 = 𝑘2 = 1

− 2
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Figure 11. Plot of the energy conditions v/s redshift 𝑧 for 𝛼 = 1.233, ℎ = 1,𝑊 = 1, 𝑎0 = 𝑘1 = 𝑘2 = 1

In Figure 11 we observe that at the very early stage of the universe, all the four energy conditions are satisfied and
the three conditions other than the SEC are satisfied throughout the cosmic evolution. However, at a later stage the SEC is
violated hinting about the accelerated rate of the universe’s expansion, which is in agreement with recent obeservational
data.

6. CONCLUDING REMARKS
In this paper, we explore LRS Bianchi type-I universe with a power law expansion in the framework of Sáez-Ballester

scalar-tensor theory with a cosmological termΛwhich is assumed to be directly proportional to the matter-energy density 𝜌.
We study the evolution of some parameters of cosmological importance such as the Hubble parameter 𝐻, the deceleration
parameter 𝑞, the equation of state (EoS) parameter 𝜂, spatial volume 𝑉 , the expansion scalar 𝜃, Shear scalar 𝜎2 and the
mean anisotropy parameter 𝐴𝑚 graphically by choosing the values of the parameters as 𝛼 = 1.233, ℎ = 1,𝑊 = 1, 𝑎0 =

𝑘1 = 𝑘2 = 1. We observe that
• The increasing nature of the scale factor 𝑎 and the Spatial volume 𝑉 of the universe throughout the cosmic evolution
implies the acceleration in the rate of cosmic expansion.
• The decreasing nature of the Hubble parameter 𝐻 and the expansion scalar 𝜃 gives the hint of accelerated expansion of
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the universe.
• The deceleration parameter 𝑞 is constant in nature which may be positive, negative or zero according as
0 < 𝛼 < 1, 𝛼 > 1 or 𝛼 = 1.
• With the evolving universe, the cosmological constant Λ and the energy density 𝜌 decrease and tend to zero at later
phase of the universe’s evolution.
• The decreasing nature of the EoS parameter 𝜂 with the universe’s evolution is seen in Figure 6, which indicates that
the model starts in the radiation-dominated phase and subsequently it enters into the matter-dominated phase. At the late
phase of universe’s evolution, the model behaves as in the quintessence phase

(
−1 < 𝜂 < − 1

3

)
.

• The decreasing nature of the shear scalar 𝜎2 and the mean anisotropy parameter 𝐴𝑚 which gradually fades away signifies
the transitioning from early anisotropic phase to a later isotropic phase.
• Violation of the SEC is indicating the accelerated cosmic expansion agreeing with the observation.
Thus the results of our model, are found to be satisfactory with the current observational data.
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КОСМОЛОГIЧНА МОДЕЛЬ LRS BIANCHI В ТЕОРIЇ ГРАВIТАЦIЇ САЙЄЗ-БАЛЕСТЕРА ЗI ЗМIННОЮ В ЧАСI 
КОСМОЛОГIЧНОЮ КОНСТАНТОЮ

Чандра Рекха Маханта, Андiта Басуматарi
Факультет математики, Унiверситет Гаухатi, Гувахатi - 781014, Iндiя

Ця робота присвячена вивченню локально-обертально-симетричної (LRS) космологiчної моделi Б’янкi типу I в рамках скалярно-
тензорної теорiї гравiтацiї, сформульованої Сайєзом i Баллестером, зi змiнною в часi космологiчною сталою. Щоб отримати 
явнi розв’язки рiвнянь поля Сайєз-Балестера, ми припускаємо, що середнiй масштабний коефiцiєнт пiдкоряється степеневому 
закону розширення, а космологiчна стала пропорцiйна щiльностi енергiї космiчної рiдини. Динамiчну поведiнку вiдповiдних 
космологiчних параметрiв, включаючи параметр Хаббла, параметр уповiльнення, щiльнiсть енергiї, тиск, параметр рiвняння 
стану, космологiчну постiйну, скаляр зсуву, скаляр розширення тощо, дослiджується графiчно шляхом вивчення їх еволюцiї 
проти параметр червоного зсуву. Також перевiряється перевiрка чотирьох енергетичних умов. Ми вважаємо, що результати 
побудованої моделi добре узгоджуються з останнiми даними спостережень.
Ключовi слова: космологiчна стала; параметр уповiльнення; параметр Хабла; LRS Бьянчi тип-I; теорiя Сайєз-Балестера
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A locally rotationally symmetric Bianchi-I model filled with strange quark matter (SQM) is explored in 𝑓 (𝑅, 𝐿𝑚) gravity as a non-linear
functional of the form 𝑓 (𝑅, 𝐿𝑚)= 𝑅

2 + 𝐿𝛼
𝑚, where 𝛼 is the free model parameter. We considered the special law of variation of Hubble’s

parameter proposed by Berman (1983) and also used the power law relation between the scale factors to obtain the exact solution of
the field equation, which matches the model of the universe. We also analyze the physical and geometrical aspects of the universe’s
kinematic and dynamic behavior. Additionally, we employ equation-of-state (EoS) parameters and statefinder parameters as analytical
tools to gain insights into the evolution of the universe. We use the ΛCDM model as a benchmark to validate the results. By placing the
deviations of the universe from 𝜆CDM model and yet making important contributions to the study of the anisotropic nature of 𝑓 (𝑅, 𝐿𝑚)
gravity within the framework of cosmological dynamics, the paper increases our comprehension of our cosmic evolution.

Keywords: LRS Bianchi type 𝐼 cosmological model; 𝑓 (𝑅, 𝐿𝑚) gravity; Strange quark matter; Cosmic time

PACS: 04.20.-q; 04.20.Jb; 04.50.Kd

1. INTRODUCTION
Over the last twenty years, plenty of cosmological investigations have come out to suggest that we are living in an

accelerated growth phase of the universe. Strong evidence from Type Ia supernovae [1, 2, 3], which are crucial probes
of cosmic distances and expansion rates, supports this fast expansion. Moreover, studies on Baryon Acoustic Oscillations
(BAO) [4, 5], Wilkinson Microwave Anisotropy Probe [6], the large-scale structure of the universe [7, 8], assessments
of galaxy redshifts [9], and examinations of the cosmic microwave background radiation (CMBR) [10, 11] all provide
convincing empirical proof for this phenomenon. Collectively, these several lines of evidence indicate the impressive fact
that two mysterious substances, referred to as dark matter (DM) and dark energy (DE) with negative pressure, constitute
95% of the total universe [12]. Dark energy is thought to be the driving force causing the expanding universe’s noticeable
accelerated expansion, while dark matter, a substance that is gravitationally effective but unable to produce light, interacts
mostly through gravitational forces. The enormous significance of these mysterious components for determining the
evolution and fate of our universe is brought into focus by the convergence of universe facts.

Numerous theoretical descriptions of this acceleration have been suggested in the literature. The concept of dark
energy is basically associated with the rapid acceleration of the universe. It can be understood in two different ways. The
first one argues that the universe is currently expanding not due to the gravitation force but because of the existence of an
unknown force with a negative pressure higher than that of gravitation, and this force is called ”dark energy” (DE). The
literature proposes time-varying dark energy models such as quintessence [13], k-essence [14, 15], and even the perfect
fluid models, especially the Chaplygin gas model [16, 17] as a solution to this problem. Interpreting spacetime’s geometry
is the second tactic for explaining the universe’s acceleration. The left-hand side of the Einstein equation can be changed
for this purpose. Modified theories of gravity are the alteration of the Einstein-Hilbert action of general relativity to reach
the acceleration of the universe. These theories are geometric extensions of relativity by Einstein. Among the recent
developments, cosmologists have been detecting dark energy through the modified gravity theories as an explanation. It
is argued that dark energy would be the product of introducing a modification to the force of gravity. Various scientific
evidence shows that modified versions of gravity theories are likely to be the reasons for the acceleration of the universe at
the early and late stages, forming a consistent picture of the universe. Hence, there are many reasons to search for theories
that extend beyond general relativity, and the theories of gravity need to be revised. In the literature, there are several
modified theories that have been proposed. A few of the modified theories consist of 𝑓 (𝑅) gravity, the modification of
general relativity by introducing an arbitrary function of the Ricci scalar (𝑅) into the gravitational action [18],the 𝑓 (𝑅,𝑇)
theory, an extension of 𝑓 (𝑅) gravity coupled with the trace of energy-momentum tensor 𝑇 [19], 𝑓 (𝐺) theory where 𝐺

is the Gauss-Bonnet invariant [20, 21, 22], 𝑓 (𝑅, 𝐺) theory [23, 24], 𝑓 (𝑇) gravity [25, 26, 27], 𝑓 (𝑄,𝑇) theory [28] and
𝑓 (𝑅, 𝐿𝑚) gravity [29].

The 𝑓 (𝑅, 𝐿𝑚) gravity [29, 30] is a theory that is based on general relativity, attaching additional terms to the action
that are dependent on matter density Lagrangian (𝐿𝑚) and the Ricci scalar (𝑅), respectively. It is an attempt to overcome
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the arising issues of general relativity and observation, such as the need for dark matter and dark energy to explain
universe occurrences. This function 𝑓 (𝑅, 𝐿𝑚) is likely to be required for several theoretical reasons, such as resolving the
cosmological constant puzzle, broadcasting the universe’s accelerated expansion, or offering an alternative explanation
for gravitational incidents observed at the universe scales. Researchers [31] derived the energy condition and Dolgov-
Kawasaki (DK) instability criterion [32] in 𝑓 (𝑅, 𝐿𝑚) gravity and provided the highly versatile energy requirements that can
reduce commonly accepted energy conditions found in f(R) theories of gravity and general relativity with any connection
between matter and geometry, non-minimal connection, and non-coupling. Geometry-matter couplings in the presence of
scalar fields were discussed in [33]. Kasner-type static, cylindrically symmetric interior string solutions in the 𝑓 (𝑅, 𝐿𝑚)
theory of modified gravity are studied [34]. Some of the researchers discussed various cosmological models [35, 36] and
phenomenon of gravitational baryogenesis [37] in 𝑓 (𝑅, 𝐿𝑚) gravity. Kavya et al. [38] have discussed the anisotropic
cosmological model in 𝑓 (𝑅, 𝐿𝑚) gravity. The universe’s accelerating scenarios [39] and warmhole solution [40] have all
been investigated recently.

The LRS Bianchi-type I cosmological model is a homogeneous and anisotropic cosmological solution to Einstein’s
field equations. It specifies a spatially homogeneous universe that allows anisotropic expansion since it experiences
different rates of expansion along distinct spatial directions. This model has been extensively studied in the context of both
general relativity (GR) and modified gravity theories to understand its implications and test the viability of such theories
against observations. Yadav et al. [41] have studied the LRS Bianchi 𝐼 bulk viscous cosmological model in 𝑓 (𝑅,𝑇)
gravity. Interacting two fluid dark energy radiating cosmological models [42] and power-exponential law models [43] have
been investigated in 𝑓 (𝑅) gravity. Later on, several researchers [44, 45, 46] discussed the various cosmological aspects of
the LRS Bianchi type 𝐼 cosmological model in 𝑓 (𝑅,𝑇) gravity. Recently, Solanke et al.[47] investigated the LRS Bianchi
type-I cosmological model in the 𝑓 (𝑄,𝑇) theory of gravity with observational constraints.

This research paper emphasizes the exploration of an exact solution for the LRS Bianchi Type I space-time within the
framework of 𝑓 (𝑅, 𝐿𝑚) gravity, Hubble’s law, and incorporating the presence of strange quark matter (SQM). The study
aims to advance understanding regarding the universe’s dynamics and properties within this gravitational framework. The
article is organized as follows: The basic field equation and detailed review of 𝑓 (𝑅, 𝐿𝑚) modified gravity, including the
metric and energy momentum tensor, are given in Sections 2 and 3. Moving to Section 4, efforts are directed to find
the exact solution of the 𝑓 (𝑅, 𝐿𝑚) cosmological model. The subsequent Sections, 5 and 6, covered the details about the
strange quark model and some physical parameters respectively, within the framework of the discussed modified gravity
theory. The important analytical tool statefinder parameters are discussed in Section 7. The figures and conclusion are
summarized in sections 8 and 9.

2. BASIC FIELD EQUATIONS IN 𝑓 (𝑅, 𝐿𝑚) GRAVITY
The action integral for the framework of 𝑓 (𝑅, 𝐿𝑚) interpreted with the matter Lagrangian density 𝐿𝑚 and the Ricci

scalar 𝑅 is given as,

𝑆 =

∫
𝑓 (𝑅, 𝐿𝑚)

√−𝑔𝑑𝑥4, (1)

where 𝑓 (𝑅, 𝐿𝑚) is arbitrary function of Ricci scalar 𝑅 and matter Lagrangian 𝐿𝑚.
By contracting the Ricci tensor 𝑅𝑚𝑛, one may get the Ricci scalar 𝑅,

𝑅 = 𝑔𝑖 𝑗𝑅𝑖 𝑗 (2)

where, the Ricci tensor is defined by,

𝑅𝑖 𝑗 = −𝛿𝜆Γ𝜆
𝑖 𝑗 + 𝛿 𝑗Γ

𝜆
𝑖𝜆 − Γ𝜆

𝜆𝜎Γ
𝜎
𝑖 𝑗 + Γ𝜆

𝑗𝜎Γ
𝜎
𝑖𝜆 (3)

Here Γ𝛼
𝛽𝛾

represents the components of well-known Levi-Civita connection defined by

Γ𝛼
𝛽𝛾 =

1
2
𝑔𝛼𝜆

(
𝛿𝑔𝛾𝜆

𝛿𝑥𝛽
+
𝛿𝑔𝜆𝛽

𝛿𝑥𝛾
−
𝛿𝑔𝛽𝛾

𝛿𝑥𝜆

)
(4)

The corresponding field equations of 𝑓 (𝑅, 𝐿𝑚) gravity are obtained by varying the action (1) for metric 𝑔𝑖 𝑗 is given by,

𝑓𝑅 (𝑅, 𝐿𝑚) 𝑅𝑖 𝑗 +
(
𝑔𝑖 𝑗∇𝑖∇𝑖 − ∇𝑖∇ 𝑗

)
𝑓𝑅 (𝑅, 𝐿𝑚)

−1
2
[
𝑓 (𝑅, 𝐿𝑚) − 𝑓𝐿𝑚

(𝑅, 𝐿𝑚) 𝐿𝑚

]
𝑔𝑖 𝑗 =

1
2
𝑓𝐿𝑚

(𝑅, 𝐿𝑚) 𝑇𝑖 𝑗 (5)

Where, 𝑓𝑅 (𝑅, 𝐿𝑚) = 𝛿 𝑓 (𝑅,𝐿𝑚 )
𝛿𝑅

, 𝑓𝐿𝑚
(𝑅, 𝐿𝑚) = 𝛿 𝑓 (𝑅,𝐿𝑚 )

𝛿𝑅𝑚
Here covariant derivative is represented by ∇𝑖 and the energy

momentum tensor 𝑇𝑖 𝑗 can be expressed as,

𝑇𝑖 𝑗 = − 2
√−𝑔

𝛿
(√−𝑔 𝐿𝑚

)
𝛿𝑔𝑖 𝑗

= 𝑔𝑖 𝑗𝐿𝑚 − 2
𝛿𝐿𝑚

𝛿𝑔𝑖 𝑗
(6)
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Now, from the explicit form of the field equation (5), the covariant divergence of Energy momentum tensor 𝑇𝑖 𝑗 can be
obtained as,

∇𝑖𝑇𝑖 𝑗 = 2∇𝑖 𝑙𝑛
[
𝑓𝐿𝑚

(𝑅, 𝐿𝑚)
] 𝛿𝐿𝑚

𝛿𝑔𝑖 𝑗
(7)

The relation between the trace of energy momentum-tensor 𝑇 , Ricci scalar 𝑅, and the Lagrangian density of the matter
𝐿𝑚 obtained by contracting the field equation (5)

𝑓𝑅 (𝑅, 𝐿𝑚) 𝑅 + 3∇𝑖∇𝑖 𝑓𝑅 (𝑅, 𝐿𝑚) − 2
[
𝑓 (𝑅, 𝐿𝑚) − 𝑓𝐿𝑚

(𝑅, 𝐿𝑚) 𝐿𝑚

]
=

1
2
𝑓𝐿𝑚

(𝑅, 𝐿𝑚) 𝑇 (8)

The relation between the trace of the energy momentum tensor 𝑇 = 𝑇 𝑖
𝑖
, 𝐿𝑚, and 𝑅 can be established by taking account of

the previously mentioned equation.

3. METRIC AND FIELD EQUATION IN 𝑓 (𝑅, 𝐿𝑚) GRAVITY
The spatially homogeneous and anisotropic LRS Bianchi type 𝐼 spacetime can be written in the form of,

𝑑𝑠2 = −𝑑𝑡2 + 𝐿2𝑑𝑥2 + 𝑀2
(
𝑑𝑦2 + 𝑑𝑧2

)
(9)

Where 𝐿 and 𝑀 are the metric potential that are the functions of cosmic time 𝑡 only.
The Ricci scalar for LRS Bianchi - 𝐼 spacetime can be expressed as

𝑅 = −2
[ ¥𝐿
𝐿
+ 2

¥𝑀
𝑀

+ 2
¤𝐿 ¤𝑀
𝐿𝑀

+
¤𝑀2

𝑀2

]
(10)

The overhead dot (.) denotes the derivative with respect to time 𝑡. The spatial volume V of the universe is defined as

𝑉 = 𝐿𝑀2 (11)

The generalized mean Hubble parameter (𝐻), which describes the space-time expansion rate, can be stated as

𝐻 =
1
3
(𝐻1 + 𝐻2 + 𝐻3) (12)

where 𝐻1, 𝐻2, 𝐻3 are the directional Hubble’s parameters in the direction of the x-, y-, and z-axes, respectively. In order
to figure out whether the models approach isotropy or not, we define the expansion’s anisotropy parameter as

𝐴𝑚 =
1
3

3∑︁
𝑖=1

(
𝐻𝑖 − 𝐻

𝐻

)2
(13)

The expansion scalar and shear scalar are defined as follows:

𝜃 = 𝑢𝑖;𝑖 =
¤𝐿
𝐿
+ 2

¤𝑀
𝑀

(14)

𝜎2 =
3
2
𝐻2𝐴𝑚 (15)

Let us take the matter that contains the energy momentum tensor for quark matter, which is of the form

𝑇
𝑗 (𝑞𝑢𝑎𝑟𝑘 )
𝑖

= (𝑝 + 𝜌)𝑢 𝑗𝑢𝑖 + 𝑝𝑔
𝑗

𝑖
= 𝑑𝑖𝑎𝑔 (−𝜌, 𝑝, 𝑝, 𝑝) (16)

where 𝜌 = 𝜌𝑞 + 𝐵𝑐 is a quark matter total energy density, 𝑝 = 𝑝𝑞 − 𝐵𝑐 is the quark matter total pressure, and 𝑢𝑖 is the
four-velocity vector such that 𝑢𝑖𝑢𝑖 = −1.
The EoS parameter for quark matter is defined as,

𝑝𝑞 = 𝜔𝜌𝑞 , 0 ≤ 𝜔 ≤ 1 (17)

The linear equation of state for strange quark matter is provided by

𝑝 = 𝜔 (𝜌 − 𝜌0) (18)
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where 𝜔 is constant and 𝜌0 is the energy density at zero pressure. When 𝜔 = 1
3 and 𝜌0 = 4𝐵𝑐, in the bag model, strange

quark matter changes the above linear equation of state to the one that follows EoS.

𝑝 =
(𝜌 − 4𝐵𝑐)

3
(19)

where 𝐵𝑐 is the bag constant.
By using the help of equation (16), the field equation (5) can be translated into the action of metric (10) in the co-moving
coordinate system as,

−
( ¥𝐿
𝐿
+ 2

¤𝐿 ¤𝑀
𝐿𝑀

)
𝑓𝑅 − 1

2
(
𝑓 − 𝑓𝐿𝑚

𝐿𝑚

)
− 2

¤𝑀
𝑀

¤𝑓𝑅 − ¥𝑓𝑅 =
1
2
𝑓𝐿𝑚

(
𝑝𝑞 − 𝐵𝑐

)
(20)

−
( ¥𝑀
𝑀

+
¤𝑀2

𝑀2 +
¤𝐿 ¤𝑀
𝐿𝑀

)
𝑓𝑅 − 1

2
(
𝑓 − 𝑓𝐿𝑚

𝐿𝑚

)
−
( ¤𝐿
𝐿
+

¤𝑀
𝑀

)
¤𝑓𝑅 − ¥𝑓𝑅 =

1
2
𝑓𝐿𝑚

(
𝑝𝑞 − 𝐵𝑐

)
(21)

−
( ¥𝐿
𝐿
+ 2

¥𝑀
𝑀

)
𝑓𝑅 − 1

2
(
𝑓 − 𝑓𝐿𝑚

𝐿𝑚

)
−
( ¤𝐿
𝐿
+ 2

¤𝑀
𝑀

)
¤𝑓𝑅 − ¥𝑓𝑅 = −1

2
𝑓𝐿𝑚

(
𝜌𝑞 + 𝐵𝑐

)
(22)

4. COSMOLOGICAL 𝑓 (𝑅, 𝐿𝑚) MODEL
In the present study,to examine the dynamics of the cosmological model in 𝑓 (𝑅, 𝐿𝑚) gravity, we use the relation

between 𝑅 and 𝐿𝑚 [38]

𝑓 (𝑅, 𝐿𝑚) =
𝑅

2
+ 𝐿𝛼

𝑚 (23)

where 𝛼 ≠ 0 is a parameter and one can retain GR for 𝛼 = 1.
For this particular 𝑓 (𝑅, 𝐿𝑚) model, we have to consider 𝐿𝑚 = 𝜌 [48]
Using the above particular choice of 𝐿𝑚, the field equations (20),(21) and (22) becomes,

2
¥𝑀
𝑀

+
¤𝑀2

𝑀2 − (1 − 𝛼)
(
𝜌𝑞 + 𝐵𝑐

)𝛼
= 𝛼

(
𝜌𝑞 + 𝐵𝑐

)𝛼−1 (
𝑝𝑞 − 𝐵𝑐

)
(24)

¥𝐿
𝐿
+

¥𝑀
𝑀

+
¤𝐿 ¤𝑀
𝐿𝑀

− (1 − 𝛼)
(
𝜌𝑞 + 𝐵𝑐

)𝛼
= 𝛼𝛼

(
𝜌𝑞 + 𝐵𝑐

)𝛼−1 (
𝑝𝑞 − 𝐵𝑐

)
(25)

¤𝑀2

𝑀2 + 2
¤𝐿 ¤𝑀
𝐿𝑀

= (1 − 2𝛼)
(
𝜌𝑞 + 𝐵𝑐

)𝛼 (26)

The field equations (24), (25) and (26) are three independent differential equations with four unknowns: 𝐿, 𝑀 , 𝜌𝑞 , and
𝑝𝑞 . Hence, to determine solutions, we have to use physically plausible conditions.

Berman [49] indicate that there exists a connection between the deceleration parameter as well as the average scale
factor given as,

𝑞 = −𝑎 ¥𝑎
¤𝑎2 (27)

Here, 𝑎 is the average scale factor with 𝑎 =
(
𝐿𝑀2) 1

3 and 𝑞 is the deceleration parameter. If we use Hubble’s law and relate
Hubble’s parameter 𝐻 to the average scale factor 𝑎 then we get a constant value of the deceleration parameter 𝑞.
Hence the Hubble’s law gives,

𝐻 = 𝑏𝑎−𝑚 (28)

where 𝑏 and 𝑚 are constants.Also, Hubble’s parameter (12) can be written as

𝐻 =
1
3

( ¤𝐿
𝐿
+ 2

¤𝑀
𝑀

)
=

¤𝑎
𝑎

(29)

Using equation (29), we can re-write equation (28) as

¤𝑎 = 𝑏𝑎−𝑚+1 (30)
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Using the equations (28), (29), and (30) in (27), we get

𝑞 = −𝑚 + 1 (31)

This equation demonstrates that the deceleration parameter is going to stay constant, whatever its significance, and
regardless of whether the value is positive or negative. The standard deceleration model is indicated by positive values of
the deceleration parameters. Negative numbers, on the other hand, lead the model to accelerate or lead to inflation. on
solving the equation (28) with the help of equation (29), we get

𝑎 = (𝑐𝑡 + 𝑑)
1

𝑞+1 , 𝑞 ≠ −1 (32)

considering that 𝑑 is the integration constant and 𝑐 ≠ 0.Using equation (??) and 𝐿𝑀2 = 𝑎3, we can obtain,

𝐿𝑀2 = (𝑐𝑡 + 𝑑)
3

𝑞+1 , 𝑞 ≠ −1 (33)

In order to obtain a favorable solution to the field equations, we have to consider the constraining equation. Here we
presume the anisotropic relation can be written in terms of expansion scalar (𝜃) and shear scalar (𝜎)as,

𝜎 ∝ 𝜃

With reference to the scale factors L and M, the above assumption leads to the following anisotropic relation:

𝐿 = 𝑀 𝑘 (34)

where 𝑘 ≠ 1 is an arbitrary constant. The model becomes isotropic if 𝑘 = 1, indicating that the distribution of matter in
the universe is homogeneous; otherwise, it turns out to be anisotropic.
Using the equation (34), equation (33) implies that

𝐿 = (𝑐𝑡 + 𝑑)
3𝑘

(𝑞+1) (𝑘+2) (35)

𝑀 = (𝑐𝑡 + 𝑑)
3

(𝑞+1) (𝑘+2) (36)

Equations (35) and (36) indicate that the model’s metric potentials 𝐿 and 𝑀 are time-dependent functions that rise with
time at 𝑞 > −1, 𝑘 ≠ −2 and fall with time at 𝑞 < −1, 𝑘 ≠ −2; they also do not exist at 𝑞 = −1 or 𝑘 = −2. Moreover, it is
important to note that for 𝑞 > −1, 𝑘 ≠ −2, these parameters begin at a constant value, but at the point 𝑡 = − 𝑑

𝑐
, they start at

zero, indicating that the model exhibits point-type singularity at that point.
Thus, the metric (9) with the help of equations (35) and (36) can be written as,

𝑑𝑠2 = −𝑑𝑡2 + (𝑐𝑡 + 𝑑)
6𝑘

(𝑞+1) (𝑘+2) 𝑑𝑥2 + (𝑐𝑡 + 𝑑)
6

(𝑞+1) (𝑘+2)
(
𝑑𝑦2 + 𝑑𝑧2

)
(37)

Equation (37) represents the homogeneous anisotropic plane symmetric cosmological model with quark and strange quark
matter in the framework of 𝑓 (𝑅, 𝐿𝑚) gravity. The model increases with time for the constants 𝑞 < −1, 𝑘 ≠ −2 and has a
singularity at the point 𝑡 = − 𝑑

𝑐

5. STRANGE QUARK MATTER FOR COSMOLOGICAL MODEL
From the equations (25) and (26), with the help of metric potential, the energy density and pressure of strange quark

matter are given as,

𝜌 =

[
9(1 + 2𝑘)𝑐2

(1 − 2𝛼) (𝑞 + 1)2 (𝑘 + 2)2 (𝑐𝑡 + 𝑑)2

] 1
𝛼

(38)

𝑝 = 𝐷

[
9𝑐2 (1 + 2𝑘)1−𝛼

(1 − 2𝛼) (𝑞 + 1)2 (𝑘 + 2)2 (𝑐𝑡 + 𝑑)2

] 1
𝛼

(39)

where, 𝐷 =
[ (2𝛼−1)𝑞+(2−4𝛼) ]𝑘2+[3𝑞 (2𝛼−1)+6(𝛼−1) ]𝑘+[2(2𝛼−1)𝑞+(𝛼−2) ]

3𝛼

Using the above equations, the pressure and energy density of the quark matter as follows:

𝜌𝑞 =

[
9(1 + 2𝑘)𝑐2

(1 − 2𝛼) (𝑞 + 1)2 (𝑘 + 2)2 (𝑐𝑡 + 𝑑)2

] 1
𝛼

− 𝐵𝑐 (40)
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𝑝𝑞 = 𝐷

[
9𝑐2 (1 + 2𝑘)1−𝛼

(1 − 2𝛼) (𝑞 + 1)2 (𝑘 + 2)2 (𝑐𝑡 + 𝑑)2

] 1
𝛼

+ 𝐵𝑐 (41)

Using the equations (38) and (39), the equation of state (EoS) for strange quark matter and quark matter are given as

𝜔 =
𝐷

(1 + 2𝑘) (42)

𝜔𝑞 =

𝐷

[
9𝑐2 (1+2𝑘 )1−𝛼

(1−2𝛼) (𝑞+1)2 (𝑘+2)2 (𝑐𝑡+𝑑)2

] 1
𝛼 + 𝐵𝑐[

9(1+2𝑘 )𝑐2

(1−2𝛼) (𝑞+1)2 (𝑘+2)2 (𝑐𝑡+𝑑)2

] 1
𝛼 − 𝐵𝑐

(43)

6. SOME PHYSICAL PARAMETERS
The spatial volume 𝑉 of the universe is given as

𝑉 = (𝑐𝑡 + 𝑑)
3

𝑞+1 (44)

The spatial volume of the universe increases with increasing cosmic time, starting with a constant value at 𝑡 = 0 and with
a big bang at 𝑡 = − 𝑑

𝑐
. As a result of this approach, inflation. This illustrates that the universe begins to evolve at zero

volume and grows over cosmic time. The mean generalized Hubble’s parameter (29) of the model is given by

𝐻 =
𝑐

(𝑞 + 1) (𝑐𝑡 + 𝑑) (45)

The expansion scalar of the model turns out to be

𝜃 =
3𝑐

(𝑞 + 1) (𝑐𝑡 + 𝑑) (46)

At the initial stage, both the Hubble’s parameter and the expansion scalar are constant and approach zero steadily at 𝑡 →
∞, but at 𝑡 = − 𝑑

𝑐
both are infinitely large. The mean anisotropic parameter of the model is given as

𝐴𝑚 =
2𝑘2 − 4𝑘 + 2
𝑘2 + 4𝑘 + 4

(47)

The shear scalar of the model is represented as

𝜎2 =
3𝑐2

(𝑞 + 1)2
𝑘2 − 2𝑘 + 1
𝑘2 + 4𝑘 + 4

1
(𝑐𝑡 + 𝑑)2 (48)

The shear scalar, the scalar expansion, and the Hubble parameter are all the functions of time that are rapidly decreasing
with the increase of cosmic time and getting closer to zero in the later stages. This fact reveals that in the earliest stages of
the universe, the rate of expansion was very high for a while, but gradually it became slower. This shows that the evolution
of the universe starts at an infinite rate, but with expansion, it declines.

7. STATEFINDER PARAMETERS
The so-called cosmic acceleration may arise from a quite wide range of dark energy models, many of which are

distinguishable by the utilization of the statefinder diagnostic tool. It is a model-free way of quantifying the dark energy
intrinsic properties of higher derivatives to the scale factor. Through employing the cosmic statefinder diagnostic fiction
pair {𝑟, 𝑠}, the technique permits research to investigate dark energy properties, free of any particular models. The
statefinder parameters are defined as [50, 51].

𝑟 =
1

𝑎𝐻3
𝑑3

𝑑𝑡3
(𝑎) , 𝑠 =

𝑟 − 1
3(𝑞 − 1

2 )
(49)

Identifying between different cosmological domains is mostly dependent on the paths in the {𝑟, 𝑠} plane. For example,
in the {𝑟, 𝑠} plane, the 𝜆CDM model is characterized by the point (𝑟 = 1, 𝑠 = 0), Standard Cold Dark Matter is for (𝑟 =

1, 𝑠 = 1), and the holographic DE model is represented by (𝑟 = 1, 𝑠 = 2
3 ). The phantom region is associated with (𝑟 >

1, 𝑠 < 0), and the quintessence region is identified by (𝑟 < 1, 𝑠 > 0). with the help of equations (32), (44) and (45), the
equation (49) becomes

{𝑟, 𝑠} = {2𝑞2 + 𝑞,
2
3
(𝑞 + 1)} (50)

We can see that for a given model, 𝑞, 𝑟, 𝑠 are constant. For different values of 𝑞, we have different expansion factors, which
can be analyzed in the following Table 1.
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Table 1. Description of Models

q r s Type of Model

0.5 1 1 SCDM
-0.5 0 1

3 quintessence
-1 1 0 𝜆 CDM
-2 6 - 2

3 Phantom

8. FIGURES
In this section, in order to gain a deeper insight into our cosmological model, let us plot different physical and

dynamic parameters against cosmic time.

(a) (b)

Figure 1. The Variation of Spatial volume (𝑉) (left) and Hubble’s parameter (𝐻) (right) as a function of cosmic time (t)
are shown. 𝑉 ,𝐻 and 𝑡 are in arbitrary units. To derive above plot we have used 𝑐 = 𝑑 = 1.

• The graph of volume against cosmic time is increasing in nature (Fig. 1(a)), and that of the Hubble parameter 𝐻 is
a decreasing function of cosmic time (𝑡) in the positive region (Fig. 1(b)). From it, we collect important insights
about the expansion of the universe. This observation serves as a necessary foundation for our understanding of the
universe’s dynamics.

(a) (b)

Figure 2. Variation of Expansion scalar (𝜃) (left) and Shear scalar (𝜎2) (right) as a function of cosmic time (t) are shown.
𝜃 ,𝜎2 and 𝑡 are in arbitrary units. To derive above plot we have used 𝑐 = 𝑑 = 1.

• We found that the expansion scalar (Fig. 2(a)) and shear scalar (Fig. 2(b)) are the diminishing functions of cosmic
time (𝑡).
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(a) (b)

Figure 3. Variations of energy density of strange quark matter(𝜌) (left) and quark matter(𝜌𝑞) (right) as a function of
cosmic time (t) for 𝑞 < −1. All quantities are in arbitrary units. These plots are derived using 𝑐 = 𝑑 = 𝐵𝑐 = 1, 𝑘 = 2.

• The energy density of strange quark matter (𝜌) and quark matter (𝜌𝑞) both appear constant at the initial stage and
becomes infinite as 𝑡 tends to infinity, as shown in Fig. 3.

(a) (b)

Figure 4. Variations of pressure of strange quark matter(𝑝) and quark matter(𝑝𝑞) as a function of cosmic time (t) for 𝑞 <

−1. All quantities are in arbitrary units. These plots are derived using 𝑐 = 𝑑 = 𝐵𝑐 = 1, 𝑘 = 2.

• The pressure of strange quark matter (𝑝) and quark matter (𝑝𝑞), both decreasing functions of time, remains negative
throughout the evolution, as shown in Fig. 4.

(a) (b)

Figure 5. Variations of energy density of strange quark matter (𝜌) and quark matter (𝜌𝑞) as a function of cosmic time (t)
for 𝑞 > −1. All quantities are in arbitrary units.These plots are derived using 𝑐 = 𝑑 = 𝐵𝑐 = 1, 𝑘 = 2.

9. CONCLUSIONS
In this article, we explore an accelerating model of the universe in the context of the 𝑓 (𝑅, 𝐿𝑚) theory of gravity as a

non-linear functional of the form 𝑓 (𝑅, 𝐿𝑚)=𝑅
2 + 𝐿𝛼

𝑚, where 𝛼 is the free model parameter. Utilizing a unique formulation
of the deceleration parameter, we derive cosmological solutions that closely resemble the characteristics of the dark
energy-driven 𝜆CDM model. We assumed a power law relation between the scale factors. We also considered the special
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law of variation of Hubble’s parameter proposed by Berman (1983), which yields the constant deceleration parameter.The
findings of the research are very interesting and ultimately result in the following conclusions:

Around 𝑡 = 0, the metric potentials 𝐿 and 𝑀 are constant, and then both vanish. This brings one to the conclusion
that the model exhibits an initial singularity at 𝑡 = − 𝑑

𝑐
. As a result, similar to the standard Big Bang theory, the values of

𝐿 and 𝑀 increase steadily over time. At a singular point, the model is similar to the work of [52]. We discovered that the
spatial volume (𝑉), expansion scalar (𝜃), shear scalar (𝜎2), and mean Hubble’s parameter (𝐻) are all functions of cosmic
time (𝑡). These parameters tend to zero as 𝑡 tends to infinity (𝑡 → ∞), but they diverge with the exception of spatial volume
when cosmic time approaches 𝑡 = − 𝑐

𝑑
, as shown in Fig.(1) and Fig.(2) The spatial volume (𝑉) of the model is zero when

cosmic time is 𝑡 = − 𝑑
𝑐

. Depending on the value of 𝑞 we have the following two cases:

case(i)when 𝑞 < −1: The proposed model starts expanding with the Big Bang singularity at 𝑡 = − 𝑑
𝑐

. At 𝑡 = 0,
both the pressure 𝑝 and energy density 𝜌 of strange quark matter are constant, and at 𝑡 → ∞, both 𝑝 and 𝜌 become
infinite, as shown in Fig. 3(a) and Fig. 4(a). The pressure of strange quark matter (𝑝) and quark matter (𝑝𝑞), both
decreasing functions of time, remains negative throughout the evolution. Negative pressure (𝑝) and (𝑝𝑞) corresponds
to the accelerating expansion of the universe. Also, the pressure 𝑝𝑞 and energy density 𝜌𝑞 for quark matter behave the
same as for strange quark matter. The shift in the 𝜌 values than that of 𝑝𝑞 is due to the additional term of bag constant in
equation (40). In this study, we chose the bag constant as unity, as shown in Fig. 3(b) and Fig. 4(b).

case (ii) when 𝑞 > −1: At cosmic time 𝑡 = 0, the proposed model has constant volume, which increases with an
increase in time and becomes infinite at 𝑡 → ∞. At 𝑡 = 0, energy density 𝜌 of strange quark matter are constant, and at
𝑡 → ∞, it become infinite, as shown in Fig. 5(a) and Fig. 5(b).The energy and pressure profiles for quark and strange
quark matter are the same except from the extra bag constant. The bag constant is subtracted for energy density and added
for the pressure of quarks.

For 𝛼 < 0, equations (38) to (41) give the real value of pressure and energy density for quark matter and strange quark
matter (SQM), and values turn out to be complex for 𝛼 > 0. The anisotropic parameter 𝐴𝑚 is nonzero for 𝑘 ≠ 1 provided
𝑘 ≠ −2, and in such a case, the model does not approach isotropy, but for 𝑘 = 1 provided 𝑘 ≠ −2, the mean anisotropic
parameter is zero, and the model becomes isotropic. Moreover, the mean anisotropic parameter (𝐴𝑚) remains constant
throughout the evolution of the universe as it is independent of the cosmic time (𝑡). Regarding the current statefinder
parameters, the value {𝑟, 𝑠}={1, 0} generated by our investigation is in the same line with the 𝜆CDM model, which is very
close to the recent data [53, 54]
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АНIЗОТРОПНА КОСМОЛОГIЧНА МОДЕЛЬ IЗ SQM У 𝑓 (𝑅, 𝐿𝑚) ГРАВIТАЦIЇ
Правiн Болкеa, Васудео Патiлb, Сачин Вагмареc, Неха Махаджанb

𝑎Факультет математики, коледж iнженерiї та менеджменту iменi проф. Рама Меге, Баднера, Дист. Амраватi (MS), Iндiя
𝑏Коледж факультету математики, мистецтв, науки та торгiвлi, Чикхалдара, округ Амраватi (MS), Iндiя

𝑐Департамент математики, TGPCET, Нагпур (MS), Iндiя
Локально обертально-симетрична модель Bianchi-I, заповнена дивною кварковою матерiєю (SQM), дослiджується в 𝑓 (𝑅, 𝐿𝑚)
гравiтацiї як нелiнiйний функцiонал у формi 𝑓 (𝑅, 𝐿𝑚)=𝑅

2 + 𝐿𝛼
𝑚, де 𝛼 — вiльний параметр моделi. Ми розглянули спецiальний

закон змiни параметра Хаббла, запропонований Берманом (1983), а також використали степеневий зв’язок мiж масштабними
факторами, щоб отримати точний розв’язок рiвняння поля, який вiдповiдає моделi Всесвiту. Ми також аналiзуємо фiзичнi
та геометричнi аспекти кiнематичної та динамiчної поведiнки Всесвiту. Крiм того, ми використовуємо параметри рiвняння
стану (EoS) i параметри визначення стану як аналiтичнi iнструменти, щоб отримати уявлення про еволюцiю Всесвiту. Ми
використовуємо модель ΛCDM як еталон для перевiрки результатiв. Розмiщуючи вiдхилення Всесвiту вiд моделi 𝜆CDM i
водночас роблячи важливий внесок у дослiдження анiзотропної природи 𝑓 (𝑅, 𝐿𝑚) гравiтацiї в рамках космологiчної динамiки,
стаття покращує наше розумiння нашої космiчної еволюцiї.
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In this work, we construct a spatially homogeneous and anisotropic Bianchi type-V cosmological model with a hybrid expansion law by
considering the universe to be filled with cold dark matter and non-interacting Barrow holographic dark energy with Granda-Oliveros
length scale as IR cutoff. The physical and kinematical characteristics of the resulting model are discussed by studying the evolution of
various parameters of cosmological importance such as the Hubble parameter, the deceleration parameter, the anisotropic parameter, the
equation of state parameter, jerk parameter etc. We also examine whether the energy conditions are satisfied or violated. Our analysis
reveals that the Null, Weak, and Dominant energy conditions are fullfilled, while the Strong Energy Condition is violated, which supports
the accelerated expansion of the universe. Statefinder diagnostics have also been performed based on recent cosmological observations
in order to compare our model with different dark energy cosmological scenario. Additionally, we establish the correspondence between
the quintessence scalar field and the Barrow holographic dark energy model, supporting our description of the universe’s accelerated
expansion.

Keywords: Cosmic accerleration; Barrow holographic dark energy; Bianchi type-V; Cold dark matter; Deceleration parameter;
Equation of state parameter
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1. INTRODUCTION
In the late twentieth century, the observational data from two independent projects, the High-redshift Supernova

Search Team led by A. G. Riess [1] and the Supernova Cosmology Project led by S. Perlmutter [2], revealed that the
universe is currently in a phase of accelerated expansion. Since then, various astrophysical and cosmological observations
such as the temperature anisotropies in the Cosmic Microwave Background (CMB) [3, 4, 5], Large Scale Structure (LSS)
such as the galaxy clustering [6, 7, 8], Baryon Acoustic Oscillations (BAO) [9] etc. have been supporting the observed
acceleration. The root cause or the source for this bizzare late-time cosmic acceleration has not been identified yet and
it remains as a great challenge in modern cosmology even after more than two decades of its discovery. Most of the
cosmological models presented in the literature attribute the cosmic acceleration to a component with negative pressure,
commonly referred to as dark energy, an enigmatic form of physical entity that dominates the universe and is causing the
current universe to enter into an accelerated phase of expansion. The observational data also show that the combined
dark components accounts for around 95% of the universe’s total energy density, with dark matter (DM), a non-relativistic
matter that interacts very weakly with baryonic i.e. standard matter particles, contributing about 27% and dark energy
(DE) contributing approximately 68% of the entire matter-energy allocation, and only about 5% is ordinary baryonic
matter, the most basic model being the concordance model, popularly known as the ΛCDM model, in which dark energy
is represented by the cosmological constant Λ , introduced by Einstein in his field equations, although it needs to be
fine-tuned to fit the available observational data [10, 11]. As a result, a variety of dynamically evolving scalar field models
such as quintessence , k-essence, tachyon, quintom, dilatonic ghost condensate, phantom etc. and exotic fluid models like
Chaplygin gas models [12] are proposed in the literature.

Recently, attention has been drawn to a number of holographic dark energy models initially originating from the
Holographic Principle proposed by G.’t Hooft [13] in the context of black hole physics, and on the hypothesis [14] on
the mutual relationship between the short distance UV cutoff and IR cutoff. However, the original holographic dark
energy models [15, 16, 17] constructed by attributing Bekenstein- Hawking entropy and Hubble horizon could not provide
satisfactory explanation for the current accelerated expansion. The density of holographic dark energy, as determined by
Li’s work [17], is 𝜌𝐷 = 3𝑐2𝑀2

𝑝𝐿
−2, where 𝐿 is the infrared (IR) cutoff, 𝑀𝑃 is the Planck mass and 3𝑐2 is a numerical

constant. Various appropriate choice of this IR cutoff result in new cosmological problems. The Granda and Oliveros
cutoff [18] is utilized in proposing a new holographic dark energy (NHDE) model, where the energy density is expressed
as the square of the Hubble parameter and its time derivative. The Tsallis holographic dark energy (THDE) model was
developed in 2018 [19] using the Tsallis generalized entropy 𝑆𝛿 = 𝛾𝐴𝛿 , where 𝛿 is a non-additive parameter, 𝐴 is the event
horizon’s surface area and 𝛾 is a constant [20]. Another holographic dark energy model, known as the Rényi holographic
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dark energy (RHDE), was formulated utilizing the Rényi entropy [21]. Barrow [22] has suggested a new approach to
black hole entropy, incorporating quantum gravitational effects. This could potentially introduce intricate and fractal

properties to the black hole’s area, represented by 𝑆𝐵 =

(
𝐴
𝐴0

)1+ Δ
2 , where 𝐴 is the standard horizon area, 𝐴0 is the Planck

area, and the exponent Δ, ranging from 0 to 1, quantifies the quantum gravitational deformation. When Δ equals 1, the
structure exhibits maximal complexity and fractal characteristics, whereas when Δ equals 0, it corresponds to the standard
Bekenstein-Hawking entropy or the standard smooth structure. The standard holographic dark energy density is defined by
the inequality 𝜌𝐻𝐷𝐸𝐿

4 ≤ 𝑆, where ‘𝐿’ represents the horizon length. When subjected to the condition 𝑆 ∝ 𝐴 ∝ 𝐿2 [23],
the Barrow entropy provides the energy density for Barrow holographic dark energy (BHDE) as 𝜌𝐵𝐻𝐷𝐸 = 3𝑐2𝑀2

𝑝𝐿
Δ−2,

where ‘𝑐2’ is the model parameter and ‘𝑀𝑝’ is the Planck mass. Saridakis [24] innovated the BHDE by utilizing the
Barrow entropy rather than the standard Bekenstein-Hawking entropy. Furthermore, Srivastava and Sharma [25] explore
the flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe by employing the BHDE with the Hubble horizon as the
infrared cutoff. The authors in [26], recently investigated the Barrow holographic dark energy with the Granda-Oliveros
length serving as the infrared cutoff. The authors in [27] investigated Barrow holographic dark energy within a flat
Friedmann-Lemaître-Robertson-Walker (FLRW) universe, employing the Granda-Oliveros length as the infrared cutoff
and determined the impact of the deformation parameter Δ on the evolution of 𝐻 (𝑧). When Paul et al. [28] examined the
Bianchi type-I universe in the presence of BHDE, they found that the new exponent is crucial in determining the nature of
the universe.

The Friedmann-Lemaître-Robertson-Walker model characterizes the universe as homogeneous and isotropic on a
large scale. But it is essential to note that there is no observable evidence definitively excluding the existence of an
anisotropic universe. Anisotropic cosmological models [29, 30, 31] have gained prominence due to observations of the
Cosmic Microwave Background Radiation (CMBR) and the formation of Helium in the early stages of the universe’s
evolution. The presence of anisotropy in cosmic expansion is a significant factor, supported by critical arguments and
experimental data suggesting the existence of an anisotropic phase transitioning towards isotropy over time. Hence, it
is crucial to consider models incorporating an anisotropic background. Spatially homogeneous and anisotropic Bianchi
models are commonly taken into consideration to gain a better understanding of the dynamics of the expanding universe.
This is because they are the most basic models with an anisotropic background and are important in explaining the
large-scale behavior of the universe. In order to properly connect the homogeneous and isotropic FLRW models with the
inhomogeneous and anisotropic models, Bianchi type models provide means of incorporating the influence of anisotropy.
As a result, a large number of scholars have investigated anisotropic and spatially homogeneous Bianchi cosmological
models in many contexts.

In this study, we develop a cosmological model of Bianchi type-V, which is both spatially homogeneous and
anisotropic. This model incorporates a hybrid expansion law, assuming the universe to filled with cold dark matter and
non-interacting Barrow holographic dark energy with the Granda-Oliveros length scale serving as the IR cutoff. The
paper is structured in the following manner: In section 2, we derive the Einstein field equations for the Bianchi type-V
metric. In Section 3, exact solutions to the field equations are obtained by employing a hybrid expansion law. Furthermore,
we consider several cosmologically relevant parameters. In section 4, we examine the model’s kinematical and physical
characteristics as well as its energy conditions. In Section 5, we explore the Statefinder diagnostics and examine its
consequences. In Section 6, we explore the correlation between BHDE and a quintessence scalar field. In Section 7, we
provide concluding remarks on our findings.

2. THE METRIC AND BASIC FIELD EQUATIONS
We consider the spatially homogeneous and anisotropic Bianchi type-V universe characterised by the metric:

𝑑𝑠2 = −𝑑𝑡2 + 𝐴2𝑑𝑥2 + 𝑒2𝜂𝑥 {
𝐵2𝑑𝑦2 + 𝐶2𝑑𝑧2} (1)

where 𝜂 is a positive constant and 𝐴(𝑡), 𝐵(𝑡) and 𝐶 (𝑡) are the directional scale factors with 𝑡 being the cosmic time.
With natural units of (8𝜋𝐺 = 1, 𝑐 = 1), the Einstien field equations are given by

𝑅𝑖 𝑗 −
1
2
𝑔𝑖 𝑗𝑅 = 𝑇𝑖 𝑗 (2)

where 𝑅𝑖 𝑗 is the Ricci tensor , 𝑔𝑖 𝑗 is the metric tensor, 𝑅 = 𝑔𝑖 𝑗𝑅𝑖 𝑗 is the Ricci scalar curvature and 𝑇𝑖 𝑗 is the energy
momentum tensor of the cosmic fluid.

