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The review highlights the main achievements in the theory of the vortex dynamo in rotating media. Various models of a vortex
dynamo in rotating media are discussed: a homogeneous viscous fluid, a temperature-stratified fluid, a moist atmosphere, and a
stratified nanofluid. The main analytical and numerical results for these models obtained by the method of multiscale asymptotic
expansions are presented. The main attention is paid to models with a non-spiral external force. For a rotating moist atmosphere,
characteristic estimates of the spatial and temporal scales of the generated vortex structures are obtained. New effects of the vortex
dynamo in a rotating stratified nanofluid, which arise due to thermophoresis and Brownian motion of nanoparticles, are shown. The
results of the analysis of the nonlinear equations of the vortex dynamo in the stationary regime are presented in the form of spiral
kinks, periodic nonlinear waves, and solitons.
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1. INTRODUCTION

The review is devoted to modern problems with the vortex dynamo theory. This is an extensive area of research
that includes the generation and nonlinear evolution of large-scale vortex structures. The focus of the review will be on
the influence of the rotation of turbulent media on the generation of structures. The reason for the importance of this
factor is both the widespread nature and the nontriviality of its influence. Rotation effects play an important role in
many practical and theoretical applications of fluid mechanics [1] and are especially important in geophysics and
astrophysics [2]-[5], where one has to deal with such rotating objects as the Earth, Jupiter, the Sun, etc. A variety of
wave and vortex motions can be excited in rotating liquids. For example, gyroscopic waves, Rossby waves, internal
waves, localized vortices, and coherent vortex structures. Large-scale vortex structures are of the greatest interest
because they carry out efficient transfer of energy and momentum. Large-scale structures are understood to mean
structures whose characteristic scale is much greater than the scale of turbulence or the scale of the external force that
excites this turbulence. The study of the problem of generation of large-scale vortex structures (LSVS) is of great
importance for a number of geophysical and astrophysical problems, such as the problem of the origin of Jupiter's Great
Spot, Venus superrotation, vortex structures in solar prominences, the spiral structure of galaxies, etc. [6]-[7].
Geophysical problems include studies on the generation of LSVSs such as tropical cyclones (typhoons), tornadoes, etc.
These LSVS play an important role in the global circulation of the atmosphere, which is very important for weather and
climate [8]-[9] forecasts on our planet. The actual effect of LSVS generation in turbulence is called the vortex dynamo.

According to the Kolmogorov-Obukhov local theory of turbulence, large-scale violations of homogeneity and
isotropy are restored on small scales of turbulent flow. In this regard, the question arises: can such turbulence enhance
large-scale perturbations? In magnetohydrodynamics, the answer to this question was obtained earlier. It was shown in
[10] that initially homogeneous, isotropic, and mirror-symmetric turbulence cannot enhance large-scale magnetic fields.
However, if the mirror symmetry of turbulence is broken, then such a medium can enhance the large-scale magnetic
field. The process of amplification of a large-scale field occurs under the action of a turbulent e.m.f. proportional to the

average magnetic field £ =aH , and the coefficient « is proportional to the average helicity o ~ V'rofié' of the
velocity field. The phenomenon of generation of large-scale magnetic fields by homogeneous isotropic but mirror-
asymmetric (helical) turbulence discovered in [10] was called the ¢« -effect. On the basis of this effect, the dynamo
theory [11]-[12] was constructed by the efforts of many researchers and explains the origin of magnetic fields in various
astrophysical objects: the Earth, planets, the Sun, galaxies, etc. Helical turbulence is characterized by a violation of the

mirror symmetry of the turbulent velocity field, for which the correlation v'rotV’ is non-zero. Such a turbulent velocity
field is characterized by the fact that right-handed and left-handed vortices are observed with different probabilities, i.e.,
there are more vortices of one sign than another.

The concept of a vortex dynamo was first developed in [13]-[14], where a hypothesis was put forward that helical
turbulence is capable of generating large vortices. This hypothesis was based on the similarity of the equations of
induction of a magnetic field and a vortex in hydrodynamics. It was hypothesized in [13] that helical turbulence is
capable of generating large eddies similarly to a large-scale magnetic field in magnetohydrodynamics. The physical
essence of this phenomenon lies in the inverse cascade of energy transfer from small vortices to larger ones. However, it

7 Cite as: M.1. Kopp, and V.V. Yanovsky, East Eur. J. Phys. 2, 7 (2023), https://doi.org/10.26565/2312-4334-2023-2-01
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was shown in [15] that there is no effect on generating large-scale vortices by homogeneous isotropic helical turbulence
in an incompressible fluid. The reason for the negative effect lies in the certain symmetry of the Reynolds stress tensor
in the averaged Navier-Stokes equation. The Reynolds stresses are a linear functional of the mean velocity field (for
weak fields), which can be represented as a series

VL =V, (V) = T+ TV ATV

where the expansion coefficients of the tensors 7" are expressed in terms of the moments of the turbulent fields. If the

tensor v, v! is symmetric in indices, then the tensor 7;;' must also be symmetric in indices i,k and not be expressed in

terms of the antisymmetric tensor &,, . The tensor of the third rank cannot be constructed only from Kronecker tensors
0, ; therefore, the hydrodynamic o -effect is absent in the homogeneous isotropic turbulence of an incompressible
fluid. However, a reverse energy cascade in helical turbulence is possible. This requires an additional symmetry break
of the Reynolds stresses. The effect of generating large-scale eddies is associated with the appearance of the term o :

3a_§2+ arotQ = vAQ s
t

where o ~ v rotv" is expressed in terms of the turbulence helicity, Q=rotV, V is a large-scale field of fluid
velocity, v is a turbulent kinematic viscosity. This effect is called the hydrodynamic alpha effect. The further
development of the vortex dynamo theory was based on the search for additional factors that break the symmetry of the
equations. These factors, in addition to the compressibility of the medium, are, for example, an inhomogeneous
flow [16], a temperature gradient in a gravity field [17], and a specific water content and temperature gradient in a
gravity field [18].

It should be noted that free convection, or heat and mass transfer of matter in the gravity field, plays a special role
in the processes of LSVS generation in the atmosphere of the Earth and other planets. The occurrence of LSVS in
convective systems was studied both within the laminar theory [19] and in the turbulent one [15]-[18]. The most
developed is the turbulent theory (vortex dynamo), which shows the existence of large-scale instability in convective
systems with small-scale helical turbulence [17]-[18], which results in the formation of one convective cell, which is
interpreted as a huge tropical cyclone-type vortex. This theory was confirmed in a number of numerical and analytical
calculations [20]. Large-scale vortex instability in rotating turbulent flows has been studied in many papers [21]-[24].
So, when considering rotating convective systems, attempts were made to apply the results obtained to the theory of the
occurrence of tropical cyclones. The linear theory of the vortex dynamo [15]-[24] is best developed within the
framework of the statistical approach, which also uses the second-order correlation approximation. Thus, the question
arose about the mechanisms of saturation of large-scale instability and the emergence of stationary vortex structures.
However, the construction of a nonlinear theory of the vortex dynamo within the framework of the statistical theory has
great difficulties associated with the problem of closure of the averaged equations.

The nonlinear theory of the vortex dynamo was developed within the framework of a dynamic approach based on
the method of multiscale asymptotic expansions. In [25], for the first time, the method of multiscale asymptotic
expansions was applied to describe the generation of LSVSs in non-reflective, invariant turbulence. In this work, it was
shown that parity violation in small-scale turbulence (external small-scale forces) leads to large-scale instability, the so-
called anisotropic kinetic alpha effect (AKA effect). In another work [26], the inverse energy cascade and nonlinear
saturation of the instability were studied. The instability of the hydrodynamic ¢ -effect, obtained within the framework
of the dynamic approach, can be interpreted as a new type of parametric instability arising from a special type of

pumping (external force). Under the action of an external small-scale periodic force F,, fluctuations of the velocity
field v, arise, the nonlinear interaction of which affects large-scale velocity perturbations W . The Reynolds stresses

R, =v,v, (where averaged over the period) are modified by large-scale perturbations, and in the linear approximation,

the gradient series can be expanded into a Taylor series [27]:

R =—o, W, —v

i ijl

A/

The first term is known as the anisotropic kinetic « -effect (AKA) [25], which describes the generation of LSVSs.
Thus, an external force that creates a small-scale parity violation can lead to non-trivial changes in the large-scale flow.
In contrast to [25], in [27], a small-scale force was considered that creates a parity-invariant turbulent flow. In this case,
the AKA effect is absent, and the dynamics of small large-scale perturbations W is determined by the turbulent
viscosity. Although parity violation is a more general concept than helicity, it is helicity vrotv # 0 that is a widespread
mechanism for parity violation in hydrodynamic flow. In [28]-[29], a nonlinear theory of the convective vortex dynamo
was developed, where the method of multiscale asymptotic expansions was applied. Paper [28] is a more complete
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version of [29], which presents the linear theory of LSVS generation in more detail. The small Reynolds number of
small-scale motions is a parameter of the asymptotic expansions.

This method makes it possible to single out the main order of the emergence of instability from the entire
hierarchy of perturbations. Nonlinear stabilization of large-scale convective instability, considered in [28]-[29], leads to
the formation of helical vortex solitons or kinks of a new type in the fluid, despite stable stratification. The structure of
the equations in [28]-[29] describing the instability in the linear approximation is similar to the AKA effect equation.
But, unlike the AKA effect, o is a function of the Rayleigh number Ra . This means that in an unstratified fluid,
Ra =0, the instability disappears. In addition, in [28]-[29] helical turbulence was assumed to be given, in contrast
to [25]-[26].

Using the method of multiscale asymptotic expansions, in [30], a large-scale vortex instability was obtained in a
rotating viscous fluid under the action of an external small-scale helical force. In this work, the nonlinear stage of
instability and the generation of vortex kinks of a new type were also investigated. The paper [30] was generalized to
the case of a rotating moist atmosphere in [31], where it was shown that taking into account the effects of stratification
in a rotating atmosphere, such as temperature heating and an additional source of condensation heat release, enhances
large-scale vortex disturbances. It was shown in [31] that the helicity of the small-scale velocity field is due not only to
the action of the Coriolis force, as in a homogeneous medium [30], but also to the stratification of the moist atmosphere.
This circumstance leads to the appearance of a new instability of the « -effect type, as a result of which large-scale
vortex structures are generated.

The origin of helical turbulence in natural conditions is usually associated with the influence of the Coriolis force
on the turbulent motion of the medium [10], which was initially uniform, isotropic and mirror-symmetric. Thus, a
problem arises in the origin of helicity itself. The natural hypothesis is that helicity itself arises as a result of the action
of the Coriolis force on convective turbulence. In this case, large-scale instabilities in the atmosphere should appear
self-consistently, without additional assumptions. For the first time, the question of the generation of large-scale vortex

fields under the action of a small-scale force with zero helicity E)rotlj"o =0 in a rotating homogeneous medium, i.e.,

without taking into account convective phenomena, was considered in [32]-[33], and taking into account convective
phenomena in [34]-[36]. It was also demonstrated that nonlinear Beltrami waves and localised vortex structures such as
kinks emerge as a result of the development of a large-scale instability in an obliquely rotating fluid.

The generation of the LSVS by a large-scale instability of the hydrodynamic ¢ -effect has a threshold character
and depends on the magnitude of the helicity. In this connection, the search for large-scale helical vortex instability
based on atmospheric data was started in [37]. An extensive review of studies aimed at applying the theoretical
hypothesis of a turbulent vortex dynamo to the study of tropical cyclogenesis is presented in [38]. The review presents
the results of a numerical simulation of the spiral self-organization of humid-convective atmospheric turbulence during
the formation of tropical cyclones. Particular attention is paid here to the influence of the initial conditions on the
generation of helicity in the first hours of the experiments. These studies contributed to the application of the vortex
dynamo theory for diagnosing the onset of cyclogenesis in a favorable tropical environment.

The question of the appearance of helicity, leading to the appearance of a LSVS, is central to any formalism. An
important difference between these formalisms is that in statistical turbulence, it is difficult to correctly separate small-
scale motions from large-scale ones, which leads to the problem of the influence of some scales on others and requires
the use of additional hypotheses. However, this can be done consistently in the multiscale formalism. The difference in
averaging over small-scale turbulent fluctuations (in the statistical theory) and small-scale motions (in the multiscale
method) rather indicates the closeness of these theories. Therefore, it can be assumed that the average helicity arising in
the statistical theory is quite similar to the average helicity in the multiscale method.

Next, we discuss in more detail the new types of large-scale instabilities and localized vortex structures in rotating
turbulent media considered in our papers [30]-[36].

2. LARGE-SCALE INSTABILITY OF A ROTATING FLUID WITH A SMALL-SCALE FORCE

Let's start with a discussion of large-scale instability in a rotating viscous fluid under the action of a small-scale
external force, which was first considered in [30]. The small-scale external force simulates the action of small-scale
turbulence and maintains turbulent fluctuations at a certain stationary level. It was shown in [30] that, as a result of the
development of a large-scale instability in a rotating fluid, nonlinear large-scale helical vortex structures such as
Beltrami vortices or localized kinks with an internal helical structure arise.

2.1. Basic equations and statement of the problem
Consider the equations of motion of an incompressible rotating fluid with an external force in a rotating coordinate
system
v o - I
E-&-(VV)V=——VP+2[VXQ]+VAV+FO (1)

Po

divV =0 )
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Here, Q is the constant angular velocity of rotation of the fluid, v is the viscosity, and P, 1s the constant density of

the fluid. The vector of angular velocity of rotation € is directed along the axis OZ , and the external force 1’30 acts in a
plane that is perpendicular to the axis of rotation (see Fig. 1).

z
Q

—

X F,

Figure 1. The angular velocity vector Q is directed perpendicular to the plane (X,Y) in which the external force F“O is located.
Let us denote the characteristic amplitude of the force f,, and its characteristic spatial and temporal scales,

respectively, as 4, and ¢,. The external force has the following properties:

X t

F,= foﬁo( j,divﬁo =0, FyrotF, #0. (3)
s

The main role of this force is the creation of small-scale helical fluctuations in the velocity field v, with a small
v, . . . . .
Reynolds number R =-2% <1, or, in other words, the maintenance of stationary small-scale helical turbulence. It is

obvious that the characteristic speed caused by an external force has the same characteristic scales:

5 =7, =L
0 0 /7.0’1‘0

Let's maintain the old notation of variables but replace the dimensioned variables in the system of equations (1) and (2)
with dimensionless variables for convenience:

N t - V - F P : Voo v 2
P, to—, Vo—, F,>-=2, P> , t0=i, E)=v°—, /0=v°—2, v0=f°/1°.
4 Vo fo Pk 4 A Zh |4
Then, in dimensionless variables, equations (1)-(2) take the form:
v Lo
a—+R(V~V)V=—VP+[V><D]+AV+ bs @)
t
divl =0. (3)
Avy . . QA . . . .
Here, R =—— is the Reynolds number of small-scale pulsations, D, = ———— is the dimensionless rotation parameter
1% v

on the scale 4, (i=1,2,3), associated with the Taylor number 7a, = D,.2 , and which is a characteristic of the degree of

influence of Coriolis forces over viscous forces.

In what follows, the Reynolds number R <1 will be assumed to be small, and we will construct an asymptotic
expansion from this small parameter. We consider the parameter D to be independent of the asymptotic expansion
scheme. Of course, the Reynolds number on a large scale can be large. Consider the following formulation of the
problem: we will consider the external force as small-scale and high-frequency. This force leads to small scale velocity
fluctuations. After averaging, the rapidly oscillating fluctuations disappear. However, due to small non-linear
interactions, non-zero terms may appear after averaging in some orders of perturbation theory. This means that these
terms are not oscillatory, i.e., they are on a large scale. From a formal point of view, these members are secular. The
difference from zero of such “constant” contributions leads to a rapid collapse of the asymptotic expansions. Therefore,
the conditions for the conservation of the asymptotic expansion are based on the vanishing of the secular terms. This
leads to conditions for the solvability of equations for large-scale perturbations. We discuss these equations below.
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2.2. The method of multiscale asymptotic expansions and the equation for the large-scale velocity field

We denote the small-scale variables x, =(X,,t,), and the large-scale X = ()? ,T ) ones. Denote the derivative

aa—,_ by 9,, and the derivative % by d,. To designate large-scale spatial and temporal derivatives, the following
X0 0

notation will be used:

The spatial and temporal derivatives now turn into the corresponding derivatives with respect to both fast small-
scale variables and slow large-scale variables. Therefore, we replace the spatial and temporal derivatives in equations
(4)-(5) with operators of the form:

d 0
— —>09,+R’V,, ——0,+R*0, (6)
ox, ot
To construct a nonlinear theory, we represent the variables ¥, P in the form of asymptotic series:
_ 1 - - - - -
V(x,t)=EW_](X)+v0(x0)+Rv]+R2v2+R3v3+m (7)

P(x,1) :%}g +%P,2 +%Rl +P +R(B+Pi (X))+R*P,+R*P, +---
Substituting the expansions (6)-(7) into the system of equations (4)-(5) and collecting together the terms with R the

same orders up to the power inclusive R’ , we obtain the equations of the multiscale asymptotic expansion. Let us pay
attention to the analysis of rather deep orders of equations with respect to a small parameter, which is necessary to
obtain equations for large-scale motions. This is typical for this method. There is only one equation in order R :

0.P,=0 = P,=P,(X) ®)
In order R, we have the equation:
9,P,=0 = P,=P,(X) ©)
In order R™', we get a system of equations:
oW +W o, W' =—0,P, -V P, +o;W' +¢&,W D, oW =0 (10)

Averaging equations (10) over fast variables gives the secular equation,

~V,P, +&,W,D, =0, (11)

ik

which corresponds to the equation of geostrophic equilibrium.
In order zero R’ , we have the following system of equations:

9,vy + W 0,vy +v,0, W' =—0,F, —V P, +0;v, +€,vi D, + F, (12)
9,v, =0
These equations give one secular equation:
VP,=0 = P, =const (13)
Consider a first-order R' approximation:
v + WD,V +Vi0, vy + W QW + WAV W, ==V P, =0, (R +P1)+0}v +20,V, W', +£,/ D, (14)
oV +V. W' =0

Secular equations follow from this system of equations:

WV W' =-V.P, (15)

i
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VW, =0 (16)
Secular equations (15)-(16) satisfy the following field geometry:
WIZ(WXI VAN (Z),O), P, = const (17)
For the second order R*, we get the equations:
OV, + WO Vi +vid v + WAV Vi + ViV W+ 0, v +vid W ==V, P, =V P, +3;V, +20,V v, +€,v;D,, (18)
9,v, +V,v, =0

It is easy to see that there are no secular terms in this order. Finally, we come to the most important order R*. In
this order, the equations are:

OV +0, W' +W o, vi +vi0 vy + WAV v +VEV v +vi 0, v +VIV, 7 +
e g — , . . :
30,V + O, W = =3, P, =V, (B +P1)+0}v, +20, Vv + AW, +£,%/ D, , (19)

dvi+V,y =0

Averaging these equations over fast variables, we obtain the main secular equation describing the evolution of large-
scale perturbations:

QW —AW' +V, (v{;vg ) --V. P, (20)

Equation (20) describes the evolution of a large-scale vortex field ¥ , but the final closure of equation (20) will be

carried out after calculating the Reynolds stress V, (v(’)‘ Vo ) . To do this, it is necessary to find solutions for the small-

scale velocity field v, .

2.3. Velocity field in zero approximation
Let us write the equation of the asymptotic expansion in the zeroth approximation (12) in the following form:

Dovy =—3,P, +€,v|D, +F, @1)
where the operator Dy is introduced
Do =0, -0> +W*d,.
The pressure P, is found in the condition 9,v) =0
P = IA’luo +ﬁzv0 +}A’3w0 (22)
Here we introduced the notation for the operators

}\) :Dzaz—D@y ﬁ D33x—Dlaz i) Dlay_DZax

1= P, 5= e ,

0’ 9’
and velocities v, =u,, v, =v,, v, =W, . Then, excluding the pressure from (21), we obtain a system of equations for
finding the zero-order velocity field:

(50 +;71x)”o +(};2x _Ds)vo +(;73x +D2)Wo =F
(D3 +1A71y)”0+(50+;72,>)V0+(;3y_D1)W0 =F (23)
(;713 _Dz)uo +(;72z +D1)V0 +(BO +;73z)wo :E)z

The tensor components p,; are as follows:
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~ D@93.-Dd0, ~ DJ-D3J. ~ D99, -Dd
pl.vc: az ’p2x: az A’p3x: az

~ D,0.,-Dd. ~ D00, -Ddd, ~ D3,-D,00,
ply :a—zo p2y :a—za pgy :a—za

~ D0:-D0.9, ~ D90 -Dd ~ D9.0,-D,0.0,
Dy, :a—zapzz e — 3 Py, =5 5 .

In accordance with the problem statement, we choose the coordinate system so that the axis OZ coincides with
the direction of the angular velocity of rotation. Then the components of the rotation parameter are

(24)

D, =D, =0,D, =D. To solve the system of equations (23), it is necessary to specify the force F, explicitly. Taking
into account condition (3), we choose an external force in a rotating coordinate system in the following form:

E)=ﬁ)(fcos¢2+jcos¢l), F; =0, (25)
where f, is the amplitude of the external force,

¢ =ki-aof ¢ =ki-ot k=k(1,0,1), k =k (0,1,1).

Thus, the external force is given in the plane (XX,Y) orthogonal to the axis of rotation, and the divergence of this force
is zero. We seek the solution of the system of equations (23) according to the Cramer rule:

1545 (B3 - 25~} () ) -0 e
, :i{[(f)o 0 ) (Dot pc ) =2+ D) (P =02 ) | 4] (2, = D) (21 = D) =D+ 2, ) (Do + £ ) | F] @)

w405 ) 5+ 2B )52 +[(5 )5 ~01)-(Br )+ 0] 9

Here A is the determinant of the system of equations (23), which in its expanded form has the form:

A= (50 +;)lx)(B0 +;2y)(50 +;73z)+(D3 +21y)(;22 +D1)(;73x +D2)+(;72x _D3)(;3y _Dl)(};h _Dz)_

_(;73x +D2 ) (50 +;)2y ) (;u _Dz ) _(;n +D1 ) (;73y _Dl ) (50 +;1x ) _(D3 +};ly ) (};2){ _D3 ) (50 +;3z ) (29)
To calculate expressions (26)-(29), we write the external force (25) in complex form:

1’30 = l?%em)2 +j%ei¢l +c.c. (30)

Then all operators in formulas (26)-(29) act from the left on eigenfunctions:
Do =" Dy (k,—a,)., Doe® = ¢ Do (ky,—ay)., A = emlA(k] =), A = Alky,,—@,)  (31)
To simplify the formulas, we set @, =1, k, =1 and introduce new notation:
Do (k,—@,) =4 =2-i(1-W,), Do (k,,—a,)= 42 =2—i(1-W,) (32)
Here and below, complex conjugate quantities will be denoted by an asterisk. When performing further calculations,
parts of the components in the tensors ;91.1. (k) and IA)U. (k,) vanish, so we write out only the non-zero components:

PN D ~ D ~ ~F A A

;711 (kl):AI’pIZ (kl):_? > Pxn (kl):D17p33 (kl):A17 (33)

~ A ~ b L o -~
pll(k2):A23P12(k2):_D,P21(kz):? - = _
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Taking into account formulas (31)-(33), we find the determinant:
Ak ) D2 Ak ) D2
A(k]): Ar | A +T 5 A(kz):Az A +T (34)

In a similar way, we find the velocity field of the zero approximation:

_fy A f, De"

. W vee, (39)
2 ok 2 4 L 2
A22 +D7 Alz +g
2
it ~* iy
v, :—% De p +% A‘eDZ +ee, (36)
~%2 ~%2
Ay +— Ay +—
2 2
D D
_So De? Jo De’ .. (37)

0o 2 2
4 ~% 4 ~%

A> +D7 A +D7

2 2

The relations obtained for the velocity field in the zeroth approximation make it possible to find the Reynolds stresses
necessary to close the equation.

2.4. Reynolds stresses and large-scale instability
Consider large-scale fields that satisfy the geometry of the problem within the framework of the “quasi-two-
dimensional” model (17). Large-scale derivatives with respect to Z are then preferred.

