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The present study examines the Kaniadakis holographic dark energy in the context of the Brans-Dicke scalar-tensor theory of gravity 
(Phys. Rev. 124: 925, 1961). This paper focuses on a background with an anisotropic Kantowski-Sachs space-time that is homogeneous 
in space. Under these circumstances, the Brans-Dicke scalar field denoted as 𝜙 is used as a function of the average scale factor 𝑎(𝑡). 
Using a graphical model to analyze the model's physical behaviour is part of the inquiry into the Universe's accelerating expansion. 
We evaluate the cosmological parameters such as the scalar field, the equation of state parameter and the deceleration parameter. 
Furthermore, the models' stability is assessed through the application of the squared sound speed (𝑣௦ଶ). For our models, we derive the 
widely accepted cosmic planes such as 𝜔ௗ − 𝜔ௗᇱ  and statefinder (r,s) planes. It is found that the scalar field is a decreasing function 
of cosmic time and hence the corresponding kinetic energy increases. The deceleration parameter exhibits accelerated expansion of the 
Universe. It is mentioned here that the equation of state parameter lies in the phantom region and finally attains the ΛCDM model. Also, 
the 𝜔ௗ − 𝜔ௗᇱ  plane provides freezing and thawing regions. In addition, the statefinder plane also corresponds to the ΛCDM model. 
Finally, it is remarked that all the above constraints of the cosmological parameters show consistency with Planck observational data.  
Keywords: Scalar-tensor theory; Scalar field; Holographic dark energy; Kantowski-Sachs model 
PACS: 98.80.-k, 95.36.+x 

1. INTRODUCTION
Recent observational data on the history of cosmic expansion have enabled the discovery of the universe's 

accelerating expansion conceivable, as provided in the works of Perlmutter et al. [1] and Riess et al. [2]. As a mysterious 
and intensely pressured force, dark energy (DE) is thought to be the fundamental reason. Nevertheless, the traits and 
behaviours of DE remain a mystery. Two main approaches are available to tackle the problem of cosmic acceleration: the 
first one includes introducing a DE component into the Universe and studying its dynamics. (Caldwell [3]; Padmanabhan 
[4]; Santhi et al. [5], The alternative, however, involves investigating changes to Einstein's theory of gravitation and 
viewing them as a flaw in general relativity. 

Among dynamical differential equation models, the holographic DE (HDE) model has become an important 
instrument to study the mystery of DE in recent years. Based on the quantum characteristics of black holes (BHs), which 
have been thoroughly studied in the literature to analyze the idea of quantum gravity, this study's research was carried 
out. [6]. The vacuum energy Λ of a system of size L should not be greater than the mass of a BH of the same size, according 
to the holographic principle, a hypothesis in quantum field theory. Within the context of quantum field theory, this idea 
is essential to comprehend the genesis of BHs. The study carried out established the formal energy density of HDE by 
Cohen et al. [7]. The equation provided may be rewritten more academically as follows:  𝜌ௗ = 3𝑑ଶ𝑚ଶ𝐿ିଶ. (1)

In this case, the Planck mass reduction is represented by 𝑚, the numerical constant is represented by 3𝑑ଶ, and the 
IR cutoff is indicated as 𝐿. The literature has researched several infrared cutoffs in great detail, including the Hubble 
horizon 𝐻ିଵ, the event horizon, the particle horizon, the conformal universe age, the Ricci scalar radius, and the 
Granda-Oliveros cutoff [8]. Examining the current acceleration of the universe is made possible by the use of HDE models 
with various IR cutoffs, offering insights into the transition redshift value that signifies the change from early deceleration 
(𝑞 > 0) to present acceleration (𝑞 < 0). This research shows that the transition redshift value aligns with current 
observational data. Moreover, it could offer a possible resolution to the puzzle of cosmic coincidence, which concerns 
the puzzling topic of why, in the current state of the universe, the energy densities originating from dark matter and DE 
display a constant ratio. A respectable degree of agreement between the HDE model and observational data has been 
demonstrated by numerous investigations [9]. Nojiri and Odintsov [10] presented a methodology in their work that uses 
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phantom cosmology and generalized HDE to try and reconcile the early and late epochs of the universe. In research by 
Ghaffari [11], the HDE model was examined to determine whether the generalized laws of thermodynamics held in the 
context of the D-dimensional Kaluza-Klein-type FRW world. Various cosmological components of new and updated 
HDE models have been investigated by Aditya and Reddy [12]. As a generic entropy metric, Kaniadakis statistics have 
recently been used to examine various gravitational and cosmological implications [13]. The generalized 𝒦-entropy 
(Kaniadakis), a single free parameter entropy of a BH is obtained as [14]  

 𝑆𝒦 = ଵ𝒦 𝑠𝑖𝑛ℎ(𝒦𝑆ு), (2) 

where 𝒦 is an unknown parameter. 
Consequently, a new model of DE known as Kaniadakis Holographic DE (KHDE) [14] is presented utilizing this 

entropy and holographic DE theory, which exposes considerable properties. Jawad and Sultan [15] have discussed KHDE 
models in different theories of gravity. As Tsallis and Kaniadakis, Sadeghi et al. [16] have examined the dynamic 
structures of HDE within the context of the Brans-Dicke theory of gravity. 

Many entropy-related formalisms have been applied recently to the development and examination of cosmological 
models. Several new HDE models have been put out, such as the Renyi HDE (RHDE) model [17], the Tsallis HDE 
(THDE) [18], and the Sharma-Mittal HDE (SMHDE) [19]. Conversely, in the case of non-interacting cosmic systems, 
the SMHDE theory exhibits classical stability. The RHDE theory shows better stability when viewed individually and is 
predicated on the idea that cosmic sectors are not connected. The Tsallis, Renyi, and Sharma-Mittal entropies are 
investigated in the work by Younas et al. [20] in a flat Friedmann-Robertson-Walker (FRW) universe with Chern-Simons 
modified gravity. In the THDE, Aditya et al. [21] examined the empirical constraints on the logarithmic Brans-Dicke 
theory of gravity. The authors Prasanthi and Aditya have conducted a study on the observational restrictions in RHDE 
[22, 23]. In their study, Sharma and Dubey [23] examined the SMHDE models using several diagnostic methods. In light 
of the aforementioned research, we have chosen to examine the HDE using a novel entropy formalism known as the 
SMHDE, with the Hubble horizon serving as the infrared cutoffs in our investigation. 

The statistical isotropy of the universe is called into question discovery of large variances in cosmic microwave 
background radiation at wide angles. Even in the absence of inflation, the universe may have some anisotropic geometry 
within the framework of cosmological theories. Several researchers have recently become quite interested in investigating 
different cosmological models with anisotropic backdrops. Within the context of the Brans-Dicke theory of gravity [25], 
this study attempts to explore the Kantowski-Sachs universe taking into account the effects of pressureless matter and 
KHDE. The suggested work plan's outline is given below. Both the derivation of field equations and their solutions are 
covered in Section 2. Section 3 examines the model's physical properties. Section 4 contains the comparison of our work 
with the observational data. The paper's conclusions and a final summary are presented in the last section. 

 
2. FIELD EQUATIONS AND THE MODEL 

There have been several gravitational theories put forth as alternatives to Einstein's general theory of gravity. But 
the most effective substitute for Einstein's theory is thought to be the scalar-tensor theory created by Brans and Dicke 
[25]. Assume that the universe is composed of DE with a density of 𝜌ௗ and pressure-free matter with an energy density 
of 𝜌. For the combined scalar and tenor fields, the Brans-Dicke field equations are thus provided in this instance by 

 𝑅 − ଵଶ 𝑅𝑔 = −଼గథ ൫𝑇 + 𝑇൯ − 𝜙ିଵ൫𝜙; − 𝑔𝜙;ఈ,ఈ൯ − 𝑤𝜙ିଶ ቀ𝜙,𝜙, − ଵଶ 𝑔𝜙,ఈ𝜙,ఈቁ, (3) 

 𝜙;ఈ,ఈ = ଼గ(ଷାଶ௪) (𝑇 + 𝑇), (4) 

 and the energy conservation equation is  

 (𝑇 + 𝑇); = 0, (5) 

which is the result of field equations (3) and (4). In this case, 𝑅 is a Ricci scalar, 𝑅 is a Ricci tensor, and 𝑤 is a 
dimensionless coupling constant. 𝑇 and 𝑇 are energy-momentum tensors for pressure-less matter and KHDE, which 
are defined as  

 𝑇 = 𝜌𝑢𝑢;   𝑇 = (𝜌ௗ + 𝑝ௗ)𝑢𝑢 − 𝑝ௗ𝑔, (6) 

here 𝑝ௗ and 𝜌ௗ are the pressure and energy density of DE respectively and 𝜌 is the energy density of matter. The 
equation of state (𝜔ௗ) parameter of DE is defined as 𝜔ௗ = ೖఘೖ.  

We consider the Kantowski-Sachs space-time in the following form  

 𝑑𝑠ଶ = 𝑑𝑡ଶ − 𝐴ଶ𝑑𝑟ଶ − 𝐵ଶ(𝑑𝜓ଶ + 𝑠𝑖𝑛ଶ𝜓𝑑𝜑ଶ), (7) 
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where 𝐴 and 𝐵 are metric potentials and only cosmic time 𝑡 functions. The Kantowski-Sachs class of metrics describes 
anisotropic and homogenous yet expanding cosmologies. They also provide models for estimating and comparing the 
consequences of anisotropies with the FRW class of cosmologies (Thorne [26]). For the Kantowski-Sachs model (7), we 
define the main parameters:  
Hubble’s parameter of the model 

 𝐻 = ሶ  (8) 

where 

 𝑎(𝑡) = (𝐴𝐵ଶ)ଵ/ଷ (9) 

is the average scale factor. Anisotropic parameter 𝐴 is given by  

 𝐴 = ଵଷ∑ଷୀଵ ቀுିுு ቁଶ, (10) 

where 𝐻ଵ = ሶ ,𝐻ଶ = 𝐻ଷ = ሶ are directional Hubble’s parameters, which express the expansion rates of the universe in 
the directions of 𝑥, 𝑦 and 𝑧 respectively. 

Expansion scalar and shear scalar are defined as  

 𝜃 = 𝑢; = ሶ + 2 ሶ, (11) 

    𝜎ଶ = ଵଶ 𝜎𝜎 = ଵଷ ቀሶ − ሶቁଶ, (12) 

where 𝜎 is the shear tensor, 𝐴 is the deviation from isotropic expansion and the universe expands isotropically if 𝐴 = 0. 
The deceleration parameter is given by 
 𝑞 = ௗௗ௧ ቀଵுቁ − 1. (13) 

If −1 ≤ 𝑞 < 0, the universe expands at an accelerating rate, decelerating volumetric expansion if 𝑞 > 0. If 𝑞 = 0, 
the universe expands at a constant rate. 

The field equations (3)-(5) for the metric (7) produce the following equations when adopting co-moving coordinates:  

 2 ሷ + ሶ మమ + ଵమ + ௪ଶ థሶ మథమ + థሷథ + 2 ሶ థሶథ = −ఠೖఘೖథ , (14) 

 ሷ + ሷ + ሶሶ + ௪ଶ థሶ మథమ + థሷథ + థሶథ ቀሶ + ሶቁ = −ఠೖఘೖథ , (15) 

 2 ሶሶ + ሶ మమ + ଵమ − ௪ଶ థሶ మథమ + 3 థሶథ 𝐻 = ఘାఘೖథ , (16) 

 𝜙ሷ + 3𝜙ሶ𝐻 = ଼గథ(ଷାଶ௪) (𝜌ௗ − 3𝑝ௗ + 𝜌), (17) 

and the conservation equation is given by  

 𝜌ሶ + 𝜌ሶௗ + 3𝐻(𝜌 + (1 + 𝜔ௗ)𝜌ௗ) = 0. (18) 

We assume that there is minimal interaction between the DE, 𝑇 = 0 and that the pressure-less matter component 
is minimally interacting, 𝑇 = 0, due to the energy conservation equation (5). Consequently, two additive conserved 
components have been extracted from the energy conservation equation (5): maintenance of the DE's energy-momentum 
tensor 

 𝜌ሶௗ + 3𝐻(1 + 𝜔ௗ)𝜌ௗ = 0, (19) 

and the conservation of the energy-momentum tensor of the pressure-less matter  

 𝜌ሶ + 3𝐻𝜌 = 0, (20) 

here the overhead dot represents ordinary differentiation for cosmic time 𝑡.  𝐴, 𝐵, 𝜙, 𝜔ௗ, 𝜌ௗ, and 𝜌 are six unknown variables in the four equations (14)-(17). As a result, some extra 
constraints are required to solve the above system of equations. We build our computations on the following physically 
acceptable assumptions: 

The shear scalar (𝜎) is regarded as proportionate to the expansion scalar (𝜃). As a result, the metric potentials 
are related to one another. (Collins et al. [27]), i.e.,  
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 𝐴 = 𝐵. (21) 

where 𝑘 > 1 is a constant that accounts for space-time anisotropy (we have taken the integration constant as a unity). 
The physical foundation for this assumption can be found in observations of the velocity redshift relation for extragalactic 
sources, which indicate that the Hubble expansion of the universe may achieve isotropy when 𝜎/𝜃 is constant. 

In addition, it is common in the literature to employ a power-law relationship between scalar field 𝜙 and average 
scale factor 𝑎(𝑡) of the form (Johri and Sudharsan [28]; Johri and Desikan [29]) 𝜙 ∝ ሾ𝑎(𝑡)ሿ where 𝑛 denotes a power 
index. Many authors have looked into different aspects of this type of scalar field 𝜙. Given the physical significance 
of the preceding relationship, we employ the following assumption to reduce the mathematical complexity of the system 

 𝜙(𝑡) = 𝜙[𝑎(𝑡)], (22) 

where 𝜙 is the proportionality constant.  
From Eqs. (14), (15), (21) and (22), we obtain the metric potentials as  

 𝐴 = ቆ ௧మିଵ − 𝐴ଵ(𝑘 − 1)ቇೖమ, (23) 

 𝐵 = ට ௧మିଵ − 𝐴ଵ(𝑘 − 1), (24) 

where 𝐴ଵ is integrating constant and 𝑛(𝑘 + 2) + 3𝑘 = 0. Now, the scalar field 𝜙 calculated as  

 𝜙(𝑡) = 𝜙 ቆ ௧మିଵ − 𝐴ଵ(𝑘 − 1)ቇ భల (ೖశమ)
. (25) 

 Now the metric (7) can be rewritten as  

 𝑑𝑠ଶ = 𝑑𝑡ଶ − ቆ ௧మିଵ − 𝐴ଵ(𝑘 − 1)ቇ 𝑑𝑟ଶ − ቆ ௧మିଵ − 𝐴ଵ(𝑘 − 1)ቇ (𝑑𝜓ଶ + 𝑠𝑖𝑛ଶ𝜓𝑑𝜑ଶ). (26) 

 
3.  COSMOLOGICAL PARAMETERS AND DISCUSSION 

Equation (26), in conjunction with equation (25) illustrates the Kantowski-Sachs universe with Kaniadakis HDE 
in Brans-Dicke's theory of gravity. The following geometrical and physical factors are crucial to the debate of cosmology. 
The spatial volume (𝑉) and average scale factor (𝑎(𝑡)) of the model are given by  

 𝑉(𝑡) = [𝑎(𝑡)]ଷ = ቆ ௧మିଵ − 𝐴ଵ(𝑘 − 1)ቇೖశమమ . (27) 

Mean Hubble’s parameter (𝐻) and expansion scalar (𝜃) are obtained as  

 𝐻 = ఏଷ = (ାଶ)௧ଷ௧మିଷభ(ିଵ)మ. (28) 

The shear scalar (𝜎ଶ) and anisotropic parameter (𝐴) are  

 𝜎ଶ = (ିଵ)మ௧మଷ(௧మି భ(ିଵ)మ)మ, (29) 

 𝐴 = ଶ(ିଵ)మ(ାଶ)మ . (30) 

Eq. (26) indicates the spatially homogeneous and anisotropic Kantowski - Sachs KHDE cosmological model in the 
Brans-Dicke theory of gravity. There is no initial singularity in our model, i.e. at 𝑡 = 0. From a finite volume when 𝑡 = 0, 
the model’s spatial volume increases with time. This indicates that the model's spatial expansion. At 𝑡 = 0, the parameters 𝐻(𝑡), 𝜃(𝑡), and 𝜎ଶ are finite and tend to infinity as 𝑡 → ∞. The mean anisotropic parameter 𝐴 represents the deviation 
from isotropic expansion. It establishes the anisotropic or isotropic nature of the model. When 𝑘 = 1, 𝐴 equals 0. In this 
instance, the expansion of the universe is isotropic. In addition, if 𝑉 → ∞ and 𝐴 = 0 as 𝑡 → ∞, The model steadily gets 
closer to isotropy. 

According to the HDE, if DE is meant to regulate the universe's current, accelerated expansion, then, taking into 
account the Kaniadakis BH entropy equation (2), the total vacuum energy contained in a box of a certain size 𝐿ଷ must not 
surpass the energy of a BH of the same mass. Next, one obtains 
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 Λସ ≡ 𝜌ௗ ∝ 𝒮𝒦ℒర , (31) 

for the vacuum energy 𝜌ௗ. Now, taking the Hubble horizon of the universe as the IR cutoff  (i.e., 𝐿 = ଵு ,𝐴 = ସగுమ),  
 𝜌ௗ = ଷ𝒞మுర𝒦 𝑠𝑖𝑛ℎ ቀగ𝒦ுమቁ, (32) 

where the constant 𝒞ଶ is unknown, 𝒦 belongs to a set of real numbers, and 𝐻 = ሶ is the Hubble parameter. Now, it's 

evident that we have 𝜌ௗ → ଷ𝒞మுర𝒦  (the well-known Bekenstein entropy-based HDE) when 𝑘 → 0. Considering the 
pressureless fluid (with energy density 𝜌) and the DE candidate (with pressure 𝑝ௗ and density 𝜌ௗ). The fractional 
energy densities of matter (Ω) and DE (Ωௗ) are given as  

 Ω = ఘఘೝ = ఘଷுమ         and        Ωௗ = ఘೖఘೝ = 𝒞మுమ𝒦 𝑠𝑖𝑛ℎ ቀగ𝒦ுమቁ, (33) 𝜌 is the critical energy density. The above equation can be written using Eq. (28) as  

 𝜌ௗ(𝑡) = ଷௗమ(ାଶ)ర௧ర(ଷ௧మିଷభ(ିଵ)మ)రఋ sinh ൬గ ఋ ൫ଷ௧మିଷభ(ିଵ)మ൯మ(ାଶ)మ௧మ ൰. (34) 

From Eqs. (14) and (27), we get the energy density of matter as  

 𝜌(𝑡) = 𝜌 ቂ ௧మିଵ − 𝐴ଵ(𝑘 − 1)ቃష(ೖశమ)మ . (35) 

Using Eqs. (23)-(25) in Eq. (14), we get the EoS parameter as  

 𝜔ௗ(𝑡) = −థబ൫ଷ௧మିଷభ(ିଵ)మ൯రఋଷௗమ(ାଶ)ర௧ర ቆ ௧మିଵ − 𝐴ଵ(𝑘 − 1)ቇ భల (ೖశమ) ቊ ିଷభ(ିଵ)మ(௧మିభ(ିଵ)మ)మ + (ିଵ)ቀ௧మିభ(ିଵ)ቁ(௧మିభ(ିଵ)మ)మ + (ାଵ)௧మ(௧మିభ(ିଵ)మ)మ + ௪మ(ାଶ)మ௧మ(ଷ௧మିଷభ(ିଵ)మ)మ +  ଶ(ାଶ)൫(ାଶ)௧మିଷ௧మିଷభ(ିଵ)మ൯ଽ(௧మିభ(ିଵ)మ)మ + (ାଷ)(ାଶ)௧మଷ(௧మି భ(ିଵ))మ 
                                  + ቆ ௧మିଵ − 𝐴ଵ(𝑘 − 1)ቇିଵൡ ቆsinh ቀగ ఋ (ଷ௧మିଷభ(ିଵ)మ)మ(ାଶ)మ௧మ ቁቇିଵ. (36) 

Scalar field: We plotted a scalar field's behaviour against cosmic time for a range of parameter values. 𝑘 in Fig. 1. One 
way to conceptualize the scalar field is as a positive, declining function that ultimately approaches a minimum positive 
value. Because of the scalar field's diminishing behaviour, the corresponding kinetic energy rises. This behaviour closely 
resembles that of scalar fields in DE models that have been developed by several writers and published in literature 
(Aditya and Reddy [30]). Moreover, it is evident that when parameter 𝑘 rises, the scalar field contracts. Hence, in this 
work, Examining the additional dynamical parameters in the context of the BD scalar field is our goal. 

 
Figure 1. Plot of scalar field 𝜙 versus cosmic time 𝑡 for 𝜙 = 28000 and 𝐴ଵ = −38 

Energy conditions: The Raychaudhuri equations provide the foundation for the study of energy conditions and are 
essential to any analysis of the congruence of time-like and null geodesics. Energy conditions are used to illustrate other 
general conclusions regarding the behaviour of powerful gravitational fields. These are the typical energy scenarios: 
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• Dominant energy condition (DEC): 𝜌ௗ ≥ 0, 𝜌ௗ ± 𝑝ௗ ≥ 0.  
• Strong energy conditions (SEC) : 𝜌ௗ + 𝑝ௗ ≥ 0, 𝜌ௗ + 3𝑝ௗ ≥ 0,  
• Null energy conditions (NEC): 𝜌ௗ + 𝑝ௗ ≥ 0,  
• Weak energy conditions (WEC): 𝜌ௗ ≥ 0, 𝜌ௗ + 𝑝ௗ ≥ 0,  

Fig. 2 depicts the energy conditions for our KHDE model. It is clear that the NEC is violated, and the model results in a 
Big Rip. Furthermore, the WEC is observed to comply with the requirement 𝜌ௗ ≥ 0. In addition, Fig. 2 shows that the 
DEC 𝜌ௗ + 𝑝ௗ is not satisfied. Furthermore, our model appropriately violates the SEC. This tendency, Which results 
from the late-time acceleration of the universe, corresponds with current observational data.  

 

Figure 2. Plot of energy conditions versus cosmic time 𝑡 for 𝜙 = 28000, 𝑤 = 0.025, 𝒦 = 0.001, 𝒞 = 9.2 and 𝐴ଵ = −38 

EoS parameter: The definition of the EoS parameter is the correlation between DE’s pressure 𝑝ௗ and energy density 𝜌ௗ, which is expressed as 𝜔ௗ = ೖఘೖ. The universe's accelerated and decelerated expansion are categorized using the 

EoS parameter, which separates epochs into the following groups: For 𝜔 = 1 stiff fluid, 𝜔 = ଵଷ radiation, and 𝜔 = 0 
matter commanded (dust) (decelerating phases). It symbolizes the quintessence −1 < 𝜔 < −1/3, the cosmological 
constant 𝜔 = −1, and the phantom 𝜔 < −1. 

The EoS parameter of our DE model is depicted in Fig. 3 for various values of 𝒞. We note that the EoS parameter 
of our model starts in the aggressive phantom area (𝜔ௗ << −1) and finally attains ΛCDM model (𝜔ௗ = −1) and 
phantom region (𝜔ௗ < −1). According to current observational data, this behaviour is consistent, and the current value 
(at 𝑡 = 13.7 𝐺𝑦𝑟) of our DE model’s EoS parameter is in close approximation with current Planck data 
(Aghanim et al. [31]). 

 
Figure 3. Plot of EoS parameter 𝜔ௗ versus cosmic time 𝑡 for 𝜙 = 28000, 𝑤 = 0.025, 𝒦 = 0.001and 𝐴ଵ = −38 𝝎𝒌𝒅𝒆 − 𝝎𝒌𝒅𝒆ᇱ  plane: The dynamical characteristic of models of DE is examined through the 𝜔ௗ − 𝜔ௗᇱ  plane analysis, 

where prime (′) signifies derivative with regard to 𝑙𝑛𝑎. Caldwell and Linder [32] proposed this approach to analyse the 
behaviour of the quintessence model. They divided the 𝜔ௗ − 𝜔ௗᇱ  plane into thawing (𝜔ௗ < 0 and 𝜔ௗᇱ > 0) 
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and freezing (𝜔ௗ < 0 and 𝜔ௗᇱ < 0) areas. Researchers have expanded the scope of this planar study to analyze the 
dynamic behaviour of several DE models and modified theories of gravity [33]. Our DE model’s 𝜔ௗ-𝜔ௗᇱ  trajectory is 
depicted in Fig. 4 for distinct values of parameter 𝒞 as the 𝜔ௗ-𝜔ௗᇱ  plane remains same for various values of 𝒞. Both 
the thawing and freezing zones exhibit variation in the model; however, our model primarily fluctuates in the freezing 
region. The freezing region is where observational evidence indicates that the universe is expanding much more quickly. 
As a result, the behaviour of the 𝜔ௗ-𝜔ௗᇱ  plane is in line with the available observations. 

 
Figure 4. Plot of 𝜔ௗ − 𝜔′ௗ plane for 𝜙 = 28000, 𝑤 = 0.025, 𝒦 = 0.001, 𝒞 = 9.2 and 𝐴ଵ = −38 

Stability analysis: In this case, we evaluate our DE model's stability against minor perturbations using the squared speed 
of sound. The sign of the square of sound speed plays a vital role, as its negative (𝑣௦ଶ < 0) denotes instability and its 
positive (𝑣௦ଶ > 0) shows stability. It can be described as follows:  

 𝑣௦ଶ = ሶೖఘሶ ೖ. (37) 

By differentiating the EoS parameter 𝜔ௗ = ೖఘೖ about time 𝑡 and dividing by 𝜌ሶௗ, we get  

 𝑣௦ଶ = 𝜔ௗ + ఘೖఘሶ ೖ 𝜔ሶ ௗ. (38) 

We build the squared speed of sound trajectories in terms of cosmic time in the current scenario, as illustrated in 
Fig. 5 for various values of 𝒞. We can witness from Fig. 5 that 𝑣௦ଶ curve shows positive behaviour in the first epoch and 
changes in the negative section. As a result, our model is unstable at the present and in subsequent epochs of the universe, 
but stable at the beginning. 

 
Figure 5. Plot of squared sound speed 𝑣௦ଶ versus cosmic time 𝑡 for 𝜙 = 28000, 𝑤 = 0.025, 𝒦 = 0.001, 𝒞 = 9.2 and 𝐴ଵ = −38 

Deceleration parameter (DP): One crucial kinematical quantity is the deceleration parameter (𝑞). This parameter shows 
the speed and slowness of the universe. There is an accelerating expansion if −1 < 𝑞 < 0, a decelerating expansion if 
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𝑞 > 0, and a constant rate of expansion if 𝑞 = 0. In addition, for 𝑞 = −1, we get an exponential expansion and for 𝑞 < −1, 
Our current growth is exponential. DP obtained for our model as  

 𝑞(𝑡) = ଷ ௧ାଷభ(ିଵ)మ(ାଶ)௧ − 1. (39) 

In Fig. 6, we have displayed the DP against cosmic time over a range of parameter 𝑘 values. For all values of 𝑘, we 
observe that DP stays less than -1 and ultimately approaches -1 at late times. 𝑘, indicating that the universe is accelerating. 
As a result, The universe is expanding at an exponential rate. 

 

Figure 6. Plot of deceleration parameter 𝑞 versus cosmic time 𝑡 for 𝐴ଵ = −38. 

Statefinder parameters (𝒓, 𝒔): The accelerated expansion of the universe has been explained by a variety of DE 
hypotheses. Sahni et al. [34] have presented statefinder parameters (𝑟, 𝑠) to test the validity of these models. The 𝑟 − 𝑠 
plane is the cosmological plane corresponding to these parameters, and it indicates how far a certain DE model is from 
the Λ𝐶𝐷𝑀 limit. The cosmic planes of these parameters describe several well-known regions of the universe, e.g., 𝑠 > 0 
and 𝑟 < 1 give the phantom and quintessence DE eras, respectively. (𝑟, 𝑠) = (1,0) is the Λ𝐶𝐷𝑀 limit, (𝑟, 𝑠) = (1,1) is 
the 𝐶𝐷𝑀 limit, and 𝑠 < 0 and 𝑟 > 1 are the Chaplygin gas limits. Our models’ statefinder parameters are provided by  

 𝑟(𝑡) = ଷ ௧ାଷభ(ିଵ)మ(ାଶ)௧ − 1 + 2 ቀଷ ௧ାଷభ(ିଵ)మ(ାଶ)௧ − 1ቁଶ + ଽభ(ିଵ)మ൫௧మିభ(ିଵ)మ൯(ାଶ)మ௧య , (40) 

 𝑠(𝑡) = ቊయ శయಲభ(ೖషభ)మ(ೖశమ) ିଶାଶ൬య శయಲభ(ೖషభ)మ(ೖశమ) ିଵ൰మାଽಲభ(ೖషభ)మ൫మషಲభ(ೖషభ)మ൯(ೖశమ)మయ ቋ
 ൬ଷయ శయಲభ(ೖషభ)మ(ೖశమ) ିସ.ହ൰ . (41) 

Plotting 𝑟 versus 𝑠 yields the statefinders plane, as shown in Fig. 7 for different values of 𝑘. The regions of 
quintessence and phantom models can be found in the 𝑟 − 𝑠 plane for our model. Our model coincides with the Λ𝐶𝐷𝑀 
model in its evolution. 

 
Figure 7. Plot of statefinder’s plane for 𝐴ଵ = −38. 
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4. DISCUSSION AND COMPARISON 
In this section, we present a comparison of our work with the recent work on this subject and discuss the comparison 

with observational data.  
Rao and Prasanthi [35] have discussed Bianchi type-I and III modified holographic Ricci DE models in Saez– 

Ballester theory of gravitation which evolve from the phantom region and ultimately reach the quintessence region. Rao 
et al. [36] have investigated a non-static plane-symmetric universe filled with matter and anisotropic modified holographic 
Ricci DE components within the framework of Saez–Ballester's theory of gravitation. In this model, the EoS parameter 
varies from matter-dominated to the phantom region by crossing the phantom divide line and then goes towards the 
quintessence region in the latter epoch. Sadri and Vakili [37] have studied the FRW new HDE model in the framework 
of the Brans–Dicke scalar–tensor theory of gravitation taking into account the interaction between dark matter and HDE. 
They have obtained an EoS parameter that can reach the phantom era without the necessity of interaction between DE 
and dark matter. Aditya and Reddy [38] have studied locally rotationally symmetric Bianchi type-I universe within the 
framework of the Saez–Ballester scalar–tensor theory of gravitation, where the models start in the matter-dominated era, 
varies in the quintessence region, cross phantom divided line and attains a constant value in the phantom region. Prasanthi 
and Aditya [39] have discussed Bianchi type-VI0 RHDE models in general relativity where the model exhibits quintom 
as well as the phantom behaviour of the universe. Naidu et al. [40] have investigated the dynamical behaviour of Kaluza-
Klein FRW-type DE cosmological models in the framework of a scalar-tensor theory of gravitation formulated by Saez 
and Ballester. Aditya [41] studied the Bianchi type-I RHDE model in the Saez-Ballester theory of gravitation, here the 
model displays quintom behaviour and consistent ranges with the observational data. Aditya and Prasanthi [42] have 
discussed the dynamics of SMHDE in the Brans-Dicke theory of gravity, here the model starts in the matter-dominated 
era, crosses the phantom division line, and finally reaches a constant value in the aggressive phantom region. Dasunaidu 
et al. [43] discussed Kaluza-Klein FRW type DE cosmological models in the context of Saez and Ballester’s scalar-tensor 
theory of gravitation, where models begin in the matter-dominated era, evolves to the quintessence DE era, and finally 
approaches the vacuum DE and phantom era. In our KHDE model the study of the EoS parameter reveals that the model 
starts The EoS parameter analysis shows that the model starts in the aggressive phantom area ( 1−<<kdeω ) and finally 

attains ΛCDM model ( 1−=kdeω ) and phantom region ( 1−<kdeω ). This is quite in contrast with the models discussed 
above. Also, it is worthwhile to present, here, Planck's observational data given by Aghanim et al. [31] which gives the 
constraints on the EoS parameter of DE 𝜔ௗ = −1.56ି.ସ଼ା. (Planck + TT + lowE); 𝜔ௗ = −1.58ି.ସଵା.ହଶ(Planck+ TT, TE, 
EE + lowE); 𝜔ௗ = −1.57ି.ସା.ହ (Planck + TT, TE, EE + lowE + lensing); 𝜔ௗ = −1.04ି.ଵା.ଵ (Planck + TT, TE, EE + 
lowE + lensing + BAO) by implying different combinations of observational schemes at 95% confidence level. It can be 
observed from Fig. 3 that the EoS parameter of our model lies within the above observational limits which shows the 
consistency of our results with the above cosmological data. The above comparison shows that our KHDE model is more 
viable than the DE models obtained by several authors, in the BD scalar–tensor theory, discussed above. 
 

5. SUMMARY AND CONCLUSIONS 
In this work, we study the Kantowski-Sachs universe and the Kaniadakis holographic dark energy in the context of 

the Brans-Dicke scalar-tensor theory of gravity. Field equations are solved using a few physically possible circumstances. 
We may analyze the dynamical properties of the DE model by constructing the cosmological parameters of our models. 
The following are some conclusions: 
• This model starts with a finite volume and extends from there with no initial singularity. As 𝑡 → ∞ approaches, the 

physical parameters 𝐻,𝜃,𝜎ଶ diverge and all drop to constant values at 𝑡 = 0. Our model also becomes isotropic 
(because 𝐴 = 0) and shear free when 𝐾 = 1. The scalar field of our models decreases with cosmic time and is 
positive (Fig. 1). This behaviour is comparable to various theories' scalar field models (Aditya and Reddy [30,38]).  

• Based on the deceleration parameter, we conclude that our model exhibits a super-exponential expansion (Fig. 6). 
The trajectory of statefinder parameters varies in both quintessence and phantom zones (Fig. 7). There is an obvious 
breach of the NEC, which causes a Big Rip in the model. Similar to what is predicted, our model likewise breaks 
the other energy requirements. This is because fresh observational data supports the late-time acceleration of the 
universe.  

• We produce the sound's squared speed 𝑣௦ଶ trajectory for our DE model in this scenario (Fig. 5). That 𝑣௦ଶ fluctuates 
fully in the negative area indicates that the model is unstable. The EoS parameter analysis shows that the model 
starts in the aggressive phantom area ( 1−<<kdeω ) and finally attains ΛCDM model ( 1−=kdeω ) and phantom 

region ( 1−<kdeω ). We looked into the kdekde ωω ′−  plane study and found that it happens during the freezing and 
thawing phases of the history of the universe  (Fig. 4). We find observationally that the expansion of the universe is 
significantly faster in the freezing region. Thus, the behaviour of the kdekde ωω ′−  plane agrees with the available data. 
Furthermore, we have examined how each dynamical parameter behaves for a range of 𝒞 and k values. The pictures 

make it abundantly evident that the dynamics of cosmological parameters are significantly influenced by the BD scalar 
field )(tφ . 
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У цій роботі досліджується голографічна темна енергія Каніадакіса в контексті скалярно-тензорної теорії гравітації Бранса-
Дікке (Phys. Rev. 124: 925, 1961). Ця стаття присвячена фону з анізотропним простором-часом Кантовського-Сакса, який є 
однорідним у просторі. За цих обставин скалярне поле Бренса-Дікке, позначене як ϕ, використовується як функція середнього 
масштабного коефіцієнта a(t). Використання графічної моделі для аналізу фізичної поведінки моделі є частиною дослідження 
прискореного розширення Всесвіту. Ми оцінюємо космологічні параметри, такі як скалярне поле, параметр рівняння стану 
та параметр уповільнення. Крім того, стабільність моделей оцінюється за допомогою квадрата швидкості звуку (𝑣௦ଶ). Для 
наших моделей ми виводимо загальноприйняті космічні площини, такі як 𝜔ௗ − 𝜔ௗᇱ  і площини вимірювача стану (r,s). 
Виявлено, що скалярне поле є спадною функцією космічного часу і, отже, відповідна кінетична енергія зростає. Параметр 
уповільнення демонструє прискорене розширення Всесвіту. Тут згадується, що рівняння параметра стану лежить у фантомній 
області і, нарешті, досягає моделі ΛCDM. Крім того, площина 𝜔ௗ − 𝜔ௗᇱ  забезпечує області замерзання і відтавання. Крім 
того, модель ΛCDM також відповідає площині вимірювача стану. Нарешті, зауважується, що всі вищезазначені обмеження 
космологічних параметрів узгоджуються з даними спостережень Планка. 
Ключові слова: скалярно-тензорна теорія; скалярне поле; голографічна темна енергія; модель Кантовського-Сакса 
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This research paper delves into a thorough examination of the behaviour exhibited by higher dimensional Bianchi Type-I
universes, incorporating the presence of quark and strange quark matter within the framework of f(R, T ) gravity. The
solutions derived for the �eld equations encompass both exponential volumetric expansion and power law scenarios.Under
the exponential expansion model, both the pressure (pq) and energy density (ρq) associated with quark matter are initially
�nite at the inception of cosmic time, gradually diminishing to zero as time progresses towards in�nity. Conversely,
within the power law model, these parameters start o� in�nitely large at t = 0, subsequently decreasing to zero as time
approaches in�nity. Furthermore, an exploration of the physical and geometrical attributes of the model is conducted.
Notably, in power law expansion models, the behaviour of strange quark matter mirrors that of quark matter concerning
pressure (p) and energy density (ρ). But in exponential expansion model quark pressure and strange quark pressure
behave di�erently. The bag constant emerges as a critical factor in�uencing the universe's expansion, with observations
revealing that both pressure and energy density tend towards the bag constant at large time scales (t → ∞). Speci�cally,
the pressure p → −BC and the energy density ρ → BC as time approach in�nity.The negative pressure sign denotes the
universe's expansion during later epochs.

Keywords: Quark and Strange quark matter; Bag constant; Higher dimensional Bianchi Type-I universe; f(R, T ) gravity

PACS: 04,98.80cq,04.5-h, 98.80.-k, 04.50.Kd, 04.20.Jb

1. INTRODUCTION

Modern cosmology has attracted an enormous amount of attention due to its outstanding ability to explain
the natural phenomenon of rapid expansion that takes place in the conclusive stages of the universe. As we
endeavour to explore the universe this �eld is establishing itself as the one that is advancing the most quickly.
An important discovery of accelerated expansion was made primarily through the analysis of type- Ia supernovae
experiment performed by various researchers [1, 2, 3, 4, 5]. These investigations have produced strong evidence
revealing the universe is presently going through an accelerated expansion phase. Notably, many scientists have
made major attempts to �nd con�rmation of dark energy an idea put forward in Einstein's theory permeating the
universe. These researchers came to the conclusion after an exhaustive examination of observational evidence
suggesting dark energy often regarded as the primary driving force shaping the universe is characterised by
negative pressure.

Researchers in cosmology have a strong desire to learn more about how the universe functions. Albert
Einstein stands out among them for his work on the general theory of relativity which attracted a lot of curiosity
for its e�ectiveness in building cosmological models as well as o�ering insights into the development and the
formation of the universe. However, it fails to tackle a signi�cant issue associated with modern cosmology the
late-time acceleration. As a result, several attempts to alter the theory of gravity have been established in order
to explain the current accelerated phase. To solve this constraint and o�er brief explanations for the universe's
late-time rapid expansion cosmologists have created a number of alternative theories including f(R) [6], f(T ) [7]
and f(R, T ) [8] theories to the general theory of relativity.

One such alternative theory that has garnered interest and motivation is the f(R, T ) theory of gravity.
This theory proposed by Harko et al. in 2011 incorporates the Ricci scalar (R) and the trace of the stress-
energy tensor (T ). The researchers derived the gravitational �eld equations in the metric formalism as well as
the equation of motion for test particles based on the covariant divergence of the stress-energy tensor. Within
this particular �eld, various forms of the f(R, T ) function have been extensively explored and discussed by
researchers.This motivates the researchers [9, 10, 11, 12, 13] to construct various models in the context of
f(R, T ) gravity.
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Considerable progress has been made in the �eld of f(R, T ) theory of gravity using various kinds of matter.
Among these, two notable examples are quarks and strange quarks. Jokwani et al. [15] have explored locally
rotationally symmetric Bianchi-I model �lled with strange quark matter in f(R, T ) gravity and found that
model is shear - free at late time but remains anisotropic throughout the evolution. Pawar et al. [16] have
discussed LRS Bianchi type-V Cosmological model in f(R, T ) theory of gravity and they found universe has an
initial singularity. Several authors [17, 18, 19] have explored evolution of cosmic universe by analysing Kalunza-
Klien cosmological model with strange quark matter in di�erent theories of gravitation. Pawar et al. [20] have
obtained exact solutions of �eld equations with quark and strange quark matter for FRW universe in fractal
gravity with the help of assumption a fractal parameter and fractal function in the form of power law.

According to the established standard model of physics quarks are the smallest known units found within
the nuclei of atoms. However, isolating individual quarks proves challenging as they are perpetually bound
in groups of three. The family of quarks comprises six members: up (u), down (d), charm (c), strange (s),
top (t), and bottom (b) quarks, with up, down, and strange quarks being the primary types. Quarks serve as
the fundamental building blocks of particles. During an early phase transition of the universe, when the cosmic
temperature was around T ∼ 200MeV it is widely accepted that a state known as quark-gluon plasma existed.
The possibility of quark matter's existence was initially proposed in the early 1970s by Itoh [21], Bodmer [22],
and Witten [23], who suggested two pathways for its formation: the quark-hadron phase transition in the early
universe and the conversion of neutron stars into strange stars under ultrahigh densities. In theories related
to strong interaction, the concept of quark bag models assumes the occurrence of vacuum breaking within
hadrons. Consequently, a notable distinction arises between the vacuum energy densities inside and outside
a hadron leading to a signi�cant di�erence in the pressure on the bag wall and the pressure exerted by the
quarks. This equilibrium stabilizes the system. The equation of state for strange quark matter based on the

phenomenological bag model of quark matter is given by p = (ρ−4Bc)
3 within this equation the bag constant (BC)

represents the disparity between the energy density of the perturbative and non-perturbative QCD vacuum.
Here, ρ and p denote the energy density and thermodynamic pressure of the quark matter respectively. In
this model, quarks are treated as degenerate fermi gases existing within a region of space characterized by the
vacuum energy density (BC) known as the bag model. Within this framework, the quark matter is composed
of massive s quarks and electrons, alongside massless u and d quarks. A simpli�ed version of this bag model
assumed that quarks are massless and noninteracting. Therefore, we have quark pressure pq =

ρq

3 , where ρq is
the quark energy density. The total energy density and pressure is ρ = ρq +Bc and p = pq −Bc respectively.

Mak and Harko [24] have conducted an investigation on spherically symmetric space-time in the presence
of charged strange quark matter considering conformal motion. Dixit et al. [25] have derived deterministic
solution of Kontowski-Sachs space-time with strange quark matter in f(R) gravity and they noticed that the
function f(R) satis�es the cosmological viability constraint. Sahoo and Mishra [26] have con�ned their work
to strange quark matter attached to string cloud in general relativity for higher dimensional Bianchi type - III
universe. Katore [27] has discussed the FRW cosmological model incorporating strange quark matter attached
to a string cloud. Santhikumar et al. [28] have discussed the properties of axially symmetric cosmological models
with strange quark matter attached to a string cloud. Katore and Shaikh [29] have discussed the properties of
axially symmetric space-time incorporate strange quark matter attached to a string cloud within the framework
of general relativity. Yilmaz et al. [30, 31] have explored the implications of quark and strange quark matter
in Bianchi type-I and V space-times within the context of f(R) theory of gravity. Additionally, they have
also investigated the presence of strange quark matter within a Robertson-Walker cosmological model using the
general theory of relativity. Adhav et al. [32] have investigated the behaviour of quark and strange quark matter
for Kantowski-Sachs cosmological model within the context of f(R) theory of gravity. Chirde and Sheikh [33]
investigated plane symmetric cosmological model with the distribution of quark and strange quark matter in
deformations of the Einstein's theory of General Relativity. Hatkar et al. [34] have studied Bianchi-I universe
incorporating quark and strange quark matter in f(G) theory of gravity and they observed that quark matter
is transformed into strange quark matter for power law and exponential law model. Aygün et al. [35] have
explored FRW cosmological model with quark and strange quark matter in creation �eld cosmology.

Furthermore, Pawar and Agrawal [36] have examined the behaviour of quark and strange quark matter
within the context of f(R, T ) gravity for a plane symmetric cosmological model and they found that the mean
anisotropy parameter remains constant throughout the evolution. Pawar and Mapari [37] have explored magne-
tized strange quark matter within the Lyra geometry for a plane symmetric cosmological model, revealing that
the model remains anisotropic throughout its evolution except for the case where n = 1. Sahoo et al. [38] have
discussed magnetized strange quark matter distribution for LRS Bianchi type-I with cosmological constant Λ
in f(R, T ) gravity. Kumbhare and Khadekar [39] have investigated higher dimensional spherically symmetric
space time with magnetized quark and strange quark matter admitting conformal motion. Nagpal et al. [40]
have explored the FLRW cosmological model incorporating magnetized quark matter and strange quark mat-
ter within the framework of f(R, T ) theory of gravity.

Chirde and Shekh [41] have investigated a plane symmetric dark energy model represented by a wet dark
�uid incorporating f(R, T ) gravity. The precise solution of LRS Bianchi type-I spacetime with strange quark
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matter and variable cosmological term Λ in the context of f(R, T ) theory of gravity has discussed by Singh
and Beesham [42]. Khadekar and Shelote [43] have analysed Kalunza-Klein cosmological model with Quark
and Strange Quark matter. Aygün et al. [44] have investigated higher dimensional FRW universe in presence
of quark and strange quark matter for cloud string with perfect �uid in Lyra geometry. They obtained that
cloud of string with perfect �uid is non-existent for higher dimensional FRW universe. Aygün et al. [45]
examined Marder's universe with strange quark matter in f(R, T ) gravity. Pawar et al. [46] investigated
interacting �eld model for plane symmetric universe with cosmological constant in the framework of f(R, T )
theory. Krishna et al. [47]have studied plane symmetric cosmological model with bulk viscous and cosmic strings
in Lyra's geometry and they observed in�ation phase. Mete et al. [48] have delved into higher dimensional
plane symmetric cosmological models featuring two �uid sources within the realm of general relativity. Thakre
et al. [49] analysed higher dimensional plane symmetric cosmological model with quadratic equation of state
in f(R, T ) gravity. Plane symmetric in�ationary models play a crucial role in the formation of the universe's
structure and are of signi�cant astrophysical interest. While the present state of the universe exhibits overall
spherical symmetry and isotropy its early stages of evolution did not possess such a smoothed-out characteristic.
Hence, we consider the less restrictive plane symmetry, allowing for deviations from isotropy.

Furthermore, the objective of this study is to explore a higher dimensional Bianchi type I cosmological
model incorporating quark and strange quark matter within the framework of f(R, T ) theory of gravity. The
paper is structured as follows: Section 1 provides an introduction to the research topic, while Section 2 presents
the general framework of f(R, T ) gravity. In Section 3, we have studied the metric and the �eld equations for
quark and strange quark matter within the context of f(R, T ) gravity. Furthermore, in Section 4, we obtained
the solutions of �eld equation by considering power law model and exponential expansion model. In section 5,
we explored the results that were obtained in the preceding section. It is important to note that our investigation
builds upon the previous works conducted by [36].

2. GRAVITATIONAL FIELD EQUATIONS OF f(R, T ) GRAVITY

The f(R, T ) theory of gravity [8] is proposed by Harko et al. (2011) which is the modi�cation of General
Relativity. In this theory, the gravitational action is given by the following equation:

s =
1

16πG

∫
f(R, T )

√
−gd5x+

∫
Lm

√
−gd5x (1)

where f(R, T ) is an arbitrary function of Ricci scalar R and trace T of energy momentum tensor of matter Tij .
Lm is the matter Lagrangian density. The energy momentum tensor Tij can be stated as

Tκβ = − 2√
−g

∂ (
√
−gLm)

∂gκβ
(2)

In simpler terms, the f(R, T ) theory proposes a modi�ed version of General Relativity that considers
additional terms involving the Ricci scalar, trace of the energy-momentum tensor, and matter Lagrangian
density. These modi�cations are incorporated into the gravitational action to describe the behavior of gravity
in a di�erent manner than predicted by General Relativity. On varying the action with respect to metric tensor
gij , the �eld equations of f(R, T ) gravity are obtained as

fR(R,T )Rκβ − 1

2
f(R, T )gκβ − fR(R, T ) (∇κ∇β − gκβ□) = 8πTκβ − fT (R, T ) (Tκβ + θκβ) (3)

where,

θκβ = −2Tκβ + gκβLm − 2glk
∂2Lm

∂gκβ∂glα
(4)

Here

fR(R, T ) =
∂f(R, T )

∂R
, fT (R, T ) =

∂f(R, T )

∂T
,□ = ∇κ∇κ (5)

where ∇κ is the co-variant derivative. Now Contraction of equation (4) gives

fR(R, T )R+ 3□fR(R, T )− 2f(R, T ) = 8πT − fT (R, T )(T + θ) (6)

where θ = θκκ equation (5) gives relation between Ricci Scalar R& the trace T of energy momentum tensor. In
the present study, we assume that the stress energy tensor of matter is given by,

Tκβ = (ρ+ p)uκuβ − pgκβ (7)
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where �ve-velocity vector uκ = (1, 0, 0, 0, 0, 0) and satis�es the conditions, uκu
κ = 1 and uκ∇βuκ = 0.ρ indicates

energy density and p indicates pressure of the matter. Here the matter Lagrangian is assumed as Lm = −p.
Therefore equation (4) becomes

θκβ = −pgκβ − 2Tκβ (8)

The f(R, T ) theory of gravity takes into account the presence of matter �elds, and as a result, various
theoretical models can be formulated based on di�erent types of matter. Three distinct functional forms of
f(R, T ) gravity is described below

f(R, T ) =

 R+ 2f(T )
f1(R) + f2(T )

f1(R) + f2(R)f3(T )
(9)

In this paper we are going to focus on the case, f(R, T ) = R+ 2f(T ) where, f(T ) is an arbitrary function
of stress energy tensor of matter and given byf(T ) = λT where λ is a constant. In this particular case, the �eld
equations take the form

Rκβ − 1

2
gκβR = 8πTκβ + 2ḟ(T )Tκβ + [f(T ) + 2P ḟ(T )]gκβ (10)

where, an overhead dot denotes di�erentiation with respect to the argument T .

