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Wormbhole solutions in General Relativity (GR) require ezotic matter sources that violate the null energy condition
(NEC), and it is well-known that higher-order modifications of GR and some alternative matter sources can support
wormholes. In this study, we explore the possibility of formulating traversable wormholes in f(R) modified gravity,
which is perhaps the most widely discussed modification of GR, with two approaches. First, to investigate the effects
of geometrical constraints on the global characteristics, we gauge the rr—component of the metric tensor and employ
Padé approximation to check whether a well-constrained shape function can be formulated in this manner. We then
derive the field equations with a background of string cloud and numerically analyse the energy conditions, stability,
and amount of exotic matter in this space-time. Next, as an alternative source in a simple f(R) gravity model, we
use the background cloud of strings to estimate the wormhole shape function and analyse the relevant properties of
the space-time. These results are then compared with those of wormholes threaded by normal matter in the simple
f(R) gravity model considered. The results demonstrate that string cloud is a viable source for wormholes with NEC
violations; however, the wormhole space-times in the simple f(R) gravity model considered in this study are unstable.
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1. INTRODUCTION

The governing equation of the theory of General Relativity (GR) is the Einstein field equation (EFE),
and solutions to this set of coupled differential equations have been remarkably successful in accounting for
phenomena ranging from black holes [1] to the evolution of the universe. Spherical symmetry is an important
physically relevant constraint in solving the EFEs, and wormholes are an intriguing prospect among spherically
symmetric solutions, explored since the early days of GR [2, 3]. Ellis [6] and Bronnikov [7] independently
reported the first traversable Lorentzian wormhole solution, and the geometric requirements were established
in detail by Morris & Thorne in 1988 [8]. Wormholes are exact solutions to the EFEs and can be interpreted
as bridges connecting two different asymptotically flat regions of space-time via a throat. The topology of the
wormbhole interior is non-trivial, while the topology at the boundaries remains simple [9]. While theoretical as of
now, wormholes are of crucial importance in fundamental physics, especially considering quantum entanglement
[10] and quantum gravity. Moreover, it has recently been shown that wormholes may mimic astrophysical black
holes in some observations [63, 5]. A fundamental problem in such spacetimes is that for the throat to remain
open for signal propagation, the behavior of the matter sources supporting such a space-time is ezotic in that
the null energy condition (NEC) is violated [8]. Specifically, this implies that observers in an inertial frame
measure negative energy densities at the throat, which is unphysical. Such behavior can be avoided in modified
gravity theories.

Despite its success, GR fails to explain cosmological phenomena such as late-time accelerated cosmic
expansion [11, 13] and the so-called ‘inflationary epoch’ [14]. Modified theories of gravity address these short-
comings [15, 16, 17, 28, 29|, and the extra degrees of freedom in modified gravity theories also enables one to
evade NEC violations in wormhole space-times. Moreover, wormhole solutions are an inherent feature of most
modifications of GR. One of the simplest modifications to GR is f(R) modified gravity, where the Ricci scalar R
in the Einstein-Hilbert action is replaced by some arbitrary function of it [18]. This simple modification to GR
can lead to a host of models that can independently meet both cosmological and solar system tests [19]. It has
been shown that the extra degrees of freedom in f(R) gravity arising from higher order curvature terms may
lead to scenarios where the matter content satisfies the NEC in wormhole spacetimes [20, 21]. Wormbholes in the
framework of f(R) gravity have been studied extensively in different iterations of f(R) gravity (for instance, in
Refs. [22, 12, 23, 24, 25, 26, 27, 30, 31, 64, 32, 33)).

Another inherent limitation of GR is that it provides only a classical description of gravity, and the theory is
non-renormalizable at high energy (small length) scales. String theory [34] is perhaps the strongest contender to
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a unified paradigm of gravity with the other fundamental forces, and it posits that the fundamental constituent
of matter and energy are extended objects, instead of point-like ones. Precisely, the extended objects are
considered as one—dimensional relativistic strings, and the interactions of strings on a classical level provide
better models of several fundamental interactions [35, 36, 37]. To this end, string clouds as a gravitational
source have been studied extensively in literature. A general solution to the EFEs for a spherically symmetric
cloud of strings was first reported in [38], with an emphasis on the energy conditions. Properties of compact
objects such as black holes in the background of a string cloud have been reported previously [39, 40, 41, 42].
Traversable wormholes in the background of a string cloud have been reported [43], with an emphasis on the
amount of exotic matter and stability of the wormhole configuration against radial perturbations. Recently, a
detailed study of the properties of traversable wormholes surrounded by a string cloud in the framework of f(R)
gravity has been reported with analysis of the quasi-normal modes (QNMs) of the wormbhole solutions [44].

In this study, we investigate traversable wormholes in f(R) gravity with two motivations: First, to inves-
tigate the effects of geometrical constraints, we gauge the rr—component of the metric tensor and employ Padé
approximation to check whether a well-constrained shape function can be formulated in this manner. We then
derive the field equations with the background of a string cloud and numerically analyse the energy conditions,
stability, and amount of exotic matter in this space-time. Next, we use a background of string cloud to estimate
the wormhole shape function in a simple f(R) gravity model, with f(R) = aR™ — SR" [45], and analyse the
relevant properties of the space-time as in the previous case. These results are then compared with those of
wormholes threaded by normal matter in the same modified gravity model considered.

The remainder of this manuscript is organized as follows. In Sec. 2, we discuss the traversable wormhole
geometry. A novel shape function is proposed using Padé approximation in Sec. 2.1. In Sec. 3, we present the
modified EFEs in the general framework of f(R) gravity. In Sec. 3.1 we analyse the various energy conditions,
the stability in terms of the TOV equation, and the amount of exotic matter required to sustain traversable
wormholes in the framework of f(R) gravity with a background of string cloud. Next, in Sec. 3.2 we estimate the
shape function in the considered form of f(R) = aR™ — SR™ gravity model [45] with a string cloud background
and analyse the properties of the wormhole space-time. For a comparative analysis, in Sec. 3.3 we present
wormbhole solutions supported by ordinary matter for the f(R) model [45] considered in Sec. 3.2 using our
proposed shape function obtained by employing Padé approximation in Sec. 2.1. Finally, we conclude the work
with remarks in Sec. 4. We adhere to the natural system of units (G = ¢ = 1) throughout the work.

2. TRAVERSABLE WORMHOLES
Morris & Thorne [8] used the following metric ansatz to describe a static, spherically symmetric space-time

2
d52 — —€2¢(r)dt2 + %

s

+ r2d6* + r2sin®0d¢? (1)

Eq. (1) is the line element of a traversable wormhole. The proper radial coordinate I(r) = f;; \/‘1“”71) should be
well-behaved throughout the space-time in order to avoid singularities. It imposes the constraint g <1 at the
throat. The metric function ®(r) in Eq. (1) is known as the red-shift function, and the first co-efficient of the
line element in Eq. (1) provides a measure of the gravitational red-shift. The topological configuration of the
space-time is determined by the second coefficient of the line element in Eq. (1) and the metric function b(r) is
known as the shape function. At some minimum value of the radial coordinate 7, the throat of the wormhole is
located at some arbitrary value r. A significant aspect of traversable wormholes is that the throat should not
be surrounded by an event horizon. Horizons in spherically symmetric space-times are described by physically
non-singular surfaces at gog = —e?® — 0, and this results in the constraint that throughout the space-time
®(r) should be well defined. Moreover, the geometric constraints on the shape function b(r) demanded by

traversability are: (i) b(r,) = ro, (ii) W > 0, (iii) v/(r,) — 1 <0, (iv) @ < 1,Vr > 1o, (V) @ — 0 as
r — oo, where prime denotes a derivative with respect to the radial coordinate r. The energy density p, radial
pressure p,, and transverse pressure p; of the matter sources are constrained by these conditions on the metric
functions through the EFEs. Therefore, while constructing traversable wormhole configurations violations of
the energy conditions appear owing to these constraints. Next, we propose a novel form of the shape function
and check the viability of the shape function by analysing the various constraints. In addition, in this work, we

consider tideless traversable wormhole solutions described by a constant red-shift function ®'(r) = 0.

2.1. A novel shape function
We examine the following functional form as a probable shape function
a
r

b(r) = o [1og (r) + coth(ro) tanh(r) 2)

0
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where, 7 is the location of the throat, and a is a free parameter. The viability of the shape function b(r) depends
on several constraints as discussed in Sec 2. Analysing these constraints for the functional form of Eq. (2),
insights can be obtained about the throat radius rg, and the parameter a. However, it can be observed Eq. (2),
does not satisfy the condition of b(rg) = rg, which is an important consequence of traversable wormholes, the
other required conditions for the viability of the shape function, such as the asymptotic flatness, and the flaring
out condition are also not satisfied. Thus, to have a plausible form of b(r), the next step involves adopting the
Padé approximation for the functional form in Eq. (2), and to check if a viable form of b(r) can be obtained that
satisfies all the required constraints on a shape function. Use of rational expansions made by Padé functions is
common in existing literature [46, 47, 48, 49]. The Padé approximation is built on the Taylor series expansion.
For a given function such as f(z) = Y ;o ¢;2%, expanding the series with the coefficients ¢;, the (n,m) Padé
approximant ratio is given as [50],

> k=0 ayz"
P, = = 3
n7m(z> L+ Z;nzo by 2 3)

The most simple forms of Padé approximant are of the orders (1,0) & (0,1). Thus, considering the (1,0)
approximation and expanding Eq. (2) about the throat radius r¢, the shape function is

b(r) =19 —a(rg —r) [1 + 7o cosech(rg)sech(rg)] (4)

With the form as described in Eq. (4), the various conditions required for the viability are analyzed and it
becomes evident that the function in Eq. (4) satisfies all the necessary conditions to be a shape function for
ro = 3 and 0 < a < 1. Moreover, the function satisfies the condition b(ro) = ro. We therefore propose b(r) =
ro — a(ro — ) [1 + 7o cosech(rg)sech(rg)] as a new viable shape function.

The plots of the asymptotic flatness b(r)/r — 0 as r — oo, and flaring out condition bm;# > (0 are
shown in Figure 1.

05|

Figure 1. Profile of the (a) Asymptotic flatness b(—:z — 0 as r — oo, and (b) Flaring out
b(r)=b'(r)r
b2

condition > 0 respectively vs. r for 0 <a <1

With the obtained viable shape function, next the traversable wormhole solutions are analyzed in the
framework of f(R) gravity with a background of string cloud.

3. TRVERSABLE WORMHOLES IN f(R) GRAVITY
A general form of the action in f(R) modified theories is [22]

s [d'av=glfR) + L) 5)
Using the metric formalism of f(R) gravity, the modified EFEs are obtained as

1
FR,, — Ef(R) Guv — VuVoF + g, 0F =T (6)

nv
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where F' = df /dR, and Ty, = % 25;’,1 is the stress-energy tensor of background matter. We consider that the

spherically symmetric space-time is represented by the line-element in Eq. (1). Taking the trace of Eq. (6)
yields:

FR-2f(R)+30F =T (7
Here, T is the trace of the stress-energy tensor of matter and OJF is:
1 b b'r—b 2F'
OF = ——08,(vV=99"0,F) = (1—-= ) |F' = ——— F' + = 8
v am = (1= ) [ - g S ©

with F' = df(R)/dR and b’ = db(r)/dr. Substituting Eq. (7) in Eq. (6) yields the modified EFEs as:

1
qszw—iwd$:ﬁ§ (9)

ﬁ‘ . . . . . . . .
Here, T};, is the effective stress-energy tensor, responsible for the energy condition violations and is generally

interpreted as a gravitational fluid. Tl‘jlf,f comprises of the matter stress energy tensor 7}j, and the curvature
stress-energy tensor T, given by

1 1

Assuming that the geometry of the wormhole is threaded by an anisotropic distribution of matter

T,Lw = (p + pt)U;L U, + ps Juv + (pr - pt)XuXu s (11)

where U* is the four-velocity, and y* represents a unit space-like vector.
With the line element in Eq. (1), the modified EFEs can be expressed as the following [22]

FY/
p:Tig (12)
bF F’ b
= W —b)—F" (12 1
p r3 + 2r2( r=b) < T> (13)
F’ b F

= (1-2)+—0b-V 14
b r ( 7">+27“3( ) (14)

The Ricci scalar is given as R = 2% With the explicit forms of energy density p, radial pressure p,.,

and transverse pressure p; in Egs. (12)-(14), the various energy conditions, stability, and the amount of exotic
matter required for the wormhole configuration can be analyzed.

3.1. Cloud of Strings as a source

A cloud of strings is analogous to the perfect fluid models of gas and dust. However, the difference is
that it comprises one-dimensional objects extended along some specific direction. The string cloud can exist in
different geometrical configurations such as planar, axisymmetric, or spherical [51]. A general solution for the
spherical distribution of the cloud of strings was reported in [51]. In addition, thermodynamic properties of
string gas have been reported in [52]. For a spherically symmetric string cloud in four dimensions, the energy
momentum tensor has the following non-null components [51]

t N
=17, = -1 (15)
where 7 is a constant related to the total energy of the string cloud. With the form of the shape function as
described in Eq. (4), and using Eq. (12), we get

2

_ n
Fr) = a (ro cosech(rg) sech (rg) + 1) (16)

With the obtained F(r) and the field equations Eqs. (12)-(14), the numerical analyses are conducted to
obtain the energy conditions, check the stability, and estimate the amount of exotic matter.
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For any observer traversing a time-like curve to detect the energy density of the matter field to be positive,
the stress-energy tensor of matter must adhere to some sets of inequalities known as the energy conditions in
GR [53, 21]. The weak energy condition (WEC) implies p > 0, the NEC implies p + p,. > 0, and p + p; > 0,
whereas the strong energy condition (SEC) implies p + p, + 2p; > 0. The profile of energy conditions with a
background of string cloud is presented with the throat radius fixed at ro = 3. Emphasis is made on the effect
of the string cloud constant 7 on the energy conditions. Results are discussed by fixing the parameter a = 0.5.
For the whole range of a, 0 < a < 1, the energy conditions show similar behavior. Previous studies indicate
that the constant associated with the total energy of the string cloud should be small [38, 43].

Figure 2 shows the profile of the NEC terms p + p, and p+ p;. It can be observed that the first NEC term
is satisfied at the throat ro = 3 for the considered values of the n as n = 0.1, 0.3, and 0.5. However, the second
NEC term p + p; is violated for all the values of . Owing to the violation of the second NEC term, as a whole
the NEC is inferred to be violated.

— n=0.1 0.00
0.15 — n=03
— =05 -0.05
_0.10 .
g 3
& &-0.10
0.05
-0.15
0.00 .
0 2 4 6 8 0 2 4 6 8
r r
(a) (b)

Figure 2. Profile of the NEC terms (a) p + p,, and (b) p + p; respectively vs. r with b(r) as in Eq. 4

From Figure 3, it can be observed that the WEC is violated at the wormhole throat for all the values
of n. It is also evident from the fact that the non-null components of the stress-energy tensor of the string
cloud come with a minus sign as shown in Eq. (15). Moreover, it is seen that the SEC exhibits an oscillatory
(indeterminate) behavior along the radial coordinate r. With increasing r, the oscillation between positive and
negative values decreases; however, the behavior extends asymptotically.

0.00 6.X10-1s
4.x107"®
-18
~0.05 2.x10
g 0
Q $ 18
$-2.x10"
-0.10 Qe
S _4.x1078
-6.x107"8
-0.15 » |
-8.x10 ki '1=0.5
0 1 2 3 4 5 6 1 2 3 4 5 6 7 8
r r
(a) (b)

Figure 3. Profile of the (a) WEC p, and (b) SEC p + p, + 2p; vs. r respectively with b(r) as in Eq. 4

In addition to the energy conditions, analysing two other parameters, viz. the equation of state (EoS)
parameter w = p,/p, and anisotropy parameter A = p, — p, turns out to be useful. Information about the
nature of the matter source threading the wormhole geometry can be obtained from the EoS parameter, and
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the attractive or repulsive nature of the space-time geometry (geometrical viability) can be understood by the
anisotropy parameter.

0.00
-0.05
-0.10
<
-0.15
-0.20
1 2 3 4 5 6 7 2 4 6 8
r r

Figure 4. Profile of the (a) EoS parameter w, and (b) anisotropy parameter A vs. r respectively with b(r) as
in Eq. 4

Figure 4 shows the behavior of the EoS and anisotropy parameters. Near the wormhole throat, the EoS
parameter is w < —1, signifying a phantom-like behavior of the string cloud for all values of 7. The anisotropy
parameter A < 0 near the wormhole throat, signifies an attractive nature of the space-time geometry. The
summary of the energy conditions is presented in Table 1.

Table 1. Summary of the energy conditions discussed in Sec. 3.1

Terms Result Interpretation

< 0 near throat, WEC violated
P for n =0.1,0.3,0.5 at throat

> 0 near throat, NEC satisfied
P+ pr for n = 0.1,0.3,0.5 at throat

< 0 near throat, NEC violated
PP for n = 0.1,0.3,0.5 at throat

oscillates,
PP o~ 0.1,03,0.5
< —1 near throat, phantom-like source

SEC indeterminate

v for n =0.1,0.3,0.5 at throat
A < 0 near throat, attractive geometry
forn =10.1,0.3,0.5 at throat

First reported in the context of neutron stars [54, 55], the Tolman-Oppenheimer-Volkov (TOV) equation
provides information regarding the stability of stellar structures. To probe the stability of wormholes in terms
of the hydrostatic, gravitational, and anisotropic forces in the space-time, a more generalized version of the
formalism was developed in [56]. The generalized TOV equation [56, 57] is given as

dp,  €(r)

2
2, — — 1
ar 2 (,0 pr) T(pt pr) =0, (17)

where €(r) = 2®(r). Fy represents the hydrostatic force, F, the gravitational force, and F,, the anisotropic
force. These three terms of the TOV equation can determine the equilibrium anisotropic mass distribution [57]
in that stable stellar structures satisfy Eq. (17).

’

dp, 2 €
F, = — Fo=~(pe—p), F,=-= § 18
b= (e —pr) g =5 (p+pr) (18)
Owing to the constant red-shift function ®’(r) = 0, the gravitational force is F, = 0 in the analysis.

Using the averaged null energy condition, f/\/\f T;;k'k7d)\ > 0, evaluated along the radial coordinate r, the
amount of exotic matter in wormhole space-times can be estimated. However, the amount of energy condition
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violating matter can be estimated in a more generalized manner by using a volume integral instead of the line
integral, namely the volume integral quantifier (VIQ) [58, 59, 60], which is defined as

I, = 7{[/) + p,]dV = 8w /S(p + pp)ridr (19)

To

After matching the wormhole space-time with an exterior metric and cutting off the stress-energy tensor
at some r = s away from the throat, an estimate of the amount of NEC violating matter can be obtained by
using the VIQ. For arbitrarily small quantities of NEC violating matter, the requirement is I,, — 0 as s — r¢
[58, 59].

0.004 75
0.002 5.0
25
0.000
0
-0.002
) 25
-0.004
-50
6 8

(@) (b)

Figure 5. Profile of the (a) Fy,, and F, vs. v (b) VIQ with b(r) as in Eq. 4

Figure 5 shows the terms of the TOV equation and the profile of the VIQ. It is seen that that the hydrostatic
force Fy, and the anisotropic force F, cancel each other asymptotically, signifying a stable configuration. In
addition, it can be observed that the VIQ, I, — 0 as s — rg, indicates that the wormhole solution is feasible
with arbitrarily small amounts of exotic matter. The terms of the TOV and VIQ equations are shown with n =
0.5. For n = 0.1, and 0.3 the corresponding terms of the TOV and VIQ equations depict a similar behavior.

Thus, wormhole solutions can be formulated in a model-independent manner using the novel shape function,
Eq. (4), in the framework of f(R) gravity with a string cloud background. The next motive remains to check
whether a feasible form of the shape function can be obtained in a particular form of the f(R) gravity model
with the string cloud cloud background.

3.2. Traversable wormbholes in f(R) = aR™ — SR™ gravity with a string cloud background

In this section, we obtain a form of the shape function b(r) by fixing f(R) and analyze its viability. For
the analysis, we consider a simple form of f(R) gravity model as [45]

f(R) =aR™ — BR" (20)

where o and f are positive constants and m and n are positive integers satisfying the condition m > n [45].
Using Eq. (15) in Eq. (12), we obtain
,,72 - Fb/

r2 r2

(21)

Considering the f(R) model as described in Eq. (20), and obtaining F, the shape function can be found
from Eq. (21). To simplify the calculations, the integers m and n are set as m = 2 and n = 1 satisfying the

condition m > n. Again, using the expression for the Ricci scalar R = 272/, F is found in terms of r. Eq. (21)
reduces to a quadratic equation in b’ of the form

d0b’ V' Br? + n*r? =0 (22)
Solving Eq. (22) and considering only the positive root for mathematical feasibility, we get

B Br? + +/B2rt — 16am2r2

v (23)
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Integrating Eq. (23), we get

3 382r

2,2 2) /BT — 16anpr?
1 lﬂrg N (B2 — 16am?) \/B?rt 16an2r2] e (24)

where ¢ is a constant of integration. In order to evaluate the constant ¢, we use the condition at the wormhole
throat, b(rg) = ro. This leads to the following form of the shape function

1 B3rt + (527"2 - 16an2) \/ B2rt — 16an?r?
b=rog+
24032 T
B B3rg + (8%r3 — 16a772) \/B2rg — 16047727"8] (25)
To

With the shape function in Eq. (25), the various conditions required for the viability of the shape function
as described in Sec 2 are analyzed. It is interesting to note that the asymptotic flatness % — 0 as r = oo, and
the flaring out condition b—bg’r > 0 are satisfied only for negative values of the constants o and 8 (o = —0.5 and
B = —0.8). The profile of the asymptotic flatness and flaring out condition are shown in Figure 6 with different

values of 7.

15

1.0

b/r

0.5

0.0

(a) (b)

Figure 6. Profile of the (a) asymptotic flatness 2 and (b) flaring out condition b;};'r vs. r with rg = 1,

a=—0.5and 8 = —0.8, for b(r) in Eq. 25

With the shape function in Eq. (25), and the f(R) model described by Eq. (20), the energy conditions,
stability and the amount of exotic matter required for the wormhole configuration are analyzed next.

Using Egs. (12)-(14), the various energy conditions are analyzed with the throat at o = 1, and by fixing
the model parameters of the f(R) gravity model (Eq. (20)) as, m =2, n =1, a = —0.5 and = —0.8.

Figure 7 shows the NEC terms p + p,, and p + p;. It can be observed that the first NEC term p + p, is
violated at the wormhole throat. The second NEC term p + p; is satisfied at the wormhole throat. However,
owing to violation to the first NEC term, as a whole the NEC is inferred to be violated.

Figure 8 shows the WEC and the SEC. It can be seen that the WEC is violated at the wormhole throat,
and this violation can again be attributed to the negative sign associated with the non-null components of the
stress-energy tensor of the string cloud as in Eq. (15). The SEC is satisfied at the throat and also asymptotically,
which is again an interesting point to note as in f(R) gravity, the SEC should be asymptotically violated to
account for the late-time accelerated expansion of the universe.

Figure 9 shows the variation of the EoS parameter w and the anisotropy parameter A. It can be seen that
the EoS parameter w is w > 0 near the wormhole throat for all values of 7, signifying that the string cloud as
the source behaves like ordinary matter without any phantom-like behavior. The anisotropy parameter A is
positive near the wormhole throat for all the values of 7, signifying a repulsive geometry at the throat. The
summary of the energy conditions is presented in Table 2.

Figure 10 shows the terms of the TOV equation and the VIQ. It is seen that the hydrostatic force Fy,, and
anisotropic force F, do not cancel each other out, signifying that the wormhole configuration is unstable. From
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Figure 8. Profile of the (a) WEC p and (b) SEC p + p, + 2p; vs. r with b(r) as in Eq. 25

Table 2. Summary of the energy conditions discussed in Sec. 3.2

Terms Result Interpretation

< 0 near throat, WEC violated
p for n=0.1,0.3,0.5 at throat

< 0 near throat, NEC violated
PP for n =0.1,0.3,0.5 at throat

> 0 near throat, NEC satisfied
PP for n =0.1,0.3,0.5 at throat

> 0 near throat, SEC satisfied
Pt Pt 2p; for n=0.1,0.3,0.5 at throat

> 0 near throat,  normal matter like source
w for n =0.1,0.3,0.5 at throat
A > 0 near throat, repulsive geometry

for n=10.1,0.3,0.5 at throat

the VIQ), it is evident that I, — 0 as s — ry, indicating that the wormhole configuration can be obtained with
arbitrarily small amounts of exotic matter.

With the results presented in Sec 3.1 and Sec 3.2, it is clear that wormhole solutions in f(R) gravity with
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Figure 10. Profile of the (a) F},, and F, vs. r and (b) VIQ with b(r) as in Eq. 25

background a string cloud are feasible with characteristic violation of the NEC. However, with f(R) = aR™ —
BR"™ gravity, the wormhole configuration is not stable. To have a better understanding, the next section presents
the results of wormhole solution in f(R) = aR™ — SR"™ gravity supported by ordinary matter and with the
form of the shape function as in Eq. (4).

3.3. Traversable wormbholes in f(R) = aR™ — SR"™ gravity with ordinary matter

With the shape function in Eq. (4), the field equations Eqgs. (12)-(14) are analyzed with the form of the
f(R) model as in Eq. (20). We assume that the wormhole geometry is threaded by ordinary matter with the
stress-energy tensor T} = diag[—p(r),pr(r),pe(r), ps(r)]. Owing to the properties of the shape function, the
throat radius is fixed at rp = 3, and the free parameter a is considered for the whole range 0 < a < 1. The
model parameters of the f(R) = aR™ — SR" gravity are fixed as, « = 0.8, 5 = 0.5, and m = 2, n = 1. The
values of o and 3 should be smaller than unity, and we consider up to one decimal point to avoid errors in the
numerical calculation. The various energy conditions, stability of the wormhole space-time, and the VIQ are
presented below.

Figure 11 shows the profile of the NEC terms p + p, and p + p;. It is evident that that the first NEC
term p + p, is violated at the wormhole throat. However, the second NEC term p + p; is satisfied at the throat.
Owing to the violation of the first NEC term, as a whole the NEC is considered to be violated.

Figure 12 depicts the WEC and the SEC. It is seen that the WEC is violated near the wormhole throat.
The SEC is satisfied at the wormhole throat and asymptotically for the whole range of a, 0 < a < 1. It is
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interesting to note that even with ordinary matter as the source, the SEC is satisfied asymptotically for f(R) =
aR™ — BR™ gravity.

(a) (b)

Figure 12. Profile of the (a) WEC p and (b) SEC p + p, + 2p; vs. r with b(r) as in Eq. 4

Figure 13 shows the variation of the EoS parameter and the anisotropy parameter. As expected, the EoS
parameter is w > 0 near the wormhole throat, signifying that the source threading the wormhole geometry has
no phantom-like behavior. The anisotropy parameter A > 0 near the throat signifies a repulsive geometry at
the throat. The energy conditions are summarized in Table 3.

Figure 14 shows the corresponding terms of the TOV equation and the VIQ. It is seen that both the
hydrostatic force F}y, and the anisotropic force F, do not cancel each other out asymptotically for the whole
range of 0 < a < 1, signifying that the wormhole configuration is not stable. From the VIQ it is evident that
I, — 0 as s — rg, indicating that the wormhole solution can be obtained with arbitrarily small amount of
exotic matter. However, the VIQ is only shown for a = 0.5, and for the whole range of 0 < a < 1, the VIQ has
a similar profile.

4. DISCUSSION AND CONCLUSION

In this study, we investigated the traversable wormholes in the framework of f(R) gravity with a back-
ground of string clouds. A novel form of the shape function using Padé approximation was proposed for the
analysis. Using this shape function a specific form of F(r) was obtained in Eq. (16) to analyse the EFEs.
However, it is observed that the F'(r) depends on the parameters of the metric functions and on the string
cloud parameter n. Eliminating this dependence and obtaining a cosmologically viable form of f(R) remains an
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(b)

Figure 13. Profile of the (a) EoS parameter w and (b) anisotropy parameter A vs. r with b(r) as in Eq. 4

Table 3. Summary of the energy conditions discussed in Sec. 3.3

0.00

-0.01

-0.02|

Terms Result Interpretation
< 0 near throat, WEC violated
P for0<a<1 at throat
< 0 near throat, NEC violated
Pt Pr for0<a<1 at throat
> 0 near throat, NEC satisfied
PP for0<a<1 at throat
9 > 0 near throat, SEC satisfied
P+ prt2p for0<a<1 at throat
w > 0 near throat, normal matter like source
for0<a<1 at throat
A > 0 near throat, repulsive geometry

for0<a<1

at throat

(b)

Figure 14. Profile of the (a) Fy, and F, vs. r and (b) VIQ with b(r) as in Eq. 4

open issue. The results demonstrate that stable wormhole solutions with characteristic violation of the energy
conditions (especially the NEC) are feasible in the framework of f(R) gravity with the new shape function in
the background of a string cloud. In addition, the EoS parameter near the wormhole throat indicates that
the string cloud has phantom-like properties. The anisotropy parameter A < 0 near the throat signifies an
attractive geometry. In addition, the SEC shows an indeterminate behavior as it oscillates between positive and
negative values. Therefore, to have a better understanding of the wormhole solutions, traversable wormholes
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are considered in a string cloud background with a simple form of f(R) gravity model, f(R) = aR™ —R". It is
interesting to note that the shape function in this case can yield viable wormhole geometries for negative values
of o and 3. The results demonstrate characteristic violations of the NEC. Interestingly, the SEC is satisfied
both at the throat and asymptotically. The EoS parameter w > 0 at the throat indicates that that the string
cloud behaves as normal matter. The anisotropy parameter A > 0 near the wormhole throat signifies a repulsive
geometry at the throat. However, the TOV equation shows that the wormhole space-time is unstable. For a
comparative analysis, wormholes threaded by normal matter are analyzed in f(R) = aR™ — SR" gravity, using
the Padé approximate shape function given in Eq. (4). The constants a and 8 are considered with positive
values. The results demonstrate a characteristic violation of the NEC and show that the wormhole space-time
is unstable. The SEC is satisfied at the wormhole throat and asymptotically.

Although wormholes have not been detected yet, studying these exact solutions of the EFEs provides with
far reaching insight into the nature of space-time and fundamental building blocks of the universe. Wormholes
also play a crucial role in several important issues such as the cosmic censorship conjecture [61]. Studies have
reported strong indications for their presence in the form of black hole mimickers [62, 63, 4]. Further studies
regarding the observational constraints of these wormhole solutions remain an open issue to be addressed in the
near future.
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IIPOXIZAHI YEPBOTOYMHU B f(R) I‘PABITAHIT, CTBOPEHI XMAPOIO CTPYH
IMapanram LocBami, Anmyman Bapyax, Arpi Jemamyx’st
Daxyavmem gisuru, Accamcoruti yniscepcumem, Ciauap, 788011, Accam, India

Po3B’s3anmg wepBoTouna y 3araibHiii Teopil Bimnocrocti (OTO) noTpebye exsomuyshus TKepesa MaTepii, SKi TOPyITyIOTh
ymoBy mymp0B0I1 ereprii (NEC), i mo6pe Binomo, mo momudikamii OTO Bumoro nopsaaxky Ta medki aIbTePHATHBHI KepeTa
MaTepil MOXKYTh MiATPUMYBATH YEPBOTOYUHU. ¥ IHOMY JIOCTLIKEHHI MU TOCTITKYEMO MOKIUBICTD (DOPMYITIOBAHHS TIPO-
xinaux gepBoroumn y f(R) momudikosaniii rpasiranii, axa €, MabyTb, Halibiapm obrosoposanoo momudikaniero OTO,
3a, JJOIIOMOI'0I0 ABOX iax0/iB. ITo-tiepie, mob AoC/iauTy BIUIUB reOMeTPUYHUX 00MEKEHb Ha [VI00AJIbHI XapPaKTePUCTUKY,
MU BUMIPIOEMO 7"T—KOMITOHEHT METPUYHOTO TE€H30pa Ta BUKOPUCTOBYEMO HaOmmxkeHHs Pade, mob nepesipuTu, un mobpe
obmexeHa PyHKyiA Popmu MOKHA CHOPMYIIOBATH TAKUM YMHOM. [10TiM MU BUBOAMMO PiBHSIHHS TIOJIst Ha TJIi CTPYHHOI
XMapH Ta YUCEIbHO aHAJII3YEMO €HEPreTHIHI YMOBH, CTAOLIbHICTD i KibKICTh €K30THIHOI MaTepii B bOMY IIPOCTOpI-Jaci.
Jasni, aK aJbTepHATHBHE [IZKEPEIO B IPOCTiit rpasitamiiiniii momeni f(R), Mu BUKOPHCTOBYEMO (DOHOBY XMapy CTPYH JIst
ominku GYHKIH] GOpME YePBOTOYMHN TA AHAII3Y BIAIOBIIHUX BIacTHUBOCTEN pocTopy-4acy. lloTim mi pe3ynapraTu mopis-
HIOIOTHCS 3 JAHUMHU 1IPO Y€PBOTOYMHM, IIPOHU3AHI HOPMAJIBHOIO MATEPI€I0, y HPOCTiil posryanyTiii mogeni rpasirauii f(R).
PesysibraT IEMOHCTPYIOTH, IO CTPYHHA, XMapa € KUTTE3MATHUM JI¥KepesioM 4epBoTounH i3 nmopymenasvu NEC; oxnak
MPOCTip-9aC 9epBOTOYMHM B MTPOCTiil rpaBiTamiiiaiit moges f(R), po3TagHyTiil y HOMY JOCIiIXKEHH], HECTAOLIbHMIA.
Kurouosi cioBa: pisharts EUnwmetina; pluerHa YepeomowuHU; TMapa CMpyH
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This paper investigates and examines a wide range of findings related to the description of holographic Ricci dark energy (HRDE) with
the bulk viscosity within Universe's late-time accelerated expansion in the framework of an anisotropic Bianchi type-III cosmological
model with pressure less matter content in the Brans-Dicke theory of gravity. We are using the relationship between the metric
potentials to obtain a precise conclusion to the field equations, resulting in a rapid expansion. To investigate the physical behaviour of
our dark energy model, several major cosmological parameters, including Hubble, deceleration, matter energy density, Ricci dark
energy density (RDE), and Equation of state (EoS), are used. We examined some of the viscosity of the holographic Ricci dark energy
model using current cosmological observations. We describe how the models' physical and geometric properties are compatible with
recent compilations.