_9 9 9
2709z ax oy’

In this case, equation (20) can be written in the coordinate form:

AW VW +V, (vgv;;)zo, W= (38)

0,1, VW, +V, (vivi ) =0, W, =W (39)

To close the equations (38)-(39) it is necessary to calculate the Reynolds stresses w,u, and w,v, . These terms are
easily calculated using formulas (35)-(37). As a result, we get:

2 2 2
Wou():—fo — D 2+f_0 - D =
> | D? 2 2 2 | D? 2
16(1-w,) + 7+4—(1—Wl) 16(1-w,) + 7+4—(1—W2)
- - - (40)
02 D2 f£)2 D
WoVo = T = 2" - 72
) | D? 2 | D? >
16(1=1,) +| = -+4=(1-1,) 16(1=1,)"+| - +4=(1-17)
Now equations (38)-(39) have a closed form:
o, W, — AW, +iw0uO =0, J,W,-AW, —iwov0 =0. (41)
oz 0z

For small values of W, the Reynolds stress (40) can be expanded into a series in W ,. As a result, we obtain the

following linearized equations (41):

aTWl _véle =V, W, -a,V,W, (42)

aTVV2 _V?/Vz = aIVZVVZ +a2VzVVl (43)
where
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2 2 32D? (10—1)2)

((p* +6) +64)2 |
The solution of the linear system of equations (42)-(43) will be found in the form of plane waves with the wave vector
K| OZ,ie.
Wio =4y, exp (—iwT +iKZ) (44)

Substituting (44) into the system of equations (42)-(43), we obtain the dispersion equation:

(<iw+ K —ie,K) —a2K* =0 (45)
Dispersion equation (45) shows the existence of unstable oscillatory solutions with the oscillation frequency

w= %02 D*aK
and instability increment
y= %02 DoK -K*

2
The instability is large-scale because the unstable term dominates the damping at large scales: TODO(> K. The

maximum instability increment is 7, = ¢’ f;'D* /16 and is achieved on the wave vector K, =a f, D/4.

Thus, in the considered stationary small-scale “turbulent” medium, large-scale motions arise and grow
exponentially. It can be expected that stabilization of this instability will occur at the nonlinear stage. We show below
that, as a result of the development of instability in the system, large-scale spiraling, circularly polarized vortices of the
Beltrami type are generated.

2.5. Stationary nonlinear vortex structures
Obviously, as the amplitude increases, the nonlinear terms decrease and the instability saturates. As a result,
stationary, nonlinear vortex structures are formed. To find them, we put in equations (41) 9, =0 and integrate the

equations once over Z. We obtain the following system of equations:

i I/Vl = WOuO + Cl
“ (46)
i W, =wyv, +C,
From equations (46), follow:
dw, _ Woldy +C, @n
aw,  wyv, +C,
Integrating the system of equations (47), we get:
[Wwovod, +C, 1, = [wou,dW, +C, 17, (48)

The integrals in expression (48) are calculated through elementary functions, which give the expression for the first
integral of motion J of equations (47):

DZ
D W | (w, —1)2+D\5(Wl—1)+4+7

+ In
2°2(D* +8)

D2+

8 [4+;D2 -(w, —1)2}2 +16(W, -1’ (W, -1)" =D2 (W, —1)+4+7

2 D?
Lo MV p W,

8(D*+8)  4(W -1 8 2 2
U {4+D2—(Wl —1)2} +16(W, 1)’

+
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(W, <17 +(W, 1) D2+ 4+ 2 -1y —4-2"
1 2 D 2

> D’ +8(D2+8) 4(w, -1) MKERRE
(W, -1) —Dx/E(Wz—l)+4+7 2

i 2°2(D* +8) tn

It is clear that system (46) is analogous to a dynamical system in which the coordinate Z plays the role of time. As

a result, the standard methods for studying dynamical systems apply. A phase portrait of a dynamic system is thus used

to gain a qualitative understanding of all possible modes implemented in it. The phase portrait of the system (46) is

depicted in Fig. 2. From which the most interesting modes of behaviour are easily noticeable. Such regimes correspond
to trajectories in the phase portrait connecting hyperbolic points with stable and unstable foci.

W\/

P

q

X

Wy

Figure 2. Phase portrait of a dynamical system (46) with parameters D =1,C, =—-0.03,C, = 0.03. One can see two hyperbolic
singular points, as well as stable and unstable nodes.

On the left side of Fig. 3, we see the solution corresponding to the trajectory connecting the hyperbolic singular
point with the stable node. On the right in Fig. 3, the solution corresponds to the trajectory connecting the unstable and
stable foci. All these solutions correspond to large-scale localized vortex structures, such as kinks with rotation, which
are generated by the instability considered here. The kink connecting a hyperbolic point to a stable knot contains
rotations around the stable knot, as shown on the left in Fig. 3. In the kink that connects the unstable and stable foci, the
velocity vector field W rotates around both singular points, as can be seen from the right side of Fig. 3. Note that, in
contrast to previous works on the hydrodynamic ¢ -effect in a rotating fluid, the method of asymptotic expansion
makes it possible to construct a nonlinear theory in a natural way and study stationary nonlinear vortex kinks.

Figure 3. On the left, a kink is shown connecting a hyperbolic point to a stable knot with parameters D =1,C, =0.04,C, = 0.04.

When approaching a stable node, the rotation of the velocity field is observed. On the right, a kink is shown connecting the unstable
and stable foci with the D =1,C, = 0.04,C, = 0.04 parameters. Here you can see the internal helical structure of the kink

3. NONLINEAR LARGE-SCALE VORTEX STRUCTURES IN AN OBLIQUELY ROTATING FLUID

This section presents the results of works [32]-[33], where a large-scale instability was studied that occurs in an
obliquely rotating viscous fluid with small-scale turbulence. In [32]-[33], turbulence is modelled by an external small-
scale and high-frequency force with a small Reynolds number. However, the main difference from the results of [30],
which were presented in the previous section, is that the external force has no helicity. Therefore, the instability
discussed above should be absent. The mathematical aspects of the theory [32]-[33] are based on a rigorous multiscale
asymptotic expansion method. In the third order of perturbation theory, nonlinear equations were obtained for a large-
scale velocity field. A study was also carried out of the linear and nonlinear stages of instability, and in the stationary
mode, nonlinear periodic waves and vortex kinks were found [32]-[33].



17
Vortex Dynamo in Rotating Media EEJP. 2 (2023)

3.1 Statement of the problem and equation for a large-scale velocity field
Let us consider a turbulent flow in an obliquely rotating viscous fluid whose axis of rotation does not coincide

with the OZ axis. We will model turbulence with an external small-scale and high-frequency force F, located in the

plane (X,Y) (see Fig. 4). This force is not random and is set in a deterministic way in the following way:

Fi=0,F, =ﬁ,(fcos¢2+jcos;1§1),

- - L . (49)
¢ =kx-at ¢, =kx-at k =k (1,0,0), k, =k (0,1,0)
Obviously, the non-helical external force (49) satisfies the following properties:
divE, =0, FrotF, =0, rotF,#0, E =fF [i;iJ (50)
Zn
In addition, the external force (49) is invariant with respect to the parity transformation 1’30 (X,0)= E) (=X,-1) .
7,
Q
X
¥ F

0

Figure 4. The angular velocity € is inclined with respect to the plane (X,Y) in which the external force 130 . is located.

In the absence of rotation Q =0, an external force F, excites a small-scale flow V, with a small Reynolds number
vt —

R=-""<1 and zero helicity v,rot¥, =0. To describe a turbulent flow in an obliquely rotating viscous

incompressible fluid, we use the Navier-Stokes equations in a rotating coordinate system (1)-(2), which in a
dimensionless form have the form (4)-(5). Further, the problem is to find an equation for a large-scale, slow velocity

field W . To do this, we also apply the method of multiscale asymptotic expansion with a small parameter R . Then,
already in the third order of the perturbation theory, we obtain nonlinear equations for the large-scale components of the
velocity field (W,,W,) in the framework of the “quasi-two-dimensional” model (17):

0, =W, +V,, (vivy ) =0, W, =W; (51)
0,1, VW, +V, (vivi ) =0, W, =W, (52)

These equations are supplemented by the secular equations (11), (15), and (16). The fundamental difference between
equations (51)-(52) and (38)-(39) is the Reynolds stresses, since the small-scale velocity fields v, included in them will

be different. Naturally, to close equations (51)-(52), it is necessary to find solutions for the small-scale velocity field v, .

3.2. Small-scale velocity field in the zeroth approximation in R
Using the results of Section 2.2, we calculate the zero-approximation velocity field, considering the geometry of

the problem (see Fig. 4) and the selection of external force (49). We find expressions for the operator Do by
representing (49) in complex form (30):

Do (k. —@,) =4 =1=i(1-W,), Do (ky,~@,)= A =1-i(1-W,) (53)
and non-zero components of the tensors ;7” (k) and ;7,.]. (ky):
pu(k)=Dy, py(k)=-D,, py(k)=-D;, py(k)=D. (54)

Here, to simplify the formulas, it was assumed that &k, =1, @, =1, f, =1. Taking into account formulas (53)-(54), we
find the determinant:
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k[ ot [
A(k )= 4 (Al +Df), A(kz):Az(Az +D§) (55)
Using formulas (26)-(29) and (53)-(55) it is easy to find the zero approximation velocity field:
1 e 4
u, = _Ae*z—z +c.c. (56)
2 A +D22
et
Vo = —jz—l+ c.c. 57)
24 +D

1 ¢”Dp, 1 &D

WO _5 KD ) _5 KD )
A> +D; A +D;

Note that the angular velocity component D, has dropped out of the expressions for the zero-approximation

+ec. (5%)

velocity, which is a consequence of the choice of an external force.

3.3. Reynolds stresses and large-scale instability
To close equations (51)-(52), we need to calculate the Reynolds stresses w,u, and w,v, . These terms are easily
calculated using formulas (56)-(58). As a result, we get:

1 D, 1 D

Wolly = —————, WV, =—————~. 59)
2|4 +Dif 2|42+ D2f
Now equations (51)-(52) are closed and take the form:
D
9, W, — AW, +%aiz - 2 ~=0,
2
4(1=1,)" +[ D +W, (2-W,)]
(60)
1 d D,
8TWZ —AVVZ —Ea—Z 5 5 2 =0
4(1=)" +[ D} + 17 (2-W,) |
For small values W,,W,, equation (60) can be linearized, which gives:
d
aTW1 _AW1 -0, a_ZW2 =0
(61)

0
0. W, —AW, +0o, — W, =0,
Il 2 TS

System (61) describes the positive feedback between the velocity components W,,W,, which is carried out by

projections of the Coriolis force through the coefficients «,,:

2D1 (D} -2) _202 (D7 -2)

2

(4+D7) (4+D2)

The solution to the linear system (61) will be sought in the form:
W, W, ~exp(yT +iKZ) (62)
Substituting equation (62) into equation (61), we obtain the dispersion equation:
y=tJoo, K -K* (63)

Dispersion equation (63) shows the existence of a large-scale instability ¢ ¢, >0 with a maximum increment

o . 1
Vi = 14 2, with a wave vector K= 5,/0(1 a, .

As a result of the development of instability in the system, large-scale helical vortices of the Beltrami type are
generated. At ¢ ¢, <0, damped oscillations with frequency @, = /¢, K appear instead of instability. As can be
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seen from (63), the increment of large-scale instability 7 depends on the values of D,,D,, i.e., on how the external
forces F;,F; are located with respect to the perpendicular projection of the angular velocity of rotation. If one of the
components D,, D, vanishes or is equal to V2, then there is no instability. Instability exists in the following cases:

- D, >+2,D, >2,

« D.,D,>0,D <~2,D, <+/2,

D, >0,D,>0,D} <2,D; <2,

«D,>0,D,>0,D} <2,D; <2,

* D, <0,D,<0,D; >2,D} <2 ,umu D; <2,D} <2,

*D >0,D,<0,D; >2,D} <2 ,um D} <2,D] >2.
Of course, the instability should stabilise at the nonlinear stage, which we discuss below.

3.4. Stationary solutions of the nonlinear equation for a large-scale velocity field
As the perturbation amplitude W,,W, increases, the nonlinear terms in (60) decrease, and the instability saturates.

. . . . 0
As a result, stationary, nonlinear vortex structures are formed. To find them in equation (63), we set Y =0 and
integrate the equations once with respect to Z . As a result, we obtain the following system of equations:
dw, 1 D,

1 - —+C,, = - —+C,  (64)
A2 24(1-w,) +[ D} +W, (2-W,)] Az 24(1-w ) +[ D} +W, (2-W,)]

Let's move on to some convenient variables in this system: 1-W, = Wi, 1- w, = W . Then we get

dWl :_l Dz +C
az 2(n2 11\ N2 Lt
(D +1) +2(1-D3 )W} +W>
_ (65)
dw D,

1
= +
dZ  2(p2+1) +2(1=D2 )W\ +W

Again, considering Z as a variable analogous to time, we can use the usual methods of dynamical systems. So the
system of equations (65) can be written in the Hamiltonian form:

dW, _ OH  dW. _ oH

az ow, dZ 9w,

where the Hamiltonian H has the form:

H="H,(D.W:)+H, (D,.72) (66)
The function H(D, VT/) is

+CW (67)

~ DJ' aw
(D2+1)2+2(1—D2)I/I~/2+I/f/4

The integral in formula (67) is calculated using elementary functions. Let's put it simply: D, =D, =D =1. Then
function (67) is

—~2 ~ ~
H(VT/)=L lnw+arctg 2W2 +CW (68)
W =2W +2 2-w

The amounts H, (Wl )+ H, (VT/Z ) can be combined into one formula. Then the Hamiltonian is

(VT/f + 207, +2) (VT/§ +20 +2) | 20, (VT/f —2)+2VT/1 (VT/E —2)

1
+—arctg

H=—In
16 (77 = = =
(Wl —2, +2) (Wz —2J» +2)

LW+ G (69)
2(W1+W2) -WiW,—-4
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For Hamiltonians (69), it is easy to construct a phase portrait (Fig. 5), where for constant parameters C, =0.1,
C, =0.1. The phase portrait shows the presence of closed trajectories on the phase plane around elliptical points and

separatrices that connect hyperbolic points. Obviously, closed trajectories correspond to nonlinear periodic solutions
(see the left side of Fig. 6), and localized solutions, such as kinks, correspond to separatrices (see the right side
of Fig. 6).

Figure. 5. The phase plane for the Hamiltonian (69) for constants (C, = 0.1,C, = 0.1) is shown. One can see the presence of closed
trajectories around the elliptic points and separatrices that connect the hyperbolic points.

Figure. 6. The non-linear helical beltrami wave is shown on the left, which corresponds to a closed trajectory on the phase plane. The
spiral is oriented along the axis Z and inclined with respect to the axis of rotation. On the right is a localized solution (kink) that
corresponds to a separatrix on the phase plane. Solutions are obtained with parameters (C, = 0.1,C, =0.1) .

4. NONLINEAR LARGE-SCALE VORTEX STRUCTURES IN AN OBLIQUELY
ROTATING STRATIFIED FLUID

In this section, we discuss the nonlinear theory of generation of large-scale vortex structures (LSVS) in an
obliquely rotating stratified medium with small-scale non-spiral turbulence, which was developed in [34]. Here
turbulence was modeled by an external small-scale force with zero helicity, which creates small-scale flows with a
small Reynolds number. Analytical results were obtained based on the method of multiscale asymptotic expansions.
Nonlinear equations were found to describe the evolution of large-scale motions in the third order of perturbation
theory. Linear instability and stationary nonlinear regimes were studied, and stationary solutions were obtained in the
form of nonlinear Beltrami waves and localized vortex structures-kinks of a new type [34].

When temperature stratification is present, there are significant differences from the findings presented in works
[32]-[33]. Firstly, the physical state changes completely. Accounting for temperature stratification in a gravitational
field leads to free convection, resulting in the creation of vortex convective cells. The outcomes of [32]-[33] are not
applicable in this scenario. Secondly, the mechanism of helicity generation is different here. Initially, non-helical
external forces and the Coriolis force excite mirror-symmetric turbulence that organizes convective cells in such a way
that the average helicity of small-scale motions is not zero ( & -effect). Thirdly, the regime of large-scale instability is
significantly altered. The increment of instability becomes much greater in the presence of convection Ra #0 .

4.1. Equations for Large Scale Fields
The Boussinesq-Oberbeck approximation describes the perturbations of velocity, temperature, and pressure in a
rotating coordinate system with a constant temperature gradient. The system of equations is as follows:

Momentum equation:

v v
—+V, —=VvAV — g—P+25..

1 .
= V.Q, +ge T +F, 70
at k axk i p x’. ijk " j=%k g Lﬂ 0 ( )
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Energy equation:

oT oT
E‘FV,{ BT—Aeka :lAT (71)
k
Continuity equation:
a,

The system of equations (70)-(73) describes the evolution of perturbations against the background of the main
equilibrium state, set by a constant temperature gradient V7 =—-A4é (heating from below A >0) and hydrostatic

pressure: VF=;§—;[QX[QXFH, where 7 is the radius vector of the fluid element. The vector of the angular

velocity of rotation € is considered constant (solid-body rotation) and inclined with respect to the plane (X,Y), as
shown in Fig. 7, i.e., for the Cartesian geometry of the problem: Q = (9,Q,,Q,); €=(0,0,1) is a unit vector in the
direction of the Z axis; gravity is directed vertically downwards g =(0,0,—g); [ is the coefficient of thermal
expansion. Equation (70) includes an external force 130, which simulates an excitation source in the medium of small-

Volo

scale and high-frequency fluctuations of the velocity field v, with a small Reynolds number R = <1.

Z /

o

le

(g2}

Yy +¢&

Figure 7. The angular velocity of rotation Q is not perpendicular to the plane (X,Y) in which the external force I:"O | 1s located, but
inclined at an angle with respect to it.
In this context, we employ an external non-helical force in the form of equation (49) and with properties (50). To

simplify notation, we switch to dimensionless variables in equations (70)-(72), while retaining the notation for the
dimensional variables

T oy 2

_ — F, 1% 14
xo t—>L, V—>K, F, > -2, P—>_i, ty=—"-, D, :VO—, fo :VLz, T%L.
ﬂo N Vo fo PPy 14 /10 /10 ZOA
In dimensionless variables, equations (70)-(72) take the form:
v, v, —_ ,
—+RV, —=AV, —a—P+gl..kV.Dk +e RaTl +F, (73)
ot ox, ox, "7
a—T+RVk I _ V. =Pr'AT (74)
ot ox,
av,
—=0 75
> (75)
— AA?
New dimensionless parameters have appeared here: Ra =%, Ra :gﬂ—/’t" is the Rayleigh number on the scale
r vy
t
Ay, Pr= Y is the Prandtl number. We consider the Reynolds number R =v°—°<<1 to be a small parameter of the
4

asymptotic expansion, and the parameters D, and Ra are arbitrary and do not affect the expansion scheme. The
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primary objective of this section is to obtain the solvability equations for the multiscale asymptotic expansion, which
involves finding equations for large-scale perturbations. As in the previous sections, we express the spatial and temporal
derivatives in equations (73)-(75) using an asymptotic expansion (6). In constructing the nonlinear theory, we represent

the variables 7/ , P as an asymptotic series (7), and the temperature perturbations 7' as the following series:
— 1 2 3
T(x,t)*ET,I(X)+TO(x0)+RTI+R T, +RT, +-- (76)

To obtain the equations of the multiscale asymptotic expansion, we substitute the expansions (6)-(7), (76) into the
system of equations (73)-(75) and group together the terms with the same orders in R up to the power of R’. The
algebraic structure of the asymptotic expansion in equations (73)-(75) differs from the asymptotic expansion presented
in Section 2.2 due to the presence of terms related to the expansion of temperature perturbations. The fundamental
secular equations, or equations for large-scale fields, are derived at the third order in R :

0, W, =AW, +V, (vivy ) ==V, P (77)

aTT—l _P’;IATfl = _Vk (Vg%) (78)

Equations (77)-(78) are supplemented by secular equations:

~V.P, +Rae,T, +&,W,D, =0, WV W' =-V P

ijk it -1
WAV, T, =0, VW =0, =0.
These equations are satisfied by choosing the following geometry for the velocity field:
w.,=(w:(z), w)(2),0), T,=T,(Z), P,=const (79)

In the framework of a quasi-two-dimensional problem, when large-scale derivatives with respect to Z are
preferable, i.e.

d Jd d

=>— —

0Z ~ 9X’ oY

z

Then the system of equations (77)-(78) is simplified and takes the following form:

0, =V, +V,, (vivy ) =0, W3 =W, (80)
0,1, VI, 4V, (viwy | =0, W =W, 1)
3, T, —Pr'AT, +V, (ngO ) -0 (82)

Equations (80)-(82) describe the evolution of large-scale vortex fields W, but the final closure of these equations is

achieved after calculating the Reynolds stresses V, (vg v ) . This shows that we need to find solutions for the small-

scale velocity field v, .

4.2. Solving Equations for Small-Scale Fields and Calculating Reynolds Stresses
We write the asymptotic expansion equations in the zeroth approximation in the following form:

Dwv, =—3,P, + Rae,T, +&,v|D, +F, (83)
597"0 =ev, (84)
9,v, =0 (85)

where the notation for the operators is introduced:
Dy =0,-3 +W*d,, Do =0, —Pr’'d> +W*9,

Small-scale temperature oscillations are easily found from equation (84):
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Yo

T, =—
Dy

0

(86)

Substituting (86) into (83), and using the condition of solenoidality of the fields v, and FO, we find the pressure P, :

F = ;1140 +ﬁ2v0 +}\)3WO 87)
Here we introduce the notation for the operators
~ D,0,-Dd, ~ DA -D0J ~ Do,-Dod, — 9
P1=—2'23),P2=—3x212,P3=1}22 +Ra—
0 d d Ded’

e v . . . . .
and velocities: v; =u,, v, =V,, v, =W, . Using expression (87), we can eliminate the pressure from equation (83) and,

as a result, obtain a system of equations for finding the zero-order velocity field:

(ﬁw +;71x)”0 +(;72x _D3)V0 +(;’3x +D2)Wo =F

(D3 +;71y )uo +(f)W +;azy )vo +(;93y -D, ) w, = F’ (88)

(21: _Dz)”o +(;72z +D, )Vo +[Z§W _i"';’sszo =0
Do

The components of the tensor ;70 have the following form:

x7y

~ D00, ,-D00, ~ D3 -Dd0d, ~ D0,0,-D0, 929,
=— : = +Ra

plx - az ’p2x az 7p3x - az ﬁgaz 4
~ D00 .-DJ ~ D030 ,-DJ0J. ~ DI -D,009, 90,
ply :T}7p2}v = - az - 7p3y = - az - +Ra DAyaz > (89)

[

~  D01-D09d, ~ D29 -Dd ~

Dd.9,-D.0, — o
p]z: az 7p22 az 9p3z: +

a

R b,

The solution to the system of equations (88) is easily found according to Cramer's rules (26)-(28). Then, using the
complex form of the external force (49), we find the zero approximation velocity field:

A )
L= ﬁ—/\* = 2 e” +ce.= Uy, + Uy, ©0)
-A2DW2 +D22
A .
v, =£—A* L hee =y, 1)
A DW] +D12
fo Dl i fo Dz i9
== ™ e =y wy ©2)
AIDWI +D12 ./‘lzl)W2 '|‘l)22
where
Ak Ra
AI,Z = DWI,Z - %
D91,2

This indicates that the zero-order velocity field is not influenced by the angular velocity component D, , as a result
of the chosen external force (49). It is worth noting that the velocity components follow the subsequent relationships:

* * *

WOZ :(WOI )* N W04 = (W03 )*’ V02 = (VOI )* ’VO4 = (VOS) > u02 :(um) > u04 :(u03) °

In order to solve equations (80)-(81), which portray the development of large-scale vortex fields, it is crucial to

compute the Reynolds stress 7" =v)v} , specifically its components:
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T = Wolty = Wou (”01 )* +(W01 )* Uy + Wy (“03 )* +(W03 )* Ups (93)
T = WoVo = Woi (Vm )* +(Wm )* Vor T Wy (Vos )* +(W03 )* Vo 94)

By substituting the solutions for the small-scale velocity field (90)-(92) into formulas (93)-(94), we can obtain the
following expressions for the correlators:

73 =f_"zm T3 fo D, (A +A)

ESP BETee——— 95)
A> Dy, +D? ‘Al Dy, +D}

If we assume the medium is the atmosphere, the Prandtl number is approximately equal to one Pr =1. In this case, the
expressions for the Reynolds stress components become simplified:

T3l :f_OZDZ 772 T72N\2 (1+zV22_Ra) 772 2 2 (96)
2 (W14 72) + 2D} = Ra)(1- ;) +(D; - Ra)’)
72 =—f—°D (1+W —Ra) ©97)

2 I+ W(+ Y +2(D] - Ra)(1-W)+(D] - Ra)’)

By substituting (96)-(97) into (80)-(81), we can obtain closed equations for the evolution of large-scale vortex
fields W :

@, -V, =L DZV{ MR } (98)
2 L+ W1+ W) +2(D? = Ra)(1- W) +(D? - Ra)*)

(aT_Vé)Wz :_f02 DIVZ|: 72 Tr2N2 1+I;V12_Ra ) 2 2 :| (99)
2 (1+ WA+ W?)? +2(D? — Ra)(1-W?)+(D? — Ra)*)

These closed equations (98)-(99) can be considered as the equations of a nonlinear vortex dynamo in a stratified fluid
that is rotating obliquely with a non-spiral force acting on the small-scale. If the rotation effect disappears (£2=0) or

the rotation axis coincides with the OZ axis (Q || OZ), the usual diffusion spreading of large-scale fields will occur. In

the limit of a homogeneous fluid Ra = 0, equations (98)-(99) are completely equivalent to equations (60) when f; =1.