3. METRIC AND FIELD EQUATIONS

Higher dimensional Bianchi type -I universe given by

ds2 = dt2 −A2
(
dx2 + dy2

)
−B2dz2 − C2dω2 (11)

where A, B, C are metric potentials which are functions of cosmic time t and �fth coordinate is taken as
space-like. The energy momentum tensor for quark is de�ned as

T
(quark)
κβ = (ρ+ p)uκuβ − pgκβ

or
T

(quark)
κβ = dia(ρ,−p,−p,−p,−p) (12)

where ρ = ρq +Bc is quark matter total energy density and p = pq −Bc is the quark matter total pressure and
uκ is the �ve velocity such that uκu

κ = 1 The EoS parameter for quark matter is de�ned as

pq = ωρq 0 ≤ ω ≤ 1 (13)

Also, the linear equation of state for strange quark matter is

p = ω (ρ− ρo) (14)

where ρ0 is the energy density when pressure p is zero and ω is a constant. when ω = 1
3 and ρo = 4Bc the above

linear equation of state is reduced to the following equation

p =
ρ− 4BC

3
(15)

where Bc denotes the bag constant. In co-moving co-ordinate system, the �eld equation (10) for metric (11)
with the help of equation (12) can be written as

Ȧ

A
+

B̈

B
+

C̈

C
+

ȦḂ

AB
+

ȦĊ

AC
+

ḂĊ

BC
= pq −Bc − λ (ρq + 5Bc − 4pq) (16)

2
Ä

A
+ 2

ȦĊ

AC
+

(
Ȧ

A

)2

+
C̈

C
= pq −Bc − λ (ρq + 5Bc − 4pq) (17)

2
Ä

A
+

B̈

B
+

(
Ȧ

A

)2

+ 2
ȦḂ

AB
= pq −Bc − λ (ρq + 5Bc − 4pq) (18)

2
ȦḂ

AB
+ 2

ȦĊ

AC
+

ḂĊ

BC
+

(
Ȧ

A

)2

= −ρq −Bc − λ (3ρq + 5Bc − 2pq) (19)
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Dynamical parameters for Bianchi type-I are de�ned as follows :
Average scale factor

a(t) =
(
A2BC

) 1
4

Spatial volume V is de�ned as
V = A2BC

The directional Hubble parameters

Hx = Hy =
Ȧ

A
,Hz =

Ḃ

B
,Hω =

Ċ

C
(20)

The generalized average Hubble's parameter H is de�ned as

H =
1

4

(
2
Ȧ

A
+

Ḃ

B
+

Ċ

C

)
(21)

The mean anisotropic parameter is de�ned as

∆ =
1

4

4∑
i=1

(
Hi−H

H

)2

(22)

where Hi(i = 1, 2, 3, 4) represent the directional parameters.
Dynamical scalar expansion θ is given by,

θ = 4H = 2
Ȧ

A
+

Ḃ

B
+

Ċ

C
(23)

The Shear Scalar is given by

σ2 =
1

2

(
4∑

i=1

H2
i − 4H2

)
=

4

2
AH2 (24)

The deceleration parameter q is de�ned by

q =
d

dt

(
1

H

)
− 1 (25)

The positive sign of q corresponds to standard decelerating model, whereas the negative sign accelerated ex-
pansion.

4. SOLUTION OF THE FIELD EQUATIONS

Subtracting equation (17) from equation (16), we get

d

dt

(
Ȧ

A
− Ḃ

B

)
+

(
Ȧ

A
− Ḃ

B

)
V̇

V
= 0

which on integration gives
A

B
= c1 exp

[
d1

∫
dt

V

]
(26)

Subtracting equation (18) from equation (17), we get

d

dt

(
Ḃ

B
− Ċ

C

)
+

(
Ḃ

B
− Ċ

C

)
V̇

V
= 0

which on integration gives
B

C
= c2 exp

[
d2

∫
dt

V

]
(27)

Subtracting equation (18) from equation (16)

d

dt

(
Ȧ

A
− Ċ

C

)
+

(
Ȧ

A
− Ċ

C

)
V̇

V
= 0
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which on integration gives
A

C
= c3 exp

[
d3

∫
dt

V

]
(28)

where c1, c2, c3 and d1, d2, d3 are constant of integration which satis�es the relation c3 = c1c2 and d3 = d2 + d1
In the view of V = A2BC, we write metric potentials in explicit form

A = C1V
1
4 exp

[
D1

∫
dt

V

]
(29)

B = C2V
1
4 exp

[
D2

∫
dt

V

]
(30)

C = C3V
1
4 exp

[
D3

∫
dt

V

]
(31)

where Ci(i = 1, 2, 3) and Di(i = 1, 2, 3) which satis�es the relation C1
2C2C3 = 1 and 2D1+ D2 +D3 = 0

Since we have set of four equations (16),(17),(18), (19) with �ve unknown which are highly nonlinear.
Therefore, to solve the system completely we required additional condition. Here we used two di�erent volu-
metric expansion law

V = α1e
4β1t (Exponential Expansion) (32)

and
V = α1t

4n (Power Law Expansion) (33)

where α1, β1, n are positive constants.

4.1. Model for Exponential Law

The exponential expansion of volume factor is

V = α1e
4β1t

Using the equation (31) in (28)- (30), the scale factor obtained as follows:

A = C1α1
1

4
eβ1t exp

(
−D1

4α1β1
e−4β1t

)
(34)

B = C2α
1
4 eβ1t exp

(
−D2

4α1β1
e−4β1t

)
(35)

C = C3α
1
4
1 e

β1t exp

(
−D3

4α1β1
e−4β1t

)
(36)

where C1, C2, C3 are the constant of integration.
It must be stated that, the metric potentials accept constant value at initial time, after which they evolve

with time without a singularity and eventually diverge to in�nity.

The directional Hubble parameter Hx = Hy, Hz, Hω are given as

Hx = Hy = β1 +
D1

α1
e−4β1t (37)

Hz = β1 +
D2

α1
e−4β1t (38)

Hω = β1 +
D3

α1
e−4β1t (39)

Mean Hubble parameter H is given by
H = β1 (40)

Anisotropy parameter of the expansion is

∆ =
µ2

4β1
2 (V1e4β1t)

2 (41)
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Where µ2 = 2D1
2 +D2

2 +D3
2

Dynamical scalar is given by

θ = 4H = 4β1 (42)

The Dynamical scalar is constant throughout the evolution Shear scalar

σ2 =
µ2

2 (V1e4β1t)
2 (43)

The deceleration parameter

q =
d

dt

(
1

H

)
− 1 = −1 (44)

In the context of the exponential expansion model when deceleration parameter q = −1 and dH
dt = 0 it

signi�es the most optimal value for the decelerating parameter. This optimal value indicates that the universe is
undergoing acceleration, experiencing the fastest possible rate of expansion. The value of anisotropic parameter
shows anisotropic universe, but for large time it approaches to isotropic Universe. Additionally, when the
anisotropic parameter exhibits a particular value, it suggests an anisotropic universe meaning that the universe
appears uniform and consistent in all directions. on subtracting equation (19) from (18), we get,

2
Ä

A
+

B̈

B
− 2

ȦĊ

AC
− ḂĊ

BC
= (pq + ρq) (1 + 2λ) (45)

Substituting the values metric potentials, A, B, C from equation (34) (35) and (36) also by using equation of
state (13) for ω = 1

3 , we obtained quark pressure as follows,

pq =

(
e−4β1t

α1

)2 [
2D1

2 +D2
2 − 2D1D3 −D2D3

]
4(1 + 2λ)

(46)

The quark matter density is given as

ρq =

(
e−4B1t

α1

)2 [
2D1

2 +D2
2 − 2D1D3 −D2D3

]
12(1 + 2λ)

(47)

Using equation (34), (35),(36) in equation(45) with the help of equation of state in equation (13) for ω = 1
3 , the

pressure and energy density of strange quark matter is found to be,

p =

(
e−4β1t

α1

)2 [
2D1

2 +D2
2 − 2D1D3 −D2D3

]
4(1 + 2λ)

−BC (48)

ρ =

(
e−4B1t

α1

)2 [
2D1

2 +D2
2 − 2D1D3 −D2D3

]
12(1 + 2λ)

+Bc (49)
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Figure 1. Directional Hubble Parameter Vs Cosmic
time t for β1, D2, D3, α1 = 1, D1 = −1.

Figure 2. Anisotropic Parameter Vs Cosmic time t
for β1, V1, D2, D3 = 1, D1 = −1.

Figure 3. Quark density Vs Cosmic time t
for β1, α1, D2, D3, λ = 1, D1 = −1

Figure 4. Quark Pressure Vs Cosmic time t
for β1, α1, D2, D3, λ = 1, D1 = −1.
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Figure 5. Strange Quark density Vs Cosmic time t
for β1, α1, D2, D3, λ,Bc = 1, D1 = −1.

Figure 6. Strange Quark pressure Vs Cosmic time t
for β1, α1, D2, D3, λ,Bc = 1, D1 = −1.

4.2. Model for Power Law Expansion

Here, a power law volumetric expansion is given by

V = α1t
4n

Using the Equation (33)in (29)- (31), the scale factor obtained as follows:

A = C1α
1
4
1 t

n exp

[
D1

α1

t1−4n

1− 4n

]
(50)

B = C2α
1
4
1 t

n exp

[
D2

α1

t1−4n

1− 4n

]
(51)

C = C3α
1
4
1 t

n exp

[
D3

α1

t1−4n

1− 4n

]
(52)

At initial time t = 0, all the metric potentials are vanishing and �nally they diverge to in�nity as t → ∞. Thus,
the model compatible with a big bang model.
The directional Hubble parameter Hx = Hy, Hz, Hω are given as

Hx = Hy =
n

t
+

D1

α1t4n
(53)

Hz =
n

t
+

D2

α1t4n
(54)

Hω =
n

t
+

D3

α1t4n
(55)

Mean Hubble parameter H is given by

H =
n

t
(56)

Anisotropy parameter of the expansion is

∆ =

[
4∑

i=1

(
Hi −H

H

)2
]
=

µ2

4n2α2
1t

2(2n−1)
(57)
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where µ2 = 2D2
1 +D2

2 +D3
2

Dynamical scalar is given by

θ = 4H =
4n

t
(58)

Shear scalar is given by

σ2 =
µ2

2α2
1t

4n
(59)

It is noticed that at initial time t = 0 the Hubble parameter H, dynamical scalar expansion θ starts with in�nite
value and �nally tends to zero as t → ∞. Deceleration parameter q is given by,

q =
1

n
− 1 (60)

For n > 1 the deceleration parameter is always negative which represent the accelerating universe. Substituting
the values metric potentials, A, B, C from equations(50) (51) and (52) in equation (45) also by using equation
(13) for ω = 1

3 , we obtained quark pressure as follows,

pq =

(
2D1

2+D2
2−2D1D3−D2D3

(α1t4n)
2

)
− 3n

t2

4(1 + 2λ)
(61)

The quark matter density is given as

ρq =

(
2D1

2+D2
2−2D1D3−D2D3

(α1t4n)
2

)
− 3n

t2

12(1 + 2λ)
(62)

Using equation (50),(51), (52) in equation (45) with the help of equation of state in equation (13) for ω = 1
3 ,

the pressure and energy density of strange quark matter as follows,

ρ =

(
2D1

2+D2
2−2D1D3−D2D3

(α1t4)
2

)
− 3n

t2

12(1 + 2λ)
+Bc (63)

p =

(
2D1

2+D2
2−2D1D3−D2D3

(α1t2)
2

)
− 3n

t2

4(1 + 2λ)
−Bc (64)

Figure 7. Directional Hubble Parameter Vs Cosmic
time t t for β1, V1, D2, D3 = 1, D1 = −1

Figure 8. Anisotropic Parameter Vs Cosmic time t
for D1 = −1, n, α1D2, D3 = 1
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Figure 9. Quark density Vs Cosmic time t
for β1, V1, D2, D3, λ = 1, D1 = −1.

Figure 10. Quark Pressure Vs Cosmic time t
for β1, V1, D2, D3, λ = 1, D1 = −1.

Figure 11. Strange Quark density Vs Cosmic time t
for β1, V1, D2, D3, λ,Bc = 1, D1 = -1 .

Figure 12. Strange Quark Pressure Vs Cosmic time
t for β1, V1, D2, D3, λ,Bc = 1, D1 = −1.

5. CONCLUSION

In this work, we have explored the higher dimensional plane symmetric cosmological model with quark and
strange quark matter in the context of f(R, T ) gravity theory. We have obtained the exact solutions of �eld
equations by assuming two di�erent volumetric expansion laws namely, exponential expansion and power-law
expansion.

In exponential expansion model

� The metric potentials accept constant value at initial time, after which they evolve with time without
a singularity and eventually diverge to in�nity. This result compatible with big bang scenario bear
resemblance to [41].
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� From Figure 1 and equations ((37), (38), (39)) represent that at initial epoch the directional Hubble
parameters are �nite whereas gradually decreases to constant β1 as time tends to in�nity.

� From equation (41), the mean anisotropy parameter shows a constant value at initial epoch, while as
time increases the anisotropy parameter exponentially to null. Thus, universe approaches isotropy in this
model as shown in Figure. 2.

� From equation (42), Dynamical scalar θ exhibits constant value throughout the evolution which shows
uniform exponential expansion i.e., universe expands homogeneously as time t increases from initial epoch
to in�nity.

� From equation (43), Shear scalar measures constant value at t = 0 while vanish as t → ∞.

� From equation (44), The deceleration parameter q = −1 represents universe is accelerating with highest
rate which is in good agreement with present day observation.

� From equation (46) and (47) the pressure pq and energy density ρq for the quark matter are �nite in
beginning of cosmic time and gradually decrease to zero as time tends to in�nity as shown in Figure 3
and Figure 4. This result agreed with [36].

� The energy density (ρq) of strange quark matter exhibits the same behavior as quark matter. However,
the di�erence in ρ values compared to ρq is attributed to the inclusion of an extra term, the bag constant
Bc, in equation (49). Notably, while the quark pressure (pq) shows a positive value, the strange quark
pressure (p) is observed to be negative for the same constant values (refer to Figure 5 and Figure 6).

In power law expansion model

� The metric potentials vanish at initial time t = 0 and eventually they diverge to in�nity as t → ∞. thus,
the model compatible with a big bang model and has a initial singularity.

� The directional Hubble parameter are diverging at initial epoch and as the time tends to in�nity, they
approach to zero monotonically, from Figure 7.Also, Hubble parameter is decreasing as time increases and
agreed with the results of [50].

� From equation (57) and Figure 8, mean anisotropic parameter decreases with time and tends to zero as
time tends to in�nity. Which shows that at early stage of evolution universe was anisotropic and at large
time it approaches to isotropy.

� At initial epoch the directional Hubble parameter H, dynamical scalar expansion θ, mean anisotropic
parameter, shear scalar starts with in�nite value and �nally tends to zero as t → ∞. This suggest that
in the initial phase of universe, the expansion of the model is notably rapid and progressively decreases
over time. This observation indicates that universe evolution began with exceptionally rapid expansion
and subsequently moderated as it continues to expand. i.e., it decreases with the expansion of universe.

� For the value n > 1, the deceleration parameter shows negative value which indicates that universe
undergoes accelerated expansion while the positive value of decelerating parameter shows decelerating
model from equation (60).

� From equation (61) and (62) the pressure pq and energy density ρq for the quark matter are in�nitely
large as t = 0 and it gradually decrease to zero as t → ∞ shown in Figure 9 and Figure 10. This result
agreed with [51].

� The pressure (p) and energy density (ρ) of strange quark matter exhibit behaviour similar to quark matter.
The di�erence in p and ρ values compared to pq andρq is attributed to the inclusion of an extra term, the
bag constant, in equation (63) and (64). Also, we have observed the shifting of graph in Figure 11 and
Figure 12 because of additional term Bag constantBc.

In both the model, the pressure p and energy density ρ of strange quark matter behave same as quark
matter. The bag constant plays a vital role in the expansion of universe. We observed that the pressure and
energy density approaches to bag constant for large time (t → ∞) energy density. In particular, pressure p →
−Bc and energy density ρ → Bc as t → ∞. Negative sign for pressure indicates the expansion of the universe
in late time [42].

Finally, exact solutions introduced in this section might be valuable for better comprehension of develop-
ment of the universe.
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Öÿ äîñëiäíèöüêà ñòàòòÿ ïðèñâÿ÷åíà ðåòåëüíîìó äîñëiäæåííþ ïîâåäiíêè, ÿêó äåìîíñòðóþòü âñåñâiòè òèïó Á'ÿíêi
ó âèùèõ âèìiðàõ òèïó I, âêëþ÷àþ÷è ïðèñóòíiñòü êâàðêà òà äèâíî¨ êâàðêîâî¨ ìàòåði¨ â ðàìêàõ ãðàâiòàöi¨ f(R, T ).
Ðiøåííÿ, îòðèìàíi äëÿ ðiâíÿííÿ ïîëÿ îõîïëþþòü ñöåíàði¨ ÿê åêñïîíåíöiéíîãî îá'¹ìíîãî ðîçøèðåííÿ, òàê i ñöåíà-
ðiþ ñòåïåíåâîãî çàêîíó. Âiäïîâiäíî äî ìîäåëi åêñïîíåíöiàëüíîãî ðîçøèðåííÿ ÿê òèñê (pq), òàê i ùiëüíiñòü åíåðãi¨
(ρq), ïîâ'ÿçàíi ç êâàðêîâîþ ìàòåði¹þ, ïî÷àòêîâî ñêií÷åííi íà ïî÷àòêó êîñìi÷íîãî ÷àñó, ïîñòóïîâî çìåíøóþ÷èñü äî
íóëÿ, êîëè ÷àñ ïðîñóâà¹òüñÿ äî íåñêií÷åííîñòi. I íàâïàêè, ó ìîäåëi ñòåïåíåâîãî çàêîíó öi ïàðàìåòðè ïî÷èíàþòüñÿ
íåñêií÷åííî âåëèêèìè ïðè t = 0. çãîäîì çìåíøóþòüñÿ äî íóëÿ, êîëè ÷àñ íàáëèæà¹òüñÿ äî íåñêií÷åííîñòi. Êðiì
òîãî, ïðîâîäèòüñÿ äîñëiäæåííÿ ôiçè÷íèõ i ãåîìåòðè÷íèõ àòðèáóòiâ ìîäåëi. Çîêðåìà, ó ìîäåëÿõ ðîçøèðåííÿ çà
ñòåïåíåâèì çàêîíîì ïîâåäiíêà äèâíî¨ êâàðêîâî¨ ìàòåði¨ âiäîáðàæà¹ ïîâåäiíêó êâàðêîâî¨ ìàòåði¨ ùîäî òèñêó (p) i
ãóñòèíè åíåðãi¨ (ρ). Àëå â ìîäåëi åêñïîíåíöiàëüíîãî ðîçøèðåííÿ òèñê êâàðêiâ i òèñê äèâíèõ êâàðêiâ ïîâîäèòüñÿ
ïî-ðiçíîìó. Êîíñòàíòà bag ñòà¹ êðèòè÷íèì ôàêòîðîì, ùî âïëèâà¹ íà ðîçøèðåííÿ Âñåñâiòó, i ñïîñòåðåæåííÿ ïîêà-
çóþòü, ùî i òèñê, i ùiëüíiñòü åíåðãi¨ ìàþòü òåíäåíöiþ äî êîíñòàíòè bag ó âåëèêèõ ÷àñîâèõ ìàñøòàáàõ (t → ∞).
Çîêðåìà, òèñê p → −BC i ùiëüíiñòü åíåðãi¨ ρ → BC ó ìiðó íàáëèæåííÿ ÷àñó äî íåñêií÷åííîñòi. Çíàê íåãàòèâíîãî
òèñêó âêàçó¹ íà ðîçøèðåííÿ Âñåñâiòó ïðîòÿãîì ïiçíiøèõ åïîõ.
Êëþ÷îâi ñëîâà: êâàðê i äèâíà êâàðêîâà ìàòåðiÿ; ïîñòiéíà bag; Âñåñâiò âèùîãî âèìiðó Áüÿíêi òèïó I; f(R, T )
ãðàâiòàöiÿ

https://doi.org/10.1080/1726037X.2022.2079268
https://doi.org/10.1080/1726037X.2022.2079268
https://doi.org/10.48550/arXiv.2306.10579
https://doi.org/10.1007/s10773-013-1763-4
https://doi.org/10.1007/s10773-013-1763-4
https://doi.org/10.26565/2312-4334-2023-3-08
https://doi.org/10.26565/2312-4334-2023-3-08
https://doi.org/10.26565/2312-4334-2023-3-04
https://www.prespacetime.com/index.php/pst/article/download/1208/1169
https://www.prespacetime.com/index.php/pst/article/download/1208/1169


36
East European Journal of Physics. 2. 36–47 (2024)

DOI: 10.26565/2312-4334-2024-2-03 ISSN 2312-4334

ANALYSIS OF MARDER’S SPACE-TIME TSALLIS HOLOGRAPHIC DARK
ENERGY COSMOLOGICAL MODEL IN f(R, T ) THEORY OF GRAVITY

Abhijeet Ompratap Dhorea*, Mohini Ramrao Ugaleb
aDepartment of Mathematics, Shri. Dr. R.G. Rathod Arts and Science College,

Murtizapur, Dist.-Akola 444 107, Maharashtra, India
bDepartment of Science and Humanities, Sipna College of Engineering and Technology,

Amravati 444 701, Maharshtra, India
∗Corresponding Author e-mail: drabhijeetdhore@gmail.com

Received April 2, 2024; revised May 3, 2024; accepted May 7, 2024

In this paper, the investigation explores an anisotropic cosmological model based on Marder’s space-time Tsallis holo-
graphic dark energy (THDE) within the framework of f(R, T ) theory of gravity, where R represents the Ricci scalar
and T signifies the trace of the stress energy-momentum tensor. field equation have solved for class of f(R, T ) gravity
i.e. f(R, T ) = R + f(T ). To obtain the precise solution, we employed the density of the THDE model along with
the volumetric expansion laws, namely the power law and exponential law. Also explores the physical and geometrical
aspects of the model.
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1. INTRODUCTION

Based on the latest observations in astrophysics, there is strong evidence indicating that the universe is
presently expanding at an accelerated rate, presenting intriguing opportunities for advancements in modern
cosmological theories [1, 2, 3, 4]. The observed accelerated expansion of the universe is thought to be propelled
by dark energy (DE). DE constitutes the dominant portion of the universe, making up 68% of the total energy
in the observable universe at present. In contrast, dark matter (DM) and ordinary matter (baryonic matter)
contribute 26% and 5% respectively [5]. The specific traits of DE continue to elude understanding, leading to the
formulation of various theories and explanations. Indeed, within various theories and models, the cosmological
constant model is often regarded as the most straightforward choice for DE, characterized by an equation of state
(EoS) parameter ω = −1. However, it is not without its challenges, including issues such as cosmic coincidence
and fine-tuning problems [6, 7]. To address these challenges, the scientific literature has proposed various DE
models, including quintessence, phantom, k-essence, tachyon, holographic dark energy (HDE), and others. In
contemporary times, the exploration of HDE models has become a promising pathway for comprehending cosmic
expansion, operating within the framework of the holographic principle (HP) [8]. The HP posits that the limit
on the vacuum energy Λ of a system with size L should not surpass the threshold of the black hole mass with
an equivalent size. This limitation arises from the potential formation of a black hole in the quantum field in a
vacuum, and the infrared (IR) and ultraviolet cutoffs [10]. The energy density of HDE is defined as ρHDE =
3d2m2

pL
−2, where mp is the reduced Plank mass and L represents the IR cutoff, describing the size of the

universe in the context of the HP [11].
In recent times, various HDE models, including the Modified Ricci (MRHDE), THDE, Rényi HDE (RHDE),

and Sharma-Mittal HDE (SMHDE), have been proposed and introduced. Certainly, within these models, RHDE
stands out as it is founded on the absence of interactions between cosmic sectors. Notably, this model exhibits
greater stability on its own [12]. M. Tavayef et al. [13] explored the Tsallis and Cirto entropy expressions while
incorporating the HDE hypothesis. Their investigation led to the formulation of a novel type of DE called
THDE. The study further delved into the dynamics of this THDE within the framework of a non-interacting
flat Friedmann-Robertson-Walker (FRW) universe, examining the evolutionary aspects of the system. In the
scenario of non-interacting cosmos, SMHDE is acknowledged for its classical stability [13, 14, 15]. M. Abdollahi
Zadeh et al. [16] have delved into the repercussions of introducing various IR cutoffs, including the particle
horizon, the Ricci horizon, and the Granda-Oliveros (GD) cutoffs, on the properties of the THDE. Spyros
Basilakos et al. [17] demonstrated how Tsallis cosmology can effectively address both the Hubble constant (H0)
and the matter density fluctuation amplitude (σ8) tensions simultaneously. This modified cosmological scenario
is achieved by applying the gravity-thermodynamics conjecture with the use of non-additive Tsallis entropy
instead of the standard Bekenstein-Hawking entropy. A. Mohammadi et al. [18] conducted a study exploring
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the application of the HP within the framework of Bianchi type-III space-time. A. Pradhan and A. Dixit [20]
explored a THDE model within a flat FRW space-time, considering the higher derivative theory of gravity. A.
Al. Manon et al. [21] have investigated a cosmological scenario illustrating the ongoing acceleration of the
universe, featuring the coexistence of DM and THDE. M. Vijaya Santhi and Y. Sobhanbabu [22] have explored
the dynamics of THDE, utilizing the Hubble radius as the IR cutoff, in a homogenous and anisotropic Bianchi
type-III universe. This investigation was conducted within the context of the Saez-Ballester (SB) theory of
gravitation and by solving the field equations associated with SB theory they have developed both interacting
and non-interacting DE models. Y. Sobhanbabu and M. Vijaya Santhi [23] have dedicated their efforts to
examining THDE, incorporating the Hubble radius as the IR cutoff, within a homogenous and anisotropic
Kantowski-Sachs universe. This investigation unfolds within the framework of SB theory of gravitation. They
have formulated both non-interacting and interacting models for THDE by solving the field equations and
employing the connection between the metric potentials. B. D. Pandey et al. [24] have developed HDE model
incorporating Tsallis entropy, a one parameter extension of Boltzmann-Gibbs entropy. R. Saleem et al. [25]
have investigated the dynamics of warm inflation within a modified cosmological framework in the context of
Rastall gravity. Within this scenario, they altered the standard Friedmann equations by incorporating recently
proposed Tsallis and Barrow HDE entropies. M. Vijaya Santhi and Y. Sobhanbabu [26] have formulated both
interacting and non-interacting models for THDE in an anisotropic and homogenous Bianchi type- V I0 space-
time. This was accomplished within the context of a scalar-tensor theory proposed by SB. To achieve this, they
employed the relationship between the metric potentials of the model and a varying deceleration parameter,
resolving the SB field equations. M. Sharif and S. Saba [27] have explored the reconstruction paradigm for
the THDE model by incorporating the generalized Tsallis entropy conjecture with the Hubble horizon. This
investigation took place within the framework of f(G,T ) gravity. M. Zubir and L. Rukh Durrani [28] have
investigated THDE in a flat FRW model, utilizing the framework of f(R, T ) gravity. Ayman A. Aly [29] has
developed a novel f(T ) modified gravity model, incorporating a THDE model and a Hubble cutoff. A. Pradhan
et al. [30] have explored the Tsallis holographic quintessence, k-essence, and tachyon models of DE within
the context of modified f(R, T ) gravity, employing the GO cutoff. S. H. Shekh et al. [31] analyzed THDE,
transitioning into HDE through a specific selection of the positive non-additivity parameter δ. This study was
carried out within the framework of modified f(T,B) gravity, examining the validity of thermodynamics and
energy conditions for a homogenous and isotropic FRW universe.

Expanding on the constructive discussions and favorable results emphasized earlier, this article explores
the THDE model within the context of f(R, T ) gravity. The inquiry focuses on validating both the power law
and exponential law components of the model.

2. TSALLIS HOLOGRAPHIC DARK ENERGY

It is essential to remember that the establishment and derivation of the conventional HDE density (ρHDE =
3d2m2

pL
−2) are contingent upon the entropy area relationship S ∼ A ∼ L2 of black holes, where A = 4πL2

represents the area of the horizon [9]. Neverthless, the definition of HDE can be adjusted or revised in light
of quantum considerations [32, 33]. Tsallis and Cirto illustrated that the horizon entropy of a black hole could
potentially be modified according to mathematical expression of the form

Sδ = γAδ (1)

where, γ is an unknown constant and δ dentoes the non-additivity parameter [14]. It is evident that the
Bekestein entropy is registered when the appropiate limit of δ = 1 and δ = (4G)−1. Certainly, at this limit, the
power law distribution of probability becomes ineffective, and the system can be described by the conventional
probabitilty distribution [14].

Following the HP, which asserts that the number of degrees of freedom of a physical system should scale
with its bounding area rather than its volume [34]. Cohen et al. [9] suggested that system entropy (S) should
be constrained by an IR (L) cutoff, leading to proposed relation involving the IR cutoff and UV (Λ) as

L3Λ3 ≤ (S)3/4 (2)

which combining with eqn. (1) leads to [9]

Λ4 ≤ (γ(4π)δ)L2δ−4 (3)

where, Λ4 denotes the vacuum energy density. Employing the aforementioned inequality, we can suggest the
THDE density as follows

ρt = BL2δ−4 (4)

where B is unknown parameter [35, 36, 37] and IR cutoff is taken as Hubble radius which leads to L = H−1,
where H is hubble parameter [10]. The density of THDE model along with its derivative by using eqn. (4)
becomes

ρt = BH4−2δ (5)
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ρ̇t = B(4− 2δ)H3−2δḢ (6)

where, Ḣ is the derivative of Hubble parameter w.r.t t [10].

3. METRIC AND FIELD EQUATIONS

We consider the Marder’s space-time in the form [38]

ds2 = M2
1 (dx

2 − dt2) +M2
2 dy

2 +M2
3 dz

2 (7)

where, M2
1 ,M

2
2 ,M

2
3 are functions of cosmic time t. In recent years, M. Vijaya Santhi et al. [39] have conducted

research on the dynamics of a Marder’s space-time cosmological model, which is grounded in the concept of
bulk viscous strings within the framework of f(R) gravity. Sezgin AYGÜN [40] has explored a homogenous and
anisotropic Marder space-time model within the framework of (R, T ) gravity, where the space-time is filled with
a bulk viscous string matter distribution. D. D. Pawar and S. P. Shahre [38] have explored Marder’s space-time
within the framework of (R, T ) gravity, integrating a perfect fluid under a titled congruence.

In this work we study the Marder’s space-time in (R, T ) gravity with THDE. Here, the energy-momentum
tensor for matter (T ′

ij) and THDE (T ij) are given as follows:

T ′
ij = diag[1, 0, 0, 0]ρm (8)

T ij = diag[1,−ωt,−ωt,−ωt]ρt (9)

it can be parameterized as
T ij = diag[1,−ωt,−ωt,−(ωt + α)]ρt (10)

where ρt and ρm are energy densities of THDE, and matter respectively and pt and m is pressure of THDE
and matter respectively. ωt =

pt

ρt
is an EoS parameter. Here, α the deviation from the EoS parameter in the

z-direction, commonly referred to as the skewness parameter. We have an energy conservation equation as

(T ′
ij + T ij);j = 0 (11)

The exploration of diverse cosmological models within the framework of (R, T ) theory of gravity depends on the
characteristics of the matter source under consideration. Harko et al. [41] introduced following class of f(R, T )
gravity:

f(R, T ) =


R+ 2f(T )

f1(R) + f2(T )

f1(R) + f2(R)f3(T )

(12)

In this study, we have adopted a specific functional form, expressed as f(R, T ) = R + 2f(T ). Here, f(T ) is
a function of the trace of the energy-momentum tensor. By using this functional, the field equation can be
rewritten as

Rij −
1

2
Rgij = (T ′

ij + T ij);j + 2fT (T
′
ij + T ij);j + [f(T ) + 2pfT ]gij (13)

where fT is a partial derivative of f w.r.t T . We designate the function f(T ) to be contingent upon the trace
of the energy-momentum tensor of matter, specifically as

f(T ) = λT (14)

where λ is arbitrary constant. So fT = λ. In metric (7), the Ricci scalar R can be represented in terms of
metric potentials as [38]

R = −2

(
M̈1

M3
1

+
M̈2

M2
1M2

+
M̈3

M2
1M3

− Ṁ2
1

M4
1

+
Ṁ2Ṁ3

M2
1M2M3

)
(15)

In this analysis, we investigate the cosmological implications of the arbitrary function suggested by Harko et al.
[41], which is represented by the expression

f(R, T ) = R+ 2f(T ) (16)

where R is the Ricci scalar and T is the trace of the energy-momentum tensor.
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The field eqn. (13) for the metric (7), utilizing eqns. (8), (10), and (14) from modified f(R, T ) gravity,
results in the following system of eqns:

1

M2
1

(
M̈2

M2
+

M̈3

M3
+

Ṁ2Ṁ3

M2M3
− Ṁ1Ṁ2

M1M2
− Ṁ1Ṁ3

M1M3

)
= −(8π+2λ)(ωt +α)ρt + [2pt − 3ωtρt −αρt + ρm + ρt]α (17)

1

M2
1

(
M̈1

M1
+

M̈3

M3
− Ṁ2

1

M2
1

)
= −(8π + 2λ)ωtρt + [2pt − 3ωtρt − αρt + ρm + ρt]α (18)

1

M2
1

(
M̈1

M1
+

M̈2

M2
− Ṁ2

1

M2
1

)
= −(8π + 2λ)ωtρt + [2pt − 3ωtρt − αρt + ρm + ρt]α (19)

1

M2
1

(
Ṁ1Ṁ2

M1M2
+

Ṁ1Ṁ3

M1M3
+

Ṁ2Ṁ3

M2M3

)
= −(8π + 2λ)(ρm + ρt) + [2pt − 3ωtρt − αρt + ρm + ρt]α (20)

We express the energy conservation eqn. (11) for both matter and THDE as follows,

(ρ̇m + ρ̇t) +

(
Ṁ1

M1
+

Ṁ2

M2
+

Ṁ3

M3

)
[ρm + (1 + ωt)ρt] +

Ṁ1

M1
αρt = 0 (21)

where overhead (.) denotes for ordinary differentiation w.r.t t.

4. SOLUTION OF FIELD EQUATIONS AND COSMOLOGICAL MODELS

The set of field eqns. (17)-(20) represents a set of four independent eqns. with seven unknowns
M1,M2,M3, ρm, ρt, ωt, α. From eqns. (18) and (19), we get

Ṁ2

M2
− Ṁ3

M3
= 0 (22)

on integration gives,
M2

M3
= c2 exp(c1

∫
dt) (23)

To simplify matters, we decide that M1 = M2. The dynamical parameters for Marder’s space-time cosmological
model are delineated as follows: The spatial volume of the metric is

V = a3(t) = M2
2M3 (24)

The directional Hubble parameters

Hx = Hy =
Ṁ2

M2
,

Hz =
Ṁ3

M3

(25)

The generalized mean Hubble’s parameter H is expressed as

H =
1

3
(Hx +Hy +Hz) =

1

3

(
2Ṁ2

M2
+

Ṁ3

M3

)
(26)

The expansion scalar

θ = 3H = 2
Ṁ2

M2
+

Ṁ3

M3

(27)

The mean anisotropic parameter

Am =
1

3

4∑
i=1

(
Hi −H

H

)2

(28)

The Shear scalar

σ2 =
3

2
AmH2 (29)
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The deceleration parameter

q = −1 +
d

dt

(
1

H

)
(30)

From eqns. (23) and (24), we get

M2 = V 1/3c
1/3
2 exp

(c1
3
t
)

(31)

M3 = V 1/3c
−2/3
2 exp

(
−2

3
c1t

)
(32)

where c1 and c2 are integrating constants. From eqns. (31) and (32), metric (7) becomes

ds2 =
[
V 1/3c

1/3
2 exp

(c1
3
t
)]2

(dx2 + dy2 − dt2) +

[
V 1/3c

−2/3
2 exp

(
−2

3
c1t

)]2
dz2 (33)

To obtain the complete solution, we require two different volumetric expansion laws, both the power law
expansion and exponential law expansion i.e. V = tm and V = e4H0t respectively [42].

5. MODEL FOR POWER LAW EXPANSION

We are contemplating a volumetric expansion by a power law relation as

V = tm (34)

where m is a positive constant. The positive value of the exponent m aligns with observational evidence that
anticipates the universe.

The metric potentials (31) and (32) becomes

M2 = tm/3c
1/3
2 exp

(c1
3
t
)

(35)

M3 = tm/3c
−2/3
2 exp

(
−2

3
c1t

)
(36)

As the time t approaches zero, the analysis suggests that metric potentials (35) and (36) tend toward zero.
Consequently, the model exhibits an initial singularity. Eqn. (33) with the help of eqns. (35) and (36) can be
written as

ds2 =
[
tm/3c

1/3
2 exp

(c1
3
t
)]2

(dx2 + dy2 − dt2) +

[
tm/3c

−2/3
2 exp

(
−2

3
c1t

)]2
dz2 (37)

From eqns. (25), (35), and (36), the directional Hubble parameters are

Hx = Hy =
m

3t
+

c1
3

(38)

Hz =
m

3t
− 2c1

3
(39)

From eqns. (26), (35), and (36), the mean Hubble parameter is given by

H =
m

3t
(40)

From eqns. (27) and (40), the expansion scalar is given by

θ =
m

t
(41)

From eqns. (28), (38), (39), and (40), the mean anisotropic parameter is given by

Am =
2c21t

2

m2
(42)

From eqns. (29), (40), and (42), the Shear scalar is

σ2 =
c21
3

(43)
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From eqns. (30) and (40), the deceleration parameter is

q =
3

m
− 1 (44)

The energy conservation eqn. (21) results in the derivation of the subsequent separate conservation eqn. as

ρ̇m + 3Hρm = 0 (45)

ρ̇t + 3H(1 + ωt)ρt +
Ṁ2

M2
αρt = 0 (46)

On integrating eqn. (45), we get matter density as

ρm =
c3
tm

(47)

where c3 is an integrating constant.
The DM is pressure less [29] i.e.

pm = 0 (48)

From eqns. (5), (6), and (40), the density of THDE is given as

ρt = B
(m
3t

)4−2δ

(49)

ρ̇t = −B(4− 2δ)
(m
3t

)3−2δ ( m

3t2

)
(50)

For Λ-CDM model, the DE EoS is
ωt = −1 (51)

we get THDE pressure as

pt = −B
(m
3t

)4−2δ

(52)

From eqns. (40), (46), (49), (50), and (51), the skewness parameter is given as

α =

(
4− 2δ

t

)(m
3t

+
c1
3

)−1

(53)

The density parameter for THDE and the energy density parameter for matter are defined and calculated as
follows:

Ωt = B
(m
3t

)4−2δ
(
m2

3t2

)−1

(54)

Ωm =
( c3
tm

)(m2

3t2

)−1

(55)

Hence,

Ωt +Ωm =

[
B
(m
3t

)4−2δ

+
c3
tm

](
m2

3t2

)−1

(56)

6. MODEL FOR EXPONENTIAL LAW EXPANSION

The exponential law expansion is
V = e4H0t (57)

Typically, this results in a universe resembling de Sitter space-time. In this scenario, H0 represents the Hubble
Parameter during the current epoch. We have delved into the dynamics of the universe within the framework of
the f(R, T ) gravity, specifically emphasizing exponential law. This exploration is aimed at offering a thorough
grasp of the dynamics of the model and contrasting it with those observed in the power law model.

The metric potentials (31) and (32) becomes

M2 =
(
e4H0t

)1/3
c
1/3
2 exp

(c1
3
t
)

(58)
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M3 =
(
e4H0t

)1/3
c
−2/3
2 exp

(
−2c1

3
t

)
(59)

Eqn. (33) with the help of eqns. (58) and (59) can be written as

ds2 =
[(
e4H0t

)1/3
c
1/3
2 exp

(c1
3
t
)]2

(dx2 + dy2 − dt2) +

[(
e4H0t

)1/3
c
−2/3
2 exp

(
−2c1

3
t

)]2
dz2 (60)

From eqns. (25), (58), and (59), the directional Hubble parameters are

Hx = Hy =
4

3
H0 +

c1
3

(61)

Hz =
4

3
H0 −

2c1
3

(62)

From eqns. (26), (58) and (59), the mean Hubble parameter is given by

H =
4

3
H0 (63)

From eqns. (27) and (63), the expansion scalar is given by

θ = 4H0 (64)

From eqns. (28), (61), (62) and (63), the mean anisotropic parameter is given by

Am =
c21
8

(65)

From eqns. (29), (64) and (65), the Shear scalar is

σ2 =
c21H

2
0

3
(66)

From eqns. (30) and (63), the deceleration parameter is

q = −1 (67)

On integrating eqn. (45), we get the matter density for the model as

ρm = −c4e
−4H0t (68)

where c4 is an integrating constant. The DM is pressure less [29] i.e.

pm = 0 (69)

From eqns. (5), (6), and (63), the density of THDE is given as

ρt = B

(
4

3
H0

)4−2δ

(70)

ρ̇t = 0 (71)

For Λ-CDM model, we get THDE pressure as

pt = −B

(
4

3
H0

)4−2δ

(72)

From eqns. (46), (63), (70) and (71), skewness parameter is becomes

α = 0 (73)

The density parameter for THDE and the energy density parameter for matter are defined and calculated as
follows:

Ωt = B

(
4

3
H0

)4−2δ (
16

9
H2

0

)−1

(74)

Ωm =
(
−c4e

−4H0t
)(16

9
H2

0

)−1

(75)

Hence,

Ωt +Ωm =

[
B

(
4

3
H0

)4−2δ

+ (−c4e
−4H0t)

](
16

9
H2

0

)−1

(76)
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7. DISCUSSION

In the preceding section, we endeavored to unravel the precise solution of the THDE cosmological model
within Marder’s space-time framework. To do so, we postulated both a power law expansion and an exponential
expansion law as plausible scenarios for the evolution of the universe. We have discovered that,

In section 5, for power law model.

� From Figure 1, both the Hubble parameter and the expansion scalar are approaching infinity as t = 0
signifies that at the inception of the universe, it was characterized by an infinitely dense and hot state.
This characteristic behavior aligns with the concept of the Big Bang singularity, marking the beginning
of cosmic expansion. As time progresses, both the Hubble parameter and the expansion scalar show a
decrease. This pattern implies a diminishing rate of universal expansion over time. Despite the ongoing
expansion, the momentum of this process gradually diminishes over time. As the cosmic time approaches
infinity, both the Hubble parameter and the expansion scalar tend toward zero. This suggests that the
rate of expansion of the universe is approaching a constant value. Such a scenario hints at a future phase
where the rate of expansion of the universe becomes nearly constant, known as the de Sitter phase.

� Item From Figure 1, as cosmic time increases, the anisotropic parameter grows at an increasing rate. From
eqn. (42), it is evident that the behavior of the anisotropic parameter is contingent upon the constants
c1 and m. Under this circumstance, the anisotropic parameter escalates as cosmic time t increases, yet
diminishes with higher values of m.

� From eqn. (44),

1. If m = 3 the deceleration parameter becomes zero. It indicates that the expansion of the universe
is neither accerlerating, but rather proceeding at a constant rate. This scenario is consistent with a
universe in which the gravitational effects of matter and energy are exactly balanced by the expansion
itself.

2. If m > 3 then the deceleration parameter is positive (q > 0), it indicates that the expansion of the
universe is decelerating. In this scenario, the gravitational forces exerted by matter and energy within
the universe are sufficiently strong to slow down the rate of expansion over time.

3. If m < 3 then the deceleration parameter is negative (q < 0), it indicates that the expansion of
the universe is accelerating. In this scenario, the gravitational effects of matter and energy are not
sufficient to counteract the expansion, causing it to accelerate over time.

� From Figure 2(a), at the beginning of cosmic time t = 0 the density of THDE is significantly high, implying
a phase of rapid expansion similar to cosmic inflation. As cosmic time progresses, the density of THDE
decreases, indicating a corresponding reduction in the rate of expansion of the universe over time.

� From Figure 2(b), at the beginning of cosmic time (t = 0) the density goes to zero, which signifies a crucial
epoch.

Figure 1. Hubble parameter, expansion scalar and anisotropic parameter versus cosmic time (t) for the
particular choice of constants c1 = 1,m = 1.5 in power law model
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(a) THDE density for δ=1.9 (b) THDE density for δ=2.1

Figure 2. THDE density versus cosmic time (t) for the particular choice of constant m = 1.5 in power law
model

(a) THDE pressure for δ=1.9 (b) THDE pressure for δ=2.1

Figure 3. THDE pressure versus cosmic time (t) for the particular choice of constant m = 1.5 in power law
model

� From Figure 2(a) (with δ = 1.9), as cosmic time extends towards infinity the THDE density appears to
stabilize at a fixed value. This suggests a scenario where, in the distant future, THDE could potentially
dominate the energy density of the universe.

� From Figure 2(b) (with δ = 2.1), as the cosmic time approaches infinity, the THDE density asymptotically
approaches a non-zero value. In this case, the THDE density does not diminish to zero but approaches a
finite value.

In section 6, for the exponential law model.

� The deceleration parameter q = −1 for this model signifies that the universe undergoes an accelerated
expansion [42]. The expansion scalar maintains a constant value indicating that the rate of expansion of
the universe remains constant over time [43]. The anisotropic parameter is constant, it implies that the
universe exhibits isotropy.

� We found that the Hubble parameter, density, and pressure are constant.

8. CONCLUSION

We investigated Marder’s space-time model incorporating THDE within the framework of f(R, T ) gravity.
The volumetric expansion law is utilized to derive precise solutions for field equations. Both the power law
model and exponential law model yield the following conclusions. We analyzed 2D graph of the parameter by
using MATLAB.

In the power law model, many fascinating findings emerge from our investigation. When the Hubble pa-
rameter is positive (t), we observe a universe is expanding. As time progresses towards infinity, the expansion
gradually decelerates and eventually approaches zero. Interestingly, we have obtained the value of the deceler-
ation parameter that depends on constant (m = [2, 4]), i.e. whether the universe accelerating or decelerating.
From Figure 2(a) and 2(b), (δ < 2, δ > 2) the behavior of the universe suggests an evolving state where THDE
plays a significant role in the expansion dynamics, potentially leading to an indefinite expansion. However,
slight variations in the value of δ may influence the specific details of the expansion dynamics. Additionally,
our examination highlights the existence of negative pressure, as depicted in eqn. (52). This negative pressure
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is a distinctive attribute of DE. The inclusion of DE within the model provides evidence supporting the idea
that DE plays a crucial role in influencing the dynamics of our universe.

In the exponential law model, we have obtained all dynamics parameters such as Hubble parameter (H),
expansion scalar (θ), Shear scalar (σ2), anisotropic parameter (Am) are constant. Hence, as the universe
evolves over time, this model demonstrates behavior similar to that of a cosmological constant model in its later
stages. Additionally, the negative sign of the deceleration parameter signifies the expansion of the universe is
accelerating. The ratio of the Shear scalar to the expansion scalar is non-zero, indicating that the universe is
anisotropic.

Our findings indicate that the universe exhibits anisotropy during its early stages, yet as time progresses,
the anisotropic behavior diminishes, leading to an isotropic present day universe. This conclusion aligns with
various observational data. The models proposed in this paper offer a suitable description of the evolutionary
trajectory of the universe.
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íié åíåðãi¨ Öàëëiñà (THDE) Ìàðäåðà â ðàìêàõ f(R, T ) òåîði¨ ãðàâiòàöi¨, äå R ïðåäñòàâëÿ¹ ñêàëÿð Ði÷÷i, à T îçíà÷à¹
ñëiä òåíçîðà åíåðãi¨-iìïóëüñó íàïðóãè. ðiâíÿííÿ ïîëÿ ðîçâ'ÿçàíî äëÿ êëàñó ãðàâiòàöi¨ f(R, T ), òîáòî f(R, T ) = R+
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øèðåííÿ, à ñàìå ñòåïåíåâèì i åêñïîíåíöiàëüíèì çàêîíîì. Òàêîæ äîñëiäæóþòüñÿ ôiçè÷íi òà ãåîìåòðè÷íi àñïåêòè
ìîäåëi.
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In this research, we have derived the solution of the field equations of the scalar-tensor theory of gravitation, proposed by
Saez and Ballester(Phys. Lett. A113, 467:1986) within the frame-work of Bianchi type-III Universe. We have analyzed
the interacting and non-interacting anisotropic Barrow Holographic Dark Energy (BHDE) models by assuming the time
dependent deceleration parameter (q(t)). Further, we have discussed the several cosmological parameters such as energy
densities of pressureless dark matter and BHDE, skewness, deceleration, equation of state parameters, ωBH -ω′

BH plane
and stability of the both interacting and non-interacting models. Also, we have observed that in our non-interacting and
interacting models deceleration and equation of state parameters support the recent observational data.
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1. INTRODUCTION

Precision Cosmology [1] measurements have definitively shown that our Universe is experiencing an acceler-
ated phase expansion [2, 3, 4, 5, 6, 7, 8, 9]. However, the fuel of this mechanism is not yet known, leaving room for
disparate explanations. Tentative descriptions can be basically grouped into two classes: on one side, Extended
Gravity Theories [10] aim at solving the puzzle by modifying the geometric part of Einstein–Hilbert action in
General Relativity. On the other side, one can introduce new degrees of freedom in the matter sector, giving
rise to dynamical Dark Energy models. In this context, a largely followed approach is the so called Holographic
Dark Energy (HDE) model [11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]
which is based on the use of the holographic principle at cosmological scales.