Keywords: Bianchi type- Il metric; Holographic Ricci dark energy (HRDE); Bulk Viscosity; Brans-Dicke theory

PACS: 95.10.-a, 95.35. + d, 95.36. + x, 98.80. ES, 98.80. JK, 98.80. QC

1. INTRODUCTION

Recent experimental cosmology substantiates the idea that the Universe's expansion is accelerating [1-3]. The
interaction between two galaxies caused by an unknown, dark element, that produces considerable negative pressure, is
generally dark energy (DE). It is compatible with all cosmological substances inside the simplest model, that is, within a
ACDM model. Still, it has problems similar to fine-tuning and thus, the cosmic coincidence problem, which has led to
some indispensable styles to its description. Researchers have hypothecated that radiation and ordinary matter (baryons)
account for 5% of the Universe's present energy, with the remaining 95% dominated by this dark component, to explain
the Universe's ultimate-rapid growth.

Interestingly, dark energy explores as a possible explanation for the physical Universe's late-time rapid
expansion [5]. Dark energy (DE) is considered to regard for 73% of the energy in our Universe, with Dark Matter (DM)
accounting for 23% and baryonic matter accounting for the remaining 6% [6,7]. Two main approaches were proposed to
explain this late time acceleration, the first is to investigate better DE possibilities, and the second is to investigate
modified Einstein's theory of gravity. To characterize the behavior of DE events, the equation of state (EoS) parameter w
(= p/p), where p represents pressure and p denotes energy density, is generally employed. The EoS parameter w with the
range (-1, -1/3) describes the substance DE model, whereas w = —1explains the vacuum DE, also known as the
cosmological constant or ACDM model, and w < —1 defines the phantom DE model. This phantom DE model will
nearly clearly affect an ineluctable space-time singularity.

As a possible result of these difficulties, physicists worldwide have presented good dynamic DE models. These
models classify into two categories: scalar-field models, which represent quintessence, phantom, k-essence, tachyon, and
quintom [8-13], and interactions between the models, similar as the Chaplygin gas family, the brane-world Holographic
DE (HDE), the age-graphic DE models [14-16], and so on. Changes in the quality of the Einstein-Hilbert reaction, for
illustration, led to several modified gravity theories. Some modified gravity theories include the Brans-Dicke scalar-tensor
theory [17], the f(R) and f(R, T) theories [18-22], (where R is the curvature scalar and T is the trace of the energy
momentum tensor), and so on. Among the options, as preliminarily indicated, it is a good conception for a model to attract
further, and further attention to the so-called "Holographic dark energy (HDE)". According to the holographic principle,
the number of degrees of freedom of a physical system, the scope of the surrounding area L,, rather than its volume, [23],
will not be confined to an infrared (IR) cut-off point. Cohen et al. [24], confirm that the vacuum energy density is
commensurable to the Hubble scale L = H™'. The energy density of holographic dark energy is described by Li [25] as

pa = 3¢2MjL7%, where L is the IR cut-off radius, C is constant, and M7, = 1/87TG is the Planck mass. This HDE model

can explain the Universe's rapid expansion, and it is consistent with the data set available. Numerous investigations on
the HDE models have been conducted to understand the Universe's accelerating nature. Later, Gao et al. [26] investigated

the longer-term event horizon, which is supposed to be changed by inversion of the Ricci scalar curvature, i.e., L = R Y.
In this case, the model is called the Ricci Dark Energy Model. Granda and Oliveros [27, 28] proposed a new holographic

Ricci Dark Energy Model with the energy density supplied by p, = % (E H? +nH ), which was further meliorated by
Chen and Jing [29] and termed modified holographic Ricci dark energy (MHRDE) with the energy density provided by
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Pn =5z (8oH* +MH + (HH ™). (1

Sireesha et al. [30] examined modified holographic Ricci dark energy (MHRDE) cosmological models in f(R, T)
gravity. In papers [31-34], the RDE is suitable for expressing the current acceleration of the Universe. During neutrino
emulsion in the early cosmos, matter behaves like a viscous fluid. The coefficient of viscosity decreases as the Universe
expands. The influence of viscosity on the expansion of the Universe, and Thus, the radiation anisotropy from a black
body regenerated by Misner [35, 36] is greatly decreased by the extreme scattering produced on by viscosity. Rao et al.
[37] investigated bulk viscous string cosmological models in the Saez — Ballester theory. Chakraborty et al. [38] derived
the cosmology of an expanded form of HDE in the presence of bulk viscosity and the inflation dynamics using slow-roll
parameters.

Anisotropic and spatially homogenous Universes have drawn a lot of attention in theoretical cosmology over the
past few decades. Since the main observational data from CMBR (Bennett et al. [39]) has been thought to suggest the
presence of an evolution from the anisotropic to the isotropic phase of the cosmos (Akarsu and Kilinc [40]). Additionally,
it has been suggested that the isotropic FRW model might not provide an accurate and comprehensive description of
matter in the early epochs of the universe. For a realistic analysis of cosmological models, it is necessary to assume
spatially homogeneous and anisotropic space-times in order to examine whether they may evolve to the known level of
homogeneity and isotropy. Many scientists have been interested in Bianchi type (BT) cosmological models, which are
homogenous but not necessarily isotropic among different anisotropic space-times. Many scientists have developed
innovative cosmological models in recent years that use DE against the context of anisotropic Bianchi space-times.
Koussour et al., [41, 42] explored Anisotropic nature of space-time in f(Q) gravity and Late-time acceleration
in f(Q) gravity: Analysis and constraints in an anisotropic background.

Modified theories of gravitation are generalized models that lead to the rise of changes in the force of gravity as a
result of the Einstein-Hilbert action. Most importantly, in scalar-tensor gravity, Brans-Dick (BD) theory provides a
practical approach to explore cosmic events in later ages of the Universe. This theory's significant features include variable
gravitational constants, a scalar field and geometry combination, compliant with numerous physical laws, and solar launch
restrictions. Variable-G theories developed from the Brans-Dicke (BD) scalar-tensor theory [17] and its generalization to
other types of scalar-tensor theories, similar to the overall scalar-tensor theory with particular terms presented by
Wagoner [43]. During this theory, the inverse of the gravitational constant G is substituted by a scalar field '¢', which is
the gravitational force coupling according to a new parameter. Within the Brans-Dicke field equations, the combined
scalar and tensor fields are given by

_ _ 1 _
Gij = —8ne™'T;j — we™? ((P,i(P,j - ;gij(P,k(P'k) — 07 (@i — 959%); 2
and

Q% =813+ 2w)7'T 3)
We have also constructed an equation for energy conservation.
T = 0 )

This equation results from the field equations (2) and (3).

Several authors have examined the different features of Brans-Dicke cosmology thoroughly. Rao and Sireesha [44,
45] studied several string cosmological models within the Brans-Dicke theory of gravity, while Rao et al. [46] anatomized
the FRW holographic dark energy as a cosmological model. Dasu Naidu et al. [47] developed a new holographic DE
cosmological model within the SB theory of gravity with an anisotropic background. Sandhya Rani et al. [48] investigated
Bianchi type-III, V, and VIO generalized ghost dark energy models with polytropic gas using the Brans-Dicke (BD) theory
of gravity. Sireesha & Rao [49] examined Bianchi type II, VIII, and IX Holographic dark energy cosmological models
within the Brans-Dicke theory of gravity.

According to the earlier, we should take into account the spatially homogenous anisotropic Bianchi type-III
cosmological model with pressure less matter and holographic Ricci dark energy with bulk viscosity in the Brans — Dicke
theory of gravity. We structured our efforts for this paper as follows: In section 2, we derived the Brans-Dicke theory
field equations in the presence of pressure less matter and holographic Ricci dark energy with bulk viscosity within the
Bianchi type-1II cosmological model. In Section 3, we solved the field equations. In Section 4, we developed and
examined numerous essential physical properties of the model. In section 5, we concluded our compliances.

2. METRIC AND FIELD EQUATIONS:
We consider a spatially homogeneous Bianchi type-III metric form

dSZ — dtz _AZ 2 Bze—nyZ _ CZZZ (5)
whereA,B andC are functions of ‘¢’ only.
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The holographic Ricci dark energy (HRDE) energy momentum tensor with bulk viscosity is T;; = T/} + Ti’}, T/} is
that the energy-momentum tensor for matter and TL-’} is that the energy momentum tensor for holographic Ricci dark

energy. They are
T = (pn + Pr)uwily — Prdij (6)
and
Tij = pmwil; @)

Where p,,, denotes the matter energy density, py, indicates the holographic Ricci dark energy density, and p;, means the
viscous holographic dark energy’s pressure.
In the co-moving frame of reference, and that we will get

T1m1+T1h1 :T2m2+T2h2 =T3m3+T3h3 :_m&T4m4+T4h4=pm+ph (8)

where p,,, pr and py, are all functions of time ‘¢’ only.

The viscous holographic Ricci dark energy pressure satisfies the relation py, = p,, — 3€H. In the late time evolution
of the universe, dark energy with bulk viscosity generates phantom type rapid expansion. We have assumed that dark
matter has no pressure, which the effective pressure of viscous holographic Ricci dark energy is suitable to the sum of
HRDE pressure and bulk viscosity.

The field equations of Brans-Dicke theory (2), for the metric (5) with the backing of equations (6) - (8) are

BLE BC 00 © 8o Co_ g 1
B+C+BC+2(p2+(p+B(p+C<p_ 8™ Py, 9)
A, ¢ E 0p? o AP Co_ —1—
A+C+AC+2(92+KP+ALp+C<p_ 8~ py,, (10)
ALB A8 0@ & A0 Bo_ 1 _ g i
AT sttt e Tae T, 2= 8@ Pn (11)
AB L BC CA_ ¢ AG  Bo Co_ 1_ -1
28 Tac T 2(p2+A(p+B(p+C(p Az—8ﬂ‘P (pm + Pr) (12)
1 (B A
#(G-3)= (13)
L (A B¢ _ .
(p+(p(Z+E+E) = 8n(3 + 2w) *(py + prn — 3P1) (14)
Pm + Pn + 3H(Pm + pr +Pn) =0 (15)

3. HOLOGRAPHIC RICCI DARK ENERGY COSMOLOGICAL MODELS
From equation (13), we get B = c; A without loss of generality, by taking c; = 1 we get

B =A. (16)

The field equations (9) to (12) are four independent equations with six unknowns that are functions of 't':
B, C, pm, Pn, P & @ . Because these equations are very nonlinear, we use the following reasonable physical condition to
obtain a deterministic result:

1. The connection between the scalar field ¢ and thus the average scale factor, a(t), is given by
(Johri and Kalyani [50])

@=a" (17)
where m is a constant.

2. The shear scalar is proportional to the expansion scalar, leading to the metric
potentials relation (Collins et al. [51])

C=B" (18)

where 7 is an arbitrary constant.
3. We assume that the parameterized kind of Bulk viscosity is (Reng and Meng [52])

e=(m+a@+a()) (19)

where &, £; & &, are constants.
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From equations (9) - (11), (17) and (18), we get

B ¢, B(B C @(B C 1
i ctsa o) e o (20)
Using equations (17 & 18), From equation (20), we get
A = B = KSinh(k,t + k3), (21)
C = [K Sinh(k,t + k3)]™. (22)
From equations (17), (21) and (22), we get
@ = [K Sinh(k,t + k3)]~(+2). (23)
where K = — , k,& k4 are integrating constants
kym—1
The Hubble parameter H is
1(2B , C (n+2)K;
H=1(2+5) =25 coth(kt + ky) (24)

Now metric (5), with the assistance of metric potentials (21 & 22), are frequently written as

ds? = dt? — [K Sinh(k,t + k3)]?(dx? + e 2*dy?) — [KSinh(k,t + k3)]*"dz? (25

The energy density of holographic Ricci dark energy within the universe could also be calculated using the equations
(1) and (24) as

3k2 (n+2)2 (n+2) (n+2)
by = 220 [Coth2 (kot + k3) {—5" Dy zc} +10 2(] (26)
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Figure 1. Plot of energy density versus time for k, = 1,k; = 0.85,n = 1.81,¢y = 1.015,n = 0.025 and { = 0.15

In terms of cosmic time ‘t’, Fig. 1 describes the energy density of HRDE with bulk viscosity of our model.
Throughout the development of the model, the energy density is positive. We also see that as cosmic time increases, the
energy density p; declines. As a result, we may infer that our model achieves the realistic energy requirements, p; > 0.

We suppose that matter and viscous holographic dark energy factors interact minimally. Hence, they’re conserved
independently (Sarkar [53]). Therefore, as result of the conservation equation

. A B  C

pm+(Z+E+E)pm=0’ 27
. A B  C __
b+ (5+2+5) (on +7m) = 0. (28)

From egs. (21), (22) and (27), we get the energy density of the matter is
pm = k1[K Sinh(k,t + k3)]~"+2), (29)

where k; is an integrating constant.
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The coefficient of bulk viscosity is given by
e=e +e (2T D) Cothkyt + k)| + 3 [y (7 V/3) Cothlhat + ks) + ey Tanh(kyt + k)], (30)
Using equations (21) — (23), we obtain the viscous pressure of the holographic Ricci dark energy as
Py = == [kaCoth? (feat + k3) + ks] 31
where k, = {Ki —(n+3Dky — k2o +2)2-2@n+4) + 2 +3)(n + 2)]}

and kg = {Z(n +2)k2 — (n + 3k, — —}
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Figure 2. Plot of viscous pressure versus time for k, = 1,k3 = 0.85,n = 1.81,¢, = 1.015,n = 0.025,w = —1.25 and { = 0.15

According to the graph of Fig. 2, the viscous pressure of the HRDE is constantly negative throughout the elaboration
and rises with time. Based on the substantiation of the Universe's rapid expansion, it is generally allowed that some
energy-matter causes this cosmic acceleration with negative pressure known as DE.

The pressure of the holographic Ricci dark energy as
Py = 72 [kyCoth? (kyt + ks) + ks] + k(n + 2) {£,Coth(Jeyt + ks) + 2 Coth? (kat + ks) [e5(n + 2) + &5(n — 1)] + £k, } (32)

From equations (26) and (32), we obtain
The EoS parameter of the Ricci dark energy as

k
W, = P _ To-[kaCoth? (kpt+ks)+ks|+kz (n+2){eo Coth(kyt+ks)+-2Coth? (kat+ks)[e1 (n+2)+£2(n—1)]+e2k2} (32)
=Zh — . -
Ph 3(§§2[Coth2(k2t+k3){£°(n9+2) n(7;+2)+2(}+71(7;+2) 2(]
0 <102 . ; ; ; ‘\
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Figure 3. Plot of EoS parameter versus time for k, = 1,k; = 0.85,n = 1.81,¢, = 1.015,n = 0.025,w = —1.25 and { = 0.15
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The EoS parameter is defined as w = p/p, where p stands for pressure and p stands for energy density. Various
EoS parameter values correlate to various epochs of the Universe's early decelerating and current accelerating expansion.
The decelerating phase consists of stiff fluid (w = 1), radiation (w = 1/3), and matter-dominated (dust) (w = 0). The
accelerating phase is made up of quintessence -1< w < -1/3, the cosmological constant w = -1, and the phantom case,
w<-1.

The above Fig.-3 illustrates the EoS parameter as a function of cosmic time (t). We see that at the very beginning of
the cosmos, the EoS parameter wy, > 0. As a result, at early epochs of the Universe, the EoS parameter of HRDE with
bulk viscosity may play a significant role in representing the initial stage matter-dominated era of the universe. It is
discovered that the EoS parameter reaches zero at some point, implying that our model reflects a dusty universe.
Meanwhile, the EoS parameter of HRDE with bulk viscosity acts like quintessence (-1 < wy, < -1/3) and phantom
(wn < -1), resulting in an accelerated expansion phase of the cosmos.

The coincident parameter is

T om Ky [K inh(kyt+kz)]-0+2)
4. SOME ESSENTIAL PROPERTIES OF THE MODEL
The spatial volume is
V = ABC = [K Sinh(k,t + k3)]™*? (34)
o ><.IOZD
181
1.6
14
1.2
£
% 1
g 08
0.6
0.4
0.2}
5 ; ; . ; ‘
0 2 4 6 8 10 12

Time 't' (Gyr)
Figure 4. Plot of Volume versus time for k, = 1,k; = 0.85&n = 1.81
Fig. 4 illustrates the volume concerning cosmic time. We can see that as the time ‘t' rises, the spatial volume “V”
increases and eventually becomes infinitely large, as displayed in the graph. It demonstrates that the cosmos expands as

time goes.
The average scale factor is

a(t) = Vs = [K Sinh(kyt + k)] "5, (35)
For the flow vector ui, the expansion and shear scalar expressions are calculated as
0 = 3H = k,(n + 2)Coth(k,t + k3). (36)
o2 = 202 = Tk} (n + 2)2Coth?(k,t + ks) 37)
Along the axes x,y, and z, the directional Hubble parameters H;, H,, and H3 are given by
Hy = H, =% =2 = kyCoth(kyt + ks), (38)
Hy =2 = nk,Coth(k,t + k). (39)

whereas the generalized Hubble parameter is given by

2A B k 2
H= (5 +35) = 25 Cothlet + k) (40)
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Figure 5. Plot of Hubble parameter & Expansion scalar versus time for k, = 1,k; = 0.85&n = 1.81

The graph of Fig. 5 above depicts the variability of the Hubble parameter and the expansion scalar concerning cosmic
time. These are two significant observable factors in cosmology that play an essential part in the Universe's expansion
path. Both the expansion scalar graph and the Hubble parameter demonstrate that they are positive-valued, decreasing
functions of cosmic time that approach zero over very long time periods. The Hubble parameter is generally known to be
the rate of expansion of the Universe, and a measure of the fractional increase in the scale in unit time of the Universe. It
is discovered that the expansion rate is quicker in the beginning and slower later on.

The average anisotropy parameter is defined by

_1 Hi-H\? _ 2(n—1)?
Am = 3 izl( H ) T (2n+1)2 (41)

The deceleration parameter (DP) q is given by

q= —ﬁ—l LSechz(k2t+k3)—1 (42)
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Figure 6. Plot of deceleration parameter versus time for k, = 1, k3 = 0.85,n = 1.81

The model's acceleration or deceleration is determined by the sign of the deceleration parameter (DP) ‘q’. A positive
deceleration parameter (DP) ‘q’ value implies model slowdown, whereas a negative sign suggests model acceleration.
Fig. 6, depicts the elaboration of the deceleration parameter following cosmic time. We discover that our model displays
a Universe expansion phase. It can also be shown that the current value (i.e., at t, = 13.8 Gyr) of the deceleration
parameter is g, = —1 , which is consistent with recent observations.

5. CONCLUSIONS
This study investigates the spatially homogeneous anisotropic Bianchi type-III cosmological model with bulk
viscosity in the presence of pressure less matter and holographic Ricci dark energy in the Brans — Dicke theory of gravity.
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It is essential to remember that physical volume increases with time. Fig. 4 illustrates the volume concerning cosmic time.
We can see that as the time ‘t' increases, the spatial volume V increases and ultimately becomes infinitely large, as
displayed in the graph. It demonstrates that the Universe expands as time goes. It is frequently seen that the above-
mentioned physical parameters, such as 8, 2 and H of the model, acquire a constant value at late intervals. This indicates
that the cosmos expands consistently. Fig.5 depicts the variability of the Hubble parameter and the expansion scalar
concerning cosmic time. These are two significant observable factors in cosmology that play an essential part in the
Universe's expansion path. The Hubble parameter and the expansion scalar graphs show that both are positive-valued
decreasing functions of cosmic time that tend to zero over long time scales. The Hubble parameter is generally
acknowledged as the rate of expansion of the Universe, and a measure of the fractional increase in the scale in unit time
of the Universe. It is discovered that the expansion rate is faster in the beginning and slower later on. We can also see that
as time increases, the energy density p,, of matter increases, and therefore the Ricci dark energy (RDE) density py,
decreases. In terms of cosmic time ‘t’, fig. 1 describes the energy density of HRDE with the bulk viscosity of our model.
Throughout the development of the model, the energy density is positive. We also see that as cosmic time increases, the
energy density p, decreases. As a result, we may infer that our model achieves the actual energy needs, p,> 0. Figure-2
shows the viscous pressure of the HRDE is constantly negative throughout the elaboration and increases with time. Based
on the substantiation of the Universe's rapid expansion, it is generally allowed that some energy-matter causes this cosmic
acceleration with negative pressure known as DE. We will see that Ricci Dark Energy has a negative pressure during the
Universe's development, suggesting that the Universe is expanding faster. In our model, the EoS parameter starts within
the phantom area (W), << —1) and crosses the phantom dividing line (W,, = —1). Within the region of quintessence,

the model progressively approaches the constant value (—1 < W), < _1/ 3 ). Fig.3 illustrates the EoS parameter as a

function of cosmic time (t). We see that at the very beginning of the cosmos, the EoS parameter w;, > 0. As a result, at
early epochs of the Universe, the EoS parameter of HRDE with bulk viscosity may play a significant role in representing
the initial stage matter-dominated era of the Universe. It is discovered that the EoS parameter reaches zero at some point,
implying that our model reflects a dusty Universe. Meanwhile, the EoS parameter of HRDE with bulk viscosity acts like
quintessence (-1 < wy, < -1/3) and phantom (w;, < -1), resulting in an accelerated expansion phase of the cosmos. The
model's acceleration or deceleration is determined by the sign of the deceleration parameter (DP) ‘q’. A positive
deceleration parameter (DP) ‘g’ value implies model slowdown, whereas a negative sign suggests model acceleration.
Fig. 6, depicts the evolution of the deceleration parameter in accordance to cosmic time. We discovered that our model
displays a Universe expansion phase. It can also be shown that the current value (i.e., att, = 13.8 Gyr) of the deceleration
parameter is q, = —1 , which is consistent with recent observations.

Data availability statement: This manuscript has no associated data or the data will not be deposited. [Authors’ comment: All data
analysed during this study are presented in this published article.] Derived data supporting the findings of this study are available from
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B’SI3KA FT'OJIOTPAGIYHA KOCMOJIOTTYHA MOJIEJIb TEMHOI EHEPTIi PIYI TUITY B’STHKI 1T
B TEOPIi T'PABITAIIIi BPEHCA-JIIKE
IL.E. CaTbsinapasina, K.B.C. Cipima
Jenapmamenm mamemamuxu, I'IC, GITAM esasicacmocs ynisepcumemom, Bicakxanamnam, Inois
V w1iii poOOTI TOCHIPKYETHCS Ta PO3TIISAAETHCS IUPOKHUIA CIIEKTP 3HAX1JI0K, OB’ I3aHUX 3 OMTUCOM rojiorpadivyHoi TeMHOT eHeprii Piuui
(HRDE) 3 00’eMHOI0 B’A3KICTIO B paMKaX PUCKOPEHOT0 PO3IIMPEHHS BCcecBiTy B Mi3HIN Yac y paMKax aHi30TPOIHOT KOCMOJIOTI9HOT
mozeni b’saki Tumy 111 i3 BMicToM Matepii Ge3 THCKy. B Teopii rpasitanii bpenca-/likke. Mu BUKOPHCTOBYEMO CITiBBITHOIICHHS MiXK
METPUYHHMH TOTEHIIaJIaMH, 100 OTPUMATH TOYHUH BHCHOBOK DIBHSHB IIOJISI, IO IPH3BOAUTEH IO IIBHAKOTO posmmpenHs. 1106
JOCIiuTh (Bi3MYHy IOBEIIHKY HAIIOi MO TeMHOI eHeprii, BUKOPUCTOBYIOThCS KiJIbka OCHOBHHX KOCMOJIOTTYHHX IapaMeTpiB,
BKIIOYatoun Xab0ia, yrnoBUIBHEHHS, IUIBHICTD eHeprii Marepil, minbHicTh TeMHoi eHeprii Piudi (RDE) i piBusaus crany (EoS).
BHKOPHCTOBYIOUYH TIOTOYHI KOCMOJIOTIYHI CIIOCTEPEKSHHSI, MU BUSIBHJIM JISSIKY B sI3KiCTh rosiorpadiaHoi Moesi TeMHol eneprii Piyui.
Mu onucyemo, sk (hi3UdHI Ta TEOMETPHUYHI BIACTUBOCTI MOJIENICH CyMiCHI 3 OCTAaHHIMHU KOMITUISIITISIMH.
Kurouosi cinoBa: mempuxa b ’sauki I1I muny; eonoepagiuna memmua enepeia Piuui (HRDE), 06'emna 6'a3kicmuv; meopisn bpenca-/likke
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In this work we analyze the effective evolution of a one dimensional Bose-Einstein Condensate (BEC) within a semi-
classical description of quantum systems based on expectation values of quantum dispersions and physical observables,
known as momentous quantum mechanics. We show that the most prominent features and physical parameters of the
system can be determined from the dynamics of the corresponding semiclassical system, consisting of an extended phase
space including original classical observables and quantum dispersions, and we also show that particle trajectories for
expectation values of observables are a particular characteristic in this framework. We also demonstrate that interactions
with several potentials can be implemented in an intuitive way.

Keywords: Effective quantum mechanics; Bose-FEinstein condensate; Semiclassical evolution

PACS: 03.75.Kk, 03.75.Lm

1. INTRODUCTION

Around 100 years ago, Einstein and Bose made a groundbreaking prediction that a system of noninteracting
bosons, under certain conditions, would undergo a phase transition to a state with a macroscopic population in
the ground state, even at finite (low) temperatures [1]. This remarkable phenomenon, known as Bose-Einstein
condensation (BEC), has since captured the attention of the physics community, and has laid the foundation
for exploring the quantum world on a macroscopic scale. However, it was only in recent years that experimental
techniques, such as laser and evaporative cooling [2], and the development of novel traps [3], have allowed for
the unambiguous observation of BEC in weakly interacting atomic Bose gases within laboratory settings [4].

On the theoretical front, the dynamics of dilute trapped Bose-Einstein gases have been effectively described
by mean-field theories, with the Gross-Pitaevskii equation (GPE), a nonlinear Schrédinger equation (NLSE),
proving to be a highly accurate representation of the BEC ground state and its excitation spectrum at or near
absolute zero temperature [5]. Most theoretical work has primarily focused on the Thomas-Fermi limit, where
the nonlinearity of the GPE dominates the bare trap excitation energies, corresponding to situations with a
large number of particles [6]. Yet, the NLSE and GPE have also found applications beyond the realm of BEC,
with the NLSE appearing in various fields such as optics, acoustics, and materials science [5]. In particular, the
NLSE serves as a universal equation in three-dimensional problems, where analytical solutions are challenging,
and numerical simulations typically demand substantial computational resources. An effective approach to the
study of such systems could offer a powerful method for gaining valuable insights into the behavior of BEC
models.

Effective techniques in quantum mechanics enable us to approximate solutions for complex systems. No-
tably, the momentous quantum mechanics formulation transforms a quantum system into a semiclassical coun-
terpart, where the system’s dynamics are determined via an effective-semiclassical Hamiltonian [7]. This method
reintroduces the concept of particle trajectories, which is absent in traditional quantum mechanics. These tra-
jectories depict the evolution of expectation values of position and momentum operators, and of quantum
dispersions as well, obtained as an average of these values across an infinite number of quantum ensembles.
This interpretation is akin to the evolution obtained in the Bohm description of quantum mechanics [9]. The
versatility of this approach has made it applicable to the study of a wide range of quantum systems, spanning
from relatively simple models such as quantum tunneling [10] to more intricate models within the domain of
quantum cosmology.

In this work we explore a semiclassical analysis of a Bose-Einstein condensate in one dimension, attempting
to bridge the gap between the theoretical foundations of BEC, the NLSE, and the practical applications of these
principles in quantum physics and beyond.

As experimental advances continue to unlock new possibilities for the study of BEC, it is crucial to inves-
tigate the collective dynamics of these macroscopic ensembles, particularly in the context of one-dimensional
systems. Our analysis aims to provide valuable insights and analytical solutions that complement numerical
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studies, further enhancing our understanding of BEC and its broader implications in various domains of physics
and engineering.

2. THE GROSS-PITAEVSKII EQUATION AS A NLSE

In this first approach we analyze a one dimensional BEC as a semiclassical system, for which we ob-
tain its dynamical evolution, displaying the effectiveness of the method, and discuss the broad spectrum of
generalizations to more complex systems, including higher dimensional ones. This section follows closely [11].

We start considering a gas of bosons with a fixed average number of particles, IV, confined by a potential
well trap. The ground state of N noninteracting bosons confined by the potential is obtained by putting all the
particles in their lowest energy state, its normalized single-particle wave function is

mw ) 1/4 _pw o

vo=(25) " eF M

The density distribution is n(z) = N|i,|?. At finite temperatures, there are particles occupying the lowest
energy level (condensate), for which we require their occupation number to be large and close to the total
number N, and others occupying higher levels (thermal component) N, so the condition for BEC occurrence
is then Ny < N, satisfied for T sufficiently small. The critical temperature at which this happens is

kgT, = 0.94hwn'/3. (2)

Typical values of these parameters in available experiments are N ~ 10* — 107, and T, ~ (102 — 10®)nK,
values very well in agreement with experimental results.

Non-interacting boson particles are well described by the expressions above, and have also been corrobo-
rated by experiments [12]. However, this non-interacting picture is simplistic: the gas in this case has infinite
compressibility, and one would expect interaction between the particles to drastically change its behavior, even
for very dilute samples. Therefore, and interacting system should be considered, and the conditions under which
Bose-Einstein condensation is attained further studied.

The dynamic of a gas of interacting boson particles is well described by the NLSE, the Gross-Pitaevskii
equation or GPE [11]

L R 2
Zhaf *%V + Vext (r) + glY|=| ¥ (3)
where
drh%a
9= — (4)

modulates the interaction and is defined in terms of the ground-state scattering length a. N is fixed from the
normalization condition for its macroscopic wave function N = f 2d3r. We will consider a harmonic trapping
potential Veyg.

We will analyze the evolution of this macroscopic system under an effective description, under the physical
conditions discussed above, and the average distance between particles much larger than the scattering length
a.

For a one dimensional BEC, in eq. ( 3) we take V — %. Several methods and analysis were implemented
over the past years attempting to solve, analytically, approximately and numerically the GP equation, in 1, 2
and 3 dimensions, for harmonic and more general potentials (Thomas-Fermi limit [6], numerical [13], variational
analytical [14]). We describe now the momentous quantum mechanics method.

3. EFFECTIVE DESCRIPTION OF BOSE-EINSTEIN CONDENSATES
3.1. Momentous quantum mechanics
Momentous quantum mechanics is an effective formulation describing the semiclassical evolution of quan-
tum systems provided by a Hamiltonian defined in an extended phase space, with expectation values of observ-
ables and quantum dispersions as classical variables [7]. The dynamical system so obtained has (in general) an
infinite number of degrees of freedom. Expectation values of quantum dispersion (termed “quantum variables”),
for one degree of freedom, are defined as follows

A(zp”) = (& = 2)*(p — )") Wey. ()

where p = (p), ¢ = (¢), and Weyl refers to a totally symmetrical ordering. Similar expressions apply for more
than one degree of freedom.
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The quantum effective Hamiltonian, defined as Hg = (H), is given explicitly as

HQ :H(f,p)+22$(n>WA(xapn—a) (6)

a n—a
== a) 0xe0p

H(q,p) is the corresponding classical Hamiltonian of the system. The semiclassical dynamics can be obtained
from the Hamiltonian (6) in the usual way, that is, f= {q, H}, and for quantum variables we use ifi{q, H} =
(L))

This formulation for the effective dynamics is valid for general quantum systems, even for those that cannot
be expressed with the usual kinetic and potential terms for the Hamiltonian, that is, H = K + U, although one
may need to implement consistent truncations to the series for complex systems, as we show below. There is
an alternate description in terms of canonical Casimir-Darboux variables [8].

The variables defined in (5) are not canonical order by order in the Hamiltonian (6). It is possible to get
a canonical pair of variables, and a Darboux Casimir, for one degree of freedom, by means of the following
transformation

§= A(IQ)a ps = —F—s, U= A(xg)A(pQ) - A('Tp)zv (7)

for which we get {s,ps} =1, and {s,U} = {ps, U} = 0.

Even more, under general arguments it can be shown that all the relevant gantum information in the
system can be obtained from the canonical variable s, and the effective Hamiltonian can be written in the
following way

2 2
_|_
HQ(],‘,S) = Z%""/eff(xas)a (8)
where the effective, all-order potential is
Vir= 5 + 5 [V(e+ )+ V(e —5) )
et =5 5 +lVizts x—s)],

where V(z) is the classical interaction potential.

In this way we can generate the dynamics from this canonical effective Hamiltonian and its correspondent
all-order potential in the usual way. We will analyze the effective quantum evolution for the BEC under both
schemes described above.

3.2. Effective GPE
The prescription to obtain the quantum Hamiltonian described above can be implemented for the one-
dimensional GPE (3). Particularly, since this is a non-linear Schrédinger equation, we can deduce the corre-
sponding classical Hamiltonian in the following way

. h2
H = —— V24 V() +gly)? —
2m
p2
Hiass = om + Vezt(x) + g|¢|27 (10)

considering the term g[t|? in Hg as part of the effective interacting potential, as we will describe below.

By far, the most interesting trapping potential V,,; is harmonic, since it represents the most common
experimental implementation for BEC’s, and we will use this in the following.

As for the interpretation of the interacting, non-linear potential ¥ (xz,t) at the classical level, we point out
that the classical system is a starting reference upon which the effective analysis will be built, although its
energy may be taken from experimental settings. The bridge between these two regimes, the quantum and the
classical, is the wave function for the non interacting boson gas discussed in section 2, so we propose considering
a generic squeezed coherent state of the form

B 1 « 2 .
Vo) = Gy b |~ (o~ ()P in(o — ()] (1)
with o = 1 — i{AzAp + ApAx). From this the interacting potential reads (taking (r) = 0)

2
g (z — (x)) g x
——5€xp |— = exp [——=| - 12
@mp?) 2 P { 207 @rp?) 72 P T3 12)
One can see this already at second order because there are three quantum variables, and they cannot conform a canonical
system.

2
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The classical Hamiltonian (10) then reads

22
2 —33
_P 1 99, ge
H(z,p) = S + 5w e + —(271_%)2)1/2.

(13)

We can determine the behavior of the 1 dimensional BEC as if it were a classical particle, driven by (13).
In fig. (1) we show the “classical potential”, and in fig. (2) the corresponding semiclassical trajectories, a
particularly interesting feature of our effective treatment. The classical BEC particle is trapped inside the
potential, and is confined in the right (left) valley, or the harmonic trap, depending on whether its energy FE is

greater or less than the local potential maximum %—ﬁz
P

V()
200}
150|-
100 -
5

20 -10 10 20 %

(a) Classical potential for a=10 (b) Classical potential as a function of = and a.

Figure 1. Classical potential for the 1 dimensional BEC in a harmonic trap

2 4 6 10 12 14 t
sl
-10
(a) Classical trajectory for E > % (b) Classical trajectory for E < %

Figure 2. Classical trajectories for the 1 dimensional BEC in a harmonic trap.