We consider the universe to be filled with a mixture of pressureless cold dark matter and non-interacting Barrow
holographic dark energy with Granda Oliveros (GO) lenght scale as IR cutoff given by

𝜌𝐵𝐻𝐷𝐸 = 3
(
𝛼𝐻2 + 𝛽 ¤𝐻

) 2−Δ
2 (3)

where 𝜌𝐵𝐻𝐷𝐸 is the energy density of Barrow holographic dark energy (BHDE) and [𝐿]
−2Δ
2−Δ is the dimension of the
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constant parameters 𝛼 and 𝛽. 𝐻 represents the Hubble parameter.
The energy-momentum tensor 𝑇𝑖 𝑗 can be written as

𝑇𝑖 𝑗 = 𝜌𝑚𝑢𝑖𝑢 𝑗 + (𝜌𝐵𝐻𝐷𝐸 + 𝑝𝐵𝐻𝐷𝐸) 𝑢𝑖𝑢 𝑗 + 𝑔𝑖 𝑗 𝑝𝐵𝐻𝐷𝐸 (4)

where 𝜌𝑚 represents the energy density of cold dark matter, 𝜌𝐵𝐻𝐷𝐸 and 𝑝𝐵𝐻𝐷𝐸 are the energy density and pressure of
Barrow holographic dark energy, respectively and 𝑢𝑖 is the four velocity satisfying 𝑢𝑖𝑢𝑖 = −1.

In a comoving coordinate system, the Einstein field equations (2), along with equation (4) for the metric (1), result
in the following system of field equations:

¥𝐵
𝐵
+

¥𝐶
𝐶

+
¤𝐵
𝐵

¤𝐶
𝐶

− 𝜂2

𝐴2 = −𝑝𝐵𝐻𝐷𝐸 (5)

¥𝐴
𝐴
+

¥𝐶
𝐶

+
¤𝐴
𝐴

¤𝐶
𝐶

− 𝜂2

𝐴2 = −𝑝𝐵𝐻𝐷𝐸 (6)

¥𝐴
𝐴
+

¥𝐵
𝐵
+

¤𝐴
𝐴

¤𝐵
𝐵
− 𝜂2

𝐴2 = −𝑝𝐵𝐻𝐷𝐸 (7)

¤𝐴
𝐴

¤𝐵
𝐵
+

¤𝐴
𝐴

¤𝐶
𝐶

+
¤𝐵
𝐵

¤𝐶
𝐶

− 3𝜂2

𝐴2 = 𝜌𝑚 + 𝜌𝐵𝐻𝐷𝐸 (8)

2 ¤𝐴
𝐴

−
¤𝐵
𝐵
−

¤𝐶
𝐶

= 0 (9)

where a dot above indicates a differentiation with respect to 𝑡 .
From equation (9), we obtain:

𝐴2 = 𝐵𝐶 (10)

The conservation of energy-momentum yields

¤𝜌𝑚 + ¤𝜌𝐵𝐻𝐷𝐸 + 3𝐻 (𝜌𝑚 + 𝜌𝐵𝐻𝐷𝐸 + 𝑝𝐵𝐻𝐷𝐸) = 0 (11)

We can divide equation (11) into the following two continuity equations as the BHDE and cold dark matter are
non-interacting:

¤𝜌𝑚 + 3𝐻𝜌𝑚 = 0 (12)

¤𝜌𝐵𝐻𝐷𝐸 + 3𝐻 (𝜌𝐵𝐻𝐷𝐸 + 𝑝𝐵𝐻𝐷𝐸) = 0 (13)

3. COSMOLOGICAL SOLUTIONS OF THE FIELD EQUATIONS
From Einstein’s field equations (5) − (8), we obtain:

𝐴

𝐵
= 𝑑1𝑒

𝑘1
∫
𝑎−3𝑑𝑡 (14)

𝐴

𝐶
= 𝑑2𝑒

𝑘2
∫
𝑎−3𝑑𝑡 (15)

𝐵

𝐶
= 𝑑3𝑒

𝑘3
∫
𝑎−3𝑑𝑡 (16)

where 𝑑1, 𝑑2, 𝑑3, 𝑘1, 𝑘2, 𝑘3 are the constants of integration and 𝑎 is the average scale defined by.

𝑎 = (𝐴𝐵𝐶)
1
3 (17)

which parameterizes the universe’s relative expansion.
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The metric functions from equations (14) − (16) and (10) can be directly obtained as

𝐴 = 𝑎 (18)

𝐵 = 𝑚𝑎𝑒𝑙
∫
𝑎−3𝑑𝑡 (19)

𝐶 =
𝑎

𝑚
𝑒−𝑙

∫
𝑎−3𝑑𝑡 (20)

where 𝑚 = (𝑑2𝑑3)
1
3 , 𝑙 =

𝑘2 + 𝑘3
3

, 𝑑2 = 𝑑−1
1 , 𝑘2 = −𝑘1 (21)

To derive a complete solution for the field equations, we take into account a hybrid expansion law in the form:

𝑎 = 𝑎0

(
𝑡𝑘𝑒𝑡

) 1
𝑛 (22)

where 𝑎0, 𝑘 and 𝑛 are positive constants.

Using (22) in (18), (19), (20), we then obtain

𝐴 = 𝑎0

(
𝑡𝑘𝑒𝑡

) 1
𝑛 (23)

𝐵 = 𝑚𝑎0

(
𝑡𝑘𝑒𝑡

) 1
𝑛

𝑒𝑙𝐹 (𝑡 ) (24)

𝐶 =
𝑎0
𝑚

(
𝑡𝑘𝑒𝑡

) 1
𝑛

𝑒−𝑙𝐹 (𝑡 ) (25)

where 𝐹 (𝑡) =
∫
𝑎0

(
𝑡𝑘𝑒𝑡

) −3
𝑛 𝑑𝑡.

4. PHYSICAL AND KINEMATICAL PROPERTIES OF THE MODEL
In order to comprehend the universe’s evolution, we now introduce a few cosmic parameters: the mean Hubble

parameter 𝐻, which determines the universe’s rate of expansion, the spatial volume 𝑉 , the scalar expansion (𝜃), shear
scalar (𝜎), average anisotropic parameter (𝐴𝑚) defined for the metric(1) by

𝑉 = 𝑎3 = 𝐴𝐵𝐶 (26)

𝐻 =
1
3
(𝐻1 + 𝐻2 + 𝐻3) (27)

𝜃 = 3𝐻 (28)

𝜎2 =
1
3

[( ¤𝐴
𝐴

)2

+
( ¤𝐵
𝐵

)2

+
( ¤𝐶
𝐶

)2

−
¤𝐴
𝐴

¤𝐵
𝐵
−

¤𝐵
𝐵

¤𝐶
𝐶

−
¤𝐶
𝐶

¤𝐴
𝐴

]
(29)

𝐴𝑚 =
1
3

3∑︁
𝑖=1

(
𝐻𝑖 − 𝐻

𝐻

)2
(30)

where the directional Hubble parameters along the three spatial directions 𝑥, 𝑦, and 𝑧, are respectively,
𝐻1 =

¤𝐴
𝐴
, 𝐻2 =

¤𝐵
𝐵
, 𝐻3 =

¤𝐶
𝐶

.
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The universe’s relative rate of expansion (or contraction) is measured by the expansion scalar 𝜃, its deformation due
to density fluctuations is measured by the shear scalar 𝜎, and its divergence from isotropy is measured by the anisotropy
parameter 𝐴𝑚.

The directional Hubble parameters and the mean Hubble parameter (𝐻) are obtained for the metric in (1) as :

𝐻1 =
¤𝐴
𝐴

=
𝑘 + 𝑡

𝑛𝑡
(31)

𝐻2 =
¤𝐵
𝐵

=
𝑘 + 𝑡

𝑛𝑡
+ 𝑙𝐹′ (𝑡) (32)

𝐻3 =
¤𝐶
𝐶

=
𝑘 + 𝑡

𝑛𝑡
− 𝑙𝐹′ (𝑡) (33)

𝐻 =
1
3

( ¤𝐴
𝐴
+

¤𝐵
𝐵
+

¤𝐶
𝐶

)
=

𝑘 + 𝑡

𝑛𝑡
(34)

The evolution of the Hubble parameter (𝐻) with respect to cosmic time 𝑡 are shown in figure 1. We can see from the
figure that, for all values of 𝑛 and 𝑘 , 𝐻 diverges at 𝑡 = 0 and then decreases with cosmic time 𝑡.

The deceleration parameter can be found as follows using the relation 𝑞 = −𝑎 ¥𝑎
¤𝑎2 :

𝑞 =
𝑘𝑛

(𝑘 + 𝑡)2 − 1 (35)

The dynamics of deceleration parameter (𝑞) is determined by the two free parameters, 𝑛 and 𝑘 , as shown in Figure
2. The universe is accelerating from the beginning for 𝑛 = 1, 𝑘 = 1.5 (Red solid line) and 𝑛 = 0.5, 𝑘 = 1 (Green solid
line); but, for 𝑛 = 1.1, 𝑘 = 1 (Blue solid line) and 𝑛 = 1.05, 𝑘 = 1 (Black solid line), it is transitioning from an early
decelerating phase to the current accelerating phase. It is noted that our model is transitioning from the deceleration phase
to the acceleration phase for 0 < 𝑘

𝑛
< 1. Furthermore, current SNeIa data reveal that the universe is expanding and that

the deceleration parameter’s value falls somewhere between the interval −1 < 𝑞 < 0.
We select 𝑛 = 1.1 and 𝑘 = 1 for plotting the graphs of the cosmological parameters to study their behaviour as the

universe evolves. This is the most appropriate choice as we are looking for a model that describes the universe from early
decelerating phase to current accelerating phase.

Figure 1. Plotting the Hubble parameter (𝐻) vs
cosmic time (𝑡) for 𝑛 = 1, 𝑘 = 1.5 (Red solid
line) , 𝑛 = 0.5, 𝑘 = 1 (Green solid line), 𝑛 =

1.1, 𝑘 = 1(Blue solid line) and 𝑛 = 1.05, 𝑘 =

1(Black solid line)

Figure 2. Plotting the deceleration parameter
(DP) vs cosmic time (𝑡) for 𝑛 = 1, 𝑘 = 1.5 (Red
solid line) , 𝑛 = 0.5, 𝑘 = 1 (Green solid line),
𝑛 = 1.1, 𝑘 = 1(Blue solid line) and 𝑛 = 1.05, 𝑘 =

1(Black solid line)
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For our model, the spatial volume 𝑉 , shear scalar 𝜎, expansion scalar 𝜃, and average anisotropy parameter 𝐴𝑚 are
determined as follows:

𝑉 = 𝑎3
0

(
𝑡𝑘𝑒𝑡

) 3
𝑛 (36)

𝜎2 =
𝑙2(

𝑡𝑘𝑒𝑡
) 6
𝑛

(37)

𝜃 = 3
(
𝑘 + 𝑡

𝑛𝑡

)
(38)

𝐴𝑚 =
2
3
𝑙2

(
𝑡𝑘𝑒𝑡

) −6
𝑛(

𝑘+𝑡
𝑛𝑡

)2 (39)

From equations (36)–(39), we may infer that at the beginning of the universe, the spatial volume𝑉 is zero. Therefore,
the Big Bang singularity is where our model begins. Both the shear scalar 𝜎 and the expansion scalar 𝜃 diverge at 𝑡 = 0
and decrease as cosmic time 𝑡 increases up to a fixed limit. The anisotropic parameter (𝐴𝑚) varies with cosmic time, as
seen in figure 3. It is demonstrated that for sufficiently long times, 𝐴𝑚 diminishes with time and tends to zero for large 𝑡.
As a result, the universe’s anisotropic behavior eventually ends, and the derived model can produce the universe’s observed
isotropy.

Figure 3. Plotting the anisotropic parameter vs
cosmic time (𝑡) for 𝑛 = 1.1 and 𝑘 = 1

Figure 4. Plotting the matter energy density vs
cosmic time (𝑡) for 𝑐1 = 100 , 𝑛 = 1.1 and 𝑘 = 1

Using equation (34), from equations (12) and (3), we obtain

𝜌𝑚 = 𝑐1𝑡
−3𝑘
𝑛 𝑒

−3𝑡
𝑛 (40)

where 𝑐1 is the integration constant.
And

𝜌𝐵𝐻𝐷𝐸 = 3

(
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

)) 2−Δ
2

(41)

We can see that both the energy densities are decreasing functions of cosmic time 𝑡. The evolution of the matter
energy density (𝜌𝑚) is shown in Figure 4, showing that it is large in the early stages of the universe and tends to zero in the
later stages. For Δ = 0, the BHDE density provided by equation (41) behaves like the standard HDE. A different cosmic
scenario will arise from the deviation of BHDE’s behavior from the standard one, contingent on the Δ parameter. Plotting
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Figure 5. Plotting the Barrow HDE density vs
cosmic time (𝑡) for 𝛼 = 1, 𝛽 = 0.7 withΔ = 0
(Red solid line) , Δ = 0.5 (Green solid line), Δ =

1.5(Black solid line) and Δ = 2(Blue solid line)

Figure 6. Plotting the Barrow HDE pressure
𝑝𝐵𝐻𝐷𝐸 vs cosmic time (𝑡) for 𝛼 = 1, 𝛽 = 0.7
withΔ = 0 (Red solid line) , Δ = 0.5 (Green solid
line), Δ = 1.5(Black solid line) and Δ = 2(Blue
solid line)

BHDE against cosmic time 𝑡 for various values of Δ allows us to comprehend its evolution. Figure 5 illustrates that the
BHDE density decreases as cosmic time 𝑡 increases for values of Δ = 0, 0.5 and 1.5, and eventually tends to a constant
value. The BHDE density, on the other hand, remains constant throughout the evolution of the universe for Δ = 2. In
this case, the model is referred to as the ΛCDM model, and the BHDE acts like a cosmological constant. Volume of the
universe is increasing, according to the physical consequences of the decline in energy densities.

We obtain pressure 𝑝𝐵𝐻𝐷𝐸 of the Barrow HDE as follows by using equations (34) and (41) in equation (13) as

𝑝𝐵𝐻𝐷𝐸 = −
[
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

)] −Δ
2

[
(2 − Δ) 𝑛𝑡
𝑘 + 𝑛

(
−𝛼𝑘

(
𝑛 + 𝑘

𝑛2𝑡3

)
+ 𝛽𝑘

𝑛𝑡3

)
+ 3

(
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

))]
(42)

Equation (42) gives the Barrow holographic dark energy pressure (𝑝𝐵𝐻𝐷𝐸) with respect to cosmic time 𝑡, which is
shown in Figure 6. For Δ = 0, 0.5 and 1.5, the pressure 𝑝𝐵𝐻𝐷𝐸 is extremely negative at the beginning and rises gradually
as cosmic time 𝑡 increases until it reaches a certain constant value. However for Δ = 2, the pressure is constantly negative
in the entire evolution of the universe. This indicates that the universe is undergoing accelerated expansion for all the
values of Δ, as the pressure remains negative throughout the evolution.

Equation of state parameter (EoS parameter) 𝜔𝐵𝐻𝐷𝐸 of Barrow HDE is determined as follows by using equations
(41) and (42).

𝜔𝐵𝐻𝐷𝐸 =
𝑝𝐵𝐻𝐷𝐸

𝜌𝐵𝐻𝐷𝐸

= −1 +
(Δ − 2) 𝑘

𝑛𝑡2

(
𝛽

𝑡
− 𝛼

(
𝑘+𝑡
𝑛𝑡

))
(
𝑘+𝑡
𝑛𝑡

) [
𝛼

(
𝑘+𝑡
𝑛𝑡

)2
− 𝛽𝑘

𝑛𝑡2

] (43)

According to equation (43), when Δ < 2, the EoS parameter 𝜔𝐵𝐻𝐷𝐸 in our model is a strictly decreasing function
of cosmic time 𝑡. For various values of Δ, Figure 7 shows how the EoS parameter 𝜔𝐵𝐻𝐷𝐸 varies with cosmic time 𝑡. The
graph shows that, after a specific point in time throughout its evolution, initially the EoS parameter 𝜔𝐵𝐻𝐷𝐸 in our model
varies in the quintessence region

(
−1 < 𝜔𝐵𝐻𝐷𝐸 < − 1

3

)
for Δ = 0, 0.5, and 1.5 and after 5 billion years(approx), the EoS

parameter 𝜔𝐵𝐻𝐷𝐸 eventually approaches the ΛCDM (𝜔𝐵𝐻𝐷𝐸 = −1) model as it converges to −1 at late times. With Δ =

2, the evolution of the EoS parameter 𝜔𝐵𝐻𝐷𝐸 never changes and always has a value of −1. The Barrow holographic dark
energy behaves like the cosmological constant Λ, as was previously mentioned. After taking into account every scenario
in our model, we can say that the expansion rate will accelerate more with large values of cosmic time 𝑡.

The total energy density is obtained from equations (34) , (40) and (41) as

Ω =
𝜌𝑚

3𝐻2 + 𝜌𝐵𝐻𝐷𝐸

3𝐻2 = Ω𝑚 +Ω𝐵𝐻𝐷𝐸
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Figure 7. Plotting the equation of state param-
eter(EoS parameter) 𝜔𝐵𝐻𝐷𝐸 vs cosmic time (𝑡)
for 𝛼 = 1, 𝛽 = 0.7 withΔ = 0 (Red solid line) ,
Δ = 0.5 (Green solid line), Δ = 1.5(Black solid
line) and Δ = 2(Blue solid line)

Figure 8. Plotting the total energy density
parameter(Ω ) vs cosmic time (𝑡) for 𝛼 = 1, 𝛽 =

0.7, 𝑐1 = 100 with Δ = 0.5

=
𝑐1𝑡

−3𝑘
𝑛 𝑒

−3𝑡
𝑛

3
(
𝑘+𝑡
𝑛𝑡

)2 +

(
𝛼

(
𝑘+𝑡
𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

)) 2−Δ
2

(
𝑘+𝑡
𝑛𝑡

)2 (44)

The total energy density Ω varies throughout cosmic time 𝑡 as seen in the graph shown in Figure 8. The parameters
denoting the total energy density, Ω > 1,Ω = 1, and Ω < 1, respectively, correspond to the open, flat, and closed universe.
The overall density parameter Ω decreases with time, as the figure shows. The universe eventually becomes flat at later
times, as indicated by the total density parameter Ω eventually approaching 1.

4.1. Jerk parameter (j)

The universe’s acceleration, or how quickly the rate of expansion is changing throughout cosmic time 𝑡, is measured
by the cosmic jerk parameter, 𝑗 . It is a dimensionless quantity that gives crucial information on the universe’s expansion
and is defined as the third derivative of the scale factor 𝑎 with respect to cosmic time 𝑡. The universe transitions from an
era of decelerated expansion to one of accelerated expansion, when the jerk parameter, 𝑗 , is positive. The jerk parameter
𝑗 for the widely used ΛCDM model has a value of one.
The jerk parameter 𝑗 is defined mathematically as

𝑗 =
1

𝑎𝐻3
𝑑3𝑎

𝑑𝑡3
(45)

We derive the jerk parameter 𝑗 for our model as

𝑗 =

(
1
𝑛

)3
+

3𝑘
𝑛3
𝑡
+

3𝑘
𝑛2 ( 𝑘

𝑛
−1)

𝑡2 +
𝑘
𝑛

{
( 𝑘
𝑛 )2−3( 𝑘

𝑛 )+2
}

𝑡3(
𝑡+𝑘
𝑛𝑡

)3 (46)

Figure 9 displays the graph of the jerk parameter 𝑗 . It is clear from the figure that the jerk parameter 𝑗 stays positive
during the universe’s evolution, indicating a growing rate of expansion. Furthermore, figure 9 shows that the jerk parameter
𝑗 converges to 1 at late times, suggesting that the model mimics the behavior of the ΛCDM model.
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Figure 9. Plotting the jerk parameter vs cosmic
time (𝑡) for 𝑛 = 1.1 and𝑘 = 1

Figure 10. Plotting the snap parameter vs cosmic
time (𝑡) for 𝑛 = 1.1 and 𝑘 = 1

4.2. Snap parameter(s):
The fourth order derivative of the scale factor 𝑎 with respect to cosmic time 𝑡 is known as the snap parameter (𝑠),

a dimensionless quantity. It aids in understanding the dynamics of the universe by describing the pace at which the
acceleration of the universe’s expansion is changing.
Mathematically, the snap parameter (𝑠) is defined as

𝑠 =
1

𝑎𝐻4
𝑑4𝑎

𝑑𝑡4
(47)

The snap parameter (𝑠) for our model is found as

𝑠 =

(
1
𝑛

)4
+

4𝑘
𝑛4
𝑡
+

6𝑘
𝑛3 ( 𝑘

𝑛
−1)

𝑡2 +
4𝑘
𝑛2

(
( 𝑘
𝑛 )2−3( 𝑘

𝑛 )+2
)

𝑡3 + ( 𝑘
𝑛 )4−6( 𝑘

𝑛 )3+11( 𝑘
𝑛 )2−6( 𝑘

𝑛 )
𝑡4(

𝑘+𝑡
𝑛𝑡

)4 (48)

The variation of the snap parameter 𝑠 with respect to cosmic time 𝑡 is shown in Figure 10. The increasing behavior is
displayed by the snap parameter (𝑠). It is negative when 𝑡 → 0 and increases with cosmic time 𝑡. Eventually, the snap
parameter 𝑠 converges to 1 at late times. This indicates an accelerated expansion phase of the universe.

4.3. Lerk parameter(l):
Another dimensionless quantity is the lerk parameter 𝑙, which is the fifth order derivative of the scale factor 𝑎 with

respect to cosmic time 𝑡.
The lerk parameter 𝑙 is described mathematically as

𝑙 =
1

𝑎𝐻5
𝑑5𝑎

𝑑𝑡5
(49)

We derive the lerk parameter 𝑙 for our model as

𝑙 =

(
1
𝑛

)5
+

5𝑘
𝑛5
𝑡
+

10𝑘
𝑛4 ( 𝑘

𝑛
−1)

𝑡2 +
10

(
𝑘

𝑛3

) (
( 𝑘
𝑛 )2−3( 𝑘

𝑛 )+2
)

𝑡3 +
5
(

𝑘

𝑛2

) (
( 𝑘
𝑛 )3−6( 𝑘

𝑛 )2+11( 𝑘
𝑛 )−6

)
𝑡4 + ( 𝑘

𝑛 )5−10( 𝑘
𝑛 )4+35( 𝑘

𝑛 )3−50( 𝑘
𝑛 )2+24( 𝑘

𝑛 )
𝑡5(

𝑡+𝑘
𝑛𝑡

)5

(50)

The variation of the lerk parameter 𝑙 with respect to cosmic time 𝑡 is shown in Figure 11. The figure illustrates that
the lerk parameter, 𝑙, is high at 𝑡 → 0 and decreases progressively as cosmic time 𝑡, increases. At late times, it converges
to 1.
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4.4. Energy conditions:
In the context of general relativity, energy conditions are a collection of theoretical inequalities which operate as

linear combinations of energy density and pressure that describe the behavior of energy and matter in a given spacetime.
These conditions are derived from the Einstein field equations of general relativity and play a crucial role in under-
standing the properties and evolution of the universe. They often place constraints on the possible forms of energy and
matter that can exist in the universe. There are several types of energy conditions, each with its own implications for
the nature of matter and energy in the universe. The null energy condition (NEC), the weak energy condition (WEC),
the strong energy condition (SEC), and the dominant energy condition (DEC) are the linear energy conditions among them.

The four energy conditions are as follows:

Null energy condition(NEC) ⇔ (𝜌 + 𝑝) ≥ 0 (51)

Weak energy condition(WEC) ⇔ (𝜌 ≥ 0) and (𝜌 + 𝑝 ≥ 0) (52)

Strong energy condition(SEC) ⇔ (𝜌 + 3𝑝 ≥ 0) and (𝜌 + 𝑝 ≥ 0) (53)

Dominant energy condition(DEC) ⇔ (𝜌 ≥ 0) and (𝜌 ± 𝑝 ≥ 0) (54)

For our model,

𝜌 = 𝜌𝑚 + 𝜌𝐵𝐻𝐷𝐸 and 𝑝 = 𝑝𝐵𝐻𝐷𝐸

consequently,

𝜌 + 𝑝 = 𝑐1𝑡
−3𝑘
𝑛 𝑒

−3𝑡
𝑛 −

(
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

))− Δ
2

.

[
(2 − Δ)𝑛𝑡
𝑘 + 𝑛

{
−𝛼𝑘

(
𝑛 + 𝑘

𝑛2𝑡3

)
+ 𝛽𝑘

𝑛𝑡3

}]
(55)

𝜌 − 𝑝 = 𝑐1𝑡
−3𝑘
𝑛 𝑒

−3𝑡
𝑛 +

(
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

))− Δ
2

.

[
(2 − Δ)𝑛𝑡
𝑘 + 𝑛

{
−𝛼𝑘

(
𝑛 + 𝑘

𝑛2𝑡3

)
+ 𝛽𝑘

𝑛𝑡3

}
+ 6

{
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
− 𝛽𝑘

𝑛𝑡2

}]
(56)

𝜌 + 3𝑝 = 𝑐1𝑡
−3𝑘
𝑛 𝑒

−3𝑡
𝑛 − 3

(
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

))− Δ
2

.

[
(2 − Δ)𝑛𝑡
𝑘 + 𝑛

{
−𝛼𝑘

(
𝑛 + 𝑘

𝑛2𝑡3

)
+ 𝛽𝑘

𝑛𝑡3

}
+ 2

{
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
− 𝛽𝑘

𝑛𝑡2

}]
(57)

However, the SEC is known to be violated in an accelerated expansion phase of the universe. Figure 12 shows a plot
of the energy conditions, which indicates that in our model, initially, the NEC, WEC, SEC and DEC are all satisfied, but
at late times, the SEC gets violated. The violation of the SEC results in the acceleration of the universe.

4.5. Coincidence parameter (𝑟):
The coincidence parameter, symbolized by 𝑟, is a measure representing the ratio between two energy densities within

the universe, namely 𝑟 =
𝜌𝐵𝐻𝐷𝐸

𝜌𝑚
. According to current data, the coincidence parameter’s value must either stay constant

or vary very slowly as the universe expands. However, the simplest and most widely acknowledged dark energy model, the
ΛCDM model, doesn’t align with these observations. Numerous different models are therefore taken into consideration to
get over this problem of coincidence.

The coincidence parameter (𝑟) for our model can be found as

𝑟 =

3
(
𝛼

(
𝑘+𝑡
𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

)) 2−Δ
2

𝑐1𝑡
−3𝑘
𝑛 𝑒

−3𝑡
𝑛

(58)

The graph in Figure 13 illustrates the change in the coincidence parameter 𝑟 over cosmic time 𝑡. It’s evident that 𝑟
increases rapidly in later stages, indicating that our model doesn’t resolve the coincidence problem. As we’ve assumed no
interaction between BHDE and dark matter, exploring an interacting model could be insightful. Therefore, a specific form
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Figure 11. Plotting the lerk parameter vs cosmic
time (𝑡) for 𝑛 = 1.1 and 𝑘 = 1

Figure 12. Plotting the energy conditions vs
cosmic time (𝑡) for 𝑛 = 1.1, 𝑘 = 1, 𝑐1 = 100,Δ =

0.5, 𝛼 = 1, 𝛽 = 0.7, 𝜌 + 𝑝 (blue line), 𝜌 − 𝑝

(green line), 𝜌 + 3𝑝(red line)

of interaction between Barrow holographic dark energy and dark matter might keep their density ratios relatively constant
over the course of the universe’s evolution.

5. STATEFINDER DIAGNOSTIC

In order to differentiate between different dark energy-related cosmological scenarios, a precise and robust method
for evaluating DE models is important. In order to do this, Sahni et al. [32] proposed the Statefinder diagnostis, that uses
the parameter pair {𝑟, 𝑠}. Different dark energy models, including the cosmological constant, quintessence, Chaplygin
gas, braneworld models, and models with interacting dark energy, can be effectively distinguished by the pair. The
construction of the dimensionless Statefinder diagnostic involves taking into account the universe’s scale factor 𝑎 and
its higher order derivative just with regard to cosmic time 𝑡. The parameter 𝑟 represents the hierarchy of geometrical
cosmological parameters, succeeding the Hubble parameter 𝐻 and the deceleration parameter 𝑞. The parameter 𝑠, on the
other hand, is independent of the density associated to dark energy as it is obtained as a linear combination of 𝑞 and 𝑟 .
The definition of the Statefinder diagnostic pair {𝑟, 𝑠} is

𝑟 =
1

𝑎𝐻3
𝑑3𝑎

𝑑𝑡3
and 𝑠 =

𝑟 − 1
3(𝑞 − 1

2 )
, where 𝑞 ≠

1
2

(59)

In case of our model, 𝑟 and 𝑠 are found to be as

𝑟 =

(
1
𝑛

)3
+

3𝑘
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+
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)3 (60)
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)
3
(
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)
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{
2
(
𝑘
𝑛

)
− 3

(
1
𝑛
𝑡 + 𝑘

𝑛

)2
} (61)

For these cosmological parameters, the 𝑟 − 𝑠 plane is (1, 0) for ΛCDM and (1, 1) for standard CDM(SCDM). While the
trajectories for Chaplygin gas are located in the range (𝑟 > 1, 𝑠 < 0), the quintessential dark energy epochs are represented
by the region (𝑟 < 1, 𝑠 > 0). The Statefinder diagnostic pair in our model is dependent on the cosmic time 𝑡, as shown by
equations (60) and (61). The diagnostic pair results in 𝑟 = 1 and 𝑠 = 0 as 𝑡 approaches infinity. Additionally, figure 14
verifies that later stages of our model coincide with the ΛCDM model.
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Figure 13. Plotting the coincidence parameter vs
cosmic time (𝑡) for 𝑛 = 1.1, 𝑘 = 1, 𝑐1 = 100,Δ =

0.5, 𝛼 = 1, 𝛽 = 0.7

Figure 14. Plotting the statefinder parameters 𝑠

vs 𝑟 (𝑡) for 𝑛 = 1.1 and 𝑘 = 1

6. CORRESPONDENCE BETWEEN THE BARROW HOLOGRAPHIC DARK ENERGY MODEL AND
QUINTESSENCE SCALAR FIELD MODEL

To establish correspondence between holographic dark energy with quintessence dark energy models, we compare
their equations of state and dark energy densities. For the universe to undergo accelerated expansion, the equation of state
parameter for quintessence must be less than − 1

3 .
The energy density and pressure for the quintessence scalar field model are defined by:

𝜌𝜙 =
¤𝜙2

2
+𝑉 (𝜙) (62)

𝑝𝜙 =
¤𝜙2

2
−𝑉 (𝜙) (63)

where 𝜙 represents the quintessence scalar field and 𝑉 (𝜙) denotes the potential of the scalar field 𝜙.
The equation of state parameter for the scalar field is expressed as

𝜔𝜙 =
𝑝𝜙

𝜌𝜙

=
¤𝜙2 − 2𝑉 (𝜙)
¤𝜙2 + 2𝑉 (𝜙)

(64)

Equations (62) and (63) provide

¤𝜙2 = 𝜌𝜙 + 𝑝𝜙 (65)

𝑉 (𝜙) =
𝜌𝜙 − 𝑝𝜙

2
(66)

By using equations (43) and (64), we obtain

−1 +
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(67)

By equating 𝜌𝜙 with 𝜌𝐵𝐻𝐷𝐸 and 𝑝𝜙 with 𝑝𝐵𝐻𝐷𝐸 , we can compute the kinetic energy ¤𝜙2 and the scalar potential𝑉 (𝜙) as

¤𝜙2 = −
[
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

)] −Δ
2 [

(2 − Δ)
𝑘 + 𝑛

(
−𝛼𝑘

(
𝑛 + 𝑘

𝑛𝑡2

)
+ 𝛽𝑘

𝑡2

)]
(68)
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(69)

Thus, we have determined the potential 𝑉 (𝜙) and the scalar field 𝜙 for the quintessence scalar field model corre-
sponding to the BHDE model. The kinetic energy ¤𝜙2 is shown in Figure 15, illustrating that it decreases over cosmic time
𝑡 and eventually diminishes at late times. Figure 16 depicts the scalar field potential 𝑉 (𝜙) for the quintessence model,
indicating that 𝑉 (𝜙) also decreases over cosmic time 𝑡 and tends to a constant value at late times. This type of potential
and kinetic energy can lead to the accelerated expansion of the universe.

Figure 15. Plotting the kinetic energy ¤𝜙2 vs (𝑡)
for 𝑛 = 1.1, 𝑘 = 1 , Δ = 0.5, 𝛼 = 1 and 𝛽 = 0.7

Figure 16. Plotting the potential energy 𝑉 (𝜙) vs
(𝑡) for 𝑛 = 1.1, 𝑘 = 1 , Δ = 0.5, 𝛼 = 1 and 𝛽 =

0.7

7. CONCLUSION
In this study, we consider Barrow holographic dark energy with Granda - Oliverso length scale as the infrared cutoff

to construct a spatially homogeneous and anisotropic Bianchi type-V universe within the framework of General Relativity.
The universe is assumed to be filled with a mixture of cold dark matter and the Barrow holographic dark energy which
does not interact with the cold dark matter. Exact solution of the Einstein field equations are obtained by imposing the
condition that the average scale factor 𝑎 obeys a hybrid expansion law. We then investigate the physical and kinematic
characteristics of the model by analyzing its parameters of cosmological importance and find that:

• At time 𝑡 → 0, the volume 𝑉 of the universe is zero, indicating that the universe starts from a point of zero volume
and expands throughout its evolution. This suggests that the universe began with a Big Bang singularity.

• The universe transitions from an early deceleration phase to a recent acceleration phase, as illustrated in Figure 2,
and this aligns well with recent observations.

• The Hubble parameter 𝐻, the expansion scalar 𝜃, and the shear scalar 𝜎 each diverges at 𝑡 → 0, and then all decrease
with increasing cosmic time 𝑡 but remains positive.

• The anisotropic parameter 𝐴𝑚 approaches zero for sufficiently large time. Thus, the present model becomes isotropic
at late times.

• The matter energy density 𝜌𝑚 and the Barrow holographic dark energy density 𝜌𝐵𝐻𝐷𝐸 both decrease as cosmic
time 𝑡 increases. This decrease in energy densities over time results in the expansion of the universe.

• In later epochs, the pressure of Barrow holographic dark energy 𝑝𝐵𝐻𝐷𝐸 becomes negative, indicating the universe’s
accelerated expansion.

• In the beginning, the equation of state parameter 𝜔𝐵𝐻𝐷𝐸 for Barrow holographic dark energy experiences variation
within the quintessence region, gradually approaching the ΛCDM model as time progresses.
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• The total energy density parameter Ω tends to 1 as 𝑡 → ∞. This implies that the universe is approaching towards a
flat universe in its later stage.

• The Null energy condition, Weak energy condition, and Dominant energy condition are all satisfied, but in the later
stages, the Strong energy condition is violated, indicating the universe’s accelerated expansion.

• The cosmic jerk parameter ( 𝑗), snap parameter (𝑠), and lerk parameter (𝑙) all approach the value 1 as time progresses.
This convergence, particularly of 𝑗 , indicates that our model aligns with the ΛCDM model at late time.

• Throughout the evolution of the universe, the coincidence parameter, 𝑟 varies. In our model, the coincidence
problem remains unresolved.

• The Statefinder parameters intersect at the point (1, 0), signifying alignment with the ΛCDM model.

• The correlation between the Barrow holographic dark energy model and the quintessence scalar field model explains
the accelerated expansion phase of the universe.
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КОСМIЧНА ЕВОЛЮЦIЯ У ВСЕСВIТI БIАНКI ТИПУ V З ГОЛОГРАФIЧНОЮ ТЕМНОЮ ЕНЕРГIЄЮ БАРРОУ ЗI 
ШКАЛОЮ ДОВЖИНИ ГРАНДА-ОЛIВЕРОСА ЯК IЧ ВIДСIЧЕННЯ

Чандра Рекха Маханта, Раджашрi Маханта, Джой Пракаш Медхi
Факультет математики, Унiверситет Гаухатi, Гувахатi - 781014, Iндiя

У цiй роботi ми будуємо просторово однорiдну та анiзотропну космологiчну модель типу Б’янкi V iз гiбридним законом роз-
ширення, розглядаючи Всесвiт як заповнений холодною темною матерiєю та невзаємодiючою голографiчною темною енергiєю 
Барроу зi шкалою довжини Гранда-Олiвероса як IЧ-вiдсiкання. . Фiзичнi та кiнематичнi характеристики отриманої моделi 
обговорюються шляхом вивчення еволюцiї рiзних параметрiв космологiчного значення, таких як параметр Хаббла, параметр 
уповiльнення, анiзотропний параметр, параметр рiвняння стану, параметр ривка тощо. Ми також дослiджуємо, чи енергетичнi 
умови виконуються або порушуються. Наш аналiз показує, що умови нульової, слабкої та домiнантної енергiї виконуються, тодi 
як умова сильної енергiї порушена, що пiдтримує прискорене розширення Всесвiту. Дiагностика вимiрювача стану також була 
виконана на основi останнiх космологiчних спостережень, щоб порiвняти нашу модель з рiзними космологiчними сценарiями 
темної енергiї. Крiм того, ми встановлюємо вiдповiднiсть мiж квiнтесенцiйним скалярним полем i голографiчною моделлю 
темної енергiї Барроу, що пiдтверджує наш опис прискореного розширення Всесвiту.
Ключовi слова: космiчне прискорення; голографiчна темна енергiя Барроу; Бiанкi тип-V; холодна темна матерiя; параметр 
уповiльнення; рiвняння параметра стану
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This study focuses on dynamically exploring Marder-type spacetime containing viscous Ricci dark energy within the framework of
general relativity theory. To find a solution of the field equations, we use the relation between metric potentials and the average scale
factor 𝑎(𝑡) = (sinh 𝛽1𝑡)

1
𝛽2 , this leads to a seamless transition of the Universe from its initial decelerating phase to the current accelerating

phase. Here, we have obtained the cosmological parameters and 𝜔𝑑𝑒 −𝜔′
𝑑𝑒

plane for the derived model. Also, dynamical features of
the derived cosmological model are analyzed through diagrams.

Keywords: Dark energy; Viscous Ricci dark energy; Marder type metric; General relativity

PACS: 04.20.− 𝑞; 98.80.− 𝑘; 95.36.+ 𝑥

1. INTRODUCTION
Dark Energy(DE), which has yet to be identified, is thought to be the cause of the Universe’s recent aggressive

expansion. One of the pillars of contemporary cosmology is DE. Many measurements, like the cosmic microwave
background radiation(CMB) [1], the distant modulus of the type Ia supernova (SnIa) [2–4] and more recently by large-
scale structure studies [5], show that DE is a peculiar phenomena that is developing into an Einstein-de Sitter structure.
Just ∼ 4% of the entire Universe’s energy density is represented by baryonic matter, ∼ 24% by non-baryonic matter, and
almost ∼ 72% by an unidentified component that has negative pressure, which is the most unexpected and counter intuitive
outcome of these studies. A cosmic acceleration could be produced by the cosmological constant, which represents
quantum vacuum energy density. In general relativity (GR), this simple DE model is plagued by coincidence. The
accelerating universe is explained by different dynamical DE models. There are several notable models in this group,
including 𝐾−essence and Quintessence [6, 7]. You might want to also note that there are other modified matter models
based on perfect fluids, such as pilgrim DE models [8–10], generalized Chaplygin gas models [11], and holographic DE
models [12, 13]. GR is modified by another class of DE models. Models of DE correspond to modified theories of
gravity [14, 15] and scalar-tensor theories of gravity [16, 17].

In 1916, Einstein [18] presented his GR, which gives a geometrical account of gravity. Even today, GR is an elegant
scientific as well as geometrical framework used to accurately characterizes gravity fields. As well as being useful for
discussing cosmological models of the Universe. Even so, Einstein admitted that some desirable characteristics were
not accounted for in his theory. By way of instance, such an approach fails to take into account Mach’s principle. In
the simplest instance, gravity is maintained by Einstein’s equations of GR. The Einstein-Maxwell equations are a set of
differential second order equations with partial derivatives that are extremely nonlinear. On the one hand, these equations
provide formulas for the elements of energy-momentum tensor. Because metric potentials are formed from Ricci tensors,
they enter in a more complicated manner.

Holographic dark energy (HDE) has recently received significant attention as a possible candidate for DE. The
holographic principle inspired this type of model [19, 20], a model that was further developed into string theory [20].
Using this principle for cosmology, Li [21] suggested that HDE energy density can be calculated as 𝜌𝑑 = 3𝑏2𝑀2

𝑝𝐿
−2,

where 𝐿 denotes the infrared (IR) cut-off, 𝑏2 = constant and 𝑀−2
𝑝 = 8𝜋𝐺. Using Hubble’s horizon as a cutoff for the

IR distance from HDE, it was found that there is no evidence that the Universe accelerates. The infrared cut-off of the
Universe was later considered by him to be a prospective event horizon for the Universe that will emerge in the future.
The HDE model can give insight into our current observations indicating an accelerated Universe expansion. Meanwhile,
many works have been published [22–27] on HDE models to illustrate the rapid behavior of the cosmos. Based on the
Ricci dark energy (RDE) model proposed by Gao et al. [28], DE density appears to be oppositely related to Ricci scalar
curvature. In RDE, the future event horizon is replaced by the inverse of the Ricci scalar curvature. In the case of RDE,
the energy density can be expressed as follows:

𝜌𝑑 = 3𝛼
(
¤𝐻 +2𝐻2

)
, (1)
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where 𝐻 is the Hubble parameter, 𝑎 is the scale factor and there is no dimension to 𝛼, but it describes how the energy
density runs. Over dot refers to a derivative of cosmic time 𝑡.

Generally, it is recognized as a fact the Cosmos’ content in the form of a perfect fluid is aggressive because
dissipation is not involved, dissipation being something that exists extensively and supposedly plays a vital role in the
cosmos’s development. Most practically, the cosmos is thought to consist of a series of mediums which are made up of
scattering media. The development of the Universe is characterized by a series of scattering operations. These mechanisms
include shear viscosity, heat transmission and bulk viscosity. Numerous writers [29–32] have examined their involvement
with the explanation of the Universe’s initial inflation as well as its subsequent cosmic development. Over the past few
decades, the concept of viscous DE models is being developed to better comprehend the development of the Universe.
Based on the writings [33–44], many studies have been conducted to investigate viscosity of the bulk fluid in light of
possibility of DE, without the cosmological constant, cosmological expansion may be explained by even the correct form
of viscosity of the bulk fluid [45]. The main concept of viscous cosmology for the ancient and modern Universes was given
by Brevik et al. [46]. Norman and Brevik [47,48] have investigated the characteristics of two different viscous cosmology
models and established general mathematics formulations for bulk viscous fluids. Several recent literature [49, 50] have
examined the HDE model under the impact of bulk viscosity on the model. By assuming a linear barotropic fluid and an
RDE with bulk viscosity, researchers Feng and Li [51] have developed a viscous RDE model. In their paper [52], Singh
and Kumar propose a diagnostic method for viscous HDE cosmology using a statefinder.

Furthermore, the Universe’s homogeneity and isotropic characteristics have been ascertained from various investiga-
tions. Inflationary Universes were homogeneous and isotropic at the end of the inflationary period [53], and FLRW models
were essential in depicting cosmos that were both spatially homogeneous and isotropic. Yet the theoretical justification
and anomalies found in the CMB facilitate the identification of a phase of anisotropy that is later referred to as an isotropic
phase. Immediately following the Plank probe data was released [54], it was discovered that the early cosmos was not
entirely uniform. As a result, cosmological models constructed with anisotropic backgrounds have gained popularity
due to the inhomogeneous and anisotropic nature of the Universe. Accordingly, the attributes of the Universe change
based on the direction in which they’re observed, which indicates that we live in an anisotropic Universe. Based on
the data provided by WMAP, the current Universe can be described as anisotropic [55]. Marder space time possesses
certain traits that help elucidate the genesis of galaxies in the early phases of universal evolution [56, 57]. Given that
the Marder line element represents an anisotropic and homogeneous space time, it aids in comprehending the Universe’s
inception and its shift from anisotropy to isotropy. This encourages us to contemplate such space time configurations.
Moreover, employing the transformation 𝑡 →

∫
𝐴(𝑡)𝑑𝑡, allows for the simplification of Marder spacetime to the Bianchi

type-I model, subsequently converging to the FRW Universe. Thus, we categorize the line element accordingly based on
whether anisotropy is prevalent in later times or during the early stages of the Universe [58]. Therefore, Marder spacetime
not only enables us to study an anisotropic universe but also an isotropic one. We opted Marder’s space-time in Einstein’s
GR and scalar-tensor theories, which is an anisotropic and homogeneous space-time that facilitates an anisotropic to
isotropic transition. Many authors have discussed Marder space-time for different matter content. Aygün et al., [59],
Aygün [60,61], Kömürcü and Aktas [62] analyzed the Marder’s type Universe in the 𝑓 (𝑅,𝑇) theory of gravity in different
contexts. Aygün et al., [56, 63], Kabak and Aygun [64], Ali et al. [65] provide a couple of references to some authors
who have examined Marder’s space-time in various theories with a variety of tensors of energy and momentum. Singh et
al., [66], Prakash [67] have used Marder’s metric in the development of plane-symmetric models of the universe. Roy and
Chatterjee [68], Mukherjee [69] study the Sen-Dunn theory of gravitation and obtain exact solutions to Marder’s metric.
Pawar and Solanke [70], Pawar and Panpatte [71] studied Marder’s space-time in the Saez–Ballester framework. Pawar et
al., [72] developed an anisotropic homogeneous Marder’s space-time model of wet dark fluids. Santhi et al., [73,74] have
examined a cosmological model based on a bulk viscous string in a modified theory of gravity, as well as a viscous HDE
cosmological model with Marder space-time in GR respectively. It was just studied by Santhi and Naidu [75] that Marder
space-time with Tsallis HDE in GR.

With the help of the GR, we look at Marder-type metric with a viscous RDE (VRDE). The paper looks like this:
Section 2 contains the metric and field equations. We derive solutions for Marder-type cosmological models in section 3.
Our physical discussion of the cosmological parameters is in section 4. The last section summarizes the results.

2. METRIC AND FIELD EQUATIONS
A space time of Marder type that is anisotropic and spatially homogeneous looks like this:

−𝑏2
1 (𝑡)𝑑𝑡

2 + 𝑏2
1 (𝑡)𝑑𝑥

2 + 𝑏2
2 (𝑡)𝑑𝑦

2 + 𝑏2
3 (𝑡)𝑑𝑧

2 = 𝑑𝑠2. (2)

• The average scale factor (𝑎(𝑡)) and volume (𝑉) of the Marder type metric as follows:

𝑉 = [𝑎(𝑡)]3 = 𝑏2
1𝑏2𝑏3. (3)

• The anisotropic parameter Aℎ is given by

Aℎ =
1
3

3∑︁
𝑖=1

(
𝐻𝑖 −𝐻
𝐻

)2
, (4)
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where 𝐻1 =
¤𝑏1
𝑏1

, 𝐻2 =
¤𝑏2
𝑏2

, 𝐻3 =
¤𝑏3
𝑏3

are directional Hubble’s parameters and 𝐻 = 1
3

(
2 ¤𝑏1
𝑏1

+ ¤𝑏2
𝑏2

+ ¤𝑏3
𝑏3

)
is mean Hubble’s

parameter. Cosmological time 𝑡 differentiation is indicated by an overhead dot.

• The expansion scalar (𝜃) is given by

𝜃 =
1
𝑏1

( ¤𝑏2
𝑏2

+2
¤𝑏1
𝑏1

+
¤𝑏3
𝑏3

)
. (5)

• The shear scalar (𝜎2) is given by

𝜎2 =
1
2

( 3∑︁
𝑖=1
𝐻2

𝑖 −
𝜃2

3

)
. (6)

In Einstein’s theory of GR, the equations of fields are defined as follows:

𝐺𝑖 𝑗 = −𝑇𝑖 𝑗 , (7)

where 𝑇𝑖 𝑗 is the energy momentum tensor and 𝐺𝑖 𝑗 = 𝑅𝑖 𝑗 − 1
2𝑅𝑔𝑖 𝑗 is an Einstein tensor. As well as that, the equation for

conservation is as follows:
𝑇 𝑖 𝑗

; 𝑗 = 0. (8)

With viscosity of the bulk fluid and a deviation from thermodynamic equilibrium of the first order, the stress-energy-
momentum tensor takes the form (Wilson et al. [76]).

𝑇𝑖 𝑗 = (𝜌𝑚 + 𝜌𝑑) 𝑢𝑖𝑢 𝑗 + 𝑝𝑑
(
𝑔𝑖 𝑗 +𝑢𝑖𝑢 𝑗

)
, (9)

where 𝜌𝑑 and 𝜌𝑚 are the energy densities of RDE and DM, respectively and 𝑝𝑑 = 𝑝𝑑 − 3𝜁𝐻, where 𝑝𝑑 is the effective
pressure of RDE, 𝐻 is Hubble parameter and 𝜁 is the bulk viscous coefficient which is given as 𝜁 = 𝜁0 + 𝜁1ℎ+ 𝜁2ℎ

′, where
ℎ = 𝐻

𝐻0
and 𝜁0, 𝜁1 are positive constants and 𝑢𝑖𝑢𝑖 = −1.