4.3. Large scale instability
Equations (98)-(99) are used to describe the nonlinear behavior of large-scale perturbations in the vortex field.

Consequently, it is important to investigate the stability of small perturbations in the field # . For small values of
W= (W,,W,), equations (98)-(99) can be simplified to a system of linear equations:

arWl _VéWl _azvsz =0

100
oW, =V W, +o,V, W, =0 (100)
where the following notation for the coefficients is introduced:
a = 2D (D} = Ra—2)(2— Ra)+ Ra(4+ (D} — Ra)*)
1 0 M (4+(D12 —Ra)2 )2 ,
o, - s2p,| (DI ~Ra=2)2=Ra)+ Ra4+(D; ~Ra)’) | (101)
2 0 2 (4+(D22 —Ra)2)2

This shows that equations (100) are similar to the equations for a vortex dynamo or hydrodynamic « -effect. To
study the large-scale instability described by equation (100), we choose perturbations in the form of plane waves with

the wave vector K || OZ . As a result, we find the dispersion equation:

. 2\? 2
(-io+K*) —,0,K* =0 (102)
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Representing @ = @, +iI", from equation (102) we find:

I =Inw=+Jo,0, K - K> (103)

Solutions (103) show the existence of instability at ¢, > 0 for large-scale vortex disturbances. If ¢q, <0, then
instead of instabilities, damped oscillations occur, respectively, with frequency «, :m K . By means of the
coefficients ¢, ¢, a positive feedback is established between the velocity components, which is carried out by
projections of the Coriolis force. Note that in the linear theory considered here, the coefficients ¢;, ¢, do not depend
on the field amplitudes but only on the rotation parameters D, ,, the Rayleigh number Ra, and the amplitude of the
external force f,. Let us analyze the dependence of these coefficients on dimensionless parameters, assuming the
dimensionless amplitude of the external force to be equal to f; =10. Fixing the level of the dimensionless force means
choosing a certain level of the stationary background of small-scale and fast oscillations. In the coefficients ¢, «,

instead of the Cartesian projections D, and D, , it is convenient to pass to their projections in the spherical coordinate
system (D, ¢, 60) (see Fig. 8).

Figure 8. The conversion between the Cartesian projections of the rotation parameter D (or the rotation angular velocity vector Q)
and their projections in a spherical coordinate system is demonstrated.

The coordinate surface represented by D = const forms a sphere, where 6 stands for latitude (€€ [0,7]) and ¢
denotes longitude (@< [0,27]). To investigate the impact of rotation and stratification on the gains ¢, &, , we assume
that D, and D, are equal, corresponding to a fixed longitude value of ¢ =rx/4+7n, where n=0,1,2..k, k is an
integer. Under this assumption, the amplification factors for vortex disturbances are given by:

4(D*sin’0—2Ra—4)(2—Ra)+2Ra(16+(D* sin® 8 —2Ra)’
a—al—az—foz\/iDsiné{( sin’0—2Ra—4)(2 - Ra)+2Ra(16+(D* sin’ 6 a))}

(16+(D* sin* 6 —2Ra)*)’

This implies that generating vortex disturbances at the poles (8 =0, 8 = x) is not efficient since & — 0. The left

side of Fig. 9 illustrates the dependence of the coefficient ¢ on the fluid stratification parameter (Rayleigh number Ra )
at a fixed value of latitude 6 = 7 /2 and number D =2.

a
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Figure 9. a) Plot of the dependence of the « -effect on the medium stratification parameter Ra (Rayleigh number); b) plot of the
dependence of the o -effect on the medium rotation parameter D .
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It also shows the case of a homogeneous medium, where large-scale vortex disturbances are generated by the
external small-scale non-spiral force and the Coriolis force. Fig. 9 indicates that temperature stratification ( Ra # 0 ) can
result in a significant increase in the coefficient ¢ , leading to faster generation of large-scale vortex disturbances than
in a homogeneous medium. This effect is particularly significant at higher numbers. Moreover, an increase in Rayleigh
numbers leads to a decrease in the values of the coefficient. We are also interested in exploring the impact of the
medium rotation effect on the amplification factor or the process of generating large-scale disturbances. Therefore, we
set the Rayleigh number to Ra =2 at &= /2. On the right-hand side of Fig. 9, the functional relationship a/(D) is

presented. It is evident from the graph that the coefficient attains its maximum value ¢, at a specific rotation

parameter D after which it gradually diminishes with an increase in D . This implies that the o -effect is suppressed.
Similar behavior was observed in the magnetohydrodynamic « -effect [39]. On the left side of Fig. 10, the combined
impact of rotation and stratification on the (D, Ra) plane is depicted. The gray shaded region indicates the o >0

. . . . e o, . . Joo
instability area. The maximum instability increment I’ =2 is achieved for wave numbers K =~Y""2 The

max max 2

graph on the right-hand side of Fig. 10 shows the dependence of the instability increment I" on the wave numbers K ,
which has a conventional pattern similar to the « -effect. Consequently, a rotating stratified atmosphere experiences the
generation of large-scale helical circularly polarized vortices of the Beltrami type due to the development of a large-
scale instability.

Ra I

1000
R00
14 600
............. = 400

200

0 1 2 3 D (1] 20 40 6l K

Figure 10. The image on the left displays a graph representing the (D,Ra) plane. The region indicating positive values of o
(representing unstable solutions) is shaded in gray, while the region indicating negative values of ¢« is shown in white. On the right-
hand side, there is a plot showing the relationship between the increment of instability and the wave numbers K, with
D =2 and Ra = 2 as the parameters.

4.4. Stationary nonlinear vortex structures
Obviously, with an increase in the amplitude of perturbations, the nonlinear terms decrease and the instability
saturates. As a result, nonlinear vortex structures are formed. To find them, we put in equations (98)-(99) 9, =0 and
integrate the equations once over Z. Furthermore, we make the assumption that the projections D, and D, hold

identical values. To simplify the calculations, we assign the latitudinal angle a value of 8 =x/2. Consequently, we
derive a set of nonlinear equations in the following format:

dm, _

1+W?2 —Ra
_,_fOZD\/E 2
dz

(1+ W )AA+ W) +4(D* —2Ra)(1-W; ) +(D* —2Ra)*) "

C, (104)

1+W?-Ra
772 7722 zi 172 2 2 +C,
(A+WHAA+WH)? +4(D* —2Ra)1-W?)+(D* —=2Ra)*)

aw, _

2= rip2 105
7 fo (105)
C,, C, are integration constants that can take any value. It is important to note that the system of dynamic equations

(104)-(105) is conservative, meaning it possesses a Hamiltonian. To obtain the Hamiltonian, we can express equations
(104)-(105) in the Hamiltonian form.

dw, _ oM dW. _ oM
dZ — ow, dZ oW,

where the Hamiltonian H has the form:
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H=H W) +H,W2)+C,W, —C,W> (106)
and functions H, , are

(1+ lez - Ra)dWl,z
(1+ W) A1+ W7,) +4(D* = 2Ra)(1-W}) + (D’ —2Ra)’)

H,, = 1y DV2]

Assuming D =Ra =2 and f;, =10 one can easily calculate the Hamiltonian (106):

+ arcth1 + arcthT/z +C, W, - C W,

~ ~2 ~ =2
e B 5 W55V1+3)+W1(5Vz+3)
U4 +1)2 U +l)2

Equations (104)-(105) being Hamiltonian implies that the phase space can only have two types of fixed points:
elliptic and hyperbolic fixed points. This can be observed through a qualitative analysis of the system by linearizing the
right-hand sides of equations (104)-(105) near fixed points, determining their type, and constructing a phase portrait.
Through this analysis, we have identified four fixed points, two of which are hyperbolic and two of which are elliptic.
The phase portrait of the dynamic system of equations (104)-(105) with parameters C, =-1, C, =1,

D= Ra=2and f, =10 is shown in Fig. 11, which allows us to qualitatively describe possible stationary solutions. The

phase portrait also reveals the presence of closed trajectories around elliptic points and separatrices connecting
hyperbolic points. Closed trajectories correspond to nonlinear periodic solutions or nonlinear waves (see Fig. 12a),
while separatrices correspond to localized kink-type vortex structures (see Fig. 12b), which are the most interesting
localized solutions.

W, \/

DX | (&

(=]

@
a

=9 -1 0 1 W

|

Figure 11. The phase plane for the dynamic system of equations (104)-(105) under the condition C, =—-1 and C, =1. Here you can
see the presence of closed trajectories around elliptical points and separatrices that connect hyperbolic points.

Figure 12. a) The phase plane displays a non-linear helical wave, which corresponds to a closed trajectory. b) Localized nonlinear
vortex structure (kink), which corresponds to the separatrix on the phase plane (C, =-1, C, =1, D= Ra =2).

5. NONLINEAR VORTEX DYNAMO IN A ROTATING STRATIFIED MOIST ATMOSPHERE
A moist atmosphere is composed of dry air, water vapor, and fluid water droplets. If the specific humidity value is
below saturation, the atmosphere behaves like a binary mixture of dry air and water vapor, following the usual
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hydrodynamic equations. However, when the specific humidity reaches saturation, excess water vapor condenses and
forms a new substance called water content. This process releases a large amount of energy, although we only consider
its energy effect here as describing a phase transition is a difficult task. This section presents the results of large-scale
instability in a rotating stratified moist atmosphere with small-scale helicity at low Reynolds numbers, as described in
[31]. The small-scale helicity is induced by an external force that considers the influence of Coriolis force and
stratification in a moist atmosphere. The method of multiscale asymptotic expansions was applied in [31], resulting in
averaged nonlinear equations for large-scale fields in the third order of Reynolds number in a rotating moist
atmosphere. The instability of the hydrodynamic « -effect was obtained for small amplitudes of large-scale velocity
perturbations, and the criteria for the development of this instability were determined based on the rotation and
stratification of the medium. The numerical estimates of the characteristic times and scales of instability given in [31]
may explain the origin of the large-scale spiral structure of cloud mesovortices and typhoons at the initial stage of their
development. Furthermore, a numerical analysis of the nonlinear equations in the stationary regime was conducted
in [31], which revealed the existence of localized helical vortex structures of the kink type.

5.1. Statement of the problem and basic equations for large-scale vortex fields

The problem statement is as follows: Consider a layer of the atmosphere where the specific humidity is equal to
the saturated humidity. The negative gradient of the saturated value of specific humidity in the atmosphere is
determined by the stationary vertical gradients of temperature and pressure. When ascending air flows, twisted by the
Coriolis force, condense water vapor and release latent thermal energy. In this medium, small-scale non-spiral
turbulence is present, which is modeled by an external small-scale force. The main objective of this section is to
understand how moisture phase transitions affect the dynamics of large-scale or averaged fields. To describe the process
of wet convection, we use the well-known Boussinesq approximation to write hydrodynamic equations for perturbations
of velocity V', temperature T , pressure P , and specific water content m in a rotating coordinate system.

av, v, '
T4y, =y, —;a—P+28i.kVWk+geI. (BT +Bm)+F, (107)
ot ox, p 0x, Y
Ty I sey = pr+tk (108)
ot ox, c,
My M e, = dAm+ K (109)
ot ox,
v,
Zi_p (110)
ox

The system of equations (107)-(110) describes the evolution of disturbances against the background of the main
equilibrium state 7'(z), p(z), m(z), specified by a constant temperature gradient V7 =—4é (4>0) (heating from

below), an equilibrium gradient of specific water content Vm =—Bé (B<0), and hydrostatic pressure:

vp= /_)g—[ﬁx[fle ]] , where 7 is the radius vector of the fluid element. Here g =(0,0,—g) is the gravitational

acceleration vector directed along the OZ axis. The angular velocity vector Q is constant, which means that the
medium is rotating as a solid body around the OZ axis. The direction of the vector is also along the OZ axis, which
means that the rotation is around a vertical axis. The constant rotation is an assumption of the problem, which simplifies
the analysis of the equations and allows us to study the effects of moisture phase transitions on the large-scale
dynamics. The heat balance equation (108) includes the source of latent heat release from saturated air
condensation [18]:

L L dq,

Q=—K=—cde,v,, c:ﬁ, (111)

S S

where L is the specific heat of condensation of water vapor, ¢, is the heat capacity of dry air at constant pressure, K

is the rate of condensation, and g, is the specific saturated humidity or mass fraction of saturated steam. e = (0,0,1) is
a unit vector in the direction of the Z axis directed vertically upwards, £ is the coefficient of thermal expansion,

B = —é(a—p) and d is the diffusion coefficient.
T.P

p m
The Navier-Stokes equation (107) includes an external small-scale force F;,, which models the excitation source in

the medium of small-scale and high-frequency pulsations of the velocity field v, with a small Reynolds number
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Vol . . . o . .
R=-"% <« 1. The main role of this force is to maintain a small level of small-scale motions in the presence of

Z

dissipation. Here we consider a small-scale external force of the form (25) with properties (3). Applying the usual
dimensionless procedure to the variables x,¢,V,P,F,,T as well as to perturbations of the specific water content

m — m/ A B, we write equations (107)-(110) in a dimensionless form:

av; av, —_ o~ _
—L4+RV, —L=AV, —a—P+D£i.kV. +e, (RaT +Rum)+F, (112)
ot ox, ox, Y
a—T+RVk a—T—aeka =Pr'AT (113)
ot ox,
I jy, I e,y = 57 Am (114)
ot ox,
av,
—=0 115
- (115)
. . e . ~ _R
Here, new dimensionless parameters have appeared that are characteristic of a moist atmosphere: Rn = S’:’ ,

R =

m

gBBA,
vd

is the diffusion analogue of the Rayleigh number on the scale A,; S =5 is the Schmidt number,

a= 1+iL, b= 1+%. The small parameter of the asymptotic expansion will be the Reynolds number R of small-
S
scale motions, and the parameters Ra , R, and D will be considered arbitrary, not affecting the expansion scheme.
Consider the problem statement below. Moist air found in certain parts of the atmosphere is made up of dry air,
water vapor, and fluid water droplets. This environment experiences small-scale, high-frequency movements supported
by an external force. The Coriolis force twists ascending airflows, leading to the condensation of water vapor into water
and the release of latent thermal energy. The negative gradient of the saturated value of specific humidity in the
atmosphere is determined by stationary vertical gradients of temperature and pressure. The impact of moisture phase
transitions can significantly affect the dynamics of large-scale or averaged fields. To obtain equations for large-scale
fields, the multiscale asymptotic expansion method is used. This method identifies the equations for large-scale
perturbations by separating them from the hierarchy of perturbations. By using the technique described in the previous
sections, the spatial and temporal derivatives in the system (112)-(115) are represented as an expansion (6). The

variables V/,P,T are represented as an asymptotic series (7) and (76). In constructing a nonlinear theory, perturbations
of specific water content m are also represented as an asymptotic series.

m(x,t) :%Mq (X)+my (x,)+Rm +R*m, + R’m, +-- (116)

The algebraic structure of the asymptotic expansion of equations (112)—(115) in various orders R is given in [31]. It is

also shown that it is in order R’ that the main secular equations, or equations for large-scale fields in a moist
atmosphere, are obtained:

3, W, =AW, +V, (vivy ) ==V, P (117)
0,1, —PrAT, =V, (V)T (118)
0, M, —5"AM_, ==V, (vjm, | (119)

Equations (117)-(119) are supplemented by the following secular equations:

—V.P,+RaeT, +eRuM+De W =0, WV W, =-V.P WV, T =0

ijk

WV .M, =0, VW =0, W;=0.
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These equations are satisfied by large-scale fields of the Beltrami type:
W, = (W5 (2), W2 (2),0), M, =M_(2),T, =T.,(Z), P, = const

In the framework of the “quasi-two-dimensional” problem, when large-scale derivatives with Z are preferable

v,=2s 9 9
2709z ax oy

the system of equations (117)-(119) is simplified and takes the following form:
0, W, =V +V, (vivs ) =0, W, =w}
O, = VoW, £V, (viwy ) = 0. Wy =
0, ~Pr'AT, +V,, (v,T,) =0

,M_ —S"AM  +V, (ﬁ) -0

(120)

(121)

(122)

(123)

(124)

The system of equations (121)-(124) describes the evolution of large-scale disturbances in a rotating moist
atmosphere within the framework of the condensation heat release model. To study the dynamics of a large-scale vortex

field, it is necessary to obtain equations (121)—(122) in a closed form, i.e., to calculate the Reynolds stresses V, (v(’)‘ v(’)) .

It is clear that in order to solve this problem, it is necessary to find solutions for a small-scale velocity field v, .

5.2. Small-scale fields in zero order by R
Let us consider the equations for zero order in R equations (112)-(115)

Dov, =—0,F, + D¢, vy e, + Rae,T, + Rue,m, + Fy
Dum,, = be, v}

DoT, = ae,v,
where the notation for the operators is introduced

Do=0,-0> +W*d,,Dn =0,-5"'0> +W*'d,, Do =9, — Pr''9* +W*9,.

Using the condition of solenoidality of the fields v, and ]7“0, we exclude from equation (125) the pressure F,

o D(9.% -9,v) LR T, Radm,
0 az 82 az

From equations (126)-(127) we find expressions for small-scale temperature 7; and specific water content m, :

av, bv,
Iy =—, my=—.
Do Dn

Putting (129) into (128), we get

D(o.v) -0 v R »
1)0 _ ( x 02 ¥ 0)+ a]f\a + bl;\’\m azvg'
d 0°Ds 9’ Dan

(125)

(126)

(127)

(128)

(129)

(130)

As a result of substituting (130) into (125), we obtain a system of equations for finding the velocity field of the zero

approximation:
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PuVe T PuVe + PV = Fy
PaVe T PV TPV = F (131)

N A A
PaVo TPV t D3V, = K

The tensor components p, are as follows:

a a ~ aZ ~ (ak\c/l " bkm Jaxaz

Py = Do _Dﬁo p,=D—-D,p;=

~

az DB Bm az ’
~ ~ 00, ~ (aRa bR,)9,9. ~ 0.9,
p22:D0+D azyapz:;:(ﬁ +B 52 9p3]:_ 82, s
(4 m

~ a% ~ a 8 ~ ~ ak\;l bkm 82
Py __[DaT_D]’p3z :DT’p33 = Do+ Do + D, 8_2_1

In equation system (131), we utilize the explicit form of the external helical force F;, which is determined by

expression (25). The small-scale velocity fields (v;,v; ,V; ) are obtained by applying Cramer's rule to the components of

the external helical force, as described in equations (26)-(28). Following similar procedures as in section 2.3, we
determine the zero-approximation velocity field in R :

u, = Ce + 4,¢” +cc.= Uy, g, U+, (132)
v, = A" —Cye” +ce.= Vo, + Vg + Vg3 + Vs (133)
w, = —Ce" +Ce" +cc.= Wy, + Wy, + Wy + Wy, (134)

* * * *

.
Here wy, =(Wy,) > Wou =(Wes) > Voo = (Vo) » Vou = (Vo3 ) » Uy, = (1) , and new designations are introduced:

~+ 1| aRa bR

1,2 —— * *

S Do, D, I D
4, = 70 ,C, = 7‘) (135)
~+ |~ 1| aRa bR, || D ~+ | ~* 1| aRa bR. || D’
Di2| Dip—— % *m +7 D> | Dip —E %-ﬁ- " 7
DeLz Dml’2 D91‘2 Dml,2

In contrast to the case of a homogeneous medium examined in Section 2, the small-scale velocity field (132)-(134)
is influenced by the temperature gradient, specific water content gradient, and processes related to heat release during
vapor condensation. This matter will be further addressed when analyzing the stability of small perturbations of a large-

scale velocity field W .