The holographic DE model (HDE) suggests, this model is originated from holographic principle and its

energy density can be expressed by ρde =
3C2M2

p

L2 , here C2 is a numerical constant, M2
p is the reduced Planck mass

and L denotes the size of the current Universe such as the Hubble scale [33, 34]. In addition, the holographic
DE has some problems and cannot explain the time line of a flat FRW Universe [35, 36]. One of the proposed
solutions for the HDE problems is the consideration of various entropies. One of the considered entropy is
Tsallis entropy which has been used in many papers [37, 38, 39, 40]. In recent years, various entropy formalism
have been used to discuss the gravitational and cosmological setups. Also, some new holographic DE models
are constructed such as Tsallis HDE [41], Renyi HDE (RHDE) [42] and Sharma-Mittal HDE [43]. Kaniadakis
[44, 45, 46], Barrow [47, 48, 49, 50, 51, 52, 53, 54, 55] entropies, which arise from the effort to introduce non-
extensive, relativistic and quantum gravity corrections in the classical Boltzmann–Gibbs statistics, respectively.
While predicting a richer phenomenology comparing to the standard Cosmology, generalized HDE models
suffer from the absence of an underlying Lagrangian. This somehow questions their relevance in improving our
knowledge of Universe at fundamental level. Hence, with this motivation, in this research, we consider the HDE
with Barrow entropy formalism i.e., Barrow HDE (BHDE).

Saridakis [56], constructed the BHDE, by using the usual HP, however applying the Barrow entropy instead
of the BH entropy. Also, for the limiting case as ∆ = 0 the BHDE possesses standard HDE, although The
BHDE, in general, is a new scenario with cosmological behavior and richer structure. While standard HDE is
given by the inequality ρBH ≤ SL−4, here L denotes horizon length, and under the imposition [57] then ρBH =
C( 1

L )
2−∆, here C is a parameter. If we take into consideration the IR cut off L as the Hubble horizon (i.e., L =

H−1), then the energy density of BHDE is obtained as

ρBH = CH2−∆ (1)

Saridakis [58], using Barrow entropy presented a modified cosmological scenario besides the Bekenstein-
Hawking one. For the evolution of the effective DE density parameter, the analytical expression was obtained

Cite as: Y. Sobhanbabu, G. Satyanarayana, N.V.S. Swamy Chinamilli, P.V. Rambabu, East Eur. J. Phys. 2, 48 (2024), https:
//doi.org/10.26565/2312-4334-2024-2-04

© Y. Sobhanbabu, G. Satyanarayana, N.V.S. Swamy Chinamilli, P.V. Rambabu, 2024; CC BY 4.0 license

https://periodicals.karazin.ua/eejp/index
https://doi.org/10.26565/2312-4334-2024-2-04
https://portal.issn.org/resource/issn/2312-4334
https://orcid.org/0000-0003-0717-1323
https://orcid.org/0000-0000-0000-0000
https://orcid.org/0000-0001-8565-633X
https://orcid.org/0000-0003-4081-7739
mailto:sobhan.maths@gmail.com
https://doi.org/10.26565/2312-4334-2024-2-04
https://doi.org/10.26565/2312-4334-2024-2-04
https://creativecommons.org/licenses/by/4.0/


Anisotropic Barrow Holographic Dark Energy Models in Scalar-Tensor...
49

EEJP.2(2024)

and shown the DM to DE era of the Universe. Using the Barrow entropy on the horizon in place of the standard
Bekenstein-Hawking one, the potency of the generalized second law of thermodynamics has also been examined
[59]. Mamon et al. [60] studied interacting BHDE model and also the validity of the generalized second law
by assuming dynamical apparent horizon as the thermodynamic boundary. Anagnostopoulos et.al. [61] have
studied observational constraints on BHDE. Pradhan et al. [62] have analysed FRW cosmological models with
BHDE in the back-ground of BD theory of gravitation.

Srivastava and Sharma [63] have studied BHDE with Hubble horizon as IR cut-off. Adhikary et al. [64]
constructed a BHDE in the case of non-flat Universe in particular, considering closed and open spatial geometry
and observed that the scenario can describe the thermal history of the Universe, with the sequence of matter and
dark energy epochs. Sarkar and Chattopadhyay [65] have analysed BHDE reconstruct f(R) gravity as the form
of back-ground evolution and point out the equation of state can have a transition from quintessence to phantom
with the possibility of little Rip singularity. Xu and Lu [66] have investigated the non-interacting HDE with
the Hubble radius as IR cut-off cannot explain the current accelerated expansion of Universe in the BD theory.
Aditya et al. [67] have discussed anisotropic new HDE model in the frame-work of SB scalar tensor theory
of gravitation. Sadri [68] has studied observational constraints on interacting THDE model. Zadeh et al. [69]
have investigated the cosmic evolution of THDE in Bianchi type-I model filled with DM and THDE interacting
with each other throughout a sign-changeable interacting with different IR cut offs. Chandra et al. [70] have
discussed THDE in Bianchi type-I by using hybrid expansion law with K-essence. Sobhanbabu and Santhi
[71] have investigated Kantowski–Sachs THDE model with sign-changeable interaction with the back-ground of
scalar tensor theory of graviatation. Priyanka et al. [72] have discussed generalized BHDE with Granda–Oliver
(GO) cut-off. Aditya et al. [73] have studied observational constraint on interacting THDE in logarithmic BD
theory. Ghaffari et al. [74] have investigated interacting and non-interacting THDE models by considering
the Hubble horizon as the IR cutoff within BD scalar theory. Jawad et al. [75] have studied cosmological
implications of THDE in BD scalar theory. Santhi and Sobhanbabu [76] have analyzed anisotropic interacting
and non-interacting THDE models in the frame-work of SB theory of gravitation.

Abdulla et al.[77] have investigated Dynamics of an Interacting BHDE Model and its Thermodynamic
Implications. Recently, Ghaffari et.al. [78] have analysed BHDE in the frame-work of BD cosmology. Koussor
et al. [79] have studied anisotropic BHDE model in symmetric teleparallel gravity. Very recently, Sobhanbabu
et al. [80] have investigated Kantowski–Sachs interacting and non-interacting BHDE models in SB theory of
gravitation.

Hence, motivated with the above discussion and observations, in the current work, we have studied
anisotropic BHDE models in the back-ground of SB theory. The plan of the work as follows: In Section-
II, we have derived field equations of SB theory and its cosmological solution with the help of Bianchi type-III
Universe in the presence of two minimally interacting fields: DM and BHDE components. In Section-III, we
have constructed non-interacting and interacting BHDE models along with their physical discussions. Finally,
we summarize our results in conclusion Section-IV .

2. METRIC AND COSMOLOGICAL SOLUTION OF SB FIELD EQUATIONS

In the current work, we consider the anisotropic Bianchi type-III in the form

ds2 = dt2 −X2(t)dx2 − Y 2(t)e−2xdy2 − Z2(t)dz2, (2)

where X(t), Y (t) and Z(t) are the metric potentials, as functions of cosmic time (t). The following are the some
physical parameters which are useful to find the solution of the SB field equations for the Universe BT-III.
The average scale factor and volume are defined as

a(t) = (XY Z)
1
3 , V (t) = a(t)3 = XY Z (3)

The average Hubble parameter H(t) is defined as

H(t) =
ȧ

a
=

1

3

(Ẋ
X

+
Ẏ

Y
+

Ż

Z

)
(4)

The deceleration parameter q is given by

q(t) = −aä

ȧ2
(5)

The SB field equations for matter and BHDE distribution are (with 8πG = C = 1) [83] given by

Gµν − wϕn
(
ϕ,µϕ,ν − 1

2
gµνϕ,λϕ

,λ
)

= −(Tµν + T̄µν), (6)

and the scalar field ϕ satisfies the following equation

2ϕnϕ,µ
,µ + nϕn−1ϕ,λϕ

,λ = 0, (7)
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where Gµν represents the Einstein tensor and Tµν & T̄µν are energy momentum tensors for pressure-less dark
matter and BHDE respectively. For physical interpretation, the energy momentum tensors for matter and
BHDE can be written as

Tµν = diag[1, 0, 0, 0]ρM , (8)

and
T̄µν = diag[1,−ωBH ,−(ωBH + αBH),−(ωBH + αBH)]ρBH , (9)

where ρBH , ρM are energy densities of BHDE and matter and pBH is the pressure of BHDE. ωBH = pBH

ρBH
is an

equation of state (EoS) parameter and the skewness parameters αBH are the deviations from y and z axes. So,
the field equations for the discussed metric can be written as

Ÿ

Y
+

Z̈

Z
+

Ẏ Ż

Y Z
− w

2
ϕnϕ̇2 = −ωBH ρBH , (10)

Ẍ

X
+

Z̈

Z
+

ẊŻ

XZ
− w

2
ϕnϕ̇2 = −(ωBH + αBH) ρBH , (11)

Ẍ

X
+

Ÿ

Y
+

ẊẎ

XY
− 1

X2
− w

2
ϕnϕ̇2 = −(ωBH + αBH) ρBH , (12)

ẊẎ

XY
+

Ẏ Ż

Y Z
+

ẊŻ

XZ
− 1

X2
+

w

2
ϕnϕ̇2 = ρM + ρBH , (13)

Ẋ

Y
− Ż

Z
= 0, (14)

ϕ̈+
(Ẋ
X

+
Ẏ

Y
+

Ż

Z

)
ϕ̇+

n

2

ϕ̇2

ϕ
= 0, (15)

and the continuity equation of the matter and BHDE as

˙ρM +
(Ẋ
X

+
Ẏ

Y
+

Ż

Z

)
ρM + ˙ρBH +

(Ẋ
X

+
Ẏ

Y
+

Ż

Z

)(
1 + ωBH

)
ρBH +

( Ẏ
Y

+
Ż

Z

)
αBHρBH = 0. (16)

On integration, Eq.(14) yields Y = c1Z, where c1is an integration constant. It can be taken as unity, without
loss of generality, so that we have

Y = Z. (17)

In view of Eq.(17), the field equations (10)-(15) reduce to

Ẍ

X
+

Z̈

Z
+

ẊŻ

XZ
− w

2
ϕnϕ̇2 = −ωBH ρBH , (18)

Ẍ

X
+

Z̈

Z
+

ẊŻ

XZ
− w

2
ϕnϕ̇2 = −(ωBH + αBH) ρBH , (19)

2
Ẍ

X
+

Ẋ2

X2
− 1

X2
− w

2
ϕnϕ̇2 = −(ωBH + αBH) ρBH , (20)

Ẋ2

X2
+ 2

ẊŻ

XZ
− 1

X2
+

w

2
ϕnϕ̇2 = ρM + ρBH , (21)

ϕ̈+
(2Ẋ
X

+
Ẏ

Y

)
ϕ̇+

nϕ̇2

2ϕ
= 0, (22)

and

˙ρM +
(
2
Ẋ

X
+

Ż

Z

)(
(1 + ωBH) + ρBH

)
ρM + ˙ρBH +

(Ẋ
X

+
Ż

Z

)
αBHρBH = 0. (23)

The above SB field equations (18)-(22) constitute a system of five non-linear equations with seven unknowns:
X, Z, ϕ, ωBH , ρBH , ρM , and αBH . In order to get a deterministic solution, we take the following plausible
physical conditions: Here, we consider the fact that expansion scalar is directly proportional to shear scalar
which leads [81] to a relation between the metric potentials:

X = Zm, (24)
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m ̸= 1 is a positive constant. In this paper, we assume a well-motivated ansatz considered by Abdusattat et al.
[82] which puts a constraint on the function form of the deceleration parameter q(t) as

q = − β

t2
+ γ − 1, (25)

here β > 0 and γ > 1.
Hence, from the Eqs. (5), (24), and (25), we find the metric potentials as

X = Y =
[
t2 +

β

γ

] 3m
2γ(2m+1) , Z =

[
t2 +

β

γ

] 3
2γ(2m+1) . (26)

Now through a proper choice of coordinates and constants the metric (2) with the help of Eq.(26) can be written
as

ds2 = dt2 −
[
t2 +

β

γ

] 3m
β(2m+2) dx2 −

[
t2 +

β

γ

] m
γ(2m+2) e2xdy2 −

[
t2 +

β

γ

] 3
γ(2m+2) e−2xdz2. (27)

Thus, Eq. (27) describes BT-III BHDE model in SB scalar tensor theory of gravitation.
The average scale parameter and volume of the model respectivly, given by

a =
[
t2 +

β

γ

] 1
2γ & V =

[
t2 +

β

γ

] 3
2γ (28)

The Hubble parameter(H) of the model can be obtained as

H =
t

γ(t2 + β
γ )

(29)

The energy density of the BHDE model is given by

ρBH = CH4−2∆, (30)

where C is a paremeter.
Now with help of Eqs.(29) and (30), the energy density of BHDE is obtained as

ρBH = C
[ t

γ(t2 + β
γ )

]2−∆

(31)

Using Eqs. (18), and (20) we get the skewness parameters as

αBH =

[
9mH2

(2m+ 1)2
+
( t

γH

)− 3m
2γ(2m+1)

+ 3

(
m+ 1)

)
Ḣ

(2m+ 1)
− 9

m2H2(
2m+ 1)

)2

][
CH2−∆

]
(32)

where H = t
γ(t2+ β

γ )

Now using Eqs. (22) & (26), we have the scalar field ϕ is

ϕ
n+2
2 =

n+ 2

2

∫
ϕ0

(
t2 +

β

γ

)−3
2γ

dt+ c2, (33)

where ϕ0 and c2 are integration constants.
Using Eqs. (21), (31), and (33), we get

ρM = 9
m(m+ 2)H2

(2m+ 1)2
−
(γH

t

) 3m
γ(2m+1)

+
w

2
ϕ2
0

(γH
t

) 3
γ − CH2−∆ (34)

The behavior of skewness parameter (αBH) versus cosmic time (t) is plotted in Fig. 1 for the various values of
γ. It is observed that the skewness parameter is positive throughout the evolution and it is initially bouncing
behavior later decreases as Universe evolves. Figs. 2 & 3 describe the behavior of energy density of dark matter
and BHDE against cosmic time (t) for the different values of γ. It is observed that ρM is positive throughout
the evolution. From Fig. 3, it is observed that at initial epoch ρBH increases, reaches a maximum value and
decreases at late times.
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Figure 1. Plot of skewness parameter (αB) versus cosmic time (t) for n = 0.198, ξ0 = 0.03, ξ1 = 0.02, ξ2 =
0.01, α = 0.2904, and k = 0.593, 0.596, and 0.599.

Figure 2. Plot of energy density (ρM ) of matter versus cosmic time (t) for m = 0.925, β = 0.798, γ = 0.376,
γ = 0.476, γ = 0.576, w = 1000.

Figure 3. Plot of energy density (ρBH) of BHDE versus cosmic time (t) for m = 0.925, β = 0.798, γ = 0.376,
γ = 0.476, γ = 0.576, w = 1000.

Non-interacting model

Here, we consider the non-interacting dark matter and BHDE. Hence, both of these conserve separately,
so that we have from Eq. (16),

˙ρM +
(Ẋ
X

+
Ẏ

Y
+

Ż

Z

)
ρM = 0, (35)
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ρ̇BH +
(Ẋ
X

+
Ẏ

Y
+

Ż

Z

)(
1 + ωBH

)
ρBH + αB

( Ẏ
Y

+
Ż

Z

)
ρBH = 0 (36)

Using Eqs. (26), (31) and (33), we get the EoS parameter (ωBH) of BHDE model

ωBH = −1−

[
m+ 1

2m+ 1

[
9mH2

(2m+ 1)2
+
( t

γH

)− 3m
2γ(2m+1)

+ 3

(
m+ 1)

)
Ḣ

(2m+ 1)
− 9

m2H2(
2m+ 1)

)2

][
CH2−∆

]

− (2−∆)Ḣ

3H2

]


, (37)

where Ḣ = β−γt2

γ
(
β+γt2

)2

Fig. 4 represents the behavior of equation of state (EoS) parameter in terms of cosmic time (t) for the
non-interacting model in different values of γ. It can be seen that EoS parameter completely varies in aggressive
phantom region and finally tends to −1.

Taking the derivative of Eq. (42) with respect to lna, we get

ω
′

BH = − ˙αBH

(2m+ 1)H
− (2−∆)(HḦ − 2Ḣ2)

3H2

}
, (38)

where Ḧ =
2t
(
γt2−3β

)(
β+γt2

)3 and

α̇BH =

[
18mHḢ

(2m+ 1)2
−

3m
(
H − tḢ

)
2γ(2m+ 1)H2

(
β
) 3m

2γ(2m+1)
( t

H

)− 3m
2γ(2m+1)

−1

+
3mḦ

2m+ 1
− 18m2HḢ(

2m+ 1
)2

]

×

[
C
[ t

γ(t2 + β
γ )

]∆−2
]
−

[
9mH2

(2m+ 1)2
+
( t

γH

) −3m
2γH(2m+1)

+
3Ḣ(m+ 1)

(2m+ 1)
− 9m2H2(

2m+ 1
)2

]

×

[
(2−∆)H−1Ḣ

]


, (39)

Fig. 5, represents the ωBH − ω
′

BH plane for the non-interacting BHDE model for the different values of γ. It

Figure 4. Plot of EoS parameter (ωBH) versus cosmic time (t) for m = 0.925, β = 0.798, γ = 0.376, γ =
0.476, γ = 0.576, w = 1000.

is observed that the ωBH − ω
′

Bh plane corresponds to thawing region. The plot of squared speed of sound (v2s)
versus cosmic time (t) is shown in Fig. 6. we can observe that squared speed of sound (v2s < 0) represents our
non-interacting BHDE model is unstable.
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Figure 5. Plot of ωBH versus ω
′

BH for m = 0.925, β = 0.798, γ = 0.376, γ = 0.476, γ = 0.576, w = 1000.

Figure 6. Plot of squared speed of sound (v2s) versus cosmic time (t) for m = 0.925, β = 0.798, γ = 0.376, γ =
0.476, γ = 0.576, w = 1000.

INTERACTING MODEL

In this case, we consider that both dark matter and BHDE are interacting with each other. Hence, we can
write the energy conservation equation for matter and BHDE as

˙ρM +
(Ẋ
X

+
Ẏ

Y
+

Ż

Z

)
ρM = Q, (40)

ρ̇BH +
(Ẋ
X

+
Ẏ

Y
+

Ż

Z

)(
1 + ωBH

)
ρBH + αB

( Ẏ
Y

+
Ż

Z

)
ρBH = −Q (41)

where the quantity Q denotes interaction between DE components. From the Eqs. (40) and (41), we can
say that the total energy is conserved. Since there is no natural information from fundamental physics on
the interaction term Q, one can only study it to a phenomenological level. Various forms of interaction term
extensively considered in literature include Q = 3d2HρM , Q = 3d2HρBH and Q = 3d2H(ρM + ρBH). Where, d
is a coupling constant and positive c means that DE decays into DM, while negative d means DM decays into
DE. Here we consider Q = 3d2HρBH as the interaction term with the coupling parameter d2.

From Eqs. (24), (29), and (44) we find the EoS parameter ωBH as

ωBH = −1− d2 −

[
m+ 1

2m+ 1

[
9mH2

(2m+ 1)2
+
( t

γH

)− 3m
2γ(2m+1)

+ 3

(
m+ 1)

)
Ḣ

(2m+ 1)
− 9

m2H2(
2m+ 1)

)2

][
CH2−∆

]

− (2−∆)Ḣ

3H2

]


,

(42)
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Taking the derivative of Eq. (40) with respect to lna, we get

ω
′

BH = − ˙αBH

(2m+ 1)H
− (2−∆)(HḦ − 2Ḣ2)

3H2

}
, (43)

where Ḧ =
2t
(
γt2−3β

)(
β+γt2

)3 and

α̇BH =

[
18mHḢ

(2m+ 1)2
−

3m
(
H − tḢ

)
2γ(2m+ 1)H2

(
β
) 3m

2γ(2m+1)
( t

H

)− 3m
2γ(2m+1)

−1

+
3mḦ

2m+ 1
− 18m2HḢ(

2m+ 1
)2

]

×

[
C
[ t

γ(t2 + β
γ )

]∆−2
]
−

[
9mH2

(2m+ 1)2
+
( t

γH

) −3m
2γH(2m+1)

+
3Ḣ(m+ 1)

(2m+ 1)
− 9m2H2(

2m+ 1
)2

]

×

[
(2−∆)H−1Ḣ

]


, (44)

The plot of EoS parameter (ωBH) against cosmic time (t) for various values of γ and d2 are depicted in the

Figure 7. Plot of EoS parameter of BHDE versus cosmic time (t) for m = 0.925, β = 0.798, γ = 0.376, γ =
0.476, γ = 0.576, w = 1000 d = 0.45.

Figure 8. Plot of EoS parameter of BHDE versus cosmic time (t) for m = 0.925, β = 0.798, γ = 0.376, γ =
0.476, γ = 0.576, w = 1000 d = 0.55.

Fig. 7, 8 & 9 for the interacting model. It can be observed that the EoS parameter completely varies in aggressive
phantom region for all values of coupling parameter d2 and γ. The ωBH − ω

′

BH plane is used to represents the

dynamical property of dark models, where ω
′

BH is the evolutionary form of ωBH , here prime indicates derivative

with respect to lna. In Figs. 10, 11, & 12, we plot the behavior of ωBH − ω
′

BH plane for three different values
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Figure 9. Plot of Plot of EoS parameter of BHDE versus cosmic time (t) for m = 0.925, β = 0.798, γ = 0.376,
γ = 0.476, γ = 0.576, w = 1000 d = 0.65.

Figure 10. Plot of ωBH versus ω
′

BH for m = 0.925, β = 0.798, γ = 0.376, γ = 0.476, γ = 0.576, w = 1000 d =
0.45.

Figure 11. Plot of ωBH versus ω
′

BH for m = 0.925, β = 0.798, γ = 0.376, γ = 0.476, γ = 0.576, w = 1000 d =
0.45.

of d2 and γ. It can be seen that the ωBH −ω
′

BH plane, for interacting BHDE model corresponds to the thawing

region (ω
′

BH > 0 and ωBH < 0) for all the three values of coupling parameter d2 and γ. Figs. 13, 14, & 15
elaborates the plot of squared speed of sound (v2s) versus cosmic time t. The trajectories represents the negative
behavior throughout evolution of the Universe which represents the interacting model is unstable for different
values of d2 and γ.
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Figure 12. Plot of ωBH versus ω
′

BH for m = 0.925, β = 0.798, γ = 0.376, γ = 0.476, γ = 0.576, w = 1000 d =
0.65.

Figure 13. Plot of squared speed of sound v2s versus cosmic time (t) for m = 0.925, β = 0.798, γ = 0.376, γ =
0.476, γ = 0.576, w = 1000 d = 0.45.

Figure 14. Plot of squared speed of sound v2s versus cosmic time (t) for m = 0.925, β = 0.798, γ = 0.376, γ =
0.476, γ = 0.576, w = 1000, and d = 0.55.

The nature of expansion of the model can be explained using the cosmological parameter called as de-
celeration parameter (DP). The DP for our both models (non-interacting and interacting) is same and given
by

q = − α

t2
+ β − 1 (45)

Fig. 16 depicts the behavior of DP versus cosmic time t for the different values of γ. We can observed that
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Figure 15. Plot of squared speed of sound v2s versus cosmic time (t) for m = 0.925, β = 0.798, γ = 0.376, γ =
0.476, γ = 0.576, w = 1000 d = 0.65.

Figure 16. Plot of deceleration parameter (q) versus cosmic time (t) for m = 0.925, β = 0.798, γ = 0.376, γ =
0.476, γ = 0.576, and w = 1000.

our models (Interacting and non-interacting) exhibits negative behavior throughout the evolution and finally
it tends to −1, which represents our models accelerating behavior. Also, we can seen that the models exhibit
accelerated expansion at initial epoch and finally approaches to exponential expansion of the Universe.

In recent years there are many number of DE models have proposed to explain the accelerated expansion
of the Universe. The two new parameters formulated by Sahni et al. [84] named as statefinder pair (r, s) by
using the deceleration and Hubble parameters defined as follows:

r =
˙̇ȧ

aH3
=

2γ(1− 4γ)t+ (1 + 2γ)(t2 + β
γ )γt

t2
(46)

s =
r − 1

3(q − 1
2 )

=
4γt(1− 4γ) + 2γ(1 + 2γ)(t2 + β

γ )t− t2

3
(
(2γ − 3)t2 − 2β

) (47)

In Fig.17, we have plotted the trajectories of r − s plane for the three values of γ. It is observe that r − s
plane for the three values γ = 0.176, 0.276 and 0.376 meets the Λ model. We also, observe that the r− s plane
belongs to the Chaplygin gas model (s < 0 and r > 1) for γ = 0.176 and 0.276. For γ = 0.376 the r − s plane
corresponding to the dark energy models such as phantom (s > 0) and quintessence (r < 1).

The Om diagnostic parameter tool has been proposed by Sahni et al. [85] as a complementary to the
statefinder parameter, which helps to distinguish the present matter density contrast Om in different models
more effectively. This is also a geometrical diagnostic that explicitly depends on redshift (z) and the Hubble
parameter (H). It is defined as follows:

Om(x) =
h(x)

2 − 1

x3 − 1
, (48)
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Figure 17. Plot of r versus s for m = 0.925, β = 0.798, γ = 0.376, γ = 0.476, γ = 0.576.

where h(x) = H(x)
H0

, x = (1 + z) and H0 is the present value of the Hubble parameter.

Om(x) =
x4γ

(
x−2γ − β

γ

)
γ2

(
x3 − 1

) (49)

Fig. 18, we have plotted the evolution of Om diagnostic parameter versus cosmic time (t). It can be observed

Figure 18. Plot of Om(z) versus cosmic time (t) for m = 0.925, β = 0.798, γ = 0.376, γ = 0.476, γ = 0.576.

that the slope of Om diagnostic parameter is negativ, which represents the quintessence behavior of the Universe.
This behavior is consistent with recent observational data.

3. CONCLUSIONS

In this paper, we have studied the accelerated expansion by assuming the BHDE in BT-III Universe
within the frame-work of SB scalar–tensor theory of gravity. Using the relation between the metric potentials
and the variable DP q = − β

t2 +γ−1 , we have obtained the solution of SB field equations with this solution, we
have studied various cosmological parameters to analyze the viability of the non-interacting and non-interacting
models and our conclusions are the following:

� The behavior of the skewness parameter is positive throughout the evolution and it is initially bouncing
behavior later decreases as Universe evolves.The energy density of DM is observed that ρM is positive
throughout the evolution. The energy density of BHDE is observed that at initial epoch ρBH increases,
reaches a maximum value and decreases at late times.

� The trajectory of EoS parameter completely varies in aggressive phantom region and finally tends to −1.
The ωBH − ω

′

BH plane observed that the ωBH − ω
′

Bh plane corresponds to thawing region. The squared
speed of sound (v2s < 0) represents unstable for the non-interacting cosmological models for various values
of γ.
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� The plot of EoS parameter can be observed that the EoS parameter completely varies in aggressive
phantom region for all values of coupling parameter d2 and γ for interacting model. The ωBH − ω

′

BH

plane is used to represents the dynamical property of dark models, The behavior of ωBH − ω
′

BH plane,

for interacting BHDE model corresponds to the thawing region (ω
′

BH > 0 and ωBH < 0) for all the three
values of coupling parameter d2 and γ.

� The trajectories of v2s represents the negative behavior throughout evolution of the Universe which repre-
sents the interacting model is unstable for different values of d2 and γ. Also, it is worthwhile to mention
here that the present values of EoS parameter of our modelS are in agreement with the modern Plank
observational data given by Aghanim et al. [86]. It gives the constraints on EoS parameter of BHDE as
follows:

ωBH = −1.56+0.60
−0.48(Planck + TT + lowE)

ωBH = −1.58+0.52
−0.41(Planck + TT,EE + lowE)

ωBH = −1.57+0.50
−0.40(Planck + TT, TE,EE + lowE + lensing)

The EoS parameter ωBH of our model lie within the above observational limits which shows the consistency
of our results with the above cosmological observational data.

� The DP for the both Interacting and non-interacting models exhibits negative behavior throughout the
evolution and finally it tends to −1, which represents our models accelerating behavior of the Universe.
The deceleration parameter q of our model is consistent with the observational data [87] given as

q = −0.6401± 0.187(BAO +Masers+ TDSL+ Panthelon+H0)

q = −0.930± 0.218(BAO +Masers+ TDSL+ Panthelon+Hz).

� The trajectories of r − s plane for the different values of γ meets the Λ model. We also, observe that the
r− s plane belongs to the Chaplygin gas model (s < 0 and r > 1) for γ = 0.176 and 0.276. For γ = 0.376
the r − s plane corresponding to the dark energy models such as phantom (s > 0) and quintessence (r <
1).

� The Om diagnostic parameter is negative, which represents the quintessence behavior of the Universe for
the different values of γ. This behavior is consistent with recent observational data.

Data Availability Statement: This manuscript has no associated data.
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ÀÍIÇÎÒÐÎÏÍI ÃÎËÎÃÐÀÔI×ÍI ÌÎÄÅËI ÒÅÌÍÎ� ÅÍÅÐÃI� ÁÀÐÐÎÓ Â
ÑÊÀËßÐÍÎ-ÒÅÍÇÎÐÍÎ� ÒÅÎÐI� ÃÐÀÂIÒÀÖI�

Þ. Ñîáõàíáàáóa, Ã. Ñàòüÿíàðàÿíàb, Í.Â.Ñ. Ñâàìi ×iíàìiëëia, Ï.Â. Ðàìáàáóa
aÔàêóëüòåò ìàòåìàòèêè, Iíæåíåðíèé êîëåäæ SRKR (A), Áõiìàâàðàì-534204, Iíäiÿ

bÒåõíîëîãi÷íèé iíñòèòóò Ñàñi òà iíæåíåðíèé êîëåäæ (A), Òàäåïàëëiãóäåì, Iíäiÿ

Ó öüîìó äîñëiäæåííi ìè îòðèìàëè ðîçâ'ÿçîê ïîëüîâèõ ðiâíÿíü ñêàëÿðíî-òåíçîðíî¨ òåîði¨ ãðàâiòàöi¨, çàïðîïîíîâàíî¨
Ñàåçîì i Áàëëåñòåðîì (Phys. Lett. A113, 467:1986) ó ðàìêàõ òèïó Á'ÿíêi III Âñåñâiò. Ìè ïðîàíàëiçóâàëè âçà¹ìîäiþ÷i
òà íåâçà¹ìîäiþ÷i àíiçîòðîïíi ìîäåëi ãîëîãðàôi÷íî¨ òåìíî¨ åíåðãi¨ Áàððîó (BHDE), ïðèïóñòèâøè çàëåæíèé âiä ÷àñó
ïàðàìåòð óïîâiëüíåííÿ (q(t)). Êðiì òîãî, ìè îáãîâîðèëè êiëüêà êîñìîëîãi÷íèõ ïàðàìåòðiâ, òàêèõ ÿê ùiëüíiñòü
åíåðãi¨ òåìíî¨ ìàòåði¨ áåç òèñêó òà BHDE, àñèìåòðiÿ, óïîâiëüíåííÿ, ðiâíÿííÿ ïàðàìåòðiâ ñòàíó, ωBH -ω

′
BH ïëîùèíà

òà ñòàáiëüíiñòü ÿê âçà¹ìîäiþ÷i, òàê i íåâçà¹ìîäiþ÷i ìîäåëi. Êðiì òîãî, ìè ïîìiòèëè, ùî â íàøèõ íåâçà¹ìîäiþ÷èõ i
âçà¹ìîäiþ÷èõ ìîäåëÿõ óïîâiëüíåííÿ òà ðiâíÿííÿ ïàðàìåòðiâ ñòàíó ïiäòâåðäæóþòü îñòàííi äàíi ñïîñòåðåæåíü.
Êëþ÷îâi ñëîâà: Âñåñâiò òèïó Áüÿíêi-III; êîñìîëîãiÿ; òåîðiÿ Ñàåçà-Áàëëåñòåðà
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In this paper, the Crank-Nicholson method is applied to solve the one-dimensional nonlinear Burgers’ equation in warm,
dusty plasmas with dust charge variation. After obtaining numerical results, a thorough analysis is conducted and
compared against analytical solutions. On the basis of the comparison, it is evident that the numerical results obtained
from the analysis are in good agreement with the analytical solution. The error between the analytical and numerical
solutions of the Burgers’ equation is calculated by two error norms, namely L2 and L∞. A Von-Neumann stability
analysis is performed on the present method, and it is found to be unconditionally stable according to the Von-Neumann
analysis.

Keywords: Warm Dusty plasmas; Burgers’ equation; Crank-Nicolson method; von Neumann stability analysis
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1. INTRODUCTION

Many real-life problems are represented by nonlinear partial differential equations, including plasma
physics, acoustics, fluid mechanics, etc. One notable model equation is the nonlinear Burgers’ equation, initially
introduced by Bateman [1] and later recognized as a mathematical model for turbulence by Johannes Martinus
Burgers [2]. The Burgers’ equation is a partial differential equation that is used as a simplified version of the
Navier-Stokes equation [3]. The Burgers’ equation is a combination of convection and diffusion terms and has
the same nonlinear and dissipative terms as the Navier-Stokes equation. This equation is primarily used for
studying turbulence and shock wave theory in the context of nonlinear and dissipative phenomena. Burgers’
equation in dusty plasmas that describes the nonlinear phenomenon of the shock structure formation on the
acoustic wave originating from dust charge fluctuation dynamics.

The study of dusty plasmas, characterized by the presence of charged microparticles suspended in a plasma
medium, has garnered significant attention in both experimental and theoretical research in recent years be-
cause dusty plasma plays an important role in studying the different types collective process in space environ-
ment,namely lower and upper mesosphere, radiofrequency, plasma discharge, planetary rings, plasma crystals,
commentary tail, asteroid zones, planetary magnetosphere, interplanetary spaces, interstellar medium, earth’s
environment etc. [4, 5]. A dusty plasma is characterised by intense interactions between the dust particles
and the nearby plasma species, which have a significant influence on plasma behaviour. Charged dust particles
influence not only the equilibrium and stability of the plasma system but also exhibit fascinating dynamical
properties, such as dust acoustic waves, dust ion-acoustic waves, and dust cyclotron waves. These waves have
the potential to have a significant impact on the overall dynamics of a plasma due to the collective behaviour
of dust particles. The Burgers’ equation, which includes the effects of both convection and diffusion, is one of
the fundamental equations used to describe the dynamics of dusty plasmas [6]. Researchers have been greatly
interested in this equation since it was first presented because of its many practical applications, including
gas dynamics, shock theory, traffic flows, viscous flow, and turbulence. Over the past few decades, numerous
numerical methods have been developed and applied for solving Burgers’ equation [7, 8, 9, 10, 11, 12, 13, 14].
These methods include finite element methods, finite difference methods, least-squares finite element methods,
and spectral methods.

The Burgers’ equation was studied by Wei and Gu in 2002, and they employed the Conjugate Filter
Approach as a method for solving the equation [15]. Additionally, N.A. Mohamed [16] introduced new fully
implicit schemes for solving the unsteady one-dimensional and two-dimensional equations. Singh and Gupta [17]
have developed a new fourth order modified cubic B-spline (mCB) based upon collocation technique (mCBCT4)
to determine approximate solution of Burgers’ equation. Yusuf et al. [18] applied finite element collocation
method with strang splitting to finding exact solutions of Burgers’ type equation. Xu et al. [19] proposed a
novel numerical scheme to solve Burgers’ equation. Inan and Bahadir [20], developed implicit and fully implicit
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exponential finite difference methods for numerical solution of the one-dimensional Burgers’ equation. Inan and
Bahadir [21] solved Burgers’ equation numerically using a Crank-Nicolson exponential finite difference method.
Mittal and Jain [22] have implemented modified cubic B-splines collocation method to solve nonlinear Burgers’
equation.Wani and Thakar [23] developed a modified Crank-Nicolson type method for numerical solution of
Burgers’ equation. Mohamed [24] provided a new numerical scheme based on the finite difference method for
solving the nonlinear one-dimensional Burgers’ equation.

Yaghoobi and Najafi [25] constructed implicit non-standard finite difference scheme for solving the nonlinear
Burgers’ equation. An efficient numerical solution based on Milne method was presented in [26]. Shallal et al. [27]
solved Burgers’ Equation by a cubic Hermite finite element method. A numerical technique is formulated for
solving the coupled viscous Burgers’ equation (CVBE) by employing cubic B-spline and the Hermite formula [28].
Hussain [29] introduces a hybrid radial basis function (HRBF) approach for the numerical solution of the quasi-
linear viscous Burgers’ equation.

In this research article, the Crank-Nicholson method is applied to solve the Burgers’ equation in warm
dusty plasmas, taking dust charge fluctuations into account. The Crank-Nicholson method, a finite difference-
based scheme, provides a robust and accurate numerical approach by employing an implicit midpoint rule, which
combines the advantages of explicit and implicit schemes. This approach surpasses other numerical techniques
in terms of precision.The behavior of plasma can be significantly impacted by the fluctuating charge levels of
dust particles. Therefore, the inclusion of dust charge variation is crucial. The numerical method described in
this paper aims to provide a comprehensive analysis of the influence of varying dust charge on the behavior of
nonlinear waves and shock structures in dusty plasmas.

The manuscript is organized as follows: In Section 2, we introduce the governing equations for dusty
plasmas with variable dust charge, and it provides a detailed discussion on the derivation of Burgers’ equation
within the context of dusty plasmas. In Section 3, we provide an overview of the Crank-Nicolson method used
for the solution of the equation. Section 4 presents the stability analysis of the technique. In Section 5, we
present the results and discussions, wherein we analyze the numerical solutions obtained and thoroughly discuss
their implications.

2. BASIC EQUATIONS AND DERIVATION OF BURGERS’ EQUATION

The fundamental equations governing the behavior of dust-charged grains in a fluid description consist of
the equations of continuity and momentum, which can be expressed as follows[30]:

∂nd
∂t

+
∂

∂x
(ndνd) = 0 (1)

∂νd
∂t

+ ν
∂νd
∂x

+
ςd
nd

∂pd
∂x

= zd
∂ψ

∂x
+ ζ

∂2vd
∂x2

(2)

∂pd
∂t

+ v
∂pd
∂x

+ 3pd
∂vd
∂x

= 0 (3)

The Poisson’s equation is given as

∂2ψ

∂x2
= zdλnd + (1− λ)ne − ni (4)

The distribution of electron and ion density can be characterized using a Boltzmann distribution, that is.

ne = ne0exp (ψ) (5)

ni = ni0exp (−βψ) (6)

In the given context, where nd, ne, ni, vd, pd, ψ, x, and t represent the dust particle number density,
electron number density, ion number density, dust fluid velocity, dust fluid pressure, electrostatic potential,
spatial variable, and time, respectively, and they are normalized by nd0

(unperturbed dust particle number
density), ne0 (unperturbed electron particle number density), and ni0 (unperturbed ion particle number density);
λ =

nd0

ni0
, β = Te

Ti
, and ςd = Td

Te
, where Td, Te, and Ti are the temperatures for dust, electron, and ion. λd is the

fluid velocity normalized to the dust acoustic speed Cd =
(

zdnd0
eλ+3ςdKBTeq

mdq

) 1
2

with q = (1− λ)ne0 + βni0 ,

and KB , md, and zd being the Boltzmann constant, dust acoustic mass, and charged number of dust particles.
pd is the pressure normalized to nd0KBTd; ψ is the electrostatic wave potential normalized by

(
KBTi

e

)
, with e

being the electron charge; the spatial variable is normalized to the dust Debye length ϑd =

(
3σdKBTemd

4πnd0(z2
d+qe)

) 1
2

,
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and the time variable is normalized to the dust period ϖ−1
pd =

(
md

4πnd0
z2
de

2

) 1
2

. The coefficient of viscosity ζ is a

normalized quantity given by ϖpmϑ
2
mmdnd0 .

The plasma system maintains overall charge neutrality through the following relationship:

zdλnd0
+ (1− λ)ne0 = ni0 (7)

The following stretched coordinates are taken into consideration in order to obtain the Burgers’ equation:

χ = ρ (x− ϑt) ; ζ = ρ2t (8)

Here, ϑ represents the phase velocity of the wave along the x direction, normalized by the acoustic velocity,
while ρ serves as a dimensionless expansion parameter, quantifying the strength of dispersion.
The equation of Burgers is formulated in [30] as:

∂ψ(1)

∂ζ
+Aϕ(1)

∂ψ(1)

∂χ
= C

∂2ψ(1)

∂χ2
(9)

where

A =
zdλ

{
ϑ2ni0 − (1− λ)ne0

}
(ϑ− 3ςd)− 3

(
ϑ2 + ςd

)
{(1− λ)ne0 + βni0}

2

2ϑzdλ {(1− λ)ne0 + βni0}
(10)

and

C =
ζ

2ϑ
(11)

Employing the tanh-method [31], the solution for the shock wave is derived as

ψ1 (χ, ζ) = ψm

{
1− tanh

(
Ω

Υ

)}
(12)

Where Ω = χ−Mt ,ψm = M
A and Υ = 2B

M The variables ψm and Υ represent the amplitude and width of the
shock waves, respectively, while M denotes the Mach number. The profile of the shock wave is influenced by
the nonlinearity coefficient A and dissipation coefficient C, both of which are functions of plasma parameters.

3. CRANK-NICOLSON METHOD

Section 2 introduces the derivation of the Burgers equation within the context of dusty plasmas, considering
variations in dust charge, and presents the solution for shock waves. Here, we proceed to apply the Crank-
Nicholson method to solve the derived Burgers equation.The Crank-Nicolson method, proposed by Crank and
Nicolson [24], is a numerical scheme and is a combination of the forward Euler method and the backward
Euler method, which provides improved accuracy and stability. We simplify the equation 9 by introducing the
transformations ψ1 (χ, ζ) = u (x, t) ∼= uix,jt ∼= ui,j The equation 9 can be expressed as

∂u

∂t
+Au

∂u

∂x
= C

∂2u

∂x2
(13)

Let us consider the discretization of the Burgers’ equation by using the Crank-Nicholson method:

∂u

∂x
=
ui+1,j+1 − ui−1,j+1

2h
+
ui+1,j − ui−1,j

2h
(14)

∂2u

∂x2
=
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

2h2
+
ui+1,j − 2ui,j + ui−1,j

2h2
(15)

∂u

∂t
=
ui,j+1 − ui,j

k
(16)

Now substituting eqs (26)-(28) into eq (25), we obtain

ui,j+1 − ui,j
k

+Aui,j(
ui+1,j+1 − ui−1,j+1

2h
+
ui+1,j − ui−1,j

2h
)

= C(
ui+1,j+1 − 2ui,j+1 + ui−1,j+1

2h2
+
ui+1,j − 2ui,j + ui−1,j

2h2
)

(17)

Let a = Ck
2h2 ,r =

Ak
2h ,the equation (29) will become

(1 + 2a)ui,j+1 − a (ui−1,j+1 + ui+1,j−1) = (1− 2a)ui,j + a (ui−1,j + ui+1,j)

−r [ui,j (ui+1,j+1 − ui−1,j+1) + ui,j (ui+1,j − ui−1,j)]
(18)
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4. STABILITY ANALYSIS OF THE CRANK-NICHOLSON METHOD

The stability analysis was developed by the mid-twentieth century Hungarian mathematician and father
of the electronic computer John von Neumann. The Von Neumann stability theory in which the growth factor
of a Fourier mode is defined as

ui,j = ξjeIkhi = ξjeIθi (19)

Where I =
√
−1 ,ξj is the amplitude at time level k is the wave number and h = ∆x. To investigate the

stability of the numerical scheme, the Burgers’ equation has been linearized by ignoring the nonlinear term
and then obtained the differential equation by applying the Crank-Nicholson method to the linearized Burgers’
equation. The linearized Burgers’ equation is given as below:

∂u

∂t
= C

∂2u

∂x2
(20)

Applying the Crank-Nicolson method to equation 20, we get

(1 + 2a)ui,j+1 − a (ui−1,j+1 + ui+1,j+1) = (1− 2a)ui,j + a (ui−1,j + ui+1,j) (21)

Substitute 19 in 21, we get

(1 + 2a) ξjeIθiξ − a
(
ξjeIθiξe−Iθ + ξjeIθiξeIθ

)
= (1− 2a) ξjeIθi + a

(
ξjeIθie−Iθ + ξjeIθieIθ

)
(22)

(1 + 2a) ξ − a
(
ξe−Iθ + ξeIθ

)
= (1− 2a) + a

(
e−Iθ + eIθ

)
(23)

(1 + 2a) ξ − aξcosθ = (1− 2a) + acosθ (24)

ξ =
1− 2a+ acosθ

1 + 2a− acosθ
(25)

Where the quantity ξ in equation 19 is called the amplification factor. Since 0 ≤ cosθ ≤ 1 When cosθ = 0,ξ =
1−2a
1+2a ≤ 1 When cosθ = 1,ξ = 1−2a+a

1+2a−a = 1−a
1+a ≤ 1 Hence, ξ ≤ 1 is always satisfied for any value of a where 1 is

the upper limit for ξ.For stability, we must have |ξ| ≤ 1,which means −1 ≤ ξ ≤ 1. Now, we consider the lower
limit for ξ.

−1 ≤ ξ (26)

−1 ≤ 1− 2a+ acosθ

1 + 2a− acosθ
(27)

−1 (1 + 2a− acosθ) ≤ 1− 2a+ acosθ (28)

acosθ − 1− 2a ≤ 1− 2a+ acosθ (29)

−1− 2a ≤ 1− 2a (30)

2a− 2a ≤ 1 + 1 (31)

0 ≤ 2 which is always true.
It implies that the lower limit for ξ is satisfied for any value of a. Thus the Crank-Nicholson method is

unconditionally stable according to the linear analysis.

5. RESULTS AND DISCUSSION

The analytical solution 12 can be rewritten as ,

u(x, t) =
M

A

{
1− tanh

M

2C
(x−Mt)

}
(32)

To proceed the numerical solution of Burgers’ equation,we consider the initial condition as

u(x, 0) =
M

A

{
1− tanh

Mx

2C

}
(33)

and the boundary conditions

u(0, t) =
M

A

{
1 + tanh

M2t

2C

}
(34)

u(1, t) =
M

A

{
1− tanh

M

2C
(1−Mt)

}
(35)
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Due to the dependence of the nonlinear coefficient A and dissipation coefficient C on different plasma
parameters, we have considered a range of values for A and C, corresponding to the various plasma parameters.
The validity of the present technique is evaluated using the absolute error which is defined by

∣∣∣uAnalytical
i − uNumerical

i

∣∣∣ (36)

Also,L2 and L∞ error norms, defined by

L2 =

√√√√h

N∑
j=1

∣∣∣uanalyticalj − unumerical
j

∣∣∣2 (37)

L∞ = max
∣∣∣uanalyticalj − unumerical

j

∣∣∣ (38)

are presented graphically for various values of nonlinear coefficient and dissipation coefficient for chosen space
and time steps to check the accuracy and effectiveness of the method.

Figure 1. Comparison of Analytical and numerical solution of Burgers’ equation at various values of A and C.

The comparison between the analytical and numerical solutions of the Burgers’ equation in dusty plasma
using the Crank-Nicholson method has been presented in Figure 1. It has been observed that the numerical
solution obtained through the Crank-Nicholson method demonstrates good agreement with the analytical solu-
tion. The figure clearly illustrates that the presence of shock wave structures is observed when the dissipation
coefficient is reduced to a smaller value. As C becomes larger, the diffusive behavior becomes more prominent
and suppress the formation of shocks and maintain a more diffusive behavior. The wavefronts become smoother
and propagate slower as C increases.When the nonlinear coefficient (A) is increased, the advection term becomes
dominant, leading to the formation of steep gradients and shock waves in the solution.