By using Eq. (9), the field equations (7) can be written as follows:

1
𝑏2

1

( ¥𝑏2
𝑏2

+
¥𝑏3
𝑏3

+
¤𝑏2 ¤𝑏3
𝑏2𝑏3

−
¤𝑏1 ¤𝑏2
𝑏1𝑏2

−
¤𝑏1 ¤𝑏3
𝑏1𝑏3

)
= −𝑝𝑑 , (10)

1
𝑏2

1

(
¥𝑏1
𝑏1

+
¥𝑏3
𝑏3

−
¤𝑏1

2

𝑏2
1

)
= −𝑝𝑑 , (11)

1
𝑏2

1

(
¥𝑏1
𝑏1

+
¥𝑏2
𝑏2

−
¤𝑏1

2

𝑏2
1

)
= −𝑝𝑑 , (12)

&
1
𝑏2

1

( ¤𝑏1 ¤𝑏2
𝑏1𝑏2

+
¤𝑏2 ¤𝑏3
𝑏2𝑏3

+
¤𝑏3 ¤𝑏1
𝑏3𝑏1

)
= 𝜌𝑚 + 𝜌𝑑 . (13)

Furthermore, the energy conservation equation leads to

( ¤𝜌𝑚 + ¤𝜌𝑑) +
(
2
¤𝑏1
𝑏1

+
¤𝑏2
𝑏2

+
¤𝑏3
𝑏3

)
( ¤𝜌𝑚 + ¤𝜌𝑑 + 𝑝𝑑) = 0. (14)

3. SOLUTION OF THE FIELD EQUATIONS
There are four independent equations in (10)-(13) which have six independent components : 𝑝𝑑 , 𝜌𝑚, 𝜌𝑑 , 𝑏1, 𝑏2,

and 𝑏3. In order to resolve the equations mentioned above, the following conditions are required:

• There is a relationship between the metric potentials when the shear scalar (𝜎) is proportional to the expansion
scalar (𝜃)(Collins et al. [77]). That is

𝑏1 = (𝑏2𝑏3)𝑛, (15)

as long as 𝑛 ≠ 1 is constant, space-time’s anisotropy is preserved.

• Mishra et al. [78] proposed a varying deceleration parameter as

𝑞(𝑡) = −𝑎 ¥𝑎
¤𝑎2 = 𝑏(𝑡), (16)
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where 𝑏(𝑡) is an arbitrary function of time, where 𝑎(𝑡) is the average scale factor of the Universe. We can get the
average scale factor by solving the above Eq. (16) using some suitable assumptions (Mishra et al. [78]).

𝑎(𝑡) = (sinh 𝛽1𝑡)
1
𝛽2 , (17)

where 𝛽1 and 𝛽2 represent arbitrary positive constants. Using such an average scale factor, we obtain a deceleration
parameter(DP) (𝑞) that changes from an early deceleration phase to a current acceleration phase. Santhi et al. [79]
and Rao and Prasanthi [80], Reddy et al. [81] used this average scale factor to evaluate various cosmological models.

From Eqs.(11) and (12), we have
𝑏2 = 𝛾

2
2𝑏3, (18)

here, 𝛾2
2 ≠ 1&𝛾2

2 > 0.
The metric potentials are derived from equations (3), (15), (17), and (18) as depicted below:

𝑏1 = (sinh(𝛽1𝑡))
3𝑛

𝛽2 (𝑛+1) , (19)

𝑏2 = 𝛾2 (sinh(𝛽1𝑡))
3

𝛽2 (2𝑛+2) , (20)

𝑏3 =
(sinh(𝛽1𝑡))

3
𝛽2 (2𝑛+2)

𝛾2
. (21)

The energy density of VRDE is expressed as follows:

𝜌𝑑 =
6𝛼 (𝛽2 −2) 𝛽3

1 cosh(𝛽1𝑡)
𝛽2

2 sinh(𝛽1𝑡)3
. (22)

Matter’s energy density is given by

𝜌𝑚 =

3𝛽2
1

(
3
(
cosh(𝛽1𝑡)2 −1

)
cosh(𝛽1𝑡)2

(
𝑛+ 1

4

)
sinh(𝛽1𝑡)

2𝛽2 (𝑛+1)+(−4𝑛−4)𝛽2−6𝑛
𝛽2 (𝑛+1) +𝛼(𝑛+1)2 (

𝛽2 −2cosh(𝛽1𝑡)2) )
𝛽2

2 (𝑛+1)2 sinh(𝛽1𝑡)2
. (23)
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Figure 1. VRDE energy density (𝜌𝑑) v/s time
(𝑡) (Gyr)
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Figure 2. Matter energy density(𝜌𝑚) v/s time (𝑡)
(Gyr)

The pressure of VRDE is given by

𝑝𝑑 = −
2𝛽2

1 (sinh(𝛽1𝑡))
(−2𝑛−2)𝛽2−6𝑛

𝛽2 (𝑛+1)
((

3𝑛
2 − 15

8

)
cosh(𝛽1𝑡)2 + 𝛽2 (𝑛+1)2

)
𝛽2

2 (𝑛+1)2
. (24)

The bulk viscosity is given by

𝜁 =
𝜁1𝛽1 cosh(𝛽1𝑡) sinh(𝛽1𝑡)𝐻0 +𝐻0𝛽2 cosh(𝛽1𝑡)2𝜁0 − 𝜁0𝛽2𝐻0 − 𝜁2𝛽

2
1

𝛽2𝐻0 sinh(𝛽1𝑡)2 . (25)
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We used the following constants as a constraint in our analysis as well as diagrammatic illustrations of the Marder VRDE
model of the universe in which our analysis discussed the corresponding parameters: 𝛽1 = 0.199, 0.115, 0.111;𝛽2 =

1.52, 1.62, 1.72; 𝑛 = 0.019; 𝛼 = 0.02; 𝜁0 = 0.25;𝜁1 = 0.35;𝜁2 = 0.15; 𝐻0 = 65. It is shown in Fig.(1) and (2) that the
characteristics of VRDE energy density (𝜌𝑑) and matter energy density (𝜌𝑚) is plotted against cosmic time 𝑡. Observing
the trajectories of VRDE energy density (𝜌𝑑) and matter energy density (𝜌𝑚) for various values of 𝛽1 and 𝛽2, as we can see
a variation towards the positive region, through time, which indicates that the Universe is expanding. The total pressure
(𝑝) for different values of 𝛽1 and 𝛽2 can also be observed by examining Fig. (3). With the passing of time (𝑡), the total
pressure (𝑝) becomes negative. According to Fig. (4), the trajectory of bulk viscosity decreases with time 𝑡, while it
varies in the positive region.
It is now possible to write the metric (2) as

𝑑𝑠2 = (sinh(𝛽1𝑡))
6𝑛

𝛽2 (𝑛+1) 𝑑𝑥2 +
(
𝛾2

2 (sinh(𝛽1𝑡))
6

𝛽2 (2𝑛+2)
)
𝑑𝑦2 +

(
(sinh(𝛽1𝑡))

6
𝛽2 (2𝑛+2)

𝛾2
2

)
𝑑𝑧2 − (sinh(𝛽1𝑡))

6𝑛
𝛽2 (𝑛+1) 𝑑𝑡2. (26)

Thereby, in the general theory of gravitation, Eq. (26) corresponds to a Marder-type space time that is spatially homoge-
neous and anisotropic with VRDE.

• The average scale factor (𝑎(𝑡)) and volume (𝑉) of the Marder type space time are given by

𝑉 = (sinh(𝛽1𝑡))
3
𝛽2 and 𝑎(𝑡) = [𝑉]3 = (sinh(𝛽1𝑡))

1
𝛽2 . (27)

• The Hubble parameter (𝐻) is given by the following equation:

𝐻 =
𝛽1 coth(𝛽1𝑡)

𝛽2
. (28)

• The expansion scalar (𝜃) is given by

𝜃 = 3
(
𝛽1 coth(𝛽1𝑡)

𝛽2

) (
sinh(𝛽1𝑡)

(−𝑛−1)𝛽2−3𝑛
𝛽2 (𝑛+1)

)
. (29)

• The shear scalar (𝜎2) is given by

𝜎2 =

(
−3
2

) 𝛽2
1 cosh(𝛽1𝑡)2

(
(𝑛+1)2 sinh(𝛽1𝑡)

2𝛽2 (𝑛+1)+(−2𝑛−2)𝛽2−6𝑛
𝛽2 (𝑛+1) −3𝑛2 − 3

2

)
𝛽2

2 (𝑛+1)2 sinh(𝛽1𝑡)2
. (30)

• You can find the anisotropic parameter by

Aℎ =
(2𝑛−1)2

2(𝑛+1)2 . (31)
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We observe from Eq.(31) that Aℎ ≠ 0 represents the likelihood that the Marder type cosmic model will always be
anisotropic(except 𝑛 = 1

2 ). For different values of 𝛽1 and 𝛽2, the volume has monotonously increased against time (𝑡) in
Fig. (5). This describes the spatial volume (𝑉) is growing a significant increase and presents the Universe’s growth in an
exponential manner. As can also be observed from the equations (27)-(30) within the scope of the earliest phase 𝑖.𝑒., at
𝑡 = 0, the average scale factor 𝑎(𝑡) and the volume (𝑉) decrease as time passes, indicating an expanding Universe. Hubble
parameter 𝐻, expansion scalar 𝜃, and shear scalar 𝜎 diverge at the initial epoch but attain constant values later. The
graphical representation of the 𝜃 & 𝐻 can be found in figure (6). As time progresses, both functions decrease and become
constant. Based upon these observations, it can be seen that with respect to time, the model begins its intensification as a
volume-zero model, and as it expands further, it reaches an infinite-volume model.

4. COSMIC PARAMETERS
We will investigate the Universe expands in terms of well recognized parameters relevant to the study of the cosmos,

namely the EoS parameter (𝜔𝑑𝑒), squared sound speed (𝑣2
𝑠), jerk parameter ( 𝑗), DP (𝑞), density parameters 𝑖.𝑒., Ω𝑚, Ω𝑑

& Ω, energy conditions and 𝜔𝑑𝑒 −𝜔′
𝑑𝑒

plane, statefinder (𝑟 − 𝑠) for constructing an anisotropic VRDE model.

• Deceleration Parameter: A further parameter that we have to consider as a result of to examine the transition phase
of the Universe is referred to as the DP. This measure quantifies the Universe’s expansion rate in a dimensionless
form. 𝑞 represents this value and it can be described in the following manner:

𝑞 =
𝑑

𝑑𝑡

(
1
𝐻

)
−1 = 𝛽2 secℎ(𝛽1𝑡)2 −1. (32)

Depending on its sign, it signifies either deceleration (if positive) or acceleration (if negative), whereas de-Sitter
expansion is observed at 𝑞 = −1 and marginal inflation happens when 𝑞 = 0. The model indicates a super exponential
expansion for 𝑞 < −1 and an accelerated expansion for −1 ≤ 𝑞 < 0. According to Fig. (7), we can see that the DP
𝑞 is plotted against time 𝑡, and by looking at the trajectory of the DP we observe that it shows a nice line with three
different values of 𝛽1 and 𝛽2 corresponding to the shift from the initial slowing down to the current speeding up.
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• Jerk Parameter: It is widely accepted that the jerk parameter(JP) in cosmology is the third derivative of the scale
factor with respect to time, expressed without dimensions, and it is defined as follows:

𝑗 =
𝑎

𝑎𝐻3 =
2𝛽2

2 + cosh(𝛽1𝑡)2 −3𝛽2

cosh(𝛽1𝑡)2 . (33)

Nowadays it is generally accepted that in modern cosmology, the JP can be used to describe how the Universe
transitions from a decelerating phase into an accelerating phase as a result of its jerk. It seems that this transition
of the Universe occurs in various models if the JP is set to a positive value and the DP is set to a negative value
(Chiba and Nakamura [82]; Visser [83]). Based on three different values of 𝛽1 and 𝛽2, we have plotted a graphical
representation of the JP against time (𝑡) in Fig. (8). Throughout the evolution, the JP varies in positive regions and
achieves a value of one at the end of the process. Thus, we can conclude from our model that recent observations
are consistent with it. Additionally, we observe that 𝛽1 and 𝛽2 completely affect the JP.

• Statefinder diagnostics: For the purpose of distinguishing between multiple candidates for dark energy, Sahni et
al. [84] has developed an analytical tool that can be used to identify and quantify the statefinder pair of terms {𝑟, 𝑠},
for which the term 𝑟 able to derived as a result of 𝑎(𝑡) and in terms of cosmic time (𝑡), it is a third-order derivative
and 𝑠 can be derived as a function of 𝑟 and the DP 𝑞. The parameters for Statefinder are as follows:

𝑟 =
𝑎

𝑎𝐻3 =
2𝛽2

2 + cosh(𝛽1𝑡)2 −3𝛽2

cosh(𝛽1𝑡)2 , 𝑠 =
𝑟 −1

3(𝑞− 1
2 )

=
4𝛽2

2 −6𝛽2

6𝛽2 −9cosh(𝛽1𝑡)2 . (34)

“A few useful regions can be described by these parameters: (𝑟, 𝑠) = (1,0) indicates Λ𝐶𝐷𝑀 , (𝑟, 𝑠) = (1,1) shows
CDM limit, Chaplygin gas region (𝑟 > 1, 𝑠 < 0), quintessence and phantom regions (𝑟 < 1, 𝑠 > 0). Fig. (9) shows
the behavior of 𝑟 − 𝑠 plane of our model. A Λ CDM model is observed within our model of the Universe.”
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• EoS Parameter: The following equation will be used to obtain EoS parameter

𝜔𝑑𝑒 =
𝑝𝑑

𝜌𝑑
. (35)

Here, 𝜌𝑑 and 𝑝𝑑 are used to represent the DE density and the pressure of the VRDE, respectively. It is estimated
that the EoS parameter can be used to define the Universe’s progression into stages of deceleration and acceleration.
It is possible to divide the DE dominated phase into the following eras:

(i) 𝜔𝑑𝑒 = 0 corresponds to non-relativistic matter.
(ii) −1 < 𝜔𝑑𝑒 <

−1
3 quintessence.

(iii) 𝜔𝑑𝑒 = −1 cosmological constant.
(iv) 𝜔𝑑𝑒 < −1 phantom.

In the model, the EoS parameter is represented as the following:

𝜔𝑑𝑒 =

2𝛽2
1 sinh(𝛽1𝑡)

𝛽2 (−2𝑛−2)−6𝑛
𝛽2 (𝑛+1)

((
3𝑛
2 − 15

8

)
cosh(𝛽1𝑡)2 + 𝛽2 (𝑛+1)2

)
(𝑛+1)26𝛼 (𝛽2 −2) 𝛽3

1 coth(𝛽1𝑡)𝑐𝑜𝑠𝑒𝑐ℎ(𝛽1𝑡)2
. (36)
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VRDE’s EoS parameter is given in Eq. (26). For the model (26), we present in figure (10) the development of the
EoS parameter 𝜔𝑑𝑒 in terms of time (𝑡), which has various numbers for 𝛽1 and 𝛽2. It is clear form the figures that
the EoS parameter for model (26) starts from phantom region and vary in high phantom region.
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• 𝜔𝑑𝑒 −𝜔′
𝑑𝑒

plane: Caldwell and Linder [85] propose the 𝜔𝑑𝑒 −𝜔′
𝑑𝑒

plane analysis, which is a useful tool for
distinguishing DE models based on the trajectory of their planes. Using this approach, we can create two types of
planes in the essence model, 𝑖.𝑒., the region 𝜔𝑑𝑒 < 0, 𝜔′

𝑑𝑒
< 0 implies the freezing region and the region 𝜔𝑑𝑒 <

0, 𝜔′
𝑑𝑒
> 0 a region of thawing. The expression for 𝜔′

𝑑𝑒
can be obtained by taking the derivative of Eq. (36) with

respect to ln𝑎

𝜔′
𝑑𝑒 =

(−1)
(
4
(

9𝑛2

2 − 45𝑛
8

)
cosh(𝛽1𝑡)2 sinh(𝛽1𝑡)

3𝛽2 (𝑛+1)+𝛽2 (−3𝑛−3)−6𝑛
𝛽2 (𝑛+1)

)
𝛽2 (𝑛+1)36𝛼 (𝛽2 −2)

+
(−4)

(
𝛽2 (𝑛+1)2 +3𝑛2 + 9𝑛

2 − 15
8

)
sinh(𝛽1𝑡)

3𝛽2 (𝑛+1)+𝛽2 (−3𝑛−3)−6𝑛
𝛽2 (𝑛+1)

(𝑛+1)26𝛼 (𝛽2 −2)

+
(−1) sinh(𝛽1𝑡)

3𝛽2 (𝑛+1)+𝛽2 (−2𝑛−2)−6𝑛
𝛽2 (𝑛+1)

((
3𝑛
2 − 15

8

)
cosh(𝛽1𝑡)2 + 𝛽2 (𝑛+1)2

)
(𝑛+1)26𝛼 (𝛽2 −2) 𝛽3

1 cosh(𝛽1𝑡)
.


(37)

As shown in Fig. (11), all values of 𝛽1 and 𝛽2 place the model in the freezing region. According to observations, the
Universe is expanding relatively fast in the freezing region. For the obtained model (26), 𝜔𝑑𝑒 −𝜔′

𝑑𝑒
plane analysis

gives the Universe is expanding faster than ever.

• Energy conditions: Astrophysical and cosmological energy conditions (ECs) are derived from Raychaudhuri
equations [86]. In general, the energy momentum tensor(EMT) is an important factor to consider when studying
energy conditions, so, for this discussion, we are going to use the term EMT in relation to pressure 𝑝𝑑 and energy
density 𝜌𝑑 , therefore, all four of the energy conditions can be written in the following ways: null energy condition
(NEC), dominant energy condition (DEC), strong energy condition (SEC), and weak energy condition (WEC). As
part of this paper, we have examined how energy conditions have evolved over time. In general, these energy
conditions serve as a measure of the expansion of the Universe. It is imperative to recognize that these conditions
impose additional limitations on the cosmological model’s viability. These conditions include the following:

WEC: 𝜌𝑑 ≥ 0
NEC: 𝑟ℎ𝑜𝑑 + 𝑝𝑑 ≥ 0
DEC: 𝜌𝑑 − 𝑝𝑑 ≥ 0
SEC:𝜌𝑑 +3𝑝𝑑 ≥ 0

It’s important to mention that SEC represents a strong energy condition, DEC represents a dominant energy
condition,and NEC represents a null energy condition, and WEC represents a weak energy condition.
Fig. (12) shows the behavior of these energy conditions in the constructed model. In cosmic evolution, WEC and
DEC are well satisfied while NEC and SEC are violated at late times, which corresponds to accelerated expansion.
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Our model also clearly shows that DEC dominates NEC and SEC in accordance with our observation. I think this
is an interesting observation that should be taken into account.

2 4 6 8 10 12 14 16 18

Time t (Gyr)

-0.15

-0.1

-0.05

0

0.05

E
n

er
g

y
 C

o
n

d
it

io
n

s

NEC

DEC

SEC

Figure 12. VRDE ECs v/s time 𝑡 (Gyr)

• Squared speed of sound (𝑣2
𝑠): Our next step will be to consider and study one of the most important quantities

in cosmology, that is the squared speed of sound(𝑣2
𝑠), which is an important quantity to take into account when

checking every DE model’s stability. Depending on the sign of this parameter, we can examine stability of DE
models. Models with 𝑣2

𝑠 < 0 are unstable whereas models with 𝑣2
𝑠 > 0 are stable. Here is a definition of the squared

speed of sound:

𝑣2
𝑠 =

¤̄𝑝𝑑
¤𝜌𝑑

=

−2
((

9𝑛2

2 − 45𝑛
8

)
cosh(𝛽1𝑡)2 + (𝑛+1)

(
𝛽2 (𝑛+1)2 +3𝑛2 + 92

2 − 15
8

)
𝛽2

)
sinh(𝛽1𝑡)

−6𝑛
𝛽2 (𝑛+1)

3𝛼 (𝛽2 −2) 𝛽2 (𝑛+1)3

 . (38)

Fig. (13) illustrates 𝑣2
𝑠 versus time 𝑡 for various values of 𝛽1 and 𝛽2. All values of 𝛽1 and 𝛽2 show trajectories in the

negative region, which indicates unstable cosmos behavior.
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• Density parameters: “It has been suggested by most authors that the Ω ≈ 1. The ultimate destiny of the Universe
can be revealed by knowing whether Ω is greater than 1, less than 1, or exactly equal to 1. Eventually, the Universe
will stop expanding and collapse if Ω > 1. In the case where Ω < 1, then the Universe is open and will continue to
expand forever, whereas if Ω= 1, then the Universe is flat and has enough material to stop expansion, but not enough
to collapse. As a result of this definition, a dimensionless density parameter expression can be found as follows:”

Ω𝑑 =
𝜌𝑑

3𝐻2 , (39)
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Ω𝑚 =
𝜌𝑚

3𝐻2 , (40)

Ω = Ω𝑑 +Ω𝑚. (41)

For model (26), the density parameters of VRDE, matter, and total density are given by

Ω𝑑 =
−𝛼

(
𝛽2 −2cosh(𝛽1𝑡)2)

cosh(𝛽1𝑡)2 , (42)

Ω𝑚 =

12
(
cosh(𝛽1𝑡)2 −1

)
cosh(𝛽1𝑡)2

(
𝑛+ 1

4

)
sinh(𝛽1𝑡)

𝛽2 (−2𝑛−2)−6𝑛
𝛽2 (𝑛+1)

4cosh(𝛽1𝑡)2 (𝑛+1)2 (43)

+
4𝛼(𝑛+1)2 (

𝛽2 −2cosh(𝛽1𝑡)2)
4cosh(𝛽1𝑡)2 (𝑛+1)2 ,

& Ω =
3(4𝑛+1) sinh(𝛽1𝑡)

−6𝑛
𝛽2 (𝑛+1)

4(𝑛+1)2 . (44)

According to Fig. (14), we analyze the behavior of the density parameters of VRDE (Ω𝑑), matter (Ω𝑚) as well as
the total density (Ω) as a function of cosmic time 𝑡 for model (26) with 𝛽1 and 𝛽2. Based on the trajectory of density
parameters, we observe that Ω𝑑 , Ω𝑚 & Ω decrease with cosmic time and approach a number less than one at later
times, subsequently the total density (Ω) dominates the VRDE and matter parameters.

5. CONCLUSION
Using Einstein GR, we have constructed a Marder type cosmological model with viscous Ricci dark energy. A

variable declaration parameter has been applied to study the dynamics of the Universe and to determine solutions to the
field equations. A transition from a decelerating to accelerating phase was observed in DP. This model has the following
main outcomes:

Our obtained model at present accelerated and deceleration at past, based on the assumed form of DP. Observations
agree well with these aspects of the model. At first 𝑉 , 𝑎 are dies whereas 𝐻, 𝜃, & 𝜎 tends to ∞ but as time passes 𝑉 , 𝑎
are tends to ∞ and 𝐻, 𝜃, & 𝜎 are become constant. It can be seen that our constructed model is anisotropic throughout
the evolution of the Universe since (𝐴ℎ) is constant and does not vanish (𝐴ℎ ≠ 0). Throughout cosmic expansion, VRDE
has a positive energy density. Furthermore, cosmic pressure increases over time and is negative. Also, the changes of EoS
parameter 𝜔𝑑𝑒 =

𝑝̄𝑑
𝜌𝑑

has been graphically observed. According to this analysis, 𝜔𝑑𝑒 evolves from the phantom region and
varies in the high phantom region. Our constructed model’s evolution of 𝜔𝑑𝑒 −𝜔′

𝑑𝑒
varies in the freezing phase. In the

freezing region of the Universe, according to the observations, the growth of the Universe is relatively accelerating at the
present time and also we examine that ECs for obtained model and hence notice that SEC, NEC are breach whereas DEC
is fulfilled. We observe that Ω𝑑 , Ω𝑚 & Ω decrease with cosmic time and approach a number less than one at later times
Throughout the evolution, the JP is positive and reaches one. In general, (𝑟, 𝑠) trajectories start from the chaplygin gas
region and finally reach SCDM, where 𝑠 = 0, 𝑟 = 1. Consequently, in the future, the constructed model of the Universe
will behave in a manner similar to the ΛCDM model.
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АНАЛIЗ КОСМОЛОГIЧНОЇ МОДЕЛI В’ЯЗКОЇ ТЕМНОЇ ЕНЕРГIЇ РIЧЧI
В ЗАГАЛЬНIЙ ТЕОРIЇ ГРАВIТАЦIЇ
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Це дослiдження зосереджено на динамiчному дослiдженнi простору-часу типу Мардера, що мiстить в’язку темну енергiю Рiччi, 
в рамках загальної теорiї вiдносностi. Щоб знайти розв’язок рiвнянь поля, ми використовуємо спiввiдношення мiж метричними

потенцiалами та середнiм масштабним коефiцiєнтом 𝑎(𝑡) = (sinh 𝛽1𝑡) 𝛽
1
2 , це призводить до плавного переходу Всесвiту вiд 

початкової фази уповiльнення до поточної фази прискорення. Тут ми отримали космологiчнi параметри та площину 𝜔𝑑𝑒 −𝜔′
𝑑𝑒 для похiдної моделi. Також за допомогою дiаграм аналiзуються динамiчнi особливостi отриманої космологiчної моделi. 
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The present study attempts to determine the time dependence of some cosmological parameters in flat space (i.e., a space of zero spatial 
curvature), in the framework of an anisotropic Kaluza-Klein metric. The field equations for this work have been derived from the metric by 
assuming a power-law relation between the normal scale factor and the scale factor corresponding to the extra (i.e., the fifth) 
dimension. An empirical scale factor, having the expression of a = B exp(αtβ), has been used here in order to derive the expressions for 
some cosmological parameters as functions of time. The reason for choosing this scale factor is that it generates an expression for the 
deceleration parameter which undergoes a change of sign, as time goes on, from positive to negative, indicating a transition of the 
universe from an initial state of decelerated expansion to that of an accelerated expansion (which is its present state), as has been 
inferred from astrophysical observations. We have graphically depicted the evolution of some cosmological parameters with respect 
to what one may call the relative time, expressed as t/t0, where t0 is the present age of the universe. The present study finds the 
dynamical cosmological constant (Λ) to be negative, and it becomes less negative with time, changing at a gradually decreasing rate. 
The dependence of pressure of the all-pervading cosmic fluid upon density, corresponding to the fifth dimension, has been described 
in terms of a skewness parameter (δ) which comes out to be decreasing with time. The anisotropy factor has been calculated in this 
study, whose numerical value has been found to be decreasing with time, indicating a journey of the universe towards phases of 
gradually smaller anisotropy. 
Keywords: Dark energy; Kaluza-Klein theory; Cosmological parameter (Λ); Anisotropy; Exponential scale factor 
PACS: 04.20.−q; 04.50.+h; 04.50.−h; 98.80.Es; 98.80.−k 

1. INTRODUCTION
Based on cosmological observations throughout the world, it has been convincingly established that the universe 

undergoes a process of expansion with acceleration. Research is going on extensively to understand the nature of the 
agent causing an accelerated expansion. If gravitation had been the only interaction governing the motions of celestial 
bodies, the expansion of the universe would have continued with deceleration. On the basis of the observational 
findings from supernova 1a, it was concluded that there is a negative pressure generated by an exotic form of energy, 
referred to as dark energy (DE), which is considered to be responsible for the present phase of accelerated expansion of 
the universe [1, 2]. The functioning of this mysterious DE can only be determined by extensive investigations. A 
thorough analysis of supernova data has led to an inference that the universe has changed its phase from decelerated 
expansion to accelerated expansion, resulting in the change of sign of the deceleration parameter from positive to 
negative [3-5]. In the vast scientific literature regarding investigations to find the nature of cosmic acceleration, one 
generally finds approaches through mainly two ways. One of these ways is to construct mathematical models using 
modified theories of gravity (which are based on modifications of Einstein’s theory of general relativity) and explore 
their characteristics. The other way is to investigate the cosmological observations by formulating dark energy models. 
A parameter, named cosmological constant (denoted by Λ), has been said to be representing DE in lots of models on 
cosmology. There are various dark energy models in scientific literature, namely quintessence, phantom, k-essence and 
quintom [6-9]. Although 𝛬 was introduced in Einstein’s theory as a constant parameter [10], but, due to some 
limitations connected with the coincidence problem and the cosmological constant problem, it is presently regarded as a 
time-dependent quantity [11]. By modifying Einstein’s theory of gravity in various ways, researchers have formulated 
theories such as 𝑓ሺ𝑅ሻ and 𝑓ሺ𝑅,𝑇ሻ [12-14] and scalar tensor models like Saez-Ballester (SB) and Brans-Dicke (BD) 
theories of gravity [15, 16]. Wide range of investigations have been carried out by constructing models on cosmological 
phenomena involving DE [17-20]. 

In order to unify electromagnetic force with gravitational force, two scientists, Kaluza and Klein, proposed a new 
theory in last century’s first half, and it has always been referred to Kaluza-Klein (KK) theory since then [21, 22]. This 
theory talked about a new dimension (or the fifth dimension) which acted as a link between the two forces. A 
contraction of this new dimension with time was proved by Chodos and Detweiler through a five-dimensional model 
based on KK theory [23]. The current four-dimensional representation of the universe is theoretically demonstrated to 
be preceded by an era of a multidimensional state. The extra dimension shrinks along with the evolution of the universe 
and it cannot be detected now by the experimental techniques at our disposal. These phenomena have inspired many 
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researchers to carry out studies by formulating models involving higher dimensions. The KK theory can be looked upon 
as a five-dimensional generalization of the general theory of relativity. Theoretical investigations, which are considered 
to be of great importance in this field, are those carried out by Chodos & Detweller [23], Witten [24], Appelquist et al. 
[25], Appelquist & Chodos [26] and Marchiano [27]. The motivation for the present work was obtained from a 
formulation of an anisotropic dark energy model based on KK theory by N. I. Jain [28].    

An approximate solution to Kaluza-Klein's equations was shown in a study undertaken by J.A. Ferrari for a 
spherically symmetric charged system [29]. This study was carried out to find how a test particle behaves in a field of 
force produced by a charged particle. According to this study, Kaluza-Klein’s theory allows us to determine the 
corrections to the Lorentz force. The five-dimensional relativity in KK framework is validated by these experimental 
observations. It is possible to verify experimentally the existence of an extra spacetime dimension, as obtained from a 
study by Kalligas et al. [30]. A set of equations was derived in this study which contains terms connected with the 
existence of an extra dimension. Using the data obtained from observations of the solar system it has been established 
that the terms representing the fifth dimension is extremely small in comparison to the usual dimensions of spacetime, 
in our region of space. It has been found that the parameters corresponding to the KK theory cannot be treated as 
universal constants, and, there can be place to place variation of these parameters depending upon the local 
characteristic of matter. Several non-asymptotically flat solutions of Kaluza–Klein space-time were found by 
Dzhunushaliev et al., which had both electric and magnetic charges [31]. It was proved that these solutions could be 
regarded to be acting as virtual quantum handles (wormholes) in the models on space-time foam. It was shown that, 
within an external magnetic and/or electric field, which is sufficiently large, these solutions might be inflated from a 
quantum state to a classical state. This finding leads to the expectation, in a multidimensional gravity, for a possible 
experimental signal for higher dimensions. An improvement of the theory based five-dimensional Kaluza-Klein metric 
is possible, according to a recent study by Jean Paul Mbelek [32], by incorporating an external scalar field (ψ). It came 
out of that formulation that the observational data (for the experiments in the laboratory and also in the context of 
astrophysics and cosmology) are consistent with the theoretical findings. It has been found in the study that, in 
consistency with predictions based on the theory, one measured a torque acting upon a torsion pendulum. Based on a 
novel experimental investigation, by Tajmar and Williams [33], a macroscopic interpretation of the fifth dimension of 
the Kaluza-Klein theory has been obtained. This experiment was carried out to verify an important aspect of theoretical 
findings which shows the fifth dimension to somehow correspond to the electric charge. Based on Kaluza-Klein theory, 
they arrived at an interpretation of the observations regarding the time dilation effect in an electrically charged clock. 
They explained it by saying that the five-dimensional metric should have a timelike signature for a classical explanation 
of the extra dimension.  

The objective of the present study is to investigate the nature of time dependence of some cosmological 
parameters, based on an anisotropic Kaluza-Klein spacetime. This study involves a time-dependent cosmological term 
(Λ). A power-law type relation (𝑖. 𝑒. ,𝐴 ൌ 𝑎௡) has been assumed between the normal scale factor (𝑎) and the scale factor 
representing the extra dimension (𝐴), both of which belong to the Kaluza-Klein metric used here. 

To obtain the solution of field equations, we have used an ansatz for the scale factor (i.e., 𝑎 ൌ 𝐵 expൣ𝛼𝑡ఉ൧). The 
reason for choosing this function is that, the deceleration parameter ሺ𝑞 ൌ െ𝑎ሷ𝑎/𝑎ሶ ଶሻ, obtained from this scale factor, 
undergoes a signature flip with time from positive to negative, which is consistent with the fact that the present phase of 
accelerated expansion of the universe was preceded by a phase of decelerated expansion [3-5]. Using this exponential 
scale factor, we have derived expressions for some cosmological quantities such as, Hubble parameter (𝐻), deceleration 
parameter (𝑞), energy density (𝜌), cosmological constant (Λ), equation of state (EoS) parameter (𝜔), skewness 
parameter (𝛿) and the anisotropy factor (𝜎ଶ 𝜃⁄ ). We have depicted their time variation by plotting them graphically as 
functions of the relative cosmic time (i.e., 𝑡/𝑡଴) where 𝑡଴ denotes the age of the universe at the present time, which is 
nearly 13.7 ൈ 10ଽ years. 

Based on our findings regarding both skewness parameter (𝛿) and the anisotropy factor (𝜎ଶ 𝜃⁄ ) it can be said that 
we are heading towards phases of smaller anisotropy. The dynamical cosmological term (Λ), in our study, comes out to 
be negative (becoming less negative with time) and it changes very slowly in the present universe, indicating probably a 
slow rise in the dark energy content, which is considered to be causing the cosmic acceleration. 

This article has six sections including the one for introduction. Sections 2 and 3 are respectively about the field 
equations and their solutions. Determination of cosmological quantities has been dealt with in the 4th section. Sections 5 
and 6 are respectively about the findings of this theoretical investigation and its conclusions.  

 
2. THE METRIC AND THE FIELD EQUATIONS 

In order to obtain the cosmological field equations, we have used the Kaluza-Klein space-time of the following type [34].  

 𝑑𝑠ଶ ൌ െ𝑑𝑡ଶ ൅ 𝑎ଶሺ𝑡ሻ ቂ
ௗ௥మ

ଵି௞௥మ
൅ 𝑟ଶ𝑑𝜃ଶ ൅ 𝑟ଶ𝑠𝑖𝑛ଶ𝜃𝑑𝜑ଶቃ ൅ 𝐴ଶሺ𝑡ሻ𝑑𝜓ଶ. (1) 

In equation (1), 𝑎ሺ𝑡ሻ and 𝐴ሺ𝑡ሻ are the fourth and fifth-dimension scale factors respectively. The symbol k is a measure 
of the spatial curvature, having the values െ1, 0 and ൅1 respectively for the open, flat and closed universes. The 
energy-momentum tensor ൫𝑇௝௜൯, for the anisotropic space-time metric represented by equation (1), is given below [35]. 
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 𝑇௝
௜ ൌ 𝑑𝑖𝑎𝑔ሺ𝑇଴

଴,𝑇ଵଵ,𝑇ଶ
ଶ,𝑇ଷ

ଷ,𝑇ସସሻ ൌ 𝑑𝑖𝑎𝑔ሺെ𝜌,𝑝,𝑝,𝑝,𝑝టሻ. (2) 

In equation (2), the symbols 𝜌 and 𝑝 denote respectively the energy density and pressure of the cosmic fluid (dark 
energy) pervading the universe. The symbol 𝑝ట denotes the pressure corresponding to the extra dimension. The 
barotropic equation of state (EoS) parameter for the normal dimensions is 𝜔 ൌ 𝑝/𝜌. Based on some studies on 
anisotropy, in the framework of Kaluza-Klein theory, we have used the equation, 𝑝ట ൌ ሺ𝛿 ൅ 𝜔ሻ𝜌, as the directional 
equation of state for the fifth dimension, where 𝛿 is the skewness parameter which represents the deviation from the 
normal equation-of-state parameter 𝜔 [28, 36-41]. The parameter 𝛿 serves as a measure of deviation from isotropy. 
Thus, the energy-momentum tensor of equation (2) can be rewritten as,   

 𝑇௝
௜ ൌ 𝑑𝑖𝑎𝑔ሺെ𝜌,𝜔𝜌,𝜔𝜌,𝜔𝜌, ሺ𝜔 ൅ 𝛿ሻ𝜌ሻ   (3) 

The time dependence of 𝜔 and 𝛿 has been investigated in the present study. 
Gravitational field equations are obtained from the following equation.  

 𝐺௝
௜ ൌ 𝑅௝

௜ െ
ଵ

ଶ
𝑅𝛿௝

௜ ൌ െ8𝜋𝐺𝑇௝
௜ ൅ Λ𝛿௝

௜  (4) 

To formulate the field equations, we have used an ansatz for the fifth-dimension scale factor (𝐴), which is 𝐴 ൌ 𝑎௡ [42]. 
We have also used 8𝜋𝐺 ൌ 𝑐 ൌ 1 and 𝑘 ൌ 0 (i.e., flat space). Combining equations (1), (3) and (4), one gets the 
following field equations.  

 ሺ𝑛 ൅ 2ሻ𝐻ሶ ൅ ሺ𝑛ଶ ൅ 2𝑛 ൅ 3ሻ𝐻ଶ ൌ െ𝜔𝜌 ൅ Λ   (5) 

 3𝐻ሶ ൅ 6𝐻ଶ ൌ െሺ𝜔 ൅ 𝛿ሻ𝜌 ൅ Λ   (6) 

 3ሺ𝑛 ൅ 1ሻ𝐻ଶ ൌ 𝜌 ൅ Λ   (7) 

Divergence of Einstein’s tensor can be expressed as, 

 ቀ𝑅௝
௜ െ

ଵ

ଶ
𝑅𝛿௝

௜ቁ
;௝
ൌ ൫െ𝑇௝

௜ ൅ Λ𝛿௝
௜൯

;௝
ൌ 0   (8) 

Based on equation (8), the equation representing energy conservation [35] is given by,  

 𝜌ሶ ൅ 3ሺ𝜌 ൅ 𝑝ሻ𝐻 ൅ 𝑛൫𝜌 ൅ 𝑝ట൯𝐻 ൅ Λሶ ൌ 0   (9) 

Substituting the equations of state for the normal dimension and the extra dimension [i.e., 𝑝 ൌ 𝜔𝜌 and 𝑝ట ൌ ሺ𝜔 ൅ 𝛿ሻ𝜌 
respectively] in equation (9), we get, 

 𝜌ሶ ൅ ሺ3 ൅ 𝑛ሻሺ1 ൅𝜔ሻ𝜌𝐻 ൅ 𝑛𝜌𝛿𝐻 ൅ Λሶ ൌ 0  (10) 

Equation (10) can be written as a sum of two equations which are equations (11) and (12), as given below. 

 𝜌ሶ ൅ ሺ3 ൅ 𝑛ሻሺ1 ൅𝜔ሻ𝜌𝐻 ൌ 𝑄   (11) 

 𝑛𝜌𝛿𝐻 ൅ Λሶ ൌ െ𝑄   (12) 

In equations (11) and (12), 𝑄 is an arbitrary parameter. 
Subtracting equation (6) from equation (5), we get, 

 ሺ𝑛 െ 1ሻ𝐻ሶ ൅ ሺ𝑛ଶ ൅ 2𝑛 െ 3ሻ𝐻ଶ ൌ 𝜌𝛿   (13) 

Substitution for 𝜌𝛿 in equation (12), based on equation (13), leads to the following differential equation. 

 Λሶ ൌ െ𝑄 െ 𝑛𝐻ሺ𝑛 െ 1ሻൣ𝐻ሶ ൅ ሺ𝑛 ൅ 3ሻ𝐻ଶ൧  (14) 
 

3. SOLUTION OF THE FIELD EQUATIONS USING AN EMPIRICAL SCALE FACTOR 
To solve the field equations, we have used the following ansatz for the scale factor. 

 𝑎 ൌ 𝐵 exp൫𝛼𝑡ఉ൯    (15) 

where the constant parameters 𝐵,𝛼,𝛽 ൐ 0. 
The reason for using this scale factor (expressed by eqn. 15) is that it leads to a deceleration parameter (given by 

equation no. 17) which (with suitable parameter values) undergoes a change of sign (as a function of time) from 
positive to negative, which is in agreement with the inferences drawn from recent astrophysical observations [ref. nos. 
3-5] demonstrating a transition from decelerated expansion to accelerated expansion of the expanding universe. For the 
same purpose, one often uses a hybrid scale factor which is a combination of an exponential and a power-law function 
of time. It has been used in several recent cosmological studies [43-49]. There are some studies where hyperbolic 
functions of time have been used as empirical scale factors [50-55], having the same property (i.e., deceleration-to-
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acceleration transition) of cosmic expansion. The parameter 𝐵 in the expression for the scale factor (eqn. 15) does not 
appear in the equations representing the Hubble parameter and the deceleration parameter (eqns. 16 & 17 respectively), 
because of their expressions, which are, 𝐻 ൌ

௔ሶ

௔
 and 𝑞 ൌ െ

௔ ሷ ௔

௔ሶ మ
 respectively. All functions of 𝐻 and 𝑞 are therefore 

independent of 𝐵. The left-hand sides of equations (5), (6) and (7) are functions of the Hubble parameter (𝐻) and its 
time derivative and they are thus independent of the parameter 𝐵. This is the reason why the parameter 𝐵 is not found in 
any expression of the present article except that of the scale factor (eqn. 15).  
Based on our empirical scale factor (eqn. 15), the Hubble parameter (𝐻) is given by, 

 𝐻 ൌ
௔ሶ

௔
ൌ 𝛼𝛽𝑡ఉିଵ   (16) 

Based on our empirical scale factor (eqn. 15), the deceleration parameter (𝑞) is given by, 

 𝑞 ൌ െ
௔ ሷ ௔

௔ሶ మ
ൌ

ଵିఉ

ఈఉ௧ഁ
െ 1   (17) 

In the present article, we have used the symbols, 𝐻଴ and 𝑞଴, which stand for the values of 𝐻 and 𝑞 respectively at the 
present time (i.e., 𝑡 ൌ 𝑡଴) where 𝑡଴ denotes the age of the universe (𝑡଴ ൌ 13.7 ൈ 10ଽ years).  
Putting 𝐻 ൌ 𝐻଴, 𝑞 ൌ 𝑞଴ and 𝑡 ൌ 𝑡଴ in equations (16) and (17), we get, 

 𝐻଴ ൌ 𝛼𝛽𝑡଴ఉିଵ   (18) 

 𝑞଴ ൌ
ଵିఉ

ఈఉ௧బ
ഁ െ 1   (19) 

Combining equations (18) and (19) we get the following expressions for the constants 𝛼 and 𝛽. 

 𝛼 ൌ
ுబ ௧బ

ሺ೜బశభሻಹబ೟బ

ଵିሺ௤బାଵሻுబ௧బ
   (20) 

 𝛽 ൌ 1 െ ሺ𝑞଴ ൅ 1ሻ𝐻଴𝑡଴   (21) 
 

4. DETERMINATION OF COSMOLOGICAL PARAMETERS 
Using equation (16) in equation (14) and solving the differential equation for Λ, we get, 

 Λ ൌ 𝐶 െ 𝑄𝑡 ൅
௡ሺଵି௡ሻఈమఉమ

ଶ
𝑡ଶఉିଶ ൅

௡ሺଵି௡ሻሺଷା௡ሻఈయఉయ

ଷఉିଶ
𝑡ଷఉିଶ   (22) 

where 𝐶 is the integration constant. Using equations (16) and (22) in equation (7), the energy density (𝜌) is obtained as, 

 𝜌 ൌ െ𝐶 ൅ 𝑄𝑡 ൅
൫௡మାହ௡ା଺൯ఈమఉమ

ଶ
𝑡ଶఉିଶ െ

௡ሺଵି௡ሻሺଷା௡ሻఈయఉయ

ଷఉିଶ
𝑡ଷఉିଶ   (23) 

Using equation (5), we get equation (24) which represents the EoS parameter (𝜔).  

 𝜔 ൌ
ஃିሺ௡ାଶሻுሶ ି൫௡మାଶ௡ାଷ൯ுమ

ఘ
   (24) 

Using equations (16), (22) and (23) in equation (24), we get, 

 𝜔 ൌ
஼ିொ௧ା

೙ሺభష೙ሻሺయశ೙ሻഀయഁయ

యഁషమ
௧యഁషమିሺ௡ାଶሻఈఉሺఉିଵሻ௧ഁషమି

యഀమഁమ

మ ൫௡మା௡ାଶ൯௧మഁషమ

ି஼ାொ௧ା
൫೙మశఱ೙శల൯ഀమഁమ

మ
௧మഁషమି

೙ሺభష೙ሻሺయశ೙ሻഀయഁయ

యഁషమ
௧యഁషమ

   (25) 

Using equation (13) we get, 

 𝛿 ൌ
ሺ௡ିଵሻுሶ ା൫௡మାଶ௡ିଷ൯ுమ

ఘ
   (26)  

Using equations (16) and (23) in equation (26), we get, 

 𝛿 ൌ
ሺ௡ିଵሻఈఉሺఉିଵሻ௧ഁషమା൫௡మାଶ௡ିଷ൯ఈమఉమ௧మഁషమ

ି஼ାொ௧ା
൫೙మశఱ೙శల൯ഀమഁమ

మ
௧మഁషమି

೙ሺభష೙ሻሺయశ೙ሻഀయഁయ

యഁషమ
௧యഁషమ

   (27) 

Combining equation (16) with equation (22), Λ can be expressed as, 

 Λ ൌ 𝐶 െ 𝑄𝑡 ൅
௡ሺଵି௡ሻ

ଶ
𝐻ଶ ൅

௡ሺଵି௡ሻሺଷା௡ሻఈఉ

ଷఉିଶ
𝑡ఉ𝐻ଶ   (28) 

Using equation (28) in equation (7) we get, 

 𝜌 ൌ െ𝐶 ൅ 𝑄𝑡 ൅ 𝐻ଶ ቂ3ሺ𝑛 ൅ 1ሻ െ
௡ሺଵି௡ሻ

ଶ
െ

௡ሺଵି௡ሻሺଷା௡ሻఈఉ

ଷఉିଶ
𝑡ఉቃ   (29) 
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Putting 𝜌 ൌ 𝜌଴, 𝐻 ൌ 𝐻଴ and 𝑡 ൌ 𝑡଴ in equation (29), we get the following equation from which one can determine the 
value of 𝐶. 

 𝐶 ൌ െ𝜌଴ ൅ 𝑄𝑡଴ ൅ 𝐻଴
ଶ ቂ3ሺ𝑛 ൅ 1ሻ െ

௡ሺଵି௡ሻ

ଶ
െ

௡ሺଵି௡ሻሺଷା௡ሻఈఉ

ଷఉିଶ
𝑡଴ఉቃ   (30) 

Thus, among the three parameters 𝑛, 𝑄 and 𝐶 (which are present in the expressions for Λ, 𝜌, 𝜔, 𝛿) , it is evident from 
equation (30) that the parameter 𝐶 can be calculated using the values of the parameters 𝑛 and 𝑄. One may also express 
𝑄 as a function of 𝑛 and 𝐶 in the following way. 

 𝑄 ൌ
ఘబା஼ିுబ

మቂଷሺ௡ାଵሻି
೙ሺభష೙ሻ

మ
ି
೙ሺభష೙ሻሺయశ೙ሻഀഁ

యഁషమ
௧బ
ഁቃ

௧బ
   (31) 

In the present formulation, we have used 𝑛 and 𝑄 as independent parameters, which determine the value of 𝐶, in 
accordance with equation (30). 
The expansion scalar (𝜃) and the shear scalar (𝜎ଶ) are given by the following equations. 

 𝜃 ൌ 3
௔ሶ

௔
൅

஺ሶ

஺
ൌ ሺ𝑛 ൅ 3ሻ𝐻  (32) 

 𝜎ଶ ൌ
ଷ

଼
ቀ
௔ሶ

௔
െ

஺ሶ

஺
ቁ
ଶ
ൌ

ଷ

଼
ሺ1 െ 𝑛ሻଶ𝐻ଶ  (33) 

Using equations (32) and (33), the anisotropy factor (𝜎ଶ/𝜃) can be expressed as, 

 ఙమ

ఏ
ൌ

ଷሺଵି௡ሻమ

଼ሺ௡ାଷሻ
𝐻 ൌ

ଷሺଵି௡ሻమ

଼ሺ௡ାଷሻ
𝛼𝛽𝑡ఉିଵ  (34) 

 
5. RESULTS AND DISCUSSION 

In the present article, we have discussed the results of a theoretical investigation carried out to determine the time 
evolution of an anisotropic universe in terms of the time-variations of the directional equation-of-state (EoS) parameters 
for the normal and extra dimensions (𝜔 & 𝛿), defined respectively by the relations 𝑝 ൌ 𝜔𝜌 and 𝑝ట ൌ ሺ𝜔 ൅ 𝛿ሻ𝜌. Time-
variations of different cosmological parameters, such as scale factor, Hubble parameter, deceleration parameter, energy 
density, cosmological constant, etc. have been shown graphically.  