5.3. Nonlinear vortex dynamo equations and large-scale instability

To close the system of equations (121)-(122) describing the evolution of large-scale velocity fields W, it is
necessary to calculate the correlators of the following form:

* *

= Wolly = Wy (”01 )* +(W01 )* Uy + Wy (”03) +(W03) Ups (136)

32 * * * *

T‘ :WOVO :WOI (VOI) +(W01) VO] +W03 (V03) +(W03) VOS (137)

Formulas (136), (137) determine the Reynolds stresses, for which we need expressions for small-scale velocity fields
(132)-(134). After substituting these expressions into formulas (136)-(137), we find:

T =2|C[ +C, 4 +Ci 4, 77 =22|G,[ (G4 +Cl 4) (138)

Substituting expressions (135) into formulas (138), we find expressions for the Reynolds stresses:
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~a Pr' ~ b S
RN
2 2 2 92 ‘ my
o B D Lo p - 139
2 n n 2 n n
D+l | Rae Dy, 0D D+l R0 D g, 0D
2 2 Dqg 2 D, 2 2 Do, 2 D,

—~a Pr! % b S

az‘ﬁ 2 " E‘B 2
2 2 2 6, m
S D : _hp ‘ S (140)
2 7 N 2 N 7
D+l | Rad D g, 0 L D+l | Rad D g, 0D
2 Do, 2 D, 2 2 Dq 2 D,
As a result, equations (121)-(122) take a closed form. If the properties of the medium are such that the Prandtl Pr = v
X
and Schmidt S :g numbers are equal to one, we find
2 772
. £ D (4+17.) .
8 - -, |D? TR+ . R,, -
(4417|160} +| ——+4=W | +— |-R(16-W,')-D* —(4-W)
2 4 2
D 4+VI722—£
fo 2
+ P — (141)
? (4417 )| 1677 + D—2+4—Wz2 R —73(16—VI724)—D2£(4—VI722)
2 4 2
2 772
" D (4+W) .
8 2 2 >
772 772 D 772 R D 74 2 R 772
(4+; )[16W2 +{2+4—W2} +4}R(16—W2 )-D E(4—VI/2)
P D[4+V22—§]
- 20 = (142)

2 ~
(4+VI712){16VI712+{D22+4—VI712} +i}7z(16—vﬁ4)—02§(4—vﬁz)

In formulas (141)-(142), the following designation is adopted: T€=aRa+me. As a rule, in atmospheric

convection, the equilibrium gradient of specific water content is small |B| < c|A| and taking into account that the

. L ~ ~ AAS .
expression |[—|>> ﬁ for R can be represented as a sum R = (1+Li Ra=Ra+R,, where Ra= g,3—20 is the
P ¢ 4
. e . o _gBr,-7) . . o
Rayleigh number for "dry" convection at v =y =d , R, =————— is a number characterizing the intensity of
v

condensation heat release, and 7, is a wet adiabatic and y, = £ is a dry adiabatic gradient related by the relation [19]:
c

P

_, 4L 44,

P

(143)

Please note that when the medium is homogeneous (f?:z =Rn=0 ), equations (141)-(142) are equivalent to the
findings presented in reference [30]. Equations (121)-(122) describe the nonlinear vortex dynamo equations in a humid,
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rotating atmosphere with a small external force on a small scale. In case of the disappearance of the rotational effect
(Q=0) or the external force's amplitude is zero ( f, =0), the large-scale fields will undergo conventional diffusion

spreading.
Initially, we examine the stability of small perturbations, followed by investigating the likelihood of stationary
structures. When the W, values are small, the Reynolds stresses (141)-(142) can be expanded into a series in WI,Z ,

resulting in linearized equations (121)-(122).
aTVVl_VéVVI =0!1VZW]—0(2VZW2 (144)

aTVVZ _V?/Vz = a1VZVV2 +a2VZVVl (145)

Here
2 2 B B
o :f—ODza , &, _fo al1- & —a0£ , (146)
8 2 10 25
2
30 [10-p* +R[ 1+ 2 |+ 3 'p?
4 10 ) 50
a, = ~, o= .
2 2 52 % D 2 ~2 ~ D?
(D* +6)" +64+R —12R£1+10] [(Dz+6) ceds T _IZR[HIOD

We seek a solution to the linear system of equations (144)-(145) in the form of plane waves with wave vector
K || OZ . This results in a dispersion equation of the form (45). The solutions of this equation demonstrate the existence
of unstable oscillatory solutions for large-scale vortex disturbances. It is important to note that the gain ¢, for small

amplitudes of large-scale disturbances depends on the amplitude of the external force f; (turbulence intensity), the

rotation parameter D , and the stratification parameter R , which takes into account the characteristics of Ra “dry” and

R, “wet” convection. To start, we examine how the values of coefficient ¢, change with the parameter R , for a fixed
rotation parameter D =1 and external force amplitude f, =10. The functional dependence ¢, (R) is illustrated in

Fig. 13a. The coefficient ¢, value at R=0 corresponds to a homogeneous medium where the generation of large-scale

vortex disturbances is caused by the Coriolis force and the action of an external small-scale force [30]. Fig. 13a
illustrates that the presence of temperature stratification ( Ra # 0) and an additional source of condensation heat release

(R, #0) can increase the coefficient «,, resulting in faster generation of large-scale vortex disturbances than in a

homogeneous medium. At a critical value of the stratification parameter R =Ry, the generation of perturbations ceases
because ¢, = 0. Beyond this point, for R> Ro, the sign of the gain ¢, changes. The rising mode becomes damped,
and vice versa. Additionally, we examine the influence of the medium's rotational effect on the gain or the process of
generating large-scale disturbances by fixing the value of parameter R =2 and the external force amplitude f; =10.
The functional dependence «, (D) is illustrated on the right side of Fig. 13. An analysis of the dependence on the
rotation parameter ¢, (D) reveals that the coefficient oz, — 0 decreases with “fast” rotation D — e, implying that the
o -effect is suppressed.

b)

10 3 0 3 D
Figure 13. a) Plot of dependence of « - effect on medium stratification parameter R. b) Plot of dependence of « - effect on
medium rotation parameter D .

The graph depicting the dependency ¢, (D) shows that there are certain parameter D values at which the
generation of vortex disturbances ceases (¢, =0). Fig. 14a illustrates a graphic representation of the combined
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influence of rotation and stratification in the plane (D,I?), highlighting the region of instability ¢, >0 in gray. The
2

. . o . o, . . (27
maximum instability increment T’ :Tz is attained at the wavenumbers K, :?2. The dependence graph

max

(Fig. 14b) of the instability increment I' on the wavenumbers K has a standard form, typical of the o -effect. As a
consequence of the development of large-scale instability in a rotating humid atmosphere, large-scale spiral circularly
polarized vortices of the Beltrami type are generated.

a) b)

R r
0.4
10 -

3 ) et e et e e e
ok
0.2
a0f 04
] -0.6
22 : -0.8
0 2 4 6 8 D 0 05 1 15 K

Figure 14. a) The plot illustrates the values of coefficient ¢, in the (D,IT) plane, where the area corresponding to unstable solutions

(positive values of ¢, ) is shaded in gray, and the area corresponding to stable solutions (negative values of ¢, ) is shown in white. b)

The plot shows the dependence of instability increment on wavenumbers K for parameters D =1, R=2 and fo =10.

In conclusion to this section, we can estimate the typical spatial L, ~1/¢, and time 7,, ~ 1/, scales of the
unstable mode and its growth under the conditions of the hydrodynamic ¢ -effect in a rotating moist atmosphere. To
achieve this, we calculate the coefficient ¢, using the standard characteristics of atmospheric turbulence, such as the
characteristic velocity v, = 0.1 in m/s, the scale of fluctuations A, ~10° in meters, and the turbulent viscosity v =10’
in m/s, as described in references [5] and [18].

Hence the characteristic time of turbulent pulsations #, = A’ /v =10s and the value of the rotation parameter
D=2QJ; /v=14-10" (the angular velocity of the Earth's rotation Q=7-10"s"') and the Reynolds number

R=v,A, /v=10". Let’s compare the dimensionless parameters D, Ra, R, with respect to the Reynolds number R :
D/R>1,Ra/R=fA410°>1,R /R= B B-10° >1,

which is consistent with the asymptotic expansion scheme used here. The smallness of the rotation parameter D makes

it possible to neglect the terms of order D* when estimating the coefficient «,

_
2

a, Dk, (147)

where the value of x=4.5-107 is calculated according to formulas (146) for the stratification parameter R=5.
Let us express the hydrodynamic helicity «, =(t,/3)v,rotv, (see, for example, [11]) in terms of the
dimensionless source amplitude:
LW o
o, =——Jo> 148
T So (148)
Here f, is the dimensionless amplitude of the external force included in formula (147). When deriving this formula, it

is assumed that there is a balance between the source and dissipation, which corresponds to the stationary case.
Substituting (148) into (147), we find expressions for the characteristic spatial and temporal scales:

o L2aDK 06 km,
Yok (149)
2 p2
AR 3 Gays,

T A —
" 9Dk’

v

Here, the hydrodynamic helicity coefficient &, =107 m/s was considered [5]. Thus, quite acceptable estimates (149) of

the characteristic scales of instability have been obtained, which can explain the origin of the large-scale spiral structure
of cloudy mesovortices and typhoons at the initial stage of development.
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5.4. Stationary nonlinear vortex structures
Clearly, with an increase in the amplitude of perturbations W, ,, the nonlinear terms decrease and the instability

saturates. As a result, nonlinear vortex structures are formed. Next, we put d, =0 in equations (121)-(122) and
integrate the equations once over Z, and we get a system of nonlinear equations of the following form:

2 ~
Dz%(4+le)

aw __ .
az T T R ey e Ry, o
(4+177) 16le+{+4—Wf} +— |-R(16-W,")-D* —(4-)
2 4 2
, -
D7 4+VI722—£
2 2
+ +C, (150)

2
(4+VI722)[16VI722+{D;+4—VI722} +IZ}§(16—VI7;)—D2§(4—VI7;)

aw, _ 8

dz 52
(4+VI722){16(1—W2)2+P;2+4—W22} +ﬁ]—§(16—W24)—D2§(4—V1722)

, N
DO 4+ _R
2 2

- +C, (151)

~2

- - D? T R ~ - -
(4+VI/§)[16W]2+L+4—W} +4}R(16—VVI4)—D2(4—VV]2)

Here, C,, C, are arbitrary constants of integration. Let us now find out what types of stationary vortex structures are
described by the system of equations (150)-(151). Let's start a qualitative analysis of the system of equations (150)-
(151), assuming for simplicity of calculations that the dimensionless parameters are f, =D =1, R=2.

For a given set of values of the parameters, the phase portrait of equations (150)-(151) can be determined based on the
constants C, and C, . It has been established using standard methods that the system of equations has four fixed points in the

region shown in Fig. 15. No fixed points exist outside of this region, and degenerate cases are observed on the boundary,
resulting in two fixed points. When the parameter values D are slightly modified, the region of existence of four fixed points
is slightly deformed, altering its size and shape. Linearizing the vector field (150)-(151) in the neighborhood of the fixed
points for the values of constants C, and C, (as shown in Fig. 15) where there are four fixed points, we can determine the

type of fixed points. For four fixed points, two are hyperbolic, and the remaining two are stable and unstable focus. The
position and type of the fixed points are used to construct the phase portrait of the system (150)-(151). The phase portrait
enables us to describe all possible stationary vortex solutions qualitatively. Fig. 16 illustrates the phase portrait of the system
of equations (150)-(151). The most interesting localized solutions are those that correspond to the phase portrait trajectories
connecting fixed points on the phase plane. For instance, a separatrix linking a hyperbolic singular point with a stable focus
corresponds to a solution for a localized kink-type vortex structure with rotation.

0.03

0.029

0.014

0

-0.03 -0.02 -0.01 1] C
|

Figure 15. The boundary of the parameter region (C,,C,) in the phase portrait is marked by the dashed line. Within this region, there
are two hyperbolic fixed points, as well as a stable and an unstable focus. Outside of this region, there are no fixed points. This area
was constructed numerically for a value of f, =D =1, R=2.
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Figure 16. Phase portrait of the system of equations (150)-(151) at f, =D =1, R=2, C, =-0.01 and C, =0.01. One can see the
presence of two hyperbolic singular points and stable and unstable foci.

Fig. 17a illustrates the solution obtained through numerical integration. It corresponds to a spiral kink of one type.
Another type of spiral kink is represented by the solution in Fig. 17b, for which the separatrix on the phase plane
connects the unstable and stable focus. These solutions result in large-scale localized vortex structures, including kinks
with rotation, which are produced by the instability of the ¢ -effect.

-W : 23 ‘.z"r"---z.:J
2 42 WI

Figure 17. a) The image displays a kink that connects a hyperbolic point with a stable focus. As the stable focus is approached, the
velocity field exhibits rotations. b) The picture illustrates the kink connecting the unstable and stable focus. It shows the internal

helical structure of the kink. These solutions were obtained using the parameters: f, =D =1, R=2 and ¢, =-0.01, C,=0.01.

6. VORTEX DYNAMO IN A ROTATING MOIST ATMOSPHERE WITH A SMALL-SCALE
NON-HELICAL FORCE

This section presents the findings of a study conducted in [35] on a large-scale instability in a rotating stratified
humid atmosphere subjected to a small-scale non-helical force. The previous section explored helical turbulence.
Helical turbulence in natural conditions is typically attributed to the influence of the Coriolis force on the previously
uniform, isotropic, and mirror-symmetric (non-spiral) turbulent motion of the medium. This raises a question about the
origin of helicity itself. The natural hypothesis is that helicity arises due to the Coriolis force acting on convective
turbulence. In this scenario, large-scale instabilities in the atmosphere should emerge self-consistently, without
additional assumptions.

The turbulence in reference [35] was simulated by utilizing an external small-scale force that had no helicity

~ - t
FyrotF, =0 and induced velocity fluctuations with a low Reynolds number R = Too < 1. Additionally, the medium's

rotation axis was assumed to deviate from the vertical direction. The authors employed the method of multiscale asymptotic
expansions and derived the equations of a nonlinear vortex dynamo. The study investigated linear instability and stationary
nonlinear regimes and resulted in the discovery of localized vortex structures, namely nonlinear Beltrami waves and kinks.

6.1. Closed equations for large-scale vortex fields
We utilize equations (112)-(115) in the Boussinesq approximation with an external non-helical force 17"0 to

describe the generation of large-scale vortex structures, such as tropical cyclones. This approach differs from the
method used in Section 5, which involved a helical force as the source of turbulence for a vortex dynamo in a moist
atmosphere (see Fig. 18).

Instead, we use an external non-helical force of the form (49) with properties (50). To understand how the small-
scale motions created by this non-helical force influence the dynamics of large-scale perturbations, we apply the method
of multiscale asymptotic expansion. The algebraic structure of the asymptotic expansion of equations (112)-(115) in
different orders in is presented in [35]. By considering the third order of the asymptotic expansion in the Reynolds
number R, we obtain the basic equations for the evolution of the vortex field in “quasi-two-dimensional” geometry,
which take the form (121)-(124).
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Figure 18. The angular velocity Q is inclined with respect to the plane (X,Y) in which the external force 1’30 is located.

To derive these equations in a closed form, it is necessary to calculate the Reynolds stresses V, (v(’)‘ v(’)) by first

obtaining solutions for a small-scale velocity field v, . It is important to note that this velocity field will differ from the

one found in Section 5.2 for two reasons. Firstly, because a non-helical external force is being considered, and secondly,
because all projections of the Coriolis force (oblique rotation) are taken into account. To reflect this difference, the term

De,,vye, in equation (125) is replaced with £, v; D, . By performing the same mathematical operations as in Section
5.2, we obtain the zero approximation velocity field:
L
u, =&%e¢2 +ec.= Uy +uy, (152)
2 A2D:> + D22
a0
v =£#e +ec.= vy vy, (153)
2 A1 D +D]2
D i D i
W, :_ﬁ — ,\*1 e +&—,\* ,\*2 e” TCC= Wy + Wy T Wy T Wy (154)
2 A1D1+D12 2 A2D2+D22
where
~* ~* ak\;l b’]‘ém
Aip = Do — i (155)
Dg, D,

This indicates that the component of the rotation parameter D, is eliminated due to the choice of an external force of
the form (49). The resulting small-scale velocity field v, (152)-(154) has a non-trivial topology due to the rotation of
the medium, which gives rise to the topological characteristic of helicity H = ¥ rotV, . Helicity is a measure of the

“knotting” of the field lines of force [5]. We will now demonstrate that an external force without helicity FrotF, =0,

when combined with the Coriolis force, generates an average helicity H # 0 . In coordinate representation, the average
helicity is defined as follows:

ow, ou, v, ow,
H=uy——w, —+w, ——v, —,

dy dy ox ox
or after substituting formulas (152)-(154)

if? | D,(42—42) N D, (4 —41)
2

H = 2i(ug, Wy =t Wy + Wip Vo1 — Vs Wor ) =

~ ~ 2 ~ ~ 2 |
A>» D> +D22 ‘Al D +D]2‘

For the Prandtl and Schmidt numbers Pr= S =1, the average helicity H takes the form:

H=—/f D,(1+ W2 +R)

"l a2 #2007 - RA-W) + (D] - RY) "

. D,(1+W} +R)
(+) (1477 ) +2(D; = RY1=W,))+(D; =R)’)

(156)
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Reynolds stresses are calculated by formulas (136)-(137), using expressions (152)-(155) we obtain

731 :f_o2 D, (42 +A21 , 7% :_f_OZM (157)

2

:‘\lz Bz +D22

4 ‘:‘\11 Bl +D12

If the properties of the medium are such that the Prandtl number Pr and the Schmidt number S are equal to one, then
the expressions for the Reynolds stress components will be simplified:

o) 72 P
! :f_ODZ 772 772\2 (1+Wz/2 ~R) 772 2 P2 (158)
20 T (W NA+WE) +2(Dy - R)(A-Wy)+(Dy —R)")
: 1+W? =R
T32=_f_oDl 72 722 ( 21 > . 72 2 2y (159)
2 () + 2D = R(1- 1) +(D} = RY)
where R =aRa+bR, .
As a result, the equations for the components of the large-scale velocity field W take a closed form:
2 72D
(aT—v;)Wl—f_ODQV{ M oR } (160)
2 A+ )NA+W, )" +2(Dy = R)Y(1=W; ) +(D; =R)")
2 72 P
@ -V, =-Lopy,| — TR . (161)
2 I+ WA+ W) +2(D] = RYA=-W)+ (D] = R)*)

Equations (160)-(161) represent the equations of a nonlinear vortex dynamo in a rotating stratified moist
atmosphere with a small-scale non-helical force. It is important to note that this vortex dynamo effect occurs only in a
turbulent medium that is undergoing rotation. Equations (160)-(161) have a similar form to equations (98)-(99), except
that the stratification parameter in equations (160)-(161) contains the parameters of both dry and wet convection:

R= [1+LLJ Ra=Ra+R, . When there is no rotation (Q=0) or external force (F, =0), the large-scale fields are

¢

dampened by viscous dissipation. In the limit of a dry atmosphere R =0, equations (160)-(161) are identical to

equations (98)-(99), and in the limit of a homogeneous fluid R=0, equations (160)-(161) are identical to equations
(60) when f, =1.

6.2. Large scale instability
Let us consider the initial stage of the evolution of vortex disturbances W, ,. Then, for small perturbations

(W,,W, ), expression (156) can be linearized:

(-D? +R+2)(R+ 2)+§(4+ (D? —R)*)

H=H,6+H —fZZD- = W -
01 02 0 | (4+(D12 _R)z)z 1

2.3 > R 2 P2
(=D; +R+2)(R+2)+—(4+(D; —=R)")
—f022D2- 4 .

= VVza
@+(D; -R))’

where H, + H,, is the constant average helicity of the small-scale field for very small perturbations (#,,W,)—0:

f“[D R+2 R+2 J (162)

H,+H,=—— . = . =

01 02 B 1 4+(D12—R)2 2 4+(D22—R)2
This indicates that the helicity of a velocity field on a small scale in a moist atmosphere that is rotating is influenced by
both the Coriolis force and an external force that lacks helicity. As a result, the rotation of the medium produces helicity
and suggests the emergence of a hydrodynamic ¢ -effect, which is responsible for creating large-scale vortices. When

the values are small W, , equations (160)-(161) become linearized, reducing to the following set of linear equations:
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o, —V%VVI—%Vsz =0 (163)
0, W, =ViW, +aV ,W, =0
where the following notation is introduced for the coefficients
(D} ~R-2)2-R)+ X4+ (0 —R)) (D} ~R-2)2-R)+ X4+ (0 —R))
@ =-2H, 4 , @, =-2H,, 4 (164)

(R+2)(4+ (D} —R)*) (R+2)(4+(D? —R)*)
The above statement suggests that the amplification coefficients ¢, , consist of a fixed average helicity H, , .

Equations (163) bear a resemblance to the equations used to describe vortex dynamos in media that have helical
turbulence [5]. In order to analyze the large-scale instability that is described by the system of equations (163), we opt

to use perturbations in the form of plane waves that have a wave vector K ||OZ, which can be represented as

W, ~ exp(—iwt+iKZ) . By applying this approach to the system of equations (163), we derive the dispersion equation.
(io+K*) —aoK> =0 (165)
Representing @ = @, +iI", from equation (165) we find
I =Imo=*Jo0, KK (166)

The solutions presented in (166) demonstrate that large-scale vortex disturbances exhibit instability when
o0, > 0. On the other hand, if ¢ &, <0, damped oscillations with frequency @, = /&, &, K are observed instead of

instabilities. Positive feedback between the velocity components is established through the projections of the Coriolis
force, facilitated by the coefficients ¢; and ¢, . It is worth noting that in the linear theory being discussed here, the

coefficients ¢; and «, are independent of the field amplitudes but rather depend on the rotation parameters D, ,, the

total Rayleigh number R , and the amplitude of the external force f, . When examining the coefficients ¢, and ¢, , it is
convenient to switch from Cartesian projections to their projections in the spherical coordinate system (D, ¢, ), where
the coordinate surface D = const represents a sphere, with € representing latitude (€ [0,7]) and ¢ representing
longitude (@< [0,27]). In this case, the rotation parameters D, and D, in the amplification coefficients of vortex

disturbances ¢, and ¢, are
D, =Dsinf@cose, D,=Dsin@sing.

By setting the rotation parameter D , the stratification parameter R, and the amplitude of the external force f; to
fixed values, we can determine the relationship between the gain and the latitude 6 and longitude ¢ (as shown

(@
(@

in Figure 19).

@
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Figure 19. Contour plot for gain « versus longitude ¢ and latitude & with increasing stratification parameters: a) R=3 ;b)
R=5;¢) R=15.The calculations were carried out for D =2 and f, =10.

Figure 19 indicates that as the stratification parameter R increases, the maximum gain & shifts towards the
equator (latitude 6 =z /2) and longitude ¢ =7 /4 . It is less effective to generate large-scale vortex disturbances at the
poles (6=0,0=rx) (where a — 0), which is consistent with meteorological observations [4], [8] that indicate the
absence of large-scale cyclones at the Earth's poles. Subsequent calculations will focus on latitude 8=7/2 and
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longitude ¢ =7m/4 Next, we will examine the impact of the medium rotation D on the gain o or the process of

generating large-scale perturbations by setting the value of the number R =5 .

On the left side of Fig. 20a it is shown that at a certain value of the rotation parameter D , the coefficient «
reaches its maximum value ¢, . Further, as the number D increases, the coefficient & gradually tends to zero, i.e.,
the o -effect is suppressed. The dependence of the coefficient ¢/ on the medium stratification parameter R at a fixed

value of the number D =3 is also shown in Fig. 20. The case of a homogeneous medium R=0 is shown in Fig. 20D,
where the generation of large-scale vortex disturbances is due to the action of an external small-scale non-helical force
and the Coriolis force [32]. From Fig. 20c we see that the presence of stratification for “dry” and “wet” convection

(ﬁ #0) can lead to a significant increase in the coefficient & and, as a result, faster generation of large-scale vortex

disturbances than in a homogeneous medium. Further, with an increase in the Rayleigh numbers R , a decrease in the
values of the coefficient o is observed. Fig. 21 is a graph showing the combined effect of rotation and stratification in

the (D, f(’) plane. Here, the region of instability & > 0 is highlighted in grey. The graph of the dependence (see the right
side of Fig. 21) of the instability increment I" on the wave numbers K has a standard form, typical for the o -effect.
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140
120

100 100

50

(a) (€)

Figure 20. a) plot of the dependence of the o -effect on medium rotation parameter D ; b) the graph shows the value in the case of a

homogeneous medium R = 0 ; ¢) plot of the « -effect versus the medium stratification parameter R . The calculations were carried
out for f, =10.
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Figure 21. On the left is a graph for « in the (D,Ti) plane, where the area corresponding to positive values of o (unstable
solutions) is shown in grey and the area corresponding to negative values of ¢ is shown in white; on the right is a graph of the
dependence of the instability increment I" on the wave numbers K for the parameters D = 3, R=5.

6.3. Stationary nonlinear vortex structures
It is evident that the exponential growth of small perturbations W, resulting from the development of large-scale

instability eventually saturates. This is attributed to the emergence of nonlinear effects, which weaken the coefficient of
the nonlinear « -effect (o ~1/ le‘z ) and increase the amplitude of perturbations. Consequently, nonlinear vortex
structures are formed. To search for stationary structures, we substitute into equations (160)-(161) d, =0 and integrate

these equations once over Z. We focus on the case of the maximum value of ¢,

nax 2

where latitude &=x/2 and
longitude @ =7z /4 This results in a system of nonlinear equations in the following form:

) -
W _epr W -R ) (167)
d 1+ YA+ ) +4D° —2R)(1-IW2) +(D* —2R)’)

] -

L DI oR __+C, (168)
dz A+ A1+ 7Y +4D° —2R)(1-17) + (D —2R))
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Here C,,C, are arbitrary constants of integration. Note that the dynamic system of equations (167)-(168) is
conservative and therefore Hamiltonian. It is easy to find it by writing equations (167)-(168) in the Hamiltonian form:

aw, _ dH AW, dH

iz aw,’ Az aw
where the Hamiltonian H has the form:
H=H W\ )+H,(W:)+C,W,-C,W, (169)
the functions H, , are
(1+ W2 —R)dW, ,
L+ L)AL+ 2) +4(D? —2R)(1-W2) +(D* =2R))

H,, = f;DV2]

The integral in the Hamiltonian H,, is not calculated exactly in quadratures, so we calculate it for fixed rotation

parameters D=+/10 and stratification R=5, which were used in the linear theory. Under these conditions,
Hamiltonian (169) takes the form:

~ o~ —~ —~2
Wi, +21) W.(11W,+21 ~ —~ — ~
H——E\/g[ X Lr )+ 2( 2 F )+11(arclgW1+arcthz) +C, Wi —C W,

4 (71 +1y (W3 +1)
After performing a qualitative analysis of the system of equations (167)-(168), we found that only two types of
fixed points can be observed in the phase space: elliptic and hyperbolic fixed points. By linearizing the right-hand side
of equations (167)-(168) in the vicinity of fixed points, we determined their type and constructed a phase portrait.