Numerical Approach to Burgers’ Equation in Dusty Plasmas with Dust Charge...
69

EEJP.2(2024)

Table 1. Absolute error between the numerical and analytical values at A = 1.0, C = 0.01

x t Numerical value Analytical value Absolute error
0 0 0.5000 1.0000 0.5000
0.1 0.1 0.071419 1.0000 0.9286
0.2 0.2 0.022251 1.0000 0.9777
0.3 0.3 0.0059356 0.99995 0.9940
0.4 0.4 0.0011129 0.99331 0.9922
0.5 0.5 0.0001371 0.5000 0.4999
0.6 0.6 1.0961e-05 0.0066929 0.0067
0.7 0.7 5.7353e-07 4.5398e-05 4.4824e-05
0.8 0.8 1.9973e-08 3.059e-07 2.8593e-07
0.9 0.9 4.7392e-10 2.0612e-09 1.5872e-09
1.0 1.0 0.0 1.3888e-11 1.3888e-11
L2 0.442952
L∞ 0.996807

Table 2. Absolute error between the numerical and analytical values at A = 2.0, C = 0.05

x t Numerical value Analytical value Absolute error
0 0 0.25 0.49665 0.2467
0.1 0.1 0.12951 0.49101 0.3615
0.2 0.2 0.075079 0.47629 0.4012
0.3 0.3 0.047618 0.4404 0.3928
0.4 0.4 0.030846 0.36553 0.3347
0.5 0.5 0.019766 0.25 0.2302
0.6 0.6 0.012283 0.13447 0.1222
0.7 0.7 0.0072688 0.059601 0.0523
0.8 0.8 0.0039561 0.023713 0.0198
0.9 0.9 0.0017256 0.0089931 0.0073
1.0 1.0 2.2699e-05 0.0033464 0.0033
L2 0.155768
L∞ 0.403353

Table 3. Absolute error between the numerical and analytical values at A = 3.0, C = 0.1

x t Numerical value Analytical value Absolute error
0 0 0.16667 0.30805 0.1414
0.1 0.1 0.11332 0.2936 0.1803
0.2 0.2 0.079198 0.27252 0.1933
0.3 0.3 0.0585 0.24369 0.1852
0.4 0.4 0.044279 0.20749 0.1632
0.5 0.5 0.033691 0.16667 0.1330
0.6 0.6 0.025343 0.12585 0.1005
0.7 0.7 0.018454 0.089647 0.0712
0.8 0.8 0.012529 0.060809 0.0483
0.9 0.9 0.0072105 0.039734 0.0325
1.0 1.0 0.002231 0.025286 0.0231
L2 0.077955
L∞ 0.193327
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Table 4. Absolute error between the numerical and analytical values at A = 4.0, C = 0.5

x t Numerical value Analytical value Absolute error
0 0 0.125 0.15561 0.0306
0.1 0.1 0.11556 0.14967 0.0341
0.2 0.2 0.1064 0.14361 0.0372
0.3 0.3 0.098681 0.13746 0.0388
0.4 0.4 0.09209 0.13124 0.0392
0.5 0.5 0.0864 0.125 0.0386
0.6 0.6 0.081442 0.11876 0.0373
0.7 0.7 0.077087 0.11254 0.0355
0.8 0.8 0.073233 0.10639 0.0332
0.9 0.9 0.069802 0.10033 0.0305
1.0 1.0 0.067235 0.094385 0.0271
L2 0.021960
L∞ 0.039163

Figure 2. L2 and L∞ error norms at various values of A and C.

It has been observed from the Table 1-4 and Figure 2 that the value of L2 and L∞ decrease as the value
nonlinear coefficient A and the dissipation coefficient C increases. As it is seen from the Table 1-4, the error
norms L2 and L∞ are sufficiently small and satisfactorily acceptable. A decreasing trend in the L2 and L∞ error
norm as the mesh size or time step is refined indicates improved accuracy and convergence of the numerical
scheme. A lower L2 and L∞ error norm indicates better accuracy and convergence of the numerical scheme.
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Figure 3. Numerical solutions at different times for (a) A = 1,C = 0.01,(b)A = 2,C = 0.05,(c) A = 3,C = 0.1
and (d)A = 4,C = 0.5 .

The graphs of the numerical solution at different times for increasing values of the nonlinear coefficient
will show more pronounced changes in the solution profile, with sharper transitions and larger gradients.The
graphs of the numerical solution at different times for increasing values of the dissipation coefficient will exhibit
smoother profiles with reduced oscillations and less pronounced sharp transitions.

6. CONCLUSION

In this study, one dimensional Burgers’ equation is numerically solved using the Crank-Nicholson method
and the behavior of shock wave profiles are investigated in warm dusty plasmas considering dust charge variation.
The graphs of the numerical results are plotted to compare with the analytical results and it is clear from the
comparison that the graphs of numerical results are close with the results obtained by analytically and better
than numerical solutions obtained by some other methods in literature. The propagation of the shock waves
for various values of nonlinear coefficient and dissipation coefficient have been observed and it is found that
the wave front become more sharper as the dissipation coefficient decreases. The absolute error is computed
for checking the accuracy and efficiency of the present technique. From the study, it has been noted that the
accuracy and efficiency of the technique depends on the value of dissipation coefficient and the result will get
better when the dissipation coefficient takes smaller value.
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ÇI ÇÌIÍÎÞ ÇÀÐßÄÓ ÏÈËÓ
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Ó öié ñòàòòi çàñòîñîâàíî ìåòîä Êðåíêà-Íiêîëñîíà äëÿ âèðiøåííÿ îäíîâèìiðíîãî íåëiíiéíîãî ðiâíÿííÿ Áþðãåðñà â

òåïëié çàïîðîøåíié ïëàçìi çi çìiíîþ çàðÿäó ïèëó. Ïðîâåäåíî àíàëiç îòðèìàíèõ ÷èñåëüíèõ ðåçóëüòàòiâ òà ïîðiâíÿ-
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íÿííÿ Áþðãåðñà îá÷èñëþ¹òüñÿ çà äâîìà íîðìàìè ïîõèáêè, à ñàìå L2 i L∞. Àíàëiç ñòàáiëüíîñòi âèêîíó¹òüñÿ çà
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The existence and propagating characteristics of small amplitude dust-ion-acoustic (DIA) Korteweg-de Vries (KdV)
and modified KdV solitons in a three component magnetized plasma composed of positive inertial ions with pressure
variation, noninertial electrons and negative charged immobile dust grains are theoretically and numerically investigated
when the electrons obey a q−nonextensive velocity distribution. Utilizing the reductive perturbation method, to derive
KdV and modified KdV equations and obtain the DIA soliton solutions along with the corresponding small amplitude
potentials. This study shows that there are compressive and/or rarefactive solitons and no soliton at all, due to the
parametric dependency on the first-order nonlinear coefficient through the number density of positive ions and negative
dust grains and the electron nonextensivity. The coexistence of compressive and rarefactive solitons appears by raising
the measure of nonlinearity coefficient to the second-order using the modified KdV equation. The properties such as
speed, amplitude, width etc. of the propagating soliton are numerically discussed.

Keywords: Dust ion acoustic wave; Magnetized plasma; q−nonextensive distribution; Reductive perturbation method;
KdV equation

PACS: 52.27.Lw; 52.25.Xz; 52.35.Fp; 52.35.Qz; 52.35.Sb

1. INTRODUCTION

The propagation of nonlinear electrostatic waves in many physical situation is an fascinating and recently
growing field of research in plasma dynamics; however its exploration had started in the long past. During last
few decades, the discovery of dust charged grains in the plasma medium have opened a great deal of interest in
the minds of modern plasma workers, because its presence is drastically change in the characteristics of waves
in plasma. The role and influence of dust particles are beautifully explained by several experts in space and
astrophysical plasmas such as in Saturn’s rings, Earth’s ionosphere and magnetosphere, in Planetary rings and
magnetosphere, in Cometary tails, interstellar medium as well as in laboratory plasmas (not mentioned here).
The formation and existence of nonlinear electrostatic waves in a magnetized plasma consisting of charged
dust particles has been extensively investigated theoretically [1–4] and experimentally [5–8]. DIA waves are
weak-frequency waves which involve in the movement of massive ions and form compression and rarefaction
region just like in travelling sound waves; in which, the inertia is attributed to the number density of ions,
whereas the thermal pressure of electrons is assumed to establish the restoring force which is responsible for
initiating the plasma waves, and the negatively charged dust grains are expected to remain stationary in this
realism. The understanding of the nonlinear propagation of DIA solitons in an unmagnetized plasma having
three components namely, positive ions, electrons, and negatively charged dust grains is now theoretically [9–12]
and experimentally [13,14] well-established. The presence of an external magnetic field in a plasma is not only
affects the existence and direction of DIA modes, but also introduces new approach of propagation and inherent
oscillations. Many studies have published into how the magnetic field influences the dynamic characteristics
of DIA waves, considering both linear and nonlinear properties. For instance, Ghosh et al. [15] conducted
theoretical investigations into DIA wave propagation in a magnetized dusty plasma with charge fluctuations
using the reductive perturbation method. Anowar and Mamun [16] derived a KdV equation to describe the
oblique propagation of solitary waves in an adiabatic magnetized dusty plasma. While the oblique propagation
of large amplitude DIA solitary waves in a magnetized dusty plasma are studied by Saha and Chatterjee
[17]. Besides, it has been established by many researchers in various relevant scenarios that the presence
of a magnetic field significantly alters the inherent characteristics of DIA waves as they propagate through
plasmas. [18–22]. Recently, Abdus et al. [23] employed the reductive perturbation approach to theoretically
investigate the influence of higher-order nonlinear and dispersive effects on the fundamental characteristics of
DIA solitary waves in a magnetized dusty plasma.
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Nonlinear electrostatic waves in plasmas can be treated mathematically in a variety of ways, but two
main approaches are commonly employed. The most popular method involves employing the Sagdeev pseudo-
potential method to study the arbitrary amplitude of waves in plasmas. On the other hand, the evolution
equation for the small amplitude electrostatic waves may be extracted using a reductive perturbation method.
The velocity distribution function of plasma particle plays a crucial role in influencing the nonlinear behavior
of plasma waves. In many instances, the Maxwellian velocity distribution function is the standard choice for
describing electron’s behavior. However, in recent years, there has been a notable increase in interest regarding
the study of particle distribution in plasma using the Boltzmann Gibbs Shannon entropy. This concept was
originally introduced by Renyi [24] and has garnered significant attention. The generalization of Boltzmann-
Gibbs entropy in the non-equilibrium states with the q-nonextensive entropy suggested by Tsallis [25]. By citing
this approach many researchers have paid more attention to employ the nonextensive distribution for the number
density of particles in plasma [26–32]. The q-nonwxtensive distribution function shows distinct behaviors based
on the values of q, which determines the quantity of the nonextensivity of the system being studied. For q < 1,
the distribution function indicates the plasma with higher number of superthermal particles compared to that
of Maxwellian case (superextensivity), whereas for q > 1, the distribution function shows the plasma with large
number of low-speed particles compared to that of Maxwellian case (subextensivity). Moreover, if q = 1, the
distribution fuctiuon is then reduced to common Maxwell-Boltzmann velocity distribution [33].

The main objective of the paper is to the investigate the propagating behavior of nonlinear DIA solitary
waves in a three component magnetized plasma consisting of inertial ions, nonextensive electrons and charged
dust grains. For this work, the reductive perturbation method is used to investigate the nonlinear DIA waves
and we emphasize the DIA solitary waves of small amplitude. The paper is organized as follows: in Section-1,
we have given the usual introduction; in Section-2, we give the basic set governing equations for describing the
plasma model; in Section-3 and Section-4, we derivation of the KdV and modified KdV equation respectively,
where the result and discussion are made and Finally we summarize our work in Section-5. At the end, the
references are included.

2. THE BASIC EQUATIONS FOR PLASMA SYSTEM

We consider a magnetized collisonless plasma system consisting of positively charged inertial ions, nega-
tively charged dust grains and noninertial electrons which obey q−nonextensive distributions. Therefore, at
equilibrium zini0 = ne0 + zdnd0, where ni0, ne0 and nd0 are the particle number densities of ion, electron and
dust respectively at equilibrium, while zi and zd are the ion and dust charge numbers. An uniform external

magnetic field is assumed along z−direction in the plasma, i.e. B⃗ = B0ẑ. The charges carried by the dust
grains are considered to remain constant, and their effects on the dynamics of DIA waves is ignored. As the
plasma possesses a finite ion temperature, we keep the ion pressure gradient term in our considerations. The
dynamics of nonlinear waves structures in such a plasma system are governed by the following unnormalized
fluid equations

∂N

∂T
+
−→
∇

′
.(N

−→
V ) = 0, (1)
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−→
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′
.
−→
V ) = 0, (3)

∇
′2Φ = 4πe[Ne + zdnd0 − ziN ]. (4)

where N,
−→
V , m, P, e, Ne and Φ are respectively the ion number density, ion fluid velocity, mass of an ion,

ion fluid pressure, electronic charge, electron number density and electrostatic potential. And γ = Cip/Civ is
the adiabatic index, where Cip (Civ) is the specific heat of ion at constant pressure (volume). We have taken
adiabatic index, γ = 3. To normalize the set of equations (1)-(4), we consider the dimensionless variables as
follows:

t =
T

ω−1
pi

, n =
N

ni0
, ne =

Ne
ne0

, v⃗ =

−→
V

ci
, ϕ =

eΦ

kbTe
,

−→
∇ =

−→
∇ ′

λ−1
D

, p =
P

pi0
.

with the characteristic ion plasma frequency ωpi, the electron Debye length λD and equilibrium ion pressure pi0
are given by

ωpi =

√
4πni0e2z2i

m
; λD =

√
kbTe

4πni0e2zi
and pi0 = ni0kbTi.

Thus, the ion acoustic speed ci = ωpiλD =
√
zikbTe/m. Where Te (Ti) and kb are the characteristic electron

(ion) temperature and the Boltzmann constant respectively. As the electron velocity distribution is assumed to
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be q−nonextensive, so the normalized expression for the number density of electron is given by [34–36]

ne = [1 + (q − 1)ϕ]
(q+1)
2(q−1) . (5)

Where the parameter q stands for the strength of electrons nonextensivity and it is a real number greater than
−1. The normalized form of the set of equations (1)-(4) can be written in the component form as
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with the coefficients a1, a2, a3, . . . appear in the last equation are expressed by

a1 =
(1− µ)(1 + q)

2
, a2 =

a1(3− q)

4
, a3 =

a2(5− 3q)

6
(12)

In the above equations
−→
V = (u, v, w), where u, v, and w are the ion fluid velocities along x, y and z axes. We

have defined Ω =
ωci
ωpi

, in which ωci =
eziB0

m
is ion gyrofrequency, σ =

Ti
ziTe

is ion-to-electron temperature ratio

and µ =
zdnd0
zini0

< 1 is dust-to-ion number density ratio.

3. THE KDV EQUATION AND SMALL AMPLITUDE WAVES

3.1. Derivation Of KdV Equation:

To investigate the dynamics of propagating DIA waves of small amplitude, the reductive perturbation
method is applied to the equations (6)-(11) to derive nonlinear KdV equation for the present plasma model.
For this, the independent space variables (x, y, z, t) are stretched to (ξ, τ) by

ξ = ϵ1/2(lxx+ lyy + lzz − Upt), τ = ϵ3/2t. (13)

Where ϵ (0 < ϵ ≪ 1) is a dimensionless expansion parameter, is represents the level of the perturbation, Up is

the phase velocity of the waves, and lx, ly and lz are the direction cosines of the wave vector k⃗ along the x, y
and z axes respectively so that l2x + l2y + l2z = 1. We now write all the dependent variables in the power series
of ϵ about their equilibrium state as

n = 1 + ϵn1 + ϵ2n2 + ϵ3n3 + . . . ,
p = 1 + ϵp1 + ϵ2p2 + ϵ3p3 + . . . ,
u = ϵ3/2u1 + ϵ2u2 + ϵ5/2u3 + . . . ,
v = ϵ3/2v1 + ϵ2v2 + ϵ5/2v3 + . . . ,
w = ϵw1 + ϵ2w2 + ϵ3w3 + . . . ,
ϕ = ϵϕ1 + ϵ2ϕ2 + ϵ3ϕ3 + . . . ,


(14)

As a result of drift E⃗× B⃗ in a magnetized plasma causes u1 and v1 to be smaller [37]. Now, on substituting the
transformations (13) and the expansions (14) into the equations (6)-(11) and then equating the lowest order
terms of ϵ, we get the first order perturbed quantities as

−Up
∂n1
∂ξ

+ lz
∂w1

∂ξ
= 0, (15)

lx
∂ϕ1
∂ξ

+ σlx
∂p1
∂ξ

− Ωv1 = 0, (16)
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ly
∂ϕ1
∂ξ

+ σly
∂p1
∂ξ

+Ωu1 = 0, (17)

−Up
∂w1

∂ξ
+ lz

∂ϕ1
∂ξ

+ σlz
∂p1
∂ξ

= 0, (18)

−Up
∂p1
∂ξ

+ 3lz
∂w1

∂ξ
= 0, (19)

n1 − a1ϕ1 = 0. (20)

Integrating (15),(18) and (19) by using the boundary conditions: n1 = p1 = w1 = 0 and ϕ1 = 0 as |ξ| −→ ∞,
and then we express above first-order quantities as a function of ϕ1, namely

n1 =
lz
Up
w1 = a1ϕ1,

u1 = − ly
Ω

(1 + 3σa1)
∂ϕ1
∂ξ

,

v1 =
lx
Ω

(1 + 3σa1)
∂ϕ1
∂ξ

,

w1 = − lz
Up

(1 + 3σa1)ϕ1,

p1 = 3n1 =
3lz
Up

w1 = 3a1ϕ1.


(21)

Moreover, the expression for phase velocity can obtained as

Up = lz

√
1

a1
+ 3σ. (22)

Form expression (22), the phase velocity Up of DIA waves depends on ions and electrons temperature by σ, the
dust and ion number density by µ, nonextensive parameter q and the direction cosine lz = cos θ, where θ is the

obliqueness angle between B⃗ and the wave vector k⃗.
In Figure[1a], we showed the variation of phase velocity Up versus nonextensive parameter q with varying

obliqueness angle θ, while the variation of Up versus dust-to-ion number density ratio µ with varying ion-to-
electron temperature ratio σ as depicted in Figure[1b]. Where we found that the phase velocity of propagating
DIA waves drops (Figure[1a]) with the increasing of q and also with the increasing of θ. That means the phase
velocity is advances for the parallel propagating and more superthermal electrons than the obliquely propagating
and large low-speed electrons. On the other hand, the phase velocity grows (Figure[1b]) with the increasing of
µ as well as σ. That is the the phase velocity is higher for the increase in ion temperature and more populated
negative dust particles than the increase in electron temperature and less populated negative dust particles.

(a) (b)

Figure 1. The variation of phase velocity Up (a) versus nonextensive parameter q with varying obliqueness
angle θ, with fixed ion-to-electron temperature σ = 0.1 and dust-to-ion number density µ = 0.2; and (b) versus
µ with varying σ and fixed θ = 15o, q = 1.2.

Now, for the second-order perturbed quantities, we equate the coefficients of next higher order terms in ϵ
from the equations (6)-(11), we obtain the following equations

− Up
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∂ξ
= 0, (23)
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2
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∂2ϕ1
∂ξ2
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Eliminating w2 and p2 from (23), (26) and (27) and then putting the values of v2, u2 and n2 from (24), (25)
and (28) and using the values of first-order quantities from (21), the KdV equation is obtained as

∂φ

∂τ
+Aφ∂φ

∂ξ
+ B∂

3φ

∂ξ3
= 0. (29)

with ϕ1 = φ and the the nonlinear coefficient A and dispersion coefficient B are given by
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{
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, (30)
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{
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4
p

l2zΩ
2

}
. (31)

The nonlinear term A (causing wave steepening) and the dispersion term B (causing wave broadening) are
crucial factors not only for the structure of the propagation of DIA solitary waves but also for specifying the
soliton’s characteristics. So it is important to analysed on the the parametric dependence of these two terms

(a) (b)

(c)

Figure 2. The variation of nonlinear term A (a) versus nonextensive parameter q with varying obliqueness
angle θ, with fixed ion-to-electron temperature σ = 0.1 and dust-to-ion number density µ = 0.2; (b) versus µ
with varying σ and fixed θ = 15o, q = 1.2; and (c) versus σ with varying θ and fixed µ = 0.2, q = 1.2.

in our considered plasma system. From expressions (30) and (31), both A and B are the functions obliqueness



Existence of Small Amplitude KdV and mKdV Solitons in a Magnetized Dusty...
79

EEJP.2(2024)

angle θ, nonextensive parameter q, ion-to-electron temperature ratio σ and dust-to-ion number density ratio
µ. Besides, the dispersion term B is also a function of external magnetic field strength B0 through Ω but the
nonlinearity is unaffected at all. Interestingly, we can see that both A and B become zero for limiting θ →
90o, in this case the propagating DIA solitons does not exist, that is the waves are electrostatic is abolished
for the larger values of θ, and they should instead be electromagnetic in nature [38]. Again, the influences of
the external magnetic field disappears for θ = 0o, in this case the terms A and B become to the condition for
unmagnetized plasma system. Thus, we have consider small value for obliqueness angle θ (0 < θ < 55o) in this
investigation. It is seen from the expression(31) that the dispersion B acquires only positive values in varying
different physical parameters under consideration and it increases with θ, σ and µ and decreases with q and Ω
(figures not shown here). In order to inspect the parametric effects on the nonlinear term A, we have plotted the
variation of A versus nonextensive parameter q with varying obliqueness angle θ; A versus dust-to-ion number
density ratio µ with varying ion-to-electron temperature ratio σ and A versus σ with varying θ in Figure[2].
Where, we find that the nonlinearity increases with the increase of q and also increase of σ, while it decreases
with the increase of µ and also increase of θ. Form first two panels of Figure[2], we have found that the nonlinear
term A changes its sign from positive to negative or vice versa and it become zero for a critical composite value
of nonextensive parameter (say qc) for a fixed value of µ, or a critical composite value of dust-to-ion number
density ratio (say µc), for a fixed value of q. That means the KdV soliton can changed its types from compressive
to rarefactive or vice versa in the considered plasma system. Now, by solving the equation A(q, σ, µ, lz) = 0 for
µ and q separately, both qc and µc are found as

qc =
− [3(1− µ){4σ(1− µ) + 1}+ 1]

12σ(1− µ)2
±√

[3(1− µ){4σ(1− µ) + 1}+ 1]
2 − 24σ(1− µ)2 [3(1− µ){2σ(1− µ) + 1} − 3]

12σ(1− µ)2
, (32)

µc =
3{4σ(1 + q) + 1}

12σ(1 + q)
±

√
9{4σ(1 + q) + 1}2 − 24σ{6σ(1 + q)2 + 4q}

12σ(1 + q)
, (33)

Since these critical values are identifies the polarity of DIA solitary waves, so it is important to analysed
them. From expressions (32) and (33), we seen that qc (µc) is a explicit function of σ and µ (q), and both qc
and µc are undefined when σ = 0. For −1 < q < qc (or 1 > µ > µc) with fixed µ (or q), A < 0; And for q > qc
(or 0 ≤ µ < µc) with fixed µ (or q), A > 0. The variation of qc versus µ and µc versus q with different values of
σ are shown in Figure[3], and we found that the value of qc (µc) increases with µ (q). We have also predicted
the value of qc is reduced while µc is raised as the increase ion-to-electron temperature ratio σ in our considered
plasma system.

(a) (b)

Figure 3. The variation of critical value (a) qc versus µ and (b) µc versus q with varying σ > 0

3.2. Solitary Wave Solution

To obtain the stationary wave solutions of the KdV equation (29), we introduce a new transformation
variable χ = ξ − ντ , where ν is the travelling wave velocity in the linear χ− space. Then, the KdV equation
(29) becomes the ordinary differential equation,

−ν dφ
dχ

+Aφdφ
dχ

+ Bd
3φ

dχ3
= 0 (34)
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This equation is known the reduced KdV equation and its well-known solution (i.e., solitary wave solution) is
given by

φ = φm sech2
(χ
δ

)
(35)

where φm =
3ν

A
and δ =

√
4B
ν
, represents the peak amplitude and the width of the pulse of solitary waves

respectively and here both ν and B are positive values.

Now, integrating twice equation(32) over χ, and using the boundary conditions: φ = dφ
dχ = d2φ

dχ2 = 0 as

|χ| −→ ∞, we have

1

2

(
dφ

dχ

)2

+ P (φ) = Ec (36)

This is the form of law of conservation of energy, in which Ec is the integration constant and is acted as the entire
energy of the system. The term 1

2 (dφ/dχ)
2 is presumed as kinetic energy while P (ψ) indicates the potential

energy that is defined as

P (φ) =

[
A
6B

]
φ3 −

[ ν
2B

]
φ2 (37)

The properties of this potential as (i) P (φ) = P ′(φ) = 0 and P ′′(φ) < 0, for φ = 0; (ii) P (φ) = 0, P ′(φ) ̸= 0,
for φ = φm and P (φ) < 0 in between 0 and φm. That is the potential P (φ) has double roots, one root is ψ =
0, at which P (ψ) reaches its highest value value also and other root is φ = φm. Thus, we can also analysed
the dynamical characteristics of DIA solitary waves in the considered magnetized plasma system through the
amplitude potential P (φ) for different core plasma parameters under consideration.

3.3. Numerical Discussions for Parametric effects

In order to discuss the parametric effects on the dynamical characteristics of DIA solitons for small ampli-
tude limit by plotting both the solitary wave profile φ(χ) given in equation (35) against the linear parameter χ
and the amplitude potential P (φ) given in equation (37) against the electrostatic potential φ are as depicted in
Figures[4-9]. It is important to notice one thing that, where the curve of the potential V (φ) crosses the φ−axis
from below at some point of φ, from that point we predicted the soliton’s amplitude φm.

In Figures[4a-4b], we showed the variation of φ(χ) versus χ and the variation of P (φ) versus φ with
different values of travelling wave velocity ν for fixed other parameters, where we observed only one type of
solitons i.e., compressive solitons propagates and the amplitude of the pulse of compressive DIA soliton increase
while width decrease with the increases in ν. In Figures[5a-5b], we showed the variation of φ(χ) versus χ and
also P (φ) versus φ with different values of obliqueness angle θ and fixed other parameters, where we found
that the propagating DIA soliton is compressive and both the amplitude and width of the compressive solitary
pulse to increase with obliqueness angle θ. For the wave propagates along the external magnetic field ( i.e.,
θ = 0o), the values of the amplitude and width gets smaller and as θ increases, both the amplitude and width
increases. That means, we predicts that the energy of the propagating DIA soliton is directly influenced by the
obliqueness propagating angle. Likewise, the variation of φ(χ) versus χ and also P (φ) versus φ with different
values of ion-to-electron temperature ratio σ and fixed other parameters are shown in Figures[6a-6b], where we
observed the compressive DIA soliton and its amplitude of the solitary pulse is seen to decrease, while width to
increase as the value of σ gets higher. That is, in the considered plasma system by increasing (decreasing) the
temperature of ion (electron) species with keeping the electron (ion) temperature fixed, will typically change
the geometrical structure of the propagating DIA soliton.

In Figures[7a-7b], we showed the variation of φ(χ) versus χ and also the variation of P (φ) versus φ with
different values of parameters q and fixed other parameters: θ = 15o, σ = 0.1, µ = 0.2, Ω = 0.3 and ν = 0.02,
where we found that the soliton type transformed from rarefactive (negative potential) to compressive (positive
potential), which is obvious from our results that the sign of nonlinearity A changes from negative to positive
for varying q. It is observed that both amplitude and width of the rarefactive DIA solitary pulse to increase
as the value of q increases in between −1 and qc, whereas both amplitude and width of the compressive DIA
solitary pulse to decrease as the value of q > qc. For the chosen parametric values, we obtain qc = 0.0516. Thus,
it is predicting that the electron nonextensivity makes a noticeable impact on the dynamics of DIA soliton in
the present plasma system. An analogous result is obtained due to the variation of dust-to-ion number density
ratio µ with fixed other parameters: θ = 15o, σ = 0.1, q = 1.2, Ω = 0.3 and ν = 0.02, as shown in the
Figures[8a-8b]. That is, the propagating DIA solitons can transits from compressive to rarefactive with varying
µ. Both the amplitude and width of the compressive DIA solitary pulse are seen to increases for the increase of
µ in between 0 and µc; while the amplitude and width of the rarefactive DIA solitary pulse are seen to decreases
for the increase of µ > µc, in which µc = 0.7539. That is, increasing the population of negatively charged dust
grains with fixing the ion number density in our considered plasma system can leads to the transformation of
soliton type from compressive to rarefactive. Lastly, in Figures[9a-9b], we showed the variation of φ(χ) versus
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χ and also the variation of P (φ) versus φ with different values of external magnetic field strength B0 by Ω
and fixed other parameters, where we have found that the propagating DIA soliton is compressive and the
width of the solitary pulse is to reduces, while the amplitude is seen to remain constant as the value of Ω get
increased. Hence, the amplitude of DIA solitons is unaffected by the external magnetic field B0, but their width
is significantly affected.

(a) (b)

Figure 4. The variation of (a) solitary wave profile φ(χ) versus χ, and (b) small amplitude potential P (φ)
versus φ with varying ν. where θ = 15o, σ = 0.1, q = 1.2, µ = 0.2 and Ω = 0.3.

(a) (b)

Figure 5. The variation of (a) solitary wave profile φ(χ) versus χ, and (b) small amplitude potential P (φ)
versus φ with varying θ. where σ = 0.1, q = 1.2, µ = 0.2, Ω = 0.3 and ν = 0.02.

(a) (b)

Figure 6. The variation of (a) solitary wave profile φ(χ) versus χ, and (b) small amplitude potential P (φ)
versus φ with varying σ. where θ = 15o, q = 1.2, µ = 0.2, Ω = 0.3 and ν = 0.02.
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(a) (b)

Figure 7. The variation of (a) solitary wave profile φ(χ) versus χ, and (b) small amplitude potential P (φ)
versus φ with varying q. where θ = 15o, σ = 0.1, µ = 0.2, Ω = 0.3 and ν = 0.02.

(a) (b)

Figure 8. The variation of (a) solitary wave profile φ(χ) versus χ, and (b) small amplitude potential P (φ)
versus φ with varying µ. where θ = 15o, σ = 0.1, q = 1.2, Ω = 0.3 and ν = 0.02.

(a) (b)

Figure 9. The variation of (a) solitary wave profile φ(χ) versus χ, and (b) small amplitude potential P (φ)
versus φ with varying Ω. where θ = 15o, σ = 0.1, q = 1.2, µ = 0.2 and ν = 0.02.
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From the observation mentioned above, it has been evidently noted that the propagating DIA soliton
represented by KdV equation (29) is shifts from a positive potential to a negative potential as a result of
changes in electron nonextensivity q and dust and ion number density via µ in the considered plasma system.
The amplitude of the soliton becomes infinite nearly at either q = qc or µ = µc, for which A = 0. In this context,
the KdV equation (29) fails to described the model. In order to explore dynamics of DIA solitary waves in this
critical scenario, we must considered the evolution equation having second higher order nonlinearity as modified
KdV equation and will be described in the next following section.

4. THE MKDV EQUATION AND SMALL AMPLITUDE WAVES

4.1. Derivation Of mKdV Equation

To study the solitary waves at the critical number density region µc, we derive the modified kdV (mKdV)
equation, for small but finite amplitude DIA solitary waves. For this, we again use the reductive perturbation
method and introduce a modified stretching of independent variables as

ξ = ϵ(lxx+ lyy + lzz − Upt), τ = ϵ3t (38)

For this approach, we use the following dependent variables in the power series of ϵ as

n = 1 + ϵn1 + ϵ2n2 + ϵ3n3 + . . .
p = 1 + ϵp1 + ϵ2p2 + ϵ3p3 + . . .
u = ϵ2u1 + ϵ3u2 + ϵ4u3 + . . .
v = ϵ2v1 + ϵ3v2 + ϵ4v3 + . . .
w = ϵw1 + ϵ2w2 + ϵ3w3 + . . .
ϕ = ϵϕ1 + ϵ2ϕ2 + ϵ3ϕ3 + . . .


(39)

Now, using (38) and (39) into the equations (6)-(9) and equating the coefficients of smallest order of ϵ (i.e., ϵ2

from (6)-(8) and ϵ from (9)), we obtain the first order terms which are same as (21)-(22) given in Subsection[3.1].
For second order terms of ϵ, we equate the coefficients of ϵ3 from (6)-(8) and ϵ2 from (9) and we obtain

− Up
∂n2
∂ξ

+ lx
∂u1
∂ξ

+ ly
∂v1
∂ξ

+ lz
∂w2

∂ξ
+ lzn1

∂w1

∂ξ
+ lzw1

∂n1
∂ξ

= 0 (40)

− Up
∂u1
∂ξ

+ lx
∂ϕ2
∂ξ

+ lxn1
∂ϕ1
∂ξ

+ σlx
∂p2
∂ξ

− Ω(v2 + n1v1) = 0 (41)

− Up
∂v1
∂ξ

+ ly
∂ϕ2
∂ξ

+ lyn1
∂ϕ1
∂ξ

+ σly
∂p2
∂ξ

+Ω(u2 + n1u1) = 0 (42)

− Up
∂w2

∂ξ
− Upn1

∂w1

∂ξ
+ lzw1

∂w1

∂ξ
+ lz

∂ϕ2
∂ξ

+ lzn1
∂ϕ1
∂ξ

+ σlz
∂p2
∂ξ

= 0 (43)

− Up
∂p2
∂ξ

+ 3lx
∂u1
∂ξ

+ 3ly
∂v1
∂ξ

+ 3lz
∂w2

∂ξ
+ 3lzp1

∂w1

∂ξ
+ lzw1

∂p1
∂ξ

= 0 (44)

n2 − a2ϕ2 − a1ϕ
2
1 = 0 (45)

Integrating (40),(43) and (44) by using the boundary conditions n1 = n2 = p1 = p2 = w1 = w2 = u1 = v1 = 0
as |ξ| −→ ∞ and then using the first-order quantities from (21), we write the second-order quantities in terms
of ϕ’s, we get

n2 = a2ϕ2 + a1ϕ
2
1

u2 =
Uplx
Ω2

(1 + 3σa1)
∂2ϕ1
∂ξ2

− ly
Ω

{
(1 + 3σa1)

∂ϕ2
∂ξ

+ 3σ(a1 + 2a2)ϕ1
∂ϕ1
∂ξ

}
v2 =

Uply
Ω2

(1 + 3σa1)
∂2ϕ1
∂ξ2

+
lx
Ω

{
(1 + 3σa1)

∂ϕ2
∂ξ

+ 3σ(a1 + 2a2)ϕ1
∂ϕ1
∂ξ

}
w2 =

lz
Up

{
(1 + 3σa1)ϕ2 +

(a1
2

+ 3σ(a2 + a21)
)
ϕ21

}
p2 = 3n2 + 3n21 = 3a1ϕ2 + 3(a2 + a21)ϕ

2
1


(46)

Similarly, for third order terms of ϵ, we equate the coefficients ϵ4 from (6) and (8) and ϵ3 from (9), we obtain

− Up
∂n3
∂ξ

+
∂n1
∂τ

+ lx
∂(u2 + n1u1)

∂ξ
+ ly

∂(v2 + n1v1)

∂ξ
+ lz

∂(n1w2 + n2w1)

∂ξ
+ lz

∂w3

∂ξ
= 0 (47)



84
EEJP.2(2024) Muktarul Rahman, et al.

− Up
∂u2
∂ξ

− Upn1
∂u1
∂ξ

+ lx
∂ϕ3
∂ξ

+ lxn1
∂ϕ2
∂ξ

+ lxn2
∂ϕ1
∂ξ

+ σlx
∂p3
∂ξ

+ lzw1
∂u1
∂ξ

− Ω(v3 + n1v2 + n2v1) = 0 (48)

− Up
∂v2
∂ξ

− Upn1
∂v1
∂ξ

+ ly
∂ϕ3
∂ξ

+ lyn1
∂ϕ2
∂ξ

+ lyn2
∂ϕ1
∂ξ

+ σly
∂p3
∂ξ

+ lzw1
∂v1
∂ξ

+ Ω(u3 + n1u2 + n2u1) = 0 (49)

− Up
∂w3

∂ξ
− Upn1

∂w2

∂ξ
− Upn2

∂w1

∂ξ
+ lz

∂ϕ3
∂ξ

+ lzn1
∂ϕ2
∂ξ

+ lzn2
∂ϕ1
∂ξ

+ σ
∂p3
∂ξ

+
∂w1

∂τ
+ lxu1

∂w1

∂ξ

+ lyv1
∂w1

∂ξ
+ lzw1n1

∂w1

∂ξ
+ lz

∂(w1w2)

∂ξ
= 0 (50)

− Up
∂p3
∂ξ

+ lxu1
∂p1
∂ξ

+ lyv1
∂p1
∂ξ

+ lzw1
∂p2
∂ξ

++3lx
∂u2
∂ξ

+ 3ly
∂v2
∂ξ

+ 3lz
∂w3

∂ξ
+
∂p1
∂τ

+ 3lxp1
∂u1
∂ξ

+ 3lyp1
∂v1
∂ξ

+ 3lzp1
∂w2

∂ξ
+ lzw2

∂p1
∂ξ

+ 3lzp2
∂w1

∂ξ
= 0 (51)

− ∂2ϕ1
∂ξ2

+ a1ϕ3 + 2a2ϕ1ϕ2 + a3ϕ
3
1 − n3 = 0 (52)

Now, eliminating p3, w3 and n3 from equations (47), (49)-(52) and substituting the values of first and second
order terms given in (21) and (46), and using the expression (22), we found a nonlinear equation of the form,

∂ϕ1
∂τ

+A′ϕ21
∂ϕ1
∂ξ

+B′ ∂
3ϕ1
∂ξ3

+ C ′ ∂(ϕ1ϕ2)

∂ξ
= 0 (53)

where the coefficient A′ is given by

A′ =
1

2a1Up

[
12a1a2U

2
p − 13l2z(a

2
1 + a2) + 14a31U

2
p +

2a1l
4
z

a1U2
p

(a21 + 2a2)− 3l2z

(
a3
a1

)]
(54)

and the coefficients B′ and C ′ are exactly same as that of B and A respectively given in (30) and (31) in the
Subsection-3.1. But at the critical regime, i.e., at µ = µc or q = qc, A = C ′ = 0. Thus, if we consider B = B′,
and ϕ1 = ψ, equation (53) becomes the standard mKdV equation as

∂ψ

∂τ
+A′ψ2 ∂ψ

∂ξ
+ B∂

3ψ

∂ξ3
= 0 (55)

with the second order nonlinear coefficient A′ and the dispersion coefficient B. From the definition of the
expression (31), we have B > 0 for all plasma parametric values. Therefore, here we analyse the the parametric
dependence of the term A′ in our considered plasma system. For this, we showed the variation of A′ versus µ
for varying σ at q = qc and also versus q for varying σ at µ = µc in the Figures[10a-10b], where we observed that
when q = qc, the second order nonlinearity increases for an increase of µ and also an increase of σ; moreover
when µ = µc, the second order nonlinearity increases for an increase of q in between −1 and 1.7 and after q ≈
1.7 it gets decreases. Thus, in both the cases the value of A′ is seen to be positive.

4.2. Solitary Wave Solution

To obtain the stationary wave solution of (55), we use the same transformation given in Subsection-3.2.
So, mKdV equation(55) is transformed into the reduced mKdV equation as

−ν dψ
dχ

+A′ψ2 dψ

dχ
+ Bd

3ψ

dχ3
= 0 (56)

and we obtain two stationary solitary wave solution as

ψ = ± ψm sech
( χ
∆

)
(57)

where ψm =
√
6ν/A′ and ∆ =

√
B/ν are respectively the amplitude and width of solitary waves represented

by the mKdV equation(55) and ν is the travelling wave velocity in the linear χ−space. And the positive and
negative indicators are respectively associated to the compressive and rarefactive DIA soliton.
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(a) (b)

Figure 10. The variation of second order nonlinearity A′ (a) versus dust-to-ion number density µ when q =
qc and (b) versus nonextensive parameter q when µ = µc, with varying σ and θ = 15o.

Integrating equation(56) twice with the boundary conditions: ψ = dψ
dχ = d2ψ

dχ2 = 0 as |χ| −→ ∞ and

proceeding the same way as given in Subsection-3.2, we obtain the small amplitude potential energy equation
as

Pm(ψ) =

[
A′

12B

]
ψ4 −

[ ν
2B

]
ψ2 (58)

This potential has also the same characteristics that of the potential P (φ) given in (37), i.e., at ψ = 0, both
its value and its first derivative vanish, while the second derivative is negative. This indicates that Pm(ψ) has
a maximum value and a root at origin. Also, ψ = ψm is the other root of the potential Pm(ψ), which is the
amplitude of the mKdV solitons. In the region of the vanishing first order nonlinear term A, two types of
solitons compressive and rarefactive appear to coexist in the expressions (57) and (58).

4.3. Numerical Discussions for Parametric effects

We have analysed the parametric effects (mainly the effects of obliqueness angle θ, the ion-to-electron
temperatures via σ, the electron nonextensive parameter q, dust-to-ion number density via µ and external
magnetic field strength B0 via Ω, at when qc or µc) on the geometrical behaviour of DIA soliton represented
by the mKdV equation (55) in the considered magnetized plasma system by plotting both the modified solitary
wave profile ψ(χ) given in equation (57) against the linear parameter χ and the corresponding small amplitude
potential Pm(ψ) given in equation (58) against the electrostatic potential ψ.

In the Figure[11], we showed the variation of ψ(χ) versus χ and also Pm(ψ) versus ψ with varying σ and
µ in separate panels when q = qc. And also we depicted the variation of ψ(χ) versus χ and also Pm(ψ) versus
ψ with varying σ and q separately in different panels in the Figure[12] when µ = µc. Where we find that in
both the situations, the amplitude decreases while width increases of the pulse of compressive and rarefactive
(DIA) modified solitons (as shown in Figures [11a-11b] & [12a-12b]) for an increase in ion temperature. The
similar result is to visible with the variation of µ (or q) at fixed q = qc (or µ = µc), that is the amplitude
reduces whereas the width raises of both the pulse of compressive and rarefactive (DIA) modified solitons with
an increasing values of µ (or q < 1.7) as seen in Figures[11c-11d] (Figures[12c-12d]). However, in the case of
the variation of electron nonextensivity q at the critical scenario µc, it is worth to noticed that the propagating
modified DIA solitons show opposite characteristics for q ≥ 1.7 in the considered plasma system, for which both
the amplitude and width of the pulse compressive and rarefactive DIA solitons are seen to enhanced in this
particular case (Figure is not included here). By this numerical examination, we can predict that the solitary
waves in the critical region q = qc are to form more taller and wider than in the critical region µ = µc for any
other plasma parametric values.

5. RESULTS & CONCLUSIONS

In this manuscript, we have theoretically investigated the existence and propagation characteristics of
DIA solitary waves in a magnetized plasma in presence of inertial ions, noninertial electrons which obey
q−nonextensive velocity distribution and negative dust grains. The ion pressure as a variable is taken into
consideration and the Possion’s equation is taken to making the plasma system self-consistent. The nonlinear
KdV and modified KdV equations are derives by adopting reductive perturbation method that describes the
existence of the small amplitude DIA waves in the considered system. The solution of these two equations
and the corresponding small amplitude Sagdeev type virtual potential is obtained to analyse the characteristics
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(a) (b)

(c) (d)

Figure 11. The variation of modified solitary wave profile ψ(χ) versus χ and small amplitude potential Pm(ψ)
versus ψ (a)-(b) with varying σ and θ = 15o, µ = 0.2, Ω = 0.3 and (c)-(d) with varying µ and θ = 15o, σ =
0.1, Ω = 0.3. In all the panels, q = qc and ν = 0.02.

of the DIA solitons in such a plasma system. The effects of different plasma parameters such as obliqueness
angle (θ), electron nonextensivity (q), dust-to-ion number density ratio (µ), ion temperature (via ion-to-electron
temperature ratio σ), external magnetic field (via Ω) etc. on the dynamical characteristics of propagating DIA
solitary waves are studied. The results that have been noticed in our theoretical investigation can be succinctly
summarized as follows.

1. The basic nature of the propagating DIA solitons that is amplitude, width and speed, are virtually affected
by the core plasma parameters viz θ, σ, µ, q and Ω.

2. The phase velocity (Up) of the waves advances for the parallel propagating than for the obliquely propagating
along the magnetic field. While the phase velocity is lower in plasma having large low-speed electrons than
the superthermal electrons.

3. The phase velocity is faster in a dusty plasma owning hot ions than in a dusty plasma with cold ion. Besides,
the phase velocity achieves higher (lower) values in a plasma having more (less) number of negative dusts
then in a plasma having less (more) number of positive ions.

4. The dispersion coefficient B is a positive quantity, while the nonlinear coefficient A can be a positive and a
negative quantity, depending on the plasma parametric values. Therefore, in our considered plasma system
the existence of compressive and/or rarefactive DIA solitary structures possible.

5. The change in the soliton types from compressive to rarefactive or vice-versa is predicting mainly through the
deviation of electron nonextensivity by q and also the dust and ion number density by µ. At an appropriate
value of nonextensive parameter q (i.e., qc) with fixed other parameters or dust-to-ion number density ratio
µ (i.e., µc) with fixed other parameters, the coefficient A = 0, consequently the amplitude of the pulse
of solitary structure become infinite. That is, it can be say that there does not exist any soliton for this
condition.

6. Both the width and amplitude of pulse of soliton is found to increase with the obliqueness propagation angle
θ ≤ 55o, But the width decreases for θ ≥ 55o and the amplitude (width) of the DIA soliton is seen to be
infinity (zero) as θ −→ 90o, which implying the possibility for the of DIA solitary waves propagation for
0 ≤ θ ≤ 55o.

7. The increasing of ion temperature (by σ) in the plasma, lead to increase the amplitude and decrease the
width of the pulses of the propagating DIA soliton.
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(a) (b)

(c) (d)

Figure 12. The variation of modified solitary wave profile ψ(χ) versus χ and small amplitude potential Pm(ψ)
versus ψ (a)-(b) with varying σ and θ = 15o, q = 1.2, Ω = 0.3 and (e)-(f) with varying q and θ = 15o, σ =
0.1, Ω = 0.3. In all the panels, µ = µc and ν = 0.02.

8. The strength of external magnetic field has a significant impact on the width of the propagating DIA soliton
and width reduces with increasing the strength of the magnetic field, but it does not have any effect on the
amplitude of the soliton.

9. Both the amplitude and width of pulse of propagating compressive (rarefactive) soliton is found to decrease
(increase) with the increases of electron nonextensivity. Compressive soliton is obtained after the point
qc and rarefactive soliton is obtained before that point. However, the same but opposite characteristics is
found with increase (decrease) of the number density of dust (ion) in the plasma.

10. At the critical qc or µc, a second order nonlinearity A′ which is a positive quantity, is obtained via mKdV
equation. And it is predicted that the coexistence of compressive and rarefactive solitons are feasible in the
considered plasma system.

11. The amplitude of both compressive and rarefactive modified soliton decreases, while width increases with
ion temperature and also with dust-to-ion number density, µ (electron nonextensivity q) at fixed q = qc (µ =
µc). However, the amplitude is seen to higher in the region qc compared to the region µc.