Using equations (20) and (21), respectively, we have obtained 𝛼 ൌ 4.925 ൈ 10ିଵ଴ and 𝛽 ൌ 0.543. The time 
variations of Hubble parameter and deceleration parameter depend upon these parameters, according to equations (16) 
and (17) respectively. Apart from 𝛼 and 𝛽, the scale factor (𝑎) depends upon the parameter 𝐵, according to equation 
(15). Any change in 𝐵 causes a proportionate change in the scale factor (𝑎) and its time derivative (𝑑𝑎/𝑑𝑡) without 
affecting the values of the Hubble parameter ቀ𝐻 ൌ

௔ሶ

௔
ቁ and deceleration parameter ቀ𝑞 ൌ െ

௔ ሷ ௔

௔ሶ మ
ቁ because they are 

independent of 𝐵. As per equation (29), the energy density (𝜌) depends upon the parameters 𝑛, 𝐶 and 𝑄, where 𝐶 itself 
depends upon 𝑄 & 𝑛 according to equation (30). Based on equation (7) we have, Λ ൌ 3ሺ𝑛 ൅ 1ሻ𝐻ଶ െ 𝜌. Thus, Λ has a 
similar dependence upon 𝑄, which is evident from equation (28). The larger the value of 𝑄, the faster would be the 
change in 𝑄𝑡 with time, which is present in both Λ and 𝜌. The parameter 𝐶 was introduced in the expression for Λ (eqn. 
22) as a constant of integration. Based on equation (30), we have 𝐶 ൌ െ8.043 ൈ 10ିଶ଻ for 𝑄 ൌ 0 and 𝑛 ൌ െ500. For 
this study, we have used 𝑄 ൌ 0, otherwise the energy density (𝜌) comes out to be negative for a certain range of values 
of 𝑡. For 𝑛 ൐ 0, we have found the energy density (𝜌) to be increasing with time which is not possible for an universe 
which is expanding with time. For 𝑛 ൌ 0, there is almost no change of 𝜌 with time. For these reasons, we have depicted 
our findings graphically for 𝑛 ൏ 0 in this article. 

  
Figure 1. The scale factor versus time Figure 2. The Hubble parameter versus time 
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Figure 1 shows the time-variation of the scale factor (𝑎). This cosmological quantity increases with time, which is 
in accordance with the property of an expanding universe. This figure shows that the rate of change of scale factor 
increases with time. 

Figure 2 depicts the Hubble parameter (𝐻) as a function of time. This plot shows this parameter to be decreasing 
with time. Its positive value is in accordance with the property of an expanding universe. Its decrease with time 
indicates that the scale factor (𝑎) increases faster with time in comparison to the increase in its rate of change (𝑎ሶ ). One 
can also say that, the time-rate of fractional change of the scale factor (𝑎) decreases with time. 

Figure 3 shows the time variation of the deceleration parameter (𝑞). It shows a signature flip, from positive to 
negative, indicating clearly a transition of the universe from a phase of decelerated expansion to a phase of accelerated 
expansion, which is in agreement with the inferences drawn from astrophysical observations [3-5].  

Figure 4 depicts the time dependence of the energy density (𝜌) for three values of the parameter 𝑛, where we have 
𝑄 ൌ 0. The energy density decreases with time which is expected for a universe which is expanding with time. This 
figure shows that, more negative values of 𝑛 cause a faster fall in 𝜌. We have found that, for 𝑄 ് 0 and 𝑛 ൒ 0, 𝜌 is 
often found to negative (which is not allowed by its definition) and increasing with time (which is not admissible for an 
expanding universe). For this reason, we have used same values, i.e., 𝑄 ൌ 0 and 𝑛 ൏ 0 to depict the time dependence of 
other parameters (Λ, 𝜔 and 𝛿).  

  
Figure 3. The deceleration parameter versus time Figure 4. The energy density versus time for three values of 

the parameter 𝑛 

Figure 5 shows the nature of dependence of the cosmological constant (Λ) upon time for three values of the 
parameter 𝑛, with 𝑄 ൌ 0. The cosmological constant (Λ) is often used to represent the dark energy which is generally 
held responsible for the accelerated expansion of the universe. It is found to be negative in our study, becoming less 
negative with time at a gradually decreasing rate. This behaviour is found to be consistent with the observations of some 
recent studies [48, 56-58]. This figure shows the cosmological constant (Λ) to have a faster rise with time for more 
negative values of 𝑛.   

  
Figure 5. The dynamical cosmological parameter versus time for 

three values of the parameter 𝑛 
Figure 6. The EoS parameter versus time for three values of the 

parameter 𝑛 

Figure 6 shows the nature of dependence of the EoS parameter (𝜔) upon time for three values of the parameter 𝑛, 
with 𝑄 ൌ 0. It is negative and it becomes closer to െ1 (minus one) with time at a rate which decreases gradually with 
time. Its values show that the universe is dominated by phantom dark energy (i.e., 𝜔 ൏ െ1) at the early stage and also 
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at the present time (i.e., 𝑡 ൌ 𝑡଴), but it is gradually making a transition to a state where it will be dominated by vacuum 
fluid (i.e., 𝜔 ൌ െ1) in future, and thereafter to a state of quintessence dark energy (i.e., 𝜔 ൐ െ1) later. These findings 
are in agreement with the results of some studies carried out in theoretical frameworks which are totally different from 
the Kaluza-Klein framework that we have used here [59-61]. As per SN Ia data we have െ1.67 ൏ 𝜔 ൏  െ0.6237 while 
the range obtained by a combination of galaxy clustering statistics and SN Ia data (with CMB anisotropy) and 
is  െ1.33 ൏ 𝜔 ൏  െ0.79 [62, 63]. The values of 𝜔 at 𝑡 ൌ 𝑡଴, as obtained from equation (24), are consistent with these 
ranges obtained experimentally. It is found in this figure that less negative values of 𝑛 makes 𝜔 closer to െ1, causing a 
faster approach towards a vacuum fluid dominated universe. 

Figure 7 shows the time dependence of the skewness parameter delta (𝛿) for three different values of the parameter 
𝑛, with 𝑄 ൌ 0. Its value is positive and it decreases with time at a gradually smaller rate. Its value is smaller for less 
negative values of 𝑛. Its present value is of the order of 10ିସ, implying a very small anisotropy in the present universe, 
and this anisotropy is shown by this graph to become smaller with time. This finding is in sufficient agreement with 
some recent studies based on Kaluza-Klein anisotropic metric [28]. 

Figure 8 depicts the time-variation of the ratio 𝜎ଶ 𝜃⁄  (anisotropy factor) for three different values of the parameter 
𝑛, with 𝑄 ൌ 0. Its values are negative and approaches smaller negative values with time at a gradually smaller rate. Its 
present value is nearly of the order of 10ିଵ଺, indicating a small anisotropy of the universe at the present time, and this 
anisotropy becomes smaller with time. It is observed that, the condition for isotropy, i.e., 𝜎ଶ 𝜃 → 0⁄  as 𝑡 → ∞, is 
satisfied. This observation is consistent with the findings by Shamir et al, based on Bianchi type III space-time [64, 65]. 
Its absolute value, (i.e., |𝜎ଶ 𝜃⁄ |), is closer to zero for less negative values of the parameter 𝑛. 

  
Figure 7. The skewness parameter (δ) versus time for three 
values of the parameter 𝑛 

Figure 8. The anisotropy factor (𝜎ଶ 𝜃⁄ ) versus time for three 
values of the parameter 𝑛 

In the present article, we have used the following values of the measurable cosmological parameters, obtained 
from recent scientific literature [66-72]: 𝐻଴ ൌ 72.20 𝑘𝑚 𝑠ିଵ 𝑀𝑝𝑐ିଵ ൌ 2.34 ൈ 10ିଵ଼𝑠ିଵ, 𝑞଴ ൌ െ0.55, 𝜌଴ ൌ
9.83 ൈ 10ିଶ଻ 𝐾𝑔 𝑚ିଷ. The graph of cosmological parameter Λ versus time, in Fig. 5, is based on equations (28), where 
the value of 𝐶 has been obtained from equation (30). The value of Λ at the present time (i.e., at 𝑡 ൌ 𝑡଴), obtained from 
these equations, is െ9.9 ൈ 10ିଶ଻. One of the values of the cosmological parameter (Λ), as determined from 
observational data, is 1.25 ൈ 10ିହଶ 𝑚ିଶ, according to recent scientific literature [73-76]. But, one finds a very long 
range of values, which is spread over several orders of magnitude, as its estimates from theoretical and observational 
investigations [76-78]. The objective of determining the cosmological constant (Λ) in the present study is to find the 
nature of its evolution with time in an anisotropic Kaluza-Klein space-time where an exponential function of time 
(Eqn. 15) has been used as an ansatz for the scale factor. Our findings regarding the time-variation of Λ are in 
qualitative agreement with some recent studies based on models quite different from ours [48, 56-58].  
 

6. CONCLUDING REMARKS 
The present study has been carried out in the framework of an anisotropic Kaluza-Klein space-time, having a time-

dependent cosmological constant (Λ), to determine the time variation of various cosmological parameters. For this 
purpose, we have used an empirical scale factor of such a form that it leads to a deceleration parameter which changes 
sign with time from positive to negative, indicating clearly a transition from decelerated expansion to accelerated 
expansion, remaining consistent with inferences drawn from observations [3-5]. To enhance the theoretical validity and 
the ability of prediction of the model constructed here, we have determined the values of three constants (𝛼, 𝛽, 𝐶) 
associated with this model by using the presently accepted values of 𝐻଴, 𝑞଴ and 𝜌଴. Due to lack of experimental 
evidence, we have not been able to fix the value of the parameter 𝑛, although it has been shown here that we must have 
𝑛 ൏ 0 to get physically acceptable results. It is evident from Figure-4 that the slopes of the curves for 𝜌 are different for 
different values of 𝑛 at all values of 𝑡/𝑡଴. The value of 𝑛 could probably have been determined if we had any 
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experimentally obtained estimate of the rate of change of energy density (i.e., 𝑑𝜌 𝑑𝑡⁄ ) at the present time (i.e., 𝑡 ൌ 𝑡଴). 
An important finding of this study is that the dynamical cosmological parameter (Λ) comes out to be negative and it 
becomes less negative with time, changing at a gradually decreasing rate. At the present time (𝑡 ൌ 𝑡଴), its value is found 
to be െ9.9 ൈ 10ିଶ଻, irrespective of the value of 𝑛. This value is numerically equal to the value of 𝜌଴ (expressed in 
𝐾𝑔 𝑚ିଷ). The time evolution of the EoS parameter (𝜔) shows that the universe has been in the phantom regime (i.e., 
𝜔 ൏ െ1) of dark energy since the earliest phase and we are gradually moving towards a vacuum fluid dominated stage 
(i.e., 𝜔 ൌ െ1). This model shows that, as 𝑡 → ∞, 𝜎ଶ 𝜃 → 0⁄ , indicating a journey of the universe towards phases of 
gradually smaller anisotropy. In the present formulation, we have not been able to use equation (11), though it was 
obtained from equation (10) which is one of the field equations used here. Using 𝜔 ൌ െ1 in equation (11), one can 
obtain an expression for 𝜌 where the integration constant can be determined by using the fact that 𝜌 ൌ 𝜌଴ at 𝑡 ൌ 𝑡଴. 
Proceeding in this manner, the time dependence of other cosmological quantities can be determined. We have plans to 
use this method in a future project.  
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Факультет фізики, Коледж Св. Ксав'єра, Колката, Західна Бенгалія, Індія 
У цьому дослідженні зроблено спробу визначити залежність від часу деяких космологічних параметрів у плоскому просторі 
(тобто просторі нульової просторової кривизни) в рамках анізотропної метрики Калуци-Клейна. Рівняння поля для цієї 
роботи були отримані з метрики шляхом припущення степеневого співвідношення між нормальним масштабним фактором і 
масштабним фактором, що відповідає додатковому (тобто п’ятому) виміру. Емпіричний масштабний коефіцієнт, що має 
вираз a = B exp(αtβ), був використаний тут для отримання виразів для деяких космологічних параметрів як функцій часу. 
Причина вибору цього масштабного коефіцієнта полягає в тому, що він створює вираз для параметра уповільнення, який 
зазнає зміни знака з плином часу від позитивного до негативного, що вказує на перехід Всесвіту від початкового стану 
уповільненого розширення до стану прискорене розширення (що є його поточним станом), як було зроблено з 
астрофізичних спостережень. Ми графічно зобразили еволюцію деяких космологічних параметрів відносно того, що можна 
назвати відносним часом, вираженим як t/t0, де t0 — поточний вік Всесвіту. У цьому дослідженні встановлено, що динамічна 
космологічна константа (Λ) є від’ємною, і з часом вона стає менш від’ємною, змінюючись зі швидкістю поступового 
зменшення. Залежність тиску всепроникної космічної рідини від щільності, що відповідає п’ятому виміру, була описана в 
термінах параметра асиметрії (δ), який, як виявилося, зменшується з часом. У цьому дослідженні було розраховано 
коефіцієнт анізотропії, чисельне значення якого, як виявилося, зменшується з часом, що вказує на рух Всесвіту до фаз 
поступово меншої анізотропії. 
Ключові слова: темна енергія; теорія Калуци-Клейна; космологічний параметр (Λ); анізотропія; експоненціальний 
масштабний коефіцієнт 
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In this work, we have analyzed Bianchi type-I space-time (spatially homogeneous and anisotropic), using an interacting two fluid – 
dark matter (DM) and Pilgrim dark energy (PDE) in the framework of f(T) gravity by taking into consideration the infrared (IR) cut-off 
as a candidate of Hubble’s horizon  1L H . We have also performed the state-finder diagnostics and in addition, energy conditions 
are discussed to verify accelerating expansion of the universe. 
Keywords: Pilgrim dark energy; Dark matter; f(T) Gravity; Bianchi type-I space-time; Cosmology 
PACS: 04.50.Kd; 95.36.+x; 98.80.-k; 95.35.+d 

INTRODUCTION 
It is assumed that dark energy (DE) is responsible for accelerated expansion of the universe and also there is 

increasing evidence of DE over the last few years. Same has been confirmed by various observational experiments [1-3]. 
Despite the remarkable success of the standard cosmology, there are some issues which remain unresolved including the 
search for best DE candidate. Various approaches have been adopted for the same such as dynamical DE models and 
modified gravities. 

Several modified theories of gravitation have been proposed to investigate accelerated expansion of the Universe, 
such as  f R  gravity theory,  f T  gravity theory,  ,f R T  gravity theory,  f G  gravity theory, etc. As far as modified 
 f R  gravity is concerned, Ricci scalar R is replaced by an arbitrary function of R in the Einstein-Hilbert action. Recently, 

Wankhade et al. [4] have investigated Renyi holographic dark energy (RHDE) with Hubble’s IR cut-off in the framework 
of  f R  gravity. Some other authors [5-8] have also recently worked on the same theory. In modified  ,f R T  gravity 
theory, the gravitational action takes in an arbitrary function of the Ricci scalar R along with trace of the stress energy 
momentum tensor T. Pradhan et al. [9], Singh and Kumar [10], Shaikh and Wankhade [11], Dagwal et al. [12] have 
investigated different aspects of  ,f R T  gravity. 

The  f T  theory of gravity [13] is the generalized teleparallel gravity, where T  is the torsion scalar. This theory 
has attracted many people to explore it in different scenarios. Cai et al. have investigated various torsional constructions 
in the paradigm of  f T  gravity [14]. Zubair and Waheed have studied different energy conditions in  f T  gravity 
theory, with non-minimal torsion-matter [15]. Karami and Abdolmaleki have investigated the validity of the generalized 
second law of gravitational thermodynamics in the framework of  f T  gravity [16]. Jamil et al. have attempted to resolve 
the dark matter (DM) problem in  f T  gravity [17]. Bhatti et al. have investigated role of  f T  gravity on the evolution 
of collapsing stellar model [18]. Dagwal and Pawar have worked on two fluid sources namely matter field and radiation 
field in the framework of  f T  theory of gravity [19]. Karimzadeh and Shojaee have investigated phantom-like behavior 
in modified teleparallel gravity [20]. Chirde and Shekh have investigated holographic dark energy (HDE) cosmological 
model in modified  f T  theory of gravity [21]. Bhoyar et al. have used hybrid expansion law to investigate the stability 
of accelerating universe in  f T  gravity theory with linear equation of state [22]. Shekh and Chirde have examined 
certain aspects of the anisotropic accelerating Bianchi type-I model where two non-interacting fluids—one regular string 
and one DE—are present, in  f T  gravity [23]. Shaikh et al. have studied LRS Bianchi type-I domain walls cosmological 
models in  f T  gravity using volumetric expansions laws for the depiction model [24]. Mandal and Sahoo have 
investigated evolution of particle production in  f T  gravity [25].  

The search for viable DE model is the basic key leading to reconstruction phenomenon in modified theories of 
gravity. Holographic dark energy (HDE) models are having significant place in discussing the accelerated expansion of 
universe. In PDE model [26] it is considered that a repulsive force that is accelerating the Universe is phantom type with 
 1DE    and it is so strong that it prevents formation of the black hole. The energy density of PDE has the form [27] 
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 2 43 u u
pm L   

  , (1) 

where   and u  are dimensionless constants. By taking 1pm  , here we consider Hubble horizon 1L H  as the IR 
cutoff to find  f T  model using equation (1). 

Sharif and Rani have discussed pilgrim dark energy (PDE) model by taking the Hubble horizon as the IR cutoff in 
the framework of  f T  gravity [27]. Also, cosmological evolution of PDE has been studied by Sharif and Zubair [28]. 
Jawad et al. have used Hubble’s cut-off, Granda–Oliveros cut-off and generalized ghost cut-off to discuss the 
cosmological implications of interacting PDE models with cold dark matter (CDM) in fractal cosmology by taking the 
flat universe [29]. Sharif and Nazir [30] have discussed evolution (cosmological) of generalized ghost PDE in modified 
 f T  theory of gravity. Jawad and Rani [31] have worked on cosmological evolution of PDE in  f G  gravity. 

Myrzakulov et al. [32] have recreated two instances of interacting fluid scenario – ghost and PDE with pressure less DM 
in the framework of  f Q  gravity. 
 

f(T) GRAVITY FORMALISM AND PILGRIM DARK ENERGY 
Here, we provide an overview of the  f T  gravity with thorough derivation of its field equations. From here 

onwards, let us define the notations of the Latin subscripts or superscripts as related to the tetrad field, whereas Greek 
notations are allied to the space-time coordinates. The line element for a general space-time metric can be described as 

 2ds g dx dx 
  (2) 

It can be transformed into the tetrad, Minkowski's description of the transformation, in the following way: 

 2 i j
ijds g dx dx 

      (3) 

 i
idx e  , i ie dx

   (4) 

where ij , a metric on Minkowski space-time is given by  1, 1, 1, 1ij diag      and i
ie e 

   or j j
i ie e   . 

Also, det ig e e      is the root of determinant of metric. The components of the Weitzenbocks connection for a 
manifold – where, as per the contribution of the Levi-Civita connection, the Riemann tensor part with no torsion terms is 
null and the only non-zero torsion terms exist – are defined as  

 i i
i ie e e e  

           (5) 

This has a zero curvature; however, the torsion is nonzero. Through this connection, various components of the torsion 
tensors can be defined as 

  i i
iT e e e   

               (6) 

The con-torsion tensor is a space-time tensor from the difference between Weitzenbock and the Levi-Civita connections: 

  1
2

K T T T   
   

     
 

 (7) 

Another tensor S 
 can be defined from the constituents of the torsion and con-torsion tensors as follows to make the 

description of the Lagrangian and the equation of motion easier: 

  1
2

S K T T     
          

 
 (8) 

The torsion scalar T  is 

 T T S 
   (9) 

Now we define action by generalizing the Tele-parallel Theory i.e.  f T  theory as 

   4 matterS T f T L e d x      (10) 
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Here  f T  indicates an algebraic function of the torsion scalar T . We obtain the following equation of motion by 
functionally varying the action in equation (9) with regard to the tetrads: 

        1 11
4

i
TT i TS T f e e ee S T S f T f T      

                   (11) 

where T
  is the energy momentum tensor and  Tf df T dT . The field equation (11) is written in terms of tetrads and 

their partial derivatives; and appears very different from Einstein’s equation. But by setting   0 constantf T a  , this is 
dynamically equivalent to the GR.   

We consider the energy momentum tensor for interacting two fluids - dark matter (DM) and pilgrim dark energy 
(PDE), as 

 ˆT T T     (12) 

where ˆ
mT u u    and    ,T p u u p g         with comoving coordinates  0,0,0,1u   and 1,u u     

where u  is four velocity vector of fluid, p  is pressure of PDE, m  and   are energy densities of DM and PDE 
respectively. 
For interacting DM and PDE, the continuity equation is satisfied by the total energy density as 

      3 0m mH p            (13) 

When the energy densities of DM and PDE do not conserve independently, the continuity equation of matter becomes 

    3m mH Q    (14) 

    3H p Q        (15) 

where dot    denotes derivative with respect to time t , Q  implies the collaboration between DM and PDE. For 
suitability, consider the interacting term as 3 mQ H   [33], where   is coupling constant.   
 

METRIC AND COMPONENTS OF FIELD EQUATIONS 
In our work, we consider the spatially homogeneous and anisotropic Bianchi type-I space-time as 

    2 2 2 2 2 2 2   ds dt A t dx B t dy dz      , (16)  

where metric potentials A  and B  are the functions of cosmic time t  only. 
Now, the corresponding Torsion scalar T  is given by 

 
2

22 2 A B B
T

A B B

 
   

 

  
 (17) 

Using the equation of motion in (10), Bianchi type-I space-time in (16), for the stress energy tensors (12), can be written 
as 

    
2

24 1 4T TT

B B A B B
T f f Tf p

B B A B B 

 
        

 

      (18) 

    
2

22 1 3 2T TT

A B B A B A B
T f f Tf p

A B B A B A B 

   
            

   

        (19) 

    
2

24 1 2T m

B A B
T f f

B A B
 

 
      

 

 
 (20) 

So here we got three differential equations containing five unknowns — namely , , ,A B f p and  . 
We now define few kinematical quantities of space-time such as mean scale factor and volume respectively as  

 3 2a V AB   (21) 

To express volumetric expansion rate of Universe, the mean Hubble parameter is defined as 
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  1 2 3
1
3

H H H H    (22) 

where 1 2,H H  and 3H  are the directional Hubble parameters in the directions of ,x y  and z  axes respectively.   
Anisotropy parameter, for discussing whether Universe approach isotropy or not, is defined as 

 
23

1

1
3

i
m

i

H H
A

H

   
 

  (23) 

The expansion scalar and shear scalar are respectively defined as 

 2A B

A B
  

 
 (24) 

 2 23
2 mH A   (25) 

 
EXACT MATTER DOMINATED SOLUTION 

In order to solve the system of non-linear differential equations, we use the following physically plausible conditions. 
The latest findings of high red-shift type-Ia supernovae disclose that the universe is accelerating, contrary to the prediction 
of standard cosmology with standard matter and no cosmological constant that it is currently decelerating. Hence, the 
model with constant decelerating parameter have received considerable attention [34]. We extend the same results of [34] 
to solve the field equations by taking into consideration the variation of Hubble parameter as 

  1

k
a t    , for 0   (26) 

Now subtracting equation (18) from (19), we get, 

 0d A B A B V

dt A B A B V

   
      

   

   
 (27) 

Integrating above equation, it gives, 

 2 1
1expA

c c dt
B V

      (28) 

where 1c  and 2c  are constants of integration. 
By using equation (21), we get the metric potentials A  and B  in the form 

 
1
3

1 1
1expA M V N dt
V

     , (29) 

 
1
3

2 2
1expB M V N dt
V

     , (30) 

where 1 2 2M c M ,  
1

3
2 2M c


  and 1 1 2N c N  , 1

2 3
c

N   . Also  1,2iM i   and  1,2iN i   satisfy the relations 

 2
1 2 1M M   and 1 22 0N N  . 

Now we consider average scale factor of the form. 
Using equation (26) in equations (29) and (30), we get, 

      
311

1 1 1exp
3

k kN
A M t t

k
 


   


 

   
 

, (31) 

      
312

2 1 1exp
3

k kN
B M t t

k
 


   


 

   
 

, (32) 

Therefore, using equations (31) and (32), space-time (16) filled with the fluid (12) in the framework of  f T  gravity 
becomes 
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   

2 2
2 2 2 2 2 2 23 31 2

1 2
2 2exp exp

3 3

k k

k kN N
ds dt M dx M dy dz

k k
  

 
 

   
       

   
             

 (33) 

where,  
31

1

k

t      . 
 

DYNAMICAL PARAMETERS WITH PHYSICAL ACCEPTABILITY 
Deceleration parameter is 

 1q
k


    (34) 

From equation (34), it is found that the deceleration parameter is constant throughout the expansion of the Universe. 
Anisotropy parameter is 

 
 2 2 2 2

1 2
2

2
3m

N N
A

k

  
  (35) 

From above equation (35), it is observed that the nature of the anisotropic parameter is varying with the evolution 
of the universe. 
Expansion scalar is found to be 

 
 1

3k

t


 



, (36) 

From equation (36), it is observed that the expansion scalar is a decreasing function of time. At 0t  , the expansion 
scalar is constant and as cosmic time increases, it decreases, which shows that as time increases, the universe is expanding 
but its rate of expansion is decreasing. 
Shear scalar is 

  
6

2 2 2 2 3
1 2

1 2
2

k

kN N   
 

    , (37) 

It is found that the shear scalar is the inverse function of time. Initially it is constant and the model is shear free at 
an infinite expansion.  
For PDE, using equation (1), the energy density is obtained as 

 2 33
u

u kk

  

 
  

  , (38)  

From Figure 1, it is observed that energy density of PDE is always positive and as time increases, energy density 
decreases. i.e. as t  , 0  , this means that at infinite time, the Universe is empty. 

 
Figure 1. Graphical representation of energy density    of PDE versus cosmic time  t  by taking 1.5  , 0.3k  , 

2u  , 0.13  , 1 1  .  
Now we find exact solution of field equations using some physical quantities for depiction  f T  model [35] which 

is, 

  f T T  (39) 

Isotropic pressure, 
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       2 1
3
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where, 1 2  ,N k   3 1 22  ,N N N   2 3 3  ,N k         2
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1 13
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Figure 2. Graphical representation of isotropic pressure  p  of PDE versus cosmic time  t  by taking 1 0.5c  , 0.3k  , 

0.13,   1 1  , 2  . 
From Figure 2, one can observe that isotropic pressure of PDE model is always negative. Hence the Universe is 

filled with dark energy without baryonic matter. 
Equation of state parameter, 

  
 

  2
1

3
1 2 6 4 52

2 2 1 2
3

u

k
uk



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







       , (41) 

Latterly, a considerable class of scalar field DE models has been given which includes Quintessence  if  1 ,    

Phantom  if 1    and Quinton — which can travel across Phantom to quintessence region. Also, the Quinton 
scenario of DE is designed to comprehend the nature of DE with   across 1 . Setare and Saridakis [36] have examined 
DE models where equation of state parameter    is across 1 , providing a tangible assertion to the Quinton paradigm. 

Some other limits of   — derived from observational findings obtained from SNe-Ia data and, SNe-Ia data 
combined with Cosmic Microwave Background (CMB) anisotropy and Galaxy clustering statistics; are respectively 

1.66 0.62     and 1.33 0.79    . 
In the derived model, the equation of state parameter represents Quintessence region then it goes through a ΛCDM 

model and as time increases, it converts to a Phantom model. Same behavior can be observed from Figure 3. 

 
Figure 3. Graphical representation of Equation of State parameter    of PDE versus cosmic time  t  by taking 1.5  , 

1u    to 2u  , 1 0.5c  , 0.3k  , 0.13  , 2  , 1 1  . 
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Stability factor, 
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 (42) 

We should examine the physical acceptance to ensure that the appropriate solution in the current model is stable. 
First, the velocity of sound needs to be less than that of light in order for this to happen, i.e. within the range 20 s . 
From Figure 4, it is observed that the stability factor for the present model is negative throughout the expansion of the 
Universe i.e. 2 0s   and hence the model is unstable throughout the expansion.  

 
Figure 4. Graphical representation of stability factor of PDE versus cosmic time  t  

by taking 1.5  , 2u  , 1 0.5c  , 0.3,k   0.13  , 1 1  , 2  . 
 

 
STATEFINDER PARAMETERS 

Many models of DE have been developed in an attempt to comprehend its nature and provide an explanation for the 
Universe's accelerated expansion. Sahni et al. [37] have developed the crucial parameters known as Statefinder 
parameters to help differentiate between these models. The Statefinder parameters are associated to the third order 
derivatives of average scale factor. Different values of the pair of Statefinder parameters  ,r s  exhibit different DE 
models. In particular 

 For ΛCDM,  1, 0r s  , 

 For SCDM,  1, 1r s  , 

 For HDE, 21,
3

r s
   
 

, 

 For CG,  1, 0r s  , 

 For Quintessence,  1, 0r s  . 

The Statefinder parameters for our model are 
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2k k
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With appropriate choice of constants 0.3k  and 0.13  , it is clear that 1r   and 0s   which means that the 
model evolves around Quintessence region. 

 
ENERGY CONDITIONS 

Energy conditions are nothing but a set of certain conditions which characterize matter in the universe and are used 
in a variety of ways to comprehend how the universe has evolved. The objective of energy conditions in this work is to 
substantiate the accelerated expansion of Universe. These conditions can be obtained by the widely recognized 
Raychaudhury equations [38], [39], [40], whose forms are:  

 21
3

d
R u u

dT
   

  


          and 21
2

d
R n n

dT
   

  


         , (45) 

where   is the expansion factor, n  is null vector and,   and   are shear and the rotation associated with the vector 

field u , respectively. The following energy conditions are satisfied by the attractive gravity: 
 Weak energy conditions (WEC) if 0, 0p    , 

 Null energy condition (NEC) if 0p   ,    

 Dominant energy conditions (DEC) if 0  , 0p   ,   

 Strong energy condition (SEC) if 3 0p   .  

WEC (Energy density together with NEC): 

 0, 0p       
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 (46) 

DEC: 
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SEC: 

 3 0p              2 12 3 3
1 2 6 4 53 3 2 2 1 2 0
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
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In the analysis of energy conditions, a violation of NEC gives rise to a violation of remaining other energy conditions, 
which depicts the reduction in energy density with expansion of Universe; furthermore, the violation of SEC depicts the 
accelerated expansion of the Universe. 

Evolution of the energy conditions in the obtained Universe versus cosmic time  t , by proper choice of constants, 
is prescribed in Figure 5, Figure 6 and Figure 7. From these figures, along with Figure 1, we can observe that WEC 
 0   together with NEC  0p    and DEC  0p    are verified whereas SEC  3 0p    violates. Hence, 
the violation of SEC gives rise to the accelerating expansion of the Universe. 

 
Figure 5. Graphical representation of evolution of WEC of the Universe versus cosmic time  t  

by taking 1.5  , 2u  , 1 0.5c  , 0.3k  , 0.13  , 1 1  , 2  . 
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Figure 6. Graphical representation of evolution of DEC of the Universe versus cosmic time  t  

by taking 1.5  , 2u  , 1 0.5c  , 0.3k  , 0.13  , 1 1  , 2  . 

Figure 7. Graphical representation of evolution of SEC of the Universe versus cosmic time  t  

by taking 1.5  , 2u  , 1 0.5c  , 0.3k  , 0.13  , 1 1  , 2  . 
 

CONCLUSIONS 
In present study, we considered a homogeneous and anisotropic Bianchi type-I universe with interacting DM and 

PDE in  f T  gravity. 
 It is observed that energy density of PDE is always positive and as time increases, energy density decreases [41-42]. 
 The equation of state parameter represents Quintessence region then it goes through a ΛCDM model and as time 

increases, it converts to Phantom model. 
 The deceleration parameter is found to be constant throughout the expansion of the Universe. 
 The stability factor for the present model is negative throughout the expansion of the Universe and hence the model 

is unstable [4]. 
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МОДЕЛЬ ГРАВІТАЦІЇ БІАНЧІ ТИПУ-I f(T) З ТЕМНОЮ ЕНЕРГІЄЮ PILGRIM 
Сірадж Н. Ханa, Кішор С. Ванкхадеb, Альфред Ю. Шейхc 
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У цій роботі ми проаналізували простір-час Б’янкі типу I (просторово однорідний та анізотропний), використовуючи дві 
взаємодіючі рідини – темну матерію (DM) і темну енергію Pilgrim (PDE) в рамках f(T) гравітації, враховуючи інфрачервоне 
(ІЧ) відсікання як кандидата на горизонт Хаббла  1L H . Ми також провели діагностику за допомогою шукача стану, а 
також обговорили енергетичні умови для перевірки прискореного розширення Всесвіту. 
Ключові слова: темна енергія Pilgrim; темна матерія; гравітація f(T); простір-час Біанчі типу I; космологія 
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In this present paper, we have investigated the dark energy cosmological model in Bianchi−𝑉𝐼0 spacetime by considering generalised
Brans-Dicke theory, self-interacting potential, and a dynamical coupling parameter. For this purpose, we have utilised a hybrid scale
factor to approximate the dynamical behaviour of the deceleration parameter. The deceleration parameter should display distinctive
flipping behaviour at the transition redshift since the universe is thought to have changed from an early deceleration to a late temporal
acceleration. We have studied six alternative transitioning dark energy models on the basis of observational restrictions on the transition
redshift. For each model, the behaviour of the dynamical scalar field, the Brans-Dicke parameter, and the self-interacting potential are
examined. On top of that, we used the generalised Brans-Dicke theory to estimate how the Newtonian gravitational constant changes
over time.

Keywords: Bianchi type−𝑉𝐼0 metric; Generalized Brans-Dicke theory; Hybrid scale factor; Skewness parameter; Unified dark fluid

PACS: 95.36+X, 98.80-k, 95.30-sf

1. INTRODUCTION
The recent observations of the universe’s accelerated expansion were supported by Riess et al. [1] and Perlmutter

et al. [2] through various observational facts. The universe appears to be spatially flat and dominated by dark energy,
an exotic substance with high negative pressure, according to cosmological measurements and data from the cosmic
microwave background [3, 4]. Additionally, it is hypothesised that dark energy makes up 68.3% of the energy in our
universe, dark matter 26.8%, and baryonic matter 4.9% [5, 6]. Two methods have been put forth to explain this late-time
acceleration: one is to develop different dark energy candidates, and the other is to alter Einstein’s gravitational theory.
Developed in 1916, Einstein’s general theory of relativity offered a sophisticated description of gravitation. It has done
a fantastic job of characterising gravitational phenomena. Models of the cosmos have also been built on top of it. The
homogeneous isotropic expanding model based on general relativity seems to give a decent approximation to the observed
large-scale features of the cosmos. In recent years, there have been some intriguing attempts to generalise general relativity
by including Mach’s principle and other desirable aspects that the original theory lacks, for example, general relativity
does not fully account for the inertial properties of matter. Modified gravity theories of general relativity (GR) have long
been a hot area for research. The Brans-Dicke (BD) theory [7] is a simple scalar tensor extension of general relativity
(GR) in which a dynamical scalar field is non-minimally connected to curvature. As a result, the Newtonian constant 𝐺
becomes inversely proportional to the scalar field 𝜙 and hence a function of coordinates. The departure of the results
obtained in this theory under weak field approximation from those found in general relativity under similar approximation
is determined by a dimensionless parameterW, dubbed the Brans-Dicke coupling parameter. The lower the value ofW,
the more disparate the related outcomes. General relativity is well recognized for explaining local astronomical tests very
effectively, and the value ofW needed for BD theory to be consistent with such observations is too high (W > 500),
making BD theory nearly identical to GR in the weak field limit [8]. For numerous reasons, BD theory has a periodic
renaissance, particularly in cosmology. For instance, the extended inflation suggested by BD theory [9,10] helped remove
the gracious exit issue associated with traditional inflationary models. In more recent years, the BD hypothesis has been
employed to perfect the environment for the universe’s late temporal acceleration [?,11,12,14,15]. The amazing aspect is
that, on its own, BD theory can produce an accelerated expansion without the aid of any exotic fields by simply selecting
an appropriate value for the parameterW [16].

The current study examines a generalized BD(GBD) theory where the parameter is a function of the scalar field
inside the framework established by Nordtvedt [17]. The presence of a potentialV = V(𝜙) is also included in our study
as a generalization. The stability criteria were discovered to differ as expected. Mimoso and Nunes [18] worked on a BD
theory generalization with either radiation or a cosmological constant as the matter content. They worked in a conformally
altered version of the theory where the action resembled that of a minimally coupled theory and discovered that GR is an
attractor of the BD theory. The conformally converted version has the disadvantage that the concept of equivalence is no
longer applicable because the rest mass of the test particles becomes a function of the BD scalar field. The study of the
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potential impacts of anisotropy in the early universe is greatly aided by spatially homogenous and anisotropic Bianchi−type
cosmological models in the presence of scalar forces.

In order to paint a realistic image of the cosmos in its infancy, a wide range of spatially homogeneous and anisotropic
cosmological models have been extensively researched within the framework of general relativity. Numerous writers have
examined GR-based cosmological models, scalar tensor models, and modified theories. Bianchi type−𝑉𝐼0 space time in
BD theory has been examined by Santhi et al [19]. Hegazy and Rahaman [20] talked about the general theory of relativity’s
Bianchi type−𝑉𝐼0 cosmological model, which has a variable deceleration parameter and an electromagnetic field. The
anisotropic Bianchi type−𝑉𝐼0 cosmological model with massive scalar field and dark energy fluid was investigated
dynamically by Aditya et al [21]. The magnetized Bianchi Type−𝑉𝐼0 string cosmological model for anti-stiff fluids in
general relativity was studied by Chhajed et al [22]. Tripathy et al [23]. examined unified dark fluid and cosmic transit
models in Brans-Dicke theory.

Inspired by all the above researchers, we take into account Bianchi type−𝑉𝐼0 space time filled with anisotropic dark
energy in the GBD theory with a self-interacting potential. Here we created various dark energy models with a hallmark
flipping behaviour of the cosmos from early slowdown to late time acceleration in the framework of generalized BD theory.
The organisation of this article is as follows. In section 2, we derived all the mathematical formations of the metric that
is considered. Section 3 discussed the dark fluid model and section 4 is devoted to the study of the certain properties.
In the subsequent sections, various discussions will be made regarding flipping nature, the Brans-Dicke parameter, the
self-interacting potential, and the gravitational constant. In the final section, we have mentioned conclusions on the current
study.

2. STRUCTURE OF THE METRIC AND THE MODEL
We consider the homogeneous and anisotropic space-time represented by the Bianchi type-𝑉𝐼0 metric as

𝑑𝑠2 = −𝑑𝑡2 + A2 (𝑡)𝑑𝑥2 + 𝑒2𝑎1𝑥B2 (𝑡)𝑑𝑦2 + 𝑒−2𝑎1𝑥C2 (𝑡)𝑑𝑧2 , (1)

where 𝑎1 is a constant that is not zero and the scale factors A, B, and C are purely functions of cosmic time t.
Here, we take into account the self-interacting potential of the GBD hypothesis. The BD parameter is regarded as

a function of the scalar field 𝜙, which mediates gravity through a dynamical scalar field. In a Jordan frame, the GBD
theory’s action is provided by

𝑆 =

∫
𝑑4𝑥
√−𝑔

[
𝜙𝑅 − W(𝜙)

𝜙
𝜙,𝑖𝜙,𝑖 −V(𝜙) + L𝑚

]
, (2)

where R is the scalar curvature,W(𝜙) is the modified BD parameter, V(𝜙) is the self-interacting potential, and L𝑚 is
the matter Lagrangian.

The GBD theory’s field equations are derived as ,

𝑅𝑖 𝑗 −
1
2
𝑔𝑖 𝑗𝑅 =

8𝜋
𝜙
𝑇𝑖 𝑗 −

W(𝜙)
𝜙2

[
𝜙𝑖𝜙 𝑗 −

1
2
𝑔𝑖 𝑗𝜙,𝛼𝜙

,𝛼

]
− 1

𝜙

[
𝜙,𝑖; 𝑗 − 𝑔𝑖 𝑗□𝜙

]
, (3)

where

□𝜙 =
𝑇

2W(𝜙) + 3
−

2V(𝜙) − 𝜙
𝜕V(𝜙)
𝜕𝜙

2W(𝜙) + 3
−

𝜕W(𝜙)
𝜕𝜙

𝜙,𝑖𝜙
,𝑖

2W(𝜙) + 3
. (4)

The energy momentum tensor’s trace is represented by 𝑇 = 𝑔𝑖 𝑗𝑇𝑖 𝑗 in the equations above, where □ is the D’Alembert
operator.

The definition of the anisotropic fluid’s energy-momentum tensor is

𝑇 𝑖
𝑗 = 𝑑𝑖𝑎𝑔(−𝜌, 𝑃𝑥 , 𝑃𝑦 , 𝑃𝑧) , (5)

where 𝑝𝑥 , 𝑝𝑦 and 𝑝𝑧 are the pressures; 𝜌 is the energy density;
Additionally, the energy conservation equation serves as

(𝑇 𝑖 𝑗 ); 𝑗 = 0.

With the aid of the energy momentum tensor, the GBD theory field equations for the metric (1) are

¥B
B +

¥C
C +

¤B ¤𝐶
B𝐶 +

𝑎2
1
A2 +

W
2
¤𝜙2

𝜙2 +
( ¤B
B +

¤C
C

) ¤𝜙
𝜙
+
¥𝜙
𝜙
=

8𝜋𝑝
𝜙
+ V(𝜙)

2𝜙
, (6)

¥A
A +

¥C
C +

¤A ¤C
AC −

𝑎2
1
A2 +

W
2
¤𝜙2

𝜙2 +
( ¤A
A +

¤𝐶
C

) ¤𝜙
𝜙
+
¥𝜙
𝜙
=

8𝜋𝑝
𝜙
+ V(𝜙)

2𝜙
, (7)
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¥A
A +

¥B
B +

¤A ¤B
AB −

𝑎2
1
A2 +

W
2
¤𝜙2

𝜙2 +
( ¤A
A +

¤B
B

) ¤𝜙
𝜙
+
¥𝜙
𝜙
=

8𝜋𝑝
𝜙
+ V(𝜙)

2𝜙
, (8)

¤A ¤B
AB +

¤B ¤C
BC +

¤A ¤C
AC −

𝑎2
1
A2 −

W
2
¤𝜙2

𝜙2 +
( ¤A
A +

¤B
B +

¤C
C

) ¤𝜙
𝜙
= −8𝜋𝜌

𝜙
+ V(𝜙)

2𝜙
, (9)

¤B
B −

¤C
C = 0, (10)

and

¥𝜙 + ¤𝜙
( ¤A
A +

¤B
B +

¤C
C

)
=

𝜌 − 3𝑝
2W(𝜙) + 3

+
2V(𝜙) − 𝜙

𝜕V(𝜙)
𝜕𝜙

2W(𝜙) + 3
−

𝜕W(𝜙)
𝜕𝜙

¤𝜙2

2W(𝜙) + 3
. (11)

From the above set of equations , we obtain

2 ¥B
B +

¤B2

B2 +
𝑎2

1
A2 +

W
2
¤𝜙2

𝜙2 + (
2 ¤B
B )
¤𝜙
𝜙
+
¥𝜙
𝜙
=

8𝜋𝑝
𝜙
+ V(𝜙)

2𝜙
, (12)

¥A
A +

¥B
B +

¤A ¤B
AB −

𝑎2
1
A2 +

W
2
¤𝜙2

𝜙2 +
( ¤A
A +

¤B
B

) ¤𝜙
𝜙
+
¥𝜙
𝜙
=

8𝜋𝑝
𝜙
+ V(𝜙)

2𝜙
, (13)

2 ¤A ¤B
AB +

¤B2

B2 +
¤A ¤B
AB −

𝑎2
1
A2 −

W
2
¤𝜙2

𝜙2 +
( ¤A
A +

2 ¤B
B

) ¤𝜙
𝜙
= −8𝜋𝜌

𝜙
+ V(𝜙)

2𝜙
, (14)

and

¥𝜙 + ¤𝜙
( ¤A
A +

2 ¤B
B

)
=

𝜌 − 3𝑝
2W(𝜙) + 3

+
2V(𝜙) − 𝜙

𝜕V(𝜙)
𝜕𝜙

2W(𝜙) + 3
−

𝜕W(𝜙)
𝜕𝜙

¤𝜙2

2W(𝜙) + 3
. (15)

Where the overhead dot stands for ordinary differentiation with respect to t.
Solving equation(10), we obtain

C = 𝑚B (16)

The field equations (12) − (15) are now a system of four independent equations with eight unknown parameters (A, B, 𝑝,
𝜌, 𝜙, 𝛿𝑦 , V(𝜙) andW(𝜙)). To obtain a determinate solution to the field equations, we consider the following suitable
conditions, which are physically viable.

i) We assume that the expansion scalar (𝜃) is proportional to the shear scalar (𝜎) from [25]. This condition leads to ,

A = B𝑛, (17)

where n≠1 is a constant.

ii) By the motivation of Tripathy et. al. [23], we take a look at a hybrid scale factor(HSF),

𝑎(𝑡) = 𝑎0

(
𝑡

𝑡0

)H1

𝑒H
0 (𝑡−𝑡0 ) , (18)

where 𝑎0 is the scale factor at the current epoch 𝑡0 andH0 andH1 are HSF parameters whose values are positive constants,
and in this work, we have assumed 𝑎0 = 𝑡0 = 1.
Spatial volume of the model and average scale factor are given by

𝑉 =
√−𝑔 𝑎𝑛𝑑 𝑎(𝑡) = 𝑉1/3.

Then we obtain,
A =

1
𝑚

𝑛
(𝑛+2)

𝑡
3H1𝑛
(𝑛+2) 𝑒

3H0𝑛(𝑡−1)
𝑛+2 , (19)

B =
1

𝑚
1
(𝑛+2)

𝑡
3H1
(𝑛+2) 𝑒

3H0 (𝑡−1)
𝑛+2 , (20)

and
C =

1

𝑚
1
(𝑛+2) −1

𝑡
3H1
(𝑛+2) 𝑒

3H0 (𝑡−1)
𝑛+2 . (21)

From equations (12) and (13), we get
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¤A
A −

¤B
B =

𝑐1

AB2𝜙
𝑒

∫ ©­­«
2𝑎2

1
A2
¤A
A −

¤B
B

ª®®¬𝑑𝑡 , (22)

where 𝑐1 is an integral constant.
Assume

𝛿0 = 𝑒

∫ ©­­«
2𝑎2

1
A2
¤A
A −

¤B
B

ª®®¬𝑑𝑡 . (23)

From equations (19)− (23) , we get,
𝜙

𝜙0
= 𝑡−3H1

𝑒−3H0 (𝑡−1)
(
H1

𝑡
+ H0

)−1

, (24)

where 𝜙0 =
𝑚 𝑐1 𝛿0 (𝑛+2)

3(𝑛−1) .

The field equations (12) through (15) are used to get the Brans-Dicke parameter and the self-interacting potential,
as

W(𝜙) =
[
−3 (H

1+H0𝑡 )
𝑡

+ H1

𝑡 (H1+H0𝑡 )

]−2



8𝜋(𝜌 + 𝑝)

𝜙0𝑡−3H1
𝑒−3H0 (𝑡−1)

(
H1

𝑡
+ H0

)−1 −
9(2𝑛2 + 3𝑛 + 5) (H1 + H0𝑡)2

(𝑛 + 2)2𝑡2

− 2
(

H1

𝑡 (H1 + H0𝑡)

)2


, (25)

and

V(𝜙) =
[
𝜙0𝑡
−3H1

𝑒−3H0 (𝑡−1)
(
H1

𝑡
+ H0

)−1
] 
− 3(𝑛 + 5)H

1

𝑡2
+ 9(𝑛2 + 7𝑛 + 2)

(𝑛 + 2)2

(
H1

𝑡
+ H0

)2

+ 2(H1)2
𝑡2 (H1 + H0𝑡)2

− 2H1

𝑡2 (H1 + H0𝑡)


+ 8𝜋(𝜌 − 𝑝) , (26)

Here, in order to determine the dynamical BD parameter and the self-interacting potential, we take into consideration
a straightforward linear equation of state known as the equation of state of the unified dark fluid (UDF). Dark energy and
dark matter, which are two separate concepts, are how the UDF explains how both dark sectors can come together. It is
important to note here that there are several generalized equations of states in the literature that consider dark energy and
dark matter as two different sides of the same cosmic fluid [26].

3. UNIFIED DARK FLUID
Undisputedly, exotic dark energy and non-baryonic matter are the main drivers of late-time cosmic acceleration.

Recent Planck measurements show that the universe’s mass-energy budget is made up of 68.3% dark energy, 26.8% dark
matter and 4.9% baryonic matter and that the dark sector, which comprises dark energy and dark matter, accounts for about
95% of that budget. The mysterious cosmic speed-up phenomenon in the late hours has several possible causes. Various
theories and notions have been created to better understand the phenomenon. This could be accomplished by using a
particular strategy that unifies dark energy and dark matter into a single UDF. After the generalized Chaplygin gas model
(CGM) was successful in addressing concerns about the late-time cosmic acceleration and dark energy problem [27], a
dark fluid model with a linear equation of state

𝑝 = 𝛼 (𝜌 − 𝜌0) , (27)

was presented. Here, the UDF’s constant parameters 𝛼 and 𝜌0 are used. The adiabatic sound speed of the UDF is constant,
𝐶2
𝑠 =

𝑑𝑝

𝑑𝜌
=𝛼. Both hydrodynamically stable (𝛼 > 0) and unstable (𝛼 < 0) fluids are described by this non-homogeneous

linear equation of state. The conservation equation is

¤𝜌 + 3𝐻 (𝑃 + 𝜌) = 0, (28)

by integrating equation (28),

𝜌 =
𝛼

(1 + 𝛼) 𝜌0 +
𝑐2
(1 + 𝛼)

1
𝑡3H1 (1+𝛼)𝑒3H0𝑡 (1+𝛼)

, (29)
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where 𝑐2 is an integrating constant.
From equations (27) and (29), we derive

𝑝 =
−𝛼
(1 + 𝛼) 𝜌0 +

𝑐2𝛼

(1 + 𝛼)
1

𝑡3H1 (1+𝛼)𝑒3H0𝑡 (1+𝛼)
, (30)

Figure 1. Study of pressure over the redshift parameter Figure 2. Analysis of density in terms of redshift parameter

The dark energy equation of state can be seized as the following when considering the redshift:

𝜔𝐷 =
𝑝

𝜌
= 𝛼 − 𝛼(1 + 𝛼)𝜌0(

𝛼𝜌0 + 𝑐1𝑒−3H0 (1+𝛼) (1 + 𝑧)3(1+𝛼)
) , (31)

where we have used the fact 1 + 𝑧 = 1
𝑎

.