The classical Hamiltonian (13) shows the kinetic and potential terms, a form suited for the momentous
effective treatment. We discuss the evolution in two parts: one where p varies slowly and can be treated as a
constant, and the general case.

4. EFFECTIVE EVOLUTION

We proceed to analyze the effective evolution for the BEC system, both in the order by order and the
canonical descriptions.



140
EEJP.1(2024) Hector Hernandez-Hernandez

As was discussed in the previous sections, the macroscopic quantum evolution of the condensate for non
interacting particles (g = 0) can be determined from its wave function, which has an analytic expression given in
(1); values of physical observables can be readily obtained. On the other hand, momentous quantum mechanics
determines the dynamical evolution of expectation values of observables as a function of time: the macroscopic
evolution of the BEC can be interpreted as an effective particle governed, at the quantum level, by the GPE
(3).

For the effective quantum description of the general interacting picture we make use of the non interacting
behavior, by choosing initial values of classical and quantum (dispersions) variables from their corresponding
values of the later. That is, we use the expectation values obtained from the ideal BEC, and experimental
parameters employed in the obtention of the condensate, as initial values for the evolution of the full quantum
effective system. That is, we take f(0) =< f >, for classical and quantum variables.

The total energy, described by the three terms in the Hamiltonian (10), E = Eyin + Eno + Eint (kinetic,
harmonic and interacting components), is restricted by the virial relation [11]

0 = 2Bin — 2o + 3Fin;. (14)

Again, the initial values for each one of the components are obtained from the non interacting system. In this
way, we can determine the effective dynamical evolution of the interacting BEC, as we show below.

4.1. Constant variance p
4.1.1. Second order system. As we mentioned above, we analyze first the case where p is slowly
varying, for which it can be considered constant. p is the width of the distribution, so slow variation would
represent the period of time during which stable evolution is attained, before the colapse and revival of the
matter wave [15]. Its value can be controlled in experimental settings.
The effective Hamiltonian (6), together with (13) reads in this case

2

2 ey 2
D L 9 o ge = Ap) | 1 5 2
Ho = P S mw?A
Q om T3 T ity T Al +
ge 3 1 1 \" x
| - —— Hn — VA" , 15
(27Tp2)1/2 —~ n! ( \ﬁp \/ip ( ) ( )

where H, (z) is the Hermite polynomial of degree n. As can be seen in this expression, the total Hamiltonian
has an infinite number of terms, rendering an impossible system to treat in full, so we truncate the series to
lowest orders in dispersions.

The Hamiltonian Hg up to second order in momenta is

2

2 —5
D 1 55 ge 2»
H = —_— — [ —
@ 2m * MW * (2mp2)L/2
22
A(p?)  A2?) 9 ge 2% (22 1
2w ge (L )L 1
+ o +— mw” + a2\ i 2 (16)
Equations of motion for classical variables follow
. p
r = =,
m
-2 2) 3 3
_ 9 ge 27 x  A@®) [z x
= - = == 17
p mw-x + (27rp2)1/2{p2 + 9 P ) (17)
whereas for quantum variables [16]) we get
dA(z?) A(zp)
= 2 5
dt m
22
dA(zp)  A(p?) 9 9 ge 2% (22 1
= _— A —_— —_—— —
dt m (27)4 mew” + @) 2\t~ p2 ) [

dA(p?) 5 967;7 z? 1
= — ~ T o<1 /o 0 T T 9 . 1
¥ 2A(zp)< mw® + e 2\ i 2 (18)
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4.1.2. Canonical system. Now, for the canonical formulation (8) the effective Hamiltonian (13) reads

2 2 -5
Y Y L o9 2 2y,9¢ 2 xs
Hg(z,s) = o T g T 3w (x* +s%) + Wcosh 2 ) (19)
The corresponding equations of motion are as follows
P
X - R
m
. Ds
s = B
m
_12+52
s 2 ge 2~ . xs s
p = —mwx-— W [ssmh (pz) — x cosh (;72)] ,
:c2+s2
. U 9 ge  20? . s s
Ps = @ — mw~s — W x sinh ﬁ — scosh ﬁ . (20)

4.2. General variance p? = A(z?)

For the general case for which p is dynamical we need to modify the dynamics obtained in the previous
section. Though more general, it is interesting to contrast this evolution with the one in the previous subsection,
to determine under which regimes, or parameter values, the constant variance analysis is sufficient.

4.2.1. Second order system In this case, where p? = A(2?), the Hamiltonian (13) gives the effective
Hamiltonian, up to second order in momenta

2
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Equations of motion for classical variables are
. _p
xr = )
m
. 20 4+ ge 6T z3 T (23)
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while for quantum variables read
dA@?)  Alap)
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Equations of motion for higher order truncations can be readily obtained. In the appendix we show the
third order system for general p.
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4.2.2. Canonical system for general variance Since, from (7) we have p? = A(x?) = s, the canonical
all-order Hamiltonian (19) is now

2 .2 -
p°+p U 1 5 9 o ge 22 z
Hg(z,s) = Ws + 9ms? + 3w (x* +s°) + Wcosh (;) (25)

It is evident that the equations of motion for this case will be modified. We get

. p
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m
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m
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. . 2 ge 2s 2 2 X . X
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5. NUMERICAL EVOLUTION

We present the evolution for each one of the cases discussed in section 4. Being the dynamics governed by
a system of nonlinear coupled differential equations we analyzed their solution numerically.

5.1. Constant variance p, second order in momenta

In this case we obtained the following initial conditions for momenta from (5) and (11): A(2?) =

1
2[)27

A(p?) = %2, A(zp) = 0, and parameters: i=m =w =1,a = 3.

In Figure 3 we show the effective potential, displaying its dramatic departure from the classical one (Figure
1) due to quantum back reaction. We may also show its evolution as a function of a, although it is not so
critical as p. The semiclassical particle evolves according to the effective potentials depicted, and we display
some interesting trajectories in Figure 4: the behavior is affected by the value of p, which is the variance of the
state considered.

20

Figure 3. Effective potential for the BEC with constant variance p = 2.5, a = 3.

This system was obtained by truncating the Hamiltonian (6) up to second order in momenta,
A(2?), A(zp), A(p?), and this could be extended to higher orders to take into account higher order disper-
sions, as shown in Appendix (B) for example. There is a generalization, though, where we do not need to make
such truncations, which we analyze next.

5.2. Constant variance p, all-order potential
We analyze now the system for p constant, employing the canonical formulation of the effective formulation
described in subsection 4.1.2. We expect this description to be more general than the one in the previous
subsection, particularly because now we have no truncations in the potential. Employing the same initial
conditions and parameters as before, with the obvious modifications for variables (7) we obtain the potential
shown in fig. 5
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Figure 4. Effective trajectories with constant variance p , a = 3.

(a) Potential for p = 2.5 (b) Potential for p = 1.5

Figure 5. Effective potential for the BEC with constant variance p = 2.5 , canonical variable s.

This is the all-orders effective potential in (19). It is important to note that determining an effective
potential, for which no truncations are needed, is the most interesting feature of our treatment, for one can
analyze the entire quantum-effective evolution of the system from it. Effective trajectories are shown in fig. 6.

The behavior of the system can be analyzed from these trajectories, where one can modify the parameters
and conditions according to experimental settings or phenomenological guidelines.
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Figure 6. Effective trajectories with constant variance p , a = 3, canonical variable s

5.3. General variance p, effective potential

We now study the evolution for the general variance p as a dynamical variable. One can analyze several
regions of interest in the physics of BEC, including interactions between two or more BEC’s, evolution in the
presence of external fields, among many other possibilities.

The dynamics is governed by the Hamiltonian (25). The last three terms in the r.h.s. of this expression is
the effective potential for the system, for general variance. Its behavior is displayed in fig. 7, where the values
for p are the initial ones.

We can obtain the evolution of classical observables, and also determine the spreading A(z2), A(p?) of the
initial wave function (11), just as in [17]. Actually, this can be extended to more general interactions driven by
different trapping potentials. We show trajectories in fig. 8.

Interpretation of the dynamical evolution of the interacting BEC can be obtained from this effective
treatment, particularly from the semiclassical potential and trajectories. For instance, while the “classical”
particle, corresponding to the non interacting system, has a well defined behavior given the potential in fig. 1,
in the interacting case, figures 5 and 7, depending on initial conditions and time of evolution, the BEC can
tunnel from different regions in the trap. This corresponds to the collapse and revival of the matter wave
discussed in [15]. By considering different trapping potentials, and even interacting BEC’s, one can describe
very interesting phenomena by applying this effective setting.

It is important to remember that the effective BEC is quantum in nature, so it should display its prob-
abilistic nature. It is indeed the case, and the trajectories (and the whole evolution for that matter) should
actually be displayed as < & > £Axz, which is shown in fig. 9.

It is interesting to note that the trajectories evolve within a bounded dispersion.
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(a) Effective potential for po =1 (b) Potential for po = 1.8

(¢) Potential for pg = 2 (d) Potential for pg = 2.5

Figure 7. Effective potential with time-dependant variance p, in terms of the canonical variable s.

6. DISCUSSION

In this work we have presented a semiclassical effective treatment for a one dimensional Bose Einstein
condensate in a harmonic trap with the typical interacting potential depending on the macroscopic wave function
Y(x,t), whose dynamic is dictated by the Gross—Pitaevskii equation, a particular form of a non linear Schrédinger
equation. We have shown that the physical information of the system is encoded in the expectation values of
observables and quantum dispersions, acting as classical variables in an extended phase-space, with an effective
Hamiltonian; their quantum evolution can be followed with one-particle trajectories, a very useful feature in
the dynamical analysis of the system.

Our results match those obtained in different approaches of the GPE, particularly those in variational
descriptions where the center and the width of the BEC cloud evolve as particles subjected to classical potentials
(see [14]). Those results have been extended to the explanation of experimental results [18]. Since the setting
for the momentous quantum mechanics is semiclassical, many generalizations to this one-dimensional system
can be studied: two and three dimensional systems can be readily implemented, and the behavior nicely
depicted as a one-particle one. Different interactions with, for example, traps or external fields can also be
discussed, and the evolution can be interpreted from the effective quantum potential that we obtained, as
mentioned in section 3. Moreover, the values taken for the parameters in the model come from phenomenological
descriptions: experimental settings and constraints dictate the physically interesting values for quantum and
effective variables.

The most remarkable feature of our analysis is the semiclassical characteristic of the condensate, allowing
to treat it as a single particle (the most classical form of a matter wave) that inherently has a trajectory,
something not present in usual quantum mechanics. We obtain an effective potential that controls the dynamics
and evolution of the system and, from this, general features of the evolution can be obtained. As such, the
question of quantum tunneling can be treated in a direct way [10], a very interesting phenomena currently under
investigation. As discussed above, our results show a tunneling between regions in the trap, corresponding to
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Figure 8. Effective trajectories with time dependant variance p , a = 3.

(a) Semiclassical trajectory with uncertainty for po =2  (b) Semiclassical trajectory with uncertainty for pg = 10

Figure 9. Effective trajectories with with quantum uncertainty, shaded region.

the collapse and revival of the matter wave described in [15]. Actual time of flight for condensates can also be
estimated under our description.

Finally we presented two derivations for the evolution of the system, one in terms of (infinite) quantum
momenta -hence the name-, and the other in terms of a all-order potential, mentioned above. We mentioned
that the effective potential includes all the information that the moments do; however, the momenta expression
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is important in its own right because it is the one suited for systems whose Hamiltonian is not expressed in the
usual kinetic and potential term.

Our methodology may serve as a valuable instrument for studying the dynamics of Bose-Einstein con-
densates. It offers a systematic approach to predicting and analyzing an several experimental scenarios, en-
compassing the influence of core-core interactions. Future applications to the investigation of interactions with
radiation, expansions in BEC’s and many other phenomena.

A. GENERAL POISSON ALGEBRA FOR EXPONENTIAL TERMS

The interaction potential for the Bose-Einstein condensate includes the momenta inside an exponential
function. To obtain the corresponding equations of motion we need to expand in a Taylor series, once in this
polynomial form one computes the Poisson brackets among variables, and then switch back to the original
expression. We perform this procedure explicitly.

First the Taylor series for the exponential

. 22 7 0 (71)77, x?n
e 2569 *Z ni2n A(z2)n (27)

n=0

Poisson brackets have the following generic form

— x2
e 2A(z2)
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The second term in the r.h.s. of this expression gives

a e_ﬁ —7w22 a —
{A(m pb),w} - ¢ 2A<z>{A(m ), A(x?) 1/2}

_’_i (_1)nx2”{A(x“pb),A(mz)_”}A(xQ)_1/2. (29)

nl2n
n=0

One can obtain generic formulae for any order momenta, however we obtain those for second and third

order, that is, for momenta A(zp), A(p?), A(z?p), A(zp?) vy A(p?).
For instance

{A(wp)A(ch)} = {A(xp),A(xz)”ZA(xQ)”Q}

= A(»’62)1/2{A(aﬁzv),ﬁ(xQ)l/Q} + {A(xp),A(wz)l/g}ﬁ(%‘z)”2

2A(m2)1/2{A(xp), A(xQ)l/Q}
= —2A(2?), (30)
or
{A(IPL A(«’02)} = —VA(2?), (31)
which agrees with [16]. Repeating n times we obtain

1 2n
{Aup» A(W} = AGm (32)

Similar expression can be obtained for other momenta

{A(ﬁ)@} = 4“A(AI(21;Z)+1’ (33)
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Writing back in (29) we get the final result
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B. THIRD ORDER DYNAMICAL SYSTEM
The effective Hamiltonian (6) up to third order in momenta reads
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As before, we compute the equations of motion for momenta using ih {q, H} = <[d, H } > The equations

of motion for third order momenta are

dA(2?)

=2 4
i o (45)
dA(xp) A(pz) 9 9 ge e 4 32 22
- _ A _ _
af mw AW+ AR T A T AED  AEE




149

Effective Semiclassical Evolution of Bose Einstein Condensates EEJP.1(2024)
Ay ge B [A@p) o, A@p)  , Alap)
a - ~ A+ i) aee) T\ 2anr T A
3 3 2 3
b T pAE)AGp) | SAGT)  AlD)A(zp)
3 A(22)5 A(22)3 A(z2)*
3 2 3
A(x2)3 A(I‘Q)Z A($2)4
dA(2®) _  A(z®p)
a0 Tm (48)
dA(?p) _  Alp®) o g ge = A@®) | AE? Al
T L GO 1oy v e e N RN ERE NP

N NG NG
A2)? T A@2) T A(

w3 [ Ax?) 5 A(23)? A(x?)? 3
+ 3<3A(x2)3 NN A(x2)> }
(49)
dA(xp?) B A(p?) 9 9 geim A(z?p) A(z?p)A(z3) A(zp) A(z3p)
@ " m  mAET) [27TA(x2)]1/2{ A T A@E . TPAGY) T PA@E)
L <2A<x2p> _ 2AEp) A(xzp)A(w3)>
A($2)2 A($2)3 A(LC2)4
23 [ AP o A(z2p)A(a® A(x?p)A(z3 Az
+ 3 (3 Agle;z +z (A?x)z)g ) -7 (AZJ)A(; ) a SA((332Z;)2> }7 (50)
N g B [ Awp?) | Alp)AEY) | AR
rraniali 3mw?A(zp?) + [27TA(12)}1/2{3 AGD) +15 NCIE +9A(x2
A(z?p?) RY/
~ VA2 T aape
o [ «Alzp?) 2 Azp®) | A(zp®)A(z?)
+ oz <6A(x2)2 o Az2) -3 Az2)*
o A(zp?)A(x?) A(zp?)A(z3) A(z%p?) A(p?) h?
+ ””3( NG N R RN 2A(x2)3>}
(51)
ORCID

Hector Hernandez-Hernandez, https://orcid.org/0000-0001-6041-7471

REFERENCES
[1] S.N. Bose. "Plancks gesetz und lichtquantenhypothese.” Zeitschrift fiir Physik 26, 178-181 (1924).
Einstein. ”Quantentheorie des einatomigen idealen gases, sitzungsberichte kgl.” Preuss. Akad. Wiss 261 (1924).
http://dx.doi.org/10.1007/BF01327326

[2] F. Schreck, and K. van Druten, ”Laser cooling for quantum gases,” Nature Phys. 17(12), 1296-1304 (2021). https:
//doi.org/10.1038/s41567-021-01379-w

[3] B. Rhyno, N. Lundblad, D.C. Aveline, C. Lannert, S. Vishveshwara, ” Thermodynamics in expanding shell-shaped
Bose-Einstein condensates,” Physical Review A, 1046, 063310 (2021). https://doi.org/10.1103/PhysRevA.104.
063310


https://orcid.org/0000-0001-6041-7471
http://dx.doi.org/10.1007/BF01327326
https://doi.org/10.1038/s41567-021-01379-w
https://doi.org/10.1038/s41567-021-01379-w
https://doi.org/10.1103/PhysRevA.104.063310
https://doi.org/10.1103/PhysRevA.104.063310

150
EEJP.1(2024) Hector Hernandez-Hernandez

[4] R.A. Dunlap, Lasers and Their Application to the Observation of Bose-Einstein Condensates, (Morgan and Claypool
Publishers, 2019). https://doi.org/10.1088/2053-2571/ab2f2f

[5] J. Tempere, Bose-Einstein Condensation, Superfluidity and Superconductivity, (Universiteit Antwerpen, 2019).

[6] S. Stringari, ”Collective excitations of a trapped Bose-condensed gas,” Physical Review Letters, 77, 2360 (1996).
https://doi.org/10.1103/PhysRevlett.77.2360
F. Dalfovo, S. Giorgini, L. Pitaevskii, and S. Stringari,” Rev. Mod. Phys. 71, 463 (1999). https://doi.org/10.
1103/RevModPhys.71.463

[7] M. Bojowald, and A. Skirzewski, ”Effective equations of motion for quantum systems,” Rev. Mathematical Phys.
18(07), 713-745 (2006). https://doi.org/10.1142/S0129055X06002772

[8] B. Baytas, M. Bojowald, and S. Crowe, ”Effective potentials from semiclassical truncations,” Physical Review A,
99(4), 042114 (2019). https://doi.org/10.1103/PhysRevA.99.042114

[9] J.T. Cushing, A. Fine, and S. Goldstein, editors Bohmian mechanics and quantum theory: an appraisal. Vol. 184,
(Springer Science Business Media, 2013).

[10] L. Aragon-Muiioz, G. Chacén-Acosta, and H. Hernandez-Hernandez, ”Effective quantum tunneling from a semi-
classical momentous approach,” International Journal of Modern Physics B, 34(29), 2050271 (2020). https:
//doi.org/10.1142/80217979220502719

[11] L. Pitaevskii, and S. Stringari, Bose-Einstein condensation and superfluidity, Vol. 164. (Oxford University Press,
2016).

[12] J.R. Ensher, et al., ”Bose-Einstein condensation in a dilute gas: Measurement of energy and ground-state occupa-
tion,” Physical Review Letters 77, 4984 (1996). https://doi.org/10.1103/PhysRevLett.77.4984

[13] X. Antoine, W. Bao, and C. Besse, ”Computational methods for the dynamics of the nonlinear
Schrodinger /Gross—Pitaevskii equations,” Computer Physics Communications, 184(12), 2621-2633 (2013). https:
//doi.org/10.1016/j.cpc.2013.07.012

[14] V.M. Pérez-Garcia, H. Michinel, J.I. Cirac, M. Lewenstein, and P. Zoller, ”Dynamics of Bose-Einstein condensates:
Variational solutions of the Gross-Pitaevskii equations,” Physical Review A, 56(2), 1424 (1997). https://doi.org/
10.1103/PhysRevA.56.1424

[15] M. Greiner, O. Mandel, T.W. Hénsch, and I. Bloch, ” Collapse and revival of the matter wave field of a Bose-Einstein
condensate.” Nature 419, 6902, 51-54 (2002). https://doi.org/10.1038/nature00968

[16] B. Baytas, M. Bojowald, and S. Crowe, ”Faithful realizations of semiclassical truncations,” Annals of Physics, 420,
168247 (2020). https://doi.org/10.1016/j.aop.2020.168247

[17] L.C. Pereira, and V.A. do Nascimento. ”Dynamics of Bose-Einstein Condensates Subject to the Pdschl-Teller
Potential through Numerical and Variational Solutions of the Gross—Pitaevskii Equation,” Materials, 13(10), 2236
(2020). https://doi.org/10.3390/ma13102236

[18] V.M. Pérez-Garcia, H. Michinel, J.I. Cirac, M. Lewenstein, and P. Zoller, "Low energy excitations of a Bose-
Einstein condensate: A time-dependent variational analysis,” Physical review letters, 77(27), 5320 (1996). https:
//doi.org/10.1103/PhysRevlett.77.5320

E®PEKTUNBHA HAIIIBKJIACUNYHA EBOJIIOIIIA KOHIEHCATIB BO3E-EMHIIITENHA
T'exTop EpHangec-Epnanmgec
Daxyavmem inorcenepii, Asmonomnuti ynisepcumem Yiyaya, Mexcukxa

VY miit po6oTi Mm aHaMi3yeMo edEeKTUBHY €BOIOINI0 OJHOBUMIPHOTO KoHAeHCaTy Bosze-Eitnmreiina (BEC) y mamiskia-
CHYIHOMY OIMCi KBAHTOBMX CHCTEM HA OCHOBI OUiKyBAaHMX 3HAUYEHb KBAHTOBUX IMCIEDCIH i (DI3MIHUX CHOCTEpEeKyBaHUX,
BIIOMHUX $IK BaJKJIMBA KBAHTOBA MexaHiKa. MM MOKa3yeMo, M0 HAWBMUIATHINI 0COOJMBOCTI Ta (Bi3WYHI mMapamMeTpw Ch-
CTE€MH MOXKHA BU3HAYNATH 3 JIWHAMIKH BiIIOBIIHOI HAINBK/JIACHYIHOI CUCTEMH, IO CKJIAJAETHCA 3 POSMUPEHOrO (Pa30BOr0
IIPOCTOPY, BKJIIOYAIOYN OPUTiHAIbHI KJIACUYHI CIOCTEPEeKYBaHlL Ta KBAHTOBI AuCHepCii, i MA TaKOXK MMOKA3yEMO, IO TPAE-
KTODIl YaCTUHOK /I OYiKyBAaHUX 3HAYEHDb CIOCTEPEXKYBAHL € 0COO/IMBOIO XaPAKTEPUCTUKOIO B Iiil cTpyKTypi. Mu Takoxk
JEeMOHCTPYEMO, IO B3aEMOIiS 3 AeKIJIHbKOMA IMOTEHIHAJIAMI MOXKe OyTH peasi30BaHa iHTYITUBHO 3pO3yMIINM CIIOCOOGOM.
KurouoBi ciioBa: efexmusHa k6anmosa mexanika; xondencam Boze- Blnwmetna; HANIBKAGCUNHE EBOAIOULA


https://doi.org/10.1088/2053-2571/ab2f2f
https://doi.org/10.1103/PhysRevLett.77.2360
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1103/RevModPhys.71.463
https://doi.org/10.1142/S0129055X06002772
https://doi.org/10.1103/PhysRevA.99.042114
https://doi.org/10.1142/S0217979220502719
https://doi.org/10.1142/S0217979220502719
https://doi.org/10.1103/PhysRevLett.77.4984
https://doi.org/10.1016/j.cpc.2013.07.012
https://doi.org/10.1016/j.cpc.2013.07.012
https://doi.org/10.1103/PhysRevA.56.1424
https://doi.org/10.1103/PhysRevA.56.1424
https://doi.org/10.1038/nature00968
https://doi.org/10.1016/j.aop.2020.168247
https://doi.org/10.3390/ma13102236
https://doi.org/10.1103/PhysRevLett.77.5320
https://doi.org/10.1103/PhysRevLett.77.5320

151

EasT EUROPEAN JOURNAL OF PHYsIcs. 1. 151-155 (2024)
DOI:10.26565/2312-4334-2024-1-12 ISSN 2312-4334

NONCLASSICALITIES OF THE SUPERPOSITION STATE OF COHERENT
AND PHOTON-ADDED-COHERENT STATE

Sandip Kumar Giri
Department of Physics, Panskura Banamali College, Panskura-721152, India
Corresponding Author e-mail: sandipgiri26@gmail.com
Received January 15, 2023; revised January 31, 2024; accepted February 20, 2024

The nonclassical properties of the hybrid coherent state (HCS), which is the superposition state of the coherent state and photon-added
coherent (PAC) state, is investigated analytically. We evaluated the photon number statistics, the Wigner-Yanase skew information,
the Mandel Q factor and the quadrature squeezing of the HCS to quantify its nonclassicality. This superposition state exhibits more
nonclassical properties than the PAC state and even the superposition state of coherent state and single-photon-added coherent (SPAC)
state. We reported that the addition of more photons to the PAC state part of the HCS generally quantifies more nonclassicalities. The
nonclassical properties of the HCS also depend on the amplitudes of coherent state and the PAC state in the HCS.

Keywords: Coherent state; Photon-added coherent state; Hybrid coherent state; Wigner-Yanase skew information; Mandel Q factor;
Quadrature squeezing; Nonclassical effect

PACS: 42.50.-p; 42.50.Dv; 42.50.Ar

1. INTRODUCTION

The coherent state |a) of light is the classical like state which exhibits the Poissonian photon number distribution
with |a|? average number of photons. On the contrary, the Fock state |m)is completely quantum mechanical and
contains precisely m photons. The PAC state of order m and amplitude « is defined as |a@,m) = a'™|a) (a' is the
photon creation operator and the m times application of a’ on the coherent state |a) results |a, m)) which has
intermediate properties between the coherent state and Fock state. The state |a, m) reduces to coherent state or Fock
state for m = 0 or a — 0, respectively. The nonclassical properties such as squeezing and sub-Poissonian photon
statistics of PAC state were first described by Agarwal and Tara [1]. They also described theoretically how the PAC
can be prepared. The experimental realization of SPAC state via parametric down-conversion in nonlinear crystals has
been reported by Zavatta et al. [2]. Mattos and Vidiella-Barranco investigated the photon-added and photon-subtracted
state using the optical amplifier and beam splitter [3-4]. Hu et al. proposed a scheme to prepare the SPAC state via
three-wave mixing [5]. The SPAC state has large single photon probability as it has no vacuum part and also shows
nonclassicalities. The nonclassical states have tremendous applications in various fields. Several applications of the
nonclassical effects of the Bose-Einstein condensates system and Raman processes have been reported [6-8]. The
nonclassical photon-added coherent states also have applications in various fields, such as it is essential in quantum
communication [9], quantum key distribution [10], quantum state engineering [11], quantum metrology [12], quantum
dense coding protocol [13], and to improve the perfection in quantum digital signature protocols [14]. The more
nonclassicalities the quantum states have, the more effective it will be in practical applications. To improve the depth
of nonclassicalities, scientists also prepare and study the superposition state of SPAC state and coherent state and in
some cases, they achieved this [15-17]. But there is no such work on the HCS which is the superposition state of
coherent state and PAC state |@, m) with m > 1. In this paper we have investigated the nonclassical properties of such
HCS in details. Turek et al. have theoretically shown that such hybrid coherent state can be prepared through the cross-
Kerr interaction of coherent state with the single-photon state [17].

The HCS we have investigated is the superposition state of coherent state |ar) and PAC state a™™|a). Such state can
be written as

) = N[Vee®la) + VI—e at™|a)] )

where ¢ is the superposition parameter that lies between 0 < € < 1 and 8 is the phase difference between the coherent
state and PAC state. Shringarpure and Franson showed that such a state can be generated from the output of an optical
parametric amplifier by introducing the coherent state and the photon number state in the input signal mode and idler
mode of the amplifier, respectively [15]. The superposition parameter can be controlled by varying the gain of the optical
parametric amplifier. For ¢ = 0 or ¢ = 1 the HCS |¢) will reduce to a PAC state or coherent state, respectively. Here, N
is the normalization constant which is given by

N = [+ 25— Re[oam] + (1 - Ly (—lal?) m] @
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where L,,(x) is the Laguerre polynomial of order m and a = |a|e!”. We study various nonclassical properties of the
state as described in Eq. (1) by varying |a|, and the superposition parameter . We also investigate the nonclassical
properties of the HCS by varying the photon number m.

To study the photon number distribution of the HCS, we derive the probability of finding n photons in 1, i.e.
P, = |[{n[y)|?, which is given by

la]?

2
- -5 i & —Z_V nem
Pn—|Ne 2 (\/Ee =1Vl € o @ )| 3)

We plot the Eq. (3) with n for different values of m (Figure 1(a)) and & (Figure 1(b)). Here we have taken 8 =
m,w = 0,and |a| = 2. For € = 1, the state is a coherent state and it shows the Poisson distribution (Black line in Fig. 1).
For &€ = 0, the state is a photon-added coherent and for 0 < & < 1 the state is a HCS. For € = 0.5 the HCS is the 50:50
superposition of the coherent state and PAC state. The different m values in Figure 1(a) correspond to the numbers
of photons added with the coherent state to prepare the PAC state part of the HCS. For nonclassicalities, the width of the
distribution curve requires to be narrower than that of the coherent state [18]. But it is difficult to quantifying the
nonclassicality from the number distribution plot. To view this we derive the Mandel Q-factor and the Wigner-Yanase
skew information [18-20].

020l 0.20f
0.15} 0.15¢
o 010} o 0.10}
0.05} 0.05}
0.00} 0.00}
0 5 10 15 0 5 10 15
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Figure 1. Variation of B, with n: (a) for different m with € = 0.5; (b) for different € withm = 2

This paper is organized as follows. We study the Mandel Q factor in Section 2. We study the Wigner-Yanase skew
information in Section 3 and quantum squeezing in section 4. Finally, we concluded in Section 5.

2. MANDEL Q FACTOR
The sub-Poissonian statistical property of a quantum system is a nonclassical effect. Mandel Q factor (Q,,)
efficiently quantifying the sub-Poissonian distribution of photons. The @, factor is defined as

_(at?2a?®)—(ata)?

Om ="F0 @
For coherent state, Q,, = 0; for Fock state, Q,,, = —1. If Q,, > 0, the photon statistics is super-Poissonian. If 0 >

Q. = —1, the number statistics of the state is sub-Poissonian and this is the sufficient condition of a quantum state to be
nonclassical. For the state defined in Eq. (1), we evaluate

(at?a?) = |V |? [elozl4 +2/e(1 — ) Re[ePa™{m(m — 1) + 2m|a|? + |a|*}]

+(1 = ){(m + 2)! Lpsz (—lal?) = 4(m + D! Lypyq (=lal?) + 2m! Ly, (=]al*)}]. (6))

The average photon number (n) is

(afa) = IVI? [elal? + 2/e(1 — &) Re[e®a™(m + |al?)]
+(1 = {m + D! Ly (—1al?) — m! L, (—|al?)}]. ©)

Using Eq. (4)-(6) we plot Q,,, with || for different values of m (Figure 2(a)) and ¢ (Figure 2(b)). Figure 2(a) shows
that form = 1, i.e., when a single photon is added to the PAC state part, the photon distribution of HCS is sub-Poissonian
only for 0.3 > |a| > 1.4. But for m > 1, the distribution is sub-Poissonian for all values of || (Dashed blue line is for
m = 2, and red dotdashed line for m = 3). More the negativity of @Q,, indicates more nonclassicality. The higher the
nonclassicality, it will be more useful in practical applications. The Q,,, factor of the superposition state of coherent state
and SPAC state was investigated by Turek et al. [17]. It is interesting to note that the HCS may have better useful
applications as a nonclassical state when its PAC state part is prepared with the addition of more photons than the addition
of a single photon. The depth of nonclassicality decreases with higher values of || because higher the values of |«|, the
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PAC state part will go toward the coherent state. Figure 2(b) shows that for € = 1, i.e., when the HCS reduces to a
coherent state, Q,,, = 0 as usual (solid black line). For |a| > 1.7, the HCS (blue dashed line) shows more nonclassicalities
than the PAC state (dotdashed red line). This is a very important result because it reveals the necessity and importance of
introduction of HCS over the PAC state.
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Figure 2. Variation of Q,,, with |a/|: (a) for different m with &€ = 0.5 ; (b) for different £ with m = 2. Wetake 8 = mw,w =0

3. Wigner-Yanase skew information
The Wigner-Yanase skew information is also a measure of the quantumness of a state and it is a special version of
quantum Fisher information [21]. The skew information quantifies the nonclassicality present in a quantum state in terms
of the ladder operators of the states involved. It contains the noticeable properties which have been found remarkable
applications in quantum information theory [22, 23]. For single-mode radiation field the skew information (W) is
defined as

W = 0.5+ {ata) — (at¥a). @)
The average of the field annihilation operator for the HCS defined in Eq. (1) is

(a) = |V|? [ea +/e(1—¢) {e7@a*™m=D(m + |a|?) + e¥am+D}
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Figure 3. Variation of W with |a|: (a) for different m with € = 0.75 ; (b) for different € with m = 2. Wetake 8 = m,w = 0

Using Eq. (6)-(8), we plot the skew information W with |a/| for different values of m (Figure 3(a)) and € (Fig. 3(b)).
For coherent state, W = 0.5 (black line in Figure 3(b)). For nonclassical states, W > 0.5. The higher the values of W, the
higher the nonclassicality. Figure 3(a) shows that for smaller values of ||, more photon addition in the PAC state part
quantifies more nonclassicality. But for large || values, the quantumness of the HCS state is higher for smaller m values
and finally the skew information W reduces to its coherent state value for more large values of |a|. Figure 3(b) shows
that the amount of nonclassicality of the HCS (€ # 0, 1) is more than that of the photon-added coherent state (¢ = 0) (the
only exception when |a| < 0.55 for € = 0.75). So, controlling the m-value and the superposition parameter in the HCS,
we can magnify the depth of nonclassicality which is essential for practical applications of quantum state in quantum
computation and quantum information. For large || the value skew information W reduces to its coherent state value
irrespective of m and ¢.
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4. QUADRATURE SQUEEZING

Squeezed light has the fluctuation below the standard quantum limit and it is also a nonclassical quantum effect. It
has various applications in sensitive measurements and quantum communications. The most nonclassical state is the
single-photon state and the nonclassicality is also possible for photon number more than one [18]. The quadrature
squeezing of PAC state is reported by Francis and Tame [16]. More the depth of squeezing below the minimum

uncertainty has the better applications in quantum sensing. The quadrature operator X, and the squeezing parameter S,
of a single mode field is defined as

1 o . 2 1
X, = TE(ae @ +atel?), s, =(0X,) - >

)
where (AX(p)2 = ’(Xq,z) —(X,)?. Then, Eq. (9) can be written as

Sp = % [e2¢ ((a'?) — (a®)®) + e7*?((a®) — (a)?) + 2({a’a) — (aT{a))]. (10)
The value of (a?) for the HCS as defined in Eq. (1) is given by

(a?) = |V|? [saz +ye(l — &) {e W™D (m? —m + 2m|al|? + |a|*) + ePa™*D}
_ “Jalz v lal* a? (mt+2+p)!