Finally, we draw the conclusion that our present theoretical findings should be useful for better understanding
the dynamical nature of small but finite amplitude DIA solitons in both astrophysical and space contexts as
well as in future laboratory investigations in which the considered plasma model are existed.
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ÇÀÏÈËÅÍIÉ ÏËÀÇÌI Ç q−ÍÅÅÊÑÒÅÍÑÈÂÍÈÌÈ

ÐÎÇÏÎÄIËÅÍÈÌÈ ÅËÅÊÒÐÎÍÀÌÈ
Ìóêòàðóë Ðàõìàía, Ñàòü¹íäðà Íàò Áàðìàíb
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Iñíóâàííÿ òà õàðàêòåðèñòèêè ïîøèðåííÿ ïèëîâî-iîííî-àêóñòè÷íèõ (DIA) ñîëiòîíiâ Êîðòåâåãà-äå Ôðiçà (KdV) i
ìîäèôiêîâàíèõ KdV ñîëiòîíiâ ìàëî¨ àìïëiòóäè â òðèêîìïîíåíòíié íàìàãíi÷åíié ïëàçìi, ùî ñêëàäà¹òüñÿ ç ïîçè-
òèâíèõ iíåðöiéíèõ iîíiâ çi çìiíîþ òèñêó, íåiíåðöiéíèõ åëåêòðîíiâ i íåãàòèâíî çàðÿäæåíèõ íåðóõîìèõ ÷àñòèíîê ïè-
ëó òåîðåòè÷íî òà ÷èñåëüíî äîñëiäæåíî, êîëè åëåêòðîíè ïiäêîðÿþòüñÿ q−íååêñòåíñèâíîìó ðîçïîäiëó øâèäêîñòåé.
Âèêîðèñòîâóþ÷è ìåòîä ðåäóêòèâíèõ çáóðåíü, îòðèìàòè KdV i ìîäèôiêîâàíi ðiâíÿííÿ KdV i îòðèìàòè ñîëiòîííi
ðiøåííÿ DIA ðàçîì iç âiäïîâiäíèìè ïîòåíöiàëàìè ìàëî¨ àìïëiòóäè. Öå äîñëiäæåííÿ ïîêàçó¹, ùî iñíóþòü ñòèñêàþ÷i
òà/àáî ðîçðiäæåíi ñîëiòîíè òà âiäñóòíi ñîëiòîíè âçàãàëi ÷åðåç ïàðàìåòðè÷íó çàëåæíiñòü âiä íåëiíiéíîãî êîåôiöi¹í-
òà ïåðøîãî ïîðÿäêó ÷åðåç ùiëüíiñòü ïîçèòèâíèõ iîíiâ i íåãàòèâíèõ ÷àñòèíîê ïèëó òà íååêòåíñèâíiñòü åëåêòðîíiâ.
Ñïiâiñíóâàííÿ ñòèñêàþ÷èõ i ðîçðiäæåíèõ ñîëiòîíiâ ç'ÿâëÿ¹òüñÿ øëÿõîì ïiäâèùåííÿ ìiðè êîåôiöi¹íòà íåëiíiéíîñòi
äî äðóãîãî ïîðÿäêó çà äîïîìîãîþ ìîäèôiêîâàíîãî ðiâíÿííÿ KdV. ×èñåëüíî îáãîâîðþþòüñÿ òàêi âëàñòèâîñòi, ÿê
øâèäêiñòü, àìïëiòóäà, øèðèíà òîùî.
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In this work we studied the effects which occur during the incidence of p-polarized electromagnetic wave on the solid-state structure 
“coating-uniaxial plasmonic metasurface-dielectric-metal”. The purpose of this work is researching how the coating influences the 
effect of reflectionless incidence of the p-polarized electromagnetic waves on the solid-state structure “uniaxial plasmonic metasurface-
dielectric-metal”. Numerical modelling was used to find the conditions that lead to reflectionless incidence of the p-polarized 
electromagnetic wave on the solid-state structure under consideration. Using this method we determined the parameters of the coating 
which are required to observe incidence of p-polarized waves with no reflection. It was found that dielectric coating of the solid state 
structure significantly changes the behavior of the effect. We showed that dielectric permittivity of the coating changes the frequencies 
at which reflectionless p-polarized waves occur. The dependency was established between permittivity and thickness of the coating 
which causes the effect of the reflectionless incidence of p-polarized waves. The conducted research has a great scientific and practical 
interest. The solid-state structure that was studied can be applied for designing conceptually new types of nanoelectronic and optical 
devices. 
Keywords: Dielectric coating; p-polarized electromagnetic waves; Uniaxial plasmonic metasurface; Reflectionless incidence 
PACS: 41.20.Jb 

1. INTRODUCTION
The presence of two-dimensional material (metasurface) at the boundary of the dielectric layer causes some interesting 

and important effects to take place [1–6]. The articles [4–6] studied uniaxial plasmonic metasurfaces consisting 
of a periodical array of conductive ellipsoids. Such plasmonic metasurfaces can be described using a two-dimensional non-
diagonal conductivity tensor, which depends on the frequency and the angle of electromagnetic wave propagation relative 
to the principal axis of the ellipsoids. Of particular interests are the effects based on the p-polarized electromagnetic waves 
that incident on the metasurface placed on top of the dielectric layer [4–6]. One of these effects is reflectionless propagation 
of p-polarized electromagnetic waves through the metasurface. Such behavior can be observed in case the symmetry axis 
of plasmonic metasurface is in fact the plane of incidence of the electromagnetic wave [4, 6]. Another interesting observation 
is full transformation of the p-polarized electromagnetic wave into the s-polarized one [5, 6], which occurs when the plane 
of incidence forms an acute angle with the great symmetry axis of the metasurface. It’s important to note that both 
aforementioned effects take place in case coating of the dielectric layer is either metal or dielectric itself. In addition, in [4-6] 
the conditions were established which lead to reflectionless incidence and full transformation and how they depend on the 
frequency of p-polarized wave and the angle of incidence on the plasmonic metasurface. 

In this paper, we are proceeding further with theoretical research of the described in [4, 6] effect of p-polarized 
electromagnetic wave incidence through solid-state structure with no reflection [6] assuming, that plasmonic metasurface 
has protective dielectric layer. Here, we studied how this new dielectric layer impacts the conditions of reflectionless 
incidence.  

2. PROBLEM STATEMENT
The geometry of the problem is shown in Figure 1. Let the area 0<z  be a dielectric with permittivity 1ε . The first 

layer (area 10 dz << ) – dielectric layer with permittivity 2ε  covers uniaxial plasmonic metasurface )( 1dz = , which is 
located on top of the second dielectric layer (scope between 211 ddzd +<< ) that has permittivity 3ε . Perfectly 
conductive metal substrate occupies the area 21 ddz +> . Uniaxial plasmonic metasurface was regarded as two-
dimensional (2D) array of conductive ellipsoids [4-6]. 

We assumed that an electric field of the p-polarized electromagnetic wave lies in a plane which makes an angle ϕ  
with the major symmetry axis of the plasmonic metasurface. Moreover, let electromagnetic wave with frequency ω  fall 
on the dielectric structure with angle θ .  

As in [4–6] to describe electromagnetic properties of the plasmonic metasurface within the solid-state structure 
under consideration, we incorporated two-dimensional effective conductivity tensor. 
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Figure 1. Geometry of the problem 

In the coordinate frame making an angle   with the principle axis of the plasmonic metasurface (assuming that the 

plane of incidence of the electromagnetic wave is identical to the XZ plane) effective conductivity tensor of the plasmonic 
metasurface takes the following form [4-6]: 
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where 
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|| sincos xx , (2) 

  22
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    cossin|| yxxy . (4) 

In the formulas (2–4) diagonal components of the effective conductivity tensor describing uniaxial plasmonic 

metasurface ||, , normalized by 4c , can be expressed using ( c  is the speed of light): 
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The indices « || » and «  » here correspond respectively to the along and across directions of the plasmonic 

metasurface principal symmetry axis,  ||,  and ||, are the resonant frequencies and half-widths of the lines, ||,A  are 

the oscillator forces magnitudes and 
||,

  are the background conductivities. In addition, '
||,  and ''

||, are the real and 

imaginary parts of the conductivity tensor for the corresponding components. We assumed that i2.0||, 
 , 2.0||, A , 

02.0||,  , 0.1||  , 2.1  [4]. 

It should be noted that the presence of non-zero non-diagonal conductivity tensor components xy  , yx  in case 

0 and  90 cause reflective s-polarized electromagnetic waves to be created. As a result, when p-polarized wave 

propagates through uniaxial plasmonic metasurface reflected waves will have all the electromagnetic field components 
and will be elliptically polarized in the general case. In the chosen coordinate system, electromagnetic field of p-polarized 

waves has the following components:  zxp EEE ,0,


,  0,,0 yp HH 


. Similarly for the s-polarized electromagnetic 

waves we have:  0,,0 ys EE 


,  zxs HHH ,0,


. 

The wave vectors for each layer have the following components 3,2,1),,0,(  jkkk zjxj


. Moreover, the 

longitudinal wave number equals 
sin1c

kx  . For the transverse wave number the formula is 2
2

2

xjzj k
c

k  
.  

Let’s write down non-zero tangential components of the electromagnetic field in each medium of the established 
above solid-state structure. We will omit multiplier )exp( txikx  . In the equations below index «p» relates to the p-

polarized waves, and «s» – to s-polarized ones. 
Medium 1 (layer 0z ). 
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Medium 2 (layer 10 dz  ). 
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Medium 3 (layer 211 ddzd  ). 
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Here ppr  and psr are the amplitudes of p- and s-polarized waves, reflected from the uniaxial plasmonic metasurface. 

The magnitudes 
2pH , 

2sE  and 
2pH , 

2sE  are the amplitudes of the forward and backward p- and s-polarized waves in a 

medium with dielectric permittivity 2 . Likewise, 
23pH  and 

3sE are the amplitudes of the forward, while 
3pH  and 


3sE  – amplitudes of the backward p- and s-polarized waves within the layer characterized by permittivity 3 . 

To get both ppr  and psr  we incorporated boundary conditions near the 0z , 1dz   and 21 ddz  .  

For 0z  tangential components of the electric and magnetic fields in adjacent mediums are equal. 
However, when 1dz  , tangential components of the electric fields are continuous, unlike tangential components 

of magnetic fields: 
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On the metal boundary 21 ddz   tangential components of the electric fields equal to zero. 

The reflection coefficient of the p-polarized electromagnetic wave from the plasmonic metasurface is a sum of 
2|| ppr  and 2|| psr : 

 22 |||| psppp rrR  , (22) 
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where 

 








QSP

QSP
rpp , (23) 

 
 


QSP

k
r yxps

)(sin
2 23

2 
 , (24) 

 

     



























12
1

1
12

2

2
23

12
12

21
122323

3

3

sinsinsin

)sin()cos()sin()cos(















k
k

ik
k

k

k
k

k
ikkik

k
P xx 

, (25) 

 
 

 )sin()cos()sin(

)sin()cos()sin()cos(

12212123

12
2

1
1223233





kikkkki

k
k

k
ikkikkS yy













 , (26) 

 
















 )sin()cos()sin()cos()(sin 12

2

1
1212

12

21
1223

22 



 k
k

k
ikk

k

k
ikkQ xy  . (27) 

Note that in equations above we used dimensionless quantities: 3,2,1 j
ck

k
zj

j 
 and 

c

d 
 2,1

2,1  . 

 
3. THE AFFECT OF THE COATING COVERING THE UNIAXIAL PLASMONIC METASURFACE ON 

THE REFLECTIONLESS INCIDENCE OF THE P-POLARIZED ELECTROMAGNETIC WAVE 
 

We were trying to identify the conditions under which 0pR  is the case. Let’s consider either  0  or  90 . 

Then 0 yxxy   and 0psr . It’s clear, that under such circumstances the reflected electromagnetic wave becomes 

p-polarized and 2|| ppp rR  . Seeing that ,0Q from the expression (23) we can conclude that 0ppr , when 0P . 

Since quantity P  is a complex number, the equation 0ppr  satisfied in case the following conditions are met 

simultaneously: 
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From the equations (28), (29) we have: 
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Comparing the right side of the equations (30) and (31) we obtain the following expression: 
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 (32) 

With fixed values of 3  and 2  the equation (32) allows us to find the relation )( 2 , which causes the effect of 

reflectionless incidence of the p-polarized electromagnetic wave through composed solid-state structure. The relevant 
dependencies )( 21   can be simply established from one of the equations (30) or (31). 

It should be mentioned that for the solid-state structure  uniaxial plasmonic metasurface – dielectric layer – metal 
( 01  ) [6] the effect of propagation of the p-polarized electromagnetic waves with no reflection with the fixed angle of 

incidence   can be observed at the two frequencies 1  and 2  , that are symmetrically located relative to ||  (for 

 0 ) and   (  90 ). These frequencies correspond to the different values of dielectric layer thickness 2 . The 

reason is that for uniaxial plasmonic metasurface functions )('
||,




 are symmetric, and )("
||,




 are asymmetric relative 

to the resonant frequencies ||  and  . 

We are interested in the situation when the angle of incidence of the p-polarized waves on the structure under 
consideration equals  45 and permittivity is 0.23  . Assuming that there is no coating covering dielectric structure 

( 01  ) and  0  the effect of the incidence with no reflection of the p-polarized waves arise at the frequency 

976.01   and the thickness 377.02   as well as when 025.12   and 224.22  . In case  90  reflectionless 

behavior can be observed for the following pairs of frequencies and thicknesses .17611  , 377.02   and .22512  , 

224.22  . 

Let’s now try to understand how the coating ( 01  ) affects the propagation behavior of the p-polarized 

electromagnetic waves in particular case when there is no reflection. We considered the following parameters  0 , 

 45  and 0.23  . The general idea was to find how frequencies 2,1  and thickness 1  depend on the dielectric 

layer permittivity 2 . 

Figure 2 shows relation )( 21   (left-hand ordinate axis, solid line) and )( 21   (right-hand ordinate axis, dashed 

line) in case 0pR  and  0 ,  45 , 0.23  , 377.02  . From the Figure 2 we can observe that the function 

)( 21   is monotonically increasing unlike )( 21  which decreases in the same way. Horizontal dotted line from the 

Figure 2 corresponds to the quantity 1  when there is no coating covering the uniaxial plasmonic metasurface.  

 

Figure 2. Dependencies 1 2( )   (left-hand ordinate axis, solid line) and 1 2( )  (right-hand ordinate axis, dashed line) 

corresponding to the situation 0pR   for 0   , 45   , 3 2.0  , 2 0.377   

Therefore, when 01   the frequency 1  shifts closer to resonant frequency || . The quantity of displacement is 

directly proportional to the permittivity value 2 . We also can discover another dependency. The thickness value 1  that 

is necessary to observe the effect of electromagnetic wave reflectionless incidence propagation when 2  goes up. 
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The way that coating affects the reflection coefficient pR  of the p-polarized electromagnetic wave can be seen on 

the Figure 3. In this graph the solid line correspond to the dependency )(pR  for the situation when 0 , ,45

,5.12  ,0.23  ,329.21   .377.02   The figure also contains a dashed line showing the same dependency 

between the frequency and reflection coefficient for the solid-state structure with no coating ( 01  ).  

 

Figure 3. Dependency ( )pR   for 0   , 45 ,    2 1.5  , 3 2.0  , 2 0.377   

and 1 2.329   (solid line), 1 0   (dashed line) 

From the Figure 3 we can deduce that adding the coating ( 01  ) leads to the shifting of zero value of reflection 

coefficient pR  (displacement of 1 ) closer to the resonant frequency 0.1||  . 

It is known that in the regular situation with no coating, the effect of the reflectionless incidence of the p-polarized 
electromagnetic waves takes place when the frequency value is either close to 976.01  or 025.12   [6]. The 

thickness value should be also shifted to 224.22  .  

Let us now consider what happens with 2 after introducing the coating for the metasurface. The Figure 4 describes 

the relation )( 22  (left-hand ordinate axis, solid lines) and )( 21   (right-hand ordinate axis, dashed lines) that met 

0pR  condition for  0 ,  45 , 0.23  , 224.22  . It can be discovered from the graph that both )( 22   and 

)( 21   are monotonically decreasing functions. Horizontal dashed line on the Figure 4 corresponds to the value 2  

when no coating covering metasurface. Thus, by increasing 2  the frequency value 2  at which reflectionless 

propagation of the p-polarized electromagnetic waves takes place is approaching to the resonant frequency 0.1||  . 

 

Figure 4. Dependencies 2 2( )   (left-hand ordinate axis solid lines) and 1 2( )  (right-hand ordinate axis, dashed lines) 

corresponding to 0pR   for 0   , 45   , 3 2.0  , 2 2.224   
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Figure 5 using a solid line describes dependency )(pR  for the particular situation when 0 , ,45 ,0.22 

,0.23  ,716.01   .224.22   Similarly to the figures above, the graph also shows same dependency )(pR  for the 

case with no coating 01  .  

 

Figure 5. Dependency ( )pR   for 0   , 45 ,    2 2.0  , 3 2.0  , 2 2.224   for 1 0.716   (solid line) and 1 0   

(dashed line) 

By using the Figure 5 we can deduce that incorporating the coating causes shifting of zero value of pR  closer to the 

resonant frequency || . By increasing the dielectric permittivity of the 2  effect of non-reflective incidence of the 

p-polarized electromagnetic waves arise on the lower frequencies 2  and higher thicknesses 1  of the dielectric layer.  

We also studied the changes introduced by adding coating for the case when the plane of incidence of the p-polarized 
electromagnetic waves makes the right angle with the principal axis of plasmonic metasurface (  90 ). Similarly to the 

previous cases we considered the following:  45 , 0.23  . If 377.02   and the coating is absent the effect of the 

reflectionless propagation of p-polarized electromagnetic waves takes place at the frequency .17611  . Extending the 

solid-state structure with the coating leads to the change of 1 . Figure 6 shows dependencies )( 21   (left-hand ordinate 

axis, solid line) and )( 21   (right-hand ordinate axis, dashed line) for 0pR  when  90 ,  45 , 0.23  , 

377.02  . It can be seen from the graph that the dependency )( 21   is monotonically increasing function. However, 

)( 21  monotonically decreases. Horizontal dashed line on the Figure 6 corresponds to the .17611  , when there is no 

coating. It should be noted, that by increasing 2  the value 1  approached to the resonant frequency 2.1  , unlike 

1  which is decreasing. 

 

Figure 6. Dependencies 1 2( )  (left-hand coordinate axis, solid lines) and 1 2( )  (right-hand ordinate axis, dashed lines) 

corresponding to 0pR   for 90   , 45   , 3 2.0  , 2 0.377   
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Let’s set 224.22  . Then for solid-state structure with no coating reflectionless incidence can be observed at the 

frequency .22512  . Figure 7. shows the dependencies )( 22   (left-handed ordinate axis, solid line) and )( 21   

(right-handed ordinate axis, dashed line). From the graph we can deduce that both dependencies )( 22   and )( 21   are 

monotonically decreasing functions. Also, it’s possible to see that by increasing 2  the quantity of 2  advances to the 

resonant frequency 2.1 . 

 

Figure 7. Dependencies 2 2( )  (left-handed ordinate axis, solid line) and 1 2( )  (right-handed ordinate axis dashed lines) 

corresponding to 0pR   for 90   , 45   , 3 2.0  , 2 2.224   

 
4. CONCLUSIONS 

It was shown that the dielectric coating of the solid-state structure uniaxial-plasmonic metasurface-dielectric-metal 
significantly influence the effect of reflectionless incidence of the p-polarized electromagnetic waves. The conditions 
were studied under which the effect of the non-reflective incidence of p-polarized wave can be observed depending on 
the dielectric permittivity of the coating. We established that increasing coating permittivity causes the frequency at which 

the effect arising to shift closer to the resonant frequency ||  (for  0 ) or to the frequency   (for  90 ).  

In addition, the thicknesses of the coating 1 were founded required for the reflectionless incidence of p-polarized 

wave. We also analysed dependency between 1  and dielectric permittivity of the coating 2 . It was determined that by 

increasing the permittivity of the coating 2 , we end up with lower thickness 1 , that is required to observe the effect of 

non-reflective incidence. Moreover, we found that, this holds true not only for the case when the plane of incidence of 
the electromagnetic wave is parallel to the principal symmetry axis of plasmonic metasurface (  0 ), but also if the 

plane of incidence is perpendicular to the principal symmetry axis (  90 ). 

Studied effects can be applied for designing conceptually new types of optical and nanoelectronic equipment with 
unique practical characteristics. 
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ПАДІННЯ БЕЗ ВІДОБРАЖЕННЯ p-ПОЛЯРИЗОВАНОЇ ЕЛЕКТРОМАГНІТНОЇ ХВИЛІ НА ТВЕРДОТІЛЬНУ 
СТРУКТУРУ “ПОКРИТТЯ-ОДНОВІСНА-ПЛАЗМОННА МЕТАПОВЕРХНЯ-ДІЕЛЕКТРИК МЕТАЛ ” 

Микола М. Білецький, Іван Д. Попович 
Інститут радіофізики та електроніки ім. О.Я. Усикова НАН України, 12, вул. Акад. Проскури, Харків, 61085, Україна 

У роботі досліджені ефекти, що виникають при падінні p-поляризованоі електромагнітної хвилі на твердотільну структуру 
“покриття-одновісна плазмонна метаповерхня-діелектрік-метал”. Метою роботи є дослідження впливу покриття 
твердотільної структури “одновісна плазмонна метаповерхня-діелектрік-метал” на ефект падіння p-поляризованих 
електромагнітних хвиль без відображення. Для знаходження умов виникнення ефекту падіння без відображення p-
поляризованої електромагнітної хвилі на структуру “покриття-одновісна плазмонна метаповерхня-діелектрік-метал” було 
використано чисельне моделювання. За допомогою цього методу було визначено параметри покриття, що дають змогу 
спостерігати ефект падіння без відображення p-поляризованих електромагнітних хвиль. Було знайдено, що діелектричне 
покриття твердотільної структури, яка розглядалася, має істотний вплив на ефект безвідбівного падіння p-поляризованих 
хвиль. Показано, що діелектрична проникність покриття змінює частоту спостереження цього ефекту. Визначена залежність 
між проникністю та товщиною покриття, яка необхідна для виникнення ефекту падіння без відображення p-поляризованих 
електромагнітних хвиль. Проведене в роботі дослідження має великий науковий та практичний інтерес. Досліджені в роботі 
структури можна використати для створення принципово нових пристроїв оптики та наноелектроніки.   
Ключові слова: діелектричне покриття; p-поляризовані електромагнітні хвилі; одновісна плазмонна метаповерхня; падіння 
без відображення 



99
EAST EUROPEAN JOURNAL OF PHYSICS. 2. 99-110 (2024)

DOI:10.26565/2312-4334-2024-2-08 ISSN 2312-4334

A SIMPLISTIC ANALYTICAL MODEL FOR HYDROGEN SURFACE COVERAGE UNDER 
THE INFLUENCE OF VARIOUS SURFACE-RELATED PROCESSES AND ION BOMBARDMENT

Ivan I. Okseniuk*, Viktor O. Litvinov, Dmytro I. Shevchenko, Inna O. Afanasieva, 
Valentyn V. Bobkov 

V.N. Karazin Kharkiv National University, 4, Svobody Sq., Kharkiv, 61022, Ukraine
*Corresponding Author, e-mail: ivanokseniuk@karazin.ua

Received April 1, 2024; revised April 22, 2024; accepted May 7, 2024 

The paper describes a simple analytical model that allows the calculation of hydrogen surface coverage under the influence of several 
processes that can co-occur during the ion-beam bombardment/sputter analysis of a sample surface, in particular during analysis by 
secondary ion mass spectrometry (SIMS). The model considers processes of dissociative adsorption, desorption, absorption from the 
surface into the sample volume, and removal by ion bombardment. After describing the model, we provide some examples of its 
practical applications for interpretation of the experimental results obtained during in situ SIMS studies of hydrogen interaction with 
the hydrogen-storage alloys TiFe, Zr2Fe, and with nickel. In the examples, some quantitative characteristics of surface-related processes 
involving hydrogen, such as hydrogen sputtering rate, activation energy of hydrogen desorption and absorption, have been successfully 
determined using various model approaches. 
Keywords: Secondary ion mass spectrometry; Hydrogen storage; Sputtering; Adsorption; Desorption; Ion bombardment; Kinetics 
PACS: 34.35.a, 68.43.–h, 68.49.Sf, 79.20.Rf 

1. INTRODUCTION
Among rather few other surface analysis techniques, secondary ion mass spectrometry (SIMS) is capable of direct 

detection and imaging of hydrogen isotopes with high sensitivity. Hydrogen analysis with SIMS can sometimes be 
complicated by the occurrence of such processes as adsorption of hydrogen-containing molecules on the surface, 
diffusion, segregation, and desorption of hydrogen directly during the analysis [1–9]. Although the ease of occurrence of 
such processes constitutes an obstacle for hydrogen quantification and localization, it can be exploited to study those 
processes themselves since they are of great importance in certain fields: hydrogen interaction with hydrogen-storage 
materials [10] being one of such fields. 

In our previous studies [11–15] of the interaction of hydrogen-storage alloys with hydrogen and oxygen using SIMS, 
it was found that the emission intensity of hydrogen-containing secondary ions can be used to monitor the presence and 
changes in concentration of hydrogen on the surface in a fairly wide range of experimental conditions. In earlier 
studies [16–19], SIMS had been already utilized to determine the characteristics of hydrogen interaction with metals. 
Papers [12,13,16–18,20] exemplify that the SIMS technique indeed provides good opportunities for in situ 
characterization of hydrogen interaction processes with metals and alloys.  

However, difficulties in the analysis of such experimental results arise when several processes affecting hydrogen 
concentration on the surface occur simultaneously during the measurements. Therefore, to understand how hydrogen surface 
concentration is affected by the action and characteristics of each such process, an analytical model was developed that 
considers the influence of several processes that can occur within the range of experimental conditions of SIMS 
studies [12,13]. The analysis with the developed model allows distinguishing and predicting (to a certain extent) the results 
of action of each process, which, ultimately, provides grounds for appropriate interpretation of the experimental results.  

The model considers processes of hydrogen dissociative adsorption, recombinative desorption, 
dissolution/absorption from surface chemisorption sites into the bulk, and processes of ion beam removal/sputtering. One 
quite commonly occurring process, that we omitted from consideration in the model, is hydrogen segregation on the 
surface. To include the surface segregation, hydrogen in the bulk has to be considered and characterized, which is 
generally a rather complex task when real samples (apart from near perfect single-crystals) are studied [2,4,5,21,22]. In 
our studies, the samples are usually polycrystalline alloys, often with complex constitution and numerous uncharacterized 
bulk defects/features what may influence hydrogen in the bulk. Other than our SIMS instrument we don’t have other 
means to characterize bulk-hydrogen at small concentrations (as relevant for our experimental conditions), and without 
having the details about bulk hydrogen we don’t attempt describing it. Therefore, the model considers only a comparably 
small presence of bulk hydrogen and its appearance on the surface mainly as a result of the ion beam etching of the 
sample. A very limited approach to segregation is described in Section 3.5. 

Although the model was intended mainly to help with in situ SIMS studies of hydrogen interaction with a sample as 
exemplified in Section 3, recent studies [23–25] reported that the use of H2 flooding might be also beneficial in SIMS 
multilayer depth profiling and elemental quantification. In such measurements the balance between hydrogen adsorption 

Cite as: I.I. Okseniuk, V.O. Litvinov, D.I. Shevchenko, I.O. Afanasieva, V.V. Bobkov, East Eur. J. Phys. 2, 99 (2024), https://doi.org/10.26565/2312-
4334-2024-2-08 
© I.I. Okseniuk, V.O. Litvinov, D.I. Shevchenko, I.O. Afanasieva, V.V. Bobkov, 2024; CC BY 4.0 license 

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.26565/2312-4334-2024-2-08
https://periodicals.karazin.ua/eejp/index
https://portal.issn.org/resource/issn/2312-4334
https://orcid.org/0000-0002-8139-961X
https://orcid.org/0000-0003-2311-2817
https://orcid.org/0000-0002-4556-039X
https://orcid.org/0000-0002-9523-9780
https://orcid.org/0000-0002-6772-624X


100
EEJP. 2 (2024) Ivan I. Okseniuk, et al.

and beam-etching will be of main focus although other processes can co-occur as well, therefore the usage of such a 
model can be fruitful in this application. Besides that, the model may also have some relevance for vacuum devices 
operation where hydrogen adsorption and desorption from surfaces are important factors affecting vacuum conditions and 
operation. In particular, accelerators and plasma devices have surfaces exposed to energetic irradiation by ions, electrons, 
or photons. If in accelerators the ion-stimulated desorption is a known and actively studied issue [26], there are plasma 
devices for which irradiation-stimulated hydrogen desorption is an essential part of their operation [27–29]. Recently, a 
similar but much more sophisticated and material-specific model was developed for hydrogen interaction with tungsten 
in relevance to magnetic confinement plasma fusion devices [30]. For such applications, the presented here model, one 
way or another, has to be complemented by an appropriate consideration of hydrogen within the solid's bulk. 

 
2. DESCRIPTION OF THE MODEL 

2.1. Main Model Equation and Processes Representation 
The basis of the model is an equation that establishes the relation of the hydrogen concentration changes on surface 

over time under the influence of a number of possible processes. Each considered process has its representative term in 
equation (1). 

 ௗఏௗ௧ = 2𝑎𝐹(1 − 𝜃)ଶ − 2𝑏𝜃ଶ − 𝐷𝜃 − 𝑠ଵ𝑗𝜃 − 2𝑠ଶ𝑗𝜃ଶ + 𝑠𝑗𝜃. (1) 

Here θ = сH/cHmax is the relative coverage of the surface by chemisorbed hydrogen atoms, defined as a ratio of the 
hydrogen concentration (сH) to a certain maximal value of the concertation (cHmax). 

The first term is responsible for the increase of coverage due to dissociative adsorption of hydrogen molecules. It 
takes into account the decrease in the sticking coefficient with increasing coverage (1–θ)2 [31], which arises from the 
necessity for two unoccupied adsorption sites according to Langmuir’s model of dissociative adsorption of diatomic 
molecules. а is the initial sticking probability, F is the flow of hydrogen molecules into the area of one adsorption site. F 
is calculated by: 

 𝐹 = ଵ౪ × ౄమඥଶౄమ୩ా்ౄమ, (2) 

where pH2 is hydrogen partial pressure near the sample surface, nat is the density of hydrogen adsorption sites on the 
surface. It is commonly assumed that nat is roughly equal (it may differ by 2-3 times) to the density of substrate surface 
atoms. mH2 is the mass of a hydrogen molecule, TH2 is the hydrogen gas temperature, kB is Boltzmann constant. If the 
presence of surface roughness is presumed, a coefficient-multiplier should be introduced for this term (and, perhaps, for 
the other terms too). 

The second term of equation (1) is responsible for removing hydrogen from the surface by thermally-stimulated 
recombinative desorption. Hence, b is the rate coefficient of desorption, which in the simplest form can be described 
similarly to the Polyani-Wigner equation, widely used in the temperature-programmed desorption (TPD) analysis. So b 
can be expressed as: 

 𝑏 = బଶ exp {ିாோ் }, (3) 

where b0/2 is the pre-exponential factor, Ea is the activation energy of desorption, T  is the sample temperature.  
The next term (-Dθ ) describes the dissolution/absorption of hydrogen from the surface into the bulk of the sample. 

Accordingly, D is the frequency of hydrogen atoms absorption from the surface into the volume. In our experimental 
SIMS practice, some diffusion of hydrogen atoms from the outmost surface layer inward of the sample occurred for 
practically every studied intermetallic alloy: LaNi5 and its Al-, Mn-modified variants [32], TiFe [12], Zr-based non-
evaporable getter alloys [13]. The degree of such absorption below the surface was different based on alloy characteristics. 
For three Zr-based alloys, the absorbed amount was roughly proportional to hydrogen exposure (p{H2}×t), was seemingly 
unlimited at studied hydrogen pressures (below 104 Torr, 1 Torr = 133.322Pa), and was regarded as true bulk-absorption. 
For other studied alloys, only a limited amount of hydrogen migrated to subsurface. Estimated amount of such subsurface-
migrated hydrogen was comparable to or few times higher than the amount of surface-chemisorbed hydrogen, and it could 
not be increased by increasing hydrogen exposure. Such limited absorption was characteristic to the alloys which had 
relatively small enthalpies of their hydrides or hydrogen solid solution, which equilibrium pressure are of order of the 
atmospheric pressure that is many orders of magnitude higher than the studied p{H2} range. Whereas, Zr-based getter 
alloys which absorbed hydrogen in bulk are characterized by large-value negative enthalpies, resulting in the high stability 
of hydrides/dissolved hydrogen at room temperature-UHV conditions. For most of the alloys dissolution/migration rate 
increased with temperature indicating the presence of the activation barrier. 

The following two terms (-s1jpθ and -2s2jpθ 2) describe the removal of hydrogen from the surface as a result of ion 
beam bombardment. Therefore, these terms are proportional to the ion beam current density (jp). The term -s1jpθ represents 
all mechanisms of ion beam induced removal the rate of which is proportional to hydrogen coverage: collision cascade 
sputtering would be one of such mechanisms. The term -2s2jpθ 2 represents the removal by ion beam induced 
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recombinative desorption (i.e. in the form of H2 molecules), therefore it is proportional to hydrogen coverage squared: 
such removal may occur at high hydrogen coverage since the energy needed to form and remove an H2 molecule from 
the surface is substantially smaller than the energy needed to remove an alone H atom. The coefficients s1 and s2 represent 
the effectiveness of the corresponding removal rates. 

Regarding the ion beam sputtering of hydrogen, the authors of paper [33] provided theoretical argumentation for 
ineffectiveness of the collision cascade sputtering in the case of chemisorbed hydrogen atoms on the surface of metals. 
According to the argumentation, the amount of kinetic energy transferred to a hydrogen atom in a collision with a metal 
atom having typical values of the kinetic energy in the cascade is not enough to overcome the bonding of hydrogen atom 
to the surface. The transferred energy is reduced due to the large mass difference between hydrogen and metal atoms. 
However, the experimental findings about the ion beam removal rates of chemisorbed hydrogen at small surface coverages 
indicate that the rate of hydrogen removal is instead 20-30% higher than the removal rate of chemisorbed oxygen2 [12], 
and these rates are practically of the same order as the sputtering rate of metal atoms. Such rather high effectiveness of 
hydrogen removal may be a result of hydrogen sputtering in the form of molecules MeH formed with sputtered metal 
atoms Me, as proposed for the case of sputtering of oxygen-metal systems [34]. In such a case, there is no need to transfer 
the kinetic energy to hydrogen atoms to detach them from the surface, instead, hydrogen atoms only need to replace the 
bond with the surface by a bond with a metal atom that leaves the surface during a sputtering event. Known data 
indicate [35] that the binding energy values are comparable for the case of hydrogen atoms on metal surfaces and for the 
case of hydrogen atoms within a molecule with a metal atom. The existence of such a mechanism is confirmed by the 
presence of hydrogen molecules with metal and semiconductor atoms in the mass spectra of neutral sputtered particles 
from surfaces with the hydrogen presence [36,37], and also confirmed by the presence of polyatomic hydrogen-containing 
secondary ions in the mass spectra obtained in [11–14]. 

Regarding the removal of hydrogen by recombinative desorption of H2 molecules induced by ion bombardment, 
such a removal may occur within very short time after an ion impact on the surface as a result of electrons excitation 
around the impact place. Such electronic excitations (if ~10 keV ions can induce them) are known [38,39] to desorb 
hydrogen molecules from surfaces including surfaces that adsorb hydrogen dissociatively, although such desorption can 
deviate from the second-order kinetics [38,39]. Another pathway of ion-induced H2 desorption might be provided at the 
‘late’ stages of collision cascades. At these stages, the energy of an impacting ion becomes distributed among many target 
atoms in the vicinity of the impact, and although individual atoms no longer have enough energy for knock-off sputtering, 
the activation energy of the order of 1 eV may still be supplied for associative desorption of H2 molecules. Studies [40,41] 
show that the ‘effective temperature’ of the near-surface region excited by an impact of ions with the energy of an order 
of 10 keV can reach thousands of K, which can promote the thermal-like hydrogen desorption. 

The last term s0jpθ0 introduces the hydrogen contained in the sample volume and its appearance on the surface as a 
result of the sample material removal by ion beam sputtering, i.e. as a result of sample erosion/etching and gradual 
‘shifting’ of the surface into the depth of the sample. Small amount of homogeneously distributed immobile hydrogen in 
the sample bulk is assumed by this term. If s0jp represents the frequency of ion beam removal of one monolayer of the 
sample atoms then θ0 represents the coverage-equivalent hydrogen content per one monolayer in the sample volume. 

 
2.2. The Steady State Solution 

Under conditions of dynamic equilibrium, i.e. when hydrogen concentration on the surface is constant, the sum of 
all components in (1) is zero. Considering all process rate constants as independent of time and coverage, expression (1) 
is a quadratic equation for θ. Therefore, it is possible to obtain a solution (4) that expresses the coverage dependence on 
all coefficients present in (1). 

 𝜃 = ାସிା௦భ౦ିට(ାସிା௦భ౦)మା଼(ିிା௦మ౦)(ଶிା௦బ౦ఏబ)ସ(ିାிି௦మ౦) . (4) 

If there is no absorption into the bulk (D = 0) and also there is no thermally-stimulated desorption ( b = 0 ), expression 
(4) can be rewritten as: 

 𝜃 = ସ ಷೕ౦ା௦భିට଼ ಷೕ౦(௦భାଶ௦మି௦బఏబ)ା௦భమା଼௦మ௦బఏబସ ಷೕ౦ିସ௦మ , (5) 

in which, the current density of the ion beam and hydrogen partial pressure are present only in a form of the ratio F/jp. 
That is, if an x-fold change in the current density is accompanied by the same x-fold change in the hydrogen partial 
pressure, then the coverage remains unchanged. Such a result was indeed obtained more than once for some of the studied 
alloys [12,13] if not heated. 

 
2 Note that the mass of oxygen atoms is only several times smaller than the mass of metal atoms, not dozen times smaller as in the case of hydrogen 
atoms. 
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2.3. Calculated Effects of Different Processes on Steady State Surface Coverage 
Fig. 1 (a-d) shows the dependences of surface coverage on hydrogen pressure, as calculated using expression (4). 

To illustrate the influence of various processes, calculations were done with a set of parameters values that characterize 
the processes included in equation (4). Fig. 1a shows how the residual/bulk hydrogen concentration affects the coverage 
dependence on hydrogen pressure.  

 
Figure 1. The dependences of surface coverage by adsorbed hydrogen atoms on the hydrogen gas pressure as calculated using 
expression (4) for a set of values of the parameters that characterize the processes included in the model. a: influence of the residual 
hydrogen presence, b: influence of the ion-induced recombinative desorption, c: influence of the absorption rate from the surface 
into the bulk, d: influence of the rate of thermally-stimulated recombinative desorption. 

Fig. 1b illustrates how the rate of hydrogen removal by ion-induced recombinative desorption influences the 
coverage dependence on pressure. The influence of ion-induced desorption manifests as a decrease of the rate with which 
the concentration increases: It slows down the asymptotic approaching to ‘the saturation’, but its influence diminishes at 
low coverages due to the second order kinetics of the desorption. 

The main effect of the presence of absorption from surface to bulk is the decrease in surface coverage at the same 
hydrogen pressure (Fig. 1c). As the rate of absorption increases, the dependence curves shift toward higher pressures, 
since to achieve a certain concentration, the part of hydrogen which is removed from the surface due to absorption must 
be compensated by an increase in the amount of adsorbed hydrogen, which is achieved when the pressure is increased. 

The influence of the rate of thermally-stimulated desorption is illustrated in Fig. 1d. Relatively small values of the 
desorption rate produce the effect which has been already described above in the explanation for Fig. 1b. However, the 
values of the desorption rate at high temperatures can be very large compared to the ion sputtering rate (the curve for 
b=1000 in Fig. 1d is an example). In such a case, the dependence of coverage on the pressure at middle-to-small coverages 
becomes proportional to the square root of the pressure instead of the linear dependence on the pressure, which is in 
accordance with Sievert's law. This change from the linear to the square root dependence can be used to identify the 
recombinative desorption process when it dominates over other hydrogen removal processes. 

 
3. PRACTICAL APPLICATIONS IN SIMS MEASUREMENTS 

The main aim of the development of the model was its application for interpretation of experimental results of 
hydrogen interaction with alloys or metals obtained during in situ SIMS measurements. Therefore, practical application 
of the model for processes analysis as well as for obtaining quantitative estimates of the characteristics of hydrogen 
interaction with few studied samples are described below. 



103
A Simplistic Analytical Model for Hydrogen Surface Coverage Under the Influence... EEJP. 2 (2024)

3.1. A Time-Dependent Solution Characterizing Ion Beam Sputtering 
At low coverages, the rate coefficient of linear hydrogen removal by ion bombardment jps1 can be determined 

experimentally. In the absence of desorption (b=0 ), the other terms in (1) proportional to θ2 can be neglected at low 
coverages. Besides that, if there is no absorption into the bulk (D=0 ), then equation (1) can be simplified to the form: 

 ௗఏௗ௧ = −𝜃൫4𝑎𝐹 + 𝑠ଵ𝑗൯ + 2𝑎𝐹 + 𝑠𝑗𝜃. (6) 

If only θ depends on time, then the solution of (6) is: 

 𝜃 =  𝐶exp {−൫4𝑎𝐹 + 𝑠ଵ𝑗൯𝑡} +  ଶிା௦బఏబସிା௦భ . (7) 

At low adsorption rates (at low hydrogen pressures) compared to the sputtering rate, expression (7) can be 
represented in the form: 

 𝜃 ≈  𝐶exp {−𝑠ଵ𝑗𝑡} +  𝐶ଵ, (8) 

that is, in the form of an exponential decay function, where C0+C1 is the initial value of the coverage at the beginning of 
sputtering, while С1 is the residual coverage after prolonged sputtering. Using this function for fitting the dependences of 
H- emission intensity on time measured during the sputtering of the chemisorbed hydrogen that was beforehand adsorbed 
at small exposures (<0.3 Langmuir), it is possible to determine the value of s1jp, or the value of characteristic removal 
time τ = (s1jp)-1, as shown in Fig. 2. 

It should be noted that it is potentially possible to experimentally characterize also the quadratic removal rate s2jp in 
similar experiments if the coverage (exposure) is not limited to low amounts but extended to the saturation. However, the 
experiment results with the TiFe and few other alloys indicated that some amount of hydrogen can diffuse into subsurface 
sites or into the bulk, and this diffusion is facilitated by sample temperature or by high surface coverage [13,14,32]. 
Therefore, in such cases, the assumption that hydrogen is adsorbed only within the topmost surface monolayer is not valid 
anymore. Another possible complication is the nonlinearity of secondary ion yield relation to hydrogen coverage [12]. 
Due to these factors, the analysis of hydrogen removal was not attempted at high coverages. 

 
Figure 2.  Points: dependences of the emission intensity of H- secondary ions on sputtering time as measured after various small 
exposures of the TiFe alloy surface in hydrogen atmosphere. Lines: curves of the exponential decay function (8) used to approximate 
the measured dependences. The values of characteristic removal time τ obtained from the approximations are also listed. 
 

3.2. Applications for Adsorption, Sputtering, and Desorption Characterization 
Fig. 3 shows examples of the approximations of experimental data using expressions (2-4) for the dependences of 

hydrogen-containing secondary ions emission intensity on hydrogen pressure (Fig. 3a) and the sample temperature (Fig. 
3b) which were measured with the TiFe alloy sample. Fig. 3a shows the measured points and the fitting curves for two 
types of secondary ions: 48TiH+ and H-. The corresponding values of adsorption and sputtering parameters determined 
from their approximations are also listed. To compare the emission intensities of the secondary ions with the amount of 
hydrogen coverage, the correspondence of θ = 1 to intensity values of ~7700 relative units was used for 48TiH+ and ~600 
relative units for H-. Such values were determined by measuring the intensities after high (>104 Langmuir) surface 
exposures in hydrogen atmosphere without ion bombardment just after the beginning of bombardment. The ion 
bombardment was initiated with substantially reduced beam current density to minimize hydrogen removal, thus 
appropriate normalization of intensity values using the ratio between the nominal and the reduced beam current densities 
was done.  



104
EEJP. 2 (2024) Ivan I. Okseniuk, et al.

 
Figure 3. Approximations of the measured dependences for the TiFe alloy. a: secondary ion emission intensity dependences 
I{48TiH+} and I{H-} on hydrogen pressure and their fits using formula (4), b: I{H-} dependence on the sample temperature at 
hydrogen pressure p{H2}=7.1×10-6 Torr and its fits using formulae (2-4), (assuming D=0). 

Besides the intensity scale factors, other pre-set parameters in the approximations were the rate coefficient of 
hydrogen removal: s1jp = 0.167 s-1 as determined from the results shown in Fig. 2, and the value nat = 1.8×1015 cm-2 used 
in expression (2) (it was calculated using the density of TiFe alloy 6.5 g×cm-3 [42]), assuming that it is equal to the density 
of possible hydrogen atom chemisorption sites on the alloy surface. Other parameters values included in equation (4), 
namely the sticking probability, the rate coefficient of ion-stimulated H2 desorption, the contribution of hydrogen content 
in the sample bulk to the surface coverage, were determined when approximating the measured dependences on hydrogen 
pressure by formula (4), as shown in Fig. 3a, provided that absorption (D=0) and desorption (b=0) are effectively absent. 

The parameters values determined by the approximation differ quite substantially when using I{48TiH+} or I{H-} 
dependences. Nevertheless, both values of the sticking probability correspond to the range of typical values for many 
transition metals [35,43]. The relatively large value of s2/s1 determined from the approximation using I{48TiH+} may 
indicate that, starting from the coverage θ ≥ 0.278, most of the hydrogen is removed from the surface by ion-stimulated 
recombinative desorption. 

The difference in the measured pressure dependences for TiH+ and H-  is because the yields of secondary ions either 
TiH+ or H- (or both of them) nonlinearly depend on the hydrogen surface concentration when the concentration is high. 
The possible reasons for the nonlinearity are discussed in [12]. Since the secondary ion emission intensity values 
corresponding to the coverage saturation (7700 rel. units for TiH+ and 600 rel. units for H-) were determined at ‘maximal’ 
coverage, the nonlinearity is included in the dynamic range of the ion emission intensity and therefore affects the values 
resulting from the fittings, including the residual hydrogen concentration (θ0) and sticking probability (a), even that the 
dependence lines for I{TiH+} and I{H-} in Fig. 3a are parallel (can match each other when shifted) at low concentrations. 
Unfortunately, it is not possible to determine whether the yield dependences of these secondary ions on the concentration 
are linear or not with the available experimental data. In order to obtain reliable parameters values by doing such 
approximations as shown in Fig. 3, the knowledge of the exact relationship between the secondary ion emission intensities 
and the hydrogen concentration is required. To obtain such knowledge, it is necessary either to know the value of the 
sticking probability of hydrogen and its precise dependence on coverage or to use another quantitative method for in situ 
calibration, such as temperature programmed desorption (TPD) or nuclear reaction analysis (NRA) [16,17,44–46]. 

Fig. 3b shows the measured points of the temperature dependence of secondary ion emission intensity and several 
variants of their approximation using expressions (2-4) in the presence of thermally-stimulated hydrogen desorption from 
the surface. The values of the desorption activation energy Ea and the pre-exponential factor b0 are also given for each 
approximation variant. At coverages θ ≤ 0.2, the calculated dependences of the coverage on the temperature coincide 
quite well with the measured points. However, at higher coverages, experimental results indicate that desorption begins 
at significantly lower temperatures than predicted by the calculations. Most probably this is a result of a reduction of the 
desorption activation energy at high coverages, which has not been accounted for in (3). This reduction may be related to 
the desorption from less strongly bound states on the surface, or related to the existence of repulsive interaction between 
the adsorbed hydrogen atoms [47–49]. Another problem concerning specifically the approximation in Fig. 3b is the 
presence of a ‘compensation effect’ [47,50], which consists in that different combinations of the values of desorption 
activation energy Ea and of the pre-exponential factor b0 produce very similar calculated desorption rate dependences. 
The accuracy of the experimental data, therefore, allows fitting the data by a certain range of different combinations of 
Ea and b0, as illustrated by curves 1-3. In addition, possible non-linearity of the secondary ion yield relation to the coverage 
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can also contribute to the mismatch of desorption rate at high coverages. Thus, unfortunately, in the absence of an 
accurately calibrated relation between the ion yield and hydrogen coverage/concentration, the estimates of the parameters 
obtained with the approximations in Fig.3 are not reliable. 

 
3.3. Constant-Coverage Approach to Characterize Thermally-Activated Desorption Process 

A possible approach that can bypass the mentioned earlier ‘compensation effect’ and determine the value of the 
desorption activation energy separately is realized by setting up the desorption experiment in the constant coverage mode. 
The calibration of secondary ion yield is also unnecessary unless the activation energy needs to be tied to a specific 
coverage value. Although, one should make sure the relationship between the ion yield and hydrogen concentration on 
the surface is not affected by the sample temperature. 

When a dynamic equilibrium is established among the action of a number of processes, which results in a certain 
surface coverage by chemisorbed hydrogen, and when only the desorption rate coefficient depends on temperature3, the 
hydrogen pressure near the surface can be expressed using relations (1-3) as follows:  

 𝑝 = 𝑐ଵ exp ቄିாோ் ቅ + 𝑝, (9) 

where, Ea is the desorption activation energy, T is the surface temperature, с1, p0 are constants that depend on the coverage 
and the parameters values in (1-3). Formula (9) expresses the necessity to increase pressure exponentially with 
temperature in order to compensate for the increasing desorption rate while maintaining the same coverage.  

The experiments testing such approach were performed with a polycrystalline nickel sample under experimental 
conditions similar to those described in [12]. During the experiments, hydrogen pressure was adjusted and measured 
following each stepwise increase of the sample temperature, in order to maintain constant coverage. The 58Ni2H+ emission 
intensity was used as the main indicator of coverage. The examples of the measured dependences of hydrogen gas pressure 
on the sample temperature are shown in Fig. 4a. 

 
Figure 4. a: Dependences of the hydrogen gas pressure needed to maintain the same surface coverage with chemisorbed hydrogen 
on the reciprocal temperature of the nickel sample. Points denote experimental data, lines correspond to its fit with formula (9). b: 
Dependence of the obtained hydrogen desorption activation energy Ea on the ratio of secondary ion emission intensity 
I{58Ni2H+}/I{58Ni2+}, serving as a relative measure of the surface coverage with hydrogen. 

The plotted two sets of data were obtained at twofold-different values of ion beam current density but the same 
coverage. The logarithmic scale plot of hydrogen pressure on the reciprocal sample temperature gives a straight line 
indicating the existence of exponential dependence in the temperature range where the desorption rate dominates over the 
ion-induced removal. Fitting the data (see the lines in Fig. 4a) with function (9) allows one to determine the desorption 
activation energy Ea. Such measurements and approximations were carried out at different hydrogen coverages, which 
thereby provided information on how Ea changes over about two orders of the coverage amount. Fig. 4b shows the 
dependence of Ea on the secondary ion emission intensity ratio I{58Ni2H+} / I{58Ni2

+}, which serves as an instrument-
independent measure of the relative surface coverage by chemisorbed hydrogen [17,18]. The obtained values are close to 
the known values of Ea = 1 eV/H2 for Ni(111), Ni(100) [43], whereas the increase of H2 adsorption heat (which is related 
to the measured here Ea) from small to moderate coverages was also observed for Ni(110) [51]. 