Figure 3. For three different values of 𝛼, the dark energy equation of state in terms of red shift.

Figure (3) depicts the dark energy equation of the state’s evolutionary behaviour for three different values of the
limited adiabatic sound speed 𝛼 The dynamical behavior of a bouncing model has been discussed in the framework of
the dark energy equation of state for UDF. Here, we fixed the values for constants H0 = 0.55, 𝑐2 = 0.1, 𝜌0 = 10 using
various values of constants. A change in these values, as observed in this work, does not effect on 𝜔𝐷’s overall dynamical
behaviour. In light of this, we used H0 = 0.55, 𝑐2 = 0.1, 𝜌0 = 10 to plot the figure in the current work. According to the
illustration, the lower curve in the graphic reflects the value 𝛼 = 0.0172, the middle curve to the value 𝛼 = 0.03 and the
higher curve to the value 𝛼 = 0.00487. Depending on various conditions, the dark energy equation of state can change in
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a variety of ways. Consequently, affects the slope of 𝜔𝐷 . Regardless of the value of 𝛼, 𝜔𝐷 eventually develops to overlap
with the ΛCDM model (𝜔𝐷 = −1).

3.1. Unified dark fluid in 𝜔′
𝐷
− 𝜔𝐷

In order to evaluate the quintessence scalar field, Caldwell and Linder [29,30] first developed the EoS plane to explain
the areas of the expanding Universe. Two unique zones are characterised by the plane for varying values of 𝜔𝐷 and 𝜔′

𝐷
.

When 𝜔′
𝐷
> 0, 𝜔𝐷 < 0, the plane is referred to as a thawing region and when 𝜔′

𝐷
< 0, 𝜔𝐷 < 0, it is a freezing region.

𝜔′
𝐷

is obtained for this model is,

𝜔′𝐷 =
−3𝛼(1 + 𝛼)2𝑐1𝑡−3H1 (1+𝛼)𝑒

−3H0𝑡 (1+𝛼)
(
H1
𝑡
+H0

)[
𝛼𝜌0 + 𝑐1𝑡−3H1 (1+𝛼)𝑒−3H0𝑡 (1+𝛼)

] . (32)

Figure 4. Overview of 𝜔′
𝐷

against 𝜔𝐷

The EoS plane (𝜔′
𝐷
− 𝜔𝐷) for this cosmological model is shown in Figure (4) for various values of 𝛼 = 0.0172, 𝛼 =

0.3 and 𝛼 = 0.00487. As 𝜔′
𝐷
< 0, 𝜔𝐷 < 0 for our model, it is seen that the model is in the freezing area. This shows that

the universe is expanding faster than before.

4. PARAMETERS OF THE MODEL
• Hubble Parameter: Hubble’s parameter is

𝐻 =
¤A
A + 2

¤B
B =

H1

𝑡
+ H0. (33)

• Expansion scalar:

𝜃 = 3𝐻 = 3
[
H1

𝑡
+ H0

]
. (34)

• Shear scalar:

𝜎2 =
1
2

( 3∑︁
𝑖=1

𝐻𝑖
2 − 𝜃2

3

)
=
(𝑛 − 1)2
(𝑛 + 2)2

(
H1

𝑡
+ H0

)2

. (35)

• Anisotropic parameter:

𝐴ℎ =
1
3

3∑︁
𝑖=1

(
𝐻𝑖 − 𝐻

𝐻

)2
=

6(𝑛2 + 2𝑛 + 3)
(𝑛 + 2)2

. (36)
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• State-finder parameters:

𝑟 =
𝑎

𝑎𝐻3 =
1

( H1

𝑡
+ H0)3

[
H1 (H1 − 1) (𝐻2 − 2)

𝑡3
+ 3H1H0 (H1 − 1)

𝑡2
+ 3H1H0

𝑡
+ (H0)3

]
, (37)

and
𝑠 =

𝑟 − 1
3(𝑞 − 1

2 )
=

4H1

(H1 + H0𝑡) (2H1 − 3(H1 + H0𝑡)2)
− 6H1

(2H1 − 3(H1 + H0𝑡)2)
. (38)

• Deceleration parameter: The scale-factor 𝑎(𝑡) yields the following expression for the deceleration parameter 𝑞(𝑧):

𝑞 =
−𝑎 ¥𝑎
¤𝑎2 = −1 + H1

(H1 + H0𝑡)2
. (39)

Figure 5. Study of deceleration parameter over z for various values ofH0 andH1

The fluctuation of DP for the different sets of the HSF model parameters is shown in Figure (5). As illustrated
in Table 1, we can see that 𝑞(𝑧) is an increasing function of redshift z and exhibits a signature-flipping (transition)
point at 𝑧𝑎 within the range 0.65 < 𝑧𝑎 < 0.9, where 𝑞(𝑧𝑎) = 0 and 𝑞(𝑧) < 0 for 𝑧 < 𝑧𝑎 and 𝑞(𝑧) > 0 for 𝑧 > 𝑧𝑎, as
well as 𝑞(𝑧)←→−1 as 𝑧←→−1 and 𝑞(𝑧) tends to a finite positive value as 𝑧 −→∞.
Our universe is accelerating right now and decelerating in the early phases, which are quite close to the most
recent observations, based on the behaviour of DP 𝑞(𝑧) over redshift z. As a result, in line with the most recent
research evidence, our model’s derivation depicts a transit phase from a universe that is slowing down to one that is
accelerating.

5. FLIPPING NATURE
Observations in the past indicate that the universe is growing more rapidly now than in earlier epochs. The idea that

the cosmos may have changed from a decelerating to an accelerating phase is also held. The cosmic redshift at which this
transition takes place is known as the transition redshift 𝑧𝑎 . Inversion of the signature is implied.

The 𝑞’s behaviour shifts from a positive value early in cosmic evolution to a negative value later. In the current work,
we seek to construct a cosmological model that can both forecast how this universe will behave and offer a distinctive
flipping of the deceleration parameter. Taking into account a hybrid scale factor equation (18).

This hybrid scale factor consists of two parts, one of which expands exponentially and the other of which expands
power law-like. At the beginning of cosmic evolution, power law behaviour rules over cosmic dynamics, in contrast to the
exponential factor’s supremacy at the end. The exponential law is recovered whenH1 = 0, and a power law expansion is
simulated by the scaling factor whenH0 = 0. Power law and the exponential rule of expansion were previously employed
by Tripathy et al. [24] to construct certain UDF models within the context of GBD theory. Both the power law and
the exponential law of expansion produce a constant deceleration parameter. We suggest utilising a hybrid expansion
law in which the deceleration parameter changes from positive to negative values early in cosmic history on account of
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the behaviour of planetary transit. The deceleration parameter for this model is 𝑞 = −1 + H1

(H0𝑡+H1)2 , while the Hubble

parameter is 𝐻 = H0 + H1

𝑡
. Mishra and Tripathy [31–36], in their recent publications, have addressed a number of issues

relating to the late-time cosmic speed-up event within the context of GR and modified gravity, taking the HSF into mind.
As 𝑡 −→ 0 , the HSF deceleration parameter falls to 𝑞 ≃ −1 + 1

H1 and changes throughout cosmic time to become 𝑞 ≃ −1
at the end of the culmination of cosmic evolution

The transit epoch correlates to a redshift called transit redshift 𝑧𝑎, which happens when the cosmos switches from a
decelerated to an accelerated phase. This value has been constrained to be of the order of one based on several theoretical
and empirical factors, i.e. 𝑧𝑎 ∼ 1. For instance, Busca [37] confined the redshift of the transition to be 𝑧𝑎 = 0.82 ± 0.08;
and Capozziello et al. [38] succeeded in achieving a constraint on this parameter to be 𝑧𝑎 = 0.426+0.27

−0.089. According to
Reiss et al. [39] calculated limitations of the transition redshift is 𝑧𝑎 = 0.69+0.23

−0.12 . In contrast to Lu et al. [?] who got the
constraint 𝑧𝑎 = 0.69+0.23

−0.12. The constraint was obtained by Moresco et al. [?] 𝑧𝑎 = 0.4 ± 0.1 .The deceleration parameter
vanishes at the transit redshift, corresponding to a geological time 𝑡 = −H1

H0 ±
√
H1

H0 . One may have the transition period as
𝑡 =

√
H1−H1

H0 in the context of orthodox Big Bang cosmology with a positive time frame only. It obviously limits the value
of the parameter H1 to the range 0 < H1 < 1. Mishra and Tripathy [31] have attempted to restrict this parameter to the
range 0 < H1 < 1

3 . H0 is treated as a free parameter in that work. In contrast,H0 is restricted in later work to the range
0.075 ≤ H0 ≤ 0.1 in accordance with the restrictions on the transition redshift 0.4 ≤ 𝑧𝑎 ≤ 0.8 [34]. Additionally, Mishra
et al. [32] replicated the transition redshift of 𝑧𝑎 = 0.806 using the precise values H0 = 0.695 and H1 = 0.085 . HSF
is unquestionably necessary to reproduce the deceleration parameter’s unique flipping behaviour. The value of H0, one
of the two HSF parameters, determines how quickly a decelerating world transitions to an accelerating one. The pace of
transition is faster the higher the value of H0. As a result, these parameters can be appropriately constrained using both
the observed transit redshift values and the Hubble parameter data for various redshifts. In a recent study, we restricted the
other parameters to achieve two specific values of the transition redshift, especially 0.8 and 0.5 [30] We also considered
two specific values ofH1, specifically 0.2 and 0.3. The purpose of doing this was to restrict the HSF’s parameters.

It is undeniable that HSF is necessary to reproduce the deceleration parameter’s hallmark flipping behaviour. The
value of H0, one of the two HSF parameters, determines how quickly a decelerating world transitions to an accelerating
one. The pace of transition is faster the higher the value ofH0. As a result, these parameters can be appropriately limited
using both the Hubble parameter data at various redshifts and the observed transit redshift values. In a recent study, we
took into consideration three specific values of H1, particularly 0.1, 0.2 and 0.3 , and confined the other parameter to
obtain the interval of transition redshift in between 0.4 < 𝑧𝑎 ≤ 0.9. Six alternative models—Set1, Set2, Set3, Set4, Set5
and Set6—have been produced as a result of this approach. Table 𝐼 lists the model parameters that were produced. The
built-in models fall comfortably within the permitted bounds of the observed value.
TABLE I: Using transition redshift data from figure (5), constrain model parameters for the hybrid scale factor.

HSF Models H1 H0 𝑧𝑎
Set1 0.3 0.55 0.7
Set2 0.2 0.7 0.88
Set3 0.1 0.65 0.7
Set4 0.3 0.6 0.84
Set5 0.2 0.65 0.8
Set6 0.2 0.6 0.687

6. DISCUSSION OF BRANS-DICKE SCALAR FIELD

The Brans-Dicke scalar field is in this model is derived as,

𝜙 = 𝜙0 𝑡−3H1
𝑒−3H0 (𝑡−1)

(
H1

𝑡
+ H0

)−1

, (40)

where the BD scalar field’s value at the current epoch is 𝜙0, in this case. The scale factor’s first derivative, together
with both, affect the BD scalar field. The outcomes of Tripathy et al., [24] for an exponential and power law expansion of
the scale factor can be retrieved from the BD scalar field calculation given above. The Hubble rate becomes constant for
an exponential scale factor expansion, which causes the BD scalar field to be reduced to 𝜙 = 𝜙0𝑎

3.

Similar to how the BD scalar field changes with a power law expansion such as a 𝑎 ∼ 𝑡H
1 , it becomes a 𝜙 ∼ 𝑡3H

1−1.
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Figure 6. Evolution of the Brans-Dicke scalar field 𝜙 over the redshift z for six constraints.

The BD scalar field is shown in Fig:(6) for each model that has been constructed, transitioning from initially having
some large values to currently having modest values. For the models with H1 = 0.2 andH1 = 0.1, however, 𝜙 first
increases during the first phase to a specified maximum and subsequently decreases to the typical behaviour at a specific
redshift. The HSF model performs the same at low redshift regardless the parameters of the model. Although behaves
uniformly for all HSF models in the current epoch and those that follow, it’s crucial to note that they exhibited fundamentally
different behaviours at redshifts 𝑧 > 0.5 during a prior cosmic phase. The behaviour of the models Set1 and Set4 appears
to be smooth in terms of the development of the BD scalar field. Therefore, compared to the other four assumptions, these
two approaches might be better suited for the cosmological study.

7. INVESTIGATION OF THE BRANS-DICKE PARAMETER
A prior work [24] used the built-in anisotropic models to compute the Brans-Dicke parameter while taking into

consideration UDF within the context of the GBD theory and assuming either a power law or an exponential increase of
the volume scale factor. The deceleration parameter is constant as a result of this assumption. It has been shown that
in such cases the anisotropic parameter only influences the non-evolving part of the Bran-Dicke parameter. The hybrid
expansion law we examined in this work, however, replicates the true transitory universe with early deceleration and late
cosmic expansion.

The Brans-Dicke parameter is calculated in this work as,

W(𝜙) =
[
−3 (H

1+H0𝑡 )
𝑡

+ H1

𝑡 (H1+H0𝑡 )

]−2


8𝜋𝑐1 (H1 + H0𝑡)

𝑡 𝜙0 𝑡3H
1𝛼 𝑒3H0 (𝛼𝑡+1)

− 9(2𝑛2 + 3𝑛 + 5) (H1 + H0𝑡)2
(𝑛 + 2)2𝑡2

− 2
(

H1

𝑡 (H1 + H0𝑡)

)2


, (41)

Figure 7. The Brans-Dicke parameter,W(𝜙) for is shown over the scalar field 𝜙 for allH0 andH1 constraints.



112
EEJP. 3 (2024) M.V. Santhi, et al.

Figures (7) (a), (b), and (c) show how the Brans-Dicke parameter has changed in relation to the BD scalar field . In
each graph, the BD parameter is displayed for the two models. In Fig. (7)(a)H0 values are 0.55 and 0.6 with H1 = 0.3,
in Fig. (7)(b) H0 values are 0.65 and 0.6 with H1 = 0.2, and in Fig. (7)(c) H0 values are 0.7 and 0.65 with H1 = 0.2
and 0.1 respectively. We took into account the value of 𝛼=0.0172 in order to visualise the data.

The BD parameter frequently falls as the scalar field gets larger. However, it is noted that at the late stages of
cosmic history, behaves consistently across all models generating a kind of loop structure in the cases that we presented
in Fig.(7)(𝑎) when H1 = 0.3. For the cases with H1 = 0.1 and 0.2 in Fig.(7)(𝑏) and 8(𝑐), at some early epochs,W(𝜙)
exhibits strange behaviour, forming a type of loop structure with the scalar field. This tendency may be a result of the
peculiar behaviour of the BD scalar field for the set2, set3, set5, and set6 models, which shows decrease with z, a minimum
at a particular 𝑧, and then grows as 𝑧 grows further. As a result, set1 and set4 may be more appropriate models for
cosmological studies than the others. Notably, the BD parameter eventually becomes a constant value irrespective of the
HSF parameters chosen at a later stage of cosmic evolution. The quantitative estimation of the BD parameter remains a
contentious topic. However, our research revealed that all models anticipate values that are essentially the same. This
leads to the conclusion that the anisotropy in the expansion rates influences the value at a certain epoch.

8. SELF−INTERACTING POTENTIAL
The self interacting potentialV(𝜙) in this model is calculated as,

V(𝜙) =
[

𝜙0

𝑡3H1
𝑒3H0 (𝑡−1)

(
H1
𝑡
+H0

) ]


9(𝑛2 + 7𝑛 + 2)
(𝑛 + 2)2

(
H1

𝑡
+ H0

)2

+ 2(H1)2
𝑡2 (H1 + H0𝑡)2

− 3(𝑛 + 5)H1

𝑡2
− 2H1

𝑡2 (H1 + H0𝑡)


+8𝜋

(
2𝛼𝜌0
(1 + 𝛼) −

𝑐2 (1 − 𝛼)
(1 + 𝛼)

1
𝑡3H1 (1+𝛼)𝑒3H0𝑡 (1+𝛼)

)
,

(42)

Figure 8. Study of the self interacting potentialV(𝜙) over the scalar field 𝜙 for all constraints ofH0 andH1.

Figures 9(𝑎), 9(𝑏), and 9(𝑐) show the self-interacting potentialV(𝜙)’s variation as a function of the BD scalar field.
For the two models in each graph, the self-interacting potential nature is displayed. In Fig.9(a)H0 values are 0.55 and 0.6
with H1 = 0.3, in Fig.9(b) H0 values are 0.65 and 0.6 with H1 = 0.2, and in Fig.9(c) H0 values are 0.7 and 0.65 with
H1 = 0.2 and 0.1 respectively. We took into account the value of 𝛼=0.0172 to visualise the data.

The built-in HSF models have an attractive self-interacting potential that rises sharply from a significant negative
value at an early epoch to virtually nothing at the end of evolution.The six models act in a manner that is comparable at the
low redshift area, when the scalar field has a smaller magnitude. On the other hand, the six models split to act differently
at the high redshift area with a big scalar field. At a late stage in the evolution of the universe, the self-interacting potential
stops being reliant on HSF models and appears to be static about the BD scalar field.

9. NEWTONIAN GRAVITATIONAL CONSTANT G’S FLUCTUATION
The Newtonian gravitational constant 𝐺 (𝜙) is described as follows in GBD theory:

𝐺 (𝜙) = 4 + 2W(𝜙)
𝜙(3 + 2W(𝜙)) , (43)

so its variation of time is as
¤𝐺
𝐺

=
−2 ¤W(𝜙)

(4 + 2W(𝜙)) (3 + 2(𝜙)) −
¤𝜙
𝜙
. (44)
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Figure 9. Study of ¤𝐺
𝐺

over the redshift 𝑧. Here we fixed the
𝛼 = 0.0172.

Figure 10. Study of ¤𝐺
𝐺

over the function 𝜙. Here we fixed the
𝛼 = 0.0172.

In Figure (9) we display the 𝐺’s time variation for the six HSF models as a function of redshift. We have shown the
𝐺 time variation as a function of redshift. The determining ¤𝐺

𝐺
climbs from a previously significant negative value and

reached a high in the recent past. It then drops to a somewhat positive number. The ¤𝐺
𝐺

peaks for various models occur
at various redshifts. For a fitted model, the 𝑧𝑚𝑎𝑥 at which ¤𝐺

𝐺
peaks is determined by the values of 𝑧𝑎 and H1. For a

specificH1, higher 𝑧𝑎 causes higher 𝑧𝑚𝑎𝑥 . Similar to this, largerH1 values translate into higher 𝑧𝑚𝑎𝑥 for a given 𝑧𝑎. The
temporal variation of the Newtonian gravitational constant as a result of the BD scalar field is also shown in Figure (10).
It is noted that the factor ¤𝐺

𝐺
initially increases with an increase in and then decreases after peaking at a particular value for

all six HSF models. The particular HSF models and associated model parameters determine which BD scalar field hosts
the peak of ¤𝐺

𝐺
.

10. CONCLUSION
The dynamics of our cosmos are incredibly complex, according to numerous observable pieces of evidence. The

history of the universe’s expansion is shown using a variety of methods because it is unknown exactly what these enigmatic
fluids are in their most basic form. One of the most widely accepted theories postulates that dark energy and dark
matter develop independently of one another, with the dynamics of each dark fluid existing independently of the other.
Furthermore, it’s believed that these two black fluids are just two sides of a single fluid, posing as both dark fluids. In
cosmological literature, the idea of a single dark fluid that displays two distinct dark sides of the cosmos is referred to
as the ”unified dark fluid.” In the current work, we have concentrated on a unified dark fluid model. Using GBD, we
have developed a few astronomical models that accelerate. We pick Bianchi type−𝑉𝐼0 directional expansion rates that are
anisotropic and homogeneous in space. The GBD theory postulates that the Brans-Dicke parameter fluctuates with the
scalar field. The Brans-Dicke hypothesis modifies the GR by proposing that gravity is propagated by a dynamic scalar
field. The late-time cosmic speed-up phenomenon has been verified by observations. We employ a unified dark fluid
equation of state that combines the treatment of dark matter and dark energy into a single equation, allowing us to build
accelerated simulations. The parameters of the unified dark fluid model have been subject to limitations generated from
various observational data using different techniques. Observational constraints have been used to establish the operational
range of the model. construct a workable cosmological model inside the GBD hypothesis. The universe is expanding faster
and faster. It suggests that, at some point in time, the universe may have entered an acceleration phase after experiencing
a period of deceleration. The deceleration parameter, which should be positive at some early point in cosmic history
and negative at some late point, must flip as a signature for this behaviour. We employ a hybrid scale factor to roughly
represent a deceleration parameter with clear switching behaviour. Two components comprise the HSF. One element is
more prevalent in the early phases of cosmic evolution than the other element is in the later stages. The HSF could thus
recreate an entire journey history, beginning with an early deceleration and concluding with a late-time acceleration. The
HSF’s parameters must be restricted to provide a testable accelerated cosmological model. The transition redshift, which
marks the potential turning point from a decelerating to an expanding universe, is a crucial cosmological statistic. To
constrain the HSF parameters, we studied the recently constrained transition redshift values. In particular, we employed six
transition redshift values in our work, ranging from 𝑧𝑎 = 0.65 to 𝑧𝑎 = 0.9. For an accelerated model, six distinct models
are set up. We looked into the scalar field evolution, Brans-Dicke parameter, self-interacting potential, and time variation
of the Newtonian gravitational constant for these models. For each of the constructed models, the BD scalar field changes
with time from initially having some large values to later having smaller values. The BD scalar fields of all HSF models
react identically at a late stage of evolution. For the models Set4 and Set6, however, the redshift first increases during the
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first phase to a specific maximum before declining to the typical behaviour at a specific low redshift. For the BD scalar
field, the evolutionary behaviour of the other four models is a little bit smoother. This behaviour is consistent with the
evolution of other parameters, such as the BD parameter and the fluctuation of the Newtonian gravitational constant.The
BD parameter decreases along with the BD scalar field, which increases in every model that has been built. Because the
BD parameter virtually becomes a constant amount at a later stage of evolution, the GBD theory may be convergent with
the standard Brans-Dicke theory. A major negative value at an early epoch diminishes to ridiculously small values later
in development, making the self-interacting potential of the built-in HSF models desirable by nature. The models behave
similarly when the scalar field has a smaller amount at low redshift. In the large redshift sector with a big scalar field,
however, all models split to act differently.
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ДОСЛIДЖЕННЯ КОСМОЛОГIЧНИХ МОДЕЛЕЙ АНIЗОТРОПНОЇ ТЕМНОЇ ЕНЕРГIЇ
В УЗАГАЛЬНЕНIЙ ТЕОРIЇ БРАНСА-ДIКЕ

М. Вiджая Сантi, К. СантошРупа
Факультет прикладної математики, Унiверситет Андхра, Вiсакхапатнам 530003, Iндiя

У цiй статтi ми дослiджували космологiчну модель темної енергiї в просторi-часi Б’янчi−𝑉 𝐼0, розглядаючи узагальнену теорiю 
Бранса-Дiкке, потенцiал самовзаємодiї та параметр динамiчного зв’язку. Для цiєї мети ми використали гiбридний масштабний 
коефiцiєнт для наближення динамiчної поведiнки параметра уповiльнення. Параметр уповiльнення повинен демонструвати 
характерну поведiнку перевертання при перехiдному червоному зсувi, оскiльки вважається, що Всесвiт змiнився з раннього 
уповiльнення на пiзнє часове прискорення. Ми вивчили шiсть альтернативних моделей переходу темної енергiї на основi 
спостережних обмежень на червоне змiщення переходу. Для кожної моделi дослiджено поведiнку динамiчного скалярного 
поля, параметра Бранса-Дiкке та потенцiалу самовзаємодiї. Крiм того, ми використали узагальнену теорiю Бранса-Дiкке, щоб 
оцiнити, як ньютонiвська гравiтацiйна стала змiнюється з часом.
Ключовi слова: метрика типу Б’янчi−𝑉 𝐼0; узагальнена теорiя Бранса-Дiкке; гiбридний масштабний коефiцiєнт; параметр 
асиметрiї; унiфiкована темна рiдина
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We present the spectral and timing study of V404 Cygni from all its available Chandra observations and which recently come up in
public domain of Chandra data archive. The data reduction and analysis were done using CIAO 4.14 and HEASOFT 6.30.1. The
spectral analysis was done using spectral fitting package XSPEC version 12.12.1, available in the Heasoft package. The spectra of
the source is fitted in the energy range 0.3 -8.0 keV using two empirical spectral models - the absorbed power law and an absorbed
disk-blackbody. The X-ray binary source V404 Cygni is found to be in the quiescent state having the X-ray luminosity in the range with
few times 1032 erg s−1. The source is found to be in the hard state and is well explained by power-law model with a powerlaw photon
index Γ ∼ 2 with n𝐻 in the range ∼ (0.7 -1.2) × 1022 cm−2. From timing analysis, Src-1 (V404 Cygni), in all the time bins- 0.5, 1 and
2 ks, the probability for the count rate to be constant is 0.17 ×10−33 in all the observations in the year 2021 and 2023 (ObsID 23421,
ObsID 23422, ObsID 23423 & ObsID 28927). However, in the year 2017 observation it is found to be less variable. This clearly shows
the presence of short-term variability in kilo-seconds time-scales with the currently available Chandra data. So, it is indicative that the
binary source V404 Cygni is more likely to be variable source both in long-term (years) as well as short-term (kiloseconds) scales.

Keywords: Accretion, Accretion disks; X-rays; Binaries-stars:individual(V404 Cygni); Black holes

PACS: 97.10.Gz, 95.85.Nv, 97.80.-d : 97.80.Jp, 97.60.Lf

1. INTRODUCTION
Among the sky’s brightest X-ray sources were X-ray binaries. X-ray binaries (XRBs) are the galaxy’s principal

X-ray sources. They include neutron star (NSXB) and black hole (BHXB) X-ray binaries, where wind-fed or Roche lobe
overflow is responsible for the mass transfer from the companion to the compact star. Black hole X-ray binary (BHXB) is
an interacting binary system consisting of a stellar-mass black hole accreting material from a companion star. Black hole
X-ray binaries (BHXBs) are usually transient systems that undergo extended periods of (X-ray) quiescence interspersed
with comparatively brief outbursts. The abrupt increase in the rate of accretion onto the compact object is what causes the
outburst. Most likely, a disk instability is the reason for this increase. The quiescence phase and the outbursting phase are
the two stages of a transient black hole candidate’s (BHC) life cycle. They spend the most of their life in the quiescence
phase, accreting small amounts of matter at low X-ray luminosities. The X-ray luminosity (𝐿𝑥) during outburst, have
been observed within a range of 1034−39 erg s−1 at very high luminosities in the 0.5–10 keV band. The X-ray luminosity
( 𝐿𝑥) during quiescence is mentioned to be ranging from 𝐿𝑥 ∼ 1030−33 erg s−1 [1]. The disc instability concept provides
a comprehensive explanation for the quiescence to outburst cycle [2],[3]. According to the disc instability concept, which
describes how accreting matter accumulates in the accretion disc during quiescence and is abruptly transported to the
compact object during outburst. However, there is still debate over where the emission of X-rays from LMXBs during
quiescence originates.

Black hole binaries (BHBs) show different X-ray spectral states as they accrete gas during transient outburst
episodes [4]. The two primary spectral states are the hard state and the soft state, traditionally known as the low-hard state
(LHS) and the high-soft state (HSS), respectively [5]. X-ray binaries within the Milky Way have been extensively studied
and are an important benchmark in studying ULXs [6]. Furthermore, X-ray binaries are very helpful in comprehending the
nature of compact objects and the physical mechanism of accretion. Also timing study of X-ray binaries will comprehend
the nature of compact objects even the presence of temporal variability across a range of timescales will enhance the
physical mechanism of accretion. The X-ray light curves of blackhole binaries can be variable over a broad timescale,
ranging from milliseconds to years [7],[8].

One of the most researched black hole X-ray binary systems is V404 Cygni. V404 Cygni, a binary system comprising
a black hole and a companion star, has been a subject of astronomical interest due to its notable outbursts in both optical and
X-ray wavelengths. V404 Cyg, also referred to as GS 2023+338, was discovered on May 22, 1989, by the all-sky monitor
aboard the Ginga satellite [9]. It is the most luminous of the quiescent black hole low-mass X-ray binaries (BH LMXBs),
with an X-ray luminosity of about 7 ×1032𝑒𝑟𝑔𝑠−1 at a distance of 2.39 kpc [10]. In 1938, it was initially recognized as an
optical nova. In 1956, there was another recorded nova outburst observed within this particular system [11]. Comparing
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V404 Cyg’s X-ray outburst behavior to the other BH transients, it is extremely unusual. In 1989, V404 Cygni experienced
another outburst [12]. After remaining in a quiescent state for approximately 26 years, V404 Cygni underwent a brief yet
intense outburst on June 15, 2015 [13],[14],[15] and again another short-lived burst of activity was observed in December
2015 [16],[17]. V404 Cygni harbors a black hole with a mass of 9.0+0.6

−0.2 M⊙ and a binary inclination of 67+3
−1

◦ [18]. We
adopt the distance of V404 Cygni is 2.39 kpc [10].

In this paper, we present the spectral and timing study of V404 Cygni from all its available Chandra observations
and which recently come up in public domain of Chandra data archive. The observation and data analysis are described
in Section 2. Results and discussion are presented in Section 3. Section 4 represents the timing analysis of X-ray binary
source V404 Cygni and summarized in Section 5.

2. OBSERVATION AND DATA ANALYSIS
In the present work, we have carried out spectral and timing analysis of V404 Cygni as detected by Chandra ACIS-S

detector. V404 Cygni has been observed by Chandra ACIS-S detector five times - first in the year 2017 (ObsID 19000) and
three times in the year 2021 (ObsID 23421, ObsID 23422 and ObsID 23423) and then in the year 2023 (ObsID 28927).
The detail Chandra observational log of V404 Cygni is given in Table 1.

Table 1. Chandra ACIS-S Observation log for V404 Cygni

Source Distance ObsID∗ Exposure Observation Year References for distance
(Kpc) (ks)

V404 Cygni 2.39 19000 49.00 2017-08-11 Miller-Jones et al. 2009

23421 22.00 2021-01-23

23422 22.00 2021-02-06

23423 22.00 2021-02-21

28927 15.00 2023-10-14
∗ObsID - Chandra Observation ID

The data reduction and analysis were done using CIAO 4.14 and HEASOFT 6.30.1. X-ray point source was extracted
from the level 2 event lists by using the CIAO source detection tool Wavdetect. Using a combination of CIAO tools and
calibration data, the source (and background) spectrum were extracted. Spectra were grouped and rebinned so that each
bin had a minimum of 30 counts. As adopted by Devi et al.2007 [19], a conservative threshold of the count rate ≥ 0.05
counts s−1 is considered as pileup affected, however in our present study it is found that all the sources are not pileup
affected as the count rates were all ≤ 0.04 counts s−1.

The spectral analysis was done using spectral fitting package XSPEC version 12.12.1, available in the Heasoft
package. The spectra of the two sources are fitted in the energy range 0.3 -8.0 keV using two empirical spectral models
- the absorbed power law and an absorbed disk-blackbody. XSPEC model -phabs was used to take into account the
absorption in the spectrum. A measure of the goodness of fit is determined by 𝜒2/(degrees of freedom(dof)), which should
be approximately one. Taking care of the possibility of many local minima in the discerning statistic space while fitting
low-count data with a two parameter (plus normalization) model, we compute the 𝜒2 statistics for a range of parameter
values (using the XSPEC command steppar) and find the global minimum instead of fitting the data using the XSPEC
minimization routine. Finally, from the model parameters obtained from the spectral fitting, the corresponding luminosity
of the point sources are estimated.

For the disk blackbody model, the bolometric luminosity is defined as 𝐿𝑏𝑜𝑙 = 4𝜋𝑅2
𝑖𝑛
𝜎𝑇4

𝑖𝑛
, where 𝑅𝑖𝑛, the inner disk

radius from where the X-rays are emitted, is given by 𝑅𝑖𝑛 = (
√
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛× Distance10𝑘𝑝𝑐)/

√
cos 𝜃 km; 𝜃 is the

viewing angle, 𝑇𝑖𝑛 is the inner disk temperature & 𝜎 is the Stefan Boltzmann constant. However, for the powerlaw model,
considering Chandra’s energy sensitivity range, only the luminosity in the 0.3-8.0 keV range is estimated for the present
work.

3. RESULTS AND DISCUSSION
The details of the V404 cygni source is tabulated in Table 2. Spectral properties of the source V404 Cygni is given

in Table 3. The observed normalized net count distribution of V404 Cygni source fitted with powerlaw model and disk
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blackbody model is shown in Figure 1 and Figure 2 respectively. The detail study and findings of V404 Cygni is discussed
below.

Table 2. Details of the V404 Cygni X-ray source

Source name R.A.∗ Decl.∗∗ ObsId Net count rate

Src-1 +20:24:03.82 +33:52:01.90 19000 0.015
23421 0.018
23422 0.020
23423 0.016
28927 0.042

∗R.A - in (hours, minutes and seconds); ∗∗Decl. in (degrees, arcminutes and arcseconds)

Table 3. Spectral properties of the V404 Cygni X-ray source

Powerlaw Disk-blackbody

Source Obs Id. 𝑛𝐻 Γ log(𝐿𝑥 ) 𝜒2/dof 𝑛𝐻 𝐾𝑇𝑖𝑛 log(𝐿𝑥 ) 𝜒2/dof
(1022𝑐𝑚−2) (ergs 𝑠−1) (1022𝑐𝑚−2) keV (ergs 𝑠−1)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Src-1 19000 0.94+0.24
−0.27 2.19+0.32

−0.22 32.55+0.15
−0.10 30.66/36 0.38+0.17

−0.17 1.40+0.22
−0.16 32.57+0.02

−0.02 39.08/36

23421 0.75+0.49
−0.41 2.12+0.44

−0.39 32.43+0.23
−0.14 8.87/21 0.21+0.30

−0.19 1.46+0.38
−0.25 32.48+0.04

−0.04 6.69/21

23422 0.96+0.39
−0.42 2.19+0.32

−0.33 32.69+0.18
−0.14 17.52/22 0.27+0.33

−0.25 1.51+0.43
−0.28 32.71+0.04

−0.04 18.25/22

23423 1.01+0.41
−0.50 2.41+0.43

−0.44 32.67+0.26
−0.21 22.89/17 0.21+0.37

−0.18 1.39+0.37
−0.26 32.58+0.05

−0.04 26.70/17

28927 1.29+0.33
−0.37 2.29+0.33

−0.22 32.98+0.18
−0.12 31.05/32 0.51+0.26

−0.28 1.47+0.27
−0.17 32.95+0.03

−0.03 33.0/32

Columns: (1): Source (2): Observation ID. (3): 𝑛𝐻 , equivalent hydrogen column density. (4): Γ,the powerlaw photon index. (5):(𝐿𝑥 ),X-ray luminosity in the 0.3 -8.0 keV
energy range, (6): 𝜒2/Degrees of freedom. (7): 𝑛𝐻 , equivalent hydrogen column density. (8): 𝐾𝑇𝑖𝑛 ,the inner disk temperature. (9):(𝐿𝑥 ), bolometric X-ray luminosity.
(10):𝜒2/Degrees of freedom.

In the present study, the binary source, Src-1 (V404 Cygni) is found to be in the quiescent state having the X-ray
luminosity in the range with few times 1032 erg s−1 in all the observations. In all the observations, the binary source V404
Cygni is found to be spectrally hard with powerlaw photon index, Γ ∼ 2 as explained by the powerlaw model and an inner
disk temperature, kT𝑖𝑛 ∼ 1 keV as explained by the disk blackbody model. The source is well explained by power-law
model with a powerlaw photon index Γ ∼ 2 with n𝐻 in the range ∼ (0.7 -1.2) × 1022 cm−2. In the year 20017 observation
having ObsID 19000, the binary source Src-1 (V404 Cygni) is found to be having the X-ray luminosity with ∼ 3.54 × 1032

erg s−1 fitted with powerlaw model. But in the year 2021 observations, the source is found to be ∼ 2.69 × 1032 erg s−1 in
one observation having ObsID 23421, however, in two observations having ObsID 23422 and ObsID 23423, it is found to
be ∼ 4 × 1032 erg s−1. The source luminosity is found to be a slight increase to ∼ 9 × 1032 erg s−1 in the latest observation
of 2023 having ObsID 28927. This clearly shows the presence of long-term variability (years) with the currently available
Chandra data.

This result is in agreement with many other earlier works. Wagner et al.(1994)[20] estimated the luminosity of the
source to be 8 × 1033 erg s−1 at a distance 3.5 kpc by Rosat observational data. Also, Narayan et al. 1997 [21], Kong et
al. 2002 [22] and Bradley et al. 2007 [23] found this source to have a luminosity of ∼ 1.0 × 1033 erg s−1 and its spectrum
is well fitted by a simple power-law model with photon index Γ ∼ 2 with n𝐻 in the range ∼ (0.7 - 2.3) × 1022 cm−2. The
quiescent X-ray spectrum has a power-law photon index Γ ∼ 2 seen through a a total column density of n𝐻 = (1.0 ± 0.1)
× 1022 cm−2 [24]. However, in latter observations the source seems to get dimmer such as- luminosity approaches several
times 1032 erg s−1 [25]. Rana et al. 2016 [26] reported the quiescent luminosity of this source is 8.9 × 1032 erg s−1 for a
distance of 2.4 kpc at energies (0.3-30keV)using NuStar observation. This later observations seem to agree well with the
present finding of X-ray luminosity around 1032 erg s−1 in the 0.3-8.0 keV by using the latest Chandra observational data
of the year 2017, 2021 & 2023.
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Figure 1. Powerlaw Spectra of the V404 Cygni X-ray Binary Source
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Figure 2. Disk blackbody Spectra of the V404 Cygni X-ray Binary Source
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4. TEMPORAL PROPERTY OF THE BINARY SOURCE V404 CYGNI
To check the presence of any short-term/kiloseconds variability for V404 Cygni X-ray binary source detected in the

present study, temporal analysis was carried out. The lightcurve of V404 Cygni binned over 0.5, 1, 2 ks for the Chandra
observations is shown in Figure 3.

Figure 3. Lightcurve of V404 Cygni in its observations - ObsID 23421, ObsID 23422, ObsID 23423 and ObsId 28927,
in different time bins (500 s, 1000 s, 2000 s )
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Figure 3 continued

In our analysis, Src-1 (V404 Cyg), in all the time bins- 0.5, 1 and 2 ks, the probability for the count rate to be constant
is 0.17 ×10−33 in all the observations in the year 2021 and 2023 (ObsID 23421, ObsID 23422, ObsID 23423 & ObsID
28927). However, in the year 2017 observation it is found to be less variable. Previous studies have found significant vari-
ations in the quiescent X-ray flux of V404 Cyg over a few-year timescale. It is evident from the light curve that the source’s
flaring activity causes significant variability. Over the course of the XMM-Newton observation, the count rate varies by a
factor of 4-5 over a few-hour timescale. Hence, V404 Cyg exhibits distinct variability in the form of several flares on short
timescales (one to two hours) in the radio, soft X-ray, and hard X-ray bands [26]. This clearly shows the presence of short-
term variability in kilo-seconds time-scales with the currently available Chandra data. So, it is indicative that the binary
source V404 Cygni is more likely to be variable source both in long-term (years) as well as short-term (kiloseconds) scales.

However, due to limited timing capabilities of many sensitive X-ray instruments aboard X-ray satellites, the transient
nature of BH binaries of many variable sources have eluded detections. So, a more detail future work with high quality
data from other missions may enable us to ascertain the real physical nature of this binary in more details.

5. CONCLUSION
We present the results of spectral and timing analysis of V404Cygni X-ray binary which has been observed by

Chandra and which recently come up in the public domain of Chandra archive. The spectra of the binary source V404
Cygni was fitted with two empirical models - the absorbed power law and an absorbed disk black-body. The binary source
V404 Cygni, was observed in three Chandra observational epochs. In all the epochs, the binary source, Src-1 (V404
Cygni) is found to be in the quiescent state having the X-ray luminosity in the range with few times 1032 erg s−1. In all the
observations, the binary source V404 Cygni is found to be spectrally hard with powerlaw photon index, Γ ∼ 2 as explained
by the powerlaw model and an inner disk temperature, kT𝑖𝑛 ∼ 1 keV as explained by the disk blackbody model. The
source is well explained by power-law model with a powerlaw photon index Γ ∼ 2 with n𝐻 in the range ∼ (0.7 -1.2) × 1022

cm−2. In the year 20017 observation having ObsID 19000, the binary source Src-1 (V404 Cygni) is found to be having
the X-ray luminosity with ∼ 3.54 × 1032 erg s−1 fitted with powerlaw model. But in the year 2021 observations, the source
is found to be ∼ 2.69 × 1032 erg s−1 in one observation having ObsID 23421, however, in two observations having ObsID
23422 and ObsID 23423, it is found to be ∼ 4 × 1032 erg s−1. The source luminosity is found to be a slight increase to ∼
9 × 1032 erg s−1 in the latest observation of 2023 having ObsID 28927. Timing analysis of Src-1 (V404 Cyg), in all the
time bins- 0.5, 1 and 2 ks, the probability for the count rate to be constant is 0.17 ×10−33 in all the observations in the
year 2021 and 2023 (ObsID 23421, ObsID 23422, ObsID 23423 & ObsID 28927). However, in the year 2017 observation
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it is found to be less variable. This clearly shows the presence of short-term variability in kilo-seconds time-scales with
the currently available Chandra data. So, it is indicative that the binary source V404 Cygni is more likely to be variable
source both in long-term (years) as well as short-term (kiloseconds) scales. However, due to limited timing capabilities of
many sensitive X-ray instruments aboard X-ray satellites, the transient nature of BH binaries of many variable sources have
eluded detections. So, a more detail future work with high quality data from other missions may enable us to ascertain the
real physical nature of this binary in more details.
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СПЕКТРАЛЬНI ТА ЧАСОВI ДОСЛIДЖЕННЯ V404 CYGNI ЗА ДОПОМОГОЮ CHANDRA
СПОСТЕРЕЖЕНЬ

С. Рiта Девia, А. Сеньорита Девib, Атрi Дешамукх’яa
𝑎Ассамський унiверситет, Сiлчар, Ассам, Iндiя

𝑏Манiпурський унiверситет, Канчiпур, Манiпур, Iндiя
Ми представляємо спектральне та часове дослiдження V404 Cygni з усiх доступних спостережень Chandra, якi нещодавно
опублiкованi в архiвi даних Chandra. Обробку та аналiз даних проводили за допомогою CIAO 4.14 i HEASOFT 6.30.1. Спе-
ктральний аналiз проводився за допомогою пакета спектрального пiдбору XSPEC версiї 12.12.1, доступного в пакетi Heasoft.
Спектр джерела встановлюється в дiапазонi енергiй 0,3-8,0 кеВ з використанням двох емпiричних спектральних моделей -
поглиненого степеневого закону та поглиненого диска-чорного тiла. Встановлено, що подвiйне джерело рентгенiвського ви-
промiнювання V404 Cygni знаходиться в станi спокою, його рентгенiвська свiтнiсть у кiлька разiв перевищує 1032 ерг с−1.
Виявлено, що джерело перебуває у жорсткому станi та добре пояснюється степеневою моделлю зi степеневим iндексом фотона
Γ ∼ 2 з n𝐻 у дiапазонi ∼ (0,7 -1,2 ) × 1022 cm−2. Згiдно з аналiзом часу, Src-1 (V404 Cygni), у всiх iнтервалах часу - 0,5, 1 i 2 кс,
ймовiрнiсть того, що швидкiсть рахунку буде постiйною, становить 0,17 ×10−33 у всiх спостереженнях у 2021 та 2023 роках
(ObsID 23421, ObsID 23422, ObsID 23423 &ObsID 28927). Однак у спостереженнях за 2017 рiк вiн виявився менш мiнливим. Це
чiтко демонструє наявнiсть короткочасної мiнливостi в кiлосекундних масштабах часу з доступними на даний момент даними
Chandra. Отже, показово, що бiнарне джерело V404 Cygni, швидше за все, буде змiнним джерелом як у довгостроковому (роки),
так i в короткостроковому (кiлосекунди) масштабах.
Ключовi слова: акрецiя, акрецiйнi диски; рентгенiвськi променi; подвiйнi зiрки: iндивiдуальнi (V404 Cygni); чорнi дiри
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1. PROBLEM FORMULATION. AN ANALOGUE OF JACOBIAN FUNCTION
In the works of A.G. Mamedov [4, 5, 6], the evolution of planetary orbits during stellar approaches to the Solar 

System is explored within the framework of the planar averaged parabolic three-body problem. It has been shown that 
with a moderate approach of the perturbing body to the central body, the size and shape of the orbit of the perturbed 
body remain constant, with only its orientation changing. A test star of solar mass was used as the perturbing body, and 
the orbits of the planets during its approach to the Sun at a distance of 50 au were studied. The results are presented in 
the form of figures and tables. 

In the work of Kholshevnikov and Mishchuk [13], the restricted hyperbolic three-body problem was considered, 
and an assessment was made of the influence of a test star of solar mass on the orbits of the planets during its approach 
to the Sun from a distance of 100 au. to 1152 au. It has been shown that during a moderate approach of such a star to the 
Sun, the sizes of the planetary orbits do not undergo any changes. When the test star approaches the Sun to a distance of 
100 au, the inclination, eccentricity, longitude of ascending node, and argument of pericenter change very little. 

In this study, the motion of the passively gravitating body M is examined in a rotating and pulsating coordinate 
system [1,2] within the framework of the restricted three-body problem. The actively gravitating bodies are: the central 
body 0M  with mass 0m , and the perturbing body M with mass m , where 0m m . In this coordinate system, the 
origin coincides with the barycenter 0G  of the actively gravitating bodies, the 0G xy  plane aligns with the plane of 
motion of these bodies, and the 0G x  axis aligns with the line connecting bodies 0M  and M  . The true anomaly of the 
perturbing body v  is used as the independent variable. Consequently, the equations of motion for body M in this 
coordinate system take a simple form [1,2]. 

2 2 2

2 2 22 , 2 ,d x dy d y dx d z

dv dv x dv dv y dv z

  
    

      
(1)

We will refer to equation system (1) as SHAPNER's equations - an acronym formed from the surnames 
Scheibner [9], Petr and Nechvil [10, 11 and Rein 12]. In equation system (1), the force function  , , ,v x y z     is 
analogous to the Jacobi function in the circular problem and is defined by equality 

 2 2 2 3

1 2

1 1cos .
2

x y e z v p
r r

 

            

  
(2)

Here, the dimensionless quantity    is defined below, eand p  are the eccentricity and the focal parameter of the 
perturbing body M orbit relative to the central 0M , and 1   and  are the relative masses of the main bodies M   
and 0M : 
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 0

0 0

11 ,
2

mm

m m m m
  

          
 (3) 

respectively. The distances of the passively gravitating body from the main bodies 1r  and 2r  are determined by 
equalities 

    2 22 2 2 2 2 2
.1 2,r x p p y z r x p y z             (4) 

In this context, the distance between the main bodies r  equals  

  1, , 1
1 cos

r p p q e
e v

          
 

, (5) 

where q  is the minimum distance (perihelion distance in the Solar System) of the perturbing body from the central 
one. The equality in (5) for rpractically defines the orbit of the perturbing body: for 1e   it is an elliptical orbit, for 

1e   it is a hyperbolic orbit, and for 1e   it is a parabolic orbit. Additionally, the range of variation of the true 
anomaly is assumed to be 

    1 1, 1 , arccos arccos , 1 ,v e v e
e e

                        
 (6) 

where the first interval corresponds to changes in v  during elliptical and parabolic motions of the perturbing body, and 
the second interval corresponds to hyperbolic motion. 

REMARK 1. The Jacobian function analog defined by equality (2) corresponds to the case where 0m m . If 

0m m , then the Jacobian function analog, the relative masses   and 1  , as well as the distances 1r  and 2r  should 
be determined by equalities 

  2 2 2 3

1 2

1 1cos ,
2

x y e z v p
r r

 

            

  
 (7) 
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    2 22 2 2 2 2 2
1 2,r x p y z r x p p y z            . (9) 

 
 

2. QUASI-INTEGRAL AND THE LAW OF ENERGY CONSERVATION. 
In the restricted circular ( 0e  ) three-body problem, the equations of motion (1) for SHAPNER admit a Jacobi 

integral 
2 2

0 02 2 , 2 2 ,V C C V const        (10) 
where the zero subscript denotes the values of the velocity V  of the passively-gravitating body and the Jacobian 
function   at some initial value of the true anomaly 0v , and C is the constant of the Jacobi integral. 

It is clear that in the non-circular ( 0e  ) restricted three-body problem, such a first integral as the Jacobi integral 
(10) does not exist. This is due to the fact that the force function   explicitly depends on the independent variable v . 
Indeed, if we multiply the first equation of system (1) by /dx dv , the second by /dy dv , and the third by /dz dv , 
summing the resulting equations and integrating over v , we obtain 

 
0 0

22
0

2 2

v v

v v

VV dx dy dz d
dv dv

x dv y dv z dv dv v

 

 

                          , (11) 

or  

 
0

22
0

02 2
.

v

v

VV
dv

v





    
  (12) 

The relation obtained (12) is not a first integral of the motion equations (1): it should be considered as an integral 
invariant relation, or quasi-integral [2]. This can be rewritten in the form of 
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22

0
0 0( ) , ( )

2 2
VV

u v h h u v       , (13) 

if an unknown antiderivative function ( )u v :  

 
0

0( ) ( )
v

v

u v u v dv
v





   
 , (14) 

is introduced. In the quasi-integral (13), h represents a constant energy and depends on the value of the unknown 
function 0( )u v , i.e., it takes different values on different trajectories of motion. 