(1ol T e ] an

For the coherent state, S, = 0. For quadrature squeezing in the X, quadrature, —0.5 < S, < 0. Using Eq. (6), (8)-

(11), we plot the squeezing parameter S, with || in the X,_, quadrature for different values of m (Figure 4(a)) and &
(Figure 4(b)). Interestingly, Figure 4(a) shows that the signature of squeezing appears at lower values of || for higher m
values, i.e., when more photons are added to The PAC state part of the HCS. The amount of squeezing is also higher for
higher m values indicating more reduction of quantum noise. Figure 4(b) shows that for || > 2.35, the HCS with 50:50

superposition of coherent state and PAC state has higher squeezing than that of the PAC state part. So, the superposition
of PAC state with coherent state will be more useful than the PAC state in practical applications.
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Figure 4. Variation of S, with |a|: (a) for different m with & = 0.5 ; (b) for different & with m = 2. Wetake 6 = m,and w = 0

5. CONCLUSIONS
We have studied the photon number statistics, the Mandel Q factor, Wigner-Yanase skew information and the
quadrature squeezing of the hybrid coherent state which is the superposition state of coherent state and photon-added-
coherent state. Mandel Q factor indicates that for |a| > 0.2, addition of more photons to the PAC state part of the HCS
improved the depth of nonclassicality. Also, for || > 1.7, the HCS manifested more nonclassicalities than what would
have been achieved with PAC state alone. The Wigner-Yanase skew information reveals that the for |a| < 0.8, the
quantumness of the HCS increases with m values and the depth of nonclassicality of the HCS is more than that of the
PAC state with the only exception for || < 0.55 withm = 2, & = 0.75. The quadrature squeezing is reported in the X,
quadrature for |a| > || . For € = 0.5, the minimum values of |a| to appear squeezing are 1.1, 1.5, and 2 form = 3,
m = 2, and m = 1, respectively. The amount of squeezing is also higher for larger m. For |a| > 2.35, the HCS with
m = 2 and ¢ = 0.5 shows more squeezing than the PAC state in the X,,—, quadrature. All the nonclassicalities disappear
for higher |a| values because for large || the PAC state reduces to a coherent state. Generally, the HCS with m > 1
quantifies more nonclassicalities than the PAC state and even the HCS with m = 1 that reveal the importance and
necessity of this work.
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HEKJACHYHICTH CYIEPIIO3UIIIMHOIO CTAHY KOTEPEHTHOI'O
I ®OTOHHO-JOJAHOT'O KOTEPEHTHOI'O CTAHY
Canpin Kymap I'ipi
Dakynomem ¢hizuxu, Koneoxc [lanckypa banamani, [lanckypa-721152, Indis

AHANITHYHO JOCHI/DKEHO HEKJIACH4Hi BIAaCTHBOCTI ribpuaHoro xorepentHoro crtany (HCS), skumit € craHoMm cynepro3uuil
KOTEPEHTHOTO CTaHy Ta (pOTOHHO-A0AaHOro KorepeHTHoro ctany (PAC). Mu ouiHHIM CTaTHCTHKY KiTbKOCTi (hOTOHIB, iH(pOpMaLIito
npo BUKpuBIeHHs Birnepa-flnace, Q-¢axrop Mannmens ta kBagpatypHe crucHeHHs HCS, mo0 KinbKicHO BH3HA4YHMTH #Oro
HekyacuuHicTbh. Leii cTan cymnepno3ulii 1eMOHCTpYe Oinblile HeKJIaCHYHHUX BlIacTUBOCTEH, Hixk ctan PAC 1 HaBiTh CTaH CyHepro3urii
KOT€PEHTHOTO CTaHy Ta 0HO()OTOHHO-I0AaHOTO KorepeHTHOro ctany (SPAC). Mu moBinoMisieMo, 0 JOAaBaHHS OiIbIIOT KUTBKOCTI
¢oroniB 1o yactuau ctany PAC HCS 3aramom kinbpKicHO BU3Ha4ae Oinpine HexnacuyHocTeidl. Hekmacuuani BnactuBocti HCS Takox
3ajexaTh BiJl aMILIITy]] KorepeHTHoro crany Ta crany PAC y HCS.

KonrodoBi caoBa: xocepenmmnuii cman; gpomonno-oooanuii Kozepenmuuil cmaw; 2iOpUOHULl KOepeHMHUL CMAH, CNOmeopeHd
inghopmayis Bienepa-Anace; Q ¢paxmop Mandens; keaopamyphe 6u0asIio8aHHs, HeKIACUYHUL eheKm
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In this research, the radial Schrodinger equation is solved analytically using the Nikiforov-Uvarov method with the Cornell potential.
The energy spectrum and the corresponding wave function are obtained in close form. The effect of Topological Defect on the
thermal properties and mass spectra of heavy mesons such as charmonium and bottomonium are studied with the obtained energy
spectrum. It is found that the presence of the Topological Defect increases the mass spectra and moves the values close to the
experimental data. Our results agreed with the experimental data and are seen to be improved when compared with other works.
Keywords: Schrodinger equation; Nikiforov-Uvarov method; Cornell Potential; Mass Spectra; Topological Defect

PACS: 12.39.Jh

I. INTRODUCTION

Recent years have seen an increase in interest among academics in the study of mass spectra, thermal properties,
energy spectra, information theory, and expectation values of a quantum system [1-5]. This is achieved by solving the
Schrodinger equation (SE) or the Klein- Gordon equation. In order to determine a system’s eigenvalues and
eigenfunctions, potential models like the Yukawa potential [6], Eckart potential [7], Hellmann potential [8], Kratzer
potential [9], and so on are utilized. Analytical techniques are used to solve these equations with the potential of choice.
The majority of analytical techniques used include the Nikiforov-Uvarov (NU) method [10-20], the Nikiforov-Uvarov
Functional Analysis (NUFA) method [21-26], the series expansion method (SEM) [27-29], Laplace transformation
method (LTM) [30], the Exact Quantization Rule [31,32], WKB approximation method [33-36] and others [37-41]. The
Schrodinger equation can be used to study the interactions of the heavy quarkonium system (HQS) [42]. In defining the
mass spectra (MS) of the heavy quarkonium system, such as bottomonium and charmonium, the solutions of the
Schrodinger equation with spherically symmetric potentials are of great importance [43,44]. Confining-type potentials,
such as the Cornell potential (CP) with two terms, a confining and a Coulomb interaction term, are typically utilized to
analyze this system [45]. Several authors have been interested in the investigation of the heavy quarkonium system with
the Cornell potential [46-49]. For instance, Kumar et al.,[50] solved the Schrodinger equation with the generalized
Cornell potential and the result was used to calculate the mass spectra of the heavy mesons (HMs). Vega and
Flores, [51] studied the mass spectra of the heavy mesons using the Cornell potential. Also, Mutuk [52] solved the
Schrodinger equation with the Cornell potential using a neural network approach. The bottomonium, charmonium, and
bottom-charmed spectra were calculated. Additionally, Hassanabadi et al. [53], used the variational method to solve the
Schrodinger equation with the Cornell potential. The eigenvalues were used to calculate the mesonic wave function.
Furthermore, the thermal properties (TPs) of the heavy mesons have been studied recently with extended Cornell
potential and exponential-type potentials [54-58]. Researchers have been interested in the study of quantum systems
interacting with a single particle in a specific potential with a topological defect (TD). It is believed that the early
universe phase transition occurs when topological defect was formed [59,60]. Researchers have recently become
interested on how topological defect affects the dynamics of both relativistic and non-relativistic systems, including
screw dislocation [61], bound electron eigenstates, and holes to a declination. Furtado et al., [62] examined the Landau
levels in the presence of a topological defect. Moreover, Hassanabadi and Hosseinpour [63] examined how topological
defect affected the hydrogen atom’s position in curve-space time. The topological defect plays a vital role in altering the
physical properties of many quantum systems, such as condensed matter physics, which it appears as monopoles and
strings [64-66]. A linear defect in an elastic medium, such as a dislocation or crack, causes a change in the topology of
the medium, which has an effect on the medium’s physical characteristics [67]. In light of these observations, no
researcher is yet to document how topological defect affects the thermal and mass spectra of the heavy mesons to the
best of our knowledge. So, the purpose of this work is to examine how topological defect affects the mass spectra and
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thermal properties of the heavy mesons by employing the Nikiforov-Uvarov approach to solve the Schrodinger equation
with the Cornell potential. For convenience, we have assumed that our heavy mesons are spinless particles [42,57,
68-70]. This is because most potentials with spin addition cannot be solved analytically, necessitating the employment
of numerical methods like the Runge-Kutte approximation [71], Numerov matrix approach [72], Fourier grid
Hamiltonian method [73], and so on [74].

II. THE MODEL
For space time with a point-like global monopole (PGM), the line element that explains it, takes the form [75]

dr’ :
ds® ==c2di* + 5+ 2d6P + r* sin® 0dg? (1)
o
Where ¢ is the parameter related to the PGM which depends on the energy scale 0 <o =1 —871'G77§ =< 1. Furthermore,
Eq. (1) portrays a space time with scalar curvature. On inserting the potential under consideration, we have
L 2(1-a7)
e @

In this way, the Schrodinger equation takes the form

2 .
L T Ly It A A L) 3)
2u ot
1
Je

V(r,t)=V(r)is GMP(1). Thereby, the Schrodinger equation for the GMP in a medium with the presence of the
PGM(1) is

where 4 is the particle’s mass, V%B = ai(\/gg"f'a j) with g =det(g;), is the Laplace-Beltrami operator and

,0( 50 1 of(. .0
, | —(r —j++—(31n9—j
A or\_ or) sin@o@ 00 oy (r,0,0,t)

- r0,0.0)+Vy(r,0,p,t) = ih———22 4
2,ur2+li w(r,0,0,0)+Vy(r,0,p.1) 5 “)
sin” 6 ¢”

Where the V(r)=wyr—w,/r is the Cornell potential employed for modeling the quarkonium interaction [70]. This

model has been greatly utilized for this purpose in recent past by numerous researchers.
Here, let us consider a particular solution to Eq. (5) given in terms of the eigenvalues of the angular momentum

operator I as

_Eyt U(r)

y(r,6,p,t)=e " TYl,m(goq)) (5)

where Y, ,(8,¢) are spherical harmonics and R(r) is the radial wave function.

On substitution of Eq. (6) into Eq. (4), the radial part of the Schrodinger equation for the Cornell potential in the
presence of TD is obtained as follows

2

R 2UE,, 2 2 1
D +[ e ;ﬁ:‘z”af;i—lgfrz)}&l(rﬁo ©)
Eq. (6) is not solvable in its present form, Eq. (6) needs to be transformed from »— X coordinate using the following
x=1/7r on application, Eq. (6) is rewritten as follows:

o’ otn’x ot o’

d’Ry(x)  2dRy(x) 1| 2UE, 2uw  2pw,x I(+1)a
dx? x dx <

:|Rnl (x) =0 (7)

The approximation scheme on the term w;/x is introduced by assuming that there is a characteristic radius 7 of the

meson. The approximation scheme is achieved by the expansion of w;/x in a power series around 7o ; i.e. around

d=~1/r ,up to the second order [56]. By setting ¥ =X — & and around ¥ =0 we have;
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R,(x) 2xdR, (x) ~ 5 _
dx2 T x2 dx x |: 3 +IBI ﬂ2x :|Rnl (x) =0 (8)
where
- 2UE,  6uw 2ﬂw2 61w, 5 _ 20w I(+1)
€= ) _a2h25 ﬂl 2h2 S 704 nd p, = 2h2§3 + P

The equation above is expressed in the form solvable by the Nikiforov-Uvarov formalism. The major equation
closely related with this method is given in the following form;

7(x) o(x)
P
()()

9 P(x)=0. ©)

P’(x)+

The following is obtained; f(x)=2x,0'(x)=x2,and o(x)=—€+ ,le—,Bzxz ,  which shows explicitly that our
Eq. (8) satisfies the requirement of the Nikiforov-Uvarov approach. It is worthy to point out also that &(x),and o(x)
are polynomials of at most second degree, and (x), is at most a polynomial of first degree. The Nikiforov-Uvarov

method is a really popular method amongst mathematical scientist and related discipline. Several authors have used this
method to solve similar problems of interest [10-20]. Even through the method is quite popular, it will be useful to
highlight some details, so as to make our paper self-contained. For this reason, this will be detailed in the appendix.
Following the steps outlined in the appendix (Eqs. (A1-A7), the energy equation and radial wave function are obtained

as follows
2
61w, 2w,
252 2622 2;2
Enl:%_ah aoh a’h (10)
5 8u 1 \/1 2uw | 1(1+1)

4 o8 o’

n+—+
2

and

ﬂl £ ﬂl 28
R, =N,x 2 stf( \/E] (11)

THERMAL PROPERTIES OF THE CORNELL POTENTIAL IN THE PRESENCE OF DEFECT
We introduce the partition function Z(f), which provides a measure of thermally accessible states, to explore the
thermal properties of the heavy mesons. It can be determined by adding together all possible energy states. Following
the Boltzmann-Gibbs distribution, Z(f) is given by the relation [76];

Mimax

Z(B)= Z PEa (12)

Where S =1/kT and with k is the Boltzmann constant. Substituting Eq. (10) in Eq. (12), summing over all accessible
energy levels, we obtain the partition function as follows:

AP AP — —
Z(f,otnpe ) =| xie 5 e xz_\/A4\/;\/ﬁ@rf[Ajc—\/zj+ A4\/;\/Eerf[Ajc—\/zJ . -
1 2

Where the following non-dimensional parameters have been defined for simplicity;

X =4A,% =43 +n

max >

3w 6wl 2wyl 1 2wu U1+ A
A =—t 4 =—IC4 2.A=—\/ 1 and A, =—2—4,.
T s s BTN Rs | e 4 ! }

On successful evaluation of the partition function, several other thermodynamic variables can be obtained by using
the following;

dInZ(p)
dp

C(p)= ﬂz"zh“—ﬂz(ﬂ) [76] and entropy; S(8)=InZ(8)—- B LP)

Internal Energy: U(f)=- [76], The Helmholtz free energy: F (ﬁ)——Ean(ﬁ) [76], heat capacity;

dInZ( ,3)
ap



159
Thermal Properties and Mass Spectra of Heavy Mesons in the Presence... EEJP. 1 (2024)

DISCUSSION AND RESULTS
The prediction the mass spectra (MS) of HQS such as charmonium and bottomonium is carried out using the
following relation [77,78].

M =2u+E, (14)

where u is quarkonium mass and E, is energy eigenvalues. Substituting Eq. (10) into Eq. (14) gives,

2
61w, 2w,
252 26252 2:2
M:2ﬂ+3ﬂ_“h a’3’h:  a’h (15)

5 8u n+;+\/1+2ﬂwl I(1+1)

4 o250 o?

The numerical values of bottomonium and charmonium masses are u, = 4.823GeV and u. = 1.209GeV, and the
corresponding reduced mass are u", = 2.4115GeV and u”. = 0.6045GeV respectively [79]. The potential parameters
were fitted with experimental data (ED) [80]. This was achieved by solving a simultaneous equation for & equals to
0.1,0.2 and 1 respectively. The mass spectra of the heavy mesons were predicted in the absent and present of the
topological defect for different quantum states. In the case of charmonium predictions for 1S and 2S states we noticed
that the prediction were accurate with the experimental data in the present and absent of the topological defect. In 3S
and 48, it was noticed that as the topological defect increased to 0.2 the value of the mass spectra was very close to the
experimental data. A similar trend was noticed in 1P,2P,1D and 2D states when the topological defect was introduced
and the predicted values were close to the experimental data and was seen to be improved from works reported
by [27, 30,42] as shown in Table 1.

Table I. Mass spectra of Charmonium in (GeV). The following fitting parameters has been employed; mc = 1.209GeV,
1 =0.6045GeV, W1 =0.20GeV, W2 = 1.244GeV, 6 =0.231GeV, and h = 1.

State o Our result AIM [42] LTM [30] SEM[27] Experiment [80]
1S 0.1 3.096 3.096 3.0963 3.095922 3.096
0.2 3.096 3.096 3.0963 3.095922 3.096
1.0 3.096 3.096 3.0963 3.095922 3.096
28 0.1 3.686 3.686 3.5681 3.685893 3.686
0.2 3.686 3.686 3.5681 3.685893 3.686
1.0 3.686 3.686 3.5681 3.685893 3.686
3S 0.1 4.040 4.275 4.0400 4.322881 4.040
0.2 4.040 4.275 4.0400 4.322881 4.040
1.0 4.040 4.275 4.0400 4.322881 4.040
4S 0.1 4.261 4.865 4.5119 4.989406 4.263
0.2 4.262 4.865 4.5119 4.989406 4.263
1.0 4.269 4.865 4.5119 4.989406 4.263
1P 0.1 3.515 3.214 3.5687 - 3.525
0.2 3.524 3.214 3.5687 - 3.525
1.0 3.255 3.214 3.5687 - 3.525
2P 0.1 3.771 3.773 3.5687 3.756506 3.773
0.2 3.772 3.773 3.5687 3.756506 3.773
1.0 3.779 3.773 3.5687 3.756506 3.773
1D 0.1 3.734 3.412 4.0407 - 3.770
0.2 3.769 3.412 4.0407 - 3.770
1.0 3.504 3412 4.0407 - 3.770
2D 0.1 4.149 - - - 4.159
0.2 4.158 - - - 4.159
1.0 4.146 - - - 4.159

In the case of bottomonium, it was observed that for 1S, and 2S quantum states the mass spectra were all equal to
the experimental data and works reported by [27, 30,42] as shown in Table 2. It was noticed that for 3S and 4S states, a
significant change in the mass spectra was observed when the topological defect was set to 0.1 and 0.2. A similar trend
was observed with other predicted states when the topological defect was increased as shown in Table 2.

Table II. Mass spectra of Bottomonium in (GeV). The following fitting parameters has been employed; m, = 4.823 GeV, u =2.4115
GeV, W1 =0.20GeV, W2 =1.569 GeV, 6 =0.378 GeV, and h = 1.

State o Our result AIM [42] LTM [30] SEM[27] E"p[egr(‘)‘]‘em
1S 0.1 9.460 9.460 9.745 9.515194 9.460
0.2 9.460 9.460 9.745 9.515194 9.460

1.0 9.460 9.460 9.745 9.515194 9.460
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State a Our result AIM [42] LTM [30] SEM[27] EXngE)Tent
28 0.1 10.023 10.023 10.023 10.01801 10.023
0.2 10.023 10.023 10.023 10.01801 10.023
1.0 10.023 10.023 10.023 10.01801 10.023
3S 0.1 10.355 10.585 10.302 10.44142 10.355
0.2 10.355 10.585 10.302 10.44142 10.355
1.0 10.355 10.585 10.302 10.44142 10.355
48 0.1 10.570 11.148 10.580 10.85777 10.580
0.2 10.577 11.148 10.580 10.85777 10.580
1.0 10.567 11.148 10.580 10.85777 10.580
1P 0.1 9.879 9.492 10.025 - 9.899
0.2 9.789 9.492 10.025 - 9.899
1.0 9.619 9.492 10.025 - 9.899
2P 0.1 10.230 10.038 10.303 10.09446 10.260
0.2 10.124 10.038 10.303 10.09446 10.260
1.0 10.114 10.038 10.303 10.09446 10.260
1D 0.1 9.994 9.551 10.303 - 10.164
02 9.999 9.551 10.303 - 10.164
1.0 9.864 9.551 10.303 - 10.164

We observed that the results obtained from the prediction of the mass spectra of charmonium and bottomonium for
different quantum states are in agreement with the experimental data and are improved with the reports of [27, 30,42].
The thermal properties for charmonium are plotted as shown in Fig. 1(a-e).
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Figure 1. (a) Partition of Charmonium versus B. (b) Free Energy of Charmonium versus B. (c) Entropy of Charmonium versus

B.(d) Mean Energy of Charmonium versus B. (e) Specific Heat Capacity of Charmonium versus p. For all five plots, o = 0.1 (red
curve), o= 0.2 (blue curve) and a = 1.0 (red curve); all other parameters are the same as in Table (I).

In Fig. 1 (a), the partition function for topological defect = 0.1 shows a linear increase when the temperature is
increased. When topological defect is equal to 0.2 and 1.0, the partition function is seen to decrease with an increase in
temperature; same behavior is reported by Abu Shady et al., [55] and Kumar et al., [58]. In Fig. 1 (b), the free energy
(FE) is plotted against temperature, we noticed that as the topological defect increases from 0.1 to 1.0, the free energy
increases, which is in agreement with the experimental data. In Fig. 1 (c), the entropy of the system for charmonium is
plotted. It is observed that when topological defect is equal to 0.1 and 0.2, the entropy is seen to decrease as the
temperature increases, but when topological defect = 1.0, we noticed a steady entropy as the temperature is increased. In
Fig.1 (d), the internal energy (IE) is plotted as a function of temperature. When topological defect = 1.0, a steady
internal energy is noticed, but for topological defect = 0.1 and 0.2 an exponential decrease is observed followed by the
internal energy of the system being steady when the temperature increases. Abu-Shady et al., [55] reported a decrease
with increasing of temperature and maximum quantum number, our trend is on the expected line.

In Fig. 2 (a-e), the thermal properties of bottomonium is plotted as shown. In Fig.2 (a), the partition function
is plotted as a function of temperature. When the topological defect = 0.1 a linear increase is noticed. For
topological defect = 0.2 and 1.0, a slight increase and no increase on the partition function is seen respectively. In
Fig. 2 (b), the free energy of the bottomonium is plotted against the temperature. We observed as the topological
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defect increases, the free energy is seen to increase. A similar observation was reported by Abu-Shady et al [55]
and Kumar et al [58]. In Fig. 2 (c), the entropy is plotted against temperature for different values of topological
defect, it was noticed that the entropy decreases with an increase in temperature. In [55,58] the authors found the
entropy decreases with increasing temperature. In Fig. 2 (d), the inter energy plots shows that when topological
defect = 1.0, no increase in the internal energy is noticed, but for topological defect = 0.1 and 0.2 a slight decrease
is seen at the beginning then followed a constant value in the internal energy. In Fig.2 (e), the specific heat
capacity is plotted against temperature. A sharp increase in specific heat capacity is noticed for topological
defect=0.1 and 0.2 and later converges at a point when the m specific heat capacity = 1. An exponential
increase is noticed when topological defect = 1.
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Figure 2. (a) Partition of Bottomonium versus B. (b) Free Energy of Bottomonium versus . (¢) Entropy of Bottomonium versus

B.(d) Mean Energy of Bottomonium versus B. (¢) Specific Heat Capacity of Bottomonium versus . For all five plots, o = 0.1 (red

curve), o.= 0.2 (blue curve) and o = 1.0 (red curve); all other parameters are the same as in Table (II)

CONCLUSION

In this study, the effect of the topological defect on the mass spectra of heavy mesons is studied with the Cornell
potential. The Schrodinger equation was solved analytically using the Nikiforov-Uvarov method. The approximate
solutions of the energy spectrum and wave function in terms of Laguerre polynomials were obtained. We apply the
present results to predict the mass spectra of heavy mesons such as charmonium and bottomonium in the present and
absent of the topological defect for different quantum states and its thermal properties. We noticed that when the
topological defect increases the mass spectra and moves closer to the experimental data. However, the results obtained
showed an improvement when compared with the work of other researchers.
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APPENDIX A: Review of Nikiforov-Uvarov (NU) method

In this section, the basic formalism of the Nikiforov-Uvarov method is reviewed. The relevant steps needed to arrive at the

eigenvalue and eigenfunction are highlighted. This method was proposed by Nikiforov and Uvarov [81] to solving Hypergeometric-
type differential equations of the form in Eq. (9). The solutions of Eq. (9) can be obtained by employing the trial wave function

P(x) = ¢(x)y,(x), (A1)
Which reduces Eq.(9) to an hypergeometric-type differential equation of the form ;
o(x)y;,"(X) +7(x)y, () + Ay, (x) =0, (A2)
The function @(x) is defined as the logarithmic derivative [82-88]
M = @ (A3)
#x) o(x)

Where 7z(x) is a polynomial of first-degree. The second term in Eq.(A1) is the hypergeometric function with its polynomial solution
given by Rodrigues relation as follows;

n

B, d"_,
Ya(x) = p(x)dx_”[o. p(x)] (a4)

The term B, is the normalization constant and p(x) is known as the weight function which in principle must satisfy the condition given:
d
—[o()px)]=7(x)p(x). (A5)
dx
Where 7(x) =7(x)+27(x).
It is imperative that we note here that the derivative of 7(x) should be 7(x)< 0. The eigenfunctions and eigenvalues can be

obtained using the expression defined by 77(x) and parameter A, defined as follows

o'(x)-(x)
2

2
] -6 (x)+ko(x),andA=k_+7r’(x) (A6)

The value of k& can be obtained by setting the discriminant in the square root in Eq. (A6) equal to zero. As such, the new eigenvalues
equation can be given as

/1+nz"(x)+n(nT_1)O'"(x)=0,(n=0,1,2,...) (A7)

APPENDIX B: Solutions in Detail
Substituting 6(x) =—&+ fx— ﬂzxz , into Eq. (A6) yields;

7(x) = +JE = Box+ (B, +k)x° (B1)
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Bl 4B,

The discriminant of the quadratic expression under the square root above is given as; k ZT’ and substituting k into
£
Bz ~
eq.(B1) yields; 7z(x)=% 'B;~ ——~ | with derivative given as; 7’(x) = —&.
yNEINE 20E

Recalling the expression for 7(x), we obtain the expression for 7(x), and its derivative respectively as follows;

B i and T'(x)=2—ﬂ. (B2)

NN N

7(x)=2x—

From Eq. (A7) and (A6), we have the following;
- ~ ~ -
Br-4pE B _np 5
— = = =—n"—n (B3)
48 2JE 2E
Eq.(B3) yields the energy equation of the Cornell potential presented in Eq. (10).
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In this paper, we investigate the effects of anisotropic parameters, topological defects, and magnetic flux on the dissociation energy
of bottomonium in an anisotropic quark-gluon plasma. We use the three-dimensional Schrodinger equation and derive the energy
eigenvalues. Our findings show that the dissociation energy decreases with increasing temperature, but there is a slight shift towards
higher values when the magnetic flux is increased. Furthermore, the inclusion of topological defects causes further shifts in the
dissociation energy at high temperatures. Additionally, we analyze the impact of anisotropic medium on dissociation energy, both
with and without considering topological defects. We observe that including topological defects results in higher values for the
dissociation energy across all temperatures, while ignoring them leads to lower values at all temperatures studied. Moreover, we
consider the baryonic chemical potential and find that its effect on dissociation is negligible compared to temperature variations.
These findings provide valuable insights into the behavior of heavy quarkonium systems under different physical conditions and
contribute to our understanding of topological effects in anisotropic media.
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1. INTRODUCTION

The study contributes to the understanding of heavy quarkonium systems, specifically bottomonium mesons, in a
hot and dense medium. It explores the effects of anisotropic parameters, topological defects, magnetic flux, and
baryonic chemical potential on dissociation energy. By investigating these factors and their impact on quarkonium
behavior, it adds valuable insights to this area of research. Dissociation of quarkonium in hot and dense media has been
a topic of significant interest in the field of in the quark-gluon plasma. Quarkonium refers to a bound state of a heavy
quark-antiquark pair, such as charm-anticharm (J/y) or bottom-antibottom (Y). In the non-relativistic quark model,
quarkonium are considered to be akin to a heavy particle moving in a Coulomb potential. When exposed to extremely
high temperatures and densities, as found in heavy-ion collision experiments, quarkonium states may undergo
dissociation due to the effects of the surrounding anisotropic plasma [1-4]. Further studies are extended to relativistic
quark models to study the properties of hadron in high temperature [5-10]

The presence of an anisotropic plasma plays a crucial role in the dissociation process. Anisotropy refers to a
situation in which the thermal motion of particles is not uniformly distributed in all directions. In the context of
quarkonium dissociation, the anisotropic plasma can affect the screening properties of the medium. The ability of the
plasma to screen the quark-antiquark potential depends on the direction of the motion of the heavy quark.
Consequently, the dissociation rates of quarkonium states can exhibit a dependence on the direction of their relative
motion through the anisotropic plasma [11].

Studying the dissociation of quarkonium in an anisotropic plasma requires theoretical frameworks that incorporate
both non-relativistic quark models and the effects of the plasma. This is known as the non-relativistic QCD (NRQCD)
framework. NRQCD provides a valuable tool to analyze the behavior of quarkonium in different plasma environments.
It allows for the calculation of dissociation rates and other properties relevant to the study of quarkonium suppression in
heavy-ion collisions. Understanding the dissociation of quarkonium in hot and dense media is crucial for unraveling the
nature of the quark-gluon plasma and the properties of QCD matter under extreme conditions [12-13].

The study of point-like global monopoles has attracted significant interest in various branches of theoretical
physics. These defects have implications in cosmology and astrophysics, as their existence could have left observable
imprints on the early universe. Furthermore, their properties and interactions are of utmost importance in understanding
the dynamics of field theories and the fundamental nature of particle physics. Experimental searches and theoretical
investigations continue to shed light on the intriguing properties and implications of point-like global monopoles. Point-
like global monopoles are hypothetical topological defects that may have formed during phase transitions in the early
universe such as [14-15].

One area where point-like global monopoles have important implications is in the study of cosmic strings. Cosmic
strings are linear topological defects that can form during phase transitions, and their interaction with point-like global
monopoles can lead to the creation of cosmic junctions. These junctions serve as sources of gravitational radiation and
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can potentially leave imprints in the cosmic microwave background, providing valuable insights into the early
universe's dynamics and supporting inflationary cosmology models [17].

Furthermore, the presence of point-like global monopoles can lead to the formation of cosmic texture. Cosmic
textures are two-dimensional tangled structures that arise due to the evolution of coupled fields with non-trivial
topology. The interaction between point-like global monopoles and cosmic textures can contribute to the generation of
anisotropies in the cosmic microwave background, which can be probed through experiments such as the Planck
satellite mission [18].

Beyond their impact on cosmic string evolution and cosmic texture formation, point-like global monopoles can
also have implications on the large-scale structure of the universe. The presence of these topological defects can affect
the distribution and clustering of matter over cosmological distances, potentially leaving detectable signatures in galaxy
surveys and cosmological observables [19]. Their influence on structure formation is highly dependent on their initial
conditions and properties, making their study crucial for understanding the dynamics of the universe at different scales.

The work explores the characteristics of heavy mesons in an anisotropic-plasma environment, paying attention to
the impact of topological effects in space. Novelty: The incorporation of anisotropic parameters and topological defects
in studying quarkonium dissociation energy sets this paper apart from previous works that primarily focus on classical
cases or neglect these factors altogether. This novel approach provides a more comprehensive understanding of how
different physical conditions affect heavy quarkonia.

The paper is structured as follows: Section 2 briefly describes the new method, Section 3 delves into the
computation of energy eigenvalues and wave functions, Section 4 discusses the results obtained, and finally, Section 5
provides a summary and conclusion of the findings.

2. THE SCHRODINGER EQUATION IN POINT-LIKE GLOBAL MONOPOLEWITH POTENTIAL
INTERACTION
In this section, we find the solution for the eigenvalues of non-relativistic particles in the presence of a quantum
flux field, considering a point-like global monopole with potential.
For a detailed explanation of the two-particle system interacting through an electromagnetic spherically symmetric
potential V' (7) in the framework of radial-Schrodinger equation, see Ref. [16].

a1 L'(L'+1
{W+?(2y(E—V(r))—%ﬂ‘l’(rbos (0

where L'=L-® and u are the angular momentum quantum number and the reduced mass for the quarkonium
particle (for charmonium g =m,/2 and for bottomonium z=m,/2), respectively, and 0<a <1 characterize the

topological defect parameter of point-like global monopole and @ is the amount of magnetic flux which is a positive
integer.

Real Part of The Potential in An Anisotropic Medium
Here, we aim to find the potential due to the presence of a dissipative anisotropic hot QCD medium. The in-
medium modification can be obtained in the Fourier space by dividing the heavy-quark potential by the medium

dielectric permittivity, £(K) as follows

~ V (k)
Vi(k)= , 2
=25) @
by taking the inverse Fourier transform, the modified potential is obtained as follows
k| 4, ~
V(r)=[—=(" =1)7 (k) (€)
(27)

where V (k) is the Fourier transform of Cornell potential V' (r)=—%+0r that gives as follows

V(k)=—\/%(l%+i—?j, )

S(K ) may be calculated which found from the self-energy using finite temperature QCD. By applying hard thermal

loop resummation technique as in Refs. [20, 21], the static gluon propagator which represents the inelastic scattering of
an off-shell gluon to a thermal gluon is defined as follows

A" (w k) =k g" — kK" + 1" (w, k), 5)
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the dielectric tensor can then be obtained in the static limit in Fourier space, from the temporal component of the
propagator as

e (K)=- hn% EAY (w,k), (6)
to calculate the real part of the inter-quark potential in the static limit, one can obtain first the temporal component of

real part of the retarded propagator in Fourier space at finite temperature and chemical potential as given in Ref. [20] as
follows

1 1 m (T, 1) (3cos20—1
Re[Aj’;’](w=0,k)=—k2 ; —¢| - (2 - ) 7
+mp(Top) "\ 3(K +mp(Top) ) 6(k% + i (T, )
the medium dielectric permittivity €(K) is then given
. K 1 mj, (3cos26—1
e‘(K):k2 e < |- D(z 22). ®)
+m;, 3(k +mD) 6(k +mD)

Substituting Eqs. (4) and (8) into Eqs. (2,3) and then taking its inverse Fourier transform, we can write the real

part of the potential for rm,, << 1 as follows

(Y el amy) ) (1 omy) (1 my) (1
V(r,f,T,ﬂb)—W(HJ F[H 5 ]+§[3+ " [3+ 6 (3+cos(2t9)jjj, ©)

where ¢ is the anisotropic parameter. T and g, are the temperature and the baryonic chemical potential, respectively.
In Eq. (9), the potential depends on € which is the angle between the particle momentum and the direction of
anisotropy. We note that the potential in Eq. (9) reduces to the Cornell potential for £=0 and m, =0 {For details, see

Ref. [20]}. In the present work, the Debye mass D(7T,4,) is given as in Refs. [22, 23] by

N, N ?
D(Talub):gT\/%J’__t—'—_f[&j 5 (10)

6 27°\ T

where, g is the coupling constant and g, is the quark chemical potential (,uq =%] , N, is number of flavors, and N,

is number of colors. The NU method [24] is briefly given here to solve the form of the following equation

7() gy O0) _
) W(s)+ pr Y(s)=0, (11)

where o(s) and 6(s) are polynomials of maximum second degree and 7(s) is a polynomial of maximum first degree

Y(s)+

with an appropriate s =s(7) coordinate transformation. We try to find a particular solution by separation of variables, if
one deals with the transformation

W(s)=D(s) x(s). (12)
Eq. (11) is written as
o ()" (s)+7(s) x(s) + Ax(s) =0, 13)
where
_ D(s)
o(s)=7(s) o(s)’ (14)
and
(s)=7(s)+27(s); 7'(s)<0, (15)
n(n-1)

A=2 =—nT'(s)—TO'”(S),n=0,1,2,..., (16)
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x(s)=x,(s) is a polynomial of degree n which satisfies the hypergeometric equation, taking the form

B d"
Zn(s) _p_n dS”

(0"(5)p(s)), a7

where B, is a normalization constant and p(s) is a weight function which satisfies the following equation

L) =) ats) = o(p(6), (18)
s o(s)
7(s) = ",(s)z" 7e) \/( 6’(”?)2" Ty _ 551+ Ko (s). (19)
and
A=K +7(s), (20)

7(s) is a polynomial of the first degree. The values of K in the square root of Eq. (19) is possible to calculate if the

function under the square is a square of a function. This is possible if its discriminant is zero. For r parallel to the
direction of n of anisotropy at 8 =0, the potential is given by

V(r):alr—ﬁ, 2}
r
where
P T
a1=0+§a§—5am[, —Eame, (22)
b1=a+%§. (23)

By applying the above method to the potential given in Eq. (21), we obtain the energy eigenvalues as follows

EH :%— 2#1(%+b])2 (23)
"8 [@nen IS DT

Similarly, for » perpendicular to the direction of n anisotropy at & =7/2 , the potential is given by

V(r)=a2r—b72, 24)
where
1 1, 1 )
a2=O'+50'§—5amD +£a§mD, (25)
b,=a+ %g. (26)
and the energy eigenvalues are given as follows
3a, 2

O [@n+D+ I+ (L + )T
where O is a parameter will be determined as in Ref. [2].