Through this analysis, we identified the presence of four fixed points, two of which are hyperbolic and two are elliptic.
The phase portrait of the dynamic system of equations (167)-(168) for constants C; =—-0.05, C, = 0.05 and parameters

D=+10, R=5 and f, =10 is displayed in Fig. 22. This figure shows the existence of closed trajectories on the

phase plane around elliptic points and separatrices that link hyperbolic points. The closed trajectories correspond to
nonlinear periodic solutions or nonlinear waves, while the separatrices correspond to localized kink-type vortex
structures (as depicted in Fig. 23).

1
Figure 22. Phase plane for the dynamic system of equations (167)-(168) under the conditions C, = —0.05 and C, = 0.05 . Here you
can see the presence of closed trajectories around elliptical points and separatrices that connect hyperbolic points.

Figure 23. On the left is a non-linear spiral wave that corresponds to a closed trajectory on the phase plane; on the right is a localized
non-linear vortex structure (kink), which corresponds to a separatrix on the phase plane.
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7. VORTEX DYNAMO IN AN OBLIQUELY ROTATING STRATIFIED NANOFLUID WITH A SMALL-
SCALE NON-HELICAL FORCE

An important factor to consider is the impact of small particles present in the hydrodynamic medium, which is of
interest due to its prevalence in both technological and natural environments. The presence of nanoparticles in the
medium results in what is commonly referred to as a nanofluid. One issue that arises with nanofluids is the generation
of large-scale structures, which is discussed in this section based on the results of a study (reference [36]). The study
revealed the occurrence of a large-scale instability in an obliquely rotating stratified nanofluid, caused by an external
small-scale non-helical force. Nonlinear equations for large-scale motions were obtained using a method of multiscale
asymptotic expansions, and a linear large-scale instability was examined as a function of rotation parameters D,
temperature stratification Ra , and nanoparticle concentration R.. The study also discovered a new effect of LSVS
generation in a nanofluid a55001ated with an increase in nanoparticle concentration. This effect resulted in the formation
of circularly polarized Beltrami vortices. The saturation mode of the large-scale instability was studied, and a dynamic
system of equations for large-scale perturbations of the velocity field was obtained in the stationary regime. Numerical
solutions of this system of equations were found, which showed the existence of localized vortex structures in the form
of nonlinear Beltrami waves and kinks.

7.1. Equations and Statement of the Problem
The system being considered is an infinite horizontal layer of an incompressible nanofluid that undergoes constant

rotation at a fixed angular velocity Q=(Q,,Q,,Q,), with inclination in relation to the (X,Y) plane, as illustrated
in Fig. 24.

o

Z A

e Y - nanofluid

7=
Td (pd .

Figure 24. The angular velocity Q is inclined with respect to the plane (X,Y) in which the external force 1’30 | is located.

The nanofluid is contained between two parallel planes, z=0 and z =/, where the temperature and volume
fraction of nanoparticles remain constant:

T,,¢=¢, npu z=0,

~T.9=¢, wu z=h, (170

at 7,>T ,¢ >¢,. Both boundary surfaces are assumed to be free. The hydrodynamic equations governing the

behavior of a viscous, incompressible, rotating nanofluid under the Boussinesq approximation are given by the
following expressions (as seen, for instance, in references [40]-[41]):

Poo [aa_xt/w VVJ“VPWV 7 +1gp, +(1-0)pyy (1= BT ~T,)Ig + 2,V xQ + F, (171)
(Pc)f(%—f+V.VTj=ka2T+(pc)p(DBv¢.vT+DTMj (172)
a¢ 7 2 DT 2
—+V-V¢=D,V i vy o 173
8t+ 9=D, ¢+Tu (173)
VIV =0 (174)

Equations (171)-(174) are accompanied by boundary conditions for the velocity of the nanofluid. The vertical
impermeability condition of the layer boundaries and the absence of tangential stresses at these boundaries result in the
following boundary conditions for the velocity:

2

V.
V. =0, 22=0, mpu z=0,h (175)




43
Vortex Dynamo in Rotating Media EEJP. 2 (2023)

Here, p,, =¢p, +(1-¢)p, is the density of the nanofluid at the control temperature 7,, p, is the density of the
nanoparticles, p, is the density of the base fluid at the temperature 7,, ¢ is the volume fraction of the nanoparticles,
and S is the coefficient of thermal expansion. The unit vector € =(0,0,1) is directed towards the positive Z axis.
Gravity is directed vertically downwards g =(0,0,-g); (pc),,(pc), is the effective heat capacity of the base fluid
and nanoparticles; D, - Brownian diffusion coefficient, D, - thermophoretic diffusion coefficient. The signs of the
coefficients and are positive, and they are respectively equal:

k,T 0.26k,
DB = 3 B R DT ’Ll/
mud, Py )\ 2k, +k,

where d, is the diameter of the nanoparticles, &, is the Boltzmann constant, k,,k, is the thermal conductivity of the

base fluid and nanoparticles, and 4, is the viscosity of the base fluid. Equation (171) includes an external force 13;) ,

which simulates an excitation source in the medium of small-scale and high-frequency fluctuations of the velocity field

with a small Reynolds number R =—% <1, where 4, is the characteristic scale, 7, is the characteristic time. Let us

pass in equations (171)-(174) and boundary conditions (170), (175) to dimensionless variables, which we denote by an
asterisk (*):

* % ¥ t- . . 2
.y, 2= (xy,z)V . ,V):(V,VT,V)i,t: Z/)P:Ph’
x } x2"y z 2
h Z h XM
Q. ¢- . T-T, . . k,
Q :£9¢ = ¢ ¢d sT = - 5];:) :E) h 91/: / .
Q ¢ =9 I, -1, Xt~ (po),

Omitting the asterisk (*) in the system of dimensionless equations (176)-(179) and boundary conditions (180), we get

_(aa_rt/w VVJ——VP+VZI7—ERW¢—ERM+éRaT+\/ﬁ(I7><Q)+FO (176)
oT N, N,
E+V VI =V? T+ 2 (Vo vr)+ e g7 vy (177)
9 N
+V-V +—4V’T 178
o 9= Le Vig+ 3 (178)
VV=0 (179)
2
Td:1,¢d:0,VZ:a;:O npu z =0,
ZZ (180)

I =0,¢0 =1,V —aaz =0 mpu z=1,
where Pr=u/pyy, is the Prandtl number, R, = (p, — 0, )@, —4,) gh’/ Ly, is the concentration Rayleigh number,
R, =(p, 9, +p,(1-¢, \gh' / fy, is the Rayleigh number of the base density, Ra = (T, ~T)pyg Bl /g, is the
(po),

(pe),
is the coefficient characterizing the increase in the density of nanoparticles, and N, = D, (T, =T,)/ D,T, (¢, — @, ) is the

Rayleigh number, Ta = 4Q)h* py, / 11* is the Taylor number, L, = 7, / D, is the Lewis number, N, = (8, - ¢,)-

modified diffusion coefficient. Let us represent all the quantities in equations (176)-(179) as the sum of the ground
(stationary) state and the perturbed one:

V=V.T=T,()+T,p=9,(2)+¢,P=F(2)+P. (181)
After substituting (181) into equations (176)-(179), we find the evolution equations for the perturbed quantities
VT,

P—[%—Vw V7 ] = VP + V¥V —3R ¢ +eRaT +NTa(V xQ)+ F,
T
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a—T+V VT +V,—% gk =Vr +—B(V¢ VT)+ 5[ 49, 4T d¢ a1, +
ot dz dz dz dz dz
T (182)
2
X wrvry W, ar
L, ., dz dz
a_¢+[7'.v¢'+[/z'%zlvz¢'+ﬂv2f
ot dz L L

e e

against the background of the main equilibrium state, set by constant gradients of temperature and volume fraction of
nanoparticles:

dr,
0=-LL_R,~R g, +Rar,
dz
2
o 4T Ny (do dT,) NN, (dT, 183)
dz* dz dz L, dz
d*g d’T,
0=—"4+N, —2.
dz* *a?

Using boundary conditions (180), from equations (183) we find solutions for 7, =1—z and ¢, =z, which have a linear
dependence on z .
Let the external force F, have the form (49) and satisfy the properties (50). The simple physical form of the

external force (49) can be easily implemented in laboratory experiments. Let us rescale the variables in the equations for
perturbations (182):

% 2 F, N ty t
ot sty p P F, -2, T—>1 0 — ﬂ,ﬂ:@:%:l.
2 Yo P Jo R vy, v 4
As a result, we obtain the following system of equations for perturbations:
P_ E—FRV VV |=-VP+V?*V —éR,p+ERal +V xD+F, (184)
T
I RV VTV, = VT+R LYo+ [dT d¢j+ (185)
ot L \dz dz
N,N 2N,N
RYiNs oy gy 2alNs AT
L, L dz
3(/j N,
—Z+RV-Vo+V, ——V ¢+ v’r (186)

where new designations are introduced
2

p=2" P/l R.=R -2, Ra=Ra-A.
U

In equations (184)-(186), we treat the Reynolds number R— % ¢ <1 as a small parameter for the purpose of

asymptotic expansion, while considering the other parameters D,R,,Ra as arbitrary and not impacting the expansion

scheme. An external force acting on the equilibrium state results in small-scale and high-frequency velocity oscillations.
Although the average values of these oscillations are zero, nonlinear interactions generate terms in certain orders of the
perturbation theory that do not cancel out upon averaging.

7.2. Large scale instability
By employing the method of multiscale asymptotic expansions in the context of the “quasi-two-dimensional”
problem, we derived a closed system of equations for the large-scale velocity field W . This system has the form of
equations (80)-(81), and the expressions for the Reynolds stress components at Pr =1 are given by:
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2 2004 L 02 o
Jfo Dk (ky + @2 —Ra lnz)

31 _
T 4, T2 04, 202 2 g4 2 2 BN 4, 2 2y
2(ky +@2)(k, + @2)” +2(D; —Ra)(k, —w:)+ (D, —Ra) +1, (k, +C()2)+2pn2 D;)

~2 —
o 13Dk (kg + o —Ra—1,)

_2k4 ~2 4, 7200 2 s o2 2 P2 4 2 2y (187)
(ky +an )(ky +an ) +2(D; —Ra)(ky —wn )+ (D] —Ra) +an(ko+w1)+2l’nlD1)

where @12 = w, —k,W, , . The expressions for the coefficients 1"1 IRV have a very cumbersome form and are
given in [36].
When the amplitude (W,,W,) is small, the nonlinear equations for W can be approximated by linear vortex

dynamo equations similar to system (100). The solutions of this linear system describe circularly polarized plane waves,
known as Beltrami waves. The amplitude of these waves grows exponentially over time. The large-scale velocity field
satisfies the Beltrami flow, which satisfies the following condition:

W xrotW =0

To determine the conditions under which a large-scale vortex instability occurs, we first examine the dependence
of the amplification ¢, on the angle & of inclination of the axis of rotation of the nanofluid. The solid line in Fig. 25

represents this dependence for fixed values of

D=2,Ra=2k, =, =1,Pr=5R, =0.122,N, =5,L, =5000.

a) b)

o I & M T ST 3T g 0o I R 3 m S O3 OIL g
T 4 8 2 8 4 8 8 4 g8 2 8 4 8

Figure 25. The solid line shows the dependence of the gain «,, for a nanofluid on the angle of inclination &, and the dashed line
shows the dependence of the gain ¢, for a pure fluid on the angle of inclination 6. Graphs a) are built for the Prandtl number
Pr=5,and graphs b) for Pr=1.

The values of the nanofluid parameters Pr, R, ,N,,L, (ALO,-water) are taken from [40]. As can be seen from

Fig. 25a, the maximum value ¢, for a nanofluid is the angle of inclination 6, =7 /5+7zn , and the minimum value

max

is 8,,, = /2+mn. The dashed line in Fig. 25a corresponds to the dependence ¢, (6) in the case of a “pure” fluid with
the Prandtl number Pr = 5. The graphs in Fig. 25a show that the maximum amplification coefficient &, = (¢,, )1} -0 for

a “pure” fluid is greater than that for a nanofluid. The same conclusion remains valid for the Prandtl numbers Pr=1. In
this case, the maximum gains in nano- and “pure” fluids are at the deflection angles 8 = 7 /2+7zn (see Fig. 25b).
Hence, it follows that the characteristic time 7). and characteristic scale L, of large-scale vortices generated in a

nanofluid exceed the corresponding scales 7, , L, in a “pure” fluid:

T, >T, L,>L,T, =@ /4" L, =@, /2T, =@ /4", L,=(2)’

Let us consider the influence of the nanofluid rotation effect on the amplification factor ¢, or the process of large-

scale vortex generation. For these purposes, we fix the nanofluid parameters Pr,1~€n ,N,,L,, and the Rayleigh number
Ra=2.
The incline angle chosen is 6, =0.645~ 7 /5, which corresponds to the maximum values of the gain

(see Fig. 26a). As can be seen from Fig. 26a, at a certain value of the rotation parameter D , the coefficient «,, (¢,)



46
EEJP. 2 (2023) Michael I. Kopp, Volodymyr V. Yanovsky

reaches its maximum value " . Further, as the number D increases, the gains gradually tend to zero, i.e., the

max
o -effect is suppressed.

a) b) c)
o o

nf nf

- =
0 2 1 § M D 0 2 4 5 B 10 12 ~ 0 01 02 03 04 05 06 t:?R
Ra a

Figure 26. a) The solid line shows the dependence of the gain ¢, for a nanofluid on the rotation parameter D , and the dashed line
shows the dependence of the gain ¢, for a pure fluid on the rotation parameter D ; b) The solid line shows the dependence of the
gain ¢,, for a nanofluid on the Rayleigh number Ra , and the dashed line shows the dependence of the gain ¢, for a “pure” fluid on
the Rayleigh number Ra; c) Point 1 corresponds to the value @, (nanofluid) at Ra =0, and Point 2 corresponds to the value

o, (“pure” fluid) at Ra=0.

, rotation D =2 and tilt angle 8 __ = 0.645, we determine

max

Further, fixing the nanofluid parameters Pr, R, N, L

the dependence of the coefficient ¢, on the Rayleigh number Ra . Tt can be seen from Fig. 26b that the maximum
value of the gain ¢, (¢,) corresponds to small Rayleigh numbers Ra. Large-scale vortices are efficiently generated in
the range of Rayleigh numbers Rae [0,3]; this means that at high Rayleigh numbers Ra, large-scale instability does

not occur in nano- and ordinary fluids, but ordinary convective instability arises. Under the condition when there is no
heating Ra =0, the amplification factor in pure fluid ¢, (point 2 in Fig. 26¢) is less than that in nanofluid ¢, (point 1

in Fig. 26¢): &, > ¢,. On Figs. 26a-26b it is also observed that the maximum gain ¢, = (Otn/.)k -0 for a “pure” liquid
is greater than that for a nanofluid. On Fig. 27a is a graph showing the combined effect of rotation and temperature

stratification in the (D, If??z) plane. Here, the region of instability ¢, >0 is highlighted in grey. Curve 1 corresponds to

the instability boundary for a nanofluid (1~?n =0.122), and curve 2 corresponds to the instability boundary for a pure
fluid (R, =0).

a) b)

e

0 1 2 D

Figure 27. a) Plot ¢, in the plane (D,EZZ) , where the area corresponding to positive values ¢, (unstable solutions) is shown in

grey and negative values are shown in white. Curve 1 corresponds to the instability boundary for a nanofluid (R, = 0.122), and

curve 2 corresponds to the instability boundary for a pure fluid (E =0). b) A graph of the «,, -effect versus the Rayleigh

concentration number R, .

Now let's analyze the influence of the Rayleigh concentration number R, on the gain or generation of the LSVS
for the following fixed parameters: D = 2,1?21 =3,ky =@, =1,Pr=5,N,=5,L, =5000,0 = 0.645. On Fig. 27b, the

. . . . ~(0) .
intersection of the graphs (curve 1 and curve 2) is at point C(R, ,?). Curve 1 is constructed for the case when there

nf
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is a temperature gradient Ra=3.At R, =0, curve 1 shows the maximum value o, (point A) which corresponds to a
“pure” stratified fluid. A further increase in the concentration of nanoparticles leads to a decrease in ¢, . Curve 2 is
plotted for the case when there is no temperature gradient. It can be seen from the behaviour of curve 2 that an increase

in the concentration of nanoparticles first leads to an increase ¢, and then to a decrease. At R, =0, curve 2 shows the

maximum value ¢, (point B) corresponding to the amplification factor for a homogeneous fluid [32]. Here we see that
in a “pure” stratified fluid, the generation of LSVSs is more efficient than in a homogeneous fluid, which is consistent
with the conclusions of [34]. Thus, at a certain value of the number 7320) (the concentration of nanoparticles), we obtain
equal rates of LSVS generation (point C in Fig. 27b) in the nanofluid both with Ra#0 and without a temperature

gradient Ra=0. Physically, this process can be explained as follows. An increase in the concentration of nanoparticles
on the upper surface layer leads to the appearance of a flow due to the gravitational segregation of nanoparticles on the
lower surface. In turn, in the presence of a temperature gradient, a heat flux § ~ é(T, —7,)/h arises that prevents the

nanoparticles from settling on the lower surface layer. With an increase in the concentration of nanoparticles R.,a
decrease in the proportion of heat flux occurs and, as a result, a decrease in the gain ¢, . On the charts in Fig. 28, the

dependence of the instability increment I' on the wave numbers K for the hydrodynamic ¢, -effect in a nanofluid at

constant parameters D = 2, Ra= 2,Pr=5,R, =0.122, N,=5,L, =5000,0 = 0.645 is shown.
As can be seen from Fig. 28a, with an increase in the frequency @), of the external force F, at k, =1, the

maximum growth rate I",  of large-scale vortex disturbances decreases. Fixing the frequency of the external force at

max

, =1, we plot the growth rate (see Fig. 28b) as the small-scale wavenumber k, changes. For numbers &, <1, one can

observe both an increase in the maximum growth rate I, ,

X

of large-scale vortex disturbances ( k, = 0.8 ) relative to the

level T,

X

at k, =1, and a decrease in the maximum growth rate of large-scale vortex disturbances at k, = 0.5. This
behavior is due to the structural dependence of the coefficient ¢, on small-scale parameters of the external force
(@, k) -

a) b)
800
k,=08
T 150
600 k,=1.0
100
400 k=05
;= 0.8
501 k=11
200 3
O,= 1.0
0 W= 1.1 0
0 10 20 30 40 50 K 0 5 10 15 20 25 K

Figure 28. a) Plot of the dependence of the instability increment I' on the wave numbers for different frequencies @, of the
external force FU at k, =1. b) Plot of the dependence of the instability increment I" on the wave numbers K for different wave

numbers k, of the external force F,at @, =1.

7.3. Instability saturation and nonlinear structures
An increase in W, and W, leads to saturation of the instability. As a result of the development and stabilization of the

instability, nonlinear structures arise. In the stationary case, these structures are described by nonlinear equations in the
Hamiltonian form

aw, dH dw,  dH

: =- (188)
dz dw,” dz  dw,

where the Hamiltonian A has the form:
H=HW)+H,W,)+C,W, -CW,

and the functions H| , are
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2,04 , 2 5T
2.2 k(k + 2 —Ra—ln )dW
H1’2=f°\/7Dsin9I n L (189)
4 2Pr(ky +@2)A, ,

The integral in the Hamiltonian H,, is not calculated exactly in quadratures. We used the values of nanofluid

parameters Pr=1,R, =0.122,N 4, =5,L,=5000 (ALO,-water) [40]. As a result of the analysis of nonlinear

equations, four fixed points were found, two of which are of the hyperbolic type and two of the elliptic type.
The figure in Fig. 29 depicts the phase portrait of a dynamic system of equations, which bears resemblance to

equations (104)-(105), given certain constants C, =—0.005 and C, =0.005 parameters D = Ra=2, ky=w,=1,
Jf, =10. Through the phase portrait, we can qualitatively describe potential stationary solutions. Of particular interest

are localized solutions that can be found in the phase portrait trajectories connecting fixed (singular) points on the phase
plane. As shown in Fig. 29, closed trajectories are present on the phase plane surrounding elliptical points and
separatrices that link hyperbolic points. Nonlinear periodic solutions, such as nonlinear waves, correspond to closed
trajectories, while localized kink-type vortex structures (as seen in Fig. 30) correspond to separatrices.
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Figure 29. Phase plane of the dynamic system of equations (188) for constants C, =—0.05 and C, = 0.05 . Here you can see the
presence of closed trajectories around elliptical points and separatrices that connect hyperbolic points.
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Figure 30. On the left is a non-linear spiral wave that corresponds to a closed trajectory on the phase plane; on the right is a localized
non-linear vortex structure (kink), which corresponds to a separatrix on the phase plane.

8. CONCLUSIONS

The review paper presents the theoretical findings of the authors [30]-[36] in the area of vortex dynamo in rotating
media. The focus is on the mechanisms behind the generation of large-scale vortex structures resulting from both non-
helical external forces and the Coriolis force. A comprehensive analysis of closed systems of nonlinear equations
describing the linear and nonlinear stages of the growth of large-scale vortex flows in rotating turbulent media has been
conducted. The authors have obtained reasonable estimates of the characteristic scales of instability in a rotating moist
atmosphere, which can explain the formation of the large-scale spiral structure of cloudy mesovortices and typhoons at
the initial stage of their development. A promising direction in the development of the vortex dynamo theory for
rotating nanofluid media containing floating microorganisms. For these media, the theory of large-scale instability can
also be developed using the asymptotic method of multiscale expansions. We can anticipate the discovery of new large-
scale stationary vortex structures in rotating porous media saturated with nanofluids. The investigation of these
structures is not only useful for geophysical applications but also for a variety of technological problems.
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In this work, we have considered steady laminar magnetohydrodynamics (MHD) mixed convection flow of an electrically conducting fluid
in presence of Al, 05 nanoparticle while water is the base fluid in a vertical square duct. The walls of the duct are thermally insulated. In
the energy equation, the effect of viscous dissipation and Joule heat are also considered. In this case, the walls of the duct are kept at a
constant temperature. By using dimensionless quantities, the governing equations of momentum, induction, and energy are first
transformed into dimensionless equations and then the reduced equations are solved using an explicit finite difference approach. The
velocity, temperature, and induced magnetic field profiles are plotted graphically to analyze the effect of different flow parameters. It is
observed that the nanofluid motion expedites with the increase of the value of the magnetic parameter, Reynolds number, and Prandtl
number. The current research may find its application in the numerous industrial as well as cooling sectors. This study observed its
importance with the view to increasing the heat transfer efficiency for practical applications relevant to industry and engineering issues.
The issues discussed in this study have not been included in the earlier investigation for steady nanofluid flow due to a square duct.
Keywords: Nanofluids, Explicit finite-difference numerical method (EFDM); MHD flow, Buoyancy force; Mixed convection; square
duct; Heat transfer;, Magnetic field

PACS: 44.20.+b, 44.40.+a, 44.30.+v, 47.11.-j, 47.11.Bc

1. INTRODUCTION

Nanofluids which have a wide range of applications in industry are defined as suspensions of solid nanoparticles in
some form of organic or inorganic materials in basic fluids which are mainly utilized for heat transfer applications. These
nanoparticles improve the heat transfer performance by raising conduction and convection coefficients which enables
them to be more effective in various applications. The currently available heat transfer fluids which are used for these
purposes including water, ethylene glycol mixture, engine oil, etc., possess poor heat transfer capability. In recent times,
the consideration of nanofluids in engineering and industrial applications has drawn a lot of attention from scientists due
to their improved thermal properties and advantageous heat transfer characteristics without any pressure drop. As a result
of their large thermal conductivity, nanofluids are used in place of base fluids as working fluids nowadays. Mixed
convection flow is the combination of forced and natural convection flows. Further, mixed convection flow in a channel
or duct is encountered in the Dual-Coolant Lead-Lithium (DDCL) flow for fusion power as a tritium breeder and many
industrial applications and engineering devices such as a cooling systems for electronic components and reactors. Choi
and Eastman [1] introduced the concept of nanofluids and presented impressive results with many possibilities for usage.
Nanofluids are new classes of nano-technology-based materials concerning nanoparticles (Inm to 100 nm) dispersed in
base fluids. These heat transfer fluids have promoted great interest among researchers in the last few years, mainly due
to their potential applications. The nanofluids have higher thermal conductivities in comparison to the base fluids, which
could result in higher heat transfer rates.