Note that the quasi-integral (13) in the case of circular motion 0e   of the perturbing body transforms into the 
Jacobi integral (10), since in this case / 0v   , i.e. ( ) 0u v  . Thus, the obtained quasi-integral (13) in the non-
circular ( 0e  ) restricted three-body problem represents the law of conservation of energy of the passively gravitating 
body: the total energy of the body M, consisting of the Jacobi energy 2 / 2V   and the additional energy ( )u v , is a 
constant quantity, depending only on the initial values of the coordinates and velocities of the body M . The quantity h 
can be considered as the constant energy, having its specific value on each trajectory [2]. Additionally, the Jacobi 
energy 2 / 2V   reaches its maximum value at the pericenter of the orbits of the main bodies 0M  and M  , and its 
minimum value at the apocenter. Therefore, during 0 v   , the double inequality 

 
22 2

2 2 2
pa

a p

VV V
     , (15) 

holds, where the indices "a" and "p" correspond to apocenter and pericenter. Moreover, the additional energy ( )u v  
monotonically increases as the main bodies 0M  and M move away from the pericenter, and the passively gravitating 
body M gains additional (potential) energy from them. Conversely, as the main bodies move towards the pericenter, the 
additional energy  ( )u v  decreases, and the body M transfers energy to the main bodies [2]. 

Note that the law of conservation of energy (13) at the moment the primary bodies pass through the periapses of 
their orbits can be represented as 

 
22

min( ) , ,
2 2 1

p
p p p

VV
u v h h

e

     



 (16) 

where the index "p" signifies the values of the Jacobian function analog   and the velocity V  of the passively 
gravitating body, calculated at the moment the perturbing body passes through the pericenter, i.e. at 0v  . 
Furthermore, min  denotes the minimum value of the function 

  2 2 2 3

1 2

1 1 0,
2

x y z p
r r

         
 

  (17) 

which is related to the Jacobian function analog   by equality [2] 

 
 2

sin .
1 cos

e v d

v dve v

  
  

   
   (18) 

Such a value of the function   exists on the circle [2]  

  
2

2 2 31 2 ,
2 4
p p

x y z
 

     , (19) 

and is equal to 

  
2

2
min 3 .

2
p

 


     (20) 

 
3. REGIONS OF POSSIBLE MOTION. SURFACES OF MINIMUM ENERGY 

AND THEIR CRITICAL POINTS 
The conservation of energy at the pericenter (16) can be rewritten in the form 

 2
min min2 ( ) 2 2 2 2 0,pV u v h                (21) 
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from which we can identify the regions of possible motion  

 2 min
min

22 2 , 2 2 ,
1p p pC C h V

e


         


  (22) 

where C is the equivalent of the Jacobi constant, and min  has been defined previously. The boundary of the region 
(22) 

 min2 2 C    , (23) 

is referred to as surfaces of minimum energy, the equation of which we write in the form [2] 

  2 2 2 3
min

1 2

1cos 2 2 1 cos .H x y e z v p C e v
r r

               
 

  (24) 

It's clear that the function  , , , , , , ,H H x y z p e v C   , meaning the family of surfaces of minimum energy (24) 
depends not only on the coordinates x, y, z but also on five parameters: , , , ,p e v C   . The Jacobi constant equivalent C 
characterizes the energy of the passively-gravitating body M , and the focal parameter p  represents the linear scale of 
the surfaces. With given values of these parameters , , ,p e v     and C , the body M cannot move beyond the surface 
defined by equation (24). When 0e  , the surfaces of minimum energy (24) transform into the zero velocity surfaces 
of the restricted circular three-body problem. Moreover, from equation (24), it follows that the family of minimum 
energy surfaces given values of the parameters , ,p e    and C for all true anomaly values v  within the range [ , ]a av v  
is located between two surfaces [2] 

  2 2 2 3
min

1 2

1cos 2 2 1x y e z v p C e
r r

             
 

 , (25) 

and 

  2 2 2 3
min

1 2

1cos 2 2 1 cosa ax y e z v p C e v
r r

            
 

 , (26) 

Furthermore, the singular points of the family (24) at fixed values of the parameters , ,p e v    and   are the points 
where it is impossible to construct a unique tangent plane. Therefore, the singular points of the family (24) are 
determined by algebraic equations 

 

   3 3
3 3

1 2

3 3
3 3

1 2

3 3
3 3

1 2

12 0,

12 1 0,

12 cos 0 ,

H
x p x p p p x p

x r r

H
y p p

y r r

H
z e v p p

z r r

 
 

 

 

               
         
           

 (27) 

 
which coincide with the same equations used to determine libration points in the restricted three-body problem [1,2]. 

The solutions to the algebraic equations (27) are the collinear singular points 
     1 1 1 2 2 2 3 3 3,0,0 , ,0,0 , ,0,0L L x L L x L L x  

 
and two pairs of coplanar (triangular) singular points: 

 4 4 4 4, ,0L L x y ,  5 5 4 4, ,0L L x y   in the plane z = 0 and  6 6 6 6,0, ,L L x z  7L   7 6 6,0,L x z  in the plane y = 0 
(see below). The collinear singular point 1L  is located to the left of the main body 0M  of lesser mass, i.e., 

1 1 (1 ) 0x x p      , 2L  is located between the main bodies, i.e., 1 2 20x x x p     , and 3L  is to the right of 
the main body M of greater mass, i.e., 3 2x x . The triangular singular points 4L  and 5L  are located in the left half-
plane x < 0, closer to the main body 0M  of lesser mass and for them 4 0x  . Furthermore, if the masses of the main 
bodies are equal 0m m , then 1 / 2   and the singular point 2L  will be located at the center of mass of the main 
bodies – at the origin, i.e., 2 0x  . 
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Now, let's determine the triangular singular points 4L  and 5L , in the plane z = 0 from the system of algebraic 
equations (27), in which the third equation is absent, and the first equation is rewritten in another form: 

  3 3 4
3 3 3 3

1 2 1 2

1 1 11 1 0,x p p p
r r r r

 
 

            
   

 (28) 

3 3
3 3

1 2

11 0 .y p p
r r

      
 

 

It is evident that the system (28) is consistent only when 1 2r r . Therefore, there exists a unique real analytical 
solution at 0y   in the form of 1 2r r p  . Let's express the found solution in coordinates x  and y , where in the 
expression (4) for 1r  and 2r , z = 0 should be set. This gives us 

 4 4
3, , 0

2 2
p

x x p y y p z


        . (29) 

It is clear that the 4x -coordinate ( 4x ) of the singular point 4L  or 5L  depends on the focal parameter p  of the test star's 
orbit and its mass through  , while the 4y -coordinate ( 4y ) depends only on p . 

Next, from the system of equations (27) with y = 0, i.e., from the system of two equations 

 3 3 4
3 3 3 3

1 2 1 2

1 1 11 1 0x p p p
r r r r

 
 

            
   

 

 3 3
3 3

1 2

1cos 0z e v p p
r r

        
 

, (30) 

we find two symmetric coplanar solutions  6 6 6 6,0,L L x z  and  7 7 6 6,0,L L x z   relative to the x-axis. It is clear that 

6 6 ( )x x v  and 6 6 ( )z z v , and from the second equation of the system (30), it follows that real solutions 6L  and 7L  

can only exist when cos 0v  . It should be noted that at 
2

v
   , the coplanar singular points will also include two 

infinitely distant singular points  8 8 0,0,L L 
 

and  9 9 0,0,L L  , known for the circular problem [2]. At  
0e , the infinitely distant libration points tend towards the infinitely distant singular points. Moreover, the equations 

(30) also have an analytical solution in the plane y = 0 for parabolic motion ( 1e  ) of the test star and cos 1v   . 
This solution also has the form 1 2r r p   and in coordinates, similar to (29), is written as follows: 

  6 6
3, 0, cos 1, 1 .

2 2
p

x x p y z z p v e


              (31) 

Therefore, in the parabolic motion of the test star and at cos 1v   , the x-coordinate of the singular point 6L  or 

7L  depends on the focal parameter p  of the orbit of the test star and its mass through  , while the z-coordinate 6z  
depends only on p . In other cases, the coordinates of the coplanar singular points 6L  or 7L  are determined only 
numerically.  

Thus, in the restricted circular three-body problem, there are a total of seven libration points including the 
infinitely distant ones, whereas in the non-circular problem we are considering, the number of singular points is greater. 

In conclusion, let us note some differences between singular points and libration points. In each singular point, 
there is a bifurcation of the minimum energy surfaces, i.e., a transition from one state to another. Bifurcation also occurs 

at the values of the true anomaly 
2

v
  

 
[2]. Unlike the coordinates of libration points, the coordinates of coplanar 

singular points are not stationary particular solutions of the SHAPNER equations (1), as they do not satisfy these 
equations. Libration points are conical singular points, while coplanar points are singular points of the "center" type. 
REMARK 2. The existence of a Jacobian integral analogue in the restricted elliptical, parabolic, and hyperbolic three-
body problems was denied. However, work [2] has proven that such an analogue – a quasi-integral does exist. From this 
discovered quasi-integral, an analogue of zero-velocity surfaces – minimum energy surfaces – is derived. These 
surfaces also allow for the existence of satellite-type motions, i.e., there is Hill stability at certain parameter values, 
which will be discussed in the next section. 
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4. CRITERIA FOR HILL STABILITY OF MOTION. 
In the restricted three-body problem, the motion of a passively gravitating body is considered Hill stable if it 

remains confined within a certain closed region around one of the primary bodies. In other words, if the passively 
gravitating body, at any values of the true anomaly v , maintains a satellite-type motion around one of the primary 
bodies and remains within a restricted area, its motion is deemed Hill stable. The concept of Hill stability is intimately 
linked to the value of the Jacobian constant analog C, calculated at the special point 2L , which lies between the primary 
bodies 0M  and M   and corresponds to a satellite-type motion. The value of the Jacobian constant analog from the 
family of minimal energy surfaces corresponding to the special point  2 2 ,0,0L x  is denoted by 2C , i.e., from equation 
(24) we set 

  
   

 2 3 2 2
2 2 2 2 2

2 2

1,0,0 2 3C H x x p p
x p p x p

 
 

 

         
      

. (32) 

Then, for any values of the true anomaly v , chosen as the independent variable, the inequality 

 2 min 222 ,
1 1 cosp p

C
C V

e e v


    

   


 (33) 

where 2,p pV and min  are defined earlier, is satisfied. 
Using inequality (33), the criteria for stability, instability, and conditional stability of the motion of a small mass 

body are determined in the restricted elliptical, hyperbolic, and parabolic three-body problems. 
In the case of the restricted elliptical three-body problem, the sufficient condition – a criterion for Hill stability of 

the motion of a small mass body M – takes the form of equation in reference [2], 

 2 ,
1

C
C

e



 (34) 

where the values of the Jacobian constant analog 2C  and C are determined by equations (32) and (33). 
The opposite inequality (34)  

 2

1
C

C
e



 (35) 

defines the criterion for the instability of the motion of the body M according to Hill. In this case, there will be values of 
v for which the inequality 2C C  will hold. 

For the parabolic or hyperbolic restricted three-body problem, one should use the inequality 

1
1 cose v

 
 

, 

from which it follows that the criterion for the stability of the motion of body M  according to Hill is asymptotically 
fulfilled, i.e., when C  . Therefore, stability of the motion of body M  according to Hill in the restricted parabolic 
and hyperbolic three-body problems can never be achieved. Indeed, for any arbitrarily chosen C, there will be a positive 
value of the true anomaly 0pv   such that for any | | pv v  , the inequality 2C C  will hold. 

When the instability criterion (35) is satisfied, there will be such a value of 0pv   that for any | | pv v   the 
inequality 2C C  is met. In such cases, the motion of the passively gravitating body is referred to as conditionally 
stable according to Hill [2]. 

In the case of the restricted elliptical three-body problem, the criterion for conditional stability of the motion of 
body M according to Hill is the fulfillment of the double inequality 

 2 2

1 1
C C

C
e e

 
  

 (36) 

and for the parabolic and hyperbolic restricted three-body problems, conditional stability of the motion of body M 
according to Hill is achieved under condition 

 2 .
1
C

C
e

  


 (37) 
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It should be noted that conditional stability of the motion of a small mass body M according to Hill occurs when the 
instability criterion (35) and inequality [2]  

 21cos | cos 1 , | |a a

C
v v v v

e C
          

, (38) 

are met.  
The criterion for absolute instability of the motion of body M according to Hill is the inequality 

 2 ,
1
C

C
e




 (39) 

which ensures that the inequality 2C C  is satisfied at any v .  
The criterion for stability of the motion of a passively gravitating body in the restricted elliptical three-body 

problem according to Hill within a certain bounded area encompassing both primary bodies is the fulfillment of 
inequality 

 3 3 3, .
1 1 1

C C C
C C

e e e
         

 (40) 

Here  3 3 ,0,0C H x
 
is the value from the family of minimal energy surfaces corresponding to the special point 

 3 3,0,0L x , located to the right of the primary body of greater mass M  . Additionally, the brackets indicate the 
criterion for conditional stability according to Hill for motion in this area. The inequality opposite to (40) represents the 
criterion for instability of the motion of body M in this area. 

For brevity, the stability of motion according to Hill, associated with the value 2C  of the Jacobian constant 
analogue, i.e., meeting criterion (34), will be referred to as first-type stability, while the stability of motion according to 
Hill when criterion (40) with the value 3C  is met will be referred to as second-type stability. 

Similarly, criteria for stability, conditional stability, instability, and absolute instability according to Hill for the 
motion of a passively-gravitating body in the restricted elliptical three-body problem associated with other special 
points can be established. For brevity, these criteria are not presented here. 

 
5. SATELLITE EXCHANGE BETWEEN PRIMARY BODIES 

Let us now consider the problem of exchanging a satellite between the primary bodies 0M  and M  , which are 
approaching each other along elliptical, hyperbolic, and parabolic orbits. The theory outlined above regarding the 
criteria for the stability of the motion of body M  by Hill [2] allows us to establish: a) the necessary condition for the 
exchange or capture to take place, b) the sufficient condition for the impossibility of exchange, c) the range of values of 
the true anomaly v  during which a satellite exchange is possible. 

Let's first consider the restricted elliptical three-body problem. When inequality (34) – the condition for the 
stability of the motion of body M  by Hill – is met, an exchange of satellites between the primary bodies in elliptical 
motion is not possible. Therefore, inequality (34) can be considered as a sufficient condition for the impossibility of 
satellite exchange in the case of elliptical motion, as the energy of the satellite in this case is so low that it cannot detach 
from its parent body. However, the necessary condition for satellite exchange in elliptical motion is the fulfillment of 
the instability criterion by Hill, i.e., inequality (35). This inequality, along with the surfaces of minimal energy, 
facilitates the numerical search for the satellite's trajectory during exchange. Thus, when inequality (35) is met and the 
initial conditions are appropriately chosen, the satellite may either leave the vicinity of its parent body and become the 
satellite of the second body (exchange), transform into an independent celestial body (ejection), or remain the satellite 
of its parent body. Furthermore, when the criterion for conditional stability (36) is met, the conditions for the possibility 
of satellite exchange in elliptical motion should be clarified. The exchange can then only occur in interval | | av v  , i.e., 
in the vicinity of the most distant point of the primary bodies’ orbit. It is precisely in this interval of true anomaly 
values, according to inequality (38), that the loss of conditional stability by Hill occurs. 

In the case of parabolic and hyperbolic motion of the primary bodies, the necessary condition for exchange, i.e., 
the instability criterion (35) for the motion of body M  by Hill, is always met. In this case, instability by Hill occurs at 
any energy level when | |v is sufficiently large. Furthermore, in the case of violation of the conditions for conditional 
stability (38) by Hill, i.e., in interval | | av v  , satellite exchange can occur in both elliptical and in parabolic and 
hyperbolic motions of the primary bodies. 

Under the criterion of absolute instability (39), satellite exchange is theoretically possible at any value of the true 
anomaly v . It is worth noting that such conditions were previously unknown, and the possibility or impossibility of 
satellite exchange was checked by intuitively selecting initial conditions and parameters [2]. 



132
EEJP. 3 (2024) A.G. Mammadli, et al.

For example, Hill [8], within the framework of the restricted circular three-body problem of the Sun-Earth-Moon, 
established that the satellite motion of the Moon relative to Earth is stable according to Hill, as the sufficient condition – 
inequality (34) is met when 20 : 2.2544 2.00092e C C     . As shown in the study [2], the Moon's motion remains 
stable according to Hill in the restricted elliptical three-body problem as well – the condition 

22.2544 / (1 )C C e   =2.03501 is met, where e  = 0.016751 is the eccentricity of Earth's orbit. If e  were seven 
times larger, then the motion of the Moon would become conditionally stable according to Hill, i.e., inequality (38) 
would be met: 22.2544 / (1 7 ) 1.7909C C e    , and inequality (34) would not be satisfied: 

22.2544 / (1 7 ) 2.2667C C e    . 
 

6. ON SOME APPLICATIONS OF THE RESTRICTED THREE-BODY PROBLEM 
TO ASTRONOMICAL OBJECTS 

In the study [3], within the framework of the restricted three-body problem, the motion of a star in a close binary 
system (CBS) with conservative mass transfer was investigated. Unlike the well-known Paczynski-Huang model, a new 
model defining the relative motion of the star in the CBS along an elliptical orbit was used. The third body in this 
scenario is the mass stream flowing from the donor star to the accretor star. The elliptical motion of the star takes into 
account the mutual attraction of the stars, reactive forces, and the gravitational force of the stars on the flowing stream. 
Changes in the semi-major axis and eccentricity of the second star were identified, showing that CBS does not form a 
closed mechanical system, i.e., a system that allows for the conservation of linear momentum and angular momentum. 
Moreover, the classical law of conservation of energy does not apply, but there exists an analogue of the conservation 
law in the form of a quasi-integral. This can be confirmed based on the general equations of motion by Meshcherskiy 
for a two-body problem with variable masses. Therefore, the use of the Paczynski-Huang model, which assumes that 
CBS forms a closed mechanical system, is not appropriate for this problem. The model proposed in the study [3] was 
subsequently named the Luk’yanov’s model. 

In the work [7], the problem of the motion of a rotating star in a close binary system (CBS) with conservative mass 
transfer was considered. Using the Luk’yanov’s model [3], the relative motion of the star in close binary systems along 
an elliptical orbit was determined. The elliptical motion of the star accounts for the mutual attraction of the stars, 
reactive forces, the gravitational force of the stars on the flowing stream, and disturbances from the rotational 
movement of the accretor star. Changes in the semi-major axis, eccentricity, and angular velocity of the accretor star's 
orbit were defined depending on the parameter q – the mass ratio of the stars. The results were applied to the star system 
BF Aurigae (in the constellation Auriga) and presented in the form of diagrams. The Luk’yanov model is also 
applicable in studying the motion of stars in CBS with non-conservative mass exchange. 

In the study [14], the problem of the stability of a planet's satellite motion was considered. Within the general 
three-body problem (Sun-planet-satellite), "Sundman surfaces" were constructed, based on which the concept of 
"stability by Sundman" was formulated. Special points of these surfaces were identified, possible motion regions were 
defined, and the stability of the special points by Sundman was established. The stability of the motion of all known 
natural satellites of planets was investigated, and it was shown that the motion of a number of natural satellites, stable 
by Hill, as well as some planet satellites stable by the Golubev method, turn out to be unstable by Sundman. 

In work [15], within the framework of the restricted elliptical three-body problem, the criterion for stability by Hill 
was established. By virtue of this criterion, the stability of four exoplanets outside the solar system in a binary star 
system: CepheiAb, Gliese 86 Ab, HD 41004 Ab, and HD 41004 Bb was investigated. 

 
7. INVESTIGATION OF HILL'S STABILITY OF PLANETARY MOTIONS DURING STELLAR 

APPROACHES 
To investigate the stability of planetary motion in the Hill frame during the approach of a test star to the Solar 

System, moving along a hyperbolic (parabolic or elliptical) orbit, it is necessary to know its mass and orbital 
parameters. As an example, let us take a test star with mass m , heliocentric distance q  (in astronomical units), and 
eccentricity e , varying within the range 

  5 , 50 100, 1 5, 0.1 0.9M m M q e e            , (41) 

where M  is the mass of the Sun, 1e   corresponds to parabolic motion of the test star, and the values of the 
eccentricity of its orbit are indicated in parentheses for elliptical motion. It should be noted that the relationship between 
the time t and the true anomaly v  of the test star depends on the type of its orbit. Thus, in the case of elliptical motion 
of the test star with orbit parameters 0.2e  , 50q   au, and m  = 3 M , the change in v  in interval [0, 3π/4] 
corresponds to a change in time in the interval [0, 80.26] years. For the same values of eccentricity and mass of the test 
star, but at 75q   au, this interval of changes in v  corresponds to the interval [0, 147.45] years, and at 0.2e  , 

75q   au, and m  = 5 M , it corresponds to [0, 120.39] years. 



133
On the Stability of Planetary Motions During Stellar Approaches EEJP. 3 (2024)

In the case of parabolic motion ( 1e  ) of the test star at 50q   au and m=3 M , the interval of changes [0, 
3π/4] in the true anomaly v  corresponds to the time interval [0, 799.53] years, at 75q   au and m  = 3 M  – [0, 
1468.83] years, and at 75q   au and m  = 5 M  –     [0, 1199.29] years. 

Finally, in the case of hyperbolic motion with 1.15e  , 50q   au, and m  = 3 M , the interval [0, 3π/4] of 
changes in v  corresponds to the time interval [0, 466.49] years, at 75q   au and m  = 3 M  –  [0, 857.0] years, and 
at 75q   au and m  = 5 M  –  [0, 699.74] years. 

Table 1 presents the results of the study of Hill stability motion of three planets (Earth, Jupiter, and Saturn) 
depending on the focal parameter p  of the star's orbit and its mass m  during hyperbolic orbits, and in Table 2 - during 
parabolic orbits of the star. In these tables, pC  denotes the value of the analogue of the Jacobi constant when 0v  , 
and 2C  denotes its value computed at the special point L2. It turned out that in the case of a parabolic or hyperbolic star 
orbit, only conditional stability of planetary motion in the Hill frame occurs. 
Table 1. The Hill stability of planetary motion in the restricted hyperbolic three-body problem: planet – Sun –  star 

 
 

Table 2. The Hill stability of planetary motion in the restricted parabolic three-body problem: planet – Sun –  star 

     
 

8. CONCLUSION 
The problem of the spatial motion of a passive-gravitating body during approach to the central body of a test star – 

the perturbing body, has been considered. The perturbing body - the star - may move along an elliptical, parabolic, or 
hyperbolic orbit. An exact expression of the force function without expansion into a series has been used. An integral 
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invariant relationship - a quasi-integral, has been found. Due to the quasi-integral, regions of possible motion of the 
passive-gravitating body, surfaces of minimum energy, which generalize the surfaces of zero velocity, and the special 
points of these surfaces have been determined. The necessary condition has been established - the fulfillment of the Hill 
instability criterion for satellite exchange in the restricted elliptical three-body problem. It has been shown that in the 
case of parabolic or hyperbolic motion of the principal bodies, the necessary condition for satellite exchange is always 
satisfied. In the region of instability loss of Hill motion, satellite exchange can occur in both elliptical and parabolic or 
hyperbolic motions of the principal bodies. Exchange can only occur in the vicinity of the farthest point of the principal 
bodies' orbits. When the instability criterion is met and the initial conditions of the satellite are properly chosen, the 
satellite may either leave the vicinity of the parent body and become a satellite of the second body (exchange), or 
transform into an independent celestial body (ejection), or remain a satellite of the parent body. 

To illustrate the obtained results, restricted hyperbolic, parabolic, and elliptical three-body problems have been 
considered as an example: Sun-planet-test star. In this case, the heliocentric distance q  of the test star and its mass m  
oscillate within the range of 50 to 100 au and from one to five solar masses, respectively. According to the stability criteria 
of the first and second types, critical values of the orbit parameters of the test star have been established, at which the 
planets of the Solar System either become satellites of the test star or leave the boundaries of the Solar System. 

 
ORCID 

Ruslan Mammadov, https://orcid.org/0000-0001-5879-1368 
 

REFERENCES 
[1] G.N. Duboshin, Celestial mechanics: Analytical and qualitative methods, 2nd edition, (Izdatel'stvo Nauka, Moscow, 1978). 

https://ui.adsabs.harvard.edu/abs/1978MoIzN....Q....D/abstract (in Russian) 
[2] L.G. Luk'yanov, “Analog of the surfaces of zero velosity in the restricted elliptic, parabolic, and hyberbolic three-body 

problem,” Astronomy Letters, 36, 823-833 (2010). https://doi.org/10.1134/S1063773710110083 
[3] L.G. Luk'yanov, and S.A. Gasanov, “Elliptical motions of stars in close binary systems,” Astronomy Reports, 55 (8), 733-741. 

(2011).  https://doi.org/10.1134/S106377291108004X 
[4] A.G. Mamedov, “A twice-averaged parabolic restricted three-body problem,” Tr. Gos. Astr. Inst. im. Sternberga, 61, 79-86 

(1989). https://ui.adsabs.harvard.edu/abs/1989TrSht..61...79M/abstract (in Russian) 
[5] A.G. Mamedov, “Secular perturbations of elements in the restricted parabolic three-body problem,” Astronomicheskii Zhurnal, 

68, 1323-1327 (1991). https://ui.adsabs.harvard.edu/abs/1991AZh....68.1323M/abstract (in Russian) 
[6] A.G. Mammadli, “The limiting case of the double-averaged parabolic restricted three-body problem,” Solar System Research, 

41(2), 171-173 (2007). https://doi.org/10.1134/S0038094607020104 
[7] A.A. Medvedeva, and S.A. Gasanov, “Elliptical motion of a star in a close binary system,” Astronomy Reports, 58(8), 554-562 

(2014). https://doi.org/10.1134/S1063772914080046 
[8] G.W. Hill, “Researches on the Lunar theory,” Am. J. of Math. 1, 5-26 (1878). https://doi.org/10.2307/2369430 
[9] W. Scheibner, “Satzaus der storungstheorie,” Reine Angew. Math. 65, 291 (1866). https://doi.org/10.1515/crll.1866.65.291 
[10] K. Petr, and M.V. Nechvil, “Two remarks to a special case of three bodies problem,” Casopis Pestovani Mat. Fys. (Praha), 47, 

268-273 (1918). https://iopscience.iop.org/article/10.3847/1538-4357/acc573/meta#fnref-apjacc573bib30 
[11] M.V. Nechvil, “Sur une nouvelle forme des equations differentielles du probleme restreint elliptique,” Compte. Rendue, 182, 

310-314 (1926). https://iopscience.iop.org/article/10.3847/1538-4357/acc573/meta#fnref-apjacc573bib29 
[12] N. Rein, “Note sur l’article de M.V. Nechvil, “Sur une nouvelle forme des equations differentielles du probleme restreint elliptique,” 

Tr. Gos. Astron. Inst. im. P.K. Shternberga, 14, 85-87 (1940). https://ui.adsabs.harvard.edu/abs/1940TrSht..14...85R/abstract 
(in Russian) 

[13] K.V. Kholshevnikov, and Yu.F. Mishchuk, “The effect of stellar encounters on planetary orbits,” Vestn. Leningr. Univ. 2, 
72-81 (1983). https://ui.adsabs.harvard.edu/abs/1983VeLen...2...72K/abstract (in Russian) 

[14] L.G. Luk'yanov, and V.S. Uralskaya, “Sundman stability of natural planet satellites,” Mon. Notic. Roy. Astron. Soc. (MNRAS), 
421(3), 2316-2324 (2012). https://doi.org/10.1111/j.1365-2966.2012.20457.x 

[15] F. Szenkovits, and Z. Makó, “About the Hill stability of extrasolar planets in stellar binary Systems,” Celest. Mech. Dyn. 
Astron. 101, 273-287 (2008). https://doi.org/10.1007/s10569-008-9144-7 

  
ПРО СТІЙКІСТЬ РУХІВ ПЛАНЕТ ПІД ЧАС ЗБЛИЖЕННЯ ЗІР 

А.Г. Мамедліа, Р.Т. Мамедова,b, У.С. Валієва 
aБатабатська Астрофізична Oбсерваторія Міністерства Науки і Освіти Азербайджанської Республіки, 

Нахічевань, AZ-7000, Азербайджан 
bНахічеванський Державний Університет, Нахічевань, AZ-7012, Азербайджан 

Розглянуто задачу про просторовий рух пасивно гравітаційного тіла під час наближення до центрального тіла збурюючого 
тіла – пробної зірки. Використовуючи точний вираз силової функції, знайдено інтегральне інваріантне співвідношення – 
квазіінтеграл. За допомогою квазіінтеграла визначено області можливого руху пасивно гравітаційного тіла, поверхні 
мінімальної енергії (узагальнення поверхонь нульової швидкості) та особливі точки цих поверхонь. Досліджено стабільність 
руху планет за Хіллом під час наближення пробної зірки до Сонячної системи. Встановлено критерії можливості, а також 
неможливості захоплення тестовою зіркою пасивно гравітаційного тіла. Відповідно до критеріїв стійкості Хілла були 
встановлені критичні значення параметрів орбіти досліджуваної зірки, при яких планети Сонячної системи або стають 
супутниками досліджуваної зірки, або залишають межі Сонячної системи. 
Ключові слова: небесна механіка; обмежена задача трьох тіл; аналог функції Якобі; квазіінтеграл; закон збереження 
енергії; поверхні мінімальної енергії; особливі точки; стійкість Хілла 
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This paper presents a new numerical method for solving the quantum mechanical complex-valued Schrodinger equation (CSE). The 
technique combines a second-order Crank-Nicolson scheme based on the finite element method (FEM) for temporal discretisation with 
nonic B-spline functions for spatial discretisation. This method is unconditionally stable with the help of Von-Neumann stability 
analysis. To verify our methodology, we examined an experiment utilising a range of error norms to compare experimental outcomes 
with analytical solutions. Our investigation verifies that the suggested approach works better than current methods, providing better 
accuracy and efficiency in quantum mechanical error analysis. 
Keywords: Crank-Nicolson Method; Finite element scream; Von-Neumann stability assessment; Nonic B-spline 
PACS: 02.90.p, 03.65.w, 47.11.Fg, 02.30.Jr 

1. INTRODUCTION
Differential equations (DEs) are fundamental tools for analysing dynamic phenomena across various fields and are 

indispensable in mathematically representing physical systems. They find extensive application in simulating diverse 
physical problems such as fluid dynamics, signal processing, and electrical engineering. Dynamic systems with 
measurement errors often necessitate numerical treatment due to the complexity of obtaining analytical solutions. 

The Schrodinger equation (SE), formulated by Austrian physicist Erwin Schrodinger in 1926, stands as a cornerstone 
in quantum theory and mechanics, governing sub-microscopic events. And the probabilistic nature of wave functions. Its 
significance permeates through atomic, nuclear, and solid-state physics. Schrodinger's experimental validation of SE, 
particularly with the hydrogen atom, underscored its efficacy in describing quantum phenomena. 

SE exists in two primary forms: the time-dependent Schrodinger wave equation, portraying wave function evolution 
over time, and the time-independent Schrödinger equation, elucidating stationary states. While the former characterises 
progressive waves pertinent to free particle motion, the latter describes standing waves, especially when the particle's 
potential energy is independent of time and solely dependent on position. 

The solutions to the time-dependent Schrodinger equation mirror the dynamic properties of particles, analogous to 
Newton's force definition (Fൌ 𝑚𝑎) in classical physics. Furthermore, nonlinear Schrodinger equations find applications 
in various fields, such as plasma physics[2], nonlinear optics [19], and water waves [26]. 

Recent research delves into specialised solutions and applications of SE variants, including Haar wavelet and finite 
difference method [1], quantic Hermite collocation method [3], differential quadrature method (DQM) [4], quadratic 
B-Spline FEM [6], reverse-time SE [9], cubic spline technique [17]. Additionally, studies explore specific solutions and
phenomena like breather-type solutions and rogue waves in generalised nonlinear SE formulations [5], highlighting the
versatility and ongoing research interest in SE and its extensions.

Many approaches have been used with finite differences [18], and the finite element method [21] is designed 
specifically for fractional Schrodinger equations with trigonometric B-splines [8]. It has also been investigated to analyse 
the superconvergence of linearised MFEM for nonlinear Schrödinger equations [24]. Additionally, specialised methods 
have addressed time-dependent singly perturbed convection-diffusion equations, such as the Crank-Nicolson finite 
difference approach with a midpoint upwind scheme on non-uniform meshes [12]. 

Numerous numerical methods have been studied to solve the coupled nonlinear Schrödinger equation using cubic 
B-spline Galerkin methods [10]. Furthermore, to approximate solutions to Equation (1), multistep and hybrid
approaches [25] and two-step hybrid methods [15] have been proposed. Other techniques include B-Spline collocation
technique [11], [7] improvised cubic B-spline collocation [13], Crank-Nicolson scheme [14], homotopy analysis
method [20], BFRK scheme [22], septic B-Spline collocation [23] and numerical quadrature schemes, which have also
been applied. Despite exploring several ways, difficulties in delivering comprehensive computations for these techniques
continue to arise. For example, Lehtovaara et al., by the time propagation method [16], presents viable approaches to
solve equation (1), but the computation details are still elusive.
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Adopting the nonic B-spline collocation methodology is a significant step forward in tackling complicated problems 
like the Schrödinger equation by surpassing the drawbacks of the previous numerical methods. Using this technology, 
researchers can reduce problems associated with excessive computing complexity, poor precision, and programming 
difficulties. 

Researchers can effectively handle the complex computations needed to approximate solutions using MATLAB and 
MATHEMATICA for computing. Compared to more conventional approaches, this one simplifies computation, improves 
accuracy, and simplifies implementation. 

Furthermore, this effort offers scholars essential insights into the effectiveness of complex analysis as a physics tool 
by integrating these techniques within the quantum mechanics curriculum. Comprehending complex analysis broadens 
researchers' understanding and gives them an advantage when addressing other physics problems requiring advanced 
mathematical techniques. Using the finite element method in conjunction with the B-spline collocation method promotes 
a catalytic approach to quantum mechanics research advancement. This work opens the door for revolutionary 
developments in the discipline by proposing novel approaches and encouraging multidisciplinary collaboration. 

The primary goal of the scheme that we suggest in this study is to improve the accuracy of approximate solutions 
for quantum-mechanical energy, similar to Schrödinger's original answer. Our goal is to show that the nonic B-spline 
collocation approach, in combination with the finite element method (FEM) and Crank-Nicolson scheme, can be 
a valuable tool for the efficient implementation of intermediate-level complex analysis of the Schrödinger equation. 

The Schrödinger equation is converted into an algebraic system of equations at each step of the procedure, making 
a numerical solution easier, more dependable, and more effective than other approaches. Optical soliton solutions require 
managing the complex function's real and imaginary parts. 

The Crank-Nicolson method, initially proposed by Crank and Phyllis Nicolson in 1947 for the numerical solution 
of partial differential equations, emerges as an elegant solution for our purposes. This method is known for its convergence 
and stability properties across finite values of the Courant number 𝜔, defined as  ሺ

୼௧

௛మ
ሻ ൌ 𝜔. Implementing the Crank-

Nicolson method offers an efficient solution to the time-dependent Schrödinger equation, a fundamental tool with 
extensive utility in various fields of physics such as acoustics and optics. By employing this comprehensive approach, we 
aim to provide researchers with a robust framework for tackling complex quantum-mechanical problems while shedding 
light on the practical applications of the Schrödinger equation in diverse physical phenomena. 

The non-dimensionalized form of the equation can be written as 

 𝑖𝑣௧ ൅ 𝛾𝑣௫௫ ൅ 𝑝|𝑣|ଶ𝑣 ൌ 0, (1) 

with the initial conditions  

 𝑣ሺ𝑥, 0ሻ ൌ fሺ𝑥ሻ, 𝑎 ൑ 𝑥 ൑ 𝑏, (2) 

 and the boundary conditions  

𝑣ሺ𝑎, 𝑡ሻ ൌ 𝑣ሺ𝑏, 𝑡ሻ ൌ 0 

𝑣ହ௫ሺ𝑎, 𝑡ሻ ൌ 𝑣ହ௫ሺ𝑏, 𝑡ሻ ൌ 𝑣଺௫ሺ𝑎, 𝑡ሻ ൌ 𝑣଺௫ሺ𝑏, 𝑡ሻ ൌ 0 

 𝑣଻௫ሺ𝑎, 𝑡ሻ ൌ 𝑣଻௫ሺ𝑏, 𝑡ሻ ൌ 𝑣଼௫ሺ𝑎, 𝑡ሻ ൌ 𝑣଼௫ሺ𝑏, 𝑡ሻ ൌ 0, 𝑡 ∈ ሾ0,𝑇ሿ. (3) 

Here, 𝛾 ് 0 𝑎𝑛𝑑 𝑖ଶ ൌ െ1 is an imaginary unit, and 𝑓ሺ𝑥ሻ is a smooth function. 
If 𝛾 ൌ െ1 and 𝑝 ൌ 0, then equation (1) becomes 

 𝑖𝑣௧ െ 𝑣௫௫ ൌ 0 (4) 

The current work is organised as follows: Section 2 suggests and constructs the nonic B-spline. The nonic B-spline is 
implemented in Section 3. The Section 4 is reported with linear stability analysis. Section 5 discusses numerical examples, 
and corresponding results are reported in the table and surfed in figures. Section 6 contains a portion of the conclusions. 
 

2. B-SPLINE OF ORDER NINE 
Let's find the step length ℎ ൌ 𝑥௠ାଵ െ 𝑥௠,𝑚 ൌ 0,1, . .𝑁, where m=0,1,..., N, and divide the interval [a,b] into N 

equally spaced points 𝑥௡ such that 𝑎 ൌ 𝑥଴ ൏ 𝑥ଵ ൏. . .൏ 𝑥ே ൌ 𝑏. Next, at the knots 𝑥௠, the nonic B-splines 𝐵௠ሺ𝑥ሻ, 𝑚 ൌ
െ4ሺ1ሻ𝑁 ൅ 4 are provided by: 
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 𝐵௠ሺ𝑥ሻ ൌ
ଵ

௛వ
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⎪
⎪
⎪
⎨
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⎪
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⎪
⎧
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0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (5) 

 
where 

𝑑ଵ ൌ ሺ𝑥 െ 𝑥௠ିହሻ, 𝑑ଶ ൌ ሺ𝑥 െ 𝑥௠ିସሻ, 𝑑ଷ ൌ ሺ𝑥 െ 𝑥௠ିଷሻ,  𝑑ସ ൌ ሺ𝑥 െ 𝑥௠ିଶሻ, 𝑑ହ ൌ ሺ𝑥 െ 𝑥௠ିଵሻ, 𝑑଺ ൌ ሺ𝑥௠ାହ െ 𝑥ሻ,
𝑑଻ ൌ ሺ𝑥௠ାସ െ 𝑥ሻ, 𝑑଼ ൌ ሺ𝑥௠ାଷ െ 𝑥ሻ,  𝑑ଽ ൌ ሺ𝑥௠ାଶ െ 𝑥ሻ,  𝑑ଵ଴ ൌ ሺ𝑥௠ାଵ െ 𝑥ሻ, 

𝐼ଵ ൌ ሾ𝑥௠ିହ, 𝑥௠ିସሻ,  𝐼ଶ ൌ ሾ𝑥௠ିସ, 𝑥௠ିଷሻ, 𝐼ଷ ൌ ሾ𝑥௠ିଷ, 𝑥௠ିଶሻ,  𝐼ସ ൌ ሾ𝑥௠ିଶ, 𝑥௠ିଵሻ, 𝐼ହ ൌ ሾ𝑥௠ିଵ, 𝑥௠ሻ, 𝐼଺ ൌ ሾ𝑥௠, 𝑥௠ାଵሻ,
𝐼଻ ൌ ሾ𝑥௠ାଵ, 𝑥௠ାଶሻ, 𝐼 ൌ ሾ𝑥௠ାଶ, 𝑥௠ାଷሻ, 𝐼ଽ ൌ ሾ𝑥௠ାଷ, 𝑥௠ାସሻ, 𝐼ଵ଴ ൌ ሾ𝑥௠ାସ, 𝑥௠ାହሻ 

The nonic B-splines 𝐵ିସ,𝐵ିଷ, … ,𝐵ேାସ constitute a basis over the area of space ሾ𝑎, 𝑏ሿ .The solution 𝑢ሺ𝑥, 𝑡ሻ , 
approximating the exact solution 𝑣ሺ𝑥, 𝑡ሻ of equation (1), is expressed as: 

 𝑢ሺ𝑥, 𝑡ሻ ൌ ∑ேାସ
௠ୀିସ 𝑐௠ሺ𝑡ሻ𝐵௠ሺ𝑥ሻ (6) 

At each time level, the parameters 𝑐௠ and 𝐵௠ሺ𝑥ሻ are the temporal quantities to be found. 
At the mesh points 𝑥௠, the nodal values of 𝑢௠ and its higher-order derivatives were acquired using equations (5) and 
(6), which are as follows:  

𝑢௠  ൌ 𝑐௠ିସ ൅ 502𝑐௠ିଷ ൅ 14608𝑐௠ିଶ ൅ 88234𝑐௠ିଵ ൅ 156190𝑐௠ ൅ 88234𝑐௠ାଵ ൅  4608𝑐௠ାଶ ൅ 502𝑐௠ାଷ ൅ 𝑐௠ାସ 

𝑢௠ᇱ  ൌ
9
ℎ
ሺെ𝑐௠ିସ െ 246𝑐௠ିଷ െ 4046𝑐௠ିଶ െ 11326𝑐௠ିଵ ൅ 11326𝑐௠ାଵ ൅ 4046𝑐௠ାଶ ൅ 246𝑐௠ାଷ ൅ 𝑐௠ାସሻ 

𝑢௠"  ൌ
72
ℎଶ
ሺ𝑐௠ିସ ൅ 118𝑐௠ିଷ ൅ 952𝑐௠ିଶ ൅ 154𝑐௠ିଵ െ 2450𝑐௠ ൅ 154𝑐௠ାଵ ൅ 952𝑐௠ାଶ ൅ 118𝑐௠ାଷ ൅ 𝑐௠ାସሻ 

𝑢௠ᇱᇱᇱ  ൌ
ହ଴ସ

௛య
ሺെ𝑐௠ିସ െ 54𝑐௠ିଷ െ 134𝑐௠ିଶ ൅ 434𝑐௠ିଵ െ 434𝑐௠ାଵ ൅ 134𝑐௠ାଶ ൅ 54𝑐௠ାଷ ൅ 𝑐௠ାସሻ  

𝑢௠௜௩  ൌ
3024
ℎସ

ሺ𝑐௠ିସ ൅ 22𝑐௠ିଷ െ 32𝑐௠ିଶ െ 86𝑐௠ିଵ ൅ 190𝑐௠ െ 86𝑐௠ାଵ െ 32𝑐௠ାଶ ൅ 22𝑐௠ାଷ ൅ 𝑐௠ାସሻ 

𝑢௠௩  ൌ
15120
ℎହ

ሺെ𝑐௠ିସ െ 6𝑐௠ିଷ ൅ 34𝑐௠ିଶ െ 46𝑐௠ିଵ ൅ 46𝑐௠ାଵ െ 34𝑐௠ାଶ ൅ 6𝑐௠ାଷ ൅ 𝑐௠ାସሻ 

𝑢௠௩௜  ൌ
60480
ℎ଺

ሺ𝑐௠ିସ െ 2𝑐௠ିଷ െ 8𝑐௠ିଶ ൅ 34𝑐௠ିଵ െ 50𝑐௠ ൅ 34𝑐௠ାଵ െ 8𝑐௠ାଶ െ 2𝑐௠ାଷ ൅ 𝑐௠ାସሻ 

𝑢௠௩௜௜  ൌ
181440
ℎ଻

ሺെ𝑐௠ିସ ൅ 6𝑐௠ିଷ െ 14𝑐௠ିଶ ൅ 14𝑐௠ିଵ െ 14𝑐௠ାଵ ൅ 14𝑐௠ାଶ െ 6𝑐௠ାଷ ൅ 𝑐௠ାସሻ 

𝑢௠௩௜௜௜  ൌ
ଷ଺ଶ଼଼଴

௛ఴ
ሺ𝑐௠ିସ െ 8𝑐௠ିଷ ൅ 28𝑐௠ିଶ െ 56𝑐௠ିଵ ൅ 70𝑐௠ െ 56𝑐௠ାଵ ൅ 28𝑐௠ାଶ െ 8𝑐௠ାଷ ൅  𝑐௠ାସሻ. (7) 

The continuity of nonic B-splines and their first eight derivatives is ensured. 
 

3. EXECUTION 
The current implementation strategy revolves around leveraging a hybrid numerical approach to approximate the 

equation's solution. The temporal derivatives within the equation are discretised using the forward finite difference 
method. This method, known for its simplicity and ease of implementation, involves approximating the derivatives by the 
difference between neighbouring points in time. Discretizing the time derivatives transforms the continuous-time problem 
into a discrete-time one, enabling numerical computation using iterative techniques. 

 𝑖
ሺ௩೙శభሻିሺ௩೙ሻ

୼௧
 ൌ

ሺ௩ೣೣ
೙శభሻାሺ௩ೣೣ

೙ ሻ

ଶ
 (8) 

With equation (8) established, we derive the recurrence relation (9) through a systematic analysis of the simplified 
system's behaviour. This involves identifying recurring patterns or dependencies among the system's variables across 
consecutive time steps, which can be expressed using a recursive formula. 
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𝛿௠,ଵ𝑐௠ିସ
௡ାଵ ൅ 𝛿௠,ଶ𝑐௠ିଷ

௡ାଵ ൅ 𝛿௠,ଷ𝑐௠ିଶ
௡ାଵ ൅ 𝛿௠,ସ𝑐௠ିଵ

௡ାଵ ൅ 𝛿௠,ହ𝑐௠௡ାଵ ൅ 𝛿௠,ସ𝑐௠ାଵ
௡ାଵ ൅ 𝛿௠,ଷ𝑐௠ାଶ

௡ାଵ ൅ 𝛿௠,ଶ𝑐௠ାଷ
௡ାଵ ൅ 𝛿௠,ଵ𝑐௠ାସ

௡ାଵ  

ൌ 𝛿௠,଺𝑐௠ିସ
௡ ൅ 𝛿௠,଻𝑐௠ିଷ

௡ ൅ 𝛿௠,଼𝑐௠ିଶ
௡ ൅ 𝛿௠,ଽ𝑐௠ିଵ

௡ ൅ 𝛿௠,ଵ଴𝑐௠௡ ൅ 𝛿௠,ଽ𝑐௠ାଵ
௡ ൅ 𝛿௠,଼𝑐௠ାଶ

௡ ൅ 𝛿௠,଻𝑐௠ାଷ
௡ ൅ 𝛿௠,଺𝑐௠ାସ

௡ , (9) 

where 𝑚 ൌ 0,1, . . . ,𝑁 and 𝑖 is an imaginary unit. 

𝛿௠,ଵ ൌ 2𝑖ℎଶ െ 72Δ𝑡                                  𝛿௠,ଶ ൌ 1004𝑖ℎଶ െ 8496Δ𝑡  

𝛿௠,ଷ ൌ 29216𝑖ℎଶ െ 68544Δ𝑡                          𝛿௠,ସ ൌ 176468𝑖ℎଶ െ 11088Δ𝑡 

𝛿௠,ହ ൌ 312380𝑖ℎଶ ൅ 176400Δ𝑡                       𝛿௠,଺ ൌ 2𝑖ℎଶ ൅ 72Δ𝑡  

𝛿௠,଻ ൌ 1004𝑖ℎଶ ൅ 8496Δ𝑡                            𝛿௠,଼ ൌ 29216𝑖ℎଶ ൅ 68544Δ𝑡  

𝛿௠,ଽ ൌ 176468𝑖ℎଶ ൅ 11088Δ𝑡                        𝛿௠,ଵ଴ ൌ 312380𝑖ℎଶ െ 176400Δ𝑡 

Consequently, with the aid of MATLAB, the augmented system (9) is efficiently formulated, incorporating the 
additional equations derived from the boundary conditions(3). This expanded system now consists of (N+9) equations, 
precisely matching the number of unknowns, thereby enabling a comprehensive solution. MATLAB's robust numerical 
solvers facilitate the exploration of the solution space, allowing for accurate and reliable results to be obtained with 
minimal effort. 

 𝐴ଵ𝛼ത௡ାଵ ൌ 𝐴ଶሺ𝛼௡ሻ (10) 

where, 𝛼ത௡ାଵ ൌ ሾ𝑐ିସ
௡ାଵ 𝑐ିଷ

௡ାଵ. . . 𝑐ேାସ
௡ାଵሿ், 𝐴ଵ,𝐴ଶ are ሺ𝑁 ൅ 9ሻ ൈ ሺ𝑁 ൅ 9ሻ and ሺ𝑁 ൅ 9ሻ ൈ 1 matrix respectively. 