 
3 if there is effectively no absorption, and neither the rate of ion-induced hydrogen removal nor the chemisorption sticking probability depend on the 
sample temperature, which is valid for the TiFe alloy, at least in the range of 300-500 K [12] 



106
EEJP. 2 (2024) Ivan I. Okseniuk, et al.

3.4. Characterizing Thermally-Activated Absorption/Dissolution Processes 
The developed model was also applied to characterize hydrogen absorption/dissolution process, i.e. the transition of 

hydrogen atoms from the surface chemisorbed sites into the volume of the Zr2Fe getter alloy sample [13]. In the studies 
series with Zr2Fe, the dependences of emission intensities of several types of negative secondary ions on hydrogen 
pressure were measured at three sample temperatures. The bombarding ion beam current density jp was reduced fivefold 
from the nominal during those measurements. Such measured dependencies are shown in Fig. 5 for the secondary ions 
H-, 56FeH-, and 90ZrH2

-. It was also found [13] that increasing the sample temperature above 300 K leads to a progressive 
increase in the efficiency of hydrogen absorption into the bulk of the alloy. 

Following the model predictions, a substantial increase in the rate of hydrogen absorption from the surface into the 
depth of a sample causes a shift of the coverage dependence on the pressure towards higher pressures (Fig. 1c). Similar 
shift of the curves towards higher pressures is observed in the experimental results in Fig. 5 with increasing the sample 
temperature. For comparative purposes, the dependences measured at 513 K are additionally plotted in Fig. 5 with their 
hydrogen pressure values multiplied by 10 (hollow point symbols). These ‘shifted’ dependences approximately coincide 
with the dependences measured at 627 K, thus the dependences measured at 513 and 627 K are approximately parallel 
with ten times difference in the hydrogen pressure between them, which is similar to the parallel shifts predicted in Fig. 1c. 

 
Figure 5. Dependences of the secondary ion emission intensity of negative hydrogen-containing secondary ions on hydrogen 

partial pressure measured at several temperatures of the Zr2Fe alloy sample. For these measurements, the current density of the 
primary ion beam was fivefold-reduced (s1jp ~ 0.05 s-1) from its nominal value. 

Considering that the absorption of hydrogen from the surface chemisorption states into the bulk of the alloy is a 
thermally-activated process, it is possible to estimate the effective value of its activation energy from the available 
experimental results. Besides the desorption, expression (9) can be used for the evaluation of the absorption activation 
energy too. The values of c1, p0, and Ea can be found after selecting three hydrogen pressure values at each sample 
temperature that correspond to the same coverage. At 315 K, the hydrogen coverage is mostly limited by the ion beam 
removal, and the rate of hydrogen outflow into the bulk is comparatively small [13], thus in expression (9), the 
contribution from p0 is dominant. At 513 and 627 K, the rate of hydrogen removal from the surface by absorption already 
exceeds several times the rate of its sputtering by ion beam, thus in expression (9), the contribution of с1exp{–Ea/(RT)} 
is dominant, which allows determining c1 and Ea. The found value of the absorption activation energy is Ea=0.61 eV at 
hydrogen coverage around the middle of the investigated range. Since based on only three available points of hydrogen 
pressure it is impossible to confirm the presence of a straight-line segment on a logarithmic plot, similar to that in Fig. 
4a, the found Ea value can be considered only as an estimate.  

 
3.5. Characterizing the Surface Stage of Desorption of Bulk Absorbed Hydrogen 

In such process, hydrogen atoms migrate from the volume of a metal/alloy to its surface (let’s call it the bulk stage) 
where they recombine into H2 molecules and desorb (the surface stage). The bulk stage can consist of other sub-stages 
such as H-detrapping, hydride phase decomposition, diffusion and we won’t consider the details of the bulk stage due to 
its general complexity and our inability to control/study it with SIMS. The surface stage is assumed to be the same as for 
the desorption of chemisorbed hydrogen, although the exceptions from this are possible. The hydrogen atoms migrating 
from the bulk to the surface are ‘segregating’ on the surface before the desorption in the same states as chemisorbed 
hydrogen. Therefore, in SIMS conditions, the processes included in equation (1) apply. Essentially, the surface receives 
a flow of ‘segregating’ hydrogen atoms from the bulk. This flow, in one of most simple ways, can be modelled by a term 
(10) equivalent to atomic (first order) adsorption and be added to the equation (1). 
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 +𝑘௦(1 − 𝜃). (10) 

Here ks is the segregation frequency which depends on all of the bulk sub-stages, (1–θ) is the surface site availability 
factor. This process in isolation should produce increase of the coverage up to the saturation. In our SIMS experimental 
practice, it was never observed in isolation, but only simultaneously with other processes which makes it difficult to study. 
However, there had been experiments where it helped in studying the surface desorption stage.   

Hydrogen absorbed in the bulk of the Zr2Fe alloy could be desorbed by high-temperature heating of the sample. The 
desorption rate could be measured by gas mass spectrometer (TDS/TPD technique) and hydrogen coverage on the surface 
could be simultaneously monitored with H-containing secondary ion signal. Such experiments were presented in [13], 
although a round of similar experiments was conducted later with slightly modified technique. Briefly, in these 
experiments the sample was exposed to various hydrogen pressures for 175 seconds, at T ≈ 473 K. The Ar+ beam 
bombardment was started simultaneously with heating of the sample to generate secondary ions for monitoring of 
hydrogen coverage changes on the surface. The intensity changes of ZrH+ secondary ions and the hydrogen pressure in 
the sample chamber, reflecting desorption of the absorbed hydrogen during the temperature ramp (1.45 K/s) after 
exposures, are shown in Fig. 6. 

 
Figure 6. Dependences of emission intensity of 92ZrH+ secondary ions on time (a) and dependences of hydrogen pressure in the 
sample chamber on time (b) during the heating and desorption of hydrogen from the Zr2Fe alloy sample exposed to hydrogen 
atmosphere (exposures: <5 to 3×104 Langmuir). The I{92ZrH+} dependences are smoothed by a moving average filter with a window 
size of 8 s for better visibility, and the background hydrogen pressure in the sample chamber is subtracted from the hydrogen 
pressure dependences. 

During the analysis of these results, we hypothesized that in these experiments surface hydrogen coverage might be 
in an effective equilibrium between the segregation of hydrogen and hydrogen removal processes (its thermal desorption 
and sputtering by ion beam) since the surface was not saturated with hydrogen when substantial desorption occurred. At 
high temperatures, the rate of (thermal) recombinative desorption can be much higher than that of the beam sputtering. 
Therefore, the main processes that determine the hydrogen surface coverage are its segregation on surface and 
recombinative desorption, whereas impacts of other processes are comparably small. The segregation flow in such 
conditions is approximately equal to the desorption flow (when neglecting all other processes and neglecting the change 
of actual amount of hydrogen on the surface), hence the measured pressure rise due to the desorbing hydrogen ∆𝑝 {Hଶୢୣୱ୭୰ୠ.} can be used as a measure of the segregation flow. In the dynamic equilibrium corresponding to such 
conditions, from (1) we can find:  

 2𝑏𝜃ଶ ≈  𝐶ଶ∆𝑝{Hଶୢୣୱ୭୰ୠ.}, (11) 

where C2 is an instrument-sample-characteristic constant. Relation (11) is similar to the main relation of conventional 
TDS-analysis for second order desorption, but the crucial difference here is that in case of the desorption from bulk 
Polyani-Wigner equation generally cannot be used to find the surface coverage. The relation (11) can also be expressed 
as 

 ∆{ୌమౚ౩౨ౘ.}ఏమ ≈  𝐶ଷ𝑏, (12) 

where C3 is another instrument-sample-characteristic constant. From the experiments in Fig.6, we have both the desorbing 
hydrogen pressure and ZrH+ ion intensity which reflects the surface coverage. According to (12), the ratio 
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∆𝑝{Hଶୢୣୱ୭୰ୠ.}/(I{ZrH+})2 should be proportional to the desorption frequency constant, which (if not dependent on 
coverage) should be a function of temperature only and, in these experiments, should be the same at the same sample 
temperature. The ratio is plotted versus desorption time/sample temperature in Fig. 7a. Indeed, the ratio curves constructed 
from different hydrogen absorption-desorption experiments coincide at higher temperatures, demonstrate seemingly 
exponential growth when the sample temperature increases linearly, and demonstrate plateau when temperature is 
stabilized at 1167K, which is the expected behavior for the desorption frequency constant. This validates the hypothesis 
and the assumptions above. Plotting the ratio curves using a logarithmic scale versus inverse temperature Fig. 7b produces 
a straight line in the region where the individual curves coincide, confirming the exponential dependence on temperature. 
Fitting the line with exponential function similar to (3) allows extraction of the activation energy Ea=1,85 eV of hydrogen 
desorption from the surface of the studied Zr2Fe alloy sample.  

 
Figure 7. Dependences of the ratio of desorbing hydrogen pressure (from Fig.6b) to hydrogen-containing secondary ion emission 
intensity I{92ZrH+} squared (from Fig.6a) on the sample heating/desorption time (a) and on the inverse sample temperature (b). 
Note that some dependence curves are manually shifted on Y-scale for better visibility. 

 
4. CONCLUSIONS 

The developed model is a simple and useful tool for practical analysis and characterization of hydrogen interaction 
processes with metal samples using the dynamic SIMS technique as demonstrated by the examples of extraction of the 
quantitative process parameters of hydrogen sputtering, absorption, and desorption. At the same time, the simplified 
reflection of the processes, characteristic parameters of which often depend on the amount of coverage, can limit the 
model's applicability. Regardless of that, in the case of analysis of SIMS measurements, the major obstacle preventing 
the full-potential realization of the model capabilities to quantitatively characterize the interaction processes occurring 
during the experiments was the lack of experimental data on the exact correspondence of the yields of secondary ions to 
the hydrogen concentration on the surface and the yields nonlinearities, which is a problem of the experimental technique 
rather than of the model and should be addressed in future studies. 
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ПРОСТА АНАЛІТИЧНА МОДЕЛЬ ПОКРИТТЯ ПОВЕРХНІ ВОДНЕМ ПІД ВПЛИВОМ РІЗНИХ ПРОЦЕСІВ НА 

ПОВЕРХНІ ТА ІОННОГО БОМБАРДУВАННЯ 
Іван І. Оксенюк, Віктор О. Літвінов, Дмитро І. Шевченко, Інна О. Афанасьєва, Валентин В. Бобков 
Харківський національний університет імені В. Н. Каразіна, майдан Свободи 4, 61022, Харків, Україна 

У статті описано просту аналітичну модель, яка дозволяє розрахувати покриття поверхні воднем під дією декількох процесів, 
що можуть відбуватися одночасно під час бомбардування/розпилення поверхні зразка іонним пучком, зокрема під час аналізу 
за допомогою вторинної іонної мас-спектрометрії (ВІМС). Модель розглядає процеси дисоціативної адсорбції, десорбції, 
поглинання з поверхні в об’єм зразка та видалення водню іонним бомбардуванням. Після опису моделі наведено низку 
прикладів її практичного застосування для інтерпретації експериментальних результатів, отриманих під час in situ ВІМС-
досліджень взаємодії водню з гідридоутворюючими сплавами, TiFe, Zr2Fe та з нікелем. У наведених прикладах, із 
застосуванням різних апроксимацій моделі було успішно визначено низку кількісних характеристик поверхневих процесів за 
участю водню, зокрема швидкість розпилення водню, величини енергії активації десорбції та абсорбції водню.  
Ключові слова: вторинна іонна мас-спектрометрія; іонне бомбардування; розпилення; накопичення водню; адсорбція; 
десорбція; кінетика 
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Scandium XIX ion is a member of the isoelectronic sequence of Li-like ions. Numerical coulomb approximation and quantum defect 
theory have been used to calculate energies, quantum defects & transition probabilities, oscillator, and line strengths of Sc XIX ion for 
the transitions ns → mp, np → ms, np → md, and nd → mp Rydberg series. The energies of Sc XIXX ions up to n = 5 are given in the 
NIST database and the literature. We used quantum defect theory and determined the energies and quantum defects up to n = 30. The 
energies and quantum defects of 125 levels are reported for the first time. Sc XIX ion's transition probabilities, oscillator, and line 
strengths were compared with the corresponding values in the NIST database of spectral lines. The NIST database contains data of 
only seventy-six spectral lines. Only six spectra lines have percent uncertainties of more than 10%. The results of the remaining seventy 
spectral lines agree well with the NIST values. Almost 1800 transition probabilities, oscillators, and line strengths are new. 
Keywords: Scandium; Li-like; Rydberg Level; Quantum Defect theory; Transition Probability; Oscillator strength; Line Strength 
PACS: 31.10, +z, 31.15.−p, 31.15.Ct, 31.90.+s, 32.30-r 

INTRODUCTION 
The knowledge of the composition of stars plays an important role in understanding the galaxies. Different stars 

have different compositions of elements, giving different physical and chemical properties to the stars. Scandium, 
Vanadium, and Yttrium are observed in galactical centers [1]. It is believed that atomic diffusion below the superficial 
convection region is the cause of abundance anomalies in AmFm stars. Scandium is a key element to understanding this 
cause of abundance, as it is one of the underabundant elements at the surface of AmFm stars [2]. The nucleosynthesis 
theory and the chemical evolution of the Galaxy of long-lived F and G stars can be understood by scandium abundance [3]. 
The hyperfine structure studies data were used to determine the Scandium abundance in Sun and Arcturus [4]. 

The calculation of the ionization potential of Sc XIX to Zn XXVIII by the R-matrix method was compared with the 
full core plus correlation method. The R-matrix method was also used to calculate the quantum defects of the series 
1s2 nh [5]. An improved theoretical prediction of the g factor of Li-like ions was performed using QED corrections. The 
calculations were compared with three different methods, including QED, and the results were consistent [6]. With the 
help of full-core-plus-correlation, the energies of Li-like Sc XIX to Zn XXVIII ions were calculated for the series 1s2ng 
(n = 5 to 8). An effective nuclear charge formula was used to reduce the uncertainties, and first-order perturbation 
calculations were done to assess the mass and relativistic polarization effects [7]. The energies and fine structure intervals 
of 1s2l2l' for Li-like ions from Ar to U were calculated using the relativistic configuration interaction method. The 
calculations include QED corrections, nuclear recoil effect, and Breit interaction [8]. The g factor of Li-like ions was 
calculated, and the effect of nuclear recoil was evaluated for Z =3 -92; using Breit interaction, the recoil term for two 
electrons is calculated for low and middle Z ions [9]. The energy, electron impact excitation, and transition rates were 
calculated for an isoelectronic sequence of Li-like ions from 21 ≤ Z ≤ 28. The energy and transition probabilities were 
calculated using the General-Purpose Relativistic Atomic Structure Package (GPRASP) for the lowest 24 levels. 
The r-matrix method was used to calculate the excitation rates. The transition probabilities were used to calculate the 
lifetimes of the levels [10]. The spectra of the isoelectronic sequence of lithium are determined using the QED 
approach [11]. The full core plus correlation method is employed to determine the transition energies and the dipole 
oscillator strengths 1s2 2s–1s2 np (2⩽ n⩽ 9) and 1s2 2p–1s2 and (3⩽ n⩽ 9) of lithium-like Sc 18+ ion. The expectation 
values of spin-orbit and spin-other-orbit interaction operators were used to obtain the fine structure splittings of 1s 2np 
and 1s2nd (n≦9). The quantum defects of the above series, as a function of the principal quantum number n, are 
determined. The agreement between the values obtained from three alternative formulae is excellent [12]. 

Compared with quantum defects for high-Z ions, the energy level data recommendation by the screening constant 
is more effective and accurate. The quantum defect converges to a small value as Z increases, whereas the screening 
constant decreases monotonically. The dependency of the screening constant on Z is approximately. 𝑍ଷ for values of Z=10 
to Z=40, and 𝑍ଷ.ହ for values of Z= 40 to Z=70, and 𝑍ସ for 𝑍 > 70. The dependence of the screening constant on 𝑍ଷ could 
be explained in terms of the spin-orbit interaction of the hydrogenic wavefunction in the Coulomb potential [13]. By 
considering the differences between calculated ab initio values of the ionization potentials and the NIST-evaluated for Li 
through the Ar isoelectronic series, new ionization potentials are extracted for several light ions for Z=3 to Z=50. The 
relativistic multiconfiguration Dirac-Fock method has been applied to calculate the ionization energies' ab initio 
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values [14]. Energies of lithium 1s 2s 2S and 1s2 2p2P isoelectronic sequence for values of Z up to Z=40 are calculated 
using a variational method. The oscillator strengths, finite nuclear mass effects, and the associated lifetimes for the 
transitions 1s2 2s2S→1s22p2P are determined for Z up to 20 [15]. The fine structure levels (n≤ 12, 𝑙 ≤ 5) for 𝐶𝑎ଵା, 𝑆𝑐ଵ଼ା,𝑇𝑖ଵଽା,𝑉ଶା,𝐶𝑟ଶଵା and 𝑀𝑛ଶଶା and the radiative transition probabilities between them are calculated in the 
multiconfiguration Dirac-Fock scheme [16]. 

 
THEORY 

For non-relativistic calculations of energy and wavefunctions of Li atom and Li-like ions the Schrödinger equation 
in atomic unit in the following forms can be used. 

 𝐻 = ∑ ቀ− ଵଶ ∇ଶ − ቁேିଵ + ∑ ଵೕேவ  (1) 

The Li atom and Li-like ions, however, can be treated as hydrogen-like if the electrons other than the valence shell 
electron, i.e., the electrons in 1s orbital together with the nucleus, are considered core, around which the valence electron 
revolves. In such case, the radial part of the Schrödinger equation becomes; 

 ௗమோௗమ + ଶ ௗோௗ + 2 ൬𝐸 + ∗ − ∗ሺ∗ାଵ)మ ൰ = 0, (2) 

here 𝑙∗ = 𝑙 − 𝛿 ,𝑛∗ = 𝑛 − 𝛿, 𝛿 is the quantum defect and is given as a function of n. The values of 𝛿  can be found 
using Quantum Defect Theory. The solution of equation (2) gives the radial wavefunction given by [17-18] 

 𝑅 = ቀଶ∗∗ ቁ∗ାయమ ට ሺ∗ି∗ିଵ)!ଶ∗௰ሺ∗ା∗ାଵ) 𝗑 exp ቀ− ∗∗ ቁ 𝑟 ∗𝐿∗ି∗ିଵଶ∗ାଵ ቀଶ∗∗ ቁ. (3) 

The energy (𝐸), corresponds to the principal quantum number' n', is given by the effective principal quantum number' n* '. 

 𝐸 = 𝐼 − ோమሺିఋ)మ. (4) 

The value of 𝛿 is found by 

 𝛿 = 𝑎 + భሺିఋ)మ + మሺିఋ)ర + యሺିఋ)ల. (5) 

The coefficients 𝑎, 𝑎, 𝑎, and 𝑎 are known as spectral coefficients; the values of these constants depend on the 
nature of the orbital, i.e., penetrating and non-penetrating orbitals and their orbital angular momentum. The values can be 
found with the help of Rydberg levels' first few known energies. 

The transition probability (𝐴) of a transition between fine levels is given by 

 𝐴 = 2.0261 𝗑 10ି  ൫ாିா൯యଶାଵ 𝑆, (6) 𝐸 and 𝐸 are the energies of upper and lower states; S is dipole line strength and is found by 

 𝑆ௌ = ൣ𝐽, 𝐽 , 𝐿, 𝐿൧ ൬൜𝐿 𝑆 𝐽𝐽 1 𝐿ൠ ൜𝐿 𝑙 𝐿1 𝐿 𝑙 ൠ 𝑃(ଵ)൰ଶ. (7) 

The terms in the bracket contain two 6J symbols and the matrix element.𝑃(ଵ), which is given by [19-20]. 

 𝑃(ଵ) = 𝑙வ < 𝑛 , 𝑙|𝑟|𝑛, 𝑙 > = 𝑙வ  𝑟ଷ𝑅𝑅𝑑𝑟ஶ . (8) 

Numerical coulomb approximation is used to calculate the matrix element.  
 

RESULTS AND DISCUSSION 
This study was devoted to calculating energies, quantum defects, transition probabilities, oscillator, and line 

strengths Sc XIX ion of isoelectronic sequence of Li-like ions. The energies and quantum defects of ns, np, and nd series 
are given in tables 1-3. The energies are compared with the available data in NIST [21]and Aggarwal's work [10]. A good 
match between calculated and available energies was found. Table 1 gives the energies of the 1s2ns (2S1/2), and 1s2np 
(2P1/2) series, table 2 gives the energies of 1s2np (2S3/2) and 1s2nd (2D3/2) series, and table 3 gives the energies of 1s2nd 
(2D5/2) series. In each table, 1-3, the first, second, and third columns give the principal quantum number, quantum defects, 
and energies determined in this work, the fourth column gives corresponding NIST values, and the last two columns show 
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the energies from Aggarwal et al.'s work. Aggarwal et al. [10] calculations were based on the General-Purpose Relativistic 
Atomic Structure Package (GPRASP).  

Four different series in spectral transition up to n = 20 were considered for calculating TP, OS, and LS of Sc XIX. 
This work presents eighteen hundred & sixty-two transitions in Rydberg ion Sc XIX, whose TP, OS, and LS are 
determined using numerical coulomb approximation and quantum defect theory. The results were compared with the 
NIST values for Sc XIX. Most of the results agree only six transitions differ significantly. Some of the results are shown 
in Table 5. (The complete results are available as a supplementary file on the Journal site.) There are eighteen columns; 
the first column gives the wavelength in Angstrom. Columns 2, 5, and 8 give the transition probabilities, oscillator, and 
line strengths calculated in this work, and columns 3, 6, and 9 give the corresponding values in the NIST database of 
spectral lines. Columns 4, 7, and 10 give the percent uncertainties between this work and NIST values. Columns 11 and 
12 give the energies cm-1 of lower and upper levels, respectively. Columns 13, 14, and 15 show the configuration of the 
lower levels, term value, and angular momentum. The same for the upper level is given in columns 16-18. Most TP, OS, 
and LS are new and not found in the NIST data. 
Table 1. The quantum defects and energies of 1s2ns (2S1/2) and 1s2np (2P1/2) up to n = 3 compared with NIST [21] and Aggarwal [10] 
results 

n QD 

Energy (Rydberg) 

n QD 

Energy (Rydberg) 

This 
work 

NIST 
[21] 

GRASP1 
[10] 

GRASP2 
[10] This work NIST 

[21] 
GRASP1 

[10] 
GRASP2 

[10] 

2 0.149979 0.00000 0.00000 0 0 2 0.122049 2.79489 2.79489 2.80532 2.80715 
3 0.201701 53.28798 53.28798 53.28735 53.25951 3 0.175645 54.04790 54.04790 54.0638 54.03701 
4 0.253260 71.58441 71.58441 71.58356 71.54981 4 0.227392 71.89983 71.89983 71.90314 71.8698 
5 0.304049 79.97183 79.97183 79.97088 79.93505 5 0.283215 80.10133 80.10133 80.1325 80.09689 
6 0.338553 84.55576       6 0.321839 84.61518 84.49369     
7 0.361442 87.31243       7 0.347657 87.34287 87.26398     
8 0.377025 89.08862       8 0.365304 89.10572       
9 0.387991 90.29572       9 0.377754 90.30608       

10 0.395955 91.15158       10 0.386810 91.15826       
11 0.401899 91.77961       11 0.393577 91.78414       
12 0.406444 92.25370       12 0.398756 92.25690       
13 0.409993 92.62017       13 0.402802 92.62250       
14 0.412813 92.90918       14 0.406019 92.91094       
15 0.415090 93.14108       15 0.408617 93.14243       
16 0.416953 93.32995       16 0.410745 93.33102       
17 0.418498 93.48580       17 0.412508 93.48665       
18 0.419791 93.61588       18 0.413985 93.61657       
19 0.420885 93.72558       19 0.415235 93.72615       
20 0.421819 93.81893       20 0.416301 93.81940       
21 0.422621 93.89902       21 0.417218 93.89942       
22 0.423316 93.96826       22 0.418012 93.96860       
23 0.423922 94.02851       23 0.418705 94.02880       
24 0.424453 94.08127       24 0.419312 94.08152       
25 0.424921 94.12772       25 0.419847 94.12794       
26 0.425336 94.16884       26 0.420322 94.16903       
27 0.425706 94.20540       27 0.420744 94.20557       
28 0.426036 94.23807       28 0.421122 94.23822       
29 0.426333 94.26736       29 0.421461 94.26750       
30 0.426600 94.29374       30 0.421766 94.29386       
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Table 2. The quantum defects and energies of 1s2np (2P3/2) and 1s2nd (2D3/2) up to n = 3 compared with NIST [21] and Aggarwal [10] results 

n QD 
Energy (Rydberg) 

n QD 
Energy (Rydberg) 

This 
work 

NIST 
[21] 

GRASP1 
[10] 

GRASP2 
[10] 

NIST 
[21] 

GRASP1 
[10] 

GRASP2 
[10] 

NIST 
[21] 

2 0.117309 3.25691 3.25691 3.28673 3.26772 3 0.160635 54.47620 54.47620 54.50117 54.46362 
3 0.170880 54.18459 54.18459 54.206 54.206 4 0.212962 72.07298 72.07298 72.0855 72.04777 
4 0.227118 71.90314 71.90314 71.96299 71.96299 5 0.268387 80.19246 80.19246 80.22533 80.1875 
5 0.263005 80.22533 80.22533 80.16309 80.16309 6 0.327832 84.59393 84.59393     
6 0.284901 84.74466 84.49369     7 0.374674 87.28304 87.28220     
7 0.298813 87.44921 87.26398     8 0.409372 89.04100 88.97718     
8 0.308083 89.18812       9 0.434988 90.24765       
9 0.314530 90.36930       10 0.454152 91.10862       

10 0.319178 91.20707       11 0.468743 91.74288       
11 0.322632 91.82228       12 0.480053 92.22280       
12 0.325265 92.28711       13 0.488970 92.59428       
13 0.327316 92.64675       14 0.496110 92.88747       
14 0.328944 92.93065       15 0.501906 93.12279       
15 0.330258 93.15865       16 0.506672 93.31446       
16 0.331332 93.34450       17 0.510633 93.47259       
17 0.332222 93.49797       18 0.513961 93.60456       
18 0.332967 93.62616       19 0.516781 93.71581       
19 0.333597 93.73433       20 0.519191 93.81046       
20 0.334134 93.82645       21 0.521267 93.89163       
21 0.334596 93.90553       22 0.523066 93.96178       

22 0.334996 93.97392       23 0.524636 94.02280       
23 0.335345 94.03347       24 0.526014 94.07621       
24 0.335651 94.08563       25 0.527230 94.12322       
25 0.335921 94.13158       26 0.528308 94.16482       
26 0.336160 94.17227       27 0.529268 94.20181       
27 0.336373 94.20847       28 0.530127 94.23483       
28 0.336563 94.24082       29 0.530898 94.26444       
29 0.336734 94.26984       30 0.531593 94.29109       
30 0.336887 94.29598                   

Table 3. The quantum defects and energies of 1s2nd (2D5/2) up to n = 3 compared with NIST [21] and Aggarwal [10] results 

n QD 

Energy (Rydberg) 

n QD 

Energy (Rydberg) 

This work NIST 
[21] 

GRASP1 
[10] 

GRASP2 
[10] 

This 
work 

NIST 
[21] 

GRASP1 
[10] 

GRASP2 
[10] 

3 0.159346 54.51265 54.51265 54.54433 54.50651 17 0.50956 93.47275       
4 0.212198 72.08209 72.08209 72.10374 72.06586 18 0.51286 93.60469       
5 0.268387 80.19246 80.19246 80.23467 80.19676 19 0.51565 93.71593       
6 0.327832 84.59393 84.59393     20 0.51805 93.81056       
7 0.374496 87.28343 87.28220     21 0.52010 93.89172       
8 0.409006 89.04154 88.97718     22 0.52189 93.96186       
9 0.434462 90.24819       23 0.52345 94.02287       

10 0.453495 91.10911       24 0.52481 94.07627       
11 0.467982 91.74330       25 0.52602 94.12328       
12 0.479210 92.22316       26 0.52709 94.16487       
13 0.488060 92.59458       27 0.52804 94.20185       
14 0.495145 92.88772       28 0.52889 94.23487       
15 0.500897 93.12300       29 0.52966 94.26448       
16 0.505625 93.31464       30 0.53035 94.29113       
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Lifetimes of Sc XIX Rydberg Levels 
The lifetime of the ns, np, and nd & some f and g upper levels of the Rydberg series are also determined using the 

transition probabilities. All possible transitions from the level are considered to calculate the lifetime of an upper level; 
the lifetime is the reciprocal of the sum of all the transitions from the upper level, i.e.  

𝜏 = 1∑ 𝐴⬚  

One thousand eighteen hundred and sixty-two transition probabilities were used to calculate the lifetimes of ninety-
six levels belonging to ns, np, and nd series up to n = 20. The lifetimes were compared with the work of 
Aggarwal et al. [10]. Out of twenty-one lifetimes, twenty lifetimes have percent uncertainties less than 0.1%. Only one 
lifetime differs significantly. 
Table 4. The lifetimes of the ns, np, nd, some f, and g Rydberg levels of Sc XIX ion 

Configuration 

Lifetime (s) 

Configuration 

Lifetime (s) 

Configuration 

Lifetime (s) 

This work Aggarwal 
[10] This work Aggarwal 

[10] This work Aggarwal 
[10] 

1s2 3s (2S1/2) 8.714E-13 8.86E-13 1s2 16p (2P1/2) 1.636E-10  1s2 11d (2D3/2) 4.248E-12  

1s2 4s (2S1/2) 1.301E-12 1.31E-12 1s2 17p (2P1/2) 1.860E-10  1s2 12d (2D3/2) 5.185E-12  

1s2 5s (2S1/2) 2.097E-12 2.07E-12 1s2 18p (2P1/2) 1.722E-10  1s2 13d (2D3/2) 6.227E-12  

1s2 6s (2S1/2) 3.654E-12  1s2 19p (2P1/2) 1.443E-10  1s2 14 (2D3/2) 7.391E-12  

1s2 7s (2S1/2) 6.683E-12  1s2 20p (2P1/2) 1.190E-10  1s2 15d (2D3/2) 8.695E-12  

1s2 8s (2S1/2) 1.287E-11  1s2 2p (2P3/2) 4.459E-10 4.46E-10 1s2 16d (2D3/2) 1.016E-11  

1s2 9s (2S1/2) 2.665E-11  1s2 3p (2P3/2) 3.454E-13 3.52E-13 1s2 17d (2D3/2) 1.179E-11  

1s2 10s (2S1/2) 6.079E-11  1s2 4p (2P3/2) 5.771E-13 5.93E-13 1s2 18d (2D3/2) 1.362E-11  

1s2 11s (2S1/2) 1.477E-10  1s2 5p (2P3/2) 1.021E-12 1.00E-12 1s2 19d (2D3/2) 1.565E-11  

1s2 12s (2S1/2) 2.667E-10  1s2 6p (2P3/2) 1.769E-12  1s2 20d (2D3/2) 1.788E-11  

1s2 13s (2S1/2) 2.256E-10  1s2 7p (2P3/2) 2.993E-12  1s2 3d (2D5/2) 1.135E-13 1.16E-13 

1s2 14s (2S1/2) 1.438E-10  1s2 8p (2P3/2) 4.995E-12  1s2 4d (2D5/2) 2.642E-13 2.70E-13 

1s2 15s (2S1/2) 9.876E-11  1s2 9p (2P3/2) 8.319E-12  1s2 5d (2D5/2) 5.113E-13 5.19E-13 

1s2 16s (2S1/2) 7.566E-11  1s2 10p (2P3/2) 1.397E-11  1s2 6d (2D5/2) 8.823E-13  

1s2 17s (2S1/2) 6.331E-11  1s2 11p (2P3/2) 2.381E-11  1s2 7d (2D5/2) 1.378E-12  

1s2 18s (2S1/2) 5.671E-11  1s2 12p (2P3/2) 4.108E-11  1s2 8d (2D5/2) 1.976E-12  

1s2 19s (2S1/2) 5.362E-11  1s2 13p (2P3/2) 6.987E-11  1s2 9d (2D5/2) 2.660E-12  

1s2 20s (2S1/2) 5.303E-11  1s2 14 (2P3/2) 1.088E-10  1s2 10d (2D5/2) 3.422E-12  

1s2 2p (2P1/2) 7.107E-10 7.10E-10 1s2 15p (2P3/2) 1.389E-10  1s2 11d (2D5/2) 4.264E-12  

1s2 3p (2P1/2) 3.401E-13 3.44E-13 1s2 16p (2P3/2) 1.397E-10  1s2 12d (2D5/2) 5.195E-12  

1s2 4p (2P1/2) 5.768E-13 5.82E-13 1s2 17p (2P3/2) 1.213E-10  1s2 13d (2D5/2) 6.228E-12  

1s2 5p (2P1/2) 9.714E-13 9.87E-13 1s2 18p (2P3/2) 1.008E-10  1s2 14 (2D5/2) 7.381E-12  

1s2 6p (2P1/2) 1.606E-12  1s2 19p (2P3/2) 8.479E-11  1s2 15d (2D5/2) 8.673E-12  

1s2 7p (2P1/2) 2.590E-12  1s2 20p (2P3/2) 7.340E-11  1s2 16d (2D5/2) 1.012E-11  

1s2 8p (2P1/2) 4.097E-12  1s2 3d (2D3/2) 1.124E-13 1.16E-13 1s2 17d (2D5/2) 1.175E-11  

1s2 9p (2P1/2) 6.429E-12  1s2 4d (2D3/2) 2.613E-13 2.68E-13 1s2 18d (2D5/2) 1.358E-11  

1s2 10p (2P1/2) 1.011E-11  1s2 5d (2D3/2) 5.046E-13 5.14E-13 1s2 19d (2D5/2) 1.561E-11  

1s2 11p (2P1/2) 1.607E-11  1s2 6d (2D3/2) 8.721E-13  1s2 20d (2D5/2) 1.786E-11  

1s2 12p (2P1/2) 2.602E-11  1s2 7d (2D3/2) 1.364E-12  1s2 4f (2F5/2) 5.486E-13 5.54E-13 

1s2 13p (2P1/2) 4.298E-11  1s2 8d (2D3/2) 1.959E-12  1s2 5f (2F5/2) 1.057E-12 1.07E-12 

1s2 14 (2P1/2) 7.162E-11  1s2 9d (2D3/2) 2.641E-12  1s2 4f (2F7/2) 5.499E-13 5.55E-13 

1s2 15p (2P1/2) 1.153E-10  1s2 10d (2D3/2) 3.403E-12  1s2 5g (2G9/2) 4.854E-13 1.80E-12 
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CONCLUSION 
Li-like isoelectronic ion Sc XIX has been studied for spectral line characteristics: energies, quantum defects, 

transition probability, oscillator, and line strengths. The following are the main points as concluding remarks.  
1. The energies and quantum defects up to n = 30 are determined, and the available list of energies and quantum 

defects (up to n = 5) is extended. 
2. The energies and quantum defects of five series 1s2ns (2S1/2), 1s2np (2P1/2), 1s2np (2P3/2), 1s2nd (2D3/2), and 1s2nd 

(2D5/2) have been determined, 
3. A comparison of energies with the NIST and Aggarwal et al.'s work shows good agreement results. 
4. One thousand eighteen hundred and sixty-two spectral lines are investigated for calculating TP, OS, and LS of Sc 

XIX ion. 
5. Seventy-six spectral lines were found in NIST line data for comparing the results.  
6. Only six out of seventy-six lines have a percent error of more than 10%. Most of the results agree with the NIST 

values. 
7. Almost eighteen hundred values of TP, OS, and LS are new. 
8. Ninety-six Rydberg's level's lifetime was determined, and compared with the published work, only one value 

differs significantly.  
9. The lifetimes of seventy-five levels are reported for the first time. 
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ІМОВІРНОСТІ ПЕРЕХОДУ, ОСЦИЛЯТОР ТА ІНТЕНСИВНІСТЬ ЛІНІЙ У Sc XIX 
Мухаммад Калімa, Саба Джавайдb, Рухі Зафарb, Захір Уддінa 
aФізичний факультет Університету Карачі, Карачі, Пакистан 

bКафедра фізики, Університет інженерії та технології NED, Карачі, Пакистан 
Іон скандію XIX є членом ізоелектронної послідовності Li-подібних іонів. Чисельне кулонівське наближення та квантовий 
дефект теорія була використана для розрахунку енергій, квантових дефектів і ймовірностей переходу, осцилятора та сили ліній 
іона Sc XIX для переходи ns → mp, np → ms, np → md і nd → mp ряд Рідберга. Енергії іонів Sc XIXX до n = 5 наведено в База 
даних NIST і література. Ми використали квантову теорію дефектів і визначили енергії та квантові дефекти до n = 30. енергії 
та квантових дефектів 125 рівнів повідомляється вперше. Імовірності переходу іона Sc XIX, осцилятор і лінія сили 
порівнювали з відповідними значеннями в базі даних спектральних ліній NIST. База даних NIST містить дані про лише 
сімдесят шість спектральних ліній. Лише шість спектральних ліній мають відсоткову невизначеність понад 10%. Результатів 
залишилося сімдесят спектральні лінії добре узгоджуються зі значеннями NIST. Майже 1800 ймовірностей переходів, 
осциляторів і інтенсивності ліній є новими. 
Ключові слова: скандій; Li-подібний; рівень Ридберга; квантова теорія дефектів; ймовірність переходу; сила осцилятора; 
інтенсивність лінії 
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Analytical expressions for the nonparaxial mode diffraction of a terahertz laser metal waveguide resonator are obtained. The study 
assumes interaction between the modes and a spiral phase plate, considering different topological charges (n). Also, using numerical 
modeling, the physical features of the emerging vortex beams as they propagate in free space are studied. The Rayleigh-Sommerfeld 
vector theory is employed to investigate the propagation of vortex laser beams in the Fresnel zone, excited by the modes of a metal 
waveguide quasi-optical resonator upon incidence on a spiral phase plate. In free space, the spiral phase plate for exciting TE11 mode 
from the profile with the intensity maximum in the center (n = 0) forms an asymmetric ring one with two maxima (n = 1, 2). For the 
exciting TE01 mode, the initial ring (n = 0) structure of the field intensity is transformed into a structure with a maximum radiation 
intensity in the center (n = 1), and later again into a ring (n = 2). The phase front of the beam for the Ey component of the linearly 
polarized along the y axis TE11 mode changes from spherical to spiral with one on-axis singularity point. In the phase profile of the 
transverse components of the azimuthally polarized TE01 mode, a region with two and three off-axis phase singularity points appears. 
Keywords: Terahertz laser; Metal waveguide resonator; Spiral phase plate; Vortex beams; Polarization; Radiation propagation 
PACS: 42.55.Lt; 42.60.Da; 42.25.Bs; 47.32.C− 

INTRODUCTION 
In the past decade, there has been a notable surge in interest regarding the formation of terahertz laser beams [1]. 

Vortex beams within these wave fields hold a prominent position in research. Their uniqueness stems from the distinct 
spiral structure of the wavefront, ensuring the presence of an orbital wave momentum with a considerable number of 
states and, consequently, additional degrees of freedom [2 − 4]. Vortex laser beams demonstrate significant potential for 
applications in high-speed multiplex terahertz communication systems, tomography, the exploration of linear and 
nonlinear material responses, the acceleration and manipulation of electron bunches, and the detection of astrophysical 
sources [5 − 9]. 

The study of THz vortex beam generation primarily focuses on two principles: wavefront modulation through 
specialized external devices and direct excitation of vortex beams at the output of the resonator. The extracavity 
wavefront modulation principle employs various tools such as spiral phase plates, q-plates, achromatic polarization 
elements, diffractive optical elements, metasurfaces, liquid crystal branched polarization gratings, computer holograms, 
and spatial modulators [10 − 17]. Techniques like optical rectification, difference-frequency generation, and laser-
plasma methods have been proposed for forming vortex beams at the laser resonator output [18 − 20]. However, the 
majority of these studies utilize broadband radiation from subpicosecond pulse generators based on femtosecond lasers, 
leading to the complex manufacturing of laser systems and interactions with matter that significantly deviate from 
continuous radiation. 

Optically pumped molecular lasers stand out as the sole compact source of continuous terahertz radiation, offering 
discrete tunability across the entire terahertz range and boasting a narrow spectral linewidth. The current surge in 
interest for these generators is attributed to the potential use of continuously tunable mid-IR quantum cascade lasers as 
pump sources [21]. The utilization of metal waveguide quasi-optical resonators is common in most optically pumped 
lasers, enabling the achievement of relatively high powers (up to 1 W) in a continuous regime with relatively compact 
cavity sizes [22]. Among the modes of such resonators, TE11 and TE01 modes with linear and azimuthal polarization 
exhibit the lowest losses [23]. 

One of the most renowned optical elements for generating vortex beams is the spiral phase plate with azimuthally 
varying thickness [3, 24]. This element enables the direct application of a spiral phase shift to the incident laser beam, 
converting almost 100 % of the incoming radiation energy into a vortex beam.  

This study aims to derive analytical expressions that describe the nonparaxial diffraction of modes a metal 
waveguide resonator of a terahertz laser when interacting with a spiral phase plate. Additionally, through numerical 
simulations, the research investigates the physical characteristics of the resulting vortex beams during their propagation 
in free space. 
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THEORETICAL RELATIONSHIPS 
The well-known vectorial Rayleigh-Sommerfeld integrals in the Cartesian coordinate system will be employed to 

describe the propagation of laser radiation in free space along the 0z axis [25 − 27]: 
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where 0
0( )xE r and 0

0( )yE r  are the complex amplitudes of the x and y components of the input electric field, 0Σ  is the 

area in which the input field is specified, 2 /k π λ=  is the wave number, λ  is the wavelength, 
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Cartesian coordinates in the observation plane, ( ) ( )2 2 2
0 0R x x y y z= − + − + . Using nonparaxial approximation (1), 

let us expand R into a series, keeping its first and second terms in the form 
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where 2 2 2r x y z= + + . 
Substituting (2) into the integrand, which includes rapidly oscillating exponents (1), and at other positions R r≅ , 

and then transitioning to cylindrical coordinates, yields expressions for the field components in different diffraction 
zones: 

 
22

0 0 0
0 0 02

0 0

cos( )( , , ) exp( ) ( )exp exp ,
2x x

i zE z ikr E r ik ik d d
r rr

π ρ ρρ ϕ βρ β ρ ρ ϕ
λ

∞   − = − −       
 

  (3.1) 

 
22

0 0 0
0 0 02

0 0

cos( )( , , ) exp( ) ( )exp exp ,
2y y

i zE z ikr E r ik ik d d
r rr

π ρ ρρ ϕ βρ β ρ ρ ϕ
λ

∞   − = − −       
 

  (3.2) 

 

2
0 0

0 0 02
0 0

2
0 0

0 0

( , , ) exp( ) ( )( cos cos ) ( sin sin )

cos( )exp exp .
2

z x y
iE z ikr E r E
r

ik ik d d
r r

π
ρ β ρ β ρ ϕ ρ β ρ ϕ

λ

ρ ρρ ϕ β ρ ρ ϕ

∞
 = − + − 

  − × −       

 


 (3.3) 

Here ( ), , zρ β  are cylindrical coordinates in the observation plane and ( )ρ ϕ0,  are the polar coordinates in the area 

where the input field is specified, 2 2r zρ= + . 
Investigated metal waveguide resonator modes coincide with the modes of a circular metal waveguide. Hence, in 

the initial plane, we characterize radiation through linearly and azimuthally polarized waveguide TE11 and TE01 modes. 
The normalized Cartesian components of electromagnetic fields for these modes take the following form in the source 
plane (z = 0) [28]: 
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where a is the waveguide radius, 
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=  are the normalizing factors, 

jJ is the Bessel function of the 1st kind of order j ; mnχ  is the n-th root of the equation ( )mJ χ = 0.  
We will explore the interaction between these modes and a spiral phase plate (SPP) with arbitrary topological 

charge (n) [29]. The SPP is positioned at the output of a waveguide with an aperture of the same diameter, as illustrated 
in Figure 1. The complex transmission function of an SPP with a radius a is expressed in polar coordinates as 
follows [3]: 

 0
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a
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 (6) 

where circ ( )⋅ is the circular function. 

 
Figure 1. Topology of the model. 

For simplifying calculations, integration over the angle φ in equation (3) can be carried out using the established 
relations for the integer m ≥ 0, as described in [26]: 
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Then from here we can obtain the following relation  
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Using Euler’s formulas for the trigonometric functions and taking into account Eq. (7), we obtain the expressions 
for the following integrals: 
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Then, substituting into (3) the expression for the complex transmission function of the SPP (6) and using formulas 
(7) and (8.1), we obtain expressions for the field components that describe the nonparaxial diffraction of the TE11 mode 
by the SPP with topological charge n in free space: 
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where the following notations are introduced 
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Also, using formulas (8.1) and (8.2), we obtain expressions for the field components that describe the nonparaxial 
diffraction of the TE01 mode on the SPP. They look as follows: 
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where the following notation is introduced 
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NUMERICAL RESULTS AND DISCUSSIONS 

Using the obtained expressions, calculations of the longitudinal and transverse distributions of the total field 
intensity were carried out. (

2 2 2
x y zI E E E= + + ), as well as transverse intensity distributions 

2
( , , )

i
I E i x y= =  and 

phases ( arctg(Im( ) / Re( )))i iE Eϕ = fields for individual x, y components of laser radiation beams excited in the Fresnel 
zone by an asymmetrical linearly polarized along the y axis TE11 mode and a symmetrical azimuthally polarized TE01 
mode of a metal waveguide resonator of a terahertz laser during their interaction with the SPP. The transverse 
distributions of the field intensity and phase for the longitudinal component are not given due to its insignificant 
influence on the total radiation intensity. The radiation wavelength was chosen in the middle part of the terahertz range 
λ = 0.4326 mm (the lasing line of optically excited formic acid molecule HCOOH [30]). The waveguide diameter is 
chosen to be 2a = 35 mm. The SPP with an aperture of the same diameter was placed at the output of the waveguide. In 
this case, the topological charge n changed from zero to two. 
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Figure 2. Calculated longitudinal (a1−a3) and transverse (b1−b3) total field intensity distributions of the laser beams excited by the 

TE11 mode in the Fresnel zone for different values of the topological charge. The first, second and third columns correspond to n = 0, 
n = 1 and n = 2, respectively. 

Figure 2 (a1), 2(b1) show the results of numerical simulation for the longitudinal intensity field distribution in the 
Fresnel zone (z = 100 − 1000 mm) and the transverse intensity field distribution excited by the TE11 mode for z = 708 
mm (where the Fresnel number is 1). The results were obtained under the assumption that there is no SPP at the 
waveguide output. One can observe from the figures that the maximum in the distribution of longitudinal intensity is 
observed at z ≈ 500 mm. Notice that the effective beam diameter at a distance of 708 mm for the TE11 mode is 
calculated according to the formula [31] 
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and is equal to dσ = 151.3 λ. The transverse field profile has a well-known Gaussian-like shape and a spherical phase 
front. Installing a SPP at the output of a waveguide with a non-zero topological charge leads in the Fresnel zone to a 
change in the beam intensity profile to an asymmetric annular one with two maxima (Figure 2 (a2, a3, b2, b3 )). 
The beam diameter increases to dσ = 164.6 λ at n = 1 and dσ = 192.0 λ at n = 2. 

 
Figure 3. Calculated field intensity distributions for Ex (a1−a3) and Ey (b1−b3) components of the laser beams excited by the TE11 

mode in the Fresnel zone for different values of the topological charge. The first, second and third columns correspond 
to n = 0, n = 1 and n = 2, respectively. 

Figures 3–4 show the calculated distributions of field intensity and phase for individual transverse components 
excited in the Fresnel zone by an asymmetric linearly polarized along the y axis TE11 mode of a metal waveguide 
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resonator of a terahertz laser during its interaction with the SPP. These results clearly demonstrate the determining role 
of the Ey component of the laser beam in the formation of the total transverse intensity profile in Figure 2. Note the 
observed focusing of the field intensity of the Ex-component of the laser beam in the case of an increase in the value of 
the topological charge. 

As can be seen from Figure 4, the installation of the SPP at the output of the waveguide for the TE11 mode leads to 
the transformation of the beam phase profile from spherical to vortex. In this case, with an increase in the value of the 
topological charge, the formation of a pronounced helical structure of the wave front and a singularity point for the Ey 
component of the laser beam is observed. 

 
Figure 4. Calculated field phase distributions for Ex (a1−a3) and Ey (b1−b3) components of the laser beams excited by the TE11 mode 

in the Fresnel zone for different values of the topological charge. The first, second and third columns correspond to n = 0, n = 1 
and n = 2, respectively. 

The installation of the SPP at the output of the waveguide for the TE01 mode leads to the transformation of the 
beam intensity profile from annular to Gaussian-like when the value of the topological charge changes from zero to one 
(Figure 5). Further increase in the topological charge returns the beam profile to its original annular shape. Mention that 
the beam diameter at a distance of 708 mm for the TE01 mode increases from dσ = 67.5 λ at n = 0 (in the absence 
of topological charge) to dσ = 89.1 λ at n = 2. 

 
Figure 5. Calculated longitudinal (a1−a3) and transverse (b1−b3) total field intensity distributions excited by the TE01 mode in the 

Fresnel zone for different values of the topological charge. The first, second and third columns correspond to n = 0, n = 1 
and n = 2, respectively. 

Figure 6 shows the calculated transverse field intensity distributions for individual transverse components of laser 
radiation beams excited in the Fresnel zone by a symmetrical azimuthally polarized TE01 mode of a metal waveguide 
resonator of a terahertz laser during its interaction with the SPP. These results show the same contribution of the 
transverse components of the laser beam to the formation of the total intensity profile in Figure 5. Possessing an initially 
antisymmetric shape, these components, when added, form a symmetrical beam. 
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Figure 6. Calculated field intensity distributions for Ex (a1−a3) and Ey (b1−b3) components of the laser beams excited by the TE01 

mode in the Fresnel zone for different values of the topological charge. The first, second and third columns correspond to n = 0, n = 1 
and n = 2, respectively. 