Convection process in a square duct is relevant to certain heat transfer engineering applications acting as electronic
equipment, food drying, heat exchangers, cooling, and nuclear reactors. Experimentally and numerically in recent years,
many researchers have studied natural convection and mixed convection in a square duct under a wide range. The mixed
convection of Al,03/water nano fluid interior of a square duct accommodates boiling quadrilaterals obstacles on its
bottom wall considered by Doustdar and Yekani [2]. Mixed convection flows in a square duct partially heated from below
using nanofluid were studied by Mansour et al. [3]. The results of a numerical study on the mixed convection in a square
duct filled with a Al,0;/water nanofluid was investigated by Ghasemi and Aminossadati [4]. They concluded that the
heat transfer rate can be reduced by adding a considerable amount of nanoparticles into the distilled water cases of upward
and downward sliding walls. Abu-Nada and Oztop [5] investigated the effect in natural convection processes with
nanofluid which are enclosed in containers. Hemmat Esfe et al. [6] studied the heat transfer and Mixed-convection fluid
flow of an Al,03/water nanofluid with effective thermal conductivity and viscosity is dependent on temperature and
nanoparticle concentration core of a square duct. Their results stipulated that adding Al,03 nanoparticle produces an
extraordinary enhancement of heat transfer concerning that of the unmixed fluid. The effect of the Prandtl number and
Reynolds number for laminar mixed convection in a top wall moving, the bottom heated square duct was discussed by
Moallemi and Jang [7]. They investigated that when Reynolds number and Grashof numbers were kept constant,
increment of Prandtl number enhanced the heat transfer rate. The mixed convection in a square duct having a side wall
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moving and a local heat source at the bottom wall was investigated by Yang and Aydin [8]. Analyzed mixed convection
for a square duct with both side walls moving by Dagtekin and Oztop [9]. They conducted the study for three different
configurations based on the direction of moving walls. Wong and De Leon [10] carried out a review paper detailing the
current and future applications of nanofluids. Li et al. [11] investigated the forced convective heat transfer of nanofluids
in solar collectors during the day and night, with distilled water and nanoparticles of Al, 03, Zn0, and MgO. The nanofluid
achieved a 3°C temperature difference during the daytime peak solar radiation compared with the base fluids. With a
concentration of 0.2% ZnO0, a temperature difference of 2.55°C for daytime and 1°C for nighttime was reached, and
this was determined to be the most attractive option for solar energy utilization. Tooraj et al. [12] witnessed a 28%
performance improvement in a flat plate collector when it was operated with Al, 03 /water nanofluids. Otanicar [13]
studied the economic and environmental influences of using nanofluids to enhance solar collector efficiency with
conventional solar collectors. The thermophysical properties of the nanofluid are calculated density by Pak and Cho [14],
and thermal conductivity by Yu and Choi [15]. The specific heat of the nanofluid is calculated by Xuan and Roetzel [16].
The 3D flow of MHD nanofluid with varied nanoparticles including Fez 04, Cu, Al,03 and TiO, and water as the base
fluid past an exponentially stretched surface was discussed by Jusoh et al. [17]. Hung et al. [18] indicated that
Al, 03 /Water nanofluids require less pumping power, followed by CuO/Water nanofluid and TiO, /Water nanofluid
for 1% nanoparticle volume concentration. The computed numerical results are presented graphically for velocity,
temperature, and induced magnetic field for different flow parameters.

Sheikhpour et al. [19] examined the role of nanofluids in drug delivery and biomedical technology. Majumder and
Das [20] presented a short review of organic nanofluids preparation, surfactants, and applications. Dehaj et al. [21]
observed the efficiency of the parabolic solar collector using NiFe,0,/water nanofluid and U-tube. Sivaraj and
Banerjee [22] studied the transport properties of non-Newtonian nanofluids and applications, and Thumma et al. [23]
examined that generalized differential quadrature analysis of unsteady three-dimensional MHD radiating dissipative
Casson fluid conveying tiny particles. Lahmar et al. [24] analyzed heat transfer by squeezing unsteady nanofluid flow
under the effects of an inclined magnetic field and variable thermal conductivity. Rosca and Pop [25] studied hybrid
nanofluid flows determined by a permeable power-Law stretching/shrinking sheet modulated by orthogonal surface shear.
Selimefendigil and Oztop [26] examined thermal management and modeling of forced convection and entropy generation
in a vented cavity by simultaneous use of a curved porous layer and magnetic field. Jamshed studied [27] the numerical
investigation of MHD impact on Maxwell nanofluid. Jamshed et al. [28] observed the computational framework of
Cattaneo-Chritov heat flux effects on Engine Oil-based Williamson hybrid nanofluids. Jamshed studied [29] that thermal
augmentation in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar energy application. Rao and Deka [30]
took the Buongiorno model to analyze the heat and mass transfer phenomena of Williamson nanofluid past a moving
cylinder. Recently, Rao and Deka [31] made a numerical investigation on the unsteady MHD Casson nanofluid flow
caused due to a porous stretching sheet and found that thermal radiation played a very important role in the heat transfer
character of the fluid.

Yusuf et al. [32] investigated entropy generation on flow and heat transfer of a reactive MHD Sisko fluid through
inclined walls with a porous medium. Hamzah et al. [33] studied MHD mixed convection and entropy generation of CNT-
water nanofluid in a wavy lid-driven porous enclosure at different boundary conditions. Khan et al [34] analyzed the
analytical assessment of (Al,O3-Ag/H,0) hybrid nanofluid influenced by induced magnetic field for second law analysis
with mixed convection, viscous dissipation, and heat generation. Ahmed and Pop [35] investigated mixed convection
boundary layer flow from a vertical flat plate embedded in a porous medium filled with nano-fluids. Malvandi and
Ganji [36] studied the mixed convection of alumina-water nanofluid inside a concentric annulus considering
nanoparticle migration. Tayebi et al. [37] studied the Magnetohydrodynamic natural convection heat transfer of a
hybrid nanofluid in a square enclosure in the presence of a wavy circular conductive cylinder. Shah et al. [38] examined
radiative MHD Casson nanofluid flow with activation energy and chemical reaction over past nonlinearly stretching
surfaces through entropy generation. Rajesh et al. [39] observed that hydromagnetic effects on hybrid nanofluid Cu —
Al, 05 /water flow with convective heat transfer due to a stretching sheet. Molli and Naikoti [40] studied the MHD
natural convective flow of Cu/water nanofluid over a past infinite vertical plate with the presence of time-dependent
boundary conditions. Khashi [41] concludes that flow and heat transfer of hybrid nanofluid over a permeable shrinking
cylinder with Joule heating. Alighamdi [42] studied the boundary layer stagnation point flow of the Casson hybrid
nanofluid over an unsteady stretching surface. Shahzad et al. [43] observed computational investigation of magneto-
cross fluid flow with multiple slips along wedge and chemically reactive species, and Ibrar et al. [44] discovered the
interaction of single and multi-walls carbon nanotubes in magnetized-nano Casson fluid over radiated horizontal
needle. Lund et al. [45] analyzed the effects of Stefan blowing and slip conditions on unsteady MHD Casson nanofluid
flow over an unsteady shrinking sheet. Recently, Rao and Deka [46] studied the numerical investigation of transport
phenomena in a nanofluid under the transverse magnetic field over a stretching plate associated with solar radiation.
Rao and Deka [47] investigated numerical solution using EFDM for unsteady MHD radiative Casson nanofluid flow
over a porous stretching sheet with stability analysis.

The present paper aims to investigate the laminar steady MHD mixed convection flow of an electrically conducting
fluid in a vertical square duct in the presence of a strong transverse magnetic field using a finite difference scheme. The
walls of the duct are assumed as thermally insulating and walls have a constant temperature. The local balance equations
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of momentum, magnetic induction, and energy are solved numerically by the finite difference method using the Hartmann
number (Ha), Grashof number (G,), Reynolds number (R,), Prandtl number (B.), and magnetic Reynolds number (R,,,)
as the parameters. The computed numerical results are presented graphically for velocity, temperature, and induced
magnetic field for flow parameters.
e To consider a suitable mathematical model involving governing equations and boundary conditions for the
nanofluid MHD flow across the square duct.
¢ Nondimensionalization of the governing equations and performance of the explicit finite difference method.
e Plotting graph for the velocity, temperature, and induced magnetic field distribution for different physical
parameters.
e We will compare the obtained results with previous work to validate the efficiency of the numerical approach.

Table 1. Thermo-physical numerical values of water (H,0) and aluminum (Al,03)

Density (p) Specific heat capacity (C,) | Thermal conductivity (k) Electrical conductivity (o)
Al, 04 3970 765 40 35x10°
H,0 997.1 4179 0.613 0.05

2. MATHEMATICAL FORMULATION AND SOLUTIONS
Description of geometry
The steady laminar flow of a Newtonian fluid in a vertical square duct with a uniform horizontal magnetic field of
constant intensity B, applied transverse to the duct walls is considered.

AN

a

N

Figure 1. Physical model and the coordinate system

Let a be the length of the cross-section of the duct. It is assumed that the fluid occupies an area between x = 0, x = a;
and y =0, y = a. The flow is to be consumed by a constant pressure slop {;—Z and is constrained to proceed in the

z-direction. T, is a uniform temperature at the walls of the duct is simulate. By the axiom of fully developed flow, the
velocity and temperature fields are side by side, and the only non-vanishing fundamental of velocity and temperature
V,(x,y) and T(x,y) are side by side to the duct axis and independent of the perpendicular coordinate. The uniform
horizontal applied magnetic field of force B, acts along the y-direction and it induces a magnetic field B,(x,y) in the
flow direction. In this study, an electrically conducting fluid flows along the axis of the duct under the influence of an
externally imposed driving pressure gradient and the Lorentz forces caused by the interaction of the flow with the uniform
magnetic field, directed along y. Buoyancy forces, caused by density changes that result from temperature variation, can
easily be included thus giving rise to mixed MHD convection.
The following assumptions are made in this study:

e The flow is steady, fully developed and fluid is Newtonian.

e The duct is considered to be infinite so that all the fluid properties except the pressure gradient are independent

of the variable z.

The velocity Vv, magnetic field B and temperature T shall be the ensuing form

V =1{0,0,V,(x,y)}, B={0,B,,B,(x,y)}, T=T(x,y)

3. GOVERNING EQUATIONS
The equation of continuity is

(v.V)=o. M
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The Momentum equation is

pur |5+ (V.9)V| = =Vp + V2V + (T x B) + g (0B (T — T,).

Maxwell’s equation is

V.B =0,
V x E = (He)nfj-
Ohm’s law:
[ = n (B +7 x B).
The magnetic induction equation is given by
aE - — -
— = VX (VX B) + 1,,V°B.
Now using equations (1) and (3) in (6) we have
aE — — - - —
=+ (V.V)B = (B.V)V + 1,,V*B.
The energy equation or temperature equation:

9 — 2
Co),.s [a—: +(V. V)T] = Knf V2T + piypp + Gfo

where
HUnf
an = P_nf
1
Adpg=——.
nf onf(ledns

Brinkman's [48] model for the dynamic viscosity of nanofluid is

—__ ¥
Hnp = (1-¢)25°
Following Khan [49], the effective density of nanofluid is considered as
=[1- &] .
Pnf [ ¢+ ¢ Py Pr
The effective magnetic permeability of nanofluid is given by

edny = [1= 9+ 9 22| (o).

Maxwell [50] gives the electrical conductivity of nanofluid

_ 3(c-1)¢
nf = [1 (c+2)—(o— 1)¢] f

The heat capacitance of the nanofluid is given [51] by Khanafer
(o p)
(06, = [1-0+ 6 Z2% 03,
The thermal expansion coefficient of nanofluid is

PBIny = (L —P)(pB) s + d(pp)s.

Maxwell-Garnet determined the thermal conductivity of nanofluid

- ks+2ks—2¢(kp—ks)
T [kst2k o (kp—ks)

where kg and kg are solid and fluid thermal conductivity respectively.
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Using velocity, temperature, and current density distribution stated above for steady case, equations (2), (7), and (8) give
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The corresponding boundary conditions are:

VZ=OJ BZ=0: aty=0,

T=T,
V,=0 B,=0, T=T, aty=a,for0<x<b,
T=T,

NS

=0, B,=0,
=0, B,=0, T=T, atx=a, for0<y<bh.

atx =0,

N~

The above equations (18), (19), and (20) can be transformed into dimensionless parameters that are defined

T-T,

V== B=—T=—"2
AT

Y=

S [ons 90\, _ @ o ap VS
Where BO a (.ue)nf Prfvn fazll/o - Prfns aZ’AT - Cp’

Using dimensionless quantities (22) in equations (18), (19), and (20) and release bullet, become
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3(0-1)¢ 19f
R e e M Wy V2 [(6_3)2 N (0_3)2] o

2 1_¢+¢(ﬂe)s [ _ 3(o-D¢ 2 204,)2 k5+2kf—2¢(kf—ks) ' kg " CpAT | \ox dy
g welp| I er2-o-0¢l S |eciaierg(k—ks)
Let

1 Ps (He)s 3(c-1)¢
E, = 1- E 1- =|1+——| E: =
1= g B [ ¢+ ] 3T [ P+, )] [ +(U+2)—(6—1)¢]’ > [ ¢+¢(p6p)f

ks+2ks—2¢(kp—ks)
ks+2kp+d(kp—ks) |’

Therefore, the equations (23), (24), and (25) in terms of E;, E,, E3, E,, E5, Eg are

a%v Ha? E,
— — — T 1=0,
dx2 ay2 + R E1E3E4 ay + +

a%B
0x2

92T = 92T L E v av\2 Ha?P, E aB\?2
e [ @] ot 2
axz ' ay? ox dy R, ESEZEg ox

a%B v
+ﬁ+ RmE3E4$ = 0,

where

(p p)

(18)

19)

(20)

2]

(22)

(23)

(24)

(25)

(26)

@7n

(28)



56
EEJP. 2 (2023) Bishnu Ram Das, PN. Deka, Shiva Rao

Ha = B,a /;—f, is the Hartmann number,
f

T-Tp)a .
G, = gﬁf(v—zo)a, is the thermal Grashof number,

f

C .
P = #I’:—p, is the Prandtl number,
f

R, = %, is the Reynolds number,
f

and
Ry, = V,a(u,) oy, is the magnetic Reynolds number.
The corresponding boundary conditions (21) gives

V=0 B=0, T=0, wheny=0,

V=0 B=0, T=0, wheny=1,
(29)

V=0,

B T=0, when x=0,
V=0, B

01
0,0 T=0 when x=1.

4. NUMERICAL TECHNIQUE AND GRID INDEPENDENCE STUDY
The dimensionless governing equations (26), (27), and (28) along with the boundary conditions (29) were discretized
using the finite difference technique. In this numerical procedure, the computational domain is divided into a uniform
grid system. Both the second-derivative and the squared first-derivative terms are discretized using the central
difference of second-order accuracy. The finite difference form of 02V /0x? and dV /dx, for example, were discretized

2 . L P . . . R, § % .
as ZTZ = % + 0(Ax?) and z—z = V“’#X““ + 0(Ax?), respectively. Therefore, the resultant difference
equations become
Vi = As (Vi Vi_y ) + Aa (Vs + Vij_, ) + As (Buj, .= Buj_, ) + As(Tij ) + 4 31)
2
Tyj= A3(Ti+1'1'+ Ti—l'j) +4, (Ti’i+1+ Ti’f_1 ) + AlZ(Vi+1’f_ Vi—1’1’) + 32)
2 > 2
Aqz (Vi'j+1_ Viij_, ) +A14(Bi,j— Bi_yj ) + Ass (Bi'j_‘_l_ Bij_, ) .
Ha®* E, G, k? h? Ah?k A,h2k?
A =—— y e =0 A= oy A = oy As T S ey A6 T gz oy
R,, E E-E, R, 2(h% + k2) 2(h% + k2) 2(h? + k2) (h? + k?)
_ h%k? _ _ Agh’k _E __Ha%’P, E, _ Agok?
Ay = h2+k2’ Ag = RmE3E, Ao = 2(h2+k2)’ A1o = Ee B A= RZ, EZE2Es’ 12 7 a(n?+k?)’
A =100 Ty M T e r ey A5 T I kD
4(h? + k2) 4(h2 + k?) 4(h? + k?)
are constants, Ax = h and Ay = k.
The corresponding discretized boundary conditions are:
Vin=0, B;,1 =0, Ty =0, when j =1,
Ving1=0, Binyy =0, Tiyp,y =0, when j=n+1, forl<ism+1,
Vi,;=0,  By;=0, T,;=0,  wheni=1, (33
Ve1i=0, Bimyy =0, Tipmy =0, wheni=m+1, forl<j<n+1.

Using boundary conditions (32) the values V;,;, B;,; and Tj,; in the equations (30), (31), and (32) with the parameters
(Ha), (R,), (B), (R.), (G,) have been iterated. We have repeated the process, till the converged solution for V;,:, B;
and Tj,; in the grid system are obtained.

1jr ’j

5. RESULTS AND DISCUSSION
To obtain some physical insight into the problem, a numerical simulation has been constructed to justify the effect
of various physical parameters that governed are by the system with the inclusion of various physical situations, on the
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fluid variables, such as velocity, temperature, and induced magnetic field. The effect Hartmann number (Ha), Thermal
Grashof number (G, ), Reynolds number (R, ), Prandtl number (P.) and magnetic Reynolds number (R,;) on the velocity,
temperature, and induced magnetic field profiles are shown graphically.

The velocity profile of Al, 05 /W ater nanofluid for different values of Hartmann number (Ha) is shown in Figure 2.
It is observed that a rise in the Hartmann number causes a decrease in the velocity profile. This is due to the fact that when
a magnetic field is applied to an electrically conducting fluid a Lorentz force is produced. This force retards the fluid
velocity in the boundary layer region as the magnetic field opposes the transport phenomena.

-3

025 . . . . . . . . . 10
7 X
———AI203 at Ha=1.0
02t 1 AI203 at Ha=2.0
Al203 at Ha=3.0
015} i
o
‘? =
z E
3 ——AR203 at Ha=1.0 3
> A203 at Ha=2.0 3
0.1 i 8
/ — A203 at Ha=3.0
005} i
. i . . . 3 o i : : .

0 L L ) L L L 1 )
0 002 004 006 008 01 012 014 016 018 02 0 02 04 06 08 1 12 14 16 18 2

X > X >

Figure 2. Effect of Hartmann number (Ha) on the velocity Figure 3. Effect of Hartmann number (Ha) on the temperature
profile, when Ha =2,P.=0.71,R,, =10,G, = 2,R, = 10, profile, when Ha =2,P, = 0.71,R,, = 10,G, = 2,R, = 10,
h =k =10.001,m=n=200,¢ =0.02,kf = 40,k; =0.613 h=k=0.01,m=n=200,¢=0.02k =40,k; =0.613

On the other hand, in Figure 3, it is observed that the temperature distribution in the boundary layer region increases
with the increase in Hartmann number (Ha). According to the Lorentz force effect, the flow encounters frictional
resistance, which causes the boundary layer to heat up. In consequence, the temperature profile increases as (Ha) increase.
The effect of magnetic fields on nanofluid has many industrial applications in the cooling sector also.

The effect of thermal Grashof number (Gr) on the velocity profile of Al, 03 /Water nanofluid is shown in Figure (4).
Thermal Grashof number can be defined as the ratio of thermal buoyancy force to the viscous force in the boundary layer
regime. With large values of this parameter, buoyancy dominates, and for small values viscosity dominates. In the above
figure the velocity of Al,0;/Water nanofluid is found to increase with the increase in thermal Grashof number (G,.).
This means that the buoyancy force accelerates the velocity field. An increase in the value of the thermal Grashof number
tends to induce much flow in the boundary layer due to the effect of thermal buoyancy. Again, it is found in Figure 5 that,
the temperature of Al,0;/Water nanofluid decreases with the increase in thermal Grashof number (G,.). This means that
buoyancy force reduces the temperature field.
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Figure 4. Effect Thermal Grashof number (G,) on the velocity —Figure 5. Effect Thermal Grashof number (G,.) on the temperature

profile, when Ha =2, B.=0.71, R, =1, G, =6, R, = 1.5,
h=k=0.01,m=n=200,¢ = 0.02, kr = 40,k; = 0.613

profile, when Ha = 100, P. = 1.0,R,, = 10,G, = 2, R, = 1.5,
h =k =0.001,m =n=200,¢ = 0.02,ks = 40, k; =
0.613
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Figure 6 shows the variation of the velocity field of Al,0;/Water nanofluid for various values of Reynolds number
(R.). It is defined as the ratio of inertia force to viscous force. The Reynolds number depends on the relative internal
movement due to different fluid velocities. For fluid flow analysis, the Reynolds number is considered to be a prerequisite.
When viscous force dominates over the inertia force, the flow is smooth and at low velocities, the Reynolds number value
is comparatively less, therefore velocity with Al,05;/Water nanofluid decreases as Reynolds number increases. Again
Figure 7 shows the variation of the temperature field of Al,0;/Water nanofluid for various values of Reynolds number
(R.). It is seen that the temperature field increases as the (R,) increases, and thus the rate of heat transfer is enhanced.
However, the Reynolds number starts to decrease with temperature when the temperature exceeds the critical value
depending on the corresponding concentration.
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Figure 6. Effect Reynolds number (R,) on the velocity profile, Figure 7. Effect Reynolds number (R, ) on the temperature profile,
when Ha=5, B =071, R,=5G6,=2,R, =10, h= when Ha=2 P =693 R,=10, G, =2,R, =10, h=
k =0.001, m =n =200,¢ = 0.02,kr = 40,k; = 0.613 k =0.01, m =n=200,¢ = 0.02,kf = 40,k; = 0.613.

The effect of Prandtl number (PB.) on velocity and temperature profiles is demonstrated graphically in Figures 8
and 9, respectively. It can be observed that the velocity of the nanofluid flow inside the boundary layer region increases
whereas the temperature profile decreases due to an increase in Prandtl number (P.). Prandtl number is the ratio of
momentum diffusivity to thermal diffusivity. With a higher value of the Prandtl number, the momentum diffuses more
rapidly than the heat, indicating that fluids with a higher Prandtl number have low thermal conductivity and a thinner
thermal layer structure. This results in the temperature in the boundary layer region to decreases with the increase in the
Prandtl number owing to the increase in the heat transfer rate of the fluid.
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Figure 8. Effect Prandtl number (P.) on the velocity profile, Figure 9. Effect Prandtl number (P.) on the temperature profile,
when Ha=2, P.=693,R,=5 G =2 R,=1, h= when Ha =100, P, =071, Ry, =10,G, =2, R, =1, h =
k=0.01, m =n =200, ¢ =0.02, kf =40, k; =0.613 k=0.01,m=n=200,¢ =0.02,kf = 40,k; = 0.613

Figure 10 shows the variation of the velocity field of Al,03;/Water nanofluid at various values of magnetic
Reynolds number (R,,). It can be seen that the velocity profile rises with the increase in magnetic Reynolds number.

Again, Figure 11 shows the variation in the temperature profile of Al,0;/Water nanofluid at various values of
Magnetic Reynolds number (R, ). The magnetic Reynolds number is the magnetic analog of the Reynolds number, which
is a fundamental dimensionless group that occurs in magnetohydrodynamics (MHD). It gives an estimate of the relative
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effects of the advection or induction of a magnetic field by the motion of a conducting medium, often a fluid, to magnetic
diffusion. Therefore, the temperature profile decreases as the value of (R,;,) increases.
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Figure 10. Effect Magnetic Reynolds number (R,,) on the
velocity profile, when Ha = 2,P. = 6.93,R,, =5, G, =2,
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In Figures 12 (A), 12 (B), 12 (C), and 12 (D), the distribution of induced magnetic field B for mixed convection
with the transverse magnetic field are plotted for Ha = 100, G, = 100; Ha = 200, G, = 100, Ha = 300, G, =
100; Ha = 400, G, = 100 and other parameters are fixed. It is observed that B becomes flattened for increasing values
of Hartmann number Ha. Moreover, current lines and magnetic fields are almost orthogonal in almost all the duct cross-

sections.
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6. CONCLUSIONS
In the present exploration, we have made an investigation over the nanofluid flow (with base fluid water and

nanoparticles as aluminum) through a square duct under the action of the strong transverse magnetic field. The numerical
results are obtained by implementing the finite difference scheme coded in MATLAB software. The findings are
summarized below:

The velocity profile of the nanofluid declines with the increase in the value of the Hartmann number, whereas it
increases with the increase in the value of the Prandtl number.