𝐴ଵ ൌ

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

1 502 14608 88234 156190 88234 14608 502 1

െ1 െ54 െ134 434 0 െ434 134 54 1

െ1 െ6 34 െ46 0 46 െ34 6 1

െ1 6 െ14 14 0 െ14 14 െ6 1

𝛿଴,ଵ 𝛿଴,ଶ 𝛿଴,ଷ 𝛿଴,ସ 𝛿଴,ହ 𝛿଴,ସ 𝛿଴,ଷ 𝛿଴,ଶ 𝛿଴,ଵ

𝛿ଵ,ଵ 𝛿ଵ,ଶ 𝛿ଵ,ଷ 𝛿ଵ,ସ 𝛿ଵ,ହ 𝛿ଵ,ସ 𝛿ଵ,ଷ 𝛿ଵ,ଶ 𝛿ଵ,ଵ

െ െ െ െ െ െ െ െ

െ െ െ െ െ െ െ െ െ
𝛿ேିଵ,ଵ 𝛿ேିଵ,ଶ 𝛿ேିଵ,ଷ 𝛿ேିଵ,ସ 𝛿ேିଵ,ହ 𝛿ேିଵ,ସ 𝛿ேିଵ,ଷ 𝛿ேିଵ,ଶ 𝛿ேିଵ,ଵ

𝛿ே,ଵ 𝛿ே,ଶ 𝛿ே,ଷ 𝛿ே,ସ 𝛿ே,ହ 𝛿ே,ସ 𝛿ே,ଷ 𝛿ே,ଶ 𝛿ே,ଵ

1 502 14608 88234 156190 88234 14608 502 1

െ1 െ54 െ134 434 0 െ434 134 54 1

െ1 െ6 34 െ46 0 46 െ34 6 1

െ1 6 െ14 14 0 െ14 14 െ6 1

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 
Initial state 

To evaluate the initial vector 𝛼଴and the solution space 𝑢ሺ𝑥, 𝑡ሻ is decomposed into complex form as follows: 

 𝑢ሺ𝑥, 𝑡ሻ ൌ 𝑋ሺ𝑥, 𝑡ሻ ൅ 𝑖𝑌ሺ𝑥, 𝑡ሻ. (11) 

Here, X and Y are real coefficients. We derive the associated coupled pair of real differential equations by substituting 
equation (11) into equation (4). 

 𝑋௧ െ 𝑌௫௫ ൌ 0       and        𝑋௧ ൅ 𝑌௫௫ ൌ 0 (12) 

In the collocation method implementation, loops are recognised as collocation sites for systems. (11) and (12). The 
nonic B-splines 𝐵௠ሺ𝑥ሻ provide solutions for global approximation  
by expressing 𝑋ሺ𝑥, 𝑡ሻ and 𝑌ሺ𝑥, 𝑡ሻ as expansions: 

𝑋ேሺ𝑥, 𝑡ሻ ൌ ∑ேାସ
௠ୀିସ 𝛼௠ሺ𝑡ሻ𝐵௠ሺ𝑥ሻ,   and     𝑌ேሺ𝑥, 𝑡ሻ ൌ ∑ேାସ

௠ୀିସ 𝛽௠ሺ𝑡ሻ𝐵௠ሺ𝑥ሻ (13) 
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In this case, the parameters 𝜂௜ and 𝜁௜ must be found gradually. equation (12) and the B-splines found in equation 
(5) are used to estimate the solution of equation (4) by obtaining the initial parameters, 𝛼௠଴  and 𝛽௠଴ . This leads to a system 
of (2N+18) equations containing 2N unknowns. equation (3) yields the subsequent equations derived from boundary 
conditions. 
 
𝑋ே
௩ሺ𝑎, 0ሻ ൌ ሺെ𝛼ିସ

଴ െ 6𝛼ିଷ
଴ ൅ 34𝛼ିଶ

଴ െ 46𝛼ିଵ
଴ ൅ 46𝛼ଵ

଴ െ 34𝛼ଶ
଴ ൅ 6𝛼ଷ

଴ ൅ 𝛼ସ
଴ሻ ൌ  0 

𝑋ே
௩௜ሺ𝑎, 0ሻ  ൌ ሺ𝛼ିସ

଴ െ 2𝛼ିଷ
଴ െ 8𝛼ିଶ

଴ ൅ 34𝛼ିଵ
଴ െ 50𝛼଴

଴ ൅ 34𝛼ଵ
଴ െ 8𝛼ଶ

଴ െ 2𝛼ଷ
଴ ൅ 𝛼ସ

଴ሻ  ൌ  0  
𝑋ே
௩௜௜ሺ𝑎, 0ሻ  ൌ ሺെ𝛼ିସ

଴ ൅ 6𝛼ିଷ
଴ െ 14𝛼ିଶ

଴ ൅ 14𝛼ିଵ
଴ െ 14𝛼ଵ

଴ ൅ 14𝛼ଶ
଴ െ 6𝛼ଷ

଴ ൅ 𝛼ସ
଴ሻ  ൌ  0  

𝑋ே
௩௜௜௜ሺ𝑎, 0ሻ ൌ ሺ𝛼ିସ

଴ െ 8𝛼ିଷ
଴ ൅ 28𝛼ିଶ

଴ െ 56𝛼ିଵ
଴ ൅ 70𝛼଴

଴ െ 56𝛼ଵ
଴ ൅ 28𝛼ଶ

଴ െ 8𝛼ଷ
଴ ൅ 𝛼ସ

଴ሻ  ൌ  0 
𝑋ேሺ𝑥, 0ሻ  ൌ ሺ𝛼௠ିସ

଴ ൅ 502𝛼௠ିଷ
଴ ൅ 14608𝛼௠ିଶ

଴ ൅ 88234𝛼௠ିଵ
଴ ൅ 156190𝛼௠଴ ൅ 88234𝛼௠ାଵ

଴ ൅ 4608𝛼௠ାଶ
଴ ൅ 502𝛼௠ାଷ

଴ ൅ 𝛼௠ାସ
଴ ሻ  

ൌ  𝑋ሺ𝑥௠, 0ሻ 
𝑋ே
௩ሺ𝑏, 0ሻ  ൌ ሺെ𝛽ேିସ

଴ െ 6𝛽ேିଷ
଴ ൅ 34𝛽ேିଶ

଴ െ 46𝛽ேିଵ
଴ ൅ 46𝛽ேାଵ

଴ െ 34𝛽ேାଶ
଴ ൅ 6𝛽ேାଷ

଴ ൅ 𝛽ேାସ
଴ ሻ  ൌ  0 

𝑋ே
௩௜ሺ𝑏, 0ሻ  ൌ ሺ𝛽ேିସ

଴ െ 2𝛽ேିଷ
଴ െ 8𝛽ேିଶ

଴ ൅ 34𝛽ேିଵ
଴ െ 50𝛽ே

଴ ൅ 34𝛽ேାଵ
଴ െ 8𝛽ேାଶ

଴ െ 2𝛽ேାଷ
଴ ൅ 𝛽ேାସ

଴ ሻ  ൌ  0 
𝑋ே
௩௜௜ሺ𝑏, 0ሻ  ൌ ሺെ𝛽ேିସ

଴ ൅ 6𝛽ேିଷ
଴ െ 14𝛽ேିଶ

଴ ൅ 14𝛽ேିଵ
଴ െ 14𝛽ேାଵ

଴ ൅ 14𝛽ேାଶ
଴ െ 6𝛽ேାଷ

଴ ൅ 𝛽ேାସ
଴ ሻ  ൌ  0 

𝑋ே
௩௜௜௜ሺ𝑏, 0ሻ  ൌ ሺ𝛽ேିସ

଴ െ 8𝛽ேିଷ
଴ ൅ 28𝛽ேିଶ

଴ െ 56𝛽ேିଵ
଴ ൅ 70𝛽ே

଴ െ 56𝛽ேାଵ
଴ ൅ 28𝛽ேାଶ

଴ െ 8𝛽ேାଷ
଴ ൅ 𝛽ேାସ

଴ ሻ  ൌ  0. (14) 

Analogously, 𝑌ேሺ𝑥, 𝑡ሻ  may be derived. The initial vector 𝑐௠଴  is computed as 𝑐௠଴ ൌ 𝛼௠଴ ൅ 𝑖𝛽௠଴ , where i denotes 
the imaginary unit. 
 

4. STUDY OF STABILITY 
Examining the robustness of a methodology includes pinpointing the scenarios in which the divergence between 

theoretical expectations and numerical approximations remains limited with successive temporal iterations. Utilising the 
Von-Neumann technique aids in validating the stability of the method. 
Consider 
 𝜙௜

௡ ൌ 𝐸𝜙௡𝑒௜ఝ௄௛, (15) 

where 𝑖 ൌ √െ1 represents an imaginary unit, 𝐸 represents the amplitude, 𝜙 is the amplification factor, ℎ represents 
the spatial step length, and 𝜑 is the mode number. 
Now, applying equation (15) in the equation (9) and after simplification, we obtained 

𝜙௡ାଵሾ𝑎ଵ𝑒ିସ௜ఝ௛ ൅ 𝑎ଶ𝑒ିଷ௜ఝ௛ ൅ 𝑎ଷ𝑒ିଶ௜ఝ௛ ൅ 𝑎ସ𝑒ି௜ఝ௛ ൅ 𝑎ହ ൅ 𝑎଺𝑒௜ఝ௛ ൅ 𝑎଻𝑒ଶ௜ఝ௛ ൅ 𝑎଼𝑒ଷ௜ఝ௛ ൅ 𝑎ଽ𝑒ସ௜ఝ௛ሿ ൌ
𝜙௡ሾ𝑏ଵ𝑒ିସ௜ఝ௛ ൅ 𝑏ଶ𝑒ିଷ௜ఝ௛ ൅ 𝑏ଷ𝑒ିଶ௜ఝ௛ ൅ 𝑏ସ𝑒ି௜ఝ௛ ൅ 𝑏ହ ൅ 𝑏଺𝑒௜ఝ௛ ൅ 𝑏଻𝑒ଶ௜ఝ௛ ൅ 𝑏଼𝑒ଷ௜ఝ௛ ൅ 𝑏ଽ𝑒ସ௜ఝ௛ሿ

 (16) 

Applying Euler’s formula 𝑒േ௜ఝ௛ ൌ cosሺ𝜑ℎሻ േ 𝑖ሺsinሺ𝜑ℎሻሻ to equation (16) 

 థ೙శభ

థ೙
ൌ

஻భା௜஼భ
஻మି௜஼మ

, (17) 
where 

𝐵ଵ ൌ ሺ𝑏ଵ ൅ 𝑏ଽሻcosሺ4𝜑ℎሻ ൅ ሺ𝑏ଶ ൅ 𝑏଼ሻcosሺ3𝜑ℎሻ ൅ ሺ𝑏ଷ ൅ 𝑏଻ሻcosሺ2𝜑ℎሻ ൅ ሺ𝑏ସ ൅ 𝑏଺ሻcosሺ𝜑ℎሻ ൅ 𝑏ହ 

𝐶ଵ ൌ ሺ𝑏ଵ െ 𝑏ଽሻsinሺ4𝜑ℎሻ ൅ ሺ𝑏ଶ െ 𝑏଼ሻsinሺ3𝜑ℎሻ ൅ ሺ𝑏ଷ െ 𝑏଻ሻsinሺ2𝜑ℎሻ ൅ ሺ𝑏ସ െ 𝑏଺ሻsinሺ𝜑ℎሻ 

𝐵ଶ ൌ ሺ𝑎ଵ ൅ 𝑎ଽሻcosሺ4𝜑ℎሻ ൅ ሺ𝑎ଶ ൅ 𝑎଼ሻcosሺ3𝜑ℎሻ ൅ ሺ𝑎ଷ ൅ 𝑎଻ሻcosሺ2𝜑ℎሻ ൅ ሺ𝑎ସ ൅ 𝑎଺ሻcosሺ𝜑ℎሻ ൅ 𝑎ହ 

𝐶ଶ ൌ ሺ𝑎ଵ െ 𝑎ଽሻsinሺ4𝜑ℎሻ ൅ ሺ𝑎ଶ െ 𝑎଼ሻsinሺ3𝜑ℎሻ ൅ ሺ𝑎ଷ െ 𝑎଻ሻsinሺ2𝜑ℎሻ ൅ ሺ𝑎ସ െ 𝑎଺ሻsinሺ𝜑ℎሻ. (18) 

Check the stability condition |
థ೙శభ

థ೙
| ൑ 1, we get 

 𝐵ଵଶ ൅ 𝐶ଵଶ െ 𝐵ଶ
ଶ െ 𝐶ଶ

ଶ ൑ 1.  (19) 

Consequently, the proposed scheme exhibits unconditional stability. 
 

5. NUMERICAL ILLUSTRATIONS AND CONVERSATIONS 
Three test problems are examined to assess the present study's efficiency and accuracy. The accuracy of the methods 

is evaluated in this section by computing the error norms 𝐿ଶ and the maximum absolute error norm 𝐿ஶ, defined as 
follows: 

By computing both the 𝐿ଶ and  𝐿ஶ, error norms for each test problem, the study can effectively evaluate the 
accuracy of the methods across different scenarios and provide a comprehensive assessment of their performance. These 
error norms serve as valuable metrics for quantifying the discrepancy between computed and exact solutions, thereby 
informing decisions regarding the suitability and reliability of the computational methods employed in the study. 
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 𝐿ஶ ൌ max
଴ஸ௠ஸே

|𝑢௠ െ 𝑣௠| 

 𝐿ଶ ൌ ඥℎ∑ே
௠ୀ଴ |ሺ𝑢௠ െ 𝑣௠ሻଶ| 

Where 𝑢௠ and 𝑣௠ represent the exact and numerical solutions, respectively. 
MATLAB R2019 and MATHEMATICA software were utilised for numerical simulations. 

 
Example-1. Solve the equation (4) commencing with the exact solution within the domain 

𝑣ሺ𝑥, 𝑡ሻ ൌ 𝑒
ష೔೟శೣ
మ  , 𝑥 ∈ ሾ0,𝜋ሿ 

followed by the initial condition 𝑣ሺ𝑥, 0ሻ ൌ 𝑒
ೣ
మ and boundary conditions 

𝑣ሺെ𝜋, 𝑡ሻ ൌ 𝑣ሺ𝜋, 𝑡ሻ ൌ 𝑣ହ௫ሺെ𝜋, 𝑡ሻ ൌ 𝑣ହ௫ሺ𝜋, 𝑡ሻ ൌ 𝑣଺௫ሺെ𝜋, 𝑡ሻ ൌ 𝑣଺௫ሺ𝜋, 𝑡ሻ ൌ 𝑣଻௫ሺെ𝜋, 𝑡ሻ ൌ 𝑣଻௫ሺ𝜋, 𝑡ሻ ൌ 𝑣଼௫ሺെ𝜋, 𝑡ሻ
ൌ 𝑣଼௫ሺ𝜋, 𝑡ሻ ൌ 0, 𝑡 ∈ ሾ0,𝑇ሿ. 

Solution. 
The numerical solution, along with error norms 𝐿ଶ and 𝐿ஶ, incorporating absolute error at parameters ∆𝑡 ൌ 0.01,

ℎ ൌ 0.05, 𝑥 ∈ ሾ0,𝜋ሿ, and 𝑥 ∈ ሾ0,𝜋ሿ fo or various time steps 𝑡 is as follows: 
 
Observations from Table 1. 

 As time progresses, the absolute errors in the numerical solution tend to increase. This indicates that the accuracy 
of the numerical solution decreases over time. 

 Conversely, the error norms 𝐿ଶ 𝑎𝑛𝑑 𝐿ஶ decrease as time advances from 𝑡 ൌ 2 to 𝑡 ൌ 4. This implies that, 
although the absolute errors increase, the overall discrepancy between the numerical and exact solutions 
decreases. 

Table 1. Numerical solution with error norms at the parameters ∆𝑡 ൌ 0.01, ℎ ൌ 0.05, 𝑥 ∈ ሾ0,𝜋ሿ for Example-1. 

   𝑥 𝑡 ൌ 1 𝑡 ൌ 4 
Numerical Exact Absolute Error Numerical Exact Absolute Error 

0.20   0.329963 െ  0.513877𝑖  0.329963 െ  0.513887𝑖 9.712170𝑒 െ 06  െ0.399172 ൅  0.462174𝑖 െ0.399181 ൅  0.462180𝑖 9.841173𝑒 െ 06 
0.30  0.364670 െ  0.567915𝑖 0.364665 െ  0.567933𝑖 1.843042𝑒 െ 05 െ0.441153 ൅  0.51078𝑖 െ0.441163 ൅  0.510788𝑖 1.172312𝑒 െ 05 
0.50  0.445413 െ  0.693649𝑖 0.445403 െ  0.693675𝑖 2.800452𝑒 െ 05 െ0.538829 ൅  0.623867𝑖 െ0.538838 ൅  0.623878𝑖 1.364284𝑒 െ 05 
0.60  0.492253 െ  0.766603𝑖 0.492247 െ 0.766630𝑖 2.672546𝑒 െ 05 െ0.595497 ൅  0.689477𝑖 െ0.595508 ൅  0.689492𝑖 1.795372𝑒 െ 05 
1.20  0.896940 െ  1.396860𝑖 0.896933 െ  1.396891𝑖 3.129149𝑒 െ 05 െ1.085095 ൅  1.256315𝑖 െ1.085086 ൅  1.256336𝑖 2.239132𝑒 െ 05 
1.50  1.210741 െ  1.885569𝑖 1.210733 െ  1.885605𝑖 3.741733𝑒 െ 05 െ1.464716 ൅  1.695852𝑖 െ1.464713 ൅  1.695876𝑖 2.402096𝑒 െ 05 
1.60  1.338075 െ  2.083884𝑖 1.338067 െ  2.083916𝑖 3.310374𝑒 െ 05 െ1.618761 ൅  1.874208𝑖 െ1.618759 ൅  1.874233𝑖 2.529512𝑒 െ 05 
1.70  1.478800 െ  2.303052𝑖 1.478793 െ  2.303083𝑖 3. 227069𝑒 െ 05 െ1.789007 ൅  2.071320𝑖 െ1.789005 ൅  2.071348𝑖 2.837233e-05 
2.50  3.291092 െ  5.125581𝑖 3.291114 െ  5.125607𝑖 3.435566𝑒 െ 05 െ3.981497 ൅  4.609828𝑖 െ3.981504 ൅  4.609870𝑖 4.318684𝑒 െ 05 
3.10  5.996802 െ  9.339465𝑖 5.996802 െ  9.339465𝑖 8.881784𝑒 െ 16 െ7.254774 ൅  8.399732𝑖 െ7.254774 ൅  8.399732𝑖 1.776356𝑒 െ 15 
𝐿ଶ 5.0676e െ 05 4.8695e െ 05 
𝐿ஶ 2.7220e െ 05 2.6560e െ 05 

Plotting Numerical Solution vs. Exact Solutions. 
Figure 1 illustrates the natural part, and Figure 2 depicts the imaginary part of the numerical solutions compared to 

the exact solutions. The curves in these plots overlap closely, indicating that the numerical solutions are approximately 
equal to the analytical solution. 

  

Figure 1. Comparison of numerical solution with exact 
solution (Real) of Example-1 

Figure 2. Comparison of numerical solution with analytical 
solution (Imaginary) of Example 1 
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3D Comparison of Numerical Solutions and Analytical Solutions: 
Figures 3 and 4 present 3D plots comparing the numerical and analytical solutions. These plots, at parameters ℎ ൌ

∆𝑡 ൌ 0.1, 𝑡 ൌ 4, 𝑥 ∈ ሾ0,𝜋ሿ, demonstrate the approximate nature of the numerical solutions. The close alignment between 
the surfaces suggests that the numerical solutions closely resemble the analytical solutions. 

 
Figure 3. 3D plot of comparison of numerical with analytical solution (Real) of Example 1 

 
Figure 4. 3D plot of comparison of numerical with analytical solution (Imaginary) of Example 1 

The 3D plot of the numerical solution of (a) real and (b) imaginary at ℎ ൌ ∆𝑡 ൌ 0.1, 𝑡 ൌ 4, 𝑥 ∈ ሾ0,𝜋ሿ. 
 

6. CONCLUSION 
This study provides a comprehensive approach to approximate solutions to the Schrödinger equation in quantum 

mechanics using the nonic B-spline technique. An intermediate level of knowledge in complex analysis is necessary for 
this strategy, especially when defining and applying B-spline collocation techniques. We stress that the B-spline 
collocation method can solve a broad range of analytically solvable quantum mechanical problems, not just the 
Schrödinger equation. We provide a reliable framework for solving the Schrödinger equation quickly by fusing the finite 
element method (FEM) with the nonic B-spline collocation method. We have thoroughly evaluated inaccuracy, stability, 
and convergence to verify the suggested plan's efficacy. We look into the three conservation constants' approximations 
and assess them. 
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СКІНЧЕННО-РІЗНИЦЕВИЙ ПІДХІД ВИЩОГО ПОРЯДКУ B-СПЛАЙНА ДЛЯ РІВНЯННЯ ШРЕДІНГЕРА 

У КВАНТОВІЙ МЕХАНІЦІ 
Арчана Сенапаті, Баладжі Падхі, Шашікант Дас 

Університет технологій та менеджменту Центуріон, Одіша, Індія 
У цій статті представлено новий чисельний метод розв’язування квантово-механічного комплексного рівняння Шредінгера 
(CSE). Методика поєднує схему Кренка-Ніколсона другого порядку, засновану на методі скінченних елементів (FEM) для 
часової дискретизації з ненічними B-сплайновими функціями для просторової дискретизації. Цей метод є безумовно стійким 
за допомогою аналізу стабільності фон-Неймана. Щоб перевірити нашу методологію, ми перевірили експеримент, 
використовуючи низку норм помилок, щоб порівняти експериментальні результати з аналітичними рішеннями. Наше 
дослідження підтверджує, що запропонований підхід працює краще, ніж поточні методи, забезпечуючи кращу точність і 
ефективність квантово-механічного аналізу помилок. 
Ключові слова: метод Кранка-Ніколсона; finite element scream; оцінка стійкості за фон-Нейманом; B-сплайн 
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We have examined collisional degenerate plasma composed of charged state of heavy positive ion and light positive as wel as negative
ion. Employing the reductive perturbation method, we derived the damped Korteweg-de Vries-Burgers (dKdV-B) equation and by
using its standard solution we analyze the characteristics of the solitary-shock profile under varying parameters. Furthermore, with the
application of planar dynamical systems bifurcation theory, the phase portraits have been analyzed. This dynamical system analysis
allowed us to extract important information on the stability of these structures as represented by the dKdV-B equation.

Keywords: dKdV-B Equation; Quantum Plasma; Dynamical System; Reductive perturbation method; Pressure Anisotropy
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1. INTRODUCTION
The physics of quantum plasmas comprising both positive and negative ions, particularly multi-ion plasmas have

garnered significant attention recently due to its obligatory presence from laboratory to astrophysical plasma environments
[1–4]. The constituents of the degenerate quantum plasma includes electrons, heavy ions with positive charges, and light
ions [5]. Electrons, positive ions, and negative ions are all present in negative ion plasma. A portion of the electrons in
these kinds of plasmas are bound to negative ions. Negative ion plasma can be created in a laboratory and is a naturally
occurring phenomenon in space and astrophysical surroundings. Examples of plasma systems containing negative ions
are plasma processing reactors, the Sun’s photosphere, the D region of the ionosphere, and neutral beam sources. Both
theoretical and practical research has shown that the presence of these negative ions dramatically changes a number of
distinctive plasma phenomena. Electronic behavior and the plasma potential are altered by negative ions. It is also
commonly known that negative ions exist in the comet Halley’s comet [6] and the Earth’s ionosphere [7]. Positive-negative
ion plasmas have also been discovered to exist in a variety of settings, including neutral beam sources [8], low-temperature
laboratory studies [9], reactors for plasma processing [10], etc. Numerous authors [4, 11–14] used positively charged
heavy and light ions in quantum plasmas to study nonlinear waves. Akhtar and Hussain [15] investigated ion acoustic
shock waves in degenerate plasma with negative ions, They found that quantum parameters, temperature of positive and
negative ions have significant impact on shock wave structure in negative ion degenerate plasma. Hussain and Akhtar [16]
studied collisional effects in negative ion plasmas in the presence of degenerate electrons. Mohsenpour et al [17] studied
ion acoustic solitons in negative ion degenarate plasma. they found that negative ion parameters have influence on width
and amplitude of the soliton.

In the presence of elevated magnetic fields, the plasma ion pressure exhibits anisotropic behavior, and the plasma
behaves differently in parallel and perpendicular directions relative to the external magnetic field [18]. So, to consider
the effect of ionic pressure anisotropy pressure i.e., the parallel (𝑃∥ ) and perpendicular (𝑃⊥) ion pressure become very
important. Numerous studies have been reported on the impact of pressure anisotropy on the propagation of solitary and
shock waves in different plasma regimes [19,20]. For example, Almas et al. [21] investigated the properties of ion-acoustic
solitary waves composed of anisotropic pressure of electron-positron-ion (e-p-i) plasma and found that the characteristics
of such waves are more sensitive to parallel ion pressure than perpendicular ion pressure. Khalid et al. [22] also studied the
propagation of ion-acoustic electrostatic waves in a magnetized electron-ion plasma with pressure anisotropy. Mahmood
et al. [23] studied the properties of non-linear electrostatic structure in anisotropic pressure plasma and found that only
the width of the soliton depends on the perpendicular pressure (𝑃⊥), however, an increase in the parallel pressure (𝑃∥ )
decreases both the amplitude as well as the width of the soliton. Manesh et al. [24] studied the properties of solitary waves
in an anisotropic plasma with lighter and heavier ions and found that the light ion’s pressure anisotropy determines the
polarity of solitary waves, and it is rarefactive for anisotropic lighter ion whereas compressive for the isotropic lighter ion.
Khan et al. [25] studied the properties of soliton and cnoidal wave in an anisotropic superthermal electron-positron-ion
plasma and found that the wavelength of the cnoidal wave structure is reduced on increasing the parallel and perpendicular
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anisotropy of ion. Khalid and Rahman [26] studied the ion pressure anisotropy of the ion acoustic non-linear periodic
waves in a magnetized plasma. They reported that the increase of parallel pressure of ions decreases the amplitude and
width of the ion-acoustic periodic waves and the ion-acoustic waves behave differently than ion-acoustic periodic (cnoidal)
waves in anisotropic plasmas.

Apart from classical plasmas, the effect of pressure anisotropy has been widely investigated in dense quantum
magnetized plasmas. For example, Bordbar and Karami [27] studied the structural properties of an anisotropic dense
neutron star and analyzed the compactness, redshift, etc. of such a dense matter as a function strong magnetic field of the
order of 1017 Gauss which creates the anisotropy. Patidar and Sharma [28] explored the MHD wave modes in anisotropic
relativistic degenerate plasma and found fast and slow wave modes propagating under the combined influence of various
forces such as pressure anisotropy, exchange potential, Bohm force, and magnetic field. Irfan et al. [29] observed a
strong modification of amplitude and width of weakly nonlinear ion-acoustic waves considering the pressure anisotropy
of positive ions and electron trapping effects in a dense quantum magneto-plasma. Moreover, in the non-relativistic and
ultra-relativistic regimes, the anisotropic ion pressure also affects the stability of solitary waves.

Various nonlinear waves, such as shock, solitary, rogue, etc., present in our environment are addressed using different
mathematical nonlinear equations like Zakharov-Kuznetsov Burger (ZKB) equation, Korteweg-de-Vries (KdV) equation,
Non-linear Schrodinger (NLSE) equation, Burgers equation etc [30–33]. In plasma, damping of various types of nonlinear
waves can occur due to collisions between plasma species, elevated temperature of the inertial providing fluid, fluid
viscosity, nonlinear Landau damping, among other factors. Most of the natural systems are not in perfect equilibrium,
nearly all plasma waves experience some degree of damping [34–46]. The propagation of nonlinear waves is significantly
influenced by particle collisions. Findings revealed that the effect of collision between charged particles may have a
substantial impact on the wave’s characteristics [47, 48].

Phase plane analysis is an effective technique for exploring the qualitative behavior of dynamical systems, a graphical
approach specifically designed for examining second-order systems concerning their initial condition. Geometrically,
in a phase plane, the trajectory of a dynamical system for a given initial condition is represented by a curve or point.
Additionally, this technique allows us to get information about the stability of the system and gain further insight into the
existence of solutions [49]. The significance of phase plane analysis in understanding the qualitative solutions of plasma
systems is commonly acknowledged and used by researchers [50–53]. Recently, in various plasma systems, researchers
have examined the bifurcation features of small-amplitude nonlinear waves within the framework of equations such as the
Burgers equation [54], ZK equation [55], etc. [56, 57]

The objective of the present paper is to study the solitary-shock wave propagation in collisional quantum magneto-
plasma considering the ionic pressure anisotropy as well as anisotropic viscosities. The damped Korteweg-de Vries Burger
(dKdV-B) equation is derived using the RPT to study the shock wave nature in such plasma. These plasmas are believed to
exist in white dwarfs and neutron stars. The results obtained here may be useful for laboratory as well as space astrophysical
plasma environments wherein such plasma environments are prevalent.The manuscript is arranged as follows, Section
2 contains the detail theoretical formulation, Section 3 contains methodologies as well as detail derivations of dKdV-B
Equation, Section 4 contains the results and discussion part, Section 5 contains the Dynamical system analysis and overall
conclusion is presented in Section 6.

2. THEORETICAL FORMULATION
We consider a collisional plasma composed of charged state of heavy positive ion and light positive as wel as negative

ion.The normalized set of governing equations is given by [58]:
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𝜕

𝜕𝑦
+𝑉𝑙 𝑝𝑧

𝜕

𝜕𝑧

)
𝑉𝑙 𝑝𝑥 = −𝜕Φ

𝜕𝑥
+ 𝜂𝑙 𝑝∥

𝜕2𝑉𝑙 𝑝𝑥

𝜕𝑥2 − 𝑃𝑙 𝑝∥𝑁𝑙 𝑝

𝜕𝑁𝑙 𝑝

𝜕𝑥
− 𝜈𝑙 𝑝𝑉𝑙 𝑝𝑥 (5)

𝜕𝑉𝑙 𝑝𝑦

𝜕𝑇
+
(
𝑉𝑙 𝑝𝑥

𝜕

𝜕𝑥
+𝑉𝑙 𝑝𝑦

𝜕

𝜕𝑦
+𝑉𝑙 𝑝𝑧

𝜕

𝜕𝑧

)
𝑉𝑙 𝑝𝑦 = −𝜕Φ

𝜕𝑦
+ 𝜂𝑙 𝑝⊥

𝜕2𝑉𝑙 𝑝𝑦

𝜕𝑦2 +𝑉𝑙 𝑝𝑧Ω𝑙 𝑝 − 𝑃𝑙 𝑝⊥
1
𝑁𝑙 𝑝

𝜕𝑁𝑙 𝑝

𝜕𝑦
− 𝜈𝑙 𝑝𝑉𝑙 𝑝𝑦 (6)
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𝜕𝑉𝑙 𝑝𝑧

𝜕𝑇
+
(
𝑉𝑙 𝑝𝑥

𝜕

𝜕𝑥
+𝑉𝑙 𝑝𝑦

𝜕

𝜕𝑦
+𝑉𝑙 𝑝𝑧

𝜕

𝜕𝑧

)
𝑉𝑙 𝑝𝑧 = −𝜕Φ

𝜕𝑧
+ 𝜂𝑙 𝑝⊥

𝜕2𝑉𝑙 𝑝𝑧

𝜕𝑧2 +𝑉𝑙 𝑝𝑦Ω𝑙 𝑝 − 𝑃𝑙 𝑝⊥
1
𝑁𝑙 𝑝

𝜕𝑁𝑙 𝑝

𝜕𝑧
− 𝜈𝑙 𝑝𝑉𝑙 𝑝𝑧 (7)

𝜕2𝜙

𝜕𝑥2 + 𝜕2𝜙

𝜕𝑦2 + 𝜕2𝜙

𝜕𝑧2 = 𝑁𝑒

[
1 + 𝑍ℎ𝑝𝜇ℎ𝑝 + 𝛼𝑝 − 𝜇𝑙𝑛

]
+ 𝑁𝑙𝑛𝜇ln − 𝑍ℎ𝑝𝜇ℎ𝑝 − 𝑁𝑙 𝑝 − 𝑁𝑝

[
𝛼𝑒 + 𝜇𝑙𝑛 − 1 − 𝑍ℎ𝑝𝜇ℎ𝑝

]
(8)

Here Ω𝑙 𝑝,𝑙𝑛 = 𝜔𝑐𝑙𝑝,𝑙𝑛

/
𝜔𝑝ℎ, 𝜗 =

𝑚l𝑝𝑍ln
𝑍l𝑝𝑚ln

, 𝜐𝑙𝑛(𝑙 𝑝) =
𝜇𝑙𝑛(𝑙𝑝)

𝑚𝑙𝑛(𝑙𝑝)𝑛𝑙𝑛(𝑙𝑝)
where 𝜇𝑙𝑛(𝑙 𝑝) is the dynamic viscosity which is given

by 𝜇ln(𝑙 𝑝) = 2.21× 10−15 𝑇
5/2
𝑙𝑛(𝑙𝑝) 𝐴

1/2
ln(𝑙𝑝)

𝑍4
ln(𝑙𝑝) ln(𝑙 𝑝)Λ ; lnΛ is the logarithm of Coulomb parameter, 𝐴𝑙𝑛(𝑙 𝑝) is the atomic weight of heavy

positive ion, 𝑍ℎ𝑝 is the charged state of heavy positive ions, 𝑍𝑙 𝑝 (𝑙𝑛) is the charged state of light positive (negative) ions, 𝜙 is
the normalized electrostatic potential, 𝜂𝑙 𝑝 (𝑙𝑛) is the normalized viscosity for light positive (negative) ion, 𝜈𝑙 𝑝 (𝑙𝑛) collisional
frequency of light positive (negative) ion.𝑃𝑙 𝑝 (𝑙𝑛) ∥ and 𝑃𝑙 𝑝 (𝑙𝑛)⊥ are the parallel and perpendicular pressure of light positive
(negative) ion. The pressure equations for the anisotropic and adiabatic system are given by Chew–Goldberger–Law
popularly known as (CGL) or double adiabatic theory [59–61], according to which 𝑑

𝑑𝑡

(
𝑃𝑖 ∥𝐵

2/𝑛3
𝑖

)
= 0 and 𝑑

𝑑𝑡
(𝑃𝑖⊥/𝑛𝑖𝐵) =

0. In the case of electrostatic waves in a magnetized plasma, the ambient magnetic field 𝐵 = 𝐵0 is constant with time,
i.e. 𝑑

𝑑𝑡
(𝐵) = 0 where 𝐵0 is the magnetic field at equilibrium. Moreover, the normalized parallel and perpendicular ion

pressures obtained from the CGL theory are given as 𝑃𝑖 ∥ = 3𝑃𝑖 ∥0
/
𝑛𝑖0𝜀𝐹𝑒 and 𝑃𝑖⊥ = 𝑃𝑖⊥0/𝑛𝑖0𝜀𝐹𝑒 where 𝑃𝑖 ∥0 = 𝑛𝑖0𝑇𝑖 ∥

and𝑃𝑖⊥0 = 𝑛𝑖0𝑇𝑖⊥ are the equilibrium values of parallel and perpendicular pressure functions respectively, and 𝑛𝑖0 is the
unperturbed ion density. [18, 60, 62] The variations in the ambient magnetic field alter the ionic temperatures in parallel

and perpendicular directions to the magnetic field, i.e., 𝑇𝑖 ∥ ∝ 𝐵0 and 𝑇𝑖⊥ ∝
(
𝑛𝑖0
𝐵0

)2
respectively [62, 63].

The other plasma parameters are normalized as follows:

Φ =
𝜖𝐹𝑒

𝑒
, 𝑡 = 𝑇𝜔−1

𝑝 , 𝑥 = 𝑋 × 𝜆𝐹𝑒, 𝑁 𝑗 =
𝑛 𝑗

𝑛 𝑗0
, 𝜆𝐹𝑒 =

𝐶𝑠

𝜔𝑠

, 𝜀𝐹𝑒 =

(
ℏ

2𝑚𝑒

) (
3𝜋2

𝑛𝑒0

) 2
3 Where, 𝜆𝐹𝑒 is the Thomas-Fermi

length, 𝐶𝑠 is the Fermi ion sound velocity, 𝜔𝑝ℎ is the plasma frequency, 𝑚𝑙 𝑝 (𝑙𝑛) is the mass of light negative (light positive)
ions

3. DERIVATION OF DKDV-B EQUATION
To derive the evolution equation we employed the reductive perturbation technique. The stretched coordinates [18]

used here are given by:

𝜉 = 𝜀
1/2 (

𝐼𝑥𝑥 + 𝐼𝑦𝑦 + 𝐼𝑧𝑧 − 𝑀𝑇
)
, 𝜂𝑙𝑛(𝑙 𝑝) ∥ = 𝜖

1
2 𝜂𝑙𝑛(𝑙 𝑝) ∥0,

𝜂𝑙𝑛(𝑙 𝑝)⊥ = 𝜖
1
2 𝜂𝑙𝑛(𝑙 𝑝)⊥0, 𝜈𝑙𝑛(𝑙 𝑝) = 𝜀3/2𝜈𝑙𝑛0(𝑙 𝑝0)

(9)

Where, M is the phase velocity (Mach number) and 𝜖 is a small nonzero constant measuring the strength of dispersion.
In terms of the expansion parameter 𝜖 , the physical variables in equations are expanded in a power series as

𝑁 𝑗 = 1 + 𝜖𝑁
(1)
𝑗

+ 𝜖2𝑁
(2)
𝑗

+ 𝜖3𝑁
(3)
𝑗

+ . . .

𝑉𝑖𝑥 = 𝜖𝑉
(1)
𝑖𝑥

+ 𝜖2𝑉
(2)
𝑖𝑥

+ 𝜖3𝑉
(3)
𝑖𝑥

+ . . .

𝑉 𝑗 𝑦,𝑧 = 𝜖
3
2𝑉

(1)
𝑗 𝑦,𝑧

+ 𝜖2𝑉
(2)
𝑗 𝑦,𝑧

+ 𝜖
5
2𝑉

(3)
𝑗 𝑦,𝑧

+ . . .

𝜙 = 𝜖𝜙 (1) + 𝜖2𝜙 (2) + 𝜖3𝜙 (3) + . . .


(10)

Substituting the above stretched coordinates from Eq.(8) and the respective expansions from Eq. (10) in the Eqs.(1)-
(8), and then collecting the terms appearing in the lowest order of 𝜖 gives the following relations which gives the phase
velocity as

𝑀 = ±

√︄
𝑏 ±

√
𝑏2 − 4𝑎𝑐
2𝑎

(11)

Where
𝑎 =

(
𝜇𝑒𝛼1 − 𝜇𝑝Υ1

)
𝑏 = 𝐼2

𝑥

(
𝜇𝑒𝛼1

(
𝑃ln∥ + 𝑃𝑙 𝑝∥

)
− (1 − 𝜗𝜇ln) + 𝜇𝑝Υ1

(
𝑃𝑙𝑛∥ + 𝑃𝑙 𝑝∥

) )
𝑐 = 𝐼4

𝑥

(
𝜇𝑒𝛼1𝑃𝑙𝑛∥𝑃𝑙 𝑝∥ + 𝑃𝑙𝑛∥ − 𝜗𝜇𝑙𝑛𝑃𝑙 𝑝∥ − 𝜇𝑝Υ1𝑃𝑙𝑛∥𝑃𝑙 𝑝∥

)
Using standard procedure we obtain the following equation

𝑝
𝜕 𝜙 (1)

𝜕 𝜏
+ 𝑞𝜙 (1) 𝜕𝜙

(1)

𝜕𝜉
+ 𝑟

𝜕3𝜙 (1)

𝜕𝜉3 − 𝑠
𝜕2𝜙 (1)

𝜕𝜉2 + 𝑡𝜙 (1) = 0 (12)
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Where
𝑝 =

(
𝜇𝑙𝑛2𝜗𝑀𝐼2

𝑥

(𝑀2−𝑃𝑙𝑛∥ 𝐼
2
𝑥)2 + 2𝑀𝐼2

𝑥

(𝑀2−𝑃𝑙𝑝∥ 𝐼
2
𝑥)2

)
𝑞 =

©­«2𝜇𝑝Υ2 − 2𝜇𝑒𝛼2 −
𝜇𝑙𝑛𝜗

2𝑀2𝐼2
𝑥

(
3𝐼2

𝑥+𝑃𝑙𝑛∥
𝐼4
𝑥

𝑀2

)
(𝑀2−𝑃𝑙𝑛∥ 𝐼

2
𝑥)3 +

𝑀2𝐼2
𝑥

(
3𝐼2

𝑥+𝑃𝑙𝑝∥
𝐼4
𝑥

𝑀2

)
(𝑀2−𝑃𝑙𝑝∥ 𝐼

2
𝑥)3

ª®¬
𝑟 =

(
1 −

( (
𝐼2
𝑥𝑃𝑙𝑛⊥ + 1

) (1−𝐼2
𝑥)𝜇𝑙𝑛𝜗𝑀2

(𝑀2−𝑃𝑙𝑛∥ 𝐼
2
𝑥)2

Ω2
𝑙𝑛

+
(
𝐼2
𝑥𝑃𝑙 𝑝⊥ + 1

) (1−𝐼2
𝑥)𝑀2

(𝑀2−𝑃𝑙𝑝∥ 𝐼
2
𝑥)2

Ω2
𝑙𝑛

))
𝑠 =

(
𝜗𝜇𝑙𝑛𝑀𝜂

𝑙𝑛∥0
𝐼4
𝑥

(𝑀2−𝑃𝑙𝑛∥ 𝐼
2
𝑥)2 +

𝑀𝜂
𝑙𝑝∥0

𝐼4
𝑥

(𝑀2−𝑃𝑙𝑝∥ 𝐼
2
𝑥)2

)
𝑡 =

𝜗𝜇𝑙𝑛 𝐼
2
𝑥𝑀𝜈𝑙𝑛

(𝑀2−𝐼2
𝑥𝑃𝑙𝑛∥) +

𝑀𝜈𝑙𝑝 𝐼
2
𝑥

(𝑀2−𝐼2
𝑥𝑃𝑙𝑝∥)

Finally, the dKdV-B equation can be extracted as

𝜕 𝜙 (1)

𝜕 𝜏
+ 𝐴𝜙 (1) 𝜕𝜙

(1)

𝜕𝜉
+ 𝐵

𝜕3𝜙 (1)

𝜕𝜉3 − 𝐶
𝜕2𝜙 (1)

𝜕𝜉2 + 𝐷𝜙 (1) = 0 (13)

Where

𝐴 =
𝑞

𝑝
, 𝐵 =

𝑟

𝑝
, 𝐶 =

𝑠

𝑝
, 𝐷 =

𝑡

𝑝

To obtain the solution of Eq. (13), the authors consider the new variable 𝜒 = 𝜉 − 𝑈𝜏 where 𝜒 is the transformed
coordinate with respect to a frame moving with velocity U. By taking 𝜙 (1) = 𝜙, Eq.(13) becomes

−𝑈 𝑑𝜙

𝑑𝜒
+ 𝐴𝜙

𝑑𝜙

𝑑𝜒
+ 𝐵

𝑑3𝜙

𝑑𝜒3 − 𝐶
𝑑2𝜙

𝑑𝜒2 + 𝐷𝜙 = 0 (14)

Now, employing the method used in [64] results the solution of equation(14) as

𝜙 =
2(144𝐵𝐶 + 12𝐶𝑈 + 𝐵𝐷 + 2𝑈𝐷)

6𝐴(4𝐶 − 𝐷) +
(

2(−6𝐶 − 𝐷)
5𝐴

)
tanh(𝜒) − 12𝐵

𝐴
tanh2 (𝜒) (15)

4. RESULTS AND DISCUSSION
We have obtained the asymptotic solution of the dKdV-B equation in equ.(15). Now we find that the solution has got

a solitary wave structure composed with a shock. Additionally due to damping the shock amplitude is affected and there
is a constant part. We now take the parameters and study their effect on the nature and properties of these solitary-shock
profiles. The tuning parameters are: Charged state of heavy positive ions (𝑍ℎ𝑝), viscosity for light positive ion in parallel
direction (𝜂𝑙 𝑝∥0), viscosity for light negative ion in parallel direction (𝜂𝑙𝑛∥0), parallel pressure of light positive ion (𝑃𝑙 𝑝∥ ),
parallel pressure of light negative ion (𝑃𝑙𝑛∥ ) and perpendicular pressure of light positive ion (𝑃𝑙 𝑝⊥), perpendicular pressure
of light negative ion (𝑃𝑙𝑛⊥) respectively.

Now by taking combinations of other parameters and tuning one we obtain a series of figures which we discuss below.

In Figure 1 we take different pressure combination of light negative and positive ions. We plot curves for different
charge density of heavy positive ion (𝑍ℎ𝑝). Both the light negative and positive ions in subfigure (i) have different parallel
and perpendicular pressure values, indicating that they are anisotropic. Light negative ions are anisotropic in subfigure (ii),
but light positive ions are isotropic. Light positive ions are anisotropic in subfigure (iii), but light negative ions are isotropic.
Comparing sub Figure (i),(ii) and (iii) we conclude that as the perpendicular pressure component for light positive ion
(𝑃𝑙 𝑝⊥) causes the overall value of the solitary structure gets an upward lift. In subfigure(i) the left base of the potential pro-
file was at 0.3, the peak is 0.4 and the right base at 0.365. However as perpendicular pressure component for light positive
ion (𝑃𝑙 𝑝⊥) increases for 0.2 to 0.5 in subfig(ii) the left base jumps to 0.48 and the peak at 0.6 as the right base at 0.55. Addi-
tionally the separation between plots for different 𝑍ℎ𝑝 gets widened. Now comparing subfig (i) and (ii) we see that as 𝑃𝑙𝑛⊥
increases from 0.2 to 0.5 an upward potential shift is there but not as prominant as for a change in 𝑃𝑙 𝑝⊥. It may be inferred
that pressure anisotropy due to light negative ion is causing a slight increase in the potential compared to that of positive
light ion, which can be attributed to the repulsion of electrons by the negative light ions causing a lesser shift of potential
profile. The light positive ion on the other hand exerts more nonlinear effects when compared to their negative counterparts.

In Figure 2, the light positive and light negative ions are anisotropic (𝑃𝑙 𝑝∥ > 𝑃𝑙 𝑝⊥) and isotropic respectively, in
subfigure (i). In subfigure (ii), both ions are isotropic while in the subfigure (iii), both ions are anisotropic (𝑃𝑙 𝑝∥ >

𝑃𝑙 𝑝⊥, 𝑃𝑙𝑛∥ < 𝑃𝑙𝑛⊥). Comparing subfigures (i) and (ii) we see that as 𝑃𝑙 𝑝⊥ increases from 0.2 to 0.5 the base level of the
shock jumps abruptly manifold from -0.04 to 0.04 (approx). Also the relative value of the potential (𝜙) for different values
of 𝑍ℎ𝑝 also changes. A deep introspection shows that when for 𝜒 < 0 the green curve was below the red, it suddenly comes
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Figure 1. Variation of solitary-shock wave potential pro-
file with different pressure combination of ions for different
values of heavy positive ions

Figure 2. Variation of solitary-shock wave potential pro-
file with different pressure combination of ions for different
values of heavy positive ions
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Figure 3. Variation of solitary-shock wave potential pro-
file with different pressure combination of ions for different
values of viscosity(parallel) of light negative ions

Figure 4. Variation of solitary-shock wave potential pro-
file with different pressure combination of ions for different
values of viscosity(parallel) of light negative ions
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Figure 5. Variation of solitary-shock wave potential pro-
file with different pressure combination of ions for different
values of viscosity(parallel) of light positive ions

Figure 6. Variation of solitary-shock wave potential pro-
file with different pressure combination of ions for different
values of viscosity(parallel) of light positive ions
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up above the red curve. Similar but less prominant nature is shown in subfigure (iii) when the perpendicular component
of pressure changes but reversed for negative and positvie light ions. It is to be also noted that solitary nature is visible
only when both the ions are either anisotropy or isotropic((ii) and (iii)).

In Figures 3 and 4 the effects of viscosity due to light negative ions has been studied. Figure 3 shows that for similar
values of parallel pressure for light negative and positive ions the left branch of the stationary profile does not show much
difference when as the right part shows certain difference in potential values, the only interesting feature is that higher
the value of 𝜂𝑙𝑛∥ , higher is the damping effect due to viscosity. Such a higher energy loss balances the dispersive effects.
Such a thing can be witnessed by comparing sub figure(i) with (ii) and (iii) respectively. Likewise in fig4 we see that
the solitary nature is almost non existant. The Shock profile shows dependence on viscosity co-efficient. The pressure
anisotropy are instrumental in the shifting of the potential profiles. The effect of (parallel)viscosity coefficient for light
positive ion is depicted in Figures 5 and 6. In this case also the nature is similar to Figures 3 and 4. The only difference is
that the solitary nature is far less prominant which implies to the fact that non linear effects are not much prominant. The
other features are similar to these Figures 3 and 4 and therefore no additional explanation required.

5. DYNAMICAL SYSTEM ANALYSIS
Dynamical systems equations and phase portraits play a pivotal role in understanding and analyzing the behavior of

plasma in physics. Plasma, often termed as the fourth state of matter, exhibits complex dynamics influenced by electro-
magnetic fields and particle interactions. Dynamical systems equations provide a mathematical framework to model these
intricate dynamics, allowing scientists to predict and interpret the behavior of plasma systems. By formulating differential
equations that describe the evolution of plasma parameters such as density, temperature, and velocity, researchers can gain
insights into phenomena like plasma instabilities, turbulence, and wave propagation. Phase portraits, a visual representa-
tion of dynamical systems, offer a powerful tool to analyze the solutions of these equations. They provide a comprehensive
overview of the system’s behavior by plotting the trajectories of different plasma states in a multi-dimensional space. By
examining the topology and stability of these trajectories, scientists can discern crucial information about the underlying
dynamics, identifying equilibrium points, periodic orbits, and attractors.

This understanding is invaluable for optimizing plasma confinement in fusion reactors, developing plasma-based
technologies like plasma thrusters for spacecraft propulsion, and advancing our knowledge of fundamental plasma physics
phenomena. In essence, dynamical systems equations and phase portraits serve as indispensable tools for unraveling the
complexities of plasma physics, driving progress in both theoretical understanding and practical applications.