Figure 7 shows the phase distributions for the transverse components of the TE01 mode in the Fresnel zone when 
the topological charge changes. Installing the SPP at the output of the waveguide, as for the TE11 mode, converts the 
wavefront of laser beams from spherical to vortex. Note that for n = 1 the wavefront has two helical surfaces, and for 
n = 2 it has three. 

 

Figure 7. Calculated field phase distributions for Ex (a1−a3) and Ey (b1−b3) components of the laser beams excited by the TE01 mode 
in the Fresnel zone for different values of the topological charge. The first, second and third columns correspond 

to n = 0, n = 1 and n = 2, respectively. 
 

CONCLUSIONS 
Analytical expressions have been obtained to describe the nonparaxial diffraction of modes of a metal waveguide 

resonator of a terahertz laser during their interaction with a spiral phase plate with different topological charges (n). The 
determining role of the Ey component of the laser beam for the exciting linearly polarized along the y axis TE11 mode 
and the equal contribution of the transverse components for the exciting azimuthally polarized TE01 mode in the 
formation of the total transverse field are shown. 

In free space, the spiral phase plate for TE11 mode from the profile with the intensity maximum in the center 
(n = 0) forms an asymmetric ring one with two maxima (n = 1, 2). For the TE01 mode, the initial ring (n = 0) structure of 
the field intensity is transformed into a structure with a maximum radiation intensity in the center (n = 1), and later 
again into a ring (n = 2). 

The phase front of the beam for the Ey component of the TE11 mode changes from spherical to spiral with one on-
axis singularity point. Conversely, in the phase profile of the transverse components of the azimuthally polarized TE01 
mode, a region with two and three off-axis phase singularity points appears. 
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ЕВОЛЮЦІЯ ВЕКТОРНИХ ВИХРОВИХ ПРОМЕНІВ, СФОРМОВАНИХ ТЕРАГЕРЦОВИМ ЛАЗЕРНИМ 

МЕТАЛЕВИМ РЕЗОНАТОРОМ 
Андрій В. Дегтярьов, Микола М. Дубінін, Вячеслав О. Маслов, Костянтин І. Мунтян, Олег О. Свистунов 

Харківський національний університет імені В.Н. Каразіна, майдан Свободи, 4, Харків, Україна, 61022 
Отримано аналітичні вирази для непараксіальної модової дифракції металевого хвилевідного резонатора терагерцового 
лазера. Дослідження передбачає взаємодію між модами та спіральною фазовою пластиною з урахуванням різних 
топологічних зарядів (n). Також за допомогою чисельного моделювання досліджено фізичні особливості вихрових пучків, 
що виникають, коли вони поширюються у вільному просторі. Векторна теорія Релея-Зоммерфельда використовується для 
дослідження поширення вихрових лазерних променів у зоні Френеля, збуджених модами металевого хвилевідного 
квазіоптичного резонатора при падінні на спіральну фазову пластину. У вільному просторі спіральна фазова пластина для 
збуджуючої моди TE11 з профілю з максимумом інтенсивності в центрі (n = 0) утворює асиметричне кільце з двома 
максимумами (n = 1, 2). Для збуджуючої TE01 моди початкова поперечна кільцева (n = 0) структура інтенсивності поля 
трансформується в структуру з максимальною інтенсивністю випромінювання в центрі (n = 1), а потім знову в кільцеву (n = 
2). Фазовий фронт променю для Ey компоненти лінійно поляризованої вздовж осі y моди TE11 змінюється зі сферичного на 
спіральний з однією осевою точкою сингулярності, тоді як у фазовому профілі поперечних компонентів азимутально 
поляризованої моди TE01 спостерігається область з двома та та трьома позаосьовими точками сингулярності фази. 
Ключові слова: терагерцовий лазер; металевий хвилевідний резонатор; спіральна фазова пластина; вихрові пучки; 
поляризація; поширення випромінювання 
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This work is devoted to calculating the rate of radiation damage production in a uranium target irradiated with high-energy electrons 
with an energy of 100 MeV. The Monte Carlo program MCNPX was used to perform a complete mathematical modeling of a 
complex of processes occurring in a uranium target when irradiated with high-energy electrons: the development of an 
electromagnetic shower, the production of photoneutrons, the transport of particles in the target and the creation of radiation damage 
in it. The analysis showed that fragments of U-238 photo-fission give the main input into the rate of damage production in a uranium 
target which reaches the value of 100 dpa/year. The expected service life of a uranium target under irradiation is 3 years of operation 
at full accelerator power. 
Keywords: Uranium; Electron; Subcritical assembly; Radiation damage 
PACS: 621.384.6 

INTRODUCTION 
The neutron source of the NSC KIPT with a power of 100 kW consists of a linear accelerator of electrons with 

energy of 100 MeV, which irradiate a thick neutron-producing target; the photoneutrons generated in it enter the 
subcritical assembly (SCA), where they are multiplied and the neutron flux is increased tens of times. The highest 
neutron flux can be obtained using a uranium neutron-producing target. The service life of a uranium target under 
irradiation is largely determined by the dose of radiation damage accumulated in it (in displacements per atom). 

Previously, the authors have already estimated the radiation damage production in uranium target irradiated by 
high-energy electrons with energy of 100 MeV [1]. In this work, a complete mathematical modeling of all nuclear-
physical processes in a uranium target was performed using the Monte Carlo program MCNPX. It has been shown that 
the main contribution to the rate of damage formation in a uranium target when irradiated with electrons with an energy 
of 100 MeV (1 mA) is made by photofission fragments of U-238, and the expected service life of a uranium target in 
the subcritical assembly of a neutron source at NSC KIPT has been assessed. 

URANIUM TARGET MODEL 
The target consists of a set of uranium plates with sizes 66x66 mm and various thicknesses (see Table 1), coated 

on the both sides with Al layers 0.7 mm thick. The 1.75 mm gap between the plates is filled with water. The target is 
separated from the vacuum chamber of the electron accelerator by an input window made of aluminum 2 mm thick. 
Behind the target is a chamber filled with helium (marked in yellow in Fig. 1). 
Table 1. Plate thicknesses U (in cm), numbered in Fig. 1 from top to bottom: 

№ 1 2 3 4 5 6 7 8 9 10 11 12 
Thickness 0.3 0.25 0.25 0.25 0.3 0.3 0.4 0.5 0.7 1 1.4 2.25 

Figure 1. Uranium target of the neutron source NSC KIPT 
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A plane-parallel beam of electrons with a square cross-section of 64x64 mm with energy of 100 MeV and a power 
of 100 kW is incident on the target. An electromagnetic shower develops in the target, bremsstrahlung gamma quanta 
react with atomic nuclei, and as a result of the (γ, n) reaction, neutrons are produced, which enter the subcritical 
assembly, where they multiply, and radiation damage is created in the target. 

 
RESULTS OF MATHEMATICAL MODELING 

The MCNPX program was used [2], which allows to perform the Monte Carlo modeling of all nuclear-physical 
processes involving electrons, neutrons and gamma quanta, taking into account the specific geometry of the target. 
Figure 2 shows the profile of the energy release in the target under flow of incident electrons Ф = 1.7 1014 el/(cm2 s). 
Energy is mainly released in uranium, with only a small fraction of energy released in aluminum and water. 

The distribution of the electron flux along the length of the target is shown in Fig. 3 (per one incident electron). 
The development of an electromagnetic shower leads to a doubling of the electron flow, and then the electron beam is 
decelerated due to the processes of ionization and emission of bremsstrahlung gamma quanta. 
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Figure 2. Distribution of energy release in the target Figure 3. Electron flux distribution along the length of the target 

Figure 4 shows the distribution of gamma ray flux density along the length of the target calculated by the MCNPX 
program (per one incident electron). Such a profile is formed as a result of bremsstrahlung gamma quanta emission, as 
well as the processes of positron annihilation with the emission of photons. The attenuation of the photon flux occurs 
due to the creation of electron-positron pairs by photons near the nucleus, as well as the absorption of photons by nuclei 
and atomic systems. The maximum of photon flux in the target occurs at a depth of 1.6 cm (the depth is measured from 
the target entrance window). 
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Figure 4. Distribution of the gamma ray flux along the length 

of the target 
Figure 5. Dependence of the reaction cross section (γ, n) 

on photon energy for U-238 

Photo-neutrons are released from the nuclei under the gamma ray irradiation. The reaction cross section (γ, n) on 
the U-238 nucleus, taken from the nuclear database [3], is presented in Figure 5. The MCNPX program allows 
determining the photo-neutron yield at various target depths. The distribution of the resulting photo-neutron flux along 
the length of the target is shown in Figure 6 (per one incident electron). 

The photo-fission reaction of U-238 nuclei can also occur under photon irradiation, the dependence of its cross 
section on energy [3] is shown in Figure 7. 
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Figure 8. Dependence of the fission probability for the U-238 nucleus on the depth along the length of the target 

The MCNPX program allows to calculate the probability distribution of U-238 nuclei fission along the length of 
the target (see Figure 8). 

As one can see in Figure 8, the maximum probability of fission for U-238 is achieved at a depth of ~1.4cm, and 
the maximum burnup rate of U-238 is 0.055% per year. 

 
CALCULATION OF RADIATION DEFECTS FORMATION RATE IN THE URANIUM TARGET 

The rate of radiation damage production in a uranium SCA target was estimated in [1], and it was found that the 
photo-fission fragments give the main input into the rate of damage formation, and the contribution of all other 
reactions is only a few percent. In this work, we calculated the damage to a uranium target by photofission fragments 
using two methods: by calculating cascades of atomic collisions in uranium using the SRIM program [4] and by the 
NRT standard method [5]. 

Figure 9 shows the scattering of uranium photo-fission fragments: La-139 with energy of 70 MeV and Mo-96 with 
energy of 100 MeV, calculated using the SRIM program. Both fragments create cascades of atomic displacements in 
uranium, in which 190 000 displaced atoms are formed per uranium fission. 

 
Figure 9. Picture of the scattering of U-238 fission fragments: on the left - the trajectories of La-139, on the right - Mo-96 

Figure 10 shows the distribution of radiation defects production rate by fission fragments along the uranium target, 
calculated using the SRIM program. This rate is 103 dpa per year at the maximum of damage production. 

Calculation according to the NRT standard gives 104 000 displaced U atoms per one photo-fission and, 
accordingly, the value of 50 dpa/year for the maximum rate of damage production. 
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CONCLUSIONS 

The U-238 photo-fission fragments give the main input into the rate of damage formation in the uranium target 
irradiated by electrons with energy of 100 MeV (1 mA). The contribution of other processes (electrons, photoneutrons, 
target neutrons, neutrons from the PCS) is only a few percent. The contributions of various defect creation mechanisms 
to the rate of damage dose accumulation in the uranium target are presented in Table 2. 
Table 2. Contributions of radiation damage mechanisms to the rate of NRT dose accumulation 

 Electrons 100 MeV Photoneutrons Photofission Target neutrons Assembly neutrons 
Damage rate (dpa/year) 1 0.05 50 2 0.3 

The maximum burn-up rate of U-238 is Ymax = 0.055% per year, and the maximum rate of accumulation of the 
NRT dose of radiation damage in a uranium target is Dmax = 50 dpa/year and is achieved at a depth of ~ 1.4 cm. 

An analysis of the dependence of radiation embrittlement on the burn-up of the target material carried out in [6] 
showed that at burn-up values less than 0.2%, the target material still has a sufficient margin of plasticity. Therefore, the 
expected service life of the uranium target is 3 years of operation at full accelerator power. 
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МАТЕМАТИЧНЕ МОДЕЛЮВАННЯ УРАНОВОЇ НЕЙТРОНО-УТВОРЮЮЧОЇ МІШЕНІ 
ПІДКРИТИЧНОЇ ЗБІРКИ ННЦ ХФТІ 

В.В. Ганн, Г.В. Ганн, Б.В. Борц, І.М. Карнаухов, О.О. Пархоменко 
ННЦ “Харківський фізико-технічний інститут”, Харків, Україна 

Ця робота присвячена розрахунку швидкості набору дози радіаційних ушкоджень в уранової мішені при опроміненні 
високоенергетичними електронами з енергією 100 МеВ. З використанням програми MCNPX методом Монте-Карло 
виконано повне математичне моделювання комплексу процесів, що відбуваються в урановій мішені при опроміненні 
високоенергетичними електронами: розвиток електромагнітної зливи, народження фотонейтронів, транспорт частинок у 
мішені та створення в ній радіаційних пошкоджень. Аналіз показав, що найбільший внесок у швидкість утворення 
пошкоджень в мішені вносять уламки фотоподілу U-238, а максимальна швидкість створення дефектів досягає 100 зна/рік. 
Очікуваний ресурс роботи уранової мішені під опроміненням становить 3 роки на повній потужності прискорювача. 
Ключові слова: уран; опромінювання; електрони; підкритична збірка; радіаційні ушкодження 
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The paper defines a class of Hamiltonian systems whose phase flows are exact solutions of the two-dimensional hy-
drodynamics of an incompressible fluid. The properties of this class are considered. An example of a Lagrangian
one-dimensional system is given, which after the transition to the Hamiltonian formalism leads to an unsteady flow, that
is, to an exact solution of two-dimensional hydrodynamics. The connection between these formalisms is discussed and
the Lagrangians that give rise to Lagrangian hydrodynamics are introduced. The obtained results make it possible to
obtain accurate solutions, such as phase flows of special Hamiltonian systems.
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1. INTRODUCTION

The interest in the formulation of hydrodynamic systems of equations in Hamiltonian form arose quite a
long time ago (see, for example, the review [1, 2]). Already G. Lamb has realized in his paper that the Klebsch
variables are canonically conjugate variables. This makes it possible to give incompressible fluid equations a
Hamiltonian form with a Hamiltonian, the role of which is played by the total kinetic energy of the incompressible
fluid. From a general point of view such a problem reduces to generalization of classical mechanics to field
systems with an infinite number of freedom degrees. One of the difficulties was the choice of canonically
conjugate variables, which did not always take a physically transparent content. Today this problem has been
overcome and has lost its relevance. The usefulness of the Hamiltonian approach is especially noticeable when
using the Hamiltonian formalism, for example, to develop a general theory of waves in nonlinear media. The
foundations of such an approach were laid in [3, 4].

After discovery of a method for nonlinear equations solution using the inverse scattering problem method,
it has been found that such equations, in a certain sense, are field analogues of the Hamiltonian equations of
classical mechanics [5]. This contributed to using Hamiltonian formalism in the direction of integrating nonlinear
equations. Also, the Hamiltonian approach turned out to be useful in searching for invariants of hydrodynamic
media [6] (see also [7]).

Infinite-dimensional groups of diffeomorphisms are closely related by hydrodynamic systems [8, 9]. In
fact, they are the configuration space for many hydrodynamic equations. Thus, groups of volume-preserving
diffeomorphisms are closely related to the Euler equations of incompressible fluid, compressible fluid and ideal
magnetohydrodynamics (see, for example, [10]). The approach using Poisson brackets to the description of
hydrodynamic systems has also been intensively developed. Mathematical achievements in the Hamiltonian
description of hydrodynamic systems can be found in [11, 14]. The development of the formalism of Poisson
brackets led to the classification of Poisson brackets of the hydrodynamic type within the framework of the
differential geometric approach [11, 12, 13, 14]. Another aproach arose earlier from the analogy of barotropic
flow of an ideal fluid in a potential force field with Hamiltonian systems [15]. In this paper [15] an attempt
was made to extend the analogy between hydrodynamics and Hamiltonian mechanics to the case of arbitrary
Hamiltonian systems.

In this paper the interest is rather opposite and is directed to identification of properties of finite-
dimensional Hamiltonian systems, which provide a connection with hydrodynamic systems. The reason is
that for an arbitrary Hamiltonian system the phase flows do not correspond to hydrodynamic flows. In other
words, we are interested in what class of Hamiltonian systems generates hydrodynamic flows. Such Hamiltonian
systems are finite-dimensional and in the case of two-dimensional ideal hydrodynamics the dimensionality of
the phase space is equal to 2. In this paper we consider two-dimensional hydrodynamics, which has an infinite
number of conservation laws [16]. The conditions under which the phase flow of a Hamiltonian system gener-
ates the velocity field of two-dimensional hydrodynamics of an incompressible fluid are obtained. An example
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of the corresponding flow is given. A special class of one-dimensional Hamiltonian systems associated with
hydrodynamic flows is identified.

2. LAGRANGIAN AND HAMILTONIAN FORMALISM

We will discuss the transition from the Lagrangian to the Hamiltonian formalism in two-dimensional
hydrodynamics. This transition has unusual features. The equations of motion of Lagrangian particles in
Lagrangian variables in two-dimensional hydrodynamics can be easily written as

ẍ = −∂P (x, y, t)

∂x

ÿ = −∂P (x, y, t)

∂y
(1)

Here, for simplicity, we have chosen a density ρ = const, which simply renormalizes the pressure P (x, y, t). This
system of equations can be obtained from the Lagrange variational principle from the Lagrangian L = ẋ2/2 +
ẏ2/2−P (x, y, t). Pressure plays the role of potential energy. However, this system must be supplemented by the

incompressibility condition divV⃗ = 0. In incompressible hydrodynamics, this condition additionally determines
the unknown pressure. The problem is an inadequate type of this condition for the Lagrangian formalism.
Availability of a velocity field determing trajectories of Lagrangian particles is an essential property. Enter ẋ =
V1 (x, t) , ẏ = V2 (x, y, t), then the incompressibility condition takes the form

∂ẋ

∂x
+

∂ẏ

∂y
= 0 (2)

Entering Lagrangian variables and a velocity field depending only on coordinates assumes consistency with both
the incompressibility condition (2) and the equations of motion (1). The incompressibility condition implies the
existence of a function such that

ẋ =
∂H (x, y, t)

dy

ẏ = −∂H (x, y, t)

∂x
(3)

In other words, the incompressibility condition means the Hamiltonian description of Lagrangian particles.
However, the occurence of the Hamiltonian description is not connected with the Lejandre Lagrangian trans-
formation of two-dimensional hydrodynamics L = ẋ2/2 + ẏ2/2 − P (x, y, t). This feature of the appearance of
the Hamiltonian formalism in hydrodynamic systems has been observed many times. Thus, for example, the
Hamiltonian equations of motion of point vortices cannot be formulated in Lagrangian form. The principal
difference between the initial Hamiltonian formalism obtained by the Lejandre Lagrangian transformation and
the Hamiltonian formalism from the incompressibility condition lies in the difference in the dimensionality of
phase spaces. In the first it is 4-dimensional, in the second it is 2-dimensional phase space. It is clear that
the transition to lower dimensionality is associated with the conservation of volume dxdy. We will discuss this
reduction of the initial Hamiltonian formalism a little later.Thus, the main problem is to determine the type
of the Hamiltonian and the constraints on it following from the equations of motion (1). Let us proceed to the
analysis of these constraints. Differentiating (3) with respect to time, we express ẍ, ÿ through ẏ, ẋ and H.

ẍ =
∂2H

∂x∂y
ẋ+

∂2H

∂y2
ẏ +

∂2H

∂y ∂t

ÿ = −∂2H

∂x2
ẋ− ∂2H

∂x∂y
ẏ − ∂2H

∂x∂t
(4)

Thus, the second derivatives are expressed through the first ones and the coordinates of the Lagrangian particle.
Taking into account this relation, let us write the equations of motion (1) in the form solved with respect to ẋ
and ẏ. This is easy to do by considering it as a system of linear algebraic equations relatively to derivatives of
coordinates with respect to time.

ẋ ·∆(x, y, t) =
∂2H

∂y2

(
∂2H

∂x∂t
− ∂P

∂y

)
− ∂2H

∂x∂y

(
∂2H

∂y ∂t
+

∂P

∂x

)

ẏ ·∆(x, y, t) = −∂2H

∂x2

(
∂2H

∂y ∂t
+

∂P

∂x

)
+

∂2H

∂x∂y

(
∂2H

∂x∂t
− ∂P

∂y

)
(5)
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Here the notation is introduced ∆(x, y, t) ≡ ∂2H
∂x∂y

∂2H
∂x∂y − ∂2H

∂x2
∂2H
∂y2 . The condition of matching with (3) restricts

the type of functions H and P . Substituting ẋ and ẏ through the derivatives of the Hamiltonian, we obtain

∂H

∂y
∆(x, y, t) =

∂2H

∂y2
∂2H

∂x∂t
− ∂2H

∂x∂y

∂2H

∂y∂t
− ∂P

∂y

∂2H

∂y2
− ∂P

∂x

∂2H

∂x∂y

∂H

∂x
∆(x, y, t) =

∂2H

∂x∂y

∂2H

∂x∂t
− ∂2H

∂x2

∂2H

∂y∂t
− ∂P

∂x

∂2H

∂x2
− ∂P

∂y

∂2H

∂x∂y
(6)

Solving this system of algebraic linear equations with respect to ∂2H
∂x∂t and ∂2H

∂y∂t after simple rearrangements,

transformations and cancellation ∆(x, y, t) ̸= 0, we obtain a system of equations in the form

∂2H

∂x∂t
+

∂2H

∂x2

∂H

∂y
− ∂2H

∂x∂y

∂H

∂x
=

∂P

∂y

∂2H

∂y∂t
+

∂2H

∂x∂y

∂H

∂y
− ∂2H

∂y2
∂H

∂x
= −∂P

∂x
(7)

In fact, this basic system of equations determines the unknown functions H and P . If these functions are known,
then the trajectory of the Lagrangian particle is found by integrating the Hamiltonian system of equations. In
other words, it reduces to a problem of classical mechanics. It is convenient to give this system a coordinate-free
form using Poisson brackets. Let us introduce the Poisson bracket in the usual way

{A,B} =
∂A

∂x

∂B

∂y
− ∂A

∂y

∂B

∂x

Using this bracket let us write the system of equations (7) in more natural invariant form.

∂

∂t

∂H

∂x
+

{
∂H

∂x
,H

}
=

∂P

∂y

∂

∂t

∂H

∂y
+

{
∂H

∂y
,H

}
= −∂P

∂x
(8)

or
∂

∂t

∂H

∂x
+

{
∂H

∂x
,H

}
− {x, P} = 0

∂

∂t

∂H

∂y
+

{
∂H

∂y
,H

}
− {y, P} = 0 (9)

Note, that neither the Hamiltonian nor its first derivatives are conserved with time. However, excluding the
pressure from this system it is easy to show that ∆H is conserved. Indeed, the equation for changing the
Laplacian H has the form

∂

∂t
∆H + {H,∆H} = 0 (10)

In fact, it is the well-known equation for vorticity.

3. THE EXAMPLE OF FLOW OF 2-DIMENSIONAL HYDRODYNAMICS OF
INCOMPRESSIBLE FLUID

Let’s start with a simple example of a Hamiltonian system with a time-dependent Hamiltonian. This
Hamiltonian is a particular solution of equation (10) and has the form

H = p2 sin2(ωt) + x2 cos2(ωt) (11)

It is easy to see that it has special properties. Its main property, which we will discuss below, is the following

∆H = const (12)

where, ∆ = ∂2

∂x2 +
∂2

∂p2 is the Laplacian in a phase space. The equations of motion for this system have the form

dx

dt
=

∂H

∂p
= 2p sin2(ωt)
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dp

dt
= −∂H

∂x
= −2x cos2(ωt) (13)

Let us note that equation (10) is satisfied for the Hamiltonian (11) and, therefore, the velocity field (12) satisfies
the Euler equations and condition (2) provides an example of a spiral unsteady two-dimensional flow.

By excluding the variable p we obtain the equation for the variable x of the second order

ẍ

sin2(ωt)
− 2ẋ

ω cos(ωt)

sin3(ωt)
= −4x cos2(ωt) (14)

This equation corresponds to Newton’s equation and appears as the Lagrangian equation of motion of a one-
dimensional physical system. Let us now discuss the Lagrangian system, which is generated by the Hamiltonian
system (11). For this purpose we pass by means of the Lejandre transformation to the Lagrangian of the initial
system.

ẋ =
∂H

∂p

£ = ẋp−H

For our particular case
ẋ = 2p sin2(ωt)

and impulse is expressed through velocity according to

p =
ẋ

2 sin2(ωt)

Note, that the Legendre transformation coincides with one of the equations of motion. Moreover, this transfor-
mation is not well determined everywhere. There are specific peculiarities at ωt = πk, where k = ±0,±1,±2, . . ..
We won’t pay attention to that for now. Then the Lagrangian type is determined as,

£ =
ẋ2

4 sin2(ωt)
− x2 cos2(ωt) ≡

(
ẋ

2 sin(ωt)
+ x cos(ωt)

)(
ẋ

2 sin(ωt)
− x cos(ωt)

)
(15)

Lagrangian equations of motion have the form

d

dt

∂£

∂ẋ
=

∂£

∂x

and in the case under consideration give the equation (14). Note that this equation describes the behavior of a
one-dimensional Lagrangian system of rather exotic physical content. First of all, the particle is in a potential
well with oscillating amplitude, which is affected by ¡¡friction¿¿ changed periodically with time. Note that
two-dimensional flow of an incompressible fluid is associated with a special one-dimensional Lagrangian system.

Now let us differentiate the equations (13) with respect to time and proceed to a system of higher order
equations in time. After using the equations of motion (13) to eliminate the first derivatives in the right-hand
sides of the system, we obtain

d2x

dt2
= −4x sin2(ωt) cos2(ωt) + 4ωp sin(ωt) cos(ωt)

d2p

dt2
= −4p sin2(ωt) cos2(ωt) + 4ωx sin(ωt) cos(ωt) (16)

It is clear that the solutions of the initial system (13) are also solutions of the obtained system of higher order
equations (16). The converse is not true, since new solutions can emerge due to differentiation.

The obtained system of equations (16) has a remarkable special property — it is a natural Lagrangian
system, which can be written in the form

d2x

dt2
= −∂U(x, p, t)

∂x

d2p

dt2
= −∂U(x, p, t)

∂p
(17)
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where the function U = U(x, p, t) has the meaning of a potential energy in two-dimensional configuration space
(x, p). For the example under consideration

U = 2(x2 + p2) sin2(ωt) cos2(ωt)− 4ωpx sin(ωt) cos(ωt) (18)

Thus, differentiation of the Hamiltonian system (13) with respect to time transforms it into a Lagrangian system
with Lagrangian

L =
ẋ2 + ṗ2

2
− U(x, p, t) ≡ ẋ2 + ṗ2

2
− 2(x2 + p2) sin2(ωt) cos2(ωt) + 4ωpx sin(ωt) cos(ωt) (19)

The Lagrangian dynamics in this special case corresponds not only to the initial Langrangian L = ẋ2/2+ ẏ2/2−
P (x, y, t), but also to the condition of divergence-free velocity field. Obviously, this is due to specialization of
the potential energy. Further we will be interested in the general properties that provide this.

The system of equations (17) can be obtained as,

d

dt

∂L

∂ẋ
=

∂L

∂x

d

dt

∂L

∂ṗ
=

∂L

∂p
(20)

Just the property (17) distinguishes a special class of Hamiltonian systems. Next, we introduce such a class,
determining its characteristic property in the general case. Now it is important that this class of Hamiltonian
systems is not trivial, as the example (11) demonstrates.

4. CLASS OF HAMILTONIANS OF HYDRODYNAMIC SOLUTIONS

Let us now distinguish a class of Hamiltonian systems G with special properties.
Determination 1 We will consider the Hamiltonian as belonging to the class G, if the system of equations

obtained by time differentiation is a natural Lagrangian system.
It is clear that the class of such systems is not empty. An example of such a system was discussed earlier.

Let us consider what conditions the Hamiltonians belonging to the class G satisfy. To do this, consider an
arbitrary Hamiltonian system. Its equations of motion have the form

dx

dt
=

∂H(x, p, t)

∂p

dp

dt
= −∂H(x, p, t)

∂x

Let’s perform time differentiation

d2x

dt2
=

∂2H(x, p, t)

∂p∂t
+

∂2H(x, p, t)

∂p∂x

dx

dt
+

∂2H(x, p, t)

∂p2
dp

dt

d2p

dt2
= −∂2H(x, p, t)

∂x∂t
− ∂2H(x, p, t)

∂x2

dx

dt
− ∂2H(x, p, t)

∂p∂x

dp

dt

We will use now the initial equations of motion and eliminate dp
dt and dx

dt in this system of equations

d2x

dt2
=

∂2H(x, p, t)

∂p∂t
+

∂2H(x, p, t)

∂p∂x

∂H(x, p, t)

∂p
− ∂2H(x, p, t)

∂p2
∂H(x, p, t)

∂x

d2p

dt2
= −∂2H(x, p, t)

∂x∂t
− ∂2H(x, p, t)

∂x2

∂H(x, p, t)

∂p
+

∂2H(x, p, t)

∂p∂x

∂H(x, p, t)

∂x

It is convenient to write these equations using the Poisson bracket

{A,B} =
∂A

∂x

∂B

∂p
− ∂A

∂p

∂B

∂x

Then the system of equations takes the form

d2x

dt2
=

∂

∂t

∂H(x, p, t)

∂p
+

{
∂H(x, p, t)

∂p
,H(x, p, t)

}
(21)
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d2p

dt2
= − ∂

∂t

∂H(x, p, t)

∂x
−
{
∂H(x, p, t)

∂x
,H(x, p, t)

}
(22)

In order that Hamiltonians to belong to the class G it is necessary and sufficient that the right parts of this
system have the form

∂

∂t

∂H(x, p, t)

∂p
+

{
∂H(x, p, t)

∂p
,H(x, p, t)

}
=

∂U(x, p, t)

∂x

− ∂

∂t

∂H(x, p, t)

∂x
−
{
∂H(x, p, t)

∂x
,H(x, p, t)

}
=

∂U(x, p, t)

∂p

The consistency conditions of this system of equations determine the class of Hamiltonians G. Equating the
mixed derivatives of the right-hand sides we obtain the consistency condition,

∂∆H(x, p, t)

∂t
+ {∆H(x, p, t), H(x, p, t)} = 0 (23)

which detemines the type of Hamiltonians belonging to class G. It follows that class G consists only of Hamil-
tonians that satisfy this equation and are significantly narrower than Hamiltonian systems. At a specified
H(x, p, t) the function U(x, p, t) satisfies the equation

∆U(x, p, t) = 2

{
∂H(x, p, t)

∂p
,
∂H(x, p, t)

∂x

}
Theorem 2 The class of Hamiltonians determines the velocity field of two-dimensional flows of an incom-

pressible ideal fluid.
The proof is trivial, the condition (23) coincides with the equation for the stream function. This theorem

leads to justification of singling out this class and the necessity of its study because of its physical importance
for hydrodynamic problems.

The possibility of studying hydrodynamic flows exclusively as a special class of mechanical systems is an
important ideological change following from the theorem.

5. LAGRANGIAN HYDRODYNAMICS

Let’s start with some simple considerations that make sense in purely classical mechanics. Let us find an
analogue of differentiation of motion equations in terms of classical mechanics. To do this, consider the classical
system with the Lagrangian

L =
1

2
(ẋ−A(x, y, t))

2
+

1

2
(ẏ −B(x, y, t))

2
(24)

An obvious feature of this Lagrangian is the achievement of a bare minimum of action on the equations of
motion

ẋ = A(x, y, t)

ẏ = B(x, y, t) (25)

For now, we will not take into account their Hamiltonian character in order to avoid cumbersome notation.
This will simplify writing of subsequent equations. These two functions determine both the potential energy
and other contributions linear in velocities. On the other hand, the motion equations for this Lagrangian have
the form

d

dt

∂L

∂ẋ
=

∂L

∂x

d

dt

∂L

∂ẏ
=

∂L

∂y

For the Lagrangian under consideration

ẍ = AAx +BBx + ẏ(Ay −Bx) +At

ÿ = AAy +BBy − ẋ(Ay −Bx) +Bt (26)

It is easy to see that in solutions (25) the equations coincide with the equations obtained by differentiation of
motion equations (25).

Theorem 3 If the Lagrangian of a mechanical system has a bare minimum, then the Lagrangian equations
of motion of such a system coincide with the equations obtained by time differentiation of bare minimum
coordinates.
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Then the condition that this system is a natural mechanical system can be formulated as

ẏ(Ay −Bx) +At =
∂G

∂x

−ẋ(Ay −Bx) +Bt =
∂G

∂y
(27)

when considering the equations (25) they are reduced to a system of equations of the form

At +B(Ay −Bx) =
∂G

∂x

Bt −A(Ay −Bx) =
∂G

∂y
(28)

It is easy to check that these equations coincide with the previously obtained (21), (22) constraints to the
Hamiltonian type (of course, when specializing to and ). In this way we can understand the procedure for
raising the order of the motion equations and the resulting constraints to the Lagrangian in terms of classical
mechanics only. In fact, we obtain the equivalent equations of two-dimensional hydrodynamics in such a way.
From a general point of view, these partial differential equations take place as matching conditions of some
ordinary differential equations.

Besides, it is easy to take into account the divergence-free velocity field in this formalism. When specializing
to stationary Hamiltonians

ẋ = A = −∂H(x, y)

∂y

ẏ = B =
∂H(x, y)

∂x

motion equations of the Lagrangian system have the form

ẍ =
∂P

∂x
− ẏ∆H

ÿ =
∂P

∂y
+ ẋ∆H (29)

where, P = 1
2

(
(∂H∂x )

2 + (∂H∂y )
2
)
. It’s easy to see that at ∆H = const the natural Lagrangian system is obtained

automatically. This clarifies the original example analyzed in Section 3. Of course, in the more general case, if
the condition ∆H = f(H) is met, these equations also coincide with the natural Lagrangian system.

6. CONCLUSIONS

In this paper a class of Hamiltonian systems G whose phase flows are exact solutions of two-dimensional
hydrodynamics of incompressible fluid is identified. An unusual example of a Lagrangian one-dimensional
system is given, which, upon transition to the Hamiltonian formalism, generates an unsteady two-dimensional
flow. Lagrangian hydrodynamics as a consequence of a special choice of the Lagrangian is introduced. The
obtained properties are useful in searching for exact solutions of two-dimensional hydrodynamics.

ORCID

Kostyantyn M. Kulyk, https://orcid.org/0000-0001-5552-669X; Volodymyr V. Yanovsky,
https://orcid.org/0000-0003-0461-749X

REFERENCES

[1] P.J. Morrison, ”Hamiltonian description of the ideal fluid,” Review of Modern Physics, 70(2), 467-521 (1998).
https://doi.org/10.1103/RevModPhys.70.467

[2] R. Salmon, ”Hamiltonian fluid mechanics,” Ann. Rev. Fluid Mech, 20, 225-256 (1988). http://dx.doi.org/10.
1146/annurev.fl.20.010188.001301

[3] V.E. Zakharov, ”The Hamiltonian Formalism for waves in nonlinear media having dispersion,” Radiophys. Quantum
Electron. 17, 326-343 (1974). https://doi.org/10.1007/BF01036794

[4] V.E. Zakharov, and E.A. Kuznetsov, ”Hamiltonian formalism for nonlinear waves,” Phys. Usp. 40, 1087 (1997).
https://doi.org/10.1070/PU1997v040n11ABEH000304

https://orcid.org/0000-0001-5552-669X
https://orcid.org/0000-0003-0461-749X
https://doi.org/10.1103/RevModPhys.70.467
http://dx.doi.org/10.1146/annurev.fl.20.010188.001301
http://dx.doi.org/10.1146/annurev.fl.20.010188.001301
https://doi.org/10.1007/BF01036794
https://doi.org/10.1070/PU1997v040n11ABEH000304


Two-Dimensional Hydrodynamics as a Class of Special Hamiltonian Systems
141

EEJP.2(2024)

[5] C.S. Gardner, ”The Korteweg-de Vries equation and generalization I. The Korteweg-de Vries equation as a Hamil-
tonan system,” J. Math. Phys. 12(8), 1548-1551 (1971). https://doi.org/10.1063/1.1665772

[6] D. Serre, ”Invariants et degenerescence symplectique de l’equation d’Euler des fluids parfaits incompressibles,” C.R.
Acad. Sci. Paris. Ser. A, 298, 349-352 (1984).

[7] A.V. Tur, and V.V. Yanovsky, ”Invariants in Dissipationless hydrodynamics media”, J. Fluid. Mech. 248, 67-106
(1993). https://doi.org/10.1017/S0022112093000692

[8] D.G. Ebin, and J.E. Marsden, ”Groups of diffeomorphisms and the solution of the classical Euler equations for a per-
fect fluid,” Bull. Amer. Math. Soc. 75(5), 962-967 (1969). http://dx.doi.org/10.1090/S0002-9904-1969-12315-3

[9] D.G. Ebin, and J.E. Marsden, ”Groups of diffeomorphisms and the notion of an incompressible fluid,” Ann. of Math.
Second Series, 92(1), 102-163 (1970). https://doi.org/10.2307/1970699

[10] B. Khesin, and R. Wendt, The Geometry of Infinite-Dimensional Groups, (Springer Berlin, Heidelberg, 2008).
https://doi.org/10.1007/978-3-540-77263-7

[11] S.P. Novikov, ”The Hamiltonian formalism and a many valued analog of Morse theory,” Russ. Math. Surveys, 37(5),
1-56 (1982). https://doi.org/10.1070/RM1982v037n05ABEH004020

[12] A. Maltsev, and S. Novikov, ”Poisson Brackets of Hydrodynamic Type and Their Generalizations,” Journal of
Experimental and Theoretical Physics, 132, 645-657 (2021). https://doi.org/10.1134/S1063776121040154

[13] O.I. Mokhov, ”Symplectic and Poisson structures on loop spaces of smooth manifolds, and integrable systems,”
Russ. Math. Surv. 53, 515-623 (1998). https://doi.org/10.1070/RM1998v053n03ABEH000019

[14] E.V. Ferapontov, ”Differential geometry of nonlocal Hamiltonian operators of hydrodynamic type,” Funct. Anal.
Its Appl. 25, 195-204 (1991). https://doi.org/10.1007/BF01085489

[15] V.V. Kozlov, ”Hydrodynamics of Hamiltonian systems,” Vestnik Moskovskiogo Universiteta, Seriia 1: Matematika,
Mekhanika, Nov.-Dec. 10-22 (1983). (in Russian)

[16] V.E. Zakharov, ”The algebra of integrals of motion of two-dimensional hydrodynamics in clebsch variables,” Funct.
Anal. Its Appl. 23, 189-196 (1989). https://doi.org/10.1007/BF01079524

ÄÂÎÂÈÌIÐÍÀ ÃÈÄÐÎÄÈÍÀÌÈÊÀ ßÊ ÊËÀÑ ÑÏÅÖIÀËÜÍÈÕ ÃÀÌIËÜÒÎÍÎÂÈÕ
ÑÈÑÒÅÌ

Êîñòÿíòèí Ì. Êóëèêa, Âîëîäèìèð Â. ßíîâñüêèéa,b

aIíñòèòóò ìîíîêðèñòàëëîâ, Íàöiîíàëüíà Àêàäåìiÿ Íàóê Óêðà¨íè, ïð. Íàóêè 60, 61072 Õàðêiâ, Óêðà¨íà
bÕàðêiâñüêèé íàöiîíàëüíèé óíiâåðñèòåò iì. Â.Í. Êàðàçiíà, ìàéäàíÑâîáîäè, 4, 61022, Õàðêiâ, Óêðà¨íà

Ó ðîáîòi âèçíà÷åíî êëàñ ãàìiëüòîíîâèõ ñèñòåì, ôàçîâi ïîòîêè ÿêèõ ¹ òî÷íèìè ðiøåííÿìè äâîâèìiðíî¨ ãiäðîäèíà-

ìiêè ðiäèíè, ÿêà íå ñòèñêó¹òüñÿ. Ðîçãëÿíóòî âëàñòèâîñòi öüîãî êëàñó. Íàâåäåíî ïðèêëàä ëàãðàíæîâî¨ îäíîâèìiðíî¨

ñèñòåìè, ÿêà ïiñëÿ ïåðåõîäó äî ãàìiëüòîíîâîãî ôîðìàëiçìó ïðèâîäèòü äî íåñòàöiîíàðíî¨ òå÷i¨, òîáòî äî òî÷íîãî

ðiøåííÿ äâîâèìiðíî¨ ãiäðîäèíàìiêè. Îáãîâîðåíî çâ'ÿçîê ìiæ öèìè ôîðìàëiçìàìè òà ââåäåíî ëàãðàíæèàíè, ÿêi

ïîðîäæóþòü ëàãðàíæîâó ãiäðîäèíàìiêó. Îòðèìàíi ðåçóëüòàòè äîçâîëÿþòü îòðèìóâàòè òî÷íi ðiøåííÿ, ÿê ôàçîâi
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The paper examines solution for a two-dimensional steady, viscous, heat dissipation, incompressible hydro-magnetic free convective 
flow past a uniformly moving vertical porous plate immersed in a porous material in the presence of the Soret effect, Dofour effect and 
Chemical reaction. A constant magnetic field is directed into the fluid area perpendicular to the plate. The MATLAB built-in bvp4c 
solver approach is used to solve the governing non-dimensional equations. The discussion of the current issue focuses mostly on the 
impacts of thermal diffusion, magnetic field, thermal radiation, Grashof number, Soret number, Dufour number, and chemical reaction. 
It is observed that the Soret number improves fluid temperature. In addition, the fluid's temperature, concentration, and velocity all 
drop as the magnetic field parameter rises. Although the heat dissipation caused by the medium's porosity is usually disregarded 
in convective MHD flow simulations, it is considered in this work. 
Keywords: MHD; Porous medium; Chemical reaction; Radiation; Heat dissipation; Soret effect and Dufour effect 
PACS: 44.25+g; 44.05.+e; 44.30.+v; 44.40.+a 

INTRODUCTION 
The combined effects of magnetic and temperature field on viscous flow are basically studied in a magneto-

hydrodynamics (MHD) flow. In addition to many other domains, Magnetohydrodynamic (MHD) flow finds practical 
applications in diverse fields such as missile technology, plasma physics, geophysics, solar physics, astrophysics etc. 
Consequently, numerous scientists and engineers are keenly interested in its applications. Khan et al. [1] investigated the 
magnetohydrodynamic free convection flow around an oscillating plate within a porous medium. Fetecau et al. [2] 
explored the unsteady solution of magnetohydrodynamic natural convection flow incorporating radiative effects. 
Meanwhile, Seth et al. [3] delved into the radiative heat transfer in the context of MHD free convection flow past a plate 
with ramped wall temperature. MHD free convective flow involving chemical reaction over an inclined magnetic field 
was studied by Sheri et al. [4]. In an unstable MHD flow between two porous vertical plates, heat and mass transfer were 
investigated by Raghunath et al. [5].  Zeeshan et al. [6] investigated the MHD flow of water/ethylene glycol based 
nanofluids with natural convection through a porous medium. Their results were substantiated both mathematically and 
graphically. 

Free convection is a method of heat transmission in which buoyancy induced fluid motion is all that occurs. Due to 
the significance of natural convections in both nature and engineering, several scholars have investigated these issues in 
depth over the past 20 years. Among them are Ahmed et al. [7], Lawal et al. [8] and Sedki [9]. Ahmed et al. [10] conducted 
a study on the three-dimensional mixed convective mass transfer flow adjacent to a semi-infinite vertical plate in porous 
medium. Rajput et al. [11] investigated the effects of chemical reactions and radiation on magnetohydrodynamic flow via 
a vertical plate with changing mass diffusion and temperature. Soret and Dufour effect on MHD micropolar fluid past 
over a Riga plate was studied by Borah et al. [12]. Ahmed [13] examined the impact of Soret and radiation effects on 
transient magnetohydrodynamic free convection from an impulsively started infinite vertical plate.  Patel [14] investigated 
the thermal radiation effects on magnetohydrodynamic (MHD) flow involving heat and mass transfer of a micropolar 
fluid between two vertical walls. Reddy et al. [15] explored the influence of chemical reactions on magnetohydrodynamic 
natural flow through a porous medium past an exponentially stretching sheet, considering the presence of heat source/sink 
and viscous dissipation. Jha et al. [16] examined how a heat source or sink affected magnetohydrodynamic free convective 
flow in a nanofluid-filled channel. The effect of viscous dissipation on magnetohydrodynamic free convection flow 
around a semi-infinite moving vertical porous plate with chemical reaction and heat sink was investigated by 
Matta et al. [17]. Borah et al. [18] investigated the influence of Arrhenius activation energy in magnetohydrodynamic 
micropolar nanofluid flow along a porous stretching sheet, considering viscous dissipation and heat source. In a recent 
study, Akhtar et al. [19] explored the impacts of radiation and heat dissipation on magnetohydrodynamic convective flow 
in the presence of a heat sink. 

Chemical reactions have a significant impact on studies of thermal and solutal convection in the fields of science 
and engineering technology. The existence of multi-component species in a system causes the chemical reaction. 
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Senapati et al. [20] conducted a study on the magnetic effects on mass and heat transfer in a hydromagnetic flow past 
over a vertical oscillating plate in presence of a chemical reaction. Mondal et al. [21] examined how radiation and 
chemical reactions affect the free convection flow of magnetohydrodynamic via a vertical plate in a porous material. 
Sinha [22] conducted a study on the unsteady MHD free convective flow, considering the effects of a chemical reaction 
past a permeable plate under sloping temperature conditions. The results showed that the reaction rate increased as the 
chemical reaction parameter increased. Suresh et al. [23] investigated the influence of chemical reaction and radiation on 
magnetohydrodynamic flow along a moving vertical porous plate with heat source and suction. 

Bordoloi et al. [24] investigated the analytical solution for a steady, viscous, incompressible hydromagnetic free 
convective flow in two dimensions that passes in front of a vertical porous plate that is uniformly moving and embedded 
in a porous material. Their study included the consideration of the Soret effect and chemical reaction. The current research 
extends this work by incorporating heat dissipation due to the porosity of the medium. Through the use of a vertical plate 
that is always moving, always experiencing a heat flux, immersed in a porous media, and always under continual suction, 
the study seeks to understand how chemical reactions and thermal radiation affect natural convective flow. These 
combined effects, which are not typically examined simultaneously, have wide range of effects on engineering processes 
such as paper production, plastic sheet extrusion, glass blowing, and more. 
 

BASIC EQUATIONS 
The following equations described   the continuous convective flow across a porous medium of an electrically 

conducting, viscous, incompressible fluid while being affected by a magnetic field: 𝛁.ሬሬሬ⃗ 𝒒ሬሬ⃗ ൌ 𝟎      (1) 𝛁.ሬሬሬ⃗ 𝑩ሬሬ⃗ ൌ 𝟎      (2) �⃗� ൌ 𝝈 ൫𝑬ሬሬ⃗  𝒒ሬሬ⃗ ൈ 𝑩ሬሬ⃗ ൯      (3)  𝛒൫𝐪ሬሬ⃗ .𝛁ሬሬ⃗ ൯𝐪ሬሬ⃗ ൌ 𝛒𝐠ሬ⃗ − 𝛁ሬሬ⃗ 𝐩  𝐉 ൈ 𝐁ሬሬ⃗  𝛍𝛁𝟐𝐪ሬሬ⃗ − 𝛍𝐪ሬሬ⃗𝐊´     (4) 𝝆𝑪𝒑൫𝒒ሬሬ⃗ .𝛁ሬሬ⃗ ൯𝑻 ൌ 𝒌𝛁𝟐𝑻  𝝋 𝑱𝟐ሬሬሬሬ⃗𝝈  𝑸ᇱሺ𝑻ஶ −  𝑻ሻ − 𝛁.ሬሬሬ⃗ 𝒒𝒓ሬሬሬሬ⃗ − 𝝁𝑲𝒒𝒓ሬሬሬሬ⃗ 𝟐   (5) ൫𝒒ሬሬ⃗ .𝛁ሬሬ⃗ ൯𝑪 ൌ 𝑫𝑴𝛁𝟐𝑪  𝑫𝑴𝑲𝑻𝑻𝒎 𝛁𝟐𝑻  𝑲𝒄തതതതሺ𝑪ஶ − 𝑪ሻ    (6) 𝝆ஶ ൌ 𝝆ൣ𝟏  𝜷ሺ𝑻 − 𝑻ஶሻ  𝜷ഥሺ𝑪ஶ − 𝑪ሻ൧     (7) 

Radiation heat flux as per Rosseland approximation, 𝐪𝐫ሬሬሬሬ⃗ ൌ −  𝟒𝝈∗𝟑𝒌∗ 𝛁ሬሬ⃗ 𝑻𝟒       (8) 

 
MATHEMATICAL FORMULATION 

It is considered that a viscous, incompressible, radiating fluid that conducts 
electricity will pass through a vertical plate embedded in a porous medium with 
uniform suction when a constant magnetic field is present and directed 
perpendicularly to the flow. The investigation is guided by the following 
presumptions: 

I. With the exception of density in the term for the buoyant force, all 
fluid parameters are constant. 

II. There is very little induced magnetic field. 
III. The plate has no electrical conductivity. 
IV. It receives no external electric field. 