DISCUSSION OF RESULTS
In this section, we calculate spectra of the heavy quarkonium system such as bottomonium mesons in the hot and
dense medium. The mass of quarkonium is calculated in the 3-dimensional space. We apply the following relation as in

Ref. [2].
M =2m+E,, (28)
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where m is quarkonium bare mass for the charmonium or bottomonium mesons. By using Eq. (23), we write Eq. (28)
as follows:
24,4 + b, )
M — 2m + /’ll( 5 1) .
[(Qn+1)+ 1+ %8 4 1L+ DT

29

Eq. (29) represents the quarkonium masses in hot and dense medium with topological effects and magnetic flux in an
anisotropic plasma. By taking =1 and ® =0, we obtain
2uCa+b)
M=2m+ MG +h) )
[(Qn+1)+ 1+ 42 L(L+ D)

(30)

53

Eq. (30) coincides with Ref. [2]. We discuss the effect of the anisotropic parameter on the quarkonium dissociation
energy, specifically focusing on the bottomonium meson. The parameters used in this calculation are based on Ref. [2]
which sets the mass of the bottom quark to be 4.686 GeV. Furthermore, we are specifically considering the 1S state of
the bottomonium meson. The Eq. (23) is employed to calculate the dissociation energy, in which r parallel to the
direction of n of anisotropy at d=0. In Fig. (1), the dissociation energy is plotted against the temperature, ranging
from 0.17 to 0.35 GeV, which corresponds to the quark-gluon plasma phase. In this figure, the effect of topological
defect is ignored, and we observe that the dissociation energy decreases as the temperature increases. When we increase
the magnetic flux, the curves representing the dissociation energy slightly shift towards higher values at the starting
temperature. However, the effect of the temperature becomes more apparent at higher temperatures, indicating that the
magnetic flux has a stronger impact in very hot mediums. It is important to note that the medium in this context is
anisotropic, with a parameter value of { =0.3. Moving on to Fig. (2), we consider the incorporation of topological
defect in the anisotropic medium.
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Figure 1. The dissociation energy is plotted with temperature  Figure 2.The dissociation energy is plotted with temperature
for different values of magnetic flux at {=0.3, «= 1.0 and up=0  for different values of magnetic flux at {=0.3, «= 0.5and up="0

Here, we observe that the dissociation energy is shifted to larger values for all different magnetic flux values. This
effect becomes more prominent at very high temperatures, indicating that topological defect plays a crucial role in hot
anisotropic mediums. Now, if we turn our attention to Figures (3,4), we concentrate on the effect of anisotropic medium on
dissociation energy. In Fig. (3), with the inclusion of topological defect, the dissociation energy is shifted to higher values
in the anisotropic medium at every temperature. On the other hand, in Fig. (4), when the topological defect is ignored, we
observe that the dissociation energy decreases to lower values at all temperatures. It is worth noting that recent works have
not considered topological defect, as most of them focus on the study of quarkonium in the classical case, which refers to
zero temperature and chemical baryonic potential. In Ref. [16], a similar effect of the magnetic flux on the eigenvalue of
energy is observed, where the energy is shifted to higher values with increasing magnetic flux. The authors of the work
also investigated the potential interaction under different values of topological parameter and magnetic flux.

Also, in the present work, we considered the effect of a dense medium by including the baryonic chemical
potential in our study. In Figure 5 and Figure 6, we examined two cases: one where we ignored the topological defect
(as shown in Figure 5), and another where we considered it (as shown in Figure 6). We observed that without the
topological defect, the dissociation occurs more rapidly with increasing temperature and gradually very slightly
decreases with the baryonic chemical potential. However, when we include the topological defect, we see the same
behavior but with a shift towards higher energy values. Furthermore, in contour 7, we note that higher values of
dissociation are observed at lower temperature and lower chemical potential, and these values gradually decrease as the
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temperature increases. We also observe that the effect of the baryonic chemical potential is negligible at every
temperature point. A similar behavior is seen in contour 8 when the effect of the topological defect is considered.
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Figure 3. The dissociation energy is plotted with temperature for Figure 4. The dissociation energy is plotted with
different values of ansitropic parameter at o = 0.5 and ® =0.1 and  temperature for different values of ansitropic parameter at
up=0 a=1.0and ®=0.1 andup=0
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CONCLUSION
This study explores the effects of anisotropic parameters, topological defects, magnetic flux, and baryonic
chemical potential on the dissociation energy of bottomonium mesons in a hot and dense medium. The results
demonstrate that temperature plays a significant role in decreasing dissociation energy while magnetic flux slightly
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shifts it towards higher values. Incorporating topological defects further increases dissociation energy at high
temperatures. Additionally, considering anisotropic medium leads to higher dissociation energies compared to isotropic
conditions. The inclusion of baryonic chemical potential has negligible impact on dissociation compared to temperature
variations. These findings provide valuable insights into the behavior of heavy quarkonium systems under different
physical conditions and contribute to our understanding of topological effects in anisotropic mediums. We hope to
extend this work as future works relativistic quark model as in Ref. [25] with fractional derivative as in Ref. [26] or
extend to molecular structure as in Ref. [27].
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BIIJIUB TOMOJIOTTYHHAX JE®EKTIB TA MATHITHOI'O IIOTOKY HA EHEPITIO TACOIIIAIII KBAPKOHIIO B
AHI3OTPOITHIH TIJIA3MI
Moxamen A0y-Iani®, Etixo IL. Iubsaur®
“Kagedpa mamemamurxu ma iHpopmamuxu, paxyivmem npupoOHusux Hayk, Yuieepcumem Menyis, Ll6ien Env-Kom, Ecunem
bKageopa ¢izuxu, Hayionanvuuii sioxpumuii ynieepcumem Hizepii, [icabi, Abyoaca, Hizepis

VYV wiit cTaTTi MM JOCHIZKYEMO BIUIMB aHi30TPOIHHUX MapaMeTpiB, TOMOJOTiYHUX Ae(eKTiB i MArHiTHOro MOTOKY Ha EHEpriio
aqucorianii O0TTOMOHIIO B aHI30TPOINHIN KBapK-TII0OHHIH mia3Mi. Mu BHKOpHCTOBYeMo TpuBuMipHe piBHsHHs Llpeninrepa ta
OTPUMYEMO BIIACHI 3HaueHHsA eHeprii. Hamr pe3ynmpTaTé MOKa3ylOTh, WO CHEPris AMcoLiamii 3MEHIIYETHCS 31 30UTBIICHHAM
TEMIIEpPaTypH, ajleé € HEBENUKHHA 3CyB y OiK BHIIMX 3HA4€Hb, KOMH 30UTBIIYE€ThCS MArHiTHHH mOTiK. Kpim Toro, BKIIOYEHHS
TONOJIOTIYHMX Je(eKTiB BUKIMKAE MOAAIBINI 3pYIICHHS B eHeprii aucomiamii mpum BHCOKHX Temmeparypax. Kpim Toro, mu
aHaJi3yeMO BIUIMB aHI30TPOITHOTO CEpeNIOBHUINA HA CHEprilo JUCOLialil, sK 3 ypaXyBaHHSIM, Tak i 0e3 ypaxyBaHHS TOIOJOTIYHHX
nedekTiB. Mu crioctepiraeMo, 10 BKIFOYCHHS TOMOJOTIYHUX Ie(EKTiB MPU3BOAUTE 0 OLIBIN BUCOKHX 3HAYCHBb CHEPTii TUCOIaIii
IPH BCiX TEMIIepaTypax, TOJi SIK iX irHOpyBaHHs HPHU3BOAWTH O HIDKYMX 3HAUCHBb MPH BCIX JOCIIDKYBaHHX Temieparypax. Kpim
TOT0, MU PO3IJIAAaEMO OapiOHHUI XIMIYHUI MOTEHIIaN i 3HAXOAMMO, L0 HOro BIUIMB HA JUCOLIALI0 € HE3HAYHUM Y MOPIBHSIHHI 31
3MiHamu Temreparypu. L{i BUCHOBKY AaioTh LiHHY iH(GOPMALI0 NPO MOBEAIHKY BaXKKUX KBapKOHIEBHX CHUCTEM 3a Pi3HHX (Pi3HYHHX
YMOB 1 COPUSIOTH HAIIOMY PO3YMiHHIO TOIMIOJIOTTYHHUX €()EKTIB B aHI30TPOIHUX CEPEIOBUIIAX.

KurouoBi cinoBa: mononociuni ecpexmu, pienanna Llpedincepa;, memoo Hixighoposa-Yeaposa,; xinyesa memnepamypa, 6apionHuil
XIMIYHUL NOMeHYIan
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In this paper, the influence of gravitational modulation on weakly nonlinear biothermal convection in a porous rotating layer is
investigated. We consider a layer of porous medium saturated with Newtonian fluid, containing gyrotactic microorganisms, and
subject to gravitational modulation, rotation, and internal heating. To analyze linear stability, it is sufficient to represent disturbances
in the form of normal modes, while nonlinear analysis includes a truncated Fourier series containing a harmonic of the nonlinear
interaction. A six-dimensional nonlinear Lorentz-type model is constructed, exhibiting both reflection symmetry and dissipation. We
determined heat and mass transfer using a weakly nonlinear theory based on the representation of a truncated Fourier series.
Additionally, the behavior of nonstationary Nusselt and Sherwood numbers was investigated by numerically solving finite amplitude
equations. Applying the expansion of regular perturbations in a small parameter to a six-dimensional model of Lorentz equations
with periodic coefficients, we obtained the Ginzburg-Landau (GL) equation. This equation describes the evolution of the finite
amplitude of the onset of convection. The amplitude of convection in the unmodulated case is determined analytically and serves as a
standard for comparison. The study examines the effect of various parameters on the system, including the Vadasz number, modified
Rayleigh-Darcy number, Taylor number, cell eccentricity, and modulation parameters such as amplitude and frequency. By varying
these parameters, in different cases, we analyzed heat and mass transfer, quantitatively expressed by the Nusselt and Sherwood
numbers. It has been established that the modulation amplitude has a significant effect on the enhancement of heat and mass transfer,
while the modulation frequency has a decreasing effect.

Keywords: Darcy-Brinkman model; Bio-thermal convection; Gravity modulation;, Porous rotating medium; Gyrotactic
microorganism

PACS: 44.30.+v, 87.10.+¢

1. INTRODUCTION

The study of fluid flow through porous media is of paramount importance in diverse practical applications such as
soil mechanics, groundwater hydrology, oil production, and industrial filtration. In recent years, a novel research area
called bioconvection in porous media has gained prominence. This field centers on investigating bacterial movement and
biofilm growth, particularly in the context of microbiological oil production technologies. As a result, there is a compelling
need for theoretical investigations to delve into the interactions between bioconvection and natural convection.

Ingham and Pop's monograph [1] and Nield and Bejan's work [2] serve as notable references extensively delving
into the realm of thermal instability in fluid layers within porous media. Furthermore, Vadasz's comprehensive review
[3] specifically focuses on fluid flow and heat transfer in rotating porous media. These monographs meticulously
analyze and discuss various facets and challenges associated with thermal instability in these systems. Over time, the
exploration of natural convection in fluid-saturated porous media has expanded to encompass additional factors,
including rotation [3], magnetic fields [4]-[5], anisotropy [6], heterogeneity [7], gravity modulation [8], and other
related effects. These investigations aim to unravel the influence and implications of these factors on the convective
flow dynamics within porous media.

The classical Darcy's law, which describes flow in porous media, underwent modification by Brinkman
to incorporate a Laplacian term in Stokes' equation. This modification accommodates the Darcy resistance within
porous media and is commonly known as the Darcy-Brinkman equation. Widely employed for studying flow in porous
media with high porosity [9], the Darcy-Brinkman model encounters several challenges and problems that demand
careful consideration when applied to the investigation of bioconvection in highly porous media.

Several practical scenarios involve porous materials acting as their heat source. This presents an alternative
approach to induce convective flow through localized heat generation within the porous material. This condition may
arise from phenomena like radioactive decay or, in the present context, a relatively modest exothermic reaction
occurring within the porous material. The internal heating of the Earth establishes a temperature gradient between the
inner and outer layers of the Earth's crust, facilitating convective flow and transferring thermal energy to the planet's
surface. Consequently, internal heat generation plays a crucial role in various applications, including geophysics,
reactor safety assessments, the production of metal waste forms for used nuclear fuel, fire and combustion research, and
the storage of radioactive materials. Despite its importance, the impact of internal heating on convective flow has only
been explored in a limited number of investigations.
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Yadav et al. [10] explored the impact of an internal heat source on the initiation of Darcy-Brinkman convection
in a porous layer saturated with nanofluid under various boundary conditions, including free-free, rigid-rigid, lower-
rigid, and upper-free. Analyzing the onset of convection induced by internal heating, such as that generated
by microwave heating or chemical reactions, in a horizontal layer of nanofluid, Nield and Kuznetsov [11] conducted
an analytical investigation, considering Brownian motion and thermophoresis. Khalid et al. [12] performed a linear
stability analysis in the presence of feedback control to study the effect of an internal heat source on the initiation of
Rayleigh-Benard convection in a rotating nanofluid layer with double-diffusive convection. Jain and Solomatov [13]
delved into the onset of convection in internally heated fluids with strongly temperature-dependent viscosity.
Devy et al. [14] investigated the Darcy-Brinkman convective instability of a non-Newtonian nanofluid layer saturated
in a porous medium, considering the presence of an internal heat source.

The term "bioconvection" denotes the phenomenon wherein convective patterns emerge due to the presence
of self-propelled microorganisms that are denser than the surrounding fluid medium [15]-[17]. These microorganisms
exhibit responsive movement to various stimuli, such as gravity, light, chemicals, or the presence of food, a behavior
known as taxis. Taxis can be categorized based on the type of stimulus and the direction of movement of the organisms.
Positive taxis, or attraction, occur when organisms move toward the stimulus source, while negative taxis, or repulsion,
describe movement away from the source. Gravitaxis refers to the directional movement of organisms in response
to gravitational forces, while magnetotaxis involves their ability to detect and respond to magnetic fields. Chemotaxis is
the response to a gradient in chemical concentration, and phototaxis is movement in response to light. In this context,
our emphasis is on gravitactic microorganisms.

Pioneering work by Childress et al. [16] established a comprehensive theory and mathematical model for the
bioconvection of gravitactic microorganisms. Hill et al. [17] further developed a theoretical model specifically
for gravitactic microorganisms, focusing on their bioconvective behavior. Pedley et al. [18] contributed to the field
by developing a linear stability theory to analyze the stability of bioconvection involving gyrotactic microorganisms in
a shallow layer of fluid. These studies have identified the conditions required for the initiation of bioconvective flow,
providing insights into the behavior of gravitactic microorganisms in convective systems.

Numerous publications have delved into the impact of gyrotactic microorganisms on fluid flows in confined
porous media, with notable contributions from Nield, Kuznetsov, and Avramenko [19]-[23] that significantly advance
the understanding of biological processes in porous environments. In their work [19], it was established that if the
permeability remains below a critical value, the system remains stable, and bioconvection does not manifest.
Conversely, surpassing the critical permeability threshold leads to the development of bioconvection. Their subsequent
study explored the occurrence of bioconvection in a horizontal layer filled with a saturated porous medium [20],
determining critical Rayleigh numbers for various values of the Peclet number, gyrotaxis number, and cell eccentricity.
The impact of vertical flow on the onset of bioconvection in a suspension of gyrotactic microorganisms within a porous
medium was investigated in [21]. A linear analysis was employed to derive an equation for the critical Rayleigh
number, revealing that vertical throughflow stabilizes the system. [22] presented a continuum model
of thermobioconvection, focusing on oxytactic bacteria in a porous medium. This study examined the effect of heating
microorganisms from below on the stability of a horizontally layered fluid saturated with a porous medium. Utilizing
the Galerkin method to solve the linear stability problem, the study established a relationship between the critical value
of the Rayleigh number and the thermal Rayleigh number. Avramenko [23] developed a nonlinear theory
of bioconvection for gyrotactic microorganisms in a layer of ordinary liquid based on the Lorenz approach [24]. This
work [23] delineated the boundaries of various hydrodynamic regimes observed in two-dimensional bioconvection.

Hwang and Pedley [25] explored the impact of uniform shear on the instability of bioconvection in a shallow
suspension containing swimming gyrotactic cells. They introduced shear by implementing a flat Couette flow,
counteracting the influence of gravity on the cells. The study identified three distinct physical processes contributing to
bioconvection instability: gravitational overturning, cell gyrotaxis, and negative cross-diffusion flow. High shear
velocities acted as a stabilizing factor, akin to Rayleigh-Benard convection. However, at low shear rates, it destabilized
perturbations through the overstability mechanism discussed by Hill, Pedley, and Kessler [16]. Dmitrenko [26] provided
a comprehensive review of bioconvection in nanofluids and porous media, presenting a mathematical model based on
Darcy's law for porous media. Sharma and Kumar [27] investigated the influence of high-frequency vertical vibration
on the onset of bioconvection in a dilute solution of gyrotactic microorganisms using analytical and numerical methods.
Their findings revealed that high-frequency, low-amplitude vertical vibration and the bioconvection Peclet number had
a stabilizing effect on the system. Kushwaha et al. [28] conducted a more detailed analysis of the stability of vibrational
systems consisting of shallow layers filled with randomly swimming gyrotactic microorganisms. In a recent study, Garg
et al. [29] examined the stability of thermo-bioconvection flow in an anisotropic porous medium, considering a Jeffery
fluid containing gravitactic microorganisms.

The Darcy-Brinkman model, widely employed in porous media research, found an extension in its application by
Zhao et al. [30] to investigate biothermal convection within a highly porous medium. Their stability analysis delved into
the dynamics of biothermal convection influenced by bottom heating. In another exploration utilizing the Darcy-
Brinkman model, Kopp et al. [31] delved into biothermal instability within a porous medium saturated with a water-
based nanofluid containing gyrotactic microorganisms in a vertical magnetic field. Their findings revealed that an
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increase in the concentration of gyrotactic microorganisms amplifies the onset of magnetic convection. Additionally,
the study highlighted the more significant role played by spherical gyrotactic microorganisms in developing biothermal
instability. Moreover, Kopp and Yanovsky [32] investigated the impact of rotation, specifically the Coriolis force, on
biothermal convection in a layer of porous medium saturated with a suspension containing gyrotactic microorganisms.

Controlling heat and mass transfer is paramount in engineering and technical applications, and one effective
strategy involves manipulating convective processes through external perturbations or modulations. Understanding how
these modulations influence the flow and transport phenomena within a system is crucial for optimizing performance.
Common modulation techniques include temperature modulation, gravity modulation, rotation modulation, and
magnetic field modulation. This study specifically focuses on a convection control method based on gravity modulation.

The use of gravity modulation to enhance the stability of a heated fluid layer from below was initially introduced by
Gresho and Sani in their study [33]. Since then, numerous researchers have delved into the effects of gravity modulation on
the onset of convection. Malashetty and Begum extended these investigations in their study [34], considering additional
physical conditions and non-Newtonian fluids. They explored the impact of small-amplitude gravity modulation on the
initiation of convection in both fluid layers and fluid-saturated porous layers. Kiran [35] conducted studies on the nonlinear
thermal instability in a porous medium saturated with viscoelastic nanofluid under gravitational modulation. Over the
years, Kiran et al. conducted several studies [36]-[38] to investigate the influence of gravity modulation on Rayleigh-
Benard convection (RBC) and Darcy convection. Their focus was on the effect of g-jitter on RBC in nanofluids [39], using
the Ginzburg-Landau (GL) model for nonlinear analysis. They calculated the thermal and concentration Nusselt numbers,
considering various physical parameters. Additionally, Manjula et al. [40] studied the combined effects of gravity
modulation and rotation on thermal instability in a horizontal layer of a nanofluid.

In the above literature review, there is a certain gap in studies of the effect of gravitational field modulation on
biothermal convection in rotating porous media saturated with an aqueous solution containing gyrotactic microorganisms.
Kopp and Yanovsky [41] were the first to explore the use of gravity modulation in controlling the development of bio-thermal
convection in a layer of porous media that is saturated with Newtonian fluid and contains gyrotactic microorganisms. Their
exploration focused on weakly nonlinear convective instability within a porous layer saturated with a Newtonian fluid
containing gyrotactic microorganisms. The influence of gravitational modulation resulted in the gyrotaxis parameter
becoming periodic over time. The study derived the non-autonomous Ginzburg-Landau equation to characterize heat transfer,
quantified by the Nusselt number. Notably, the research extensively delved into the impact of various parameters on heat
transfer, including Wadas numbers, the modified bioconvective Rayleigh-Darcy number, cell eccentricity, frequency
modulation, and modulation amplitude. Their findings highlighted the remarkable efficiency enhancement of the heat transfer
process due to the spherical shape of microorganisms, emphasizing the significant role of microorganism morphology in
influencing convective heat transfer. In a related study, Kiran and Manjula [42] investigated the effects of thermal modulation
and internal heating on Darcy-Brinkman bio-convection in a Newtonian porous medium containing gyrotactic
microorganisms. In contrast to paper [41], the control of bio-thermal convection was specifically achieved through the
modulation of the temperature gradient [42] without concurrent modulation of the gyrotaxis.

The motivation for this investigation stems from the significant roles of gravitaxis and gyrotaxis in bioconvection
phenomena. Therefore, there is a need to deepen our understanding of the interplay between gravitaxis, gyrotaxis, and
rotating thermal convection under gravity modulation to gain insights into the system's dynamics. The main objective
of this article is to analyze the behavior of weakly nonlinear biothermal convection in a rotating porous medium with
internal heating filled with a Newtonian fluid containing gyrotactic microorganisms.

2. DESCRIPTION OF THE PROBLEM AND MATHEMATICAL MODEL
We have an unbounded horizontal layer of a porous medium filled with a Newtonian fluid that contains gyrotactic
microorganisms. This layer has a thickness of % and rotates steadily around a vertical axis with a constant angular

velocity of €, . The bottom boundary is where heating takes place, as shown in Fig. 1. The temperature at the lower
boundary is 7, and at the upper boundary, it's 7,. To describe the problem's geometric configuration, we use a
Cartesian coordinate system, denoted by (x,y,z), with the z -axis being vertically upward. Please refer to Fig. 1.
To account for the influence of a time-periodic gravitational field, we introduce a vertically downward force given by
ég,(1+£°6 cos(@,t)), where 6 and @, denote the amplitude and frequency of the gravity modulation, respectively.

Our problem pertains to a physical model that is based on certain assumptions, which are as follows:

» We consider a Newtonian fluid containing a large number of gyrotactic microorganisms to be incompressible and a
porous matrix incapable of absorbing microorganisms.

* We use the Darcy-Brinkman model for highly porous media.

* The heating from below and internal heating do not affect the cells' gyrotactic activity or viability.

* The pores of the material should be large enough to allow for the movement of biological organisms.

* The fluid phase and microorganisms are in a state of thermal equilibrium, so the heat flow may be described using a
one-equation model.

» We assume that all thermophysical characteristics are constant, except for the density in the buoyancy force
(Boussinesq approximation).
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porous medium

X-axis

= =0
T J T0+ AT ?
Figure 1. Scheme of swimming of gyrotaxic microorganisms (cells of green algae Chlamydomonas Reinhardtii) in a rotating layer of
a porous medium. The center of buoyancy of the microorganism C is displaced by a distance d from the center of mass M

Under these assumptions, the mathematical model is based on the continuity, momentum, energy, and
conservation equations for cells of the following form [2]-[3],[16],[19]:

Vi, =0, (1)
o7 W 2p e A )
%a—f = VP4 IV~ T g’ L[V, x Q] eg(t)p,(1- BT ~T,)) —eg()(p)Vn, @
T B, ,
(pc)mE+(pc)fVD~VT=ka T+Q(T—7;)), 3)
%=—div(nI7D+anl—DmVn), O]

g(1)=g,(1+&* 5 cos(w,1)) ,

where 170 = (u,v,w) is the Darcy velocity, which is related to the fluid velocity V as I7D =gV , € is the porosity of the
porous medium, K is the permeability of the porous medium, p, is the fluid's density at the reference temperature, P
is the pressure, f is the thermal expansion coefficient, g(¢) is the time-periodic gravitational acceleration, é = (0,0,1)

is a unit vector in the direction of the axis z, ,tNJ is the Brinkman effective viscosity, 4 is the viscosity of fluid, (oc),

is the heat capacity of fluid, (pc),, is the effective heat capacity, £

m

is the effective thermal conductivity. O is the
internal heat source, n is the concentration of microorganisms, dp is the density difference between microorganisms
and a base fluid: p, —p,, V is the average volume of a microorganism, D,, is the diffusivity of microorganisms. We

assumed that random motions of microorganisms are simulated by a diffusion process. Wj(O) is the average

microorganism swimming velocity (W, is constant). The unit vector [(t) represents the direction of movement of the

microorganisms, and it is a time-periodic quantity due to the modulation of the gravitational field.
At the boundaries, the temperature remains constant. Thus, the boundary conditions are: [20],[30]:

w=0, T=T, J-é=0, atz=0, (5)
w=0, T=T, J-é=0, atz=h, (6)
where J =n—2+nW, —D,Vn is the flux of microorganisms. To aid problem analysis, we introduce non-dimensional
£
parameters:
* * * s Vs * 7 h * t * T—T
('x’ 5 ) (xyZ)sVD:VD_’t = am’ = M’
h o, o T,-T,
. PK ~ . . Ko
P =—, =('OC)’”, n=nV, @,=a0, O" 7
luam (pc)f am

where &, =k, /(pc), is the coefficient of thermal diffusivity.
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Applying transformation (7) to Eqs. (1)-(4) and next omitting the asterisks, we derive the following system of
dimensionless equations:

VvV, =0, (®)
1 97, s 5 . R -
——L=_VP+D VW, -V, —¢&f, “n+ef,RaT +[Ta[V, x&], )
Y, ot L
aa—f +(V,V)T=V’T+R,T, (10)
ia—”:—v nVD +&nl:(t)—LVn , a1
o ot L, L,

where f, =1+£5 cos(a@,?) . We have introduced the following dimensionless parameters in Egs. (8)-(11):

_ &(pc), M _ EOPr is the Prandtl number, D, = HE

is the modified Vadasz number, Pr=

is the Darcy

‘ pOkmDa Da ampO h2
4Q°K? . op)hK . . . .
number, Ta =—"'—-— p; is the Taylor-Darcy number, R, =% is the bioconvection Rayleigh-Darcy number,
g ﬂ m
a, . . , , hK AT . . n
L, =—" is the bioconvection Lewis number, Ra =M is the Rayleigh-Darcy number, R, = o is the
m ﬂam am

c

is the bioconvection Peclet number.

internal Rayleigh number, Pe =

m

If we assume that in a stationary state the liquid is at rest, then the main physical quantities can be written as
Vo=V,=0, P=R(2), T=T(2), n=n,2). (12)
The ground state temperature profile 7,(z) and microorganism concentrations #,(z) are obtained by solving the
following equations:

d’T,

?;“‘Rin(Z):O, (13)
4y _ (2)Pe. (14)
dz

Later on, we will come to realize that having knowledge of the pressure profile is not necessary. After solving equation
(13) and imposing the boundary conditions (5)-(6), we can obtain the temperature distribution 7, (z):

sin(y/R, (1-2))
T(z)= 2 (15)
sin(R)
If there is no heat source R, — 0, then the base temperature profile has the form: 7,(z) =1-z . Next, we can obtain the

solution for #,(z) , which corresponds to the result presented in [20]:
n,(z)=n,(0)exp(zPe) , (16)

where n,(0) represents the value of the number density at the bottom of the layer. The constant #,(0) can be
determined as follows:
(n)Pe

W, <I’l> = Ion,, (Z)dZ . (17)

n,(0)=
Let the heating from below the mixed fluid layer cause small perturbations in the main flow as follows:
Vo=V, V,w), T=T,+T, n=n,+n, P=P,+P, [()=é+m'(). (18)

We can derive the following expressions by analyzing Eq. (9):

ii+1—DHV2L u'=—ai+ TaV’, (19)
V, ot ox

a

(VL%+1_DaViJV,=_ Tau’, (20)
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Here, eliminating the pressure term results in an equation of the form:
1d ou  ow av R on' a7 '
——+1-DV? || ——— |=/Ta — 22
(Va ot ‘ l](az axj L ox JuRa ox 22)

For convenience, we express the perturbations of velocities #” and w’ in terms of the stream function:

S =_-7 23
T T T @)
Equations (20) and (22) can be written in the following form:
19 av R on’ aT
——+1-D,V? =+/Ta e 24
L9 pv |v=- Taa"’ (25)
V, ot oz

After reviewing previous research [19], [23] and considering gravity modulation, we formulate the equation of the unit
vector perturbation that indicates the direction of microorganisms swimming in the form

m'(t) = B,(1- 28 cos(@, )T — B,(1—£*5 cos(wy))E] +0-2 . (26)

Here, / and ; are the unit vectors in the x- and y -directions, respectively. The parameter B, represents the
reorientation of microorganisms under the influence of a gravitational moment relative to viscous resistance in the
absence of modulation, and it is defined as B, = (1, / p,g,d)(e, / h*). The displacement of the center of mass of the
cell from the center of buoyancy is denoted as d .

In Eq. (26), the parameters ¢ and § in the x - and y -components of the vector m' are given by:

£=—(1- a) +(1+a)a“, E=(-a) 2 (1402 @7
dy 0z
The parameter ¢, , representing the cell eccentricity, can be calculated using the following equation [15]-[19]:
rz _ r2.
ao — l’\;ﬂX T;]I‘l s (28)
rmax min
where rand r , are the semi-major and semi-minor axes of the spheroidal cell.

The perturbation equations, in their nonlinear form, can be written as follows (without the asterisks):

19 ov R, on T
—241-DV? [V =TaZt s 2" 1 Ra I, 29
[M at+ j J_l// \/_aaZ—i_ mL a fm x ( )
[VL%H vajv—— Taaay/ (30)
# 4
WAl oy gy 9T WD) G1)
ox dz o  d(x,z)’

PeG,(2— f,)n oW dydn, Pedn 1o, _ 10n d(y,n) 52)
M ox ox dz Lyoz L, oot 9d(x,z)’

2 2
o= V2 +q, 82 82 ,
dz° ox
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where G, =D, B,/ is a dimensionless orientation parameter in the absence of modulation [15]. We impose ideal

boundary conditions for stream function, temperature, and concentration of microorganisms:

l//=Vil//=%=T=n=0 at z=0 and z=1. (33)

3. WEAK NONLINEAR ANALYSIS

In the study of weakly nonlinear convective instability, it is common to use a truncated Fourier series
representation for perturbed quantities because it provides a convenient and effective way to analyze and understand the
system's behavior. In the linear stability analysis of convective systems, one typically starts with a base state (often a
steady state) and perturbs it with small disturbances. These disturbances can be expanded in a Fourier series, and by
analyzing the growth rates of different Fourier modes, you can determine whether the system is linearly stable or
unstable. Truncating the series keeps the analysis tractable while capturing the essential behavior. For nonlinear system
described by equations (29)-(32), we employ Fourier series representations for key physical variables, including the
stream function y, velocity component v , temperature 7 , and concentration of microorganisms # :

v(x,z,t)= ii/lmn (t)sin(mkx)sin(nrz), v(x,z,t)= iian (¢)sin(mkx)cos(nrzz),

n=1 m=1 n=1 m=1
T(x,z,0)= )Y B, (t)cos(mkx)sin(nzz), n(x,z,t)=Y > C, (t)cos(mkx)sin(nzz). (34)
n=1 m=1 n=1 m=1

We then conduct a local nonlinear stability analysis, focusing on specific modes, namely (1,1) for the stream function
and velocity component, and (1,1)+(0,2) for temperature and microorganism concentration. Notably, we observe that

nonlinearity introduces distortions in the temperature and concentration fields, resulting from the interactions among
v, T,and n. Consequently, this interaction generates a sinusoidal component sin 27z , in the flow. Thus, we arrive at

a simple expression that characterizes finite-amplitude convection in the form:
v = A,(t)sin(kx)sin(zz), v="V,,(¢)sin(kx)cos(zz),
T = B,,(t)cos(kx)sin(wz) + By, (¢)sin(2zz), n=C,,(¢)cos(kx)sin(zz)+ Cy,(¢)sin(2rz), (35

where the amplitudes A4,,(¢),B,,(?),B,(1),C,,(?),Cy,(¢),V;,(t) are functions of time. After substituting (35) into

equations (29)-(32) and considering the orthogonality condition, the resulting evolution equations for amplitudes are
obtained:

04, 1+D,a’ 7NTa kRa kR
8_%1:_ e 4, + T Vn_fma_an"'fmﬁCn» (36)
b
av, 1+Daa2 N Ta
a; - ) mn- a* All’ (37)
dB (1-b) k6, rk
a;” == N B, - az; 4, - 2V 4,8y, , (38)
0B y—>b kr
a'l(;)z == V Boz + ZaZV AllBll s (39)
oC o krxo o
a;n = _vaa G, - azva 4,Cy, +a2_va((2_fm)71 + VA, (40)
oC % kro
w__ 79 %9 4.C., 41)

= +
ot VL, % 24

where a=+k?>+7x® is the total wave number, and 7=(a?)) )t is the reduced time, y=47>/a>,b=R,/d’,
NI
Ot —> (@, / a™ V)t = gt .
The system of equations (36)-(41) is dissipative and its solutions are bounded in the phase space. The impact of
many parameters (7a,Ra,Pe,D,,R,,L,,)) on trajectories is to attract them to a set of measures zero or fixed points.