The temperature profile of the nanofluid increase with the increase in Hartmann number and Reynolds number.

The temperature profile of the nanofluid decelerates with the increase in the Prandtl number and Magnetic
Reynolds number.

The velocity profile of the nanofluid increase with the increase in the Prandtl number and Magnetic Reynolds
number.

The present study provides a model for enhanced heat transfer phenomena and hence finds its application in the
cooling sector in industries, post-accidental heat removal in nuclear reactors, and heat exchangers. Besides these,
some other important scientific applications of this study may be relevant to manufacturing industries, solar
collectors, and so on.

Nomenclature
a  length of the cross-section of the square duct p  Pressure force
B magnetic field T  fluid temperature
B, applied magnetic field T, wall temperature
C, specific heat at constant pressure V  velocity in the z-direction
Ha Hartmann number X, Y,Z Cartesian coordinates
G, Grashof number B coefficient of thermal expansion
R, Reynolds number pns density of nanofluid
P, Prandtl number oy electrical conductivity of nanofluid
R, Magnetic Reynolds number tns dynamic viscosity of nanofluid
g  acceleration due to gravity
Subscripts
nf nanofluids
f  Base Fluid
s Solid particles of nanofluid
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YHUCJIOBHUIA AHAJII3 MIJI 3SMIIIAHOT'O KOHBEKLIAHOI'O MIOTOKY HAHOPIIUH AL O3/Hz0
(AJIIOMIHIA-BOJIA) Y BEPTUKAJIBHOMY KBAJIPATHOMY KAHAUII
Bimny Pam [Jac, I1.H. [eka, llusa Pao
Daxynomem mamemamuxu, Yuisepcumem [iopyeapx, [iopyeapx-786004, Accam, Inoisa

VY miff po6oTi MM PO3MISHYJH CTAI[iOHApHY JIaMiHapHy MarHitorinpogunHaMiuny (MI'J]) 3MimaHy KOHBEKIHIO €JIEKTPOIPOBiIHOT
pimunu B mpucyTHOCTI HaHOYacTHHOK Al,O3, TOMI SIK BOJA € OCHOBHOIO PiIMHOI0 y BEpTHKAIBHOMY KBaapaTHOMY KaHaii. CTiHKH
BO3J[yXOBO/Ia YTEIUICHI. Y PIBHSHHI €HEprii TaKo)K BPaXxoBYeThCsS e(heKT B'I3KOI IUCHIALI] Ta JHKOyIeBa TeIUIoTa. Y HbOMY BUIIAAKY
Ha CTiHKax KaHaly HiITPUMYEThCS IOCTiiHa TemnepaTypa. BukopuctoByroun 6e3po3MipHi BEIUYUHH, KEPiBHI PIBHSHHS IMITYJIBCY,
iHIYKLIT Ta €Hepril CloYaTKy MepeTBOPIOIOTHCS Ha 6e3p03MipHi PiBHSHHS, a TOTIM CKOPOYEHI PIBHSHHS PO3B’A3yIOThCS 32 JOIIOMOTOI0
SIBHOT'O METOJy KiHIIEBUX pi3HHIb. [Ipodini IBHUAKOCTI, TeMIepaTypyu Ta iHAyKOBAaHOIO MarHiTHOTO mojist OyayroThcs rpadidHo 1t
aHaJi3y BIUIMBY Pi3HMX MapaMeTpiB MoToKy. [loMideHo, 1110 pyx HaHO(IIIOIAY IPUCKOPIOETHCS 31 301TBILICHHSIM 3HAYCHHSI MarHITHOTO
napameTpa, uncia Peiinonbaca Ta uucna Ipanarins. CyuacHi JOCHIIDKEHHS MOXYTh 3HAWTH 3aCTOCYBaHHS B 0araTboX Taly3six
MIPOMHCIIOBOCTI Ta OXOJIOKEHHS. Y IEOMY JTOCTIKEHHI BiI3HAYEHO HOT0 BaXKIIMBICTh AJIS i ABUILIEHHS €()EKTHBHOCTI TeIUIONepenadi
JUISL TIPAKTHYHUX 3aCTOCYBaHb, IIOB’S3aHUX 13 MPOMHCIIOBICTIO Ta TexHiKo0. [Ipo6nemu, ki 00TOBOPIOIOTECS B IIbOMY JIOCIIKEHHI,
He OyJ BKITFOUCHI B TIOTIEPE/IHI TOCIIHKEHHS CTaJIOro MOTOKY HaHO(DIIIOINIB Yepe3 KBaapaTHy TpyOy.

KurwuoBi cioBa: nanogmoiou, senuii uucenvnuti memoo kinyesux pisnuyv (EFDM); MTJ] nomix; cuna summosxy8ants, 3miuana
KOHBEKYis;, KeaopamHuii nogimponposio; menionepeoava; MazHimme noie
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Quantum electrodynamics (QED) is a highly precise and successful theory that describes the interaction between electrically charged
particles and electromagnetic radiation. It is an integral part of the Standard Model of particle physics and provides a theoretical basis
for explaining a wide range of physical phenomena, including the behavior of atoms, molecules, and materials. In this work, the
Lagrangian density of Composite Fermions in QED has been expressed in a fractional form using the Riemann-Liouville fractional
derivative. The fractional Euler-Lagrange and fractional Hamiltonian equations, derived from the fractional form of the Lagrangian
density, were also obtained. When a is set to 1, the conventional mathematical equations are restored.
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1. INTRODUCTION

Composite Fermions are a theoretical concept in condensed matter physics that explains the behavior of
electrons when subjected to a strong magnetic field [1-4]. These electrons can form composite particles with unique
physical properties, such as those seen in fractional quantum Hall states [5-7]. Understanding composite fermions
provides insights into the behavior of electrons in high magnetic fields and has applications in various fields, from
technology development to the discovery of basic physical principles.

Fractional derivatives [8-12] have become a valuable tool in various fields because they provide the ability to
accurately model physical phenomena that cannot be captured by ordinary derivatives. There has been a surge of
research in fractional calculus, leading to its application in physics, engineering, and related areas [13-16]. The
Maxwell equations have been expressed in fractional form [17-19], as have those in quantum mechanics, including
the fractional Schrodinger equation [20, 21] and the fractional Dirac equation [22]. These advancements demonstrate
the versatility of fractional calculus in describing a wide range of physical systems.

The main goal of this work is to examine the composite Fermions QED Lagrangian density and transform it into
a fractional form using the Riemann-Liouville (RL) fractional derivative. The ultimate purpose is to derive the
fractional Hamilton's equations and fractional Euler-Lagrange (EL) equations from this reformulation, thereby
providing a fresh perspective on the dynamics of composite Fermions within a QED framework.

The structure of the paper is as follows: In Sec. 2, a brief explanation of RL fractional derivative is provided.
The topic of the QED Lagrangian density is discussed in Sec. 3. In Sec. 4, the fractional form of the Lagrangian
density and the fractional Euler-Lagrange equations are presented. The focus of Sec. 5 is on the Hamiltonian equations
derived from the Lagrangian density. The paper concludes with a concise summary of the key points in Sec. 6.

2. PRELIMINARIES
This section provides essential definitions used in this study. For a more comprehensive understanding, readers
can refer to reference [23]. The following are the definitions of the left and right RL fractional derivative.
The Left RL fractional derivative

DI f(x) = — (%)n fax(x — )" 1 f(7) dr. 0

I'(n—-a)
The right RL fractional derivative

<D fO0) =— ( d)n [ (t =%t £(7) dr. ©)

'(n—-a) Tax

The value of a signifies the order of differentiation, where n-1<a<n, with I symbolizing the gamma function.
In cases where o is an integer, the derivative is calculated using the conventional definition.

DEFO) = (L) £

da

DEF) = (L) Fo)
a=1,2,..

3)

7 Cite as: A.D. Al-Oqali, East Eur. J. Phys. 2, 63 (2023), https://doi.org/10.26565/2312-4334-2023-2-03
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3. COMPOSITE FERMIONS QED LAGRANGIAN DENSITY
The Lagrangian density for composite fermions in QED, with the speed of light set to 1, has the following
mathematical form [1]:

-, 1 emv?, —
L =(iy*a, —m)p — S Fu F* + Wfs#VPAH 0,4, — (1 +vepp)edy*y A4,. 4)

This equation involves the Levi-Civita symbol eé#V?, which is an antisymmetric tensor, as well as i which is a

Dirac's spinor and made up of four complex parts, § = p*y°, y# is Dirac matrix, e is the charge of an electron, ¢, is
a unit of magnetic flux, it also includes a gauge parameter, 8, for the Chern-Simons fields. F,,, is the electromagnetic
field tensor and the A,, are electromagnetic fields. The first term represents the fields that are associated with spinors,
while the second term represents fields related to electromagnetism. The third term involves gauge Chern-Simons
fields, and the final two terms describe the coupling of the spinor fields to both the electromagnetic fields and the
Chern-Simons fields.

4. FRACTIONAL FORM OF COMPOSITE FERMIONS QED LAGRANGIAN DENSITY
The fractional Lagrangian density of (4) can be written as:

- (. 1 em v?, —
L= (iy*Dg, —m) P — T, PR + T emea, DEA, = (1+ver)eby 4, (5)
Begin by expanding the second term in the Lagrangian:

Fl-wF/,w — gltpgvﬂ. ( aD)Cc!uAv — aD?vAH) ( aDJ‘chAA - aDJ?AAp)

Hence, we have
L——lp(iy“CD“ —m)l,l)——l up Wl( D& A, — ,D¥ A )( D% A, — D“A)+
azxy 499 a“xy v axytu axpl atx3%p

emv?, —
+ ze¢0ff eMPA, DEA, — (1 +vepp)el yHp A, (6)

In the case of a Lagrangian involving multiple fields, there will be a separate equation for each field. The EL
equation for the field Ag is expressed as follows:

oL a |9  [_
aag  A7%o [a( aDE, AB)] 0. 7

Thus, the equation of motion is expressed as

env?, - 1
ﬁsﬂvpaf DL A, — (1+ vy, )el v y A, 88 — ,DE [‘Z g"09"* (6755 — 6761 ((aDE, 42 —
1 env?,
DEAy) = =5 99" (8567 = 5760) (D%, Ay = oD, A, ) + Tr AL eiv0, 57 ) ] =0
em v? — 1
29¢2ff gﬁvl) aD)tcszp - (1 + veff)elp Vﬁlp Au - aDJ?U [_Z (gapgﬁl - gﬁpgaﬂ.) ( aDgpAl - aDJ?AAp) -
1 en v,
- (glio‘gVﬁ _ gliﬁgVU) ( aDguAV - aD,?VA#) + Wmffg#‘fﬁ aD?UAIi ] =0
emv?, - 1
—ze%ff efvp DA, — (1+ vepp)ebvPy — DE [_Z (oDgeAP — DIA” — DHA° + DI AF) —
1 emv?,
— (aDfsAP — DA% — DysA” + DysAF) + Wwﬁgw DEA, ] =0
or alternatively,
2
en v ff —
#(eﬁw’ oDE A, = 47 D A, ) = (14 vess)el v — DE,(uD%AP — DIA%) =0
0

using Fof = ( D% AP — aD;",;A”), as a result of this

emn vzeff
20¢,

By replacing the dummy indices v with u and p with ¢ in the first term on the left-hand side, we obtain

(EﬁvP oD%, A, — Pt aDgaA#) — (L4 vers)ebyPy — (DE F7P =0

em v?, —
=gl et oDE Ay — (1+ vepp)eb yPyp — oDF, F7P =0, ®)

0
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on the other hand, the EL equation for s reads as

L @ oL _
which becomes
(iv* oDg, —m) P — (1 + vers)e v p 4, =0, (10)
finally, the EL equation of the field v is presented as follows:
9L pa |2t |_
e R o

which can be written as
—mE - (1 + veff)e y”EA# - aD,‘j‘G(ﬁ iy* 6;) =0

my + (1+ vesp)e Y*P A, = —iy® DEY. (12)

5. FRACTIONAL HAMILTONIAN FORMULATION
In the following section, we will derive the fractional Hamiltonian equations using the RL fractional derivative
approach, based on the fractional Lagrangian density. Let us consider the fractional Hamiltonian density as

H = (E, W, oDEY, Ay, DEALTT, T, ) (13)

Now, taking the total differential of H, we get:

T O g 4 O G @ G @ )+ 2 g 4 P g 4 2
A = S5 dU + Sody + T dA, + T d ( anjI[J) + i) d ( oDEA,) + 22 dTe + 2 dr + T d
j j
(14)
The canonical momenta 7, 7, T, are given as follows:
oL — oL oL
T = ; T =—; n,=—F—,; 15
2(w0f7) 2(a06 %) k= 3 anian) (15
In order to construct H, we start by defining it in its general form as follows:
H =7 DFY+1  DEY + 1y (DEA, — LY, oDE W, Ag, oDE A ). (16)

The total differential of H can also be defined as:

dH = T d( DE) + DY d7t + 1w d( DEY) + D&Y dr + m, d( DFA,) + DEAd T, — :—idzp -

) o _ o oL o
oy dy 3( aDE, W) d( Dz, W) a4p ddg + 3( aDg,4p) d( oDz, Ap). (17)
but
% _ pa a oL
oy D+ anj (a( aug.q;))’ (18)
j
oL _ oL
== _DfTt+ ,DZ% (—) (19)
B} a“t a“x . P}
v I\ o( 0,¥)
and
oL oL
2L~ DEm,+ D (—) (20)
alt "ty ™ alx p
o I\o( ap;40)

Using Eqgs. (18), (19), and (20) Eq. (17) can be written as
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dH =7 d( DEV) + DY dit + mwd( DFY) + DY dr+ m, d( DFA,) + DEFAdT, — DEmdY —

oL = oL — oL
oD%, (m) dp — oDf (T )dy — Dy, (a( ang_>> ay — 2(ws, )d( D) — oDE(m, )dAg —
oL oL
= D | (o) dAg ——6(aD%JAB)d(aD,‘§‘UAﬁ), 1)

or

dH = D&Y dit + DEP dm+ DEA,dm, — DEmdp — oD, (ﬁ) dyp — DE(R)dY —
an i

( > = o) A ePEY) = D (75 )y D‘é(m)«mﬁ
d( D ) 22)

( anlAE

By comparing Egs. (14) and (22), we obtain Hamilton’s equation of motion

oH oL
— =— ,D¥(m, ) — DE (—) (23)
a™'t u « >
04y Y a( anjAH>
oH oL
— =— ,Dfm— ,DE (—) 24
P) at ax « >
W I\ o( ang; W)
9" _ _ papy— pe |25
v oD{ () aDXj (6( aD;'?._)>, (25)
J
oK X —
aDExAuZE, aDtalngl aDglIJZE’ (26)
oL oH oL ox
=- , =— . 27)
o(arfw)  o(arfw) " o(afa5) o anfa)
Consider the Lagrangian density given in Eq. (5)
2
L= (iy# DS L by TV oy pea (1 Uyrp A
lIJ(L)/ _m)¢_4uv +T¢OE u a“x, p_( +‘Ueff)€lll]/1,b u
We can determine 7, w and mr; such that:
_ oL
T = — =0, 28a
9( aPFV) (252)
T==—2__ =iy (28b)
3 aDfW) ’
_ L _ oi | €TViess A
" 6( aDgAL) B 0o 4 "
T (28¢)
0 a( aDg‘AO)
Then we can write the fractional Hamiltonian density of the system as follows:
H=H =7 DfY+7 DfP + 1, DEA, — L(Y, U, DE W, Ag, DEAp ). (29)

By inserting Egs. (5) and (28) into Eq. (29), we obtain

_ em v? y — — 1 .
3 = iy DEY + <— m+——LLeUA; + DS Ao) — iy DEY — (iyﬂgD;z‘. —m)y + 2 FyF

200,
. Zerr Veers v2ors
_F,.Fl]_— uOIA — . "7 lJA D A ;upA D“A

3t 200, ( M+ 20¢0 + 20¢0

+ (1 + veff)elp y*y Ay
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Substituting for F° from equation (28c), we get

_ 1 2 a - (. i 1 ETTUZeff . 2 2 1 Pr envzeff 0i
H = _Eﬂi + m; ani AO —lIJ(l)/] ang —m)lp—z (WSU Aj +1FijFU —Tmé‘u lAu (— T —

emv?, : —
DEAG) — Wmf"smmﬂ DEA, + (1 +vep)eb vy A,. (30)

i

Now we will find the Hamiltonian equations of motion for the same system. Initially, the equation of motion for 4,

2 2
oH a _ a oL _ e”vzeff iu _EMVeff _kou [ _ a )_
oAy oDt (ﬂ#) anj (a( DY A )) ( 20¢, € Ay 20¢, € ( Tt an”AO

2 ¢ xj ! 2
env . —_ . emnv - . .
ool e? DAy + (L4 vepp)eb v = (DEFY — — L elk® (DEA, — oDF(=F/*) ++ Df(—F) —
emviors

200 ghik DAy - (31)

The substitution of ,DEF°F = ,DFF°F 4+ DFFI® + ,DFF/¥ into Eq. (31) gives

2 \2 2 2 , —
_ (en:v gffgl#) 4, - TV eff ckop (_ T, + aD;‘é‘qu) _ STV eff cpip DEA, + (1 i Ueff)elll i =

20¢0 2060 20¢, J
et Vzeff iu0 efm vzeff ik
We‘” oDEA, + —Wew DEA,+ 7DEFF. (32)

By substituting Eq. (28c) into Eq. (32) and undergoing mathematical manipulation, the following equation is
obtained:

em v?, —
Toffeﬁ!w aDEA, — (1 +vepf)ewyPyp — DE FF =0. (33)

While the equation of motion for 1 reads

oK oL
M _ _ DEm— D& (—)
att alx p
% I\o( agw)
B+ (14 ey )e YT Ay = —ir® DET — D (T i), 649
but

iy® oDf 6 + iyj aDJ?j 6 =iy’ aD§a$
Thus, Eq. (34) becomes

my + (1 + veff)e YA A, =—iy°? aD,‘j‘g@. (35)

Similarly, the equation of motion for s is

oOH _ oL
— =—,Df - D& | ———
1T alt (@) alx; (6( aDgl?]E))

(iv/ oDg —m) 9 — (14 very)e yip 4, = 0. (36)

The results from Eqgs. (33), (35), and (36) are in full accordance with those derived from the fractional EL
method.

or

6. CONCLUSION
The Riemann-Liouville fractional derivative were employed to reformulate the composite Fermions QED
Lagrangian density. It was observed that the fractional Euler-Lagrange equations and the fractional Hamilton's
equations of motion, both derived from the same Lagrangian density, produced the same outcomes. The fractional
formulation was demonstrated to encompass the classical results as a specific case.
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IMIJIBHICTH JATPAHKIAHA KOMIIO3UIIVHUX ®EPMIOHIB QED Y JPOEOBOMY ®OPMYJIIOBAHHI
Amep JI. Anb-Oxaini
Henapmamenm pizuxu, Yuisepcumem Myma, Anv-Kapax, Hopoanis

KganroBa enexkrpoaunamika (KEJ[) — TouHa it ycmimHa Teopis, sika OIKCY€ B3a€EMOJII0 MDK EIEKTPUYHO 3aps/KCHUMH
YaCTUHKAMH Ta EJICKTPOMArHiTHUM BHIPOMIHIOBaHHAM. BoHa € HeBix emHOI0 uacTuHOKO CraHmapTHOi Mogmeni (isuku
CJIEMECHTapHHUX YaCTHHOK 1 3a0e3Meuye TeOpeTHIHY OCHOBY /ISl TIOSICHEHHSI IIMPOKOTO CHEKTPY (PI3SHYHHX SBHUIL, Y TOMY YUCIi
MIOBE/IIHKH aTOMIB, MOJIEKYJ i MaTepiaiiB. Y miit poOoTi minbHicTh Jlarpamkiana koMno3utHuX GepmioHiB y KE/J] Oyna Bupaxena
y Ipo0oBiif ¢opmi 3a momomororo apo6oBoi moximHoi Pimana-JliyBinsa. Bymu Takoxx otpumani apo6ose piHsHHs Eiinepa-
Jlarpanxa i npoGoBe piBHAHHs ['aminbToHa, BUBeIEHI 3 ApoOoBoi dopmu sarpamkiana rycruau. Konm o BcraHoBieHo Ha 1,
BiJIHOBJIIOBAJIUCH 3BMYaliHi MaTeMaTH4HI PiBHSHHSI.

Kuro4oBi ciioBa: keanmosa enekmpoounamixa, KomMnosumHi gpepmionu, 0poooea noxiona,; winbHicme Na2pandiCiana; pieHAHHA
Etinepa-Jlazpaniica
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The aim of this study, is to investigate, in a phenomenological way, the backbending effect in platinum Pt-186 nucleus, in order to get
a good description of the bends by using new parameters. VMI model and interacting boson model IBM-1 have been used to perform
this research for a heavy mass nucleus (Z = 78). Energy ratios and arrangement of the bands show that the platinum Pt-186 have O(6)-
SU(3) dynamical symmetry. Our current calculations gave results that are reasonably consistent with the most recent experimental data,
especially the results calculated according to the VMI-model. Variable moment of inertia has been applied to describe successfully the
effect of backbending in deformed even-even Pt-186 nucleus. Backbending was observed in the ground and -bands, due to the change
of the moment of inertia but not for (y4, y,) bands, because no changing in the moment of inertia.

Keywords: Nuclear structure; IBM; nuclear physics; VMI model; back-bending

PACS: 21.45.+v, 21.60.gx

1. INTRODUCTION

There are two nuclear collections particles: protons, and neutrons so called nucleons, separately divided over certain
energy level subjected to the restrictions of the Pauli exclusion principle. All nuclei have ground and excited states, and
the nucleons in excited states can be removed from, or added to, nuclei. The nuclear structure gained by studying these
phenomena [1]. The IBM-1 was used to description the nuclear collective motion suggested firstly, by Iachello and Arima
in order to study the collective states in e-e positive parity nuclei. This model does not distinguish between neutron bosons
and proton bosons [2,3]. This research, aims to calculate energy levels, gamma transition and study the backbending
phenomena, using the IBM-1 and VMI models.

Backbending has been observed experimentally in the band of the ground state [4,5] or in the rotational band of some
deformed nuclei. The effect occurs because, the moment of inertia (J) rapidly increases with the rotational frequency (w)
towards the solid value [6]. When the rotational energy ho is greater than the energy needed to separate a pair of protons or
neutrons Sp,0r2n, the separated proton or neutron moves to another orbit, which result in change of the moment of inertia [7].
An explanation of this effect is attributed to a disappearance of the pairing by band crossing of two rotational energy and Corielis
force effect [8,9], this effect of Corielis force increases with rotational frequency at high angular momentum for some bands,
leads to depairing nucleon pairs, the first pair depairing called “two quasi particles”. the case where the depairing of two quasi
particles, which may couple with the collective rotation to produce a new band, this effect leads to back-bending
phenomena [10]. Many researchers have been interested in studying the phenomenon of backbending using different methods,
including Regan(2003) [10] who used the E-Gos method by drawing the relation between the transitional energy E, over spin

(EJ—.V) for two successive levels and the spin (J).Some theoretical researchers have recently focused on studying the nuclear

properties of platinum isotopes, including N. Ashok and A.Joseph(2019)[11] studied the ground state properties of Pt
isotopes with the help of Skyrme-Hartree-Fock-Bogoliutov (HFB)theory by using harmonic oscillator H.O. and
transformed harmonic oscillator T.H.O. to calculate S,,, (separation energy of 2-neutrons) and r.m.s radii of proton and
neutron. The results obtained are in good agreement with the practical data.