Let, 𝑩ሬሬ⃗  and  𝒒ሬሬ⃗  be the applied magnetic field and the flow velocity respectively 
at the point ሺ𝒙ᇱ, 𝒚ᇱ,  𝒛ᇱሻ. Since | 𝐓 −  𝐓ஶ | is the very small,𝐓𝟒 can be expressed as: 𝐓𝟒 ൌ  ሼ𝐓ஶ   ሺ 𝐓 −  𝐓ஶሻሽ 𝟒 ൌ 𝟒𝐓ஶ𝟑 𝐓 − 𝟑 𝐓ஶ𝟒.    (9) Therefore, equation (8) gives, 𝐪𝐫ሬሬሬሬ⃗ ൌ  −  𝟏𝟔𝛔∗𝐓ಮ𝟑𝟑𝐤∗ 𝛁ሬሬ⃗ 𝐓     (10) 
Equation (10) gives, 

 
Figure 1. Physical representation 

of the problem. 
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𝛁ሬሬ⃗  .𝐪𝐫ሬሬሬሬ⃗ =  −  𝟏𝟔𝛔∗𝐓ಮ𝟑𝟑𝐤∗ 𝛁𝟐𝐓        (11) Equation (11) can be used to simplify the energy equation as follows: 𝝆𝑪𝒑𝒗ᇱ 𝝏𝐓𝝏𝒚ᇲ = 𝒌 𝝏𝟐𝑻𝛛𝒚ᇲ𝟐  + 𝝁ቀ𝝏𝒖ᇲ𝝏𝒚ᇲቁ + 𝝈𝑩𝒐𝟐𝒖ᇱ𝟐 + 𝟏𝟔 𝛔∗𝟑𝐊∗ 𝑻ஶ𝟑 𝝏𝟐𝑻𝛛𝒚ᇲ𝟐 − 𝑸ഥ(𝑻ஶ − 𝑻)   (12) 
The equation of state (7) yields the following governing equations, which are standard boundary layer approximations. 𝝏𝒗ᇲ𝝏𝒚ᇲ = 𝟎,         (13) 𝒗ᇱ 𝝏𝒖ᇲ𝝏𝒚ᇲ = 𝒈𝜷(𝑻 − 𝑻ஶ) + 𝒈𝜷ഥ(𝑪 − 𝑪ஶ) +  𝝑 𝝏𝟐𝒖ᇲ𝛛𝒚ᇲ𝟐 − 𝝈𝑩𝒐𝟐𝒖ᇲ𝝆 − 𝝑𝒖ᇲ𝑲ᇲ  ,     (14) 𝝆𝑪𝒑𝒗ᇱ 𝝏𝑻𝝏𝒚ᇲ = 𝒌 𝝏𝟐𝑻𝛛𝒚ᇲ𝟐  + 𝝁ቀ𝝏𝒖ᇲ𝝏𝒚ᇲቁ + 𝝈𝑩𝒐𝟐𝒖ᇱ𝟐 + 𝟏𝟔 𝛔∗𝟑𝐊∗ 𝑻ஶ𝟑 𝝏𝟐𝑻𝛛𝒚ᇲ𝟐 − 𝑸ഥ(𝑻ஶ − 𝑻) − 𝝁𝒌ᇲ 𝒖ᇱ𝟐 +  𝑫𝑴𝑲𝑻𝑪𝐏𝑪𝐒   ,   (15) 𝒗ᇱ 𝝏𝑪𝝏𝒚ᇲ = 𝑫𝑴 𝝏𝟐𝑪𝛛𝒚ᇲ𝟐 +  𝑫𝑴𝑲𝑻𝑻𝒎 𝝏𝟐𝑻𝝏𝒚ᇲ𝟐 + 𝑲𝒄തതതത(𝑪ஶ − 𝑪),    (16) 

The appropriate boundary conditions for the velocity, temperature and concentration are, At  yᇱ= 0:  uᇱ = U,  பப୷ᇲ = −୯∗୩ ,     C = C୵       (17) As   yᇱ → ∞ :     uᇱ → 0,     T → Tஶ,    C → Cஶ     (18) 
The non-dimensional quantities are introduced as, 𝑦 = 𝑣𝑦ᇱ 𝑣 , 𝑢 = 𝑢ᇱ𝑈 , 𝜃 = 𝑇 − 𝑇ஶ∗௩௩ , 𝜑 = (𝐶 − 𝐶ஶ)𝐶௪ − 𝐶ஶ ,         𝐺 = 𝑣𝑔𝛽 ∗௩௩𝑈𝑣ଶ , 𝐸 = 𝑈ଶ𝐶(𝑇௪ − 𝑇ஶ), 

𝑃 = ఓ ,    𝐾 =  തതതതణ௩మ,𝐺 = ఉഥ  ణ௩మ (𝐶௪ − 𝐶ஶ),   𝑆 = ణಾ , 𝑀 = ఙమణఘ௩మ ,𝑅 = ସణூఘ௩మ∗,  𝑄 = ொതణఘ௩మ, K = ᇲ௩మణమ ,    𝑆 =  ಾ∗ೡೖೡణ ்(ೢିಮ), 𝐷௨ =  ಾ(ೢିಮ)ೞ(்ೢ ି ಮ்)  , 𝑁 =  ∗ସఙ∗ 𝑻ಮ𝟑 
Equation (13) gives, 𝑣ᇱ = −𝑣(𝑣 > 0)         (19) 

The form of governing equations in dimensionless are as follows: ௗమ௨ௗ௬మ + ௗ௨ௗ௬ −   ቀ 𝑀 + ଵቁ 𝑢 = − 𝐺𝜃 − 𝐺𝜑       (20) 
ୢమୢ୷మ + Λଵ ୢୢ୷ − Q ଵθ = −ΛଵE( ୢ୳ୢ୷ )ଶ − ( M + ଵ) Λଵ E uଶ −  D୳Λଵ ୢమୢ୷మ      (21) 

ୢమୢ୷మ + Sୡ ୢୢ୷ − K ୡ φ = − SୡS୰ ୢమୢ୷మ        (22) 
Where, Λ=1 + ସଷ , ஃ୕ = Qଵ , and Λଵ =   ౨ஃ  

Corresponding boundary conditions (17)-(18) reduces to At  𝑦 = 0 ∶  𝑢 = 1, డఏడ௬ = −1, 𝜑 = 1       (23) As y → ∞ :  u → 0, θ → 0, φ → 0       (24) 
 

METHOD OF SOLUTION 
The ordinary differential equations (20)-(22) with the boundary conditions (23) and (24) are solved by the use of 

numerical method ‘MATLAB built-in bvp4c solver technique’. The boundary ordinary differential equations are 
converted into the first order differential equations are as follows: 

Let, 𝑢 = y(1)  ,     𝑢ᇱ =  y(2),    𝜃 =  y(3),       𝜃′ =  y(4),       𝜑 = y(5),       𝜑′ = y(6). 

Now, we have the following set of first order differential equations: yᇱ(2) =  −y(2) − ቀM + ଵቁ −  𝐺y(3) − 𝐺 y(5)      (25) 
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Pr Pr 1 Pr Pr(4) (4) (3) (2) (2) (1) (1) (6)
4 4 4 4 41 1 1 1 1

3 3 3 3 3

Qy y y E y y M E y y Du y
K

N N N N N

 ′ ′= − + − − + −           + + + + +         
         

 (26) 

(6) (6) (5) (4)y Sc y Kc y Sc Sr y′ ′= − + −       (27) 

 The boundary conditions of the resulting ordinary differential equations can be expressed as,  

0(1) 1, 0(4) 1, 0(5) 1, 1(1) 0, 1(3) 0, 1(5) 0y y y y y y− + − − − −     (28) 
 

RESULT AND DISCUSSION  
In this study, the effects of various non-dimensional physical parameters such as magnetic parameter  (M), radiation 

parameter (N), thermal diffusion ratio (𝐾்) , heat sink (Q), thermal Grashof number (G୰ ), solutal Grashof number (G୫ ), chemical reaction (Kୡ ), Soret number (S୰ ), Schmidt Number (Sc ), Prandlt number (𝑃 ), Dufour number ( D୳) 
and porosity parameter (K ) on velocity field (u) , temperature field (θ) and concentration field ( 𝜑) of the  flow  system  
have been studied and their variations with respect to the parameters are shown by graphs. The Variations of fluid velocity, 
temperature and concentration field are shown in figures 2-20 graphically. 

 
Velocity variation: The velocity profiles are shown in figures 2-9. Figure-2 represents that the fluid velocity u 

decreases with the increasing values of magnetic parameter (M). This happens as a result of the fluid's velocity decreasing 
due to the magnetic field's generation of an opposing Lorentz force. Therefore, the increasing value of magnetic field 
results in the decrease of fluid velocity. Figure-3 shows the effect of the radiation parameter on the velocity profile. It is 
evident that as the radiation parameter increases, the velocity of fluid particles increases. 

  
Figure 2. Variation of the velocity with M Figure 3. Variation of the velocity with N 

Figure-4 shows the impact of chemical reaction parameter 𝐾  on velocity profile. It is observed that fluid velocity 
(u) decreases with the increase of chemical reaction parameter 𝐾 . Figure-5 shows how fluid velocity changes with 
thermal Grashof number 𝐺  . It is noted that velocity increases along with the thermal Grashof number. 

  
Figure 4.  Variation of the velocity with 𝐾  Figure 5. Variation of the velocity with 𝐺  

This can be explained by the observation that temperature gradients rise in proportion to an increase in Grashof 
number, which ultimately causes the velocity distribution inside the flow to increase. Figure-6 demonstrates how the 
solutal Grashof number 𝐺 affect the fluid velocity. It is noted that the fluid velocity increases with 𝐺 . The thermal and 
solutal buoyancy forces cause a considerable rise in the velocity field. This results from the direct relationship between 
buoyant force and Grashof numbers. Figure-7 depicts the effect of Soret number (𝑆 ) on velocity. It is seen that the fluid 
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velocity increases due to the increase of Soret number. In figure-8, it has been noted that when the porosity parameter (K) 
grows, the fluid velocity increases. This happens because a fluid with a higher porosity value has more room to move. 
Consequently, an increase in the fluid velocity occurs. Figure-9 shows the influence of Dufour number (𝐷௨ ) on fluid 
velocity. It is regarded that as Dufour number increases there is monotonic increase in the fluid velocity. 

  

Figure 6. Variation of the velocity with 𝐺  Figure 7. Variation of the velocity with 𝑆  

  
Figure 8.  Variation of the velocity with K Figure 9. Variation of the velocity with 𝐷௨  

Temperature Variation: The temperature profiles are shown in figures 10-17. Figure-10 demonstrates 
how temperature profile changes with heat sink (Q). It is noted that the fluid temperature decreases with the 
increase of Q. Figure 11 indicates that the fluid temperature decreases as the chemical reaction parameter (𝐾 ) 
increases. Figure -12 shows how the radiation parameter affects the temperature profile. The observed that the 
fluid's temperature drops as the radiation parameter increases. Figure-13 illustrates how the fluid temperature 
drops as the magnetic parameter increases. The increasing values of solutal Grashof number (𝐺 ) and thermal 
Grashof number(G୰ ) increases the fluid temperature, as shown in figures 14 and 15. Figure-16 shows a clear 
rise in the fluid temperature for increasing the Soret number(𝑆 ). Figures-17 describes the effect of Dufour 
number ( D୳ ) on fluid temperature. The Dufour number signifies the contribution of the concentration 
gradients to the thermal energy flux in the flow. It is seen that as Dufour number (𝐷௨ ) increases there is 
monotonic increase in temperature. 

  
Figure 10. Variation of the temperature with Q Figure 11. Variation of the temperature with 𝐾  
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Figure 12.  Variation of the temperature with N Figure 13. Variation of the temperature with M 

  
Figure 14. Variation of the temperature with 𝐺  Figure 15. Variation of the temperature with 𝐺  

  
Figure 16. Variation of the temperature with  𝑆  Figure 17. Variation of the temperature with 𝐷௨  

Concentration Variation: The concentration profiles for the parameters 𝑲𝒄 ,  𝑺𝒓  and  𝑫𝒖  are depicted in figures 18-20. 
Figure-18 illustrates that fluid concentration decreases with increasing chemical reaction parameter(𝑲𝒄 ). Figure-19 shows 
a clear rise in the fluid concentration for increasing the Soret number ( 𝑺𝒓 ). Figure-20 describes the fluid concentration 
increases due to the increasing value of Dufour number ( 𝑫𝒖 ).  

 
Figure 18. Variation of the concentration with 𝑲𝒄  
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Figure 19. Variation of the concentration with  𝑺𝒓  Figure 20. Variation of the concentration with  𝑫𝒖  

 
CONCLUSION 

In this inquiry, using the ‘MATLAB built-in bvp4c solver technique’, free convective MHD radioactive flow across 
a porous vertical plate surrounded by a porous medium has been numerically simulated, accounting for viscous 
dissipation, thermo-diffusion, and chemical reaction. The investigation's results are noteworthy when fluid temperature 
rises for high radiation and high thermo-diffusion effects. The consumption of species and magnetic field characteristics 
is still decreased. As the buoyant force grows, the upsurge concentration rises; nevertheless, as the magnetic parameters 
grow, it declines. With a rise in magnetic field and intense radiation, the flow slows down. The impact of thermo-diffusion 
causes the flow to speed up. The application of thermal radiation and magnetic field slows the drag force at the plate. The 
rate of mass transfer is increased by increasing the thermo-diffusion effect. 

NOMENCLATURE �⃗� Fluid velocity vector 𝐾் Thermal diffusion ratio 
ρ Fluid density 
T Fluid temperature 𝐶ஶ Species concentration in free stream 𝐵ሬ⃗  Magnetic flux density vector 
ν Kinematic viscosity 
C Molar species concentration 𝐽 Current density vector 𝐶ௐ Species concentration at the plate 𝐽 Acceleration vector due to gravity 𝑇 Mean fluid temperature 
P Fluid pressure 𝐸ሬ⃗  Electrical field 𝐶 Specified heat at steady pressure 
μ Coefficient of viscosity 

U Free stream velocity 𝑞∗ Heat flux 𝜎∗ Stefan-Boltzmann constant 𝑞 Flux of radiation heat 
κ Thermal conductivity ⃗మఙ  Ohmic dissipation of energy per unit volume 
ϕ Viscous energy dissipation per unit volume 𝐾 Chemical reaction coefficient 
σ Conductivity of electricity 
K Porosity parameter 
∗ Mean absorption coefficient 𝐷ெ Mass diffusivity 
β Coefficient of thermal expression 
N Radiation absorption Coefficient 
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ВІЛЬНИЙ КОНВЕКТИВНИЙ РАДІОАКТИВНИЙ МГД ПОТІК ЧЕРЕЗ ВЕРТИКАЛЬНУ ПЛАСТИНУ В 

ПОРИСТОМУ СЕРЕДОВИЩІ З УРАХУВАННЯМ В'ЯЗКОВОЇ ДИСИПАЦІЇ, ТЕРМОДИФУЗІЇ 
ТА ХІМІЧНОЇ РЕАКЦІЇ 

Сальма Ахтарa, Кешаб Борахa, Шьяманта Чакрабортиb 
aФакультет математики, Університет Гаухаті, Гувахаті-781014, Ассам, Індія 

bUGC-HRDC, Університет Гаухаті, Гувахаті-781014, Ассам, Індія 
У статті розглядається рішення для двовимірного постійного, в’язкого, розсіювання тепла, нестисливого гідромагнітного 
вільного конвективного потоку повз рівномірно рухому вертикальну пористу пластину, занурену в пористий матеріал, за 
наявності ефекту Соре, ефекту Дофура та хімічної реакції. Постійне магнітне поле спрямоване в область рідини 
перпендикулярно до пластини. Вбудований у MATLAB розв’язувач bvp4c використовується для розв’язування керівних 
безвимірних рівнянь. Обговорення поточного питання зосереджено на впливі теплової дифузії, магнітного поля, теплового 
випромінювання, числа Грасгофа, числа Соре, числа Дюфура та хімічної реакції. Помічено, що число Соре покращує 
температуру рідини. Крім того, температура, концентрація та швидкість рідини падають зі збільшенням параметра магнітного 
поля. Хоча розсіювання тепла, викликане пористістю середовища, зазвичай не враховується при моделюванні конвективного 
МГД-потоку, воно розглядається в цій роботі. 
Ключові слова: МГД; пористе середовище; хімічна реакція; випромінювання; розсіювання тепла; ефект Соре і ефект 
Дюфура 
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The combined effect of second sound and the viscoelasticity is examined using the classical stability analysis on the onset of rotating 
porous medium ferroconvection. Local thermal equilibrium is assumed between the solid matrix and fluid. Present problem is examined 
by an analytical approach by considering the pertinent boundary conditions. Normal mode analysis technique is utilized for obtaining 
the critical values for both instabilities namely stationary and oscillatory. We noticed that the oscillatory mode of instability is favored 
over the stationary mode of instability. We found that magnetic forces, second sound, nonlinearity in magnetization, Vadasz number, 
stress relaxation due to viscoelasticity and Taylor-Darcy number are in favour of advancing oscillatory porous medium ferroconvection 
whereas strain retardation postpone the outset of oscillatory porous medium ferroconvection. Convection cell size effects by different 
parameters and the oscillation’s frequency are also noted. This problem shall have significant feasible technological applications 
wherein viscoelastic magnetic fluids are involved. 
Keywords: Convection; Rotation; Viscoelastic fluids; Maxwell equations; Porous media; Navier-Stokes equations for incompressible 
viscous fluids 
AMS Classification: 76E06, 35Q61, 76A10, 76S05, 76D05. 
PACS: 47.32.-y,47.56.+r, 47.65.Cb, 66.20.-d.

1. INTRODUCTION
The dynamics of ferrofluids can be controlled by an externally acting applied magnetic field (Shliomis [1]). 

Rosensweig [2-4] was the first to synthesize ferrofluids. Considering both magnetic and buoyancy forces, a 
comprehensive analysis of RBC in ferrofluids was reported by Finlayson [5]. The findings of Finlayson [5] were examined 
both thereotically and experimentally by Schwab et al. [6] and Stiles and Kagan [7] respectively. Lalas and Carmi [8] 
reported the unique results on ferroconvection with energy stability approach. The impact of internal heating on the energy 
stability of magnetic fluids was documented by Mahajan and Sharma [9]. Nisha Mary and Maruthamanikandan [10] 
investigated a time-dependent body force effect on magnetic fluid convection. Soya Mathew et al. [11] studied porous 
medium ferroconvection with Maxwell-Cattaneo equation. Laroze and Pleiner [12] examined numerical and theoretical 
impact on ferroconvection in a viscoelastic carrier liquid. Recently Balaji et al. [13] worked on magnetic field modulation 
affected ferroconvection in a Brinkman porous medium. Vidyashree et al. [14] examined the combined effect of variable 
gravity and MFD viscosity on porous medium ferroconvection. Naseer et al. [15] analyzed the dual nature of Prandtl 
number in the presence and the absence of non-classical conduction. 

When it comes to instabilities in viscoelstic fluids, Oldroyd model [16] gives the fundamental rheological equation 
describing the properties of viscoelastic realistically. In comparison the relaxational time in normal liquids is very short 
as that of viscoelastic liquids. Green [17] examined that for viscoelastic liquids the principle of exchange of stabilities is 
invalid when the restoring force is large. Malashetty et al. [18] and Jianhong Kang et al. [19] studied the rotating RBC in 
viscoelastic fluids by means of both linear and weakly non-linear techniques. Laroze et al. [20] presented theoretical and 
numerical results on ferroconvection in a viscoelastic carrier liquid. Several other researchers contributed to addressing 
the problem of convective instability of viscoelastic fluids with a variety of constraints techniques (Bhadauria and 
Kiran [21], Alves et al. [22], Sohail Nadeem et al. [23], Mahmud et al. [24], Sharma and Mondal [25] and Kaiyao et al. 
[26], Dhiman et al. [27]).  

As for the convection due to porous medium, Saravanan and Sivakumar [28] made an investigation on the impact 
of vibrations on RBC in porous media with arbitrary amplitude and frequency. Very recently, Rudresha et al. [29] studied 
the theoretical influence of time-periodic electric field on electroconvection of Brinkman type. Malashetty and 
Mahantesh [30] investigated the linear stability of an Oldroyd type viscoelastic liquid filled horizontally asymmetric 
porous material warmed beneath and chilled from above. More recently, Rudresha et al. [31] reported a theoretical 
investigation of the combine effect of anisotropy and time-periodic electric field on Darcy-electroconvection. Lebon and 
Cloot [32] studied the effects of Maxwell-Cattaneo model in RBC and Marangoni instability. Maruthamanikandan and 
Smita [33] investigated Rayleigh-Benard instability taking into account second sound in a dielectric fluid. Soya and 
Maruthamanikandan [34] examined the porous medium ferroconvective instability subjected to the heat flux model. 
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Recently, Naseer Ahmed and Maruthamanikandan [35] analyzed anisotropic porous medium under Brinkman Model on 
viscoelastic ferroconvective instability due to Maxwell-Cattaneo.  

External rotation in regards with thermal convection has gained a high interest both theoretically and 
experimentally. Due to its general existence in oceanic flows and geophysical, it is crucial to realize how the Coriolis 
force ambience the transport properties and structure of thermal convection. The investigation on thermal convection 
stability in rotating porous media are done by many researchers. Friedrich [36] analyzed the porous layer stability with 
rotation warmed from underneath considering linear and a nonlinear numerical analysis. This problem with the variable 
viscosity impact has been addressed by Patil and Vaidyanathan [37]. A fascinating analogy have been well-established 
by Palm and Tyvand [38] among an anisotropic porous layer and a rotating porous layer. Various researchers have 
examined the rotation under different costraints as follows Jou and Liaw [39], Qin and Kaloni [40], Vadasz [41], 
Straughan [42], Govender [43,44], Desaive et al. [45], Straughan [46], Malashetty and Swamy [47], Dhiman and 
Sood [48] and Pulkit Kumar Nadian [49]. 

The present paper concentrates on examining the oscillatory convective instability of viscoelastic ferrofluid saturated 
in a rotating porous medium using extended Darcy model with second sound as we cannot find any study related to this 
from the literature review. 

 
Figure 1. Physical Configuration 

 
2. MATHEMATICAL FORMULATION 

Let us consider a Boussinesq viscoelastic ferromagnetic fluid saturated densely distributed porous layer rotating 

with angular velocity (0,0, )
→
Ω Ω restricted between two endless horizontal surfaces of height ‘d’. The viscoelastic 

behaviour is characterized by Oldroyd’s model (non-Newtonian). The above and bottom surface is maintained at UT and 

LT  where L UT T>  (see Fig. 1). Magnetic field 0H


 acts parallel in the z-axis vertically and the force of gravity assisting 
vertically descending. The governing equations aiding the Boussinesq approximation are recorded as follows. 

 0q→∇ =  (2.1) 

 0 0
1 0 22

21 1 fq q q p g H B q q
t t t k

μρ ρλ ρ ρ λ
ε εε

→
→ → →→ → → →→

      ∂ ∂ ∂      + + ∇ + ∇ − −∇ + Ω× = − +            ∂ ∂ ∂           
   (2.2) 

( ) ( )0 , 0 0 0

, ,

1V H s

V H V H

M T T M HC H q T C T q H Q
T t t T t

ε ρ μ ε ρ μ
→ → →

→→ →→ →
      ∂ ∂ ∂ ∂ ∂         − + ∇ + − + + ∇ = − ∇        ∂ ∂ ∂ ∂ ∂          

      (2.3) 

 1
Q q Q Q Q k T
t

τ ω
→

→ → →→→
 ∂   + ∇ + × = − − ∇  ∂  
 

  (2.4) 

 ( )0 1 aT Tρ ρ α = − −   (2.5) 

 ( ) ( )0 0m m aM M H H K T Tχ= + − − −  (2.6) 

All the terms above are defined in Naseer et al. [15]. 
Maxwell’s equations (Finlayson [5]). 
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 00 , 0 , .B H B H Mμ
→ → → →→ → ∇ = ∇ × = = + 

 
  (2.7) 

We notice that for 2 0λ =  the fluid scale down to Maxwell’s fluid and also if 2 0λ =  and 1 0λ =  then the fluid scale 
down to Newtonian fluid. 

The basic state equations are as follows 

 

1

0 , (0,0,0) , ( ) ,

( ) , ( ) , ( ) ,

( ) , ( ) , (0,0, )

b b

b b b

b b b

q T T z
t

p p z z H H z

M M z B B z Q Q k

ρ ρ

β

→

→

→ → → →

∂ = = = ∂ 
= = = 

= = =


 (2.8) 

where ( )1 0 2T Tβ = −  
The basic state solution reads as follows 
 [ ]0 1b zρ ρ αβ= +  (2.9) 

 ^
0 1

m
b

m

K zH H kβ
χ

→  
= − + 

 (2.10) 

 ^
0 1

m
b

m

K zM M kβ
χ

→  
= + + 

 (2.11) 

 ^
0B H M kμ→ → → = +  

 (2.12) 

 
3. STABILITY ANALYSIS 

Due to small perturbations, we obtain dimensionless equations for stability analysis embracing normal modes 
(Finlayson [5]). 

After an infinitesimally small perturbations the perturbed state equations are as follows 

 

' , ', ' ,

', ', ' ,

' , ' , '

b b b

b bb

b bb

q q q T T T p p p

H H H M M M

B B B Q Q Q

ρ ρ ρ

φ ϕ φ

→ →→

→ → → → → →

→ → → → → →

= + = + = + 


= + = + = + 

= + = + = +


 (3.1) 

where the perturbed quantities are indicated br primes. Therefore, the linearized equations due to small perturbed 
governing takes the form. 

( ) ( )
2 2

2 2 2 20 0 1 0
0 1 0 1 21

' 21 ' ' ' 1 '
1

m f
m

m

K Tw g T K w
t t z z t k

μρ μ β ρ ζλ α ρ μ β φ λ
ε χ ε

   ∇∂ ∂ ∂ ∂ ∂   + ∇ − ∇ + ∇ − + Ω = + − ∇      ∂ ∂ ∂ + ∂ ∂      
 (3.2) 

 0 0
21

2 '1 1 fw
t t z t k

μ ζρ ρζλ λ
ε ε

   Ω∂ ∂ ∂ ∂   + − = − +       ∂ ∂ ∂ ∂      
 (3.2) 

 ( ) ( )
2

0
0 0 01 2

' ' . ' '
1

a m
a m

m

T KTC T K Q C w
t t z

μφρ μ ρ β
χ

→  ∂ ∂ ∂ − = −∇ + −  ∂ ∂ ∂ +   
 (3.4) 

 1
1

'1 ' ' '
2
k qQ w k T

t z
τ βτ

→→
 ∂ ∂   + = − −∇ − ∇   ∂ ∂   

 (3.5) 

 ( )
2

20
12

0

' '1 1 ' 0m m
M TK

z H z
φχ φ

 ∂ ∂
+ + + ∇ − = ∂ ∂ 

 (3.6) 

Solving equations (3.4) and (3.5) to eliminate ' .Q
→  The linearized perturbed equations reduce to the following. 
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( ) ( )
2 2

2 2 2 20 0 1 0
0 1 0 1 21

' 21 ' ' ' 1 '
1

m f
m

m

K Tw g T K w
t t z z t k

μρ μ β ρ ζλ α ρ μ β φ λ
ε χ ε

   ∇∂ ∂ ∂ ∂ ∂   + ∇ − ∇ + ∇ − + Ω = + − ∇      ∂ ∂ ∂ + ∂ ∂      
 (3.7) 

 0 0
21

2 '1 1 fw
t t z t k

μ ζρ ρζλ λ
ε ε

  Ω∂ ∂ ∂ ∂   + − = + −     ∂ ∂ ∂ ∂      
 (3.8) 

 ( ) ( )
2

2 20 1
0 0 0 11 2

' '1 ' ' '
1 2

a m
a m

m

T KT kC T K C w k T w
t t t z

μφ τ βτ ρ μ ρ β
χ

  ∂ ∂ ∂ ∂   + − − − = − ∇ − ∇     ∂ ∂ ∂ ∂ +      
 (3.9) 

 ( )
2

20
12

0

' '1 1 ' 0m m
M TK

z H z
φχ φ

 ∂ ∂
+ + + ∇ − = ∂ ∂ 

 (3.10) 

where 

( ) ( ) ( )0 0 , 0 0 01 1V H m s
C C H K Cρ ερ εμ ε ρ= + + − , ( )0 0 , 0 02 V H mC C H Kρ ερ εμ= + , 

2 2 2
2 2 2
1 12 2 2,

x y z
∂ ∂ ∂

∇ = + ∇ =∇ +
∂ ∂ ∂

, 

,o a

m
H T

MK
T

∂ = −  ∂ 
 , 

,o a

m
H T

M
H

χ ∂ =  ∂ 
and ' 'v u

x y
ζ ∂ ∂= −

∂ ∂
 denotes the z-component of vorticity and 'φ  being magnetic 

potential. 
Considering the normal mode as follows 

 ( )

' ( )
' ( )
' ( )
' ( )

i l x m y t

w W z
T z

e
z
z

σ

φ
ζ ζ

+ +

   
   Θ   =
   Φ
   
   

 (3.11) 

along x and y directions wave numbers are l and m respectively and σ is the growth rate. Substitution of equation (3.11) 
into (3.7) to (3.10) leads to 

 
( ) ( )

( ) ( )

2 2
2 2 2 20 0 0

0 01

2 2
2

21
1

1

m h
h h m h

m

f
h

K K DD K W gK K K D

D K W
k

ρ μ β ρ ζλ σ σ αρ μ β
ε χ ε

μ
λ σ

 Θ Ω
+ − + Θ − Φ + + + 

 
= + − − 

 

 (3.12) 

 ( ) ( )0 0
21

21 1 fDW
k

μ ζρ ρλ σ σ ζ λ σ
ε ε

 Ω + − = + −     
 (3.13) 

 
( ) ( ) ( )

( ) ( )

2
0

0 0 01 2

2 2 2 21
1

1
1

2

a m
a m

m

h h

T KC T K D C W

kk D K D K W

μτσ ρ σ μ σ ρ β
χ

τ β

  
+ Θ − Φ − −  +  

= − Θ − −

 (3.14) 

 ( ) ( )2 20

0

1 1 0m h m
MD K z K D
H

χ
 

+ Φ − + Φ − Θ = 
 

 (3.15) 

where D d dz=  and 2 2 2
hK l m= + is the overall horizontal wave number. Considering the following scaling to non-

dimensionalize the equations (3.12) to (3.15) 

 

* * *
2

*

2 2

, , ,

1

, * , * ,

m

m

h

WdW
K dd

za K d z
d

d d

βκ β
χ

σ ζσ ζκ κ

Θ Φ = Θ = Φ = 

+

= = = = 


 (3.16) 
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we get the following non dimensionless equations (for simplicity asterisks are neglected) 

 ( ) ( ) ( )2 2 2 2
1 11 1 DF D a W M R a N a D Ta D

Va
σσ ζ + − + + Θ − Φ +  

( ) ( )2 2
21 F D a Wσ  = − + −   (3.17) 

 ( ) ( )1 21 1DF Ta DW F
Va
σσ ζ σ ζ + − = − +  

 (3.18) 

 ( ) ( ) ( ) ( )2 2 2 2
2 21 2 1G M D M W D a G D a Wσ λσ σ+  Θ − Φ − −  = − Θ − −   (3.19) 

 ( )2 2
3 0D M a D− Φ − Θ =  (3.20) 

where 
( )
( )

0

0

1

2

C

C

ρ
λ

ρ
= , ( ) ( )

2
0

2
0 21

m

m

K TaM
C

μ
χ ρ

=
+

 and 22
G

d
τ κ= . 

Eliminating ζ by substituting ζ from equation (3.18) in (3.17) and then equations (3.17) and (3.18) reduces to one 
equation as mentioned in equation (3.21), also neglecting 2M  from Finlayson [5] and assuming 1λ =  we have the 
following 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 2 2 2
1 2 1 1 1

2 2 2 2
1 1 2 2

1 1 1 1

1 1 1 1D

F F F D a W M R a R M a D
Va Va

F Ta D W F F F D a W
Va

σ σσ σ σ

σσ σ σ σ

   + + + + − + + Θ− Φ      
   + + = − + + + + −    

 (3.21)  

 ( ) ( ) ( ) ( )2 2 2 21 2 0G W D a G D a Wσ σ+ Θ − − − Θ + − =  (3.22) 

 ( )2 2
3 0D M a D− Φ − Θ =  (3.23) 

where 1
1 2F

d
λ κ

= is the non-dimensional stress relaxation time, 2
2 2F

d
λ κ

=  is the non-dimensional strain retardation time, 

2

0

f d
Va

k
ε μ
ρ κ

=  is the Vadasz number, 
2

0
D

f

g d kR α ρ β
μ κ

=  is the Rayleigh-Darcy number, ( )
2

0
1

01
m

m

KM
g

μ β
χ α ρ

=
+

 is the 

Magnetic number, 22
G

d
τ κ

=  is the Cattaneo number, 
2

02
D

f

kTa ρ
μ ε

 Ω
=   
 

is the Taylor-Darcy number and 

0

0
3

1

1 m

M
HM
χ

 + 
 =

+ 
 
 

 

is the non-buoyancy-magnetization parameter. Appropriate boundary conditions are 0W D= Θ = Φ =  at 1 / 2z = ± . 
 

3.1. Stationary Instability 
For the stationary mode equations from (3.21) - (3.23) turn out to be the following 

 ( ) ( )2 2 2 2 2
1 11 0DM R a R M a D Ta D W D a W+ Θ − Φ + + − =  (3.24) 

 ( ) ( )2 2 2 21 0G D a W D a − − − − Θ =   (3.25) 

 ( )2 2
3 0D M a D− Φ − Θ =  (3.26) 

Equations (3.24) – (3.26) embracing an eigenvalue problem along with the boundary conditions with R being eigen value. 

The forthright solution ( )1 cos ,W A zπ= ( )2 cos ,A zπΘ = ( )3 sin ,A zπ
π

Φ =  where 1 2,A A and 3A
 
are constants. On 

solving we obtain 

 
( )( )

( ) ( )

2 2 2
3

2 2 2
1 31 1

st
D

DR
a

p a M p Ta

G p a M M

π π
π

+ +
=

 + + + 
 (3.27) 
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On substitution 0G = and 3 0M =  in equation (3.27) exactly coincides with Kang et al., [19] and Vadasz [41] and 
which is mentioned in equation (3.28). It should be noted that equation (3.27) is stationary Rayleigh-Darcy number is 
independent of viscoelastic parameters.  

 
2 2

2
st D
D

p p TaR
a
π+=  (3.28) 

where superscript ‘st’ represents stationary convection. 
 

3.2. Oscillatory Instability 

( ) ( )

( )( ) ( )

( ) ( )

( )( ) ( ) ( )

( ) ( ) ( )

22 2 2 2
1 2

2 2 2
1 2 1 1 1 1 2 2

2 2 2
2

2
1 1 1 2 3

1

21 1 1 1 1 1

1

1 1 1 0

DF a Ta
Va

F F a A F M R a F F A
Va Va

F a

F R M a F F A
Va

σσ π π

σ σσ σ π σ σ σ

σ π

σσ σ σ

  
+ − + −  

  
     + + + − + + + + + + +       
 

− + + 
  

 − + + + + =  

(3.29) 

 ( ) ( ) ( )2 2 2 2
1 21 2 1 2 0G G a A a G Aσ π π σ σ   + + + − + + + =     (3.30) 

 ( )2 2 2
2 3 3 0A M a Aπ π− + =  (3.31) 

On applying the solvability condition, we obtain 

 
( )( ) ( ) ( )

( )( )

( ) ( ) ( )
( ) ( )

2 22
12 2 2

3 2
2 1

22 2 2
1 3 1

1

1
2

1

1
1 1 1 2

1

DTa Va F
a M p G

p Va F Va F
R

Va F
a a M M Va F G p

F

π σ
π σ σ

σ σ
σ

π σ σ
σ σ

 +
 + + +
 + + + + =

+ 
 + + + + +      + +  

 (3.32) 

where 2 2p aπ= + . Let iσ ω=  where ω is frequency of oscillation and we retrieve R in the form 1 2R R i R= + , both 

1R  and 2R  are computed by MATHEMATICA SOFTWARE. 
 

4. RESULTS AND DISCUSSION 
The aim of the study is to uptight with rotating porous medium ferroconvection in a viscoelastic magnetic fluid with 

second sound. Conditions for the pair of the stationary as well as oscillatory convection utilizing linear theory, has been 
established by normal mode technique. Characterization of the system’s stability is taken into account by the thermal 
Rayleigh number R, which is obtained as a function of the various parameters. By utilizing MATHEMATICA software, 
Eigen value expression and the corresponding critical number are found. Newtonian behavior of viscoelastic fluid in 
stationary convection can be noticed. In oscillatory mode Rayleigh-Darcy number is derived as a function of Vadasz 
number, viscoelastic parameters namely strain retardation time and stress relaxation time, non-buoyancy magnetization 
parameter, Cattaneo number, Taylor-Darcy number and magnetization parameter. The values of the various parameters 
are fixed as follows 1 2 31.5, 2, 0.3, 0.06, 2 0.4DF Va F G M and Ta= = = = = = and from the Figs. (2-8) critical 

Rayleigh-Darcy number 
c

osc
DR is expressed as a function of magnetic number 1.M  

In Figure 2 as there is an increment in 1 ,M  
cDR  decreases and destabilizes the system. We notice that the exchange 

principle of instabilities is invalid as stationary convection is not preferred over oscillatory convection as 
c

st
DR is higher than 

the .
c

osc
DR As the certain ranges of the governing parameters the fluid layer becomes overstable, i.e. the thermal instability 

gives rise to an oscillatory convective motion. Overstability is possible in the presence of rotation or a magnetic field because 
they lend an elastic-like behaviour to the fluid thereby enabling it to sustain appropriate modes of wave propagation. It is 
therefore expected that a layer of viscoelastic fluid can become overstable due solely to heating from below. 

In Figure 3 we see that as and how 1F  and 1M  increases there is a decrement in 
c

osc
DR

 
which conveys that the system 

destabilizes as oscillatory convection is hasten by the stress relaxation parameter 1.F
 
It is due to the fact that the relaxation 

time parameter accelerates the convection flow and weakens the viscoelastic fluid elasticity. 
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In Figure 4 as the the values of 2F  and 1M  increases we note that there is an increment in 
c

osc
DR which reveals that the 

retardation parameter 2F  halts the onset of oscillatory convection as it enhance the effect of elastic. Hence, the system stabilizes. 

   
Figure 2. Variation of R with 1M  for 

1 1.5,F =  2,Va =  2 0.3,F = 0.06,G =

3 2M = and 0.4DTa =  

Figure 3. Variation of 
c

osc
DR  with 1M  for 

2 30.3, 2, 0.06, 2F Va G M= = = =  and 
0.4DTa =  

Figure 4. Variation of of 
c

osc
DR  with 1M

 
for 1 31.5, 2, 0.06, 2F Va G M= = = =  

and 0.4DTa =  
In Figure 5 as Va  and 1M  increases there is a decrease in 

c

osc
DR

 
and hence system destabilizes. As Vadasz number is the 

ratio of porosity, Prandtl number and Darcy number. In Figure 6 as there is an increment in G and 1M  we observe that there is 

an decrement in 
c

osc
DR  due to the presence of dawn value of G and destabilizes the system. As parabolic equation is replaced by 

the hyperbolic equation in equation of temperature which guarantees the finite transmit of heat signals instead of infinite. 
In Figure 7 the magnetic equation linear departure is expressed by the parameter 3M . We observe from figure 7, as there 

is an increment in 1M  and 3M  then osc
cR  decreases monotonically which conveys that the magnetic equation of state grows 

larger and larger to nonlinear owed to which ferroconvection is threshold in porous layer with second sound is hastened.  

   
Figure 5. Variation of 

c

osc
DR  with 1M

 for 

1 21.5, 0.06, 0.3,F G F= = =  

3 2 0.4DM and Ta= =  

Figure 6. Variation of 
c

osc
DR  with 1M

 
for 1 21.5, 2, 0.3,F Va F= = =  

3 2 0.4DM and Ta= =  

Figure 7. Variation of 
c

osc
DR  with 1M

 for 

1 21.5, 2, 0.3,F Va F= = =  

0.06 0.4DG and Ta= =  
We notice from Figure 8, as 1M  and DTa  increases the 

c

osc
DR  monotonically decreases which implies that the system 

destabilizes as observed in Pérez et el. [50]. From Figure 9 through 13 we can observe that all parameters increase 2
cω  

also increases whereas noted from Fig. 14 as parameter increases 2
cω  decreases. Hence, we can conclude from 

Figs. (9-14) that for all parameter cω is sensitive. 

  
Figure 8. Variation of 

c

osc
DR  with 1M  for 

1 1.5, 2,F Va= = 2 0.3, 0.06F G= =  

and 3 2M =  

Figure 9. Variation of 2
cω  with 1M  for 

2 0.3, 2, 0.06,F Va G= = =

3 2 0.4DM and Ta= =  

Figure 10. Variation of 2
cω  with 

1M
 for 1 21.5, 0.06, 0.3,F G F= = =  

3 2 0.4DM and Ta= =  
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Figure 11. Variation of 2
cω  with 1M

 
for 

1 21.5, 2, 0.3,F Va F= = =  

3 2 0.4DM and Ta= =  

Figure 12. Variation of 2
cω  with 1M  

for 1 21.5, 2, 0.3,F Va F= = =

0.06 0.4DG and Ta= =  

Figure 13. Variation of 2
cω  with 1M  

for 1 21.5, 2, 0.3,F Va F= = =

30.06 2G and M= =  

 

Figure 14. Variation of 2
cω  with 1M  for 

1 31.5, 2, 0.06, 2 0.4DF Va G M and Ta= = = = =  

From Table 1 through 10, we can analyze the effect of 1 31 2, , , , ,M F F Va M G  and DTa on wave number which 
represents the shape and size of the convection cell. If we observe closely cα increases with an increase in 1,F ,Va  and 

DTa  which implies that the convection cell size is contracted and decrement of cα with an increment in 2F  and 3M
which implies that the convection cell size is enlarge. 

Table 1. Rayleigh-Darcy number and wavenumber critical values for 3 2, 0.06 0.4.DM G and Ta= = =  

1M  
Stationary Oscillatory ( )1 21.5, 0.3 2F F and Va= = =  

c

st
DR  st

cα  
c

osc
DR  osc

cα  
0 16.4701 10.37 10.6941 2.95604 

0.2 13.7853 11.8764 9.33656 2.95659 
0.4 11.8449 13.3015 8.30025 2.9467 
0.6 10.3798 14.6747 7.48287 2.93229 
0.8 9.23542 16.0167 6.82082 2.91624 
1.0 8.31733 17.3428 6.27287 2.89995 

Table 2. Rayleigh-Darcy number and wavenumber critical values with variation in 1F  by fixing 2 0.3, 2,F Va= =  

30.06, 2 0.4DG M and Ta= = =  

1M  
1 1F =  1 1.5F =  1 2F =  

c

osc
DR  cα  

c

osc
DR  cα  

c

osc
DR  cα  

0 66.0416 1.0 10.6941 2.95604 7.02019 4.08829 
0.2 63.0998 1.0 9.33656 2.95659 6.01014 4.23206 
0.4 60.4089 1.0 8.30025 2.9467 5.24903 4.33444 
0.6 57.9381 1.0 7.48287 2.93229 4.65661 4.41049 
0.8 55.6615 1.0 6.82082 2.91624 4.18356 4.41592 
1.0 53.557 1.0 6.27287 2.89995 3.79694 4.44985 
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Table 3. Rayleigh-Darcy number and wavenumber critical values with variation in 2F  by fixing 1 1.5, 2,F Va= =  
30.06, 2 0.4DG M and Ta= = =  

1M  
2 0.1F =  2 0.3F =  2 0.5F =  

c

osc
DR  cα  

c

osc
DR  cα  

c

osc
DR  cα  

0 5.28459 3.73769 10.6941 2.95604 21.7013 2.10033 
0.2 4.54376 3.88231 9.33656 2.95659 19.5045 2.09634 
0.4 3.98017 3.98809 8.30025 2.9467 17.7445 2.08973 
0.6 3.5386 4.06835 7.48287 2.93229 16.2999 2.08205 
0.8 3.18399 4.13112 6.82082 2.91624 15.0903 2.07412 
1.0 2.89327 4.18153 6.27287 2.89995 14.0605 2.06634 

Table 4. Rayleigh-Darcy number and wavenumber critical values with variation in Va by fixing 1 21.5, 0.3, 0.06,F F G= = =  
3 2 0.4DM and Ta= =  

1M  1Va =  2Va =  3Va =  

c

osc
DR  cα  

c

osc
DR  cα  

c

osc
DR  cα  

0 14.6089 2.86345 10.6941 2.95604 8.85992 3.42225 
0.2 12.7803 2.88742 9.33656 2.95659 7.6532 3.43747 
0.4 11.3542 2.90293 8.30025 2.9467 6.74327 3.43444 
0.6 10.2125 2.91381 7.48287 2.93229 5.83093 3.86296 
0.8 9.27831 2.92172 6.82082 2.91624 5.4638 3.40712 
1.0 8.50012 2.92776 6.27287 2.89995 4.99651 3.38998 

Table 5. Rayleigh-Darcy number and wavenumber critical values with variation in G by fixing 1 21.5, 0.3, 2,F F Va= = =  
3 2 0.4DM and Ta= =  

1M  
0.05G =  0.06G =  0.07G =  

c

osc
DR  cα  

c

osc
DR  cα  

c

osc
DR  cα  

0 11.9367 2.93641 10.6352 2.51388 10.6941 2.95604 
0.2 10.4218 2.93976 9.42077 2.5064 9.33656 2.95659 
0.4 9.26372 2.93204 8.47648 2.49413 8.30025 2.9467 
0.6 8.3496 2.91933 7.71939 2.48015 7.48287 2.93229 
0.8 7.60895 2.90462 7.09719 2.46593 6.82082 2.91624 
1.0 6.99591 2.8894 6.57551 2.45216 6.27287 2.89995 

Table 6. Rayleigh-Darcy number and wavenumber critical values with variation in 3M by fixing 1 21.5, 0.3, 2,F F Va= = =  
0.06 0.4DG and Ta= =  

1M  
3 1M =  3 2M =  3 3M =  

c

osc
DR  cα  

c

osc
DR  cα  

c

osc
DR  cα  

0 10.6941 2.95604 10.6941 2.95604 10.6941 2.95604 
0.2 9.45654 2.97246 9.33656 2.95659 9.26594 2.94614 
0.4 8.48826 2.97412 8.30025 2.9467 8.18962 2.92977 
0.6 7.71149 2.96775 7.48287 2.93229 7.34809 2.91153 
0.8 7.07459 2.95709 6.82082 2.91624 6.6709 2.89336 
1.0 6.54253 2.94429 6.27287 2.89995 6.11327 2.87608 

Table 7. Rayleigh-Darcy number and wavenumber critical values with variation in DTa by fixing 1 21.5, 0.3,F F= =  
32, 0.06 2Va G and M= = =  

1M  
0.3DTa =  0.4DTa =  0.5DTa =  

c

osc
DR  cα  

c

osc
DR  cα  

c

osc
DR  cα  

0 12.7272 2.4949 10.6941 2.95604 9.69108 3.39212 
0.2 11.2701 2.49011 9.33656 2.95659 8.37313 3.41198 
0.4 10.1351 2.47993 8.30025 2.9467 7.37744 3.4126 
0.6 9.22452 2.46759 7.48287 2.93229 6.59972 3.40376 
0.8 8.47612 2.45467 6.82082 2.91624 5.9755 3.3904 
1.0 7.84879 2.44195 6.27287 2.89995 5.46319 3.37507 
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CONCLUSIONS 
The onset of thermal ferro-convection in a viscoelastic fluid saturated rotating porous layer with second sound is 

examined analytically using linear stability analysis. The linear theory provides the onset criteria for both stationary and 
oscillatory convection. The following conclusions are drawn: 

• The most favorable mode of thermal instability is the oscillatory mode. 
• Ferro-convective viscoelastic fluid coincides with the ferro-convective Newtonian fluid saturated rotating porous 

layer with second sound in stationary case. It is due to the fact that the base state has no flow and any viscoelastic 
fluid of simple fluid type becomes Newtonian when the flow is steady and weak. 

• Magnetic parameters 1M  and 3M , viscoelastic stress relaxation parameter 1F , Vadasz number Va  and Cattaneo 
number G strengthens the destabilizing effect of Taylor-Darcy number DTa in the oscillatory mode. 

• Viscoelastic strain retardation parameter 2F , advances the oscillatory mode. 
• Critical frequency and wavenumber of oscillatory motions are determined as functions of all the parameters of the 

problem. For all the parameters they are sensitive. 
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За допомогою класичного аналізу стабільності на початку фероконвекції обертового пористого середовища досліджено 
комбінований ефект другого звуку та в’язкопружності. Передбачається локальна теплова рівновага між твердою матрицею та 
рідиною. Поточна проблема розглядається за допомогою аналітичного підходу з урахуванням відповідних граничних умов. 
Техніка аналізу нормального режиму використовується для отримання критичних значень для обох видів нестабільностей, а 
саме стаціонарної та коливальної. Ми помітили, що коливальний режим нестабільності має перевагу над стаціонарним 
режимом нестабільності. Ми виявили, що магнітні сили, другий звук, нелінійність намагніченості, число Вадаша, релаксація 
напруги через в’язкопружність і число Тейлора-Дарсі сприяють розвитку осцилюючої пористої фероконвекції середовища, 
тоді як затримка деформації відкладає початок коливальної пористої фероконвекції середовища. Також відзначено вплив 
розміру конвекційної комірки за різними параметрами та частотою коливань. Ця проблема матиме значні можливі 
технологічні застосування, у яких задіяні в’язкопружні магнітні рідини. 
Ключові слова: конвекція; обертання; в'язкопружні рідини; рівняння Максвелла; пористі середовища; рівняння Нав'є-
Стокса для нестисливих в'язких рідин 
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