The system of autonomous ordinary differential equations can be solved numerically, for example, in the Maple
computer environment. However, in the steady state, Egs. (36)-(41) have an exact solutions:
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The expression for amplitude 4,, (42) was obtained from solving a quadratic equation of the form:

Y A
[%j +w, (%} +w,=0 (43)

It is important to note that the stream function's amplitude must be real. Therefore, in solution (42), only the positive
sign in front of the radical is taken into account. If we determine the value of 4,,, we can calculate the heat and mass

transfer in a steady state.
In the small amplitude limit (4, — 0), equation (43), becomes a dispersion equation for linear stationary bio-

thermal convection:

4n*

(ar’ —Rl-)(

_ a*(1+D,a*) ’a’Ta
‘ K K (1+D,a*)

-R,(7 +7’2)} (44)

;)

a2
In order to determine the wave number k, that corresponds to the onset of convection, we need to minimize the

critical Rayleigh number Ra, with respect to k”. We can achieve this by differentiating Ra, with respect to &’ and

setting the derivative to zero. Once we solve this equation, we will have the value of &, that is associated with the onset
of convection. In the limit of small Peclet numbers, expression (43) coincides with the result first obtained by Kopp and
Yanovsky [41] when there is no rotation (Ta=0) and internal heat source (R,=0). When there are no
microorganisms present (7, =0 ), the critical Rayleigh number is the same as the results for the Darcy-Brinkman model
of a rotating porous medium (without nanoparticles) that was derived by Chand and Rana [43]-[44]. However, if there
is no heating or rotation within the system, ordinary bioconvection is observed, which is caused by the motion of
microorganisms. In this case, the bioconvection Rayleigh number R, serves as the governing parameter for
bioconvection. The critical value of R,, denoted as R;", for bioconvection in the Darcy model of a porous medium was

initially determined by Nield et al. [20].
Additionally, the amplitudes can be rescaled using the following relations:

ZI - 2 - V2 (1) 20, - 2

X (@), Bu(f)=7Y(t)a Cu(f)——Y(t) Boz(t)___a Coll i V11(1)=7V(;)-(45)

All(;):_

Applying rescaling the amplitudes (45) in Egs. (36)-(41), we obtain the following set of equations:
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X =-DX —TV + f,(RY —RbY)
Y=V '(-(1-b)Y + X — XZ)
Z=V(~(y-b)Z+XY)
Y=oV (LY (- £ )+ 1) X - XZ)
Z=0V ' (—yL}'Z+XY)
V=-DV +/TaX

(46)

Here (-) represents the derivative with respect to time t; D,R,Rb,T are new dimensionless parameters of the
following form:

2 2 2
_1+D,a _k'Ra Rb=ka, T

2 > 6 2 6
a a a'l, a

_ *\Ta

6

D

47

Equations (46) describe a model that can be simplified to the fundamental Lorenz model [24] for a regular fluid. The
model is six-dimensional and uses variables X and V' to represent the velocity field, while ¥ and Z represent the

temperature changes, Y and Z are used to represent the changes in concentration of microorganisms. The Lorenz-like
model in Egs. (46) is invariant under the transformation (X,Y,Z,Y,Z,V)— (-X,-Y,Z,-Y,Z,-V).
Let's proceed to calculate the heat and mass transfer.

4. HEAT AND MASS TRANSPORTS
Determining the heat and mass transfer of microorganisms is important when studying the bio-thermal convection
of liquids. This is due to the fact that the onset of convection with an increasing Rayleigh number is easier to observe
because of its effect on heat and mass transfer. Therefore, thermal and mass flows of microorganisms are important for
identifying thermo- and bioconvective movement in its early stages. Heat transfer can be calculated and described using
the Nusselt number Nu :

2nlk

“or

—dx
~ 0z
Nu(?)=1+| =2 (48)
J.cr 87;
—dx
o 0z -
According to (15) and (35), we get from (48)
Nu(t)=1-27B,,(1) (R c1g(R,)) (49)

By analogy with (48), we find a quantitative characteristic of the mass transfer (Sherwood number Si) of the

concentration of microorganisms:
2rlk or

J‘ aldx Pe 1
Sh(D) =1+| 2 | =1427C, ()| ~—— |. (50)
Icr%d (n)Pe
0z

0 z=0

5. THE DERIVATION OF THE GINZBURG-LANDAU EQUATION FROM THE SIX-DIMENSIONAL
LORENZ-LIKE MODEL
According to [46], we express all perturbed quantities in equations (46) in terms of a series expansion concerning
the small supercritical parameter, € :

X=eX +X,+X,+..., X=[X,Y.Z,Y,ZV]", R=R,+€R, +.... (51

Here, the amplitudes of perturbed quantities only depend on slow time 7= ¢ . Upon substituting the expansion (51)
into (46) for first-order £, we obtain a linear system of equations:

‘C)—(l:Os )—(IZ[XI,YI,ZI,;UEUVI]TV, (52)

where the matrix £ has the form
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[ -D R, 0 —Rb 0 -7
Ve, b-1H)V! 0 0 0 0
0 0 (GRS 0 0 0
L=|-0V"' (7 +7) 0 0 -L'oV”! 0 0
0 0 0 0 —yL'oV 0
JTa 0 0 0 0 -D
] |
For there to exist a nontrivial solution of the homogeneous linear system (52), a certain condition must be met:
Ro(l%bj:D‘FT\Z/)ﬁ—RbLb(% +7,). (53)

Expression (53) completely coincides with expression (44) for the critical Rayleigh number of stationary bio-thermal
convection in the linear theory. The solutions to the system (52) are given by

6,x ~ > VTa
=TT h 2 =0 =L+ )X, 2 =0V =T X, (>4

We can express the equations for the second order in ¢ as follows:

LX, =[Ry Ry Ry Ry Ros Rog 1y X, =[X,.,,2,,Y2, 22,1, 17, (55)

where the nonlinear terms 7?21. (j=1,2,3,4,5,6) are

Ry =0,R,, =V, ' X,Z,, Ry ==V XY, R,y =0V ' X, 21, Ry = =0V ' X, V1, Ry =0.
Solutions of the equations (55) have the form:

0,X; < L VTa

6,X -
=—.7Z,= z:—Lb(%+7z)Xz,Zz:—7b(%+7z)Xf,Vz:7Xz- (56)

s &) :Y
1-b b-b-1)

Y

We will now proceed to discuss third-order equations:

LX, =Ry, Rays Rays Regs Ress Ro 17y X, =[X,,Y,,2,,Y3,Z3,V, 1", (57)
where
BX] o g)g
R, =¥—R2Y] —R,0¢co8(Q7)Y, + Rbocos(Q7)Y1,Q =
aY1 -1 3?1 -1 -1 ~ ~
7?32=¥+va (XIZZ+XZZI),7?33=0,7?34=¥—O']{, 7,0cos(QT)X, +0V (X, Z2 + X, Z1),
Ry =0, R, - 02K
5 > 6

D or

We utilized the Fredholm alternative condition [46] to obtain the Ginzburg-Landau amplitude equation in the following
form:

A %—AZX1 +AX] =0, (58)

where the coefficients A ,A,, A, are defined by:

RV (7+7)V, TTa | R,6 R,
A _1+(10_—(;))2+RbLi 1 5.2 s A —li—l;’+1i—£5005(§22’)+RbLb725COS(QT),
R,6, RbZ,
= + +7,). 59
A SRS (h+7) (59)
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. . . . 0 2] . .
Passing to the new rescaled derivative with respect to slow time — =(a’}))— and using relations (45), (47), we

ot ot

rewrite equation (58) in the following form:

A
Al—a — A, (T)A+ 4,4’ =0, (60)
a7,
where
a’ 47*k*Ra K> RL 4r*(n) 7*Ta
A=—+ Sabea —— PeG,((1-o,)k* +(1+ )7’ )+ Pe |-
'V @r-R)d*-R,)} ' o 47r2+Pe2[ o((I=ep)k"+(1+a,)77) ]

V,(1+D,a*)"’

a

ATk °R. A7 (n)P
, =—— z < (Ra, + Ra,dcos(Q,7))) + "2”%5005(9171),
(47" =R, )(a@" -R)) a’® 4’ +Pe
k! 167*a*Ra ,
= < +RL (1, +7) [, Q, =—=%. 61
3 8a4((16ﬂ'4614—Rf)(a2—R,)2 b b(yl }/2) 1 € ( )

In the case where there is no rotation and internal heating, the GL equation (60) for small Peclet numbers coincides with
the result obtained by Kopp and Yanovsky [41]. They obtained the GL equation by applying perturbation theory for the
small supercritical parameter of the Rayleigh number to the nonlinear system of equations (29)-(32). Because
nonlinearity near the critical state of convection is considered in this approach, it is assumed that Ra, = Ra, . Thus, a
small expansion parameter & is introduced in the weakly nonlinear theory of convective instability, which is the
relative deviation of the Rayleigh number Ra from its critical value Ra, :

, Ra-Ra,
g = —_—
Ra,

<1.

For the unmodulated case, the analytical solution of the above equation (60) takes the following form:

iz, = 4 , (62)
e

where 74(11) represents the amplitude of convection for the unmodulated case, and 4, and A4, have the same

expressions as given in (37), while 4, =k’Ra, /a’.

6. RESULTS AND DISCUSSION

In our study, we utilized a truncated Fourier series to analyze the phenomenon of weakly nonlinear biothermal
convection. We focused on a rotating layer of a porous medium that is saturated with Newtonian fluid and contains
gyrotactic microorganisms. The medium is subjected to gravitational modulation and internal heating. To solve the
resulting nonlinear system of equations (36)-(41), we employed numerical methods to determine the heat and mass
exchange coefficients, Nu and Sh. We chose a reasonable order of modulation amplitude, i.e., §=0.1, and suitable
initial conditions for the disturbance amplitudes, i.e., about 0.5. Let the value of the modified bioconvective Rayleigh-
Darcy number Ra, =R, (n) change in the range [0,5000], and the values of the parameters Pe and G, change in the

vicinity of Pe=0.1 and G,=0.01 [34]. The cell eccentricity can vary in the range ¢, € [0,1]. Next, we started

examining the impact of parameters D,,Ta,Ra,,Pe,¢, and R, on the development of in Fig. 2 illustrate the

relationship between the stationary Rayleigh number (44) and the dimensionless wavenumber £, in linear theory. From
the graphs, it is clear that the stability curves divide the space into two regions: the region above the curve is unstable,
and the region below the curve is stable. This provides a clear visual representation of the relationship between
parameters and system stability.

Fig. 2a illustrates the relationship between the stationary Rayleigh-Darcy number Ra_ and &, for different Darcy
number values D, =(0.3,0.5,0.8). The plot has fixed parameters ¢, = 0.4, Ra, =3000, Pe=0.1, R, =0.5 and
Ta = 100. The plot clearly shows that an increase in the Darcy number leads to a rise in the minimum Rayleigh-Darcy
number, indicating that higher Darcy numbers stabilize the stationary convection and delay its onset.

Fig. 2b shows the relationship between the stationary Rayleigh-Darcy number Ra_ and the dimensionless

wavenumber k, for different values of the Taylor number: Ta =(100,200,300). The fixed parameters in this plot are
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D, =03, Ra, =3000, Pe=0.1, R, =0.5 and ¢, = 0.4. The graph demonstrates that as the Taylor number increases,

the minimum Rayleigh-Darcy number also increases. This means that higher Taylor numbers stabilize stationary
convection and delay the onset of convection.
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Figure 2. Plots of the stationary Rayleigh number Ra, versus wave numbers £, .

Fig. 2c shows the relationship between the stationary Rayleigh-Darcy number and the dimensionless wave number
for various values of the modified bioconvection Rayleigh-Darcy number: Ra, =(0,3000,5000) . The parameters

D, =03, Ta=100, Pe=0.1, R,=0.5 and ¢, =0.4 on this graph remain constant. The red curve represents the
dependence of the stationary Rayleigh-Darcy number on the wave number in the absence of bioconvection of
microorganisms ( Ra, =0). Looking at Fig. 2c, it is clear that with increasing parameter Ra, the threshold for the
occurrence of biothermal convection decreases. This means that an increase in the concentration of microorganisms

causes a redistribution of liquid density. Then, the swimming movement of microorganisms against gravity can
destabilize the stationary process of biothermal convection.

Fig. 2d shows the relationship between the stationary Rayleigh-Darcy number and the dimensionless wave number
for various values of the Peclet number: Pe=(0.1,0.12,0.15). The parameters D, =0.3, D, =0.3, Ra, =3000,
R, =0.5 and ¢, =0.4 on this graph remain constant. From the graphs, it is evident that a decrease in the minimum

Rayleigh numbers is correlated with an increase in the Peclet number or the swimming speed of cells. In other words, as
Peclet numbers increase, the stability threshold of bio-thermal convection decreases.
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Fig. 2¢ depicts the relationship between the stationary Rayleigh-Darcy number and the dimensionless wavenumber
for different values of cell eccentricity: ¢, =(0,0.4,0.8). The parameters D, =0.3, Ra, =3000, R,=0.5 and

Pe=0.15 are fixed in this plot. By examining the graph, it becomes evident that as the cell eccentricity increases, the
threshold for the onset of bio-thermal convection increases a bit. In simpler terms, microorganisms with a more
elongated or non-spherical shape don't tend to facilitate the development of bio-thermal convection more than
microorganisms with a spherical shape. This observation aligns with similar conclusions made in references [20],[23].
As a result, the shape of microorganisms influences the behavior and stability of the bio-thermal convection process
within the studied system.

In Fig. 2f, the stationary Rayleigh-Darcy number Ra, is plotted as a function of the dimensionless wave number
k. for different values of the internal heating parameter R,. The fixed parameters in this graph are D, =0.3,
Ray; =3000, Ta=100, Pe=0.1 and ¢, =0.4. The graph shows that as the internal Rayleigh number R, increases,
the minimum Rayleigh-Darcy numbers decrease. This indicates that higher R, numbers have a destabilizing effect on
stationary convection.

For numerical analysis of equations (36)-(41) and (49)-(50), we use the standard Maple computer environment
programs. The Runge-Kutta-Felberg method (rfk45) was used to solve nonlinear equations (36)-(41) with the following
initial conditions: 4,,(0) = B,,(0)=C,,(0) = B,(0)=C,,(0)=V,,(0)=0.5.

In Figs. 3a and 4a, it is shown that an increase in the Vadas number V) contributes to an increase in heat and mass
transfer over a short time interval. This observation is consistent with investigations carried out by Kiran et al.
[38]-[40], Bhadauria and Agarwal [47], and Kopp and Yanovsky [42] where a comparable phenomenon was observed.
The Vadasz number, which is directly proportional to the Prandtl number, assumes a pivotal role in determining the
convective heat transfer characteristics. As the Vadasz number surges, it signifies an increased ratio of kinematic
viscosity to thermal diffusivity in the fluid. This, in turn, leads to heightened fluid mobility. Consequently, elevating
the Vadasz number results in a heightened rate of heat and mass transfer within the system.
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Figure 3. Dependence of the Nusselt number Nu on the time t for a) )V ,b) Ta,c) R,,d) ¢,,e) Q,f) O variations.
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According to Figs. 3b and 4b, as the Taylor-Darcy number Ta increases, the value of the Nusselt Nu and
Sherwood Sh numbers decreases, lowering the rate of heat and mass transfer and, as a result, stabilizing the system.
Figs. 3¢ and 4c show the effect of an increasing bioconvective Rayleigh-Darcy number R, on heat and mass

transfer. An increase in the bioconvective Rayleigh-Darcy number can be caused by an increase in the permeability of
the porous medium or a decrease in the viscosity of the liquid medium. In both cases, this causes an increase in the
velosity of convective flows, which promotes the transfer of heat and mass of microorganisms and therefore leads to
destabilization of the system. This phenomenon eventually results in an increase in the Nusselt and Sherwood numbers
over short time intervals, as shown in Figs. 3a and 4a.

Graphs in Figs. 3d and 4d demonstrate a significant influence of the shape of the microorganism on heat and mass
exchange in the system, which is reflected in the temporary change in the Nusselt and Sherwood numbers. This physical
phenomenon can be explained by considering how the shape of microorganisms affects their movement and interaction
with liquid. In the case of spherical microorganisms ¢, =0 (represented by the red curve in Fig. 3d and 4d), their

symmetrical shape ensures relatively unhindered movement in the liquid. This promotes improved heat transfer within
the system, resulting in higher convective heat transfer rates and, therefore, higher Nusselt numbers. On the other hand,
when microorganisms have a non-spherical or irregular shape ¢, =(0.4,0.8) (represented by the blue and black curves

in Fig. 3d and 4d), their movement in the liquid becomes more intense and complex. The presence of asymmetry in
their shape can lead to a change in the flow regime. As a result, the process of convective heat transfer can be hindered,
leading to lower heat transfer rates, lower Nusselt numbers, and, conversely, higher mass transfer rates (higher
Sherwood numbers) compared to the case of spherical microorganisms.

Figs. 3¢ and 4¢ show the influence of the modulation frequency € on heat and mass exchange in the system. It
can be noted that at lower modulation frequencies, especially in the low frequency case (£ =5), higher heat and mass
transfer rates are achieved compared to higher oscillation frequencies (2 =10 and € =50). This suggests that lower
modulation frequencies lead to more efficient heat transfer within the system. The observed trend is consistent with the
results presented by Gresho and Sleigh [33] and Kopp et al. [48] in the context of conventional fluids, highlighting the
importance of using low-frequency g -jitter to optimize the transfer process and improve heat transfer.
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Figure 4. Dependence of the Sherwood number S/ on the time i for a)V,,b) Ta,c) R,,d) ¢,e) Q,1) O variations.



189
Weakly Nonlinear Biothermal Convection in a Porous Media Layer Under Rotation... EEJP. 1 (2024)

Figs. 3f and 4f show the influence of the modulation amplitude ¢ on heat and mass exchange in the system. The
study considers a range of J values, specifically chosen to improve heat transfer, from 0.15 to 0.35. The graphs show
how changing the modulation amplitude affects the characteristics of heat and mass transfer. It is obvious that higher
modulation amplitudes lead to an increase in the rate of heat and mass exchange. By appropriately selecting the
modulation amplitude, heat and mass transfer can be optimized, thereby improving overall system performance.

1) b

with modulation

without modulation without modulation

0 3 10 5 2 % B 3 0 5 10 5 0 % 30 %

{ t

Figure 5. a) Variations of the Nusselt number Nu(Z) in the absence of 6 =0 and the presence of d =0.3,Q =5 modulation of the

gravity field; b) variations of the Sherwood number Sh(7) in the absence of & =0 and the presence of & =0.3,Q =5 modulation of
the gravity field.

In Figs. 5a and 5b, a comparison is presented between modulated and unmodulated systems. The graphs depict the
characteristics of these two systems with regard to heat and mass transfer, as represented by the Nusselt and Sherwood
numbers. In the unmodulated system, it is evident that the Nusselt number (Sherwood number) experiences a rapid

increase for small values of the time parameter ¢ . This initial surge in heat and mass transfer is followed by a phase of

stabilization at higher ¢ values. This pattern suggests that, in the absence of gravitational field modulation, the process
of heat and mass transfer eventually reaches a steady state. Conversely, the modulated system displays oscillatory
behavior concerning Nusselt and Sherwood numbers. This signifies that heat exchange undergoes periodic fluctuations
due to the modulation of the gravitational field. These fluctuations in the Nusselt and Sherwood numbers mirror the
alternating enhancement and suppression of heat and mass exchange resulting from the gravitational field modulation.

7. CONCLUSIONS
In this research, we employed the Darcy-Brinkman model to explore the impacts of rotation, internal heating, and

gravity modulation on biothermal convection within a porous medium saturated with a Newtonian fluid that includes
gyrotactic microorganisms. Our analysis is based on the expansion of the perturbed parameters of the system using a
truncated Fourier series. As a result of applying this approach, a non-autonomous system of nonlinear differential
equations was obtained. An exact analytical solution to this system of equations was obtained for the stationary case.
For small amplitudes of disturbances, i.e., within the framework of the linear theory of convective instability, we
obtained the dispersion relation between the critical value of the Rayleigh number Ra, and the wave number £, . Based
on the findings from the analysis of linear bio-thermal convective instability, the following conclusions can be drawn:

* Increasing the Darcy and Taylor numbers leads to an increase in the stability of the system.

* An increase in the modified bioconvective Rayleigh-Darcy number Ra,, Peclet number Pe, and internal

heating parameter R, leads to destabilization of the system.

* Spherical gyrotactic microorganisms play a more significant role in fostering the onset of bio-thermal
instability.

After conducting a numerical analysis of the resultant nonlinear system of equations, we drew several
conclusions regarding the impact of gravitational modulation on biothermal convection in porous media:

* When the values of the parameters V), and R, are increased, a short-term growth in heat and mass transfer is

observed.

* Increasing the Taylor number Ta has a stabilizing effect on the system, which delays the onset of convection
and reduces heat and mass transfer.

* The spherical shape of the microorganisms contributes to a more efficient heat transfer process.

* Increasing the modulation frequency € leads to a decrease in the variations of the Nusselt and Sherwood
numbers, resulting in suppressed heat and mass transfer.

* Increasing the modulation amplitude J enhances heat and mass transfer.

Certainly, the examination of parameters like Ta,R,,Pe,o, V), Q, and & offers valuable insights into their

influence on the convection process. Through the manipulation of these parameters, it becomes feasible to amplify or
control heat transfer in a porous medium saturated with a Newtonian fluid containing gyrotactic microorganisms. These
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conclusions provide a foundation for designing more efficient heat transfer systems, formulating strategies to regulate
convection, and enhancing thermal management across diverse applications.
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CJABOHEJIIHIAHA BIOTEPMAJIbHA KOHBEKIIISA B HIAPI IIOPUCTOI'O CEPEJOBHILIA
I BILNITABOM OBEPTAHHSI, TPABITALIAHOI MOJIYJISLII TA JUKEPEJIA TEILUIA
Muxaiino M. Konn®, Bosogumup B. STHoBCchKHii™
ncmumym monokpucmannos, Hayionanvna Axaoemis Hayk Ykpainu
np. Hayxu 60, 61072 Xapxkis, Yxpaina
bXapxiecoruii nayionaronuti ynicepcumem imeni B.H. Kapaszuna
matioan Ceoboou, 4, 61022, Xapxie, Yrpaina

B wiit poboti mocmimKeHo BIUTMB rpaBiTauiifiHol MOAyIslii Ha ciaboHeniHilHy GioTepMalibHy KOHBEKII0O B MOPUCTOMY IIapi, L0
oOepraeThes. Po3rismacThes Imap MOPHCTOTO CEPEIOBHINA, HACHYCHOTO HBIOTOHIBCHKOIO PITHMHOIO, MO MICTHTh TipOTAKTHUYHI
MIKpOOPraHi3MH i CXHJIBHOT JI0 TpaBiTamiiHOl MOAyJIsLii, 00epTaHHs i BHYTPIIIHBOrO HarpiBaHHs. [yl aHamizy JHIHHOI CTiMKOCTI
JIOCHUTH YSIBIICHHSI 00YpEeHb SIK HOPMaJIBHHUX MOJI, TOAI SK HeNIHIHHUN aHaii3 BKIIOYac ycidyeHud psan Oyp'e, 0 MiCTHTh TapMOHIKY
HeniHilHoT B3aemoii. [ToOynoBaHO mecTUBUMIpHY HelNliHIHHY MoJesb Ty JIopeHIa, sika BUSBIISIE SIK CHMETPIIO BiJOOpa)KeHHs, TaK
i mucunaniro. Temmo- i MacolepeHOC MM BH3HAUMIM 3 BHUKOPUCTaHHSAM cllabKoi HemiHiifHOi Teopii, 3acHOBaHOI Ha YSBJICHHI
yciueHoro psny @Dyp'e. JlomaTkoBo OyiI0 IOCTIKEHO TOBEAIHKY HecrtarioHapHux yucen Hyccenbra Ta IllepByna mmisxom
YHCENLHOTO BUPIIIEHHS PIBHSHD KiHI[EBOI aMIUTITYJH. 3aCTOCOBYIOUH PO3KJIQIaHHS PETyJISIPHUX 30ypeHb 3a MajuM HapaMeTpoM 0
IIeCTUBUMIpHOI Mozelni piBHsSHG JlopeHna 3 mepioguunnmu Koedimienramu, Mu otpuMany piBHSHHA ['iH30ypra-Jlannay (I'JI). Ile
PIBHSHHSI BU3HAYa€ €BOJIONIIO KiHIIEBOI aMILTITYAM BHHUKHEHHS KOHBEKIii. AMIUTITY/la KOHBEKIil y HEMOIYIbOBAaHOMY BHIIAJKY
BH3HAYAETHCS aHATITHYHO 1 CITY)KUTH €TAIOHOM JUIS TIOPIBHAHHSA. Y JOCIHIIKEHHI BUBYA€THCS BIUIMB Pi3HUX MapaMeTpiB Ha CHCTEMY,
BKJIIOYAloUH 4Hciao Banacsa, mommdixoBane umcno Pemes-[lapci, umcno Teiinopa, eKCHEHTPHUCHTET KIITHHH Ta IapaMeTpH
MOYJISIIIi, Taki K aMILTITY/ia Ta 9acToTa. Bapitoroun mi mapameTpy, y pi3HHX BUIIAAKaX MU MpOAHANI3yBalId TEIUIO i Maconepenaqy,
sIka KUTBKICHO BHpaxaeThest unciiom Hyccenbra i LllepByna. BetanoBieHo, 1m0 aMIuTiTy 1a MOIYIAMil iCTOTHO BIUTHBAE Ha IOCHIICHHS
TEIIO 1 MacoBiAadi, TOMI K 4aCcTOTa MOMYJIALIT 3MEHIITY€E BIIHB.

Kuarouosi cioBa: mooenv [apci-Bpinkmana, 6iomepmansua KoHeeKyis, zpasimayiiina MoOyAAyis, nopucme cepeodoguuje, uo
obepmaemucs; 2ipoMaKmuyHull MiKpoOOp2auism
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Saving energy, shortening processing times, maximizing thermal efficiency, and lengthening the life of industrial equipment are all
possible outcomes of heating and cooling optimization. In recent years, there has been a rise in interest regarding the development of
high-efficiency thermal systems for the purpose of enhancing heat and mass movement. This study presents an investigation on the
non-linear flow of a hybrid nanofluid comprising of Multi Walled Carbon Nanotubes (MWCNTs) and Single Walled Carbon
Nanotubes (SWCNTs) over an extended surface, considering the effects of Magnetohydrodynamics (MHD) and porosity, with
engine oil serving as the base fluid. Also, radiation and Darcy-Forchheimer flow is considered. The problem of regulating flow is
transformed into ordinary differential equations (ODEs) by employing similarity variables. The Midrich Scheme is then used to
implement a numerical solution to these equations in the program Maple. Through visual representations of fluid velocities and
temperatures, the inquiry addresses several important factors, including magnetic parameters, porosity parameters, radiation
parameters, Eckert numbers, inertia coefficients, and Biot numbers. The research has important implications in a number of real-
world contexts. Due to its exceptional characteristics, such as reduced erosion, reduced compression drops difficulties, and greatly
increased heat transfer rates, hybrid nanofluids are frequently used in heat exchangers. For instance, various cooling devices such as
electromagnetic cooling systems, as well as heat exchangers including condensers, boilers, chillers, air conditioners, evaporators, coil
preheaters, and radiators. Furthermore, it has the potential to be employed in pharmaceutical businesses and the field of biomedical
nanoscience.

Keywords: BVP Midrich scheme; MHD,; Thermal radiation; Porous medium, Heat source; Darcy-Forchheimer flow; Hybrid
nanofluid

PACS: 44.05.+¢, 44.30.+v, 44.40.+a, 47.10.ad.

INTRODUCTION

Because of its importance in a wide variety of engineering challenges and businesses, the issue of heat transfer
continues to be one of the most hotly contested topics among scholars in the modern day. Nevertheless, water, oil,
and glycol are commonly utilized in most applications, despite their poor thermal conductivity and inefficiency in
facilitating heat transmission. To address this issue and enhance thermal efficiency, innovative fluid mediums,
namely nano fluids and nanoparticles, are being created. Choi [1] was the first person to ever add metallic
nanoparticles into base fluid for the purpose of increasing thermal conductivities and hence enhancing heat transfer.
A few examples of real-world applications where nanofluids are employed to achieve higher levels of efficiency
include the refrigerator, air conditioners, and other microelectronic goods as well as microcomputer processors.
Researchers from all over the modern globe have been reporting their findings on the study of nano fluid, which has
included both numerical and experimental research. Despite the significant advancements made in the field of
nanofluids, contemporary researchers remain highly motivated and eager to explore novel fluid alternatives that
surpass the thermal conductivity of nanofluids. Hybrid nanofluids, an advanced variation of nanofluids, have been
developed to enhance performance and can serve as a suitable alternative to conventional nanofluids. Hybrid
nanofluids consist of a combination of two modified types of nanoparticles. Compared to the base fluid and
nanofluids made from a single type of nanoparticles, the hybrid nanofluid is predicted to have more advantageous
thermal properties for heat transfer. Because of its superior performance, it is often referred to as a "next-generation
fluid." Recently developed hybrid nanofluids have found widespread application in several fields of heat
transmission. Microelectronics, microfluidics, transportation, manufacturing, medicine, military, acoustics, naval
architecture, propulsion, and many more disciplines all fall under this broad category. The primary objective of
utilizing hybrid nanofluids lies in the ability to strategically select an appropriate amalgamation of nanoparticles.
This selection allows for the manipulation of the nanofluid, so augmenting the advantageous characteristics
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associated with each particle type. Additionally, this approach serves to mitigate the drawbacks that arise from
employing these particles individually, owing to the synergistic impact that arises from their combined utilization.
The enhancement of thermal conductivity properties in hybrid nanofluids has garnered significant attention from
researchers, leading to a substantial body of work focused on the practical applications of thermal transmission
problems involving hybrid nanofluids. The investigation of heat transfer rate using hybrid nanofluid has emerged as
a prominent field of study in recent years [2—6].

The thermo-physical and volume partitioning techniques are employed to ascertain the heat transport
characteristics of nanomaterials. Nano fluids encompass a wide range of materials, including carbides, oxides,
nitrides, fullerene, metals, and carbon nanotubes (CNTs), which are classified based on their size, form, and
distinctive properties. The investigation of carbon nanotubes (CNTs) has been undertaken due to their heightened
thermal conductivity properties. Carbon nanotubes, also known as CNTs, have a nanostructure resembling a barrel
and are made up of numerous different allotropes of carbon. In the domains of health sciences, applied sciences,
material sciences, energy, optics, natural sciences, and manufacturing, the morphological properties of carbon
particles in spherical and tubular shapes are both intriguing and valuable. Single-walled carbon nanotubes
(SWCNTs) and multi-walled carbon nanotubes (MWCNTs), which are differentiated from one another based on their
structural properties, are the two unique categories that carbon nanotubes (CNTs) can be placed into. In 1991,
Iijima [7] conducted a pioneering study on the application of CNTs in the examination of MWCNTs utilizing the
Krastschmer and Huffman approach. The credit for the identification of SWCNTs is ascribed to Ajayan and Lijima
in the year 1993 [8]. Over the past two decades, a substantial number of scholars have contributed a significant body
of literature on the utilization of carbon nanotubes. The following selection of articles, ranging from
references [9-16], may prove valuable for academic study purposes.

The field of fluid dynamics known as magnetohydrodynamic flow examines the magnetic properties of fluids that
carry electricity and is a subfield of electrohydrodynamic flow. The application of magnetic fields in boundary layer
flows serves the objective of causing separation of the boundary layer. A large number of researchers have included the
impact of an external magnetic field effect into challenges involving hybrid nanofluid boundary layers.
Magnetohydrodynamics, or MHD for short, offers a wide range of applications across a variety of business sectors and
engineering subfields. Prominent applications of magnetohydrodynamic (MHD) technological innovations include
controlled thermonuclear nuclear power plants, machines for refreshing shiny plates, power plants, circulatory control
during surgical operations, magnetic endoscopy, magnetic devices utilized for cell separation, radiation therapy for
cancer malignancy treatment, and magnetic targeting of medications. Magnetic endoscopy, magnetic cell separators,
magnetic radiation therapy for tumors, and magnetic medication targeting are among further uses. In light of the
aforementioned uses of the MHD, a significant number of researchers have investigated the MHD in the context of a
variety of issues pertaining to fluid mechanics [17-19].

This study aim to examine the transport of hybrid nanofluid containing MWCNTs and SWCNTs over a stretched
surface in presence of MHD and porosity with engine oil as base fluid. Also, radiation and Darcy-Forchheimer flow are
taken into account. Notwithstanding the utility of the investigation, the flow model in question has not been formerly
disseminated, and its flow features have not been subject to prior examination. The inquiry was prompted by the
presence of multiple studies discussing the applications in industry and advancements of hybrid nanofluids. The
mathematical model is solved by a computational approach known as the BVP Midrich method. The control problem
can be effectively solved using Maple software, enabling the presentation of results through the use of figures and
tables. This paper presents a qualitative analysis of the flow dynamics.

MATHEMATICAL MODELING

In addition to a stretched surface, a two-dimensional heat transfer representation is examined in a mixed-heat-
dispersal (MHD) SWCNTs and MWCNTs hybrid nanofluid. Within the framework of the energy and temperature
equation, thermal radiation is taken into account. As can be seen in Table 1, two distinct kinds of nanoparticles, namely
SWCNTs and MWCNTs, are suspended in the base fluid Engine oil. The velocity components # and v are measured
along the x-axis and the y-axis, respectively; the velocity is written as u,, = ax. Furthermore, the temperature of the sheet
as well as the temperature of the free stream is represented by the symbols 7', Tw, respectively, which is demonstrated
in Figure 1.