In order to obtain the dynamical system equation we apply the transformation of the space and variable as 𝜒 = 𝜉 −
𝑈𝜏 and finally obtain the transformed equation as

𝑑𝜙

𝑑𝜒
= 𝑧1

𝑑𝑧1
𝑑𝜒

= 𝑧2
𝑑𝑧2
𝑑𝜒

=
𝑈𝑧1−𝐴𝜙𝑧1+𝐶𝑧2−𝐷𝜙

𝐵

(16)

In the subsequent figure plots the projections of 𝑧1, 𝑧2, 𝜙 in mutual planes. the horizontal lines are for a given values
of perpendicular. In Figure 7 we alter the values of heavy positive ion charge density which varies as 35,50 and 65. The
other perpendicular are given as: 𝜂𝑙𝑛∥0 = 0.2, 𝜂𝑙 𝑝∥0 = 0.2, 𝑃𝑙𝑛∥ = 0.5, 𝑃𝑙 𝑝∥ = 0.5, 𝑃𝑙𝑛⊥ = 0.2, 𝑃𝑙𝑛⊥ = 0.2

We see that all the 𝑧1 − 𝜙, 𝑧2 − 𝜙, 𝑧1 − 𝑧2 plots shows the damping effects by the inward spiral motion. Damping
here happens due to two factors, viscosity and collision. By thoroughly studying the figures we see that the 𝜙 − 𝑧2 plot
has an inclined axis with negative slope. It can be interpretated as the spatial division of the electric field has a nega-
tive slope which implies that it is asymptotically stable. There is not much change in nature of curve in Figure 8 and Figure 9.

Figure 10 shows that effect of pressure anisotropy of light positive ions in the perpendicular direction. Hence there
are great changes with change in parameter 𝑃𝑙 𝑝⊥, the spirality changes. Similar effects shows in Figure 11, when 𝑃𝑙𝑛⊥
changes, i.e. the perpendicular component of pressure light negative ions changes. The effect of collision is shown in
Figure 12. Collision plays an significant role in damping effects as the value of collision parameter increses the spirals are
spread out along the axis. Such a nature is due to the dissipation of energy through collision. This is relatable non-radiative
dissipation spectroscopy and thermal physics.
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Figure 7. Phase Portrait for system (16) for 𝜂𝑙𝑛∥0 = 0.2, 𝜂𝑙 𝑝∥0 = 0.2, 𝑃𝑙𝑛∥ = 0.5, 𝑃𝑙 𝑝∥ = 0.5, 𝑃𝑙𝑛⊥ = 0.2, 𝑃𝑙𝑛⊥ =

0.2(i),(ii),(iii) 𝑍ℎ𝑝 = 35 (vi),(v),(vi) 𝑍ℎ𝑝 = 50,(vii),(viii),(ix) 𝑍ℎ𝑝 = 50
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Figure 8. Phase Portrait for system (16) for 𝑍ℎ𝑝 = 35, 𝜂𝑙 𝑝∥0 = 0.2, 𝑃𝑙𝑛∥ = 0.5, 𝑃𝑙 𝑝∥ = 0.5, 𝑃𝑙𝑛⊥ = 0.2, 𝑃𝑙𝑛⊥ =

0.2(i),(ii),(iii) 𝜂𝑙𝑛∥0 = 0.2 (vi),(v),(vi) 𝜂𝑙𝑛∥0 = 0.4,(vii),(viii),(ix) 𝜂𝑙𝑛∥0 = 0.6
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Figure 9. Phase Portrait for system (16) for 𝑍ℎ𝑝 = 35, 𝜂𝑙𝑛∥0 = 0.2, 𝑃𝑙𝑛∥ = 0.5, 𝑃𝑙 𝑝∥ = 0.5, 𝑃𝑙𝑛⊥ = 0.2, 𝑃𝑙𝑛⊥ =

0.2(i),(ii),(iii) 𝜂𝑙 𝑝∥0 = 0.2 (vi),(v),(vi) 𝜂𝑙 𝑝∥0 = 0.4 ,(vii),(viii),(ix) 𝜂𝑙 𝑝∥0 = 0.6
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Figure 10. Phase Portrait for system (16) for 𝑍ℎ𝑝 = 35, 𝜂𝑙𝑛∥0 = 0.2, 𝜂𝑙 𝑝∥0 = 0.2, 𝑃𝑙𝑛∥ = 0.5, 𝑃𝑙 𝑝∥ = 0.5, 𝑃𝑙𝑛⊥ =

0.2(i),(ii),(iii) 𝑃𝑙 𝑝⊥ = 0.5 (vi),(v),(vi) 𝑃𝑙 𝑝⊥ = 0.2 ,(vii),(viii),(ix) 𝑃𝑙 𝑝⊥ = 0.9
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Figure 11. Phase Portrait for system (16) for 𝑍ℎ𝑝 = 35, 𝜂𝑙𝑛∥0 = 0.2, 𝜂𝑙 𝑝∥0 = 0.2, 𝑃𝑙𝑛∥ = 0.5, 𝑃𝑙 𝑝∥ = 0.5, 𝑃𝑙𝑛⊥ =

0.2(i),(ii),(iii) 𝑃𝑙𝑛⊥ = 0.5 (vi),(v),(vi) for 𝑃𝑙𝑛⊥ = 0.2 ,(vii),(viii),(ix) 𝑃𝑙𝑛⊥ = 0.9
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Figure 12. Phase Portrait for system (16) for 𝜂𝑙𝑛∥0 = 0.2, 𝜂𝑙 𝑝∥0 = 0.2, 𝑃𝑙𝑛∥ = 0.5, 𝑃𝑙 𝑝∥ = 0.5, 𝑃𝑙𝑛⊥ = 0.2, 𝑃𝑙𝑛⊥ =

0.2(i),(ii),(iii) 𝜈𝑙𝑛 = 0.1, 𝜈𝑙 𝑝 = 0.1 (vi),(v),(vi)for 𝜈𝑙𝑛 = 0.3, 𝜈𝑙 𝑝 = 0.3,(vii),(viii),(ix) 𝜈𝑙𝑛 = 0.5, 𝜈𝑙 𝑝 = 0.5
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6. CONCLUSION
The features of ion-acoustic solitary-shock wave propagating in a collisional plasma under the influence of ionic

pressure anisotropy and viscosity is studied with the help of dKdV-B equation and by using standard procedure we
obtained the analytic solution. The effect of heavy positive ion, viscosity of light positive ion and light negative ion as
well as pressure anisotropy of light positive ion and light negative ion are investigated. Subsequently, we converted our
evolutionary equation into a three dimensional dynamical system to perform phase plane analysis. The findings presented
here may have implications in both laboratory as well as astrophysical plasma environment
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ВАЖКИМИ ТА ЛЕГКИМИ IОНАМИ
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The processes of recharging, heating and evaporation of a positively charged microparticle (MP) introduced into the plasma with 
an injected high-energy electron beam are considered. It is assumed that the MP is charged outside the plasma and then 
introduced into the plasma by an accelerating field, where plasma and beam electrons hitting the MP heat and evaporate it. In 
addition to introducing the MP into the plasma, the positive MP charge provides an additional source of energy needed to heat 
and evaporate it. Using the OML theory, the system of current and energy balance equations was numerically solved and the 
conditions, under which the MP is heated to the boiling point of its substance, resulting in its intense evaporation, were 
determined. The influence of the energy of the electron beam on the process of MP recharging, as well as on the rate of its 
heating and evaporation, has been studied. An estimate of the particle entry velocity into the plasma has been made; the distances 
at which its recharging, heating to the boiling point and complete evaporation occur are determined. The work is carried out in 
order to creating plasma of a given elemental composition. 
Keywords: Microparticles; Producing plasma; Electron beam; Evaporation of microparticles 
PACS: 52.40.Hf 

INTRODUCTION 
Currently, a number of methods for producing ion beams and plasma from elements initially in the solid phase are 

known; the main ones are evaporation from a furnace, cathode sputtering of a solid, evaporation by a vacuum arc or 
a laser beam [1]. Previously [2,3], we reported one more method for producing plasma from elements in the solid phase, 
that consists of introducing MPs into a previously created plasma. To introduce the MPs into plasma, we proposed to 
charge MPs up to a high positive potential and then accelerating them using the method developed in [4, 5] for creating 
a flow of micrometeorites of micron and submicron size in laboratory conditions. Microparticles introduced into the 
plasma are heated and evaporated as a result of collisions with plasma and beam electrons; the resulting vapor is then 
ionized by electrons. The positive charge of the MPs is used to introduce them into the plasma and is also an additional 
source of energy necessary for heating and evaporation. This method of creating plasma from elements in the solid 
phase, in addition to producing ion beams, can be used for plasma isotope separation technologies [6-9]. The advantage 
of this method over traditional methods of creating plasma is its economic efficiency, what is important, for example, 
when separating rare earth elements [6]. Another important aspect is the higher level of environmental safety compared 
to evaporation in a furnace, what can be important when separating radioactive elements and their isotopes [7].  

In this work, we study the effect of an electron beam injected into the plasma on the processes of recharging, 
heating and evaporation of a single MP. Previously, the high-energy electron beam was proposed to be used to 
evaporate micro-droplets of cathode material in plasma generated by a vacuum-arc discharge when coating a substrate 
[10-12]. The addition of an electron beam to the plasma in this case makes it possible to reduce the positive charge of 
the MP, which is necessary for its acceleration when they are introduced into the plasma, and also creates additional 
ability for its heating, evaporation and subsequent ionization. For calculations, we used a previously proposed 
model [2,3], in which terms, that take into account the electron beam, were added. We also investigated the effect of the 
electron beam on the evaporation of heated MP and also estimated the distances at which recharging, heating to the 
boiling point and evaporation of the MP occurs.  

MODEL DESCRIPTION 
A positively charged MP in plasma with an electron beam absorbs electrons from the plasma and beam, resulting 

in its recharging and heating. After recharging, the MP also absorbs plasma ions, what is an additional source of its 
heating. Thermionic and secondary electron emissions also have a significant influence on the MP, which form its 
equilibrium potential and also determine its temperature. The temperature of the MP is also influenced by thermal 

Cite as: A.A. Bizyukov, D.V. Chibisov, O.D. Chibisov, O.A. Zhernovnykova, K.V. Borysenko, D.Ye. Bobyliev, O.H. Shtonda, East Eur. J. Phys. 3, 
160 (2024), https://doi.org/10.26565/2312-4334-2024-3-15 
© A.A. Bizyukov, D.V. Chibisov, O.D. Chibisov, O.A. Zhernovnykova, K.V. Borysenko, D.Ye. Bobyliev, O.H. Shtonda, 2024; CC BY 4.0 license 

https://doi.org/10.26565/2312-4334-2024-3-15
https://periodicals.karazin.ua/eejp/index
https://portal.issn.org/resource/issn/2312-4334
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0003-0192-5219
https://orcid.org/0000-0002-6154-9772
https://orcid.org/0000-0001-9670-3912
https://orcid.org/0000-0002-5383-4493
https://orcid.org/0000-0002-8172-0215
https://orcid.org/0000-0003-1807-4844
https://orcid.org/0000-0001-7601-487X


161
Positively Charged Microparticle in Plasma with High-Energy Electron Beam EEJP. 3 (2024)

radiation and evaporation of the MP substance. All these processes are taken into account in the system of equations 
that describe the dynamics of changes in the potential and temperature of a MP in plasma: 

 
;

.

pl pl b s th
i e e e e

pl pl b
e i e s r th vap
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     
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      
 (1) 

The first equation of system (1) describes the changing of the MP charge and includes charging processes listed 
above and denoted as follows: pl

iI  and pl
eI  are the ion and electron currents from the plasma onto the MP surface, b

eI  is 
the electron beam current, s

eI  is the secondary electron emission current from the MP surface caused by electron of the 
plasma and the beam, th

eI  is the thermionic electron emission current from the MP surface caused by heating of the MP 
due to interaction of MP surface with the plasma and the beam MPs. It should be noted, that the secondary electron 
emission and the thermionic electron emission only take place for negatively charged MPs. Q  is the charge, T  is the 
temperature, m  is the mass, c  is the specific heat capacity of he MP. 

Interaction of plasma and electron beam particles with the MP surface is given by the OML theory and particles 
currents have the form 

 ,pl bI e    , 

where ,i e   denote the particle species.  
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is the current of particles   in a case of attractive MP potential and  
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in a case of repulsive MP potential, 0n  is the plasma number density, Tv   is the thermal velocity of particles  , a  is 
the initial MP radius, a  is the MP potential. Secondary electron emission is described by the relation: 

s
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is the secondary electron emission yield: mE is the energy of the primary electrons that corresponds to the maximum of 
secondary emission yield max . Thermionic emission current is described by the Richardson's law 
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where, 
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h


 , h  is the Planck constant, Bk  is the Boltzmann constant, e  is the work function, aT  is the 

temperature of the MP. 3 /aW e a   is the decreasing of the electron work function (Schottky effect). 
The second equation of the system (1) describes the changing of MP temperature caused by energy flows the 

following processes: ( )
pl

i eP  is the energy flow associated with the absorption plasma particles by the MP; b
eP is the 

energy transferred by the electron beam to the MP rP  is the energy radiated from the MP surface, vapP is the cooling of 

the MP due to evaporation of its substance, thP  is the energy flow from the MP surface is transferred by the electrons of 
thermionic current, sP  is the energy flow due to the secondary electron emission. The values of the respective energy 
flows are determined by the following relations:  

(2 )pl
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where I is the ionization energy, ' exp
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 is the atom flow of evaporated MP substance, 'n  is the 

concentration of atoms in metal, p  is the energy of evaporation an atom, /th th
e eI e  , /e e

s sI e  , s  is the averaged 
energy of the secondary electrons, bE  is the energy of electron beam. 

By numerically solving the system of equations (1), we determine the change in time of the potential and the 
temperature of the MP at different values of its initial potential, as well as depending on the energy of the electron 
beam. 

 
RECHARGING AND HEATING OF THE MP 

We consider the positively charged spherical cooper MP with a diameter of 1 micron placed into the plasma, the 
parameters of which are: number density 0n  is 10 310 cm  electron eT  and ion iT  temperatures are 50eV  and 1eV  
respectively. Initial MP temperature is 0 300KT  . We suppose that the boiling point of copper is the limiting point for 
the increase in MP temperature, which is approximately equal to 2800 K, and we also neglect the change in boiling 
temperature with decreasing pressure of the residual gas. Therefore, the presented calculations represent a qualitative 
assessment of the processes occurring.  

When a positively charged MP is introduced into the plasma with the electron beam, it is recharged due to 
collisions with electrons. Figure 1a shows the dependence of the MP potential on time for various values of its initial 
potential 0  and electron beam energy 20keVbE  .  

  
Figure 1. The dependence of MP potential (a) and related temperature of MP (b) on the time at different values of the initial 

MP potential 0 , electron beam energy 20bE keV : 1 – 0 1kV  , 2 – 0 10kV  , 3 – 0 20kV  , 4 – 0 30kV   

Here we can see two cases of time dependence of MP potential. In the first case, at the initial values of 
0 1kV  and 0 10kV   (curves 1 and 2), within a time of about 10-6 s, the MP potential reaches approximately zero 

value, which corresponds to the floating potential, due to charging by plasma electrons. A further decrease of the 
potential to a value of the order of  ‒4 kV is caused by the charging of the MP by beam electrons. In the second case, at 
the initial potentials 0 20kV   and 0 30kV   (curves 3 and 4) after recharging, the MP has approximately zero 
potential, which does not change subsequently. This effect is explained by the fact that as a result of heating the MP by 
plasma electrons, its temperature reaches a value exceeding the value at which thermionic emission occurs (~2500K), 
compensating for the influx of plasma and beam electrons onto the MP. In the first case, the electrostatic energy of the 
MP, due to the initial charge, is insufficient to heat to a given temperature. However, due to the beam electrons, the MP 
continues to heat up and at a time from 2ꞏ10-5 s to 5ꞏ10-5 s its temperature reaches the required value, so that thermionic 
emission becomes possible and the MP potential decreases to a value close to zero. 

Figure 1b shows curves of the MP temperature versus time for the same values of the initial MP potential. At the 
initial potential of the MP 0 1 kV  (curve 1), the change in the MP temperature as a result of charging by plasma 
electrons is insignificant. The main contribution to the heating of the MP in this case is made by the electrons of the 
beam, which in a time of ~5ꞏ10-5 s increase its temperature to the value when thermionic emission occurs and the MP 
potential drops to zero (curve 1 in Fig. 1a). Further heating of the MP leads to an increase in its temperature to the 
boiling point. At the initial potentials of the MP 0 10kV   (curve 2) and 0 20kV   (curve 3), the heating of the MP 
by plasma electrons is already significant and ends during the recharging time of the MP (~10-6 s). In the case of 

0 10kV  , its reached temperature ( 800K ) which is lower than the temperature of thermionic emission, and the 
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potential of the MP decreases to ‒4 kV (curve 2 in Fig. 1a) due to charging by beam electrons. Simultaneously, the 
electron beam heats the MP first to the thermionic emission temperature and then to the boiling temperature. At the 
initial potential 0 20kV   the electrostatic energy stored on the MP is sufficient for thermionic emission, but not 
sufficient for heating to the boiling point. This temperature is achieved due to the beam electrons. At the initial potential 
of the MP 0 30kV   (curve 4), the electrostatic energy of the MP is sufficient to heat it to the boiling point. In this 
case, the electron beam only maintains a given temperature, compensating for losses due to thermal radiation. 

We also investigated the effect of electron beam energy on the change in MP temperature over time for a MP with 
an initial potential 0 20kV  ; the calculation results are shown in Fig. 2. 

 
Figure 2. The dependence of the MP temperature on the time at different beam energies: 

1– 1keVbE  , 2 – 10keVbE  , 3 – 20keVbE  , 4 – 30keVbE  . 

As can be seen from the Fig. 2, in a time of about 2ꞏ10-7 s, the MP is heated to a temperature of about 2600 K due 
to plasma electrons during recharging, regardless of the beam energy. With increasing time at the beam energy 

1keVbE   (curve 1), the MP cools down to a certain equilibrium value, which is determined by the equality of the 
energy coming from the beam and from the plasma, as well as heat losses due to radiation. At beam energies 

10, 20, 30keVbE   (curves 2-4), further heating occurs due to the beam electrons, while the cooling of the MP due to 
radiation is compensated by the incoming energy from the beam electrons. It also follows from Fig. 2 that an electron 
beam with an energy exceeding 10keVbE   heats the MP to the boiling point.  

 
EVAPORATION OF THE MP 

We assume that particle evaporation occurs when the boiling point bT  of the substance is reached, neglecting 
evaporation at lower temperatures. The change in MP mass at the boiling point is described by the equation:  

 24 ( , )b b
evpra p T dt Hdm    , (2) 

where  2

1( , )
4

b b pl pl pl
evpr e e i s r thp T P P P P P P

a



       is the power density on the MP surface  that is spent to 

evaporation of the MP substance, H is the specific heat of evaporation, b  is the MP potential at bT T .  
Equation (2) gives the relation between specific parameters of MP substance such as density and heat of 

evaporation and parameters of plasma and electron beam as well as critical MP radius that can be evaporated. Critical 
means that the obtained parameters separate regions of the parameters where MPs can be evaporated and where is not. 
Time of complete evaporation of the MP with a radius a is calculated by integrating equality (2): 

 
( , )evpr b b

evpr

a H
t

p T




 . (3) 

Dependence of the complete evaporation time of the MP with an initial potential 0 20kV   on the energy of the 
electron beam for different values of the initial MP radius is shown in Fig. 3. As can be seen from Fig. 3, at beam 
energies 3keVbE  complete evaporation of the MP does not occur for all considered values of the initial MP radius. 
This occurs because, that for given plasma parameters the MP is not heated to the boiling point. 

It follows from (3) that the dependence of the time of complete evaporation on the initial radius of the particle 
 evprt a  is linear. This is also confirmed by Fig. 3. In particular, for a beam energy 20 keVbE  , the time of complete 

evaporation of a particle with a radius  0.1 μma   is 56 10 sevprt   , at  0.5 μma   we have 43 10 sevprt    then at 
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 1 μma   46 10 sevprt    and for  5 μma   the time of complete evaporation is equal 33 10 sevprt   . Thus, for a given 

beam energy we have the relation 46 10evprt a  , where a is measured in micrometers. 

 
Figure 3. Dependence of the time of complete evaporation of a MP on the energy of the electron beam: 

1– 0.1µma  , 2 – 0.5µma  , 3 –  1µma  , 4 – 5µma  . 
 

MICROPARTICLE SPEED IN PLASMA  
Let us estimate the speed of a charged MP v  at the moment of its entry into the plasma, assuming that all the 

electrostatic energy of MP is converted into its kinetic energy as a result of acceleration by a potential difference equal 
to the initial potential of the MP 0 . From the law of conservation of energy 

22
0

2 2
Cmv 

 , 

where C r  is the capacity of a spherical MP, m  is its mass, we find that the speed is equal to  

0

2
v

r




 , 

where   is the density of the substance of the MP. For a copper MP the counting formula is 

00.56
v

r


 , 

where v  measured in cm/s, 0  in kV, r  in cm. For a MP with a diameter of 1 micron we get  

4
01.12 10v   . 

Now we estimate the characteristic distances at which the considered processes occur. For a MP with an initial 
potential of 20 kV, the speed is 42.24 10v   cm/s. From the Fig. 1 (curve 3) it follows that the MP recharge occurs over 
time 610 st   and thus the MP completely loses its initial charge at a distance of about 0.02 cm from the point of entry 
into the plasma. Heating to the boiling point occurs over time 67 10 st    (Fig. 2, curve 3), which corresponds to the 
MP passing a distance of 0,16 cm from the point of entry into the plasma. Finally, the time for complete evaporation of 
the MP, depending on the energy of the electron beam, is equal to 4 310 10 st     (Fig. 3, curve 2). Over this time, the 
MP travels a distance from 2 to 10 cm. Thus, for complete evaporation in plasma with the stated parameters and for 
plasma devices of suitable sizes it is desirable that the initial radius of the MP does not exceed 1 micron. 

 
CONCLUSIONS 

To obtain plasma of a given elemental composition, the introducing MPs into previously created plasma, followed 
by their evaporation and ionization is proposed. For more efficient evaporation, as well as ionization, a high-energy 
electron beam is injected into the plasma. As an example, the evaporation of a copper MP with a diameter of 1 micron 
is considered. To be introduced into the plasma, the MP is charged to a high positive potential and then accelerated by 
the created potential difference. It is shown that, regardless of the initial potential, the MP loses charge due to collision 
with plasma electrons with a density of 1010 cm-3 in a time of the order of 10-6 s. The initial positive potential serves not 
only to introduce the MP into the plasma, but also as an energy source for heating the MP by plasma electrons. It is 
shown that a MP with an initial potential of 30 kV can reach the boiling point of copper as a result of heating by 
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electrons. At the same time, the MP is cooled due to thermal radiation and other processes. To additionally heat the MP 
and maintain its temperature at the boiling point, when the evaporation rate reaches its maximum, it is proposed to 
introduce a beam of high-energy electrons into the plasma. It has been shown that the introduction of an electron beam 
with a density of 109 cm-3 and an energy of more than 10 keV leads to heating of the MP to the boiling point, regardless 
of its initial potential. Assuming that the evaporation of the MP substance occurs only at the boiling point, conditions 
under which complete evaporation of the MP occurs were obtained. The dependence of the time of complete 
evaporation of a MP on the energy of the electron beam was also obtained. The velocity of introducing of MP into 
plasma is estimated and the characteristic distances at which the main processes occur with it are determined. It is 
shown that the MP recharge occurs over time 610 st   and that the MP completely loses its initial charge at a distance 
of about 0.02 cm from the point of entry into the plasma. Heating to the boiling point occurs in a time 67 10 st    
corresponding to the passage of the MP at a distance of 0.16 cm from the point of entry into the plasma. Finally, the 
time for complete evaporation of a MP, depending on the energy of the electron beam, is equal to 4 310 10 sevprt    . 
During this time, the MP passes a distance from 2 to 10 cm. Comparing the time and distance for complete evaporation 
of MPs of different sizes allows us to conclude that the optimal MP diameter is less than or on the order of 1 micron.  

Thus, the possibility of evaporation MP in previously created plasma with the presence of a high-energy electron 
beam and thereby creating conditions for creating plasma of a given elemental composition is shown. This method of 
evaporation a substance is an alternative to existing methods such as evaporation from a furnace, cathode sputtering of a 
solid, evaporation by a vacuum arc. 

 
ORCID 

Aleksander A. Bizyukov, https://orcid.org/0000-0003-0192-5219; Dmitry V. Chibisov, https://orcid.org/0000-0002-6154-9772 
Oleksandr D. Chibisov, https://orcid.org/0000-0001-9670-3912; Oksana A. Zhernovnykova, https://orcid.org/0000-0002-5383-4493 
Kostyantyn V. Borysenko, https://orcid.org/0000-0002-8172-0215, Dmytro Ye. Bobyliev, https://orcid.org/0000-0003-1807-4844 
Oksana H. Shtonda, https://orcid.org/0000-0001-7601-487X 

 
REFERENCES 

[1] B.H. Wolf, in: Handbook of ion sources, edited by B. Wolf (CRC Press Taylor & Francis Group Boca Raton London New 
York, 1995). 

[2] A.A. Bizyukov, A.D. Chibisov, D.V. Chibisov, O.A. Zhernovnykova, T.I. Deуnichenko and N.N. Yunakov, East European 
Journal of Physics, (1), 110 (2022). https://doi.org/10.26565/2312-4334-2022-1-15 

[3] D.V. Chibisov, O.D. Chibisov, O.A. Zhernovnykova, G.V. Deynychenko, and V.V. Masych, Problems of Atomic Science and 
Technology, 1(143), 17 (2023). https://doi.org/10.46813/2023-143-017 

[4] A. Mocker, S. Bugiel, S. Auer, et al., Rev. Sci. Instrum. 82, 095111 (2011). https://doi.org/10.1063/1.3637461 
[5] J.D. Kerby, R.T. Daly, and D.E. Austin, Earth Planets Space, 5, 157 (2013). http://dx.doi.org/10.5047/eps.2012.08.005 
[6] S.J. Zweben, R. Gueroult, and N.J. Fisch, Phys. Plasmas, 25, 090901 (2018). https://doi.org/10.1063/1.5042845 
[7] R. Gueroult, J.-M. Rax, and N.J. Fisch, Journal of Cleaner Production, 182, 1060 (2018). 

https://doi.org/10.1016/j.jclepro.2018.02.066 
[8] R. Gueroult, D.T. Hobbs, and N.J. Fisch, J. Hazardous Mater. 297, 153 (2015). https://doi.org/10.1016/j.jhazmat.2015.04.058 
[9] I.D. Kaganovich, A. Smolyakov, Y. Raitses, E. Ahedo, I.G. Mikellides, et al., Phys. Plasmas, 27, 120601 (2020). 

https://doi.org/10.1063/5.0010135 
[10]  A.A. Bizyukov, K.N. Sereda, and A.D. Chibisov, Problems of atomic science and technology. Series: Plasma Physics, 1(17), 

107 (2011). https://vant.kipt.kharkov.ua/ARTICLE/VANT_2011_1/article_2011_1_107.pdf 
[11]  A.A. Goncharov, V.Yu. Bazhenov, A.S. Bugaev, A.M. Dobrovolskiy, V.I. Gushenets, I.V. Litovko, I.V. Naiko, and E.M. Oks, 

IEEE transactions on plasma science, 47(8), 3594 (2019). https://doi.org/10.1109/TPS.2019.2915644 
[12] A.A. Goncharov, V.I. Maslov, I.V. Litovko, and A.V. Ryabtsev, Problems of Atomic Science and Technology, 6(142), 89 

(2022). https://doi.org/10.46813/2022-142-089 
 
ПОЗИТИВНО ЗАРЯДЖЕНА МІКРОЧАСТИНКА В ПЛАЗМІ З ЕЛЕКТРОННИМ ПУЧКОМ ВИСОКОЇ ЕНЕРГІЇ 

Олександр Бізюкова, Дмитро Чібісова, Олександр Чібісовb, Оксана Жерновниковаb, 
Костянтин Борисенкоb, Дмитро Бобилєвc, Оксана Штондаb 

аХарківський національний університет імені В.Н. Каразіна 61022, Україна, м. Харків, майдан Свободи, 4 
bХарківський національний педагогічний університет імені Г.С. Сковороди, 61002, Україна, м. Харків, вул. Алчевських, 29 

cКриворізький державний педагогічний університет, 50086, Україна, м. Кривий Ріг, проспект Університетський, 54 
Розглянуто процеси зарядки, нагрівання та випаровування позитивно зарядженої мікрочастинки (МЧ), введеної в плазму, 
що містить пучок електронів високої енергії, з метою створення плазми заданого елементного складу. Передбачається, що 
МЧ заряджається поза плазмою, а потім вводиться в плазму прискорювальним полем, де плазма та електрони пучка, 
стикаючись з МЧ, нагрівають і випаровують її. На додаток до введення МЧ у плазму, позитивний заряд МЧ забезпечує 
додаткове джерело енергії, необхідної для її нагрівання та випаровування. За допомогою теорії OML чисельно розв’язано 
систему рівнянь балансу струму та енергії та визначено умови, за яких МЧ нагрівається до температури кипіння його 
матеріалу, що призводить до його інтенсивного випаровування. Досліджено вплив енергії електронного пучка на процес 
перезарядки МЧ, а також на швидкість його нагрівання та випаровування. Зроблено оцінку швидкості входу частинок у 
плазму; визначено відстані, на яких відбувається її перезарядка, нагрівання до температури кипіння і повне випаровування. 
Ключові слова: мікрочастинки; створення плазми; електронний промінь; випаровування мікрочастинок 
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To solve the actual problems associated with the development of the theory of magnetron discharge and the expansion of its practical
application, a digital method of recording and processing the discharge plasma luminescence spectra is proposed in this work. To
obtain the discharge plasma glow spectra, a photographic technique was used, which allowed simultaneous recording of the entire
radiation spectrum in the 390.0÷700.0 nm region. An additional advantage of this technique is the ability to track spatial changes in
the composition and properties of the plasma in the discharge in the selected direction. A Canon EOS 80D digital camera with remote
control was used to record the optical signal. A graphical application OSA was created to process digital images of the discharge plasma
luminescence spectra. The paper describes the functionality of this application: determination of the wavelength of a spectral line and
its belonging to a certain chemical element; measurement of the spatial distribution of the intensity of a spectral line along the selected
direction of radiation registration. Determining the wavelength of a spectral line in the application is possible in two modes of operation
- automatic and manual. In the first mode, the algorithm developed in this paper determines the wavelength for all spectral lines whose
intensity exceeds the background value at a height of 10% of the lower spectral limit. The second mode allows you to independently
select a single spectral line or several to determine their wavelengths. The first mode is used for quick analysis, while the second mode
allows you to determine the length of the spectral line with greater accuracy. To interpret the spectral lines, the methodology of reference
lines from the databases of spectral line tables for various elements is used. The possibility of both full automatic verification, where all
elements are sequentially searched, and selective verification, where one or more elements are selected, is provided. The paper shows
that the spatial distribution of the intensity of tungsten spectral lines, and thus of excited atoms in a magnetron discharge, is a complex
function of the distance from the cathode, which depends on the discharge parameters. The proposed digital methodology makes it
possible to significantly speed up the process of obtaining physical information and increase the accuracy in determining the spectrum
parameters.

Keywords: optical emission spectrometry, magnetron discharge, plasma emission spectrum, excited particles

PACS: 32.30, 34.35, 34.50, 34.80.Dp, 52.70.Kz, 52.80.Vp

1. INTRODUCTION
Interest in the study of magnetron discharge physics is due to its traditional application for coating. These can be

as metal coatings for a wide range of industrial uses [1, 2], bio-coatings used in healthcare products [3] or coatings with
high insulating properties [4, 5]. One of the factors that influence on the obtaining of coatings with specified properties is
the control of the magnetron discharge plasma. Information about the composition and parameters of the plasma allows
monitoring the deposition conditions of the films and regulating the formation of their properties.

It is convenient to control plasma parameters by optical spectroscopy [6, 7]. The main advantage of spectroscopy, in
contrast to the probe technique, is the ability to perform plasma analysis without disturbing the plasma itself. An additional
advantage is that this method does not require complex equipment: only diagnostic ports that provide direct visibility
through the plasma are required. The spectroscopy method is informative and widely used to obtain various parameters
of magnetron discharge plasma. For example, the population of excited states of plasma particles can be determined by
the intensity of the corresponding spectral lines, and the intensities of the lines of various plasma components make it
possible to determine the ion composition [8, 9].

Most often a photoelectric registration system is used in the spectroscopy to obtain physical information, in which
the optical signal is converted into an electrical one with the help of a photomultiplier. At that, the integral intensity of a
separate spectral line is obtained, which depends on the radiation intensity of the entire investigated area of luminescence
along the selected direction. A feature of this registration system is the need to scan radiation spectra to study the selected
spectral range. This, firstly, requires some time, and, secondly, when examining a narrow spectral interval, it is not possible
to monitor changes in the intensity of spectral lines in the other part of the spectral range. These problems can be solved
if a broadband detector, such as a CCD, is used as an optical signal converter [10]. At that, the dispersive element of the
spectral device is fixed in a certain position, in which the studied region of the spectrum is projected onto the focal plane.
This allows recording optical radiation simultaneously in a fairly wide spectral range, which increases the reliability of
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experimental results. An additional advantage of this design is that, in contrast to the photoelectric registration system,
it makes it possible to obtain the spatial distribution of the intensity of a separate spectral line, and therefore of the
investigated area of fluorescence along the selected direction. In this way, it is possible to monitor the spatial changes in
the composition and properties of the discharge plasma in the selected direction.

2. EXPERIMENTAL METHOD
Spectrometers that use CCD as a converter of optical radiation, have high sensitivity and resolution, but are quite

expensive, which somewhat limits their wide use in scientific institutions. Also, the software delivering with the device,
usually doesn’t allow for any modifications or scripts that might be needed while working in a research lab. Therefore, the
question arises of creating a high-quality, but affordable CCD-based optical radiation recorder; it can be a digital camera.

The principle scheme of obtaining and digital processing of optical images of radiation spectra was presented in
[11, 12]. The researches were carried out on the magnetron sputtering system (MSS) described in [13]. MSS operating
conditions were as follows: buffer gas pressure (argon) p𝐴𝑟 = 10 – 18 Pa, anode voltage V𝑎 = 300 – 350 V, discharge
current I𝑑 = 10 – 160 mA, magnetic field induction B = 0.05 T. The optical radiation of the area of bright glow of the
discharge was output through the diagnostic window of the vacuum chamber, focused with an achromatic lens on the input
slit of the ISP-51 spectrometer, in which the radiation was dispersed using a triple prism system and focused in the focal
plane of the output collimator of the spectrometer. With this geometry, a 4-fold reduced image of the optical spectrum of
the magnetron discharge emitting region was projected onto the focal plane (l = 4h, where l is the height of the discharge
along the axis, h is the height of the spectral line) in the spectral range of 400.0÷600.0 nm.

At the first stage (work [11]), a comparison of physical data obtained by two methods was carried out: i) by the
photographic photometry [14] with the photographing of the optical spectrum on photographic film, ii) with the analysis
of the corresponding digitized frame. The frames were scanned on a specialized high-resolution slide scanner (size –
5040×3360 pixels) getting black-and-white digital images with the extension *.jpg.

To determine the qualitative and quantitative characteristics of magnetron discharge plasma, the creation of a multi-
functional dialog GUI application of Optical Spectrum Analysis (OSA) was started. The OSA application was created in
the Python programming language based on the Tkinter graphic library using a set of additional modules: PIL, Numpy,
Scipy, Pandas, and Matplotlib [15]. With the the PIL module, the selected digital image of the discharge glow spectrum
was converted into a numerical matrix, each element of which has an integer value proportional to the intensity I[x,y] at
a given point of the image plane (x and y are integers describing the column number or rows of the matrix, in which this
element is placed). The intensity range is from 0 to 255. Mathematical algorithms and procedures implemented in OSA
allow to process this matrix and present the results of the processing on the image in the form of graphic objects and text.
The Matplotlib library was used as a tool for data visualization with two-dimensional graphics. The graphical application
was created within the framework of object-oriented programming (OOP), with the ability to perform a new calculation
when a number of parameters were changed and immediately present the obtained data on the image and graphs. In
parallel, these results were recorded in an external file.

At the second stage (work [12]), photography of the working area was carried out using a user digital camera with
the aim of directly obtaining digital images. Digital images were of better quality than digitized photographic film, and
this made it possible to obtain the main characteristics of the magnetron discharge plasma radiation spectrum (wavelength,
intensity of spectral lines) with better resolution.

At this stage of research, spectrum registration was carried out using a Canon EOS 80D professional digital camera
with a resolution of 7000×5000 pixels, which was controlled remotely via Wi-Fi. Also, along with the improvement of
the recording technique, some blocks were improved and new ones were added in the OSA application. The paper will
provide a detailed description of the functional capabilities of the OSA application for digital processing of the optical
emission spectra of magnetron discharge plasma glow and provide some experimental results.

3. BASIC POSSIBILITIES OF DIGITAL PROCESSING OF OPTICAL SPECTRA
3.1. The zone of the optical spectrum in the image and the spectrogram

The part of the digital image of the radiation spectrum of excited particles of a magnetron discharge in an argon
atmosphere with a copper cathode is shown in fig.1. The MSS operating mode was as follows: buffer gas pressure p𝐴𝑟 =
10 Pa, anode voltage V𝑎 = 320 V, discharge current I𝑑 = 25 mA, magnetic field induction B = 0.05 T, exposure time t =
90 s.

At the first, preliminary stage, the spectrum zone is automatically determined and the primary spectrogram is taken.
The spectral lines do not occupy the entire area of the digital photograph, as Fig. 1 shows. It is obvious that the lines
along which the pixels corresponding to the spectrum lines are located have a higher intensity compared to other lines. To
determine the horizontal boundaries of the spectrum zone of each row, I𝑠𝑢𝑚=

∑𝑛
𝑖=1 𝐼𝑖/𝑛, was determined, where n is the

number of pixels along the row, 𝐼𝑖 is the intensity of the i𝑡ℎ pixel. Histogram the distribution of I𝑠𝑢𝑚 depending on the
row number is shown in Fig. 2a. The dashed curve shows the results of fitting with a linear function. The coordinates of
the intersection of the linear function with the histogram correspond to the lower and upper limits of the spectrum zone
and are shown in Fig. 1 with solid horizontal lines. The values of the spectrum boundary coordinates have been used to
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Figure 1. An example of an optical emission spectrum.

construct a spectrogram – dependence of the intensity of each pixel for a conventional line located across the spectrum at
a height (difference between the upper and lower boundaries) of 10% from the lower boundary.

Figure 2. Preliminary estimation of spectrum parameters: a) determination of geometric boundaries, b) determination
the coordinates of the most intense lines.

The histogram for the one shown in Fig. 1 spectrum is presented in Fig. 2b. As can be seen from the figure, the most
intense spectral lines appear in the form of strong discrete maxima. The background layer is determined by fitting with
a Gaussian function (dashed line in Fig. 2b). To automatically determine the position of these maxima, the groupby()
function from the Pandas module have been used, which performs grouping by one or more parameters and determines
inflection points (extrema). The position of the maxima of the most intense spectral lines in Fig. 2b are indicated by dots.

Thus, a coordinate in pixels along the horizontal axis is automatically determined for each of the intense spectral
lines. It is for these lines that the wavelength is determined in the future, that is, the spectrum is deciphered.

3.2. Determination of the wavelength of an arbitrary spectral line and its interpretation
To obtain qualitative and quantitative parameters of the spectrum, it is necessary to bind the digital coordinate system

(pixels) to the experimental one. A reference spectrum with known lengths of spectral lines (neon, mercury or hydrogen
lamp) is used to obtain a dependence that connects the coordinates of a single pixel along the horizontal direction and the
wavelength of a known spectral line.

For the ISP-51 spectrograph, when the radiation is decomposed into a spectrum, nonlinear dispersion [14] is
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characteristic, which implies the presence of a nonlinear calibration scale (Fig. 3a), which relates the value of the line
position to the wavelength 𝜆 in nm. The scale of the values of the digital matrix in pixels is placed along the ordinate
axis to the right. In the available range of wavelengths for the reference lines on the abscissa scale, the corresponding
values on the ordinate scale (left) in mm are found by interpolation. This allows you to enter a pixel-mm scale factor
and automatically determine the wavelength 𝜆 for an arbitrary line on a digital image in the pixel coordinate system using
reverse interpolation.

Figure 3. a) calibration function, b) intensity distribution of spectral lines along their height.

In the OSA application, it is possible to use two modes of operation - automatic and manual. In the first mode, for
all spectral lines whose intensity at a height of 10% from the lower limit of the spectrum exceeds the background value,
the wavelength is determined by the algorithm described above. The second mode allows you to independently choose a
separate spectral line or several of the most interesting for determining their wavelengths. The first mode is used for quick
analysis, the second allows to determine the length of the spectral line with greater accuracy, thanks to the possibility of
using the digital optical zoom function (ZOOM). The value of the wavelength of the spectral lines in nm is displayed on
the spectrum and is also recorded in a separate file.

As an example of the manual mode of operation in Fig. 4 shows a fragment of the spectrum, where vertically arranged
numbers indicate the wavelength 𝜆 for several lines: 𝜆𝑒𝑥𝑝1 =522.4 nm, 𝜆𝑒𝑥𝑝2 =498.1 nm, 𝜆𝑒𝑥𝑝3 =488.5 nm. The wavelengths
of a set of spectral lines have been repeatedly measured and the statistical error has been obtained 𝛿𝜆 when determining
the wavelength using the OSA application; on average, 𝛿𝜆 is in the range from 0.1 to 0.3 nm.

The most difficult stage in optical spectrometry is the interpretation of the decoded spectrum (that is, determining
whether the spectral lines observed in the spectrum belong to certain chemical elements). At the initial stage, it is best to
use the method of interpretation based on reference lines - the lines of the studied element, which are the last to disappear
from the spectrum of the sample when the concentration of the given element decreases in it. The reference lines of
all elements are well known and their parameters (wavelength, excitation energy, intensity, etc.) are given in atlases of
spectral lines. For the reliability of element identification, a set of reference lines is always used, with which the lengths of
the spectral lines present in the luminescence spectrum of the material under study are compared. In this paper, spectral
line databases for various elements were used for the interpretation of spectral lines [16]. In the OSA application, in a
separate block, the possibility of both a full automatic check, where a sequential review of all elements takes place, and a
selective one (one or several elements) is created.

A simple comparative search fixes the range of values of wavelengths in the table, in which one of the experimental
values falls. Of the two limiting values, the one with the lower value of the excitation energy is chosen. In case of equality
on this parameter, the third element is used - intensity. Preference is given to the option with the maximum intensity value.
Yes, shown in Fig. 4 spectral lines were interpreted as tungsten lines W I – 𝜆𝑡𝑎𝑏𝑙1 =522.5 nm, 𝜆𝑡𝑎𝑏𝑙2 =498.3 nm, 𝜆𝑡𝑎𝑏𝑙3 =488.7
nm.

3.3. Distribution of the intensity of a spectral line along its height
One of the significant advantages of using the photographic method of recording optical spectra is the possibility of

obtaining information about the spatial distribution of excited particles along the chosen direction. Since the intensity of
the spectral line (I) is an energy quantity and is related to the number of excited particles (n∗) and the quantum energy (ℎ𝜈)
by the ratio I=n∗ · ℎ𝜈, the change in the intensity of the spectral line along the registration direction reflects the change in
the number of excited particles, emitting photons at the wavelength of the investigated line. In this work, the registration
system was located so that the height of the h lines in the spectrum corresponded to the direction of the ionization zone
along the magnetron axis.
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In Fig. 4 circles indicate the coordinates of the points where the intensity of the spectral line along its height was
fixed. The method of determining the coordinates of points along a line with some curvature was described in [10]. In
this work, the optimization of the method is carried out, thanks to which it is possible to determine the distribution for
low-intensity lines and a unified form of data output - with the same step for any line. It was also possible to determine the
integral intensity of a spectral line by summing the intensity value (I) of all pixels forming this line, taking into account
the line width.

Figure 4. Part of the spectrum with certain values of the wavelengths (vertical inscriptions) of some lines and the
distribution of points along these lines.

The distribution of the intensity of three lines belonging to the W I spectrum along their height shows in Fig. 3b as
an example. It can be seen from the figure that the spatial distribution of the intensity of the spectral lines, and therefore of
the excited tungsten atoms in the magnetron discharge, is a complex function of the distance from the cathode. Moreover,
it has been established that depending on the mode of operation of the magnetron, the relative intensity of the studied lines
changes significantly. Moreover, this change is different for particles excited into states characterized by different excitation
energies. This is probably related to the different efficiency of excitation of the upper state of the studied transition in
the tungsten atom by electrons of the ionization zone of the discharge plasma, because excited particles in the magnetron
discharge are formed not only by sputtering atoms of the cathode material under the action of incident gas ions, but also
by collision particles with a large number of free electrons knocked out of the surface of the cathode in the magnetic field
in the ionization (and excitation) zone of the magnetron plasma.

4. CONCLUSIONS
To solve the current problems related to both the development of the theory of the magnetron discharge and the

extension of the field of its practical application, a digital method of recording and processing the discharge plasma glow
spectra is proposed in the paper. The spectrum was recorded using a Canon EOS 80D digital camera with a resolution of
7000*5000 pixels, which was controlled remotely via Wi-Fi.

For the digital processing of the spectra, a graphic OSA application was created, which made it possible to obtain
qualitative and quantitative characteristics (wavelength, interpretation and intensity) of the spectral line of the magnetron
discharge plasma radiation. In addition, the use of digital techniques made it possible to obtain an information on the spatial
distribution of excited particles along the chosen direction of radiation registration. The OSA application was created
in the Python programming language based on the Tkinter graphics library. With the help of the PIL module, access to
the matrix of the selected digital image of the glow spectrum of the discharge was obtained. Mathematical algorithms
and procedures were developed that allow you to process this digital matrix, visualize the results of the processing on the
image, and present the results of the processing in the form of two-dimensional graphics. The graphical application was
created within the framework of object-oriented programming, with the ability to make a new calculation when changing
a number of parameters and immediately present the output data on images and graphs.

The proposed digital technique made it possible to significantly speed up the process of obtaining physical information
and increase the accuracy in determining the parameters of the spectrum. Digitally obtained snapshots of the luminescence
spectra of reference objects, supplemented with the data of their processing by the OSA graphic application, made it possible
to create a database containing both electronic atlases of the luminescence spectra of various elements and quantitative
parameters of these spectra. a data bank containing both atlases of the luminescence spectra of various elements in
electronic form, as well as the quantitative parameters of these spectra.
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МЕТОДИКА ЦИФРОВОЇ ОБРОБКИ ОПТИЧНИХ СПЕКТРIВ ПЛАЗМИМАГНЕТРОННОГО РОЗРЯДУ

Iнна Афанасьєваa, Сергiй Афанасьєвb, Валентин Бобковa, Валентина Грицинаa, Анатолiй Скрипникa
𝑎Харкiвський нацiональний унiверситет iм. В.Н. Каразiна, майданСвободи, 4, 61022, Харкiв, Україна

𝑏Нацiональний Науковий Центр “Харкiвський Фiзико-Технiчний Iнститут”, вул. Академiчна, 1, 61108, Харкiв, Україна
Для вирiшення актуальних задач, пов’язаних з розробкою теорiї магнетронного розряду та розширенням областi його практи-
чного застосування, в роботi запропонована цифрова методика реєстрацiї та обробки спектрiв свiтiння плазми розряду. Для
отримання спектрiв свiтiння плазми розряду використовувалась фотографiчна методика, яка дозволяла одночасно реєструвати
весь спектр випромiнювання в областi 390.0÷700.0 нм. Додатковою перевагою даної методики є можливiсть вiдслiдковувати
просторовi змiни складу та властивостей плазми в розрядi в обраному напрямку. Для реєстрацiї оптичного сигналу в роботi
використовувалась цифрова камера Canon EOS 80D з вiддаленим керуванням. Для обробки цифрових знiмкiв спектрiв свiтiння
плазми розряду створено графiчний застосунок OSA. В роботi наведено опис функцiональних можливостей даного застосунку:
визначення довжини хвилi спектральної лiнiї та її приналежностi певному хiмiчному елементу; вимiрювання просторового
розподiлу iнтенсивностi спектральної лiнiї вздовж обраного напрямку реєстрацiї випромiнювання. Визначення довжини хвилi
спектральної лiнiї в застосунку можливо в двох режимах роботи – автоматичному та ручному. В першому режимi за розробле-
ним в роботi алгоритмом визначається довжина хвилi для усiх спектральних лiнiй, iнтенсивнiсть яких на висотi 10% вiд нижньої
межi спектру перевищує фонове значення. Другий режим дозволяє самостiйно обрати окрему спектральну лiнiю або декiлька
для визначення їх довжин хвиль. Перший режим використовується для швидкого аналiзу, другий дозволяє провести визначення
довжини спектральної лiнiї з бiльшою точнiстю. Для iнтерпретацiї спектральних лiнiй в роботi використано методику реперних
лiнiй з баз табличних даних спектральних лiнiй для рiзних елементiв. Забезпечена можливiсть як повної автоматичної пере-
вiрки, де вiдбувається послiдовний перебiр всiх елементiв, так i вибiркової – за одним або декiлькома елементами. В роботi
показано, що просторовий розподiл iнтенсивностi спектральних лiнiй вольфраму, а, отже, й збуджених атомiв в магнетронному
розрядi, є складною функцiєю вiдстанi вiд катоду, яка залежить вiд параметрiв розряду. Запропонована цифрова методика дає
можливiсть iстотно прискорити процес отримання фiзичної iнформацiї та пiдвищити точнiсть у визначеннi параметрiв спектра.
Ключовi слова: оптична емiсiйна спектрометрiя, магнетронний розряд, спектр випромiнювання плазми, збудженi частинки
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