Table 1. Thermophysical properties of Engine oil, SWCNTs-MWCNTSs hybrid nanofluid [22]

Property Engine oil SWCNTs MWCNTs
Density p (kgm™) 884.00 2600.00 1600.00
Specific heat C, (Jkg™' K ™) 1910.00 425.00 796.00
Heat conductivity &, Wm'K™") 0.1440 6600.00 3000.0
Electrical conductivity o (Qm)™ 10° —2x107 107¢ -10° 10° 10’
Pr 6450
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MWCNTs

SWCNTs

Figure. 1. Geometry of the problem

The governing flow equations are constructed as [20][21]
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In order to create the following dimensionless ODEs, Eqs. (2) and (6) are transformed using the ideal technique
indicated in Eq (8).

R1 m ” "2 R1 ’ 7 R5 ’_
x! R, (77-(f) )—R—sz ~Fif” -2 M=o, (10)
9"(R4+§Rdj+R3Prf¢9’+PrQ =5 MEc(f') =0. (11

The boundaries of the change are described as:
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porosity parameter, F° =( L j non-uniform inertia coefficient, and Fr = C,_d inertia coefficient, O 9
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heat absorption/generation coefficient.
The dimensional form of Cy, and Nu are expressed as
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The non-dimensional form of Egs. (13—14) converts are
) ”
Re’C, =CF =R f"(0), (15)
Re.>Nu, = Nu=—R,8'(0). (16)

Where Re, is the local Reynolds number.
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SOLUTION METHODOLOGY
The nature of the ODE system (10-11) with BCs (12) is extremely nonlinear in its characteristics. For the purpose
of dealing with these equations, we adopt a computational approach known as the BVP Midrich method see in Figure 2.
Using Maple, we are able to solve the control problem. The midway method's standard operating procedure is laid out
in detail below.
The following is a demonstration of the overall algorithm for the technique of midpoint collocation

Z(x)=F(x.Z (%), Z(x)=Z, (17)
In the explicit midpoint approach, also known as the Modified Euler method, the formula looks like this

Zo =T (3,40, 2+ 5 F (5, Z) | as)
2 2

The above equation / represents the step size and x, = (x, +nh).
The strategy that takes into account the implicit midpoint may be described as

J— J— 1 N
Z. :Zn+hF(xn+g, zn+5(zn, ZM)), n=0,1,2,.. (19)

At each step size, the technique for locating the midpoint has a local error of order O(h’) whereas the global error
is of order O(h?). When dealing with algorithms that are more quantifiable demanding, the algorithm-error decreases at
a quicker rate as 7 — 0 progresses, and the result gets more dependable.

| |
l

Define system of ODEs
And

Boundary condirions

l

Fixing parameters |

‘ Dsolve (Numeric, midrich) |

<—{ Converged ‘
Yes l

New iteration for new value of
paramerers

Figure 2. A flow chart pictogram of BVP Midrich technique

RESULTS AND DISCUSSION

The non-dimensional controlling flow model (10) — (11), which are subject to the boundary conditions (12), may
be solved numerically with the assistance of Maple built in BVP Midrich scheme. We took the values of non-
dimensional parameters and evaluated. Table 2, which illustrates the variances in skin friction coefficient, yields the
exact solutions. The findings of both investigations were determined to be fairly accurate. Table 3, which demonstrates
that various parameter values for CF. In the current part of the study, the authors go over the findings from the graphical
narrative of the significant physical quantities in order to determine the quantitative fluctuation in relation to several
important problem factors. To this end, writers have created graphs that define velocities, temperatures, Skin friction
and heat transfer coefficient in order.

Table 2. Comparison table for various Prandtl numbers of the current study.

Pr Ali et al. [20] Present results

0.7 0.4560 0.4552902

2.0 0.9113 0.9101351
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Table 3. The quantitative results of the skin friction coefficient of different of values for M, Fr and K by fixing parameter values

Rd =Bi =04, and Pr=Ec=0.1.

M Fr K CF

0.1 0.4 0.5 1.026591
0.2 0.4 0.5 1.262674
0.3 0.4 0.5 1.004382
0.3 0.1 0.5 1.496002
0.3 0.2 0.5 1.172028
0.3 0.3 0.5 1.006005
0.3 0.4 0.1 0.958371
0.3 0.4 0.2 1.009034
0.3 0.4 0.3 1.045792

The influence of M on the velocity of MHD SWCNTs-MWCNTS/EG hybrid nanofluid is highlighted in Figure 3.
Higher values of M cause some resistance in the fluid motion, as can be seen from the plot. The Lorentz forces, which
are the resistive forces, increase in strength as M increases. when a result, when M increases, the Lorentz forces get
stronger and slow down fluid motion.
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Figure 3. Pictogram of M on (1) Figure 4. Pictogram of K on f’(7)
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Figure 5. Pictogram of F7 on f’(?])

Figure 6. Pictogram of M on 6’(7])

Figure 4 show the influence of the porous parameter K on the velocity of hybrid nanofluid. Raise in K essentially
increases the difficulty of boundary layer separation. Additionally, as the frictional drag force increases, the boundary
layer flow is not supported. Consequently, a downward tendency in the velocity pattern is observed for higher K.
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Figure 5 describes the behavior of Fron f(7). Large local inertia coefficient values, which lower fluid speed

and boundary layer thickness, are indicative of enhanced medium porosity. Higher Fr causes the pores to enlarge, which
ultimately lowers the speed.
The effect of the magnetic parameter (M ) on the temperature profile is depicted in Figure 6. Thermal energy

strengthens the Lorentz force by motivating hybrid nanofluids to dissipate sub kinetic energy. In fact, as the magnetic
factor increases, the size of the boundary layer's velocity profiles falls, leading to a raise in boundary layer temperature.
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Figure 9. Pictogram of Bion 9(77) Figure 10. Pictogram of Ec on 9(77)

Figure 7 depicts the effect of various radiation parameter (Rd) values on the temperature of hybrid nanofluid.

Kinetic energy, or the energy required to cause moving atoms in matter to rotate, is derived from heated surfaces and is
known as electromagnetic energy. The graph unequivocally demonstrates that better heat transmission results from
raising the radiation parameter. A thicker thermal barrier layer is produced when the Rd parameter is raised because
more heat is transported into the liquid. The temperature rises as the radiation parameter increases because the mean
absorption coefficient drops. Thermal radiation has a positive physical effect on the medium's thermal diffusibility,
which increases the temperature profile. Physically, higher temperature and a thicker thermal boundary layer are
correlated with increased thermal radiation parameters.

The temperature for various amounts of Pr is revealed in Figure 8. It is clear that as Pr increases, the temperature
parameter decreases. The boundary layer of thermal energy is thicker and the rate of heat transmission decreases for
smaller Pr. Typically, Pr is employed in heat transfer-related applications to determine the width of the thermal and
also the momentum border layers. This is due to the fact that when the Prandtl number increases, the thermal diffusion
rate drops.
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Figure 9 is aimed at presenting the variation in temperature with Biot number. The convective boundary property
at the surface is connected to the Biot number. As the Biot number rises, the temperature gradient close to the surface
also rises, raising the temperature there and, consequently, the thickness of the thermal boundary layer, as seen in
Figure 9 the thermal resistance of a body as measured by its Biot number is the ratio of its internal thermal resistance to
its surface thermal resistance.

Figure 10 describes the plot of temperature counter to the Eckert number Ec. The production of thermal energy
increases with the existence of FEc in nanofluid, becoming more intense, improving temperature distributions, and
therefore increasing thermal layer thickness. This is because frictional heating causes an increase in heat energy in the
flow, which the viscosity of nanofluids stores and converts into internal energy when heated. From the same figure, it is
noticed that the temperature is maximum near the walls when compared with the middle of the channel. Since Ec is
proportional to the enthalpy of heat and to the kinetic energy of particles, an increase in Ec results in greater kinetic
energy for the particles by decreasing the enthalpy actor, and thus an increase in temperature. Figure 11 depicts the
inspiration of Q on energy outline. For the higher numeric values of the Q in energy profile enhanced. Physically, when
heat generation rises, so does the inherent energy of liquid particles, resulting in a rise in the temperature outline.
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Figure 11. Pictogram of Q on 6(7) Figure 12. Sway of K and M on CF

Ee=10.2,04, 0.6

Rd

Figure 13. Sway of Rd and M on Nu

The skin friction coefficient diminutions when growing the values of a magnetic parameter, similarly the skin
friction increases when increasing porosity parameter is revealed in Figure 12. The effect of the radiation parameter and
the Eckert number on the Nusselt number is shown in Figure 13. Increasing the Eckert number results in a
corresponding rise in the Nusselt number and the radiation parameter. Plots or graphs of contours are frequently
employed in the field of fluid dynamics for the purpose of visualizing and analyzing numerous characteristics included
inside a liquid, including its speed, pressure, energy, and concentration. For the higher values of the magnetic parameter
case, we are observing on decreasing tendency which is presented in Figures 14 and 15, while the opposite nature we
noticed on Nusselt number profile and it is demonstrated in Figures 16 and 17.
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The various values of M, K, Fr were presented in Figures 18, 19, and 20. Rising porosity liquid medium leads to
reduced magnetic field for the movement of fluids, as seen in the graph. A decreased heat transfer rate is seen for
moving sheet. Streamlines have significance in the study of fluids and technology for many different reasons.
Streamlines illustrate movement of fluids characteristics. They demonstrate fluid particle movement and path

throughout period. This simplifies unpredictable interpretation.
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CONCLUSIONS
The current research study explored the numerical solution for MHD of SWCNTs-MWCNTs /Engine oil hybrid

nanofluid over a Stretching surface. The Numerical method (BVP Midrich scheme) was used to solve the issue of
velocity, temperature and the outcome was truly solution to the model. The results are presented in a variety of
graphical formats, including a two-dimensional plot, Contour plots, and streamlines.

The research produced a number of interesting findings, which are listed below:

1. The high local inertia coefficient values, which lower both the fluid velocity and the boundary layer thickness.
Thermal radiation has a positive physical effect on the medium's thermal diffusibility, which increases the
temperature profile of the hybrid nanofluid.

3. The temperature gradient at the surface rises with a rise in the Biot number, raising the temperature there and,
consequently, the thickness of the thermal boundary layer.

4.  When the value of Ec is increased, it results in an elevation in the kinetic energy of particles due to a decrease
in the enthalpy factor. This increase in kinetic energy subsequently leads to a rise in temperature.

5. By enhancing the values of the Eckert number, increases the Nusselt number and the radiation parameter.

6. As the values of the radiation parameter and magnetic field parameter are increased, the rate of skin friction
increases.

7. Magnetic parameter strength draws electrical conductivity molecules more towards to the main stream is
observed on streamlines plots.
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BAKJUBICTH BIIBUTOI COHAYHOI EHEPTII, 1)1 HABAHTAKEHOI SWCNTs-MWCNTSs/EG, IIOPACTOI
PO3TSTHYTOI MOBEPXHI DARCY: CXEMA MIJPIXA
Pamacexxap I'ynicerti?, Canranarnam Cynirxa®, Baninenrta Papikymap®, llaiik Txakep?,
CiTi Penni Pengicexap Penni®
“ Kagpeopa mamemamuxu, Memopiansnuii koneddc indcernepii ma mexuonozii imeni Paoacusa I'andi (agmonommnuii),
Hanowsn, 518501, Anoxpa-Ilpadew, Inois
b lenapmamenm npuxnaonoi mamemamuxu Yuisepcumem Hozi Bemana Kaoana, 516003, Anoxpa-Ilpadew, Indis
¢ Jlenapmamenm Mamemamuxu, IHCIMunym mexHono2ii i Hayk AnHamayapvsi, (ABMOHOMHUIL),
Paooccamnem, 516126, Anoxpa-Ilpadew, Inois
 [1Ixona mexnonoaiii, Yuieepcumem Anonno, Yummop, Anoxpa-Ilpadew, 517127, Indis
¢ Jlenapmamenm mamemamuxu, Oceimus pynoayis Konepy Jlaxuwmaiis, Boypamnem, Xatioapabao, Tenaneana, 500043, Inois

ExoHOMist eHeprii, CKOpoueHHs dYacy OOpOOKH, MaKkcHMi3alisi TepMidHOi e(eKTHBHOCTI Ta MOMOBKECHHS TEPMIHY CITyKOU
MIPOMHCIIOBOTO OOJIaTHAHHS — YCi MOXKJIMBI PE3yJIbTaTH ONTHMI3allii omajieHHs Ta 0XookeHHA. OCcTaHHIMHU POKaMH 3pic iHTepec 10
PO3pOOKH BHCOKOS(EKTHBHUX TEIUIOBHX CHCTEM 3 METOI0 MiJBHIIEHHS TEIUIO- Ta MacolepeMiIleHHS. Y IbOMY JOCIiKEHHI
MPEJCTABICHO JOCTI/DKCHHS HEJTIHIHHOTO TMOTOKY TiOpuaHOl HaHOQIIIOIMY, IO CKJIagaeThCcs 3 0araTOCTIHHHUX BYTJICLIEBHX
nanotpybok (MWCNT) i oxHocTiHHHX ByrieneBux HaHoTpyOok (SWCNT) Haj po3TSTrHYTOIO MOBEPXHEI0, BPAXOBYIOUHM BILUIUB
MarHiTorigponuHamika (MHD) i mopucTocTi, 3 MaciassHUM OBUTYHOM, SIKE CIIy>KUTh 0a30BOIO0 DPiOMHOI. Takok BpaxoBYeETHCS
pamiamis ta motik [apci-®opxreiiMepa. 3amava perynoBaHHS MOTOKY IEPETBOPIOETHCS HA 3BMUAiiHI qudepeHIlianbHi piBHAHHS 3a
JIOTIOMOTOI0 3MiHHHX nomiOHocTi. Cxema Minpida MOTIM BUKOPHUCTOBYETHCS [UISL peaizalii YMCeIbHOr0 PO3B’sI3Ky IUX PIBHSHB Y
nporpami Maple. 3a IONOMOror0 Bi3yaJIbHOTO TPEICTAaBICHHs MIBUAKOCTEH 1 TeMIepaTyp piIMHHM 3allUT CTOCYEThCS KUIBKOX
BaJIMBUX (DaKTOPiB, BKIIOYAIOYM MATHITHI MapaMeTpH, mapaMeTpH MOPUCTOCTI, MapaMeTpyd BUIPOMiHIOBaHHS, uuciaa Exkepra,
koedimieHTH iHEpUii Ta yucaa Biot. JlocmimkeHHsS Ma€e BaXXJIMB1I HACTIIKK B 0araTb0X KOHTEKCTaX PEaIbHOTO CBITY. 3aBISKH CBOIM
BHUHATKOBUM XapaKTEPHCTHKAM, TAKUM SIK 3MEHIIECHHs epo3ii, 3SMEHIIEeHHsI TPYHOIIIB NaiHHs [IPY CTHCHEHHI Ta 3HAYHO ITiJIBUIICHA
MIBUJIKICTB  Terulonepenadi, riOpuaHi HaHOQUIIOIAM 4YacTO BHKOPHCTOBYIOTHCSI B TeIUIOOOMiHHMKaX. Hanpuxman, —pisHi
OXOJIO/DKYBalIbHI MIPUCTPOi, TaKi SK ENEKTPOMArHITHI CHCTEMH OXOJO/KEHHS, a TaKoX TeIUIOOOMIHHHUKH, BKIIIOUAIOUH
KOH/ICHCATOPH, KOTJIH, YAIICPH, KOHIUIIOHEPH, BUIIAPHUKH, 3MIHOBHKH MOIIEPEIHBOT0 HAarpiBaHHA Ta paaiatopu. KpiMm Toro, BiH
Mae TTOTeHIliall ISl BHKOPHUCTaHHs y (papManeBTHUHOMY Oi3Heci Ta B ray3i 6i0MeanIHOI HAHOHAYKU.

Kunrouosi caoBa: cxema BVP Midrich; MIJ]; mennose sunpomintosanns; nopucme cepedoguue, ddicepeno menia; nomix [apci-
Dopxeeiimepa; 2iopudHull HaHOGM0IO
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This paper presents a numerical study of the linear and non-linear stability of thermosolutal convection within a porous medium
saturated by a non-Newtonian binary fluid. The power-law model is utilized for modeling the behavior of the working medium. The
given statement implies that the horizontal boundaries experience thermal and solutal flow rates, whereas the vertical walls are
impermeable and thermally isolated. The relevant factors that govern the problem being investigated are the Rayleigh number, Ry, the
power-law index, n, the cavity aspect ratio, 4, the Lewis number, Le, and the buoyancy ratio, N. An analytical solution is obtained for
shallow enclosures (A >> 1) using the parallel flow approximation and a modified form of the Darcy equation. By solving the entire
set of governing equations, a numerical investigation of the same phenomenon was conducted. One of the most intriguing discoveries
from this research is that it identifies a bi-stability phenomenon, this particular phenomenon signifies the existence of two stable
solutions. The results obtained from both methods demonstrate a good level of agreement across a diverse range of these governing
parameters.

Keywords: Bi-stability; Thermosolutal convection; Power-law fluid; Porous layer, non-Newtonian binary fluid

PACS: 47.55.P-, 47.50.Gj, 44.30.+v, 83.60.Rs, 47.20.Ky, 02.70.Bf

1. INTRODUCTION

In recent decades, natural convection of heat and mass transfer has been characterized by fluid flows driven by
buoyancy effects due to temperature and concentration gradients applied at different diffusion rates. This phenomenon is
frequently encountered in nature and has many applications in the fields of science and technology, geothermal systems,
heat exchangers, cooling systems, heat exchangers, microchannels, solar energy collectors, non-Newtonian chemical
processes, and many others [1-3]. Over the last few decades, most studies carried out on Newtonian double-diffusive
convection in closed geometries have focused on simple geometries such as a rectangular cavity or a rectangular porous
layer heated from below from the side. However, in many of the fields mentioned, the fluids used are non-Newtonian in
nature. A few limited studies have been carried out on natural of power-law fluids in two- and three-dimensional
enclosures [4-6].

Natural convection in rectangular enclosures with differentially heated vertical walls and adiabatic horizontal walls
is one of the most studied configurations for Newtonian flows [7, 8]. In fact, Newtonian behavior at higher shear rates
with dynamic viscosity dependencies as a function of temperature has been reported, as has pseudoplasticity at lower
shear rates. Non-Newtonian fluids, i.e., those that go against Newton's law of viscosity, have been widely used in many
industries, such as food, petrochemicals, pharmaceuticals, etc. However, when it comes to rheology, non-Newtonian
fluids have been widely used. With regard to rheology, non-Newtonian fluids can be classified into Bingham plastic
fluids, pseudoplastic fluids and dilatant fluids. In addition, non-Newtonian fluid models can be divided into time-
dependent, time-independent and viscoelastic models [9-12]. Moraga et al. [13] studied the 3D natural convection heat
transfer of a non-Newtonian power-law fluid in a container placed in an enclosure. The container was filled with a non-
Newtonian power-law fluid and surrounded by air. Their results included isotherms and streamlines at different values of
Ra for each Newtonian and non-Newtonian power-law fluid. Jahanbakhshi et al. [14] studied the influence of the magnetic
field on the natural convection of a non-Newtonian fluid in an L-shaped cavity. They found that the rate of heat transfer
increased for shear-thinning fluids and decreased for shear-thickening fluids. They also found that the Nusselt number
decreases with increasing Pr when the fluid shear-thins. Lamsaadi et al. [15] have numerically simulated the natural
convection of a non-Newtonian fluid in a vertical cavity. Their results show that a shear-thinning fluid contributes to fluid
flow and a shear-thickening fluid reduces it. Shear-thinning fluid also increases heat transfer. Makayssi et al. [16]
presented an analytical and numerical experimental study of natural double-diffusion convection in a shallow two-
dimensional horizontal enclosure. These authors concluded that the characteristics of fluid flow, heat and mass transfer
appear to be highly sensitive to the flow behavior index, n. Thus, compared to the Newtonian case (n = 1), shear-thinning
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behavior (0 < n < 1) enhances fluid flow as well as convective heat and mass transfer. Kefayati [17] considered non-
Newtonian fluid in a square enclosure and discussed the effect of Reynold’s and magnetic field inclination angle on fluid
flow. Zyta et al. [18] carried out a rheological study on nanofluids containing a mixture of nanodiamond and graphite
with different ash fractions. They also studied a mixture of nanodiamond and graphite with different ash fractions. Non-
Newtonian behavior and viscoelastic structure were also observed. The transient buoyant convection of a non-Newtonian
fluid in a square enclosure, heated differentially from the vertical, has been studied numerically by Kim et al. [19].
Getachew et al. [20] have described the flow type and heat and mass transfer patterns of double-diffusive inside a porous
enclosure saturated with a non-Newtonian fluid of power using scaling arguments, verifying the results obtained by
experimental. Moradi et al. [21] have carried out an experimental study of heat transfer rate enhancement of multi-walled
carbon nanotube nanofluids in a double-pipe heat exchanger with aluminium porous media. Jena et al. [22] have studied
the double-diffusive free convection of a non-Newtonian Ostwald-De Waele fluid inside a 2D cavity with partially active
vertical walls. Lounis et al. [23] studied the impact of Dufour and Soret effects on double-diffusive convection in an
inclined square enclosure using the Carreau-Yasuda model to model the rheological behavior of a non-Newtonian fluid.
Their main conclusion is that for different values of the power-law index, the Lewis number increases heat and mass
exchange. Rebhi et al. [24, 25] investigated the convection generated in porous cavities containing a binary fluid and
discovered that the drag parameters had a significant impact on the stability and onset of subcritical and Hopf bifurcation.
Rebhi et al. [26] studied Rayleigh-Bénard thermosolutal convection instabilities in shallow enclosures with finite aspect
ratios that influenced by the rheological behavior of non-Newtonian fluids. They showed that the bistable convection
regime exists for every aspect ratio of the enclosure, regardless of the type of thermal and solutal boundary conditions.
Bihiche et al. [27] analyzed the effect of buoyancy ratio on natural convection and on heat and mass transfer rates in a
horizontal rectangular enclosure filled with a non-Newtonian power-law fluid. The emergence and development of
double-diffusive convection for both aiding and opposing flows were also studied.

Consequently, natural convection in rectangular/square cavities filled with porous layers saturated with a non-
Newtonian fluid has been studied by many researchers [28-30]. Nield et al. [31] studied the effect of high heterogeneity
on the occurrence of vertical density gradient-induced convection in soil. On the occurrence of convection induced by a
vertical density gradient in a saturated porous medium governed by Darcy's law. Devakar et al. [32] have simulated the
flow of non-Newtonian fluids in a straight, uniform square duct through a porous medium. They observed that the velocity
and volumetric flow rate decrease with increasing torque stress and porosity parameters. Uphill et al. [33] studied the
flow of nanofluids in porous media. They showed that nanofluids containing particles smaller than the size of water are
more efficient in porous media. Lakshmi et al. [34] studied the effect of Soret and Dufour diffusion on natural convection
in a saturated porous medium. The results indicate that the Nusselt number increases linearly with increasing Dufour
parameter to facilitate buoyancy. Numerical study of Soret and Dufour effects on the natural convection flow of a vertical
plate with power-law heat flux embedded in a porous medium is studied by Tsai and Huang [35]. Zhu et al. [36] have
numerically studied the natural double-diffusive convection of power-law fluids in a porous cube using a generalized
non-Darcy model. They found that the impact of different power law indices on convection is mainly manifested in
rheological properties, showing that shear-thinning fluids are more efficient at enhancing heat and mass transfer than
shear-thickening fluids. Madhua et al. [37] investigated new entropy generation characteristics in the fully developed heat
transport of a non-Newtonian Carreau fluid in an inclined microchannel. They found that the velocity is maximal at the
center of the microchannel when using increasing values of Grashof number Gr, while entropy production is maximal at
the center of the channel. Ben Khelifa et al. [38] have derived an analytical solution to characterize the onset of motion,
heat and mass convection for a binary power law fluid in a shallow porous enclosure. The occurrence of nonlinear
convection in a horizontal porous layer saturated with a shear-acting fluid is studied by Bensilakhal et al. [39]. The most
interesting results of their study are the demonstration of the existence of a bi-stability phenomenon, i.e., the existence of
two steady-state solutions, which had not previously been observed in the convection of non-Newtonian fluids.

Many studies have focused on the effect of the shear-thinning of non-Newtonian fluids, which attracts more attention
when it comes to heat transfer problems. The Marangoni in a shallow rectangular cavity of a power-law fluid was studied
by Naimi [40]. Chen [41] examined the influence of Marangoni convection for a power-law liquid film on an unsteadily
stretching aluminium foil. Lamsaadi [42] studied the natural convection of non-Newtonian power-law fluids subjected to
transverse temperature gradients inside a horizontal rectangular space. These authors noted the combined effect of heat flow
ratio, power-law index and Rayleigh number on flow intensity and heat transfer rates. Lamsaadi et al. [43] have shown that
the depends only on the nominal Rayleigh number Ra and the power-law index, n, for large values of the aspect ratio and
the nominal Prandtl number Pr. Habibi et al. [44] described the natural laminar convection of a non-Newtonian fluid between
two horizontal eccentric square ducts under equilibrium conditions. Recently, Alloui et al. [45] analyzed the onset of fluid
motion for power-law fluids. It was shown that, for shear-thinning fluids, the onset of convection is subcritical. For shear-
thickening fluids, convection occurs at a supercritical Rayleigh number of zero. Khali et al. [46] studied double-diffusive
convection in a power-law fluid. The results indicate that the fluid structure is more important for thermal base flow. Ohta
et al. [47] have numerically investigated transient heat transfer in a square cavity heated from below and cooled from above.
For shear-thinning fluids, the Sutherby model was used. Their study also reveals an increasing magnitude of shear-thinning,
based on a transient analysis of the natural convection of shear-thinning-fluids in rectangular enclosures with differential
heating. Hojjat [48] described Reynolds and Prandtl numbers for non-Newtonian fluids; the coefficient index and power-
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law index are very important in determining the Reynolds number and initial velocity of the fluid at the tube inlet. Reynolds
and Prandtl numbers are described as follows for non-Newtonian fluids. Solomatov and Barr [49, 50] have numerically
investigated the occurrence of convection in non-Newtonian power-law fluids under the effect of temperature-dependent
viscosity. The authors summarize their results in terms of simple scaling relations.

The primary focus of this investigation centered on the phenomenon of thermosalutal convection within a horizontal
porous layer filled with a non-Newtonian fluid, subjected to heating and salting from below. The non-Newtonian fluid
behavior was accurately characterized through the implementation of the power-law model, accepting a diverse range of
fluid types, including shear-thinning (n < 1), shear-thickening (n > 1), and Newtonian fluids (n = 1). Employing a
time-accurate finite difference method, the comprehensive nonlinear governing equations were numerically resolved.
Additionally, an analytical solution for shallow enclosures was derived. The outcomes of this study significantly
contributed to an enhanced comprehension of the impact of various governing parameters on diverse convective
bifurcations. Notably, the shapes of bifurcation branches underwent substantial alterations, particularly in scenarios
involving opposing double-diffusive flows. The most noteworthy revelation was the emergence of bistability bifurcation
with increasing shear-thickening behavior of the fluid, leading to the occurrence of two distinct and stable solutions under
identical flow conditions, a phenomenon hitherto unobserved in the context of Newtonian fluids.

2. PROBLEM DEFINITION AND MATHEMATICAL FORMULATION
The problem under study is sketched in Figure 1. It’s a tow-dimensional horizontal shallow cavity filled with non-
Newtonian binary fluids saturated porous media. Choose an appropriate coordinate system where the x’, y’ are the
longitudinal and transversal axis, respectively. The enclosure is of height H' and length L'. The short vertical end walls
are thermally insulated, while the horizontal walls are submitted to constant heat flux, q’, and solutal flux, J'. In
accordance with previous statements made by Pascal [51, 52], the model of laminar flow of a non-Newtonian power-law
fluid through a porous medium is explained as follows:

;M
Vp' =Ly 1
p X (D
where
n=l ml n-1 n
=g +v?)2, and £=82 (K¢)2 (n/(1+3n)) (2h)" Q)
yV’ v!
St e |9 s

non-Newtonian x',u
Power-Law Fluids

—Tl}' (or 73,") T‘/' (or S,")
Figure 1. Sketch of the enclosure and coordinates system.

where V' is the superficial velocity, ¢ and K the porosity and the permeability of the porous medium respectively, ug,
the apparent viscosity, h the consistency index and n the power-law index. In the above model the rheological parameters
h and n are assumed to be temperature independent.

The equations governing the heat flux q' and matter flux j', with respect to the thermal and solute gradients in the
binary fluid mixture, are expressed by De Groot and Mazur [53], as follow:

G =-kVT', j=-pDVS’ (3)

Herein, where T' and S’ represent respectively the temperature and the concentration of the fluid at a point in the
system, k and D represent the thermal conductivity and molecular diffusion coefficient of the species, respectively.

If we make the assumption that the flowing fluid and the porous medium are in local thermodynamic equilibrium
throughout, with constant properties for both the fluid and the porous medium, and apply the Boussinesq approximation,
which has been used in the past by many authors Amari et al. [29], Bian et al. [54, 55], and Benhadji and Vasseur [28].
The equations that govern the current problem can be expressed as follows:

VI7'=0 @
Vp,:_%ﬁ"pog[l‘ﬁ?(T'—To')—ﬁé(S'—Sé)] )
(pC)paa—f,,+(pC)/. J(W,T)=kVT’ ©)
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’

¢ %‘j, +J(¥,8")=DV’S’ (7)

where p the density of the non-Newtonian fluid. Ty, S; and p, represent the temperature, concentration, and mass density
of reference, g the gravitational acceleration, (pC); and (pC), are the heat capacities of fluid and saturated porous
medium, and @ = k/(pC) the thermal diffusion coefficient. S, s are respectively the thermal and solutal expansion

coefficients. They are defined by
, 1(9 , 1(d
i =——(—p] . B =——[—p] ®)
Po\OT )y Po\OS Jpy
By using H', a/H', AT' = q'H'/k, and S = S'/AS’ to scale length, velocity, temperature, and concentration,

respectively, and eliminating the pressure term from Equation (5) through standard methods, it can be demonstrated that
the dimensionless governing equations can be formulated as follows

Vz\P:—Iua_l a_lP%_Fa_\Paﬁ_FRr(a_T_}_Na_S\J (9)
dy dy dx ox ox ox
iy L 2T _¥or an

o  dy ox ax

LeJVzS:ga—S{_B_‘I’a_S_a_‘PB_S (11)
ot dy ox Jx dy

(aw jz MY
—_ + —_
ox dy
The dimensionless parameters who were extracted from Egs. (9)-(11) are Ry = KpgB' AT’ /u is a thermal Rayleigh

number, the Lewis number Le = a/D, the buoyancy ratio N = B'sAS’/B'rAT', € = ¢ /o the normalized porosity, with
o = (pC),/(pC)y is the heat capacity ratio, and ¥ is a dimensionless stream function defined as

(=]
2

a

(12)

¥ ¥
U=——-1, v=-—

- 13
dy dx (13)

Remember that it is possible to improve the Newtonian expressions by simply set n=1 and y, = 1. The non-
dimensional boundary conditions at the enclosure walls are as follows

PR O Y A N R (14)
dy dy Oy

\}f:a—q}=0, IT_95 o at x=44/2 15)
ox ox ox

where A = H'/L' is the cavity aspect ratio.

The problem definition is rendered complete by the simultaneous consideration of Eqgs. (9)-(13) along with the
boundary conditions, as denoted by Egs. (14) and (15). It is important to note that the solution to this problem is
intrinsically dependent on the values of the parameters Ry, 4, Le, N and n.

From an engineering perspective, the focus lies in the calculation of heat and mass transfer rates expressed through
local and average Nusselt and Sherwood numbers, denoted as Nu,, Nu,,, Sh,, and Sh,,, respectively. In the current
notation, the computation of Nu,, Nu,,, Sh,, and Sh,, is performed as follows:

N”.;l = 7;;(,—1/2) - T(x,l/z) ; Sh = S(x,—l/Z) - S(x,1/2)

x

B _1+A/2 . B _]+A/2 (16)
Nu,=A" [ Nude 5 Sh,=A" [ Shdx
—A/2 —A/2

where the integral is performed using Simpson’s method.

3. NUMERICAL SOLUTION
For simple geometry problems Fig. 1, the finite difference method used to numerically solve the governing equations
(9)-(11). The energy and concentration equations are discretized with a second-order centered scheme. For each time step
the implicit method with alternating directions (ADI) gives rise to two tri-diagonal matrix systems to be solved, one
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resulting from the implicit discretization in x and the other of the implicit discretization in y. The (ADI) method divides
the time step into two equal parts, in the first half-time step, the system is implicitly in x but explicitly in y and in the
second half-time step, the system is implicitly in y and explicitly in x. For each time step, the solution is obtained by
scanning the computational domain in the x direction then in y-direction. Knowing the fields of temperature and
concentration at time (n + 1)At, to solve the discretized motion equation at each time step successive over relaxation
method (SOR) is used which is an explicit method directly giving the value of ¥ to the instant (n + 1)At. The
convergence criterion for solving Eq. (9) is provided.

DI LV
J

The selection of mesh size is a careful consideration aimed at striking a suitable balance between computational
efficiency and result accuracy. The approach involves grid refinement iteratively until the numerical solution converges,
with a reasonable accuracy threshold, to the analytical solution developed in the subsequent section. This convergence is
achieved under the prescribed values for A, Le, N, n, and Rr. As indicated in Table 1, a uniform grid of dimensions
221x141 proves to be well-suited for accurately modeling the flow, temperature, and concentration fields within a cavity
between 6 and 10. The chosen time-step sizes for simulations range between 10 and 1073,

| <10° (17)

Table 1. Convergence tests for specified parameters, A = 6, Le = 5, N = —0.1, Ry = 100, and n = 1.2.

Numerical solution Analytical
Grids 40x20 100x60 160x100 220x140 solution
¥ 3.0342 2.9574 2.9462 2.9397 2.9269
Nu 2.9153 3.0033 3.0219 3.0254 3.0280
Nu,, 2.7292 2.8213 2.8404 2.8442 -
Sh 5.0314 5.3053 5.3772 5.4060 5.4358
Sh,, 5.1010 5.3920 5.4691 5.4997 -

595008887

0.31-0.26-0.21-0.15 -0.10-0,05 0.00 0.05 0.10 0.15 0.21 0.26 0.3;

Figure 2. Contours of streamlines, ¥, Temperature, T, Concentration, S, horizontal velocity, U, and apparent viscosity, y,, for
Ry =100, Le = 5, N = —0.1 and various values of n

Figure 2 present the contours of streamlines, ¥, temperature, T, concentration, S, horizontal velocity, U, and
apparent viscosity, [,, obtained numerically, for two different liquids with power-law index of n = 0.6 and 1.4 and for a
Newtonian fluid (n=1), at R = 100, Le = 5,and N = —0.1. The streamlines are uniformly distributed with designated
increments, A¥, spanning from zero at the boundaries to the maximum value, ¥,,,,, at the center. The isotherms and
isoconcentration lines are uniformly distributed between the successive positions of the peak temperature T4, and
maximum concentration S, ., situated lower edge of the right vertical wall. On the other hand, the minimum temperature
Tmin and minimum concentration S,,;, are situated along the upper edge of the left vertical wall. Notably, the
dimensionless temperature and concentration at the cavity’s center are both normalized to zero. Furthermore, owing to
the centrosymmetry inherent in the problem, the minimum and maximum temperatures, as well as concentrations, exhibit
equivalent magnitudes but with opposite signs. The horizontal velocity lines are uniformly distributed from the maximum
velocity, Up,qx, located on the lower horizontal wall and the minimum velocity, U,;,;,, on the upper horizontal wall. The
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apparent viscosity lines are uniformly distributed with specified increments Au, between the minimum value, fgmin, ON
the center of cavity and the extremum value, lg.,4y, On the center when n = 0.6, this is the opposite of n = 1.4, and it’s
clearly constant (1, = 1) when n = 1. The numerical findings depicted in Figure 2 validate the theoretical assumption
made in the analytical solution, indicating that the flow patterns within the central region of the cavity remain parallel
regardless of the power-law index, n. It is important to note. However, that the scope of this current investigation is
confined to the examination of unicellular convection exclusively.

To validate the accuracy of the current numerical solutions, Tables 2 and 3 presents the obtained numerical results,
including the center stream function, ¥, value, as well as the local Nusselt, Nu, and Sherwood, Sh, numbers. A
comprehensive comparison with the findings reported by Amari et al. [29] and Ben Khelifa et al. [38] reveals a very good
level of agreement.

Table 2. Comparison of ¥, and Nu with previous numerical studied of Amari et al. [29] for N = 0, Le = 5, and various values of n,
with horizontal cavity.

A=6and Ry = 100

Analvtical Amari et al. [29] Present Present study Present study

n Y study study vs analytical vs Amari et al. [29]
0.6 ¥, 6.701 6.762 6.742 0.61% 0.30%

) Nu 6.000 5.997 5.929 1.19 1.14
10 ¥, 3.708 3.708 3.706 0.05 0.05

) Nu 3.750 3.750 3.737 0.35 0.35
14 ¥, 2.448 2.468 2.474 1.06 0.24

) Nu 2.553 2.553 2.558 0.20 0.20

Table 3. Comparison of ¥, Nu and Sh with previous numerical studied of Ben Khelifa et al. [38] for N = 0.2, Le = 10, and various
values of n, with horizontal cavity.

A=6and Ry = 25

Analytical Present Present study Ben Khelifa et al. Present study

n solution study vs analytical [38] vs Ben Khelifa et al. [38]

¥, 2.54 2.55 0.39% 2.60 1.94%
0.6 Nu 3.22 3.22 0.00 3.27 1.54

Sh 7.22 7.30 1.10 7.25 0.69

¥, 1.47 1.47 0 1.48 0.68
1.0 Nu 1.81 1.81 0 1.81 0

Sh 5.75 5.75 0 5.75 0

¥, 1.00 1.02 1.98 1.01 0.99
1.6 Nu 1.36 1.37 0.73 1.64 18.09

Sh 4.98 4.97 0.20 4.98 0.20

4. ANALYTICAL SOLUTION

An analytical solution for the full governing equations, (9)-(11) is in general impossible, except for certain cases
and assumptions for which the equations simplify considerably. In the case of a porous layer of large aspect ratio (4 > 1)
with active walls exposed to constants fluxes of heat and mass, it is possible to find an approximate analytical solution.
This last, obtained using the concept of parallel flow, the generated flow becomes relatively parallel along the long walls
of the cavity, which of course makes it possible to neglect the component of the velocity perpendicular to these walls.

The streamlines, at the center of the cavity, become parallel to the x-axis. In other words, the current function ¥
becomes a function of the y ordinate only. We can then write:

‘I’(x,y)z‘l’(y) (18)

The temperature and concentration profiles are given by the sum of two terms, the first one defining a linear
longitudinal variation and the other giving the transverse distribution:

T(x,y)=Crx+6,(y)
S(x,y)=Csx+6;(y)
where C; and Cg are constants expressing temperature and concentration gradients along the x-direction.

Substituting approximations (18) and (19) in the governing equations (9)-(11) and assuming steady state of flows,
the heat and mass fluxes, we get the following ordinary differential equations:

19)

n—1

d|d¥
dy| d

dy¥y

mlle -A (20)




209
Hysteresis and Bistability Bifurcation Induced by Combined Fluid Shear Thickening... EEJP. 1 (2024)

where: A =R, (C, +NCy)

2
d ‘92r ¢, ¥ @1
dy dy
a6, ‘9 et (22)
dy

Solution of Egs. (20)-(22) satisfying the boundary conditions given by Eq. (14) are:

¥ () ==my' [A]" [ 3" = (1/2) ] (23)
T(y)=Cpx = [A]" (m) Cry[(m+1) -(1/2)" ] 4)
S(v)=Cyx = [A]" (m)" LeCyy| ~(1/2)" |-y (25)

where:m =1+ 1/n.
The expression of the velocity distribution u along y derived from the stream function is:

u(y)=-[A]"]y

The concept of parallel flow loses its viability due to the turning flow at the end of perpendicular walls. However, in
the case of thermal and mass conditions in the end walls, the value of constant temperature and concentration gradients,
Cr and Cg respectively are determined by considering the arbitrary control volume of Fig. 1, the energy and material
balances in the control volume at any x-direction are written according to the following forms:

Y (26)

+1/2 +1/2
C, = [ Budy; Cs=Le [ Oudy 27)

—12 -1/2
By substituting the temperature, concentration and velocity Egs. (24)-(26) into Egs. (27), we get the following
expression:
1y (12)" [A]" [1=(12)" @m+ 17", [A]" |- ¢, =0 (28)
Le(m+1)" (1/2)" [A]" [1-(1/2)"" @m+1)"CsLe[A]" |- €, =0 (29)

Equations (28) and (29) has been solved numerically for C; and Cs using the method of Newton-Raphson.
From Egs. (24), (25) and (16), the Nusselt and Sherwood numbers are given by:

Nu' =1-[A]" (m+1)y"'C, (1/2)" (30)

Sh =1-[A]" (m+1)"CyLe(1/2)" 3D

5. LINEAIR STABILITY ANALYSIS
In this section, an investigation into the stability of the steady state is conducted. The overall convective solution
encompasses a foundational solution (Y}, T}, Sp,) with a perturbation solution (W, Ty, Sp).
In the context of an infinite horizontal fluid layer, the perturbation solution for the stream function, temperature, and
concentration field can be formulated as follows:

¥, (x,,1)="¥e""F (x,y)
Tp (x,y,t) = eoem#mcG(x’y) (32)
SP (xayat) = ¢0ept+iaXH(x’y)

In this formulation, F(x,y), G(x,y), and H(x,y) represent the spatial profiles of the perturbation for the stream
function, temperature, and concentration, respectively. p characterizes the growth rate of the perturbation, « is a real
number which designates the wave number. The variables W, 8, and ¢, denote infinitesimal unknown perturbation
amplitudes for the stream function, temperature, and concentration.

In order to assess the stability of the rest state solution, a tiny perturbation is introduced, allowing the complete
solution to be expressed as follows:
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¥ (xp.t) =W, (x,y)+¥, (x,.1)
T(x,y,t)=T,(x,y)+T,(x,y,t) (33)
S(xy’) Sb(xy)-l-Sp(xy’)

The apparent viscosity, denoted as p,, can be further decomposed as:

M, =Ml + U, (34)

n—1
¥ . . . . .
Here, 1, , and u,, = (a—”] represent the perturbation and basic apparent viscosity, respectively.
Y

The linearized form of the perturbed apparent viscosity is expressed as follows:
n-1
¥ v
Hop=(n=1)| == | —F
dy dy

Upon substituting equations (32)-(35) into equations (9)-(11) and neglecting the second-order nonlinear terms, the
resulting linearized stability equation is as follows:

(35)

(nD*—a?)(D¥,)" f+n(n-1)(D¥,)"” D*¥,Df =—R, (g +Nh) (36)
(C,D—-iaDT,) f +(’ +iaD¥, - D*) g =—pg (37)
(CsD—iaDS,) f +(Le o +iaD¥, — Le”'D* ) h = —p&h (38)
where:
d
w,F=f, 6,G=g, ¢,G=h, D:E (39)

By employing the variational formulation through the Galerkin technique, the integrated linear equations are derived
as follows:

(&, JUr}=r ([8, e+ [8,]{n}) (40)
(B, J{/}+[K, g} =-p[M,]{c} (41)
[B¢]{f}+[1< ]{h}=—P8[M 1{n} 42)
The constants[K, ], [8,], [C,]. [B]. [K,], [M,], [B,]. [K,], and [M,]can be determined through

the computation of the following Galerkin 1ntegral

[BWT = _[_lliaNle. %d?]

e (. 9N, . dT,
B, = L _ior Nd
[8,] J‘_( Y 877 j n
e oN,
(8] =] 2mia®en, [van
—1 an 877 J

n-1 n-1 n-2
e oN, 2
[K ] :J‘l n 8‘1’,, BN (I’l—l) 8‘{‘,, d \{;h 2 N E)N N
4 -1 on Ay 877 877 on on Ay 7 on

n-1 n-2
o’ (8&] (ﬂj NN, ] dn
on 2 !

[K]—j Ay 09 vy 2 9N, N, .
2 on ' Ay 877 877

(6,1 =] [Z vy, viareZen n, + 220N,
¢ -1 2 s on T Ay 877 on

. . A
[M,) =[m,] = NN, Tydn
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The perturbation boundary conditions are specified by:

Df=f=0 atxzig andyzi% (43)

Dg=Dh=0 atxzig (44)

6. RESULTS AND DISCUSSION

The results of this study focus on the effect of the power-law index, n, the Rayleigh number, Ry, the buoyancy ratio,
N, and the Lewis number, Le, on the bistability convective flows, heat and mass transfer behaviors, and on the thresholds of
the onset of various convective bifurcations in a porous layer, as predicted by the analytical solution. The findings have been
confirmed through numerical analysis of the complete governing equations. The primary revelation in this research involves
identifying a convective bistability phenomenon occurs from the interactional effect between the slower diffusing component
and the shear-thickening fluids (n > 1) properties. The study encompasses both numerical and analytical outcomes, which
fall within the following typical ranges: 0.6 to 1.4 for 'n,' 1.0 to 20.0 for 'Le,' and -0.2 to 0.2 for 'N.'

Our research is primarily concerned with the onset of bifurcation. Consequently, we restrict our analysis to Rayleigh
numbers R; of relatively modest magnitudes, specifically Ry < 100, in close proximity to the critical points.
Furthermore, in order to establish the presence of bistability in convection across various aspect ratio and thermal and
solutal boundary conditions, we systematically vary the parameter 'A' within the range of 6 to 10, while adopting Neumann
boundary conditions. This approach serves to generalize the conditions under which bistability in convection phenomena
can manifest. Our initial investigation focuses on a shallow enclosure, benefiting from the availability of an analytical
solution to provide guidance in this context.

Figures 3(a)-(d) show the horizontal velocity, U, apparent viscosity, u,, temperature, T, and (d) concentration, S,
profiles at the center of the layer (x = 0) for Ry = 100, Le = 5, N = —0.1, and various values of n. the results are
presented for —0.5 < y < 0.5. The analytical solution, represented by solid lines, aligns closely with the numerical
results, denoted by solid circles, demonstrating a favorable agreement between the present analytical solution and the
numerical solution. Figure 3(a) reveals a discernible decrease in velocity with increasing values of the power-law index,
n, and highlights that the maximum velocity values occur at the boundaries. This behavior stems from the modeling of
the porous medium in accordance with Darcy's law, permitting fluid slip at the solid boundary.
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Figure 3. Effect of the power-law index, n, on (a) the horizontal velocity, U, (b) apparent viscosity, 1, (¢) temperature, T, and

(d) concentration, S
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Notably, for a Newtonian fluid, the velocity distribution follows a linear pattern, in agreement with the findings of
Amari et al. [29] and Vasseur et al. [56]. The depiction of apparent viscosity in Figure 3(b) elucidates a diminishing trend
as the power-law index, n, decreases. This signifies a reduction in the significance of convective motion when the fluid
exhibits shear-thickening behavior (n > 1). Conversely, contrasting effects are observed for shear-thinning fluids (n < 1),
as evidenced in Figure 3(b). These observed phenomena align with the findings reported by Amari et al. [29],
Dharmadhikari and Kale [57], as well as Chen and Chen [58, 59], and it’s clearly constant (4, = 1) in the case of
Newtonian fluid (n = 1). In Figures 3(c) and 3(d), it is observed that the temperature and concentration profiles exhibit
an augmentation with increasing values of the power-law index, n. Additionally, all curves maintain a constant slope
aty = —0.5 and y = 0.5, attributed to the imposition of a constant heat and mass flux on the horizontal walls.

1.6 As an introductory exploration into the identification of
bistability in convection, we present a graphical representation
with an algorithmic scale in zoomed image Figure 4, illustrating
the bistability bifurcation concerning flow intensity as a
function of the Rayleigh number. The figure encompasses three
distinct Rayleigh number thresholds, each bearing significance.
Specifically, it is well-established that, in the context of a
negative buoyancy ratio (N < 0), a threshold similar to that of
subcritical flows emerges, denoted as R$¥. This threshold may

manifest either below or above the supercritical threshold, Ry .

Furthermore, an additional threshold, referred to as RE,
consistently surpassing Ry., delineates a hypothetical

backward bifurcation, symbolized by a dashed-dotted arrow.

Le= 7.0 Analyti 1 luti tabl . . . P .. .
Noo1 o Amalytical solution anotable This backward bifurcation exhibits a transition from low to high
1 1 1 1 . . . .
0 10 20 30 20 finite amplitude convective states, forming an “S”-shaped
R, bifurcation pattern.

The phenomenon of bistability bifurcation, achieved
through systematic variations in Rayleigh numbers in both
ascending and descending sequences, engenders a hysteresis
loop. Within this loop, high and low convective states persist concurrently under identical flow boundary conditions and
governing parameters.

In Figure 4, we depict three distinctive bistability regimes. The first of these regimes, referred to as the subcritical

regime, manifests when the subcritical threshold R§¥’ is significantly lower than the supercritical threshold Ry’ ,

specifically when, n, is less than 1.107. The second regime, known as the transcritical regime, materializes when R$%P

equal R;.F , denoting a condition where, n, equals 1.107. The third regime, termed the supercritical regime, emerges
when R$¥ considerably exceeds R;lép , signifying, n, values greater than 1.107. Across all three of these regimes, the
characteristic "S" shaped bistability bifurcation remains intact, resulting in the coexistence of two distinct and stable
convective states. Notably, the bistability in convection ceases to exist when the lower and upper bifurcation points, R$%?
and RY | converge (i.e., when n equal 1.55), giving rise to a well-defined inflection convection state characterized by a
sharp increase in heat and solute transfer rates.

Table 4 provides a comprehensive presentation of the critical Rayleigh numbers denoting the onset of motion (R4,
REY and Ry¢7) as a function of the power-law index, n. A discernible trend emerges from the table, underscoring the
notable influence of the power-law index, particularly in the context of thickening fluids. It is remarkable that such an
influence does not manifest in the case of shear-thinning fluids, highlighting a significant distinction in the behavior of
bistability convection.

In Figure 5, characteristic bifurcation diagrams are presented, illustrating the dependencies of W, Nu, and Sh on R and
n under the specified conditions of Le = 5 and N = —0.1. The outcomes encompass a range of power-law index, spanning
from n = 0.6 to 1.4. The curves featured in the plots represent the predictions derived from the present analytical/mumerical
nonlinear models. The solid lines denote the stable branches, while the long-dashed lines signify unstable branches.

Figure 4. Bifurcation diagram in terms of ¥, as the
function of Ry and n

Table 4. Dependence of R§%’, R% and Ry ;"onn for Le = 7.0 and N = —0.1.

n R7E R Ryc”
0.6 11.95 1314.69
0.8 13.90 232.48
1.0 15.17 40.00 40.00
1.1 15.46 29.72 16.47
1.2 15.50 23.77 6.75
1.3 15.28 19.62 2.76

1.4 14.80 16.59 1.12
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Figure 5. Bifurcation diagram as a function of Ry and n: (a) flow intensity ¥,, (b) Nusselt number Nu, and (c) Sherwood
number, Sh

The numerical solutions derived from the full governing equations are represented by solid circles. Notably, Good
agreement is observed between the results of these two nonlinear theories. The profile obtained for a Newtonian fluid
n = 1.0 corresponds to convection induced by the imposition of a constant heat and mass flux on the horizontal
boundaries of the system. This configuration leads to the emergence of a saddle-node bifurcation at a subcritical Rayleigh
number, denoted as R$%?=15.63. The determination of the subcritical Rayleigh number involved a numerical search within
the analytical model, where the value of R was identified such that the inverse of the derivative of ¥, with respect to Ry
equaled zero. With an increasing in the power-law index, denoted as n, the bifurcation behavior undergoes a notable
transformation contingent upon the magnitude of power-law index. Across the range of cases spanning from 1 < n < 1.3,
the bifurcation curve exhibits the distinctive presence of two turning saddle-node points (R$%? and RE"). These points
connect the two stable branches, delineated by an intervening unstable branch represented by long-dashed lines. The
upper stable branch, originating from R$%?, aligns with the conventional subcritical bifurcation observed earlier for n = 1.
Conversely, the lower stable branch, commencing at Ry, corresponds to a supereritical bifurcation. However, it is noted

that the latter exist within the interval of R;# < Ry < RF4". Under these circumstances, a bistability regime manifests
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itself between the two thresholds (R§%? < R; < RF"). Beyond the supercritical Rayleigh number, Ry’ , the outcomes
derived from the numerical solution of the full governing equations suggest that, when initiating computations from the
initial rest state conditions, the solution traces a hysteresis loop as illustrated by arrows in the zoom included in Figure
5(a.2; b.2 and c.2). Corresponding heat and solute transfer rates are presented in Figures 5(b) and 5(c). Under the specified

conditions of N = —0.1 and Le = 5, the presence of bistability bifurcation is confirmed within the power-law index range
of 1 < n < 1.3. Notably, for n < 1, the observed bifurcation assumes a subcritical.
(a) (b)
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Figure 6. Contours of streamlines, ¥, temperature, T, concentration, S, and apparent viscosity f.

Within the zone of bistability, Figure 6 showcases the solutions at Ry = 18, obtained through the numerical resolution
of the comprehensive governing equations. These visual representations encompass streamlines, isotherms, isoconcentrates,
and apparent viscosities, presented in a sequential order from top to bottom. The solution portrayed in Figure 6(b), attributed
to the lower branch, originates from the initiation of numerical calculations using the initial rest state conditions. However,
the solution related to the upper branch, Figure 6(a), is exclusively attained by following the delineated hysteresis path on
the curve for n = 1.1, with an increase in the power-law index, the region of bistability contracts, as evidenced by the
outcomes derived for n = 1.1, and diminishes entirely as the fluid became more and more shear-thickening, exemplified in
instances with n = 1.3. In such circumstances, a resultant pitchfork-type bifurcation emerges, characterized by the transition
from the rest state to a convective regime, occurring at a supercritical Rayleigh number, R;Iép.

Table 5 gives the critical values of the Rayleigh numbers characterizing the onset of motion (Ry¢ , Ry » and
as a function of the power-law index, n. This table clearly indicates that bistability convection was significantly affected
by the power-law index, n.

R tur

Table 5. Dependence of R§%’, R% and Ry ;" onn for Le = 5.0 and N = —0.1.

n Rsub Rtur R;I(f‘p
0.6 12.18 788.90
0.8 14.24 139.50
1.0 15.63 24.00 24.00
1.1 15.96 19.33 9.88
1.2 15.96 16.87 4.05
1.3 15.63 15.63 1.98
1.4 0.67

In Figure 7, a stability diagram is presented to illustrate the influence of the power-law index denoted as, n, and the
buoyancy ratio, N, on critical Rayleigh numbers that govern the onset of subcritical R$%? and supercritical R;Iép convection,
as well as an additional critical point denoted as RY", which corresponds to a turning saddle-node point where a backward
bifurcation occurs, resulting in a transition from lower to higher convective states. These findings are presented within the
context of Le = 5.0. Upon initial examination, it becomes evident that R$%?, Ry« and RY4 exhibit significant decreases as
the buoyancy ratio, N, increases. This decrease can be attributed to the collaborative influence of shear-thickening behavior

and the slower diffusing solute, which collectively augment the subcritical convection phenomenon.
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When the buoyancy ratio N approaches or exceeds
approximately -0.02, a bistability convection regime
becomes evident. This region is distinctly outlined as a
triangular area, as depicted in the zoomed image in Figure 7
for the case of N = —0.14. Notably, it becomes evident that
bistability convection exclusively occurs in the context of
shear-thickening fluid (n > 1) and opposing flow
conditions where (N < 0), This is the opposite of what
reported by Rebhi et al. [26], where the bistability occurs in
the context of shear-thinning fluid (n < 1) and aiding flow
conditions where (N > 0). For a specific buoyancy ratio
value of N = —0.14, the graph clearly demonstrates that the
subcritical regime, R34 is observed to be the lowest among
the three critical values i.e., (R§4? < Ry;’ < RE). a co-
dimension two point emerges within the transcritical regime
where Ry’ = R§¥P = 17.26, for a power-law index, with
n = 1.107, indicated as point (B) in the zoomed image.
This transcritical regime extends until n 1.52, where

RyP = REY = 16.89, indicated as point (C), and a point (A) demonstrates a weak dependence on the power-law index
n=1and R;lép = R = 40. The boundaries of the bistability region are delineated by the triangle (ABC) as illustrated
in the zoomed image. In summary, as the buoyancy ratio value with (N < 0) decreases, the value of the power-law index
n increases, the presence of bistability becomes increasingly evident, regardless of n exceeding 1.0. However, it is
noteworthy that the extent of the bistability region exhibits significant sensitivity to the buoyancy ratio, N, and the power-
law index, n, expanding as N, and n decreases (refer to Figure 7 and Figure 5 for the range —0.04 < N < —0.18,and 1 <
n < 3). It is pertinent to observe that as shear-thickening behavior becomes more pronounced, it promotes Newtonian
thermosolutal subcritical convection n = 1, leading to a notable reduction in the threshold for subcritical convection.
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A more comprehensive depiction of the impact of buoyancy ratio, N, and Rayleigh number, Ry, on ¥y, Nu, and Sh
is presented in Figure 8 for Le = 5 and n = 1.2. The outcomes are derived for varying buoyancy ratio values from 0.2 to
-0.2. As evident from Figures 8(a)-8(c), for a given Rayleigh number, both the intensity of convection, ¥, and the
ensuing heat, Nu, and solute, Sh, transfer rates exhibit a decline as the buoyancy ratio, N, diminishes. The plot notably
illustrates the influence of N on the existence of various bifurcation curves, as elucidated in Figure 8. Consequently, a
decrease in the buoyancy ratio, N, leads to the evolution of bifurcation curves from subcritical to supercritical behavior.
Overall, the influence of N on the onset of motion (Ry¢” , R§%?, and REY) is elucidated in Figure 7. Under the specified
conditions of a power-law index, n = 1.2, and a Lewis number, Le = 5, the presence of bistability bifurcation is
confirmed within the buoyancy ratio range of N =-0.18 to -0.082, (i.e., under opposing flow conditions N < 0), Notably,
for N = —0.2, the observed bifurcation assumes a subcritical.
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Figure 9. Contours of streamlines, ¥, temperature, T, concentration, S, and apparent viscosity 1.

In the region characterized by bistability, the solutions corresponding to Ry = 22, derived from the numerical
solution of the comprehensive governing equations, are depicted in Figure 9. These graphical representations sequentially
present streamlines, isotherms, isoconcentrates, and apparent viscosities from top to bottom. The solution illustrated in
Figure 9(b), representing the lower branch, is obtained by initializing the numerical computations with the rest state as
the initial conditions. Conversely, the solution for the upper branch, as shown in Figure 9(a), is exclusively acquired by
tracing the hysteresis path delineated on the curve for N = —0.14. As the buoyancy ratio becomes large, the bistability
region shrinks, as shown by the results obtained for N = —0.14, and it completely disappears when the buoyancy ratio
becomes very large, as displayed for thermal convection N = 0 and for the aiding flow (N > 0). For this situation, the
resulting pitchfork type bifurcation, characterized by a transition from the rest state to a convective regime, takes place at
a supercritical Rayleigh number, Ry¢" .

Table 6 provides the critical Rayleigh numbers, delineating the onset of motion (Ry' , R§%?, and R{"), as functions
of the buoyancy ratio, N. This table clearly indicates the impact of the buoyancy ratio, N, on bistability convection.

Table 6. Dependence of R§%?, REY and Ry.* on N for Le = 5.0 and n = 1.2.

N Rsub Rtur R;Iép
0.20 . 1.01
0.00 2.02
-0.082 15.04 15.04 343
-0.10 15.96 19.33 9.88
-0.14 17.61 25.51 6.75
-0.16 18.35 36.14 10.13
-0.18 19.05 66.49 20.27
-0.20 19.73 +00

In Figure 10, a stability diagram is presented to illustrate the influence of the power-law index denoted as, n, and
the Lewis number, Le, on critical Rayleigh numbers discus in figure 7. These findings are presented within the context of
N = —0.1. Upon initial examination, it becomes evident that the bistability region presented in zoomed image Figure
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10.a decrease as the Lewis number, Le, decrease until a value of Le = 2.4, where R§¥’=R;’=R5% and n = 1, when the
values of Le exceeds approximately 10 the bistability regime disappear the invers of Rebhi et al [26]. For this interval of
Lewis number, Le, and with an increasing of Le, the domain of n expands and remains abovel.
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Figure 11. Bifurcation diagram as a function of R and Le: (a) flow intensity ¥, (b) Nusselt number Nu, and (c) Sherwood
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An alternative perspective on the influence of the Lewis number, Le, on ¥, Nu, and Sh, with fixed parameters
n = 1.1and N = —0.1, is delineated in Figure 11. Within the defined range of governing parameters, the analytical model
predicts that the occurrence of bistability bifurcation is not exist when the Lewis number is below 3.4. As the Lewis
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number progressively increases, the bistability region manifests and undergoes significant expansion, persisting within
the range below 10, indicative of thermal diffusion dominant over mass diffusion. The graphical representation in
Figure 11 provides insight into the notable impact of the magnitude of the Lewis number on the characteristic "S"-
bifurcation shape within the bistability region. Specifically, the "S"-bifurcation curve becomes increasingly conspicuous
with higher Lewis numbers (i.e., Le = 7 and 9). At the subcritical bifurcation point, the flow exhibits finite amplitude,
marking a discernible transition from a rest state to a convective state. This transition is characterized by a sudden and
substantial augmentation in flow intensity, Nusselt, and Sherwood numbers. Such enhancements are attributed to a
pronounced reduction in the apparent viscosity, as depicted in Figures 11(a)-11(c).

Table 7 shows the impact of the Lewis number, Le, on the critical Rayleigh numbers (R3%", REY", and R;.") for
n = 1.1, and N = —0.1. It was found that the bistability regime occurs when Lewis number, Le, values are within the
domain ]3.4;10][.

Table 7. Dependence of R§%’, RE and R¥% on Le forn = 1.1 and N = —0.1.

Le R7E Ri¢ Ryc”
1.0 5.49
3.4 16.07 16.07 7.51
5.0 15.96 19.33 9.88
7.0 15.46 29.72 16.47
9.0 15.04 81.14 49.41
10.0 14.87 +o0
20.0 13.81 +oo0

7. CONCLUSIONS

In this paper, the problem of thermosalutal convection of power-law fluid saturated porous media contained in a
horizontal enclosure subject to vertical constant fluxes of heat and solute, has been investigated analytically and
numerically. The effect of the thermal Rayleigh number Ry, the power-law index n, buoyancy ratio N, Lewis number Le,
and the aspect ratio of the cavity, A, on the onset of linear and nonlinear convective motion, as well as heat and mass
transfer rates. for the case of a shallow enclosure A4 >> 1, an analytical solution, based on the parallel flow approximation,
has been formulated. The results show good agreement between the numerical and analytical solutions, and a strong
influence of the governing parameters on the onset of convective motion and the resulting convective heat and mass
transfer rates.

In the first part, results are presented for the velocity, apparent viscosity, temperature and concentration fields,
revealing a significant sensitivity to the power law-index n. It is shown that an increase in the power-law index (dilatant
fluids) enhances the apparent viscosity while a decrease (pseudoplastic fluids) reduces it, and it’s constant for the case of
Newtonian fluid (n = 1), it is observed that the temperature and concentration profiles exhibit an augmentation with
increasing values of the power-law index, n.

It was observed that the intensity of convection Wyand the resulting heat Nu and mass Sh transfer rates experienced
enhancement with a decrease in the value of n, and N, while reduces it when Le decrease.

The resulting nonlinear solution indicated that the threshold of finite amplitude motion occurred at a supercritical
Rayleigh number (R;lép), which considerably decreased upon increasing the power-law index n, and N, and Le decrease.

Specifically, the manifestation of bistability convection phenomena, denoted by the coexistence of two distinct
stable solutions under identical flow and boundary conditions, is contingent upon specific values of n, N, and Le.
Notably, this phenomenon is associated with the characteristics of a dilatant fluid (n > 1) and opposing buoyancy
forces (N < 0). The bistability bifurcation was observed to traverse three saddle-node points, corresponding to the
thresholds R§%?, Ry.¥, and R5". This bifurcation exhibited three branches, resulting in an "S" shape curve. The first

branch bifurcated forward from Ry to R¥Y, the second bifurcated backward from RY4to R3%Pbut was deemed

unstable, and a third stable branch bifurcated forward from R3%. Furthermore, it was demonstrated that this bistability
phenomenon could manifest irrespective of the aspect ratio of the enclosure and the types of thermal and solutal
boundary conditions.

In the case of opposing convective flows, there was a collaborative influence of both shear-thinning and slow-
diffusing solute effects, resulting in the augmentation of subcritical convective flows. Conversely, for aiding convective
flows, a cooperative impact of shear-thickening and slow-diffusing solute effects was observed, leading to the
enhancement of supercritical convective flows.

The occurrence of bistability convection was attributed to the cooperative counteracting influences within the fluid
system. Specifically, the dilatant fluid. Simultaneously, the slower diffusing component in the binary mixture tended to
maintain uniformity within the core region of the system while establishing a pronounced solute gradient near the walls.
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T'ICTEPE3HUC TA BI®YPKALIS BICTABIJIBHOCTI, IHIYKOBAHA KOMBIHOBAHHUM 3CYBHIM 3I'YIIEHHSM
PIIMHU TA IOABIMHOIO JU®Y3IMHOK KOHBEKIIIEIO B MIUIKOIIOPUCTHUX KOPIIOPATAX,
3ANOBHEHUX HEHBIOTOHIBCbKUMHU CTENEHEBUMU PIIUHAMU
Caaex Xip*P<, Penxa Pe6xi*?, Moxamen Kespane®©, Moxamen Hacep Bopmuxuni?

“Jlenapmamenm mawurno6yoyeanns, Yuieepcumem Meoea, Medea 26000, Anoscup
bLERM-Jlabopamopis eionoenosanoi enepaii ma mamepianis, Yuisepcumem Meoea, Medea 26000, Anoicup
<Jlabopamopis @izuunoi mexaniku ma mamemamuyno2o mooemosanus (LMP2M), Vuisepcumem Hxvs @apec y Meoea,
paition Aiin-/le6, Meoea 26000, Anocup
4Vuieepcumem Monacmipa, Hayionanona wiona inoicenepie Monacmipa, Jlabopamopis memponozii ma enepeemuunux cucmen,
5019 Monacmip, Tyuic
VY wiif crarTi NpencTaBIeHO YMCENbHE JOCHIIKEHHs JIIHIMHOT Ta HEeNiHIHHOI CTIMKOCTI TepPMOPO3YMHHOI KOHBEKLIl B IIOPHCTOMY
CepeIOBHIIl, HACHYCHOMY HEHBIOTOHIBCHKOIO OiHapHOI piguHO0. [l MoAentoBaHHS MOBEIIHKA pPOOOYOro cepepoBUINa
BHKOPHUCTOBYETHCS CTETIEHEBa MOIeb. HaBeieHe TBepKEHHS Ma€ Ha yBasi, 0 TOPH30HTAIBHI MEXI1 BiJIyBalOTh TEIUIOBI IOTOKHU Ta
MIBAAKOCTI PO3YHMHY, TOAI SIK BEPTUKAIbHI CTIHKM € HENPOHWKHUMHU Ta TEPMIYHO i30Jp0BaHMMH. Bigmosimanmu dakropamu, siki
KepYIOTh IPOOIEMOI0, 10 TOCHIHKY€EThCS, € Uuciio Penest, Rr, iHAEKC CTENIEHEBOTO 3aKOHY, 71, CIIIBBIHOIICHHS PO3MipiB MOPOKHUHH,
A, aucino JIptoica, Le, i koediuieHT miaBy4ocTi, N. AHaNTITHYHE PillIEHHS] OTPUMAHO TSl HerTHOOKi kamepu (4 >> 1) 3 BUKOPUCTaHHSIM
HaOJIKEHHS TapaelIbHOTO TMOTOKY Ta MoaugikoBaHoi Gopmu piBHsHHS [apci. Po3B’s3aBmm Bclo cucteMy KepiBHUX PiBHAHB, OYyJI0
MIPOBEIEHO UNCENbHE JOCTIPKeHHS camoro siBuma. OQHUM i3 HaWOLIBII I[IKaBUX PE3yJbTaTiB IbOTO JOCTIIKEHHS € Te, 0 BOHO
izeHTUdiKye siBuiIe 6icTabIIBHOCTI, SIKE O3HAYAE ICHYBaHHS ABOX CTaOIIBHUX PO3uHHIB. Pe3ynbTaTH, OTpUMaHi 3a JOMOMOrow 000X

METOJIB, IEMOHCTPYIOTh XOPOILIHUI PiBEHb Y3TOMKEHOCTI B PI3HOMaHITHOMY JAiana30Hi IUX KEPiBHUX IapaMeTpiB.
KonrouoBi cnoBa: Oicmabinenicme, mepmoposuunna KOHGeKyis, cmenenesa piouHda; NOPUCMUIl Wiap, HEeHbIOMOHIBCbKA NOOGIUHA
piouna