M. Khalil et al (2019) [12] studied the platinum isotopes properties using particle rotor model VMI and IBM to
calculate the energies of single particle spectrum and investigated the phenomena of the back-bending. S.H. Al-Fahdawi,
A.K. Aobaid (2021) [13] used the first model of interacting bosons and the generalized moment of inertia model to study
some of the nuclear properties of deformed heavy nuclei and obtained acceptable results compared to the experimental
values and concluded the success of these two models for the study of heavy nuclei. E.A. Al-Kubaisi, A.K. Aobaid (2021)
[14] also used the first model of the interacting bosons and vibrator moment of inertia (VAVM) model to calculate the
energy levels, the quadrupole moment for even-even Dy-162 nucleus and showed that the (VAVM) model are better than
the results calculated by (IBM-1).

2. THEORETICAL ASPECT
2.1. IBM-1 Basis
The interacting b3oson model-1 is an important model used to study the low-lying collective states structure in deformed
e-e nuclei, and has been considered as systems composed of interacting (s —d) bosons, which described in terms of monopole
boson with s,—q and quadrupole boson with d,_, [15]. The formula of the Hamiltonian operator can be written by [16]:

' Cite as: A.K. Aobaid, East Eur. J. Phys. 2, 69 (2023), https://doi.org/10.26565/2312-4334-2023-2-04
© A.K. Aobaid, 2023
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H=3Y, & + X Vi) 1

Where ¢; is the energy of bosons i, V;; is the potential energy between the bosons i and j.
General formula for Hamiltonian operator in Eq. 1 assumed by Iachello and Arima can be written as [16,17]:

A=e(h9) tea(dd)+ Y @0+ Dic ] xd)O®[@@d)”]"
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Where: (st,d"), (3, d) are creation and annihilation operators respectively, Cp—g24, Us=o2, V=02 describes the bosons
interactions with each other, € = g4 - €5 represent the bosons energy. The energy of the boson s (gs) was considered to be
zero, therefore: € = g4. The other formulas of Hamiltonian operator in equation (2) can be written as multipole expansion
mutual into equation of various boson-boson interactions [18]:

H=¢fig +agPP + aLL + 2,00 + a3T5T; + a,T,T,. 3)
Where the parameters( ag, a4, @, a3, a,) represents the strength of the pairing, angular momentum,quadrupole, octupole

and hexadecapole interactions between bosons respectively.

2.2. VMI Model Basis
The (VMI) model proposed firstly, by M. Mariscotti et al. 1969 [19] to calculate the energy states values for any
band as:

E)(J) =5C(J = Jo)? +5 IA+1YI )
Moment of inertia can be determined from equilibrium condition [19,20]:
0E() _
7 (%)

Determines J; (in h? unit) as a function of (J).
The parameter C is the hardness coefficient and (J, is the moment of inertia of the ground state (for J, > 0).
From equations (4,5) can obtained:

Jj = Jodj =[13+1))2€ Q)

Eq. 6 contains one real root for any value when (J,,C) finite and positive.
The lest fit-to-square (1.s.f.) procedure has been applied to all measured E; values for any state.
The energy of the J-level according to the rotational model is given by the relation [21]:

E=2J0+1) (7

As for the transition energy between levels J — J-2 is given by the relationship [22,23]:
AE, =Ej — Ej_, = (4] — 2) for (g, p) band (8)
AE,=EL(J+2)  fory —unstable O(6) Q)

In order to study the phenomenon of backbending, the moment of inertia (2J/h”2) must be calculated from the
Eq. 8 and the square of the rotational energy (hw)? as:

20 _4-2

b o, for (g, B) band (10)
Where AEYZE] - E]—Z
e band 11
W2 2, or gamma ban (11)
Equation (8) can be written for harmonic oscillator as:
E,(J-J-2) = ho (12)

While the rotational energy squared (hw)? can be written as [22,23]:

(hw)? =2 —J + 1) [221]° (13)

2j-1
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The nuclear stiffness parameter o was introduced, which measures the initial variation of moment of inertia w.r.t.
angular momentum, can be calculated from equation (6) as [19,24]:

[1dJ
g arlj_,

(14)

"2 CJO

3. HAMILTONIAN INTERACTION PARAMERERS

The Hamiltonian parameters in the IBM computer program “PHINT COD” [25] was used to make the Hamiltonian
diagonal. The equivalent program for PHINT code is (IBM1.For) and the input file called “Bos.inp.”. All parameters can
be changed indepently fitting with the experimentally energy spectrum for the nucleuos, and from these calculations, we
find the nuclear structure of the Pt-186 spectra by the Hamiltonian interaction paramerers values, These coefficients that
have reasonable agreement with the experimental data were shown in Table 1. These chosen parameters depended on
number of proton bosons N, and neutron bosons number N,, were calculated from the nearst closed shell, and the number
of total bosons N = N; + N,,. The nucleuos of even-even Pt-186 have atomic number equel 78 protons ,so there are 4 holes
(2 protons bosons) to fill the shell Z = 82, and neutrons number equel 108, so there are 18 holes to fill the shell N =126
or 9 neutrons bosons. The total numbers of bosons N=11.

While the results of VMI model were calculated using VMI. For program from file “Par.input” this file depends on

h2’ 2 C, Ey) parameters, where: ‘z— moment of inertia for ground state, C is constant parameter fitted with experimental data,
Ex is the head of the band energy.

The other files called “Enr. out” and “Enrl.out” these files calculated the following:
1 — Theoretical energy E.q;.
2 — Rotational energy square (hw)? and (;—‘zj)
3 — Nuclear softness (o) from equation (12)

4 — Deviation (A) [26,27] which determined the deviation between calculate energy states E.,; and experimental
values E,,,, from equation:

_[ Z 1(Ecal exp.)z]l/za (15)

where k is the number of levels.
5 — Chi-squared (y?) from equation [19]:

2 Ecal.=Eexp.\p

x=( (16)

Eexp.
Where all calculations for VMI model were chosen from the smallest () as in Table. 1.

Table 1. Best fitted interaction parameters for the energies of IBM-1 and VMI model

The parameters used for IBM-1 in MeV units except CHI and SO6 unless units
€ oy o o, o3 0y CHI SO6
11 | 0.0000 0.0399 0.0041 0.0000 0.1206 0.0010 0.0000 1.0000
The parameters used for VMI model parameters o, A and % unless units
Band % (MeV)! C (MeV)? Ex (MeV) o A 1
g-band 10.881000 0.0010200 0.001020 0.380508 0.039794 0.006069
B-band 8.8810008 0.000820 0.471000 0.870504 0.114324 0.071045
y1- band 34.000000 0.011100 1.000000 0.001146 0.130298 0.130763
¥,- band 7.832500 90.500500 0.770000 0.000011 0.095356 0.015812

The ratios of the excitation energies 47, 67 and 8} dividing on the energy level of the first exited 21 for Pt-186
nucleus using IBM-1 and VMI have been calculated and compared with the identical values for the three limits,
SU(5),SU(3) and O(6) as in Table 2, these calculations shows that the platinum-186 has Gamma unstable O(6) dynamical
symmetry, but the arrangement of the bands according to their appearance (g, 5, ¥4, ¥») bands shows that the nucleus
under study belong to rotational dynamic SU(3)limit.

Table 2. Ideal energy ratios of three chains [18] compared with experiment [28,29] and theoretical (IBM-1 and VMI) values

Energy Ratios R E41"/E2:* E61"/E21* E81"/E2:* Dynamical symmetry
2.0 3.0 4.0 SU(5)
Identical values [18] 3.33 7 12 SU(3)
2.500 4.500 7 0(6)
Experimental data [28,29] 2.565 4592 7.026 0(6)
IBM-1 Model 2,290 3.881 5.761 0(6)
VMI Model 2,623 4.623 6.916 0O(6)
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4. RESULTS AND DISCUSSION
4.1. Energy levels

The ideal, practical, and theoretically calculated energy ratios in Table 2 show that the platinum nucleus belongs to
gamma unstable O(6) limit, while the arrangement of the band (g, §, y) indicates that it belongs to rotational SU(3) limit,
because the level (03) appeared before (23) level this means that a beta band (8) had appeared and therefore the nucleus
understudy had O(6)-SU(3) dynamical symmetry.

The calculated of energy levels values for IBM-1 and VMI are compared with the experimental values [28,29] for
all bands are shown in Table 3.

Table 3. Comparision of experimental and calculated results for IBM-1 and VMI model

158Pt E; (MeV) E, (MeV)J—]—2 2 (haw)2exp.

band It Exp. [28,29] | IBM-1 VMI | Exp.[28,29] | IBM-I VMI ( MEV)Z (Mev)?
0F 0.000 0.000 0.000 e | e e

27 0.191 0.193 0.191 0.191 0.193 0.191 20.942 0.034

41 0.490 0.442 0.501 0.299 0.249 0.310 26.755 0.088

67 0.877 0.749 0.883 0.367 0.307 0.382 31.007 0.149

8F 1.342 1.112 1.321 0.465 0.363 0.438 34.408 0.215

G--band 107 1.858 1.532 1.803 0.516 0.420 0.482 38.759 0.265
127 2.336 2.008 2.324 0.478 0.476 0.521 50.209 0.228

(14 2.825 2542 | 2.879 0.489 0.534 0.555 57.259 0.238

(163) 3.394 3.133 3.465 0.569 0.591 0.586 56.239 0.323

(189) 4.051 3.782 4.079 0.657 0.649 0.614 54.794 0.431

(209) 4,788 4.488 4719 0.737 0.706 0.640 54.274 0.542

03 0.471 0.482 0.471

23 0.607 0.555 0.670 0.136 0.073 0.199 5.012 0.017

43 0.991 0.925 0.976 0.384 0.370 0.306 37.974 0.145

(63) 1.470 1.233 1.346 0.479 0.308 0.370 30.075 0.227

(84 2.004 1.597 1.766 0.534 0.364 0.420 71.428 0.284

g:n;i (103) 2.108 2.018 2226 0.104 0.421 0.460 50.420 0.010
(12%) 2.611 2.498 2.722 0.503 0.480 0.496 69.651 0.252

(143) 3.192 3.035 3.249 0.581 0.537 0.527 49.689 0.337

(163) 3.664 3.630 3.805 0.472 0.595 0.556 114.64 0.222

(18%) 4258 4.285 4.385 0.594 0.655 0.580 75.757 0.352

(20%) 4.956 5.943 4.990 0.698 0.605 0.605

23 0.798 0.675 0.954

37 0.956 0.909 1.047 0.158 0.234 0.093

4% 1.222 0.926 1.172 0.266 0.017 0.125

GH 1.362 1.349 1.328 0.140 0.423 0.156

69 1.600 1.353 1.604 0.238 0.004 0.276

g;r'ld 7H 1.801 1.765 1.735 0.201 0.412 0.131
(81 2.123 1.837 1.984 0.322 0.072 0.249

(9 2.280 2.038 2.266 0.157 0.201 0.282

(103) 2.544 2.378 2.578 0.264 0.340 0.312

11% 2.669 | 2.922 0.291 0.344

(129 2.864 2916 3.296 0.247 0.374

25 1.175 1.038 1.153

33 1.417 1.474 1.535 0.242 0.436 0.382

y2- 4% 2.159 1.632 2.046 0.742 0.158 0.511
band 5% 1.934 | 2.684 0.302 0.638
65 1.963 3.450 0.029 0.766

7% 2452 | 4.343 0.489 0.893

In Table 3 The values of the energy levels are calculated theoreticaly for the spins (117,53, 6}, 73) respectively which
are not determined experimentally, especially in y, —band. Theoretical calculations also showed that the value of the
uncertain practical energy, which is equal to (2.825MeV)for the spin{(14:7)}, is more probable to the confirmed value,
especially for VMI model (2.879 MeV) also at the spin {(167),( 187), (207),(143), (20%),(51), (63), (97), (103)}.

The energy spectram of platinum Pt-186 for (g, 5, v1,Y2 ) bands as a comparison of IBM-1 and VMI calculations
with experimental data were plotted in Figure 1.

The experimental data and calculated of energy bands for the ground and S-bands were plotted in Figure 2. Good
agreements from the comparison of the IBM-1 and VMI model calculations (energies, spin and parity) with the
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experimental data. But in y; — band, the agreements were acceptable in the low-lying states, while it is deviated in the
high spin (energies)of the experimental data because, the calculations of IBM-1 have been performed with no distinction
made between neutron and proton bosons.

In y, — band VMI calculations were in agreements with experimental data while, the calculations of IBM-1 were
not good with experimental data because the interacting boson model does not distinguish between neutron and proton
bosons, there were no experimental values for the energy states for band.

13 -
—3
12 186 .
11k 78 Ptios i

10} S

E (MeV)
[¢e]

O =~ N W d 00 O N @
T

Exp. IBM-1 VMI

Exp
Exp. IBM-1 VMI B,-band v,-band
g-band

v,-band A

Figure 1. The energy spectra for Pt-186 nucleus as a comparison of IBM-1 and VMI calculations
with the available experimental data [28,29]
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Figure 2. The experimental [28,29] and theoretical results IBM-1, VMI, E(L) versus L for g, 3, y,-bands

4.2. Backbending phenomena
For the purpose of identifying the properties of the nuclei and studying the possibility of backbending in them, the

moment of inertia (i—‘Z) and Rotational energy squared(hw)? were calculated using equations (10 and 12) respectively,
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these values are shown in Table 3. The relation between (;—‘27) and (hw)? was drawn for the ground and beta bands in which

a backbending appeared in it, and shown in Figures 3 and 4. The backbending of these bands occur, due to the change in
the moment of inertia and -band lies in SU(3) limit, and no backbending was observed in the (y;,y,) bands, because the
moment of inertia does not change ,also these bands belonging to y-unstable limit.

The drawing of the ground state band Figure 3 had a backbending between the levels 12, and (187), due to the
deformation of these levels, also, the backbending occurs due to the rapid increase in the moment of inertia at relatively
high spin than the expected value according to the rotational motion model of some nuclei, which causes a decrease in
the expected energy value at these cases result in a backbending in the moment of inertia curve as a result of the

disengagement of one or two pairs of nucleons and their re-engagement, which reduces the expected energy value that
causes the backbending.

o))
o
I

w
o
I

sy
o
I

30

20 4

Moment of inertia (2J/h?(MeV)!

0 T T T T T 1
0 0,1 0,2 0,3 0,4 0,5 0,6
Rotational energy squared (hw)?

Figure 3. Moment of inertia (27/h"2 ) as a function of Rotational energy squared (hw)? for g-band experimental
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Figure 4. Moment of inertia (29/h*2 ) as a function of Rotational energy squared (hw)? for -band experimental

5. CONCLUSIONS

In the present work, the IBM-1and VMI model have been applied successfully in description deformed e-e Pt-186
nucleus and I got:

1. The results of state bands show reasonable agreement with empirically but had been found a little difference in
high states, due to the interacting boson model do not distinguish between proton and neutron bosons.

2. The IBM-1 calculations show that the currently results of the energy states were in good agreement with practical
calculations for the g-band and in reasonable agreement with the beta band and high in (y;, y,) band, also some of the
energy states calculated in my current research did not calculate empirically, especially in y, — band.

3. The results of VMI successfully investigated energy bands in low and high spin levels, and the predictions of this
model gave a good description of the occurrence of backbending in the ground and beta bands due to the small rotational
frequency () of nucleons, and thus, the nucleon pair behavior at high angular momentum appears to be crucial for this
an effect, and either the lack of backbending in the gamma bands may be attributed to the presence the deformation of an
octupole or a hexadecabol in these bands.
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4. From the curves of the backbending of the energy bands is clear that the f-band lies in SU(3) limit, and this is
confirmed by the arrangement of the energy bands and the appearance of the backbending in them. while the energy ratios
shows that the platinum Pt-186 has Gamma unstable O(6) limit.
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TEOPETUYHMIA OIIMC MMAPHO-ITIAPHOI'O SIJIPA IVIATHHU Pt-186 3 BAKOPUCTAHHS MOJIEJIEM IBM TA (VMI)
Ani K. Aodeiin
OceimHitl Koneodosc yucmoi Hayku, gaxyivmem ¢hisuxu, Anbapcoxuil ynisepcumem, Anbap, Ipax

MeToro 11bOTO TOCIIDKCHHS € (heHOMEeHOJNIoTiuHe nociiukeHHst backbending edekry B supi minatuau Pt-186, 3 mMertoro orpumaru
MOKpAIllCHHH OIHC BHTHHIB 3a JIOMIOMOTO0 HOBHX mapamerpiB. Mogenps VMI Ta Moxens B3aeMopirodoro 0o3oHa IBM-1
BHUKOPHCTOBYBAJIMCSI IJIsl BUKOHAHHS L(bOTO JOCITIDKSHHs M siipa Baxkkoi mMacu (Z = 78). EHepreTwuHi CHiBBiZHOIICHHS Ta
po3TanryBaHHS CMyr IOKa3yloTh, mo IuiatuHa Pt-186 mae O(6)-SU(3) auHamiuHy cumetpiro. Harmi NmOTOYHI po3paxyHKH Aaid
Pe3yJbTaTH, SKi JOCUTh Y3rOMKYIOThCS 3 OCTAaHHIMH €KCIIEPUMEHTAIbHIMHU JaHUMH, 0COOIMBO TUMH, 110 PO3paxOBaHi BiAMOBIAHO 10
VMI-mopeni. 3MiHHUI MOMeHT iHepLil OyB 3acTocoBaHuil [yt ycmimHoro onucy back-bending edekry B nedhopmoBanomy mapHo-
napHoMmy siapi Pt-186. Backbending crioctepiraBest B OCHOBHOMY Ta J-cMyTax 4depe3 3MiHy MOMEHTY iHepuii, asie He i (Y4, V2) CMYT,
OCKITBKH HE 3MiHIOBAaBCS MOMEHT iHEpIIii.

KurouoBi ciioBa: cmpyxkmypa siopa; IBM; adepua ¢hisuxa; mooenv VMI; backbending
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An investigation of the quadrupole deformation of Kr, Sr, Zr, and Mo isotopes has been conducted using the HFB method and SLy4
Skyrme parameterization. The primary role of occupancy of single particle state 2ds in the existence of the weakly bound structure
around N = 50 is probed. Shell gaps are performed using a few other calculations for the doubly magic number '®Sn using different
Skyrme parameterizations. We explore the interplays among neutron pairing strength and neutron density profile in two dimensions,
along with the deformations of '°Sn.
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1. INTRODUCTION

The mass region around neutron number N = 50 is a fascinating region characterized by many phenomena. Unlike other
shape phenomena, nuclear deformation leads to the bound structure of a quantum state characterized by different equilibrium
contributions. Many theories and experiments have been performed to study these contributions. One of the most influential
theories widely used to study nuclear deformation and structure is the Skyrme-Hartree-Fock (SHF) theory. The nuclear
system is a self-bound system consisting of nucleons that move in a mean field (MF). The nucleons occupy single-particle
states according to the Pauli exclusion principle. HF theory is a fundamental MF theory that was studied using Skyrme
parameterizations to describe the nuclear interaction with different terms in the framework of the Slater determinant.

The Hartree-Fock-Bogoliubov (HFB) method is formulated for the Hamiltonian. It is expressible in the second
quantization, which includes two phenomena: the HFMF and the pairing correlations, considering the relationship
between them. This method will be used in the present work to investigate the deformed shape of nuclear systems with
SLy4 Skyrme parameterization using the HFBTHO (v1.66p) code [1]. This code uses the axially transformed harmonic
oscillator (THO) on a single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes the HFB
Hamiltonian based on the Skyrme forces and zero-range pairing interaction until a self-consistent solution is found. In
addition, the single-particle energy of '°°Sn will be investigated using the shell model with different Skyrme
parameterizations as single particle potential via the shell model code NuShellX@MSU [2], which used data files for
different model spaces, mixing configurations, and Hamiltonians to generate input for NuShellX. As well as the
quadrupole deformation, Fermi level, pairing strength, and density profile of '°°Sn with Skyrme tensor parameterization
are studied using the code [3], which is a highly optimized two-dimensional HF+ Bardeen-Cooper-Schrieffer (BCS) code
used for computing ground states and deformation energy surfaces for axially symmetric deformed nuclei.

2. HARTREE-FOCK-BOGOLIUBOV METHOD

In the HFB method, the Hamiltonian is essentially reduced to two potentials: the self-consistent average potential (I')
from HF method, and an additional pairing field (A), known from the BCS, the BCS theory states basically that the pairing
strength is constant for the matrix elements.

In the following section we will introduce the general quasiparticle picture in the standard HFB formalism. The basic
idea in the most general quasiparticle concept is to define the HFB approximate ground state of the many-body system as
a vacuum with respect to quasiparticles. The many-body Hamiltonian of a system of fermions can be expressed in terms
of a set of annihilation and creation operators [4]:

v"kld[ j‘dldk (D

where the first term corresponding to the kinetic energy and the second term 9;,=<ij| V|kl> is anti-symmetrized two-body
interaction matrix elements of the effective nucleon-nucleon interaction. An eigenstate of this Hamiltonian can be
expanded as a sum over states which all have the same total number of nucleons, but with the nucleons occupying the
available single-particle states in all possible combinations. The Skyrme interaction for nuclear structure calculations was
developed from the idea that the energy functional could be expressed in terms of a zero-range expansion, leading to a
simple derivation of the HF equations, in which the exchange terms have the same mathematical structure as the direct
terms. This approximation greatly reduces the number of integrations over single-particle states when solving the
equations.
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The Skyrme effective interaction is a two-body density-dependent interaction that models the strong force in the
particle-hole channel and contains a central and spin-orbit, given by Ref [5]:

Voo (7.7) =1, (14 x.5,) 5 (7 —7/.)+%z1 (1+x8){k76 (7 -7)+ (7 -7 )k }+ o

t, (1+x213(,)l€'-5(;7i—7.)l€+ét3(l+x3ﬁ )p“(zzajé(ﬁ—f)ﬁwo 13'(31. +3j)xl€5(?, -7

where Vg, (171,17/) is the Skyrme effective interaction and &, k' are the relative momentum operators, which operate on the

wave functions to the right and to the left, given by:

1 r N4 N4
k:E(vl-vz) k:-z(vl V) 3)

Theterms ¢, t;, t, 13, x,, X1, X2, X3, oo and W, are the free parameters describing the strengths of the different interaction
terms which are fitted to the nuclear structure data. The ¢, parameter represents the central term, the parameters (¢, ) are
the momentum dependent term, the #; parameter represents the effective density-dependence term, the W, parameter
represents a two-body spin-orbit term and p,, being the spin exchange operator:

B =(1+6,6)) @

To obtain HF equations, we have to evaluate the expectation value of the Hamiltonian in a Slater determinant |HF ) .

It is given by:
= (00| A 0ur) = <¢\T\¢ {0,V (.0)4,) 5)

The expectation value of the HF Hamiltonian or energy of the Skyrme can be rewritten as a spatial integral over a
Hamiltonian density:

E=[d'7H(F) (6)

By substituting the Skyrme interaction terms into the full energy expression, the form of the density function, A can
be derived. Where ¥(i,j) contains all parts of the nucleon-nucleon force, including the coulomb interaction. The full
expression for the expectation value of the HF equations with the Skyrme force is then:

e b o
+%t3 [p(r)aﬂ (1 +%x3)—(x3 +%)p(r)a (pn (r) +p, (r)z)}

1 1 1
+Z(t1 +12)p2'+§(t2 -t)(p,z, +p, Tp)+E(t2 -34)pVip

O]

+$(32‘1 +4)(p, V'p, +ppV2pﬂ)+é(tl -1,)(J; +Ji)—%VVD(vp-J+vpn J,+Vp, .Jp)}

In the HFB method, the ground state wave function is defined as the quasiparticle vacuum, where the quasiparticle
operators (ﬁ , B ") are connected to the original particle operators (a, @) via a linear Bogoliubov transformation [4]

A A
B = (Usa, +Veal )=y (Usa, +Vial) ®)
k=1 k=1
A S A T T A
B =2 (U +V,al)=3 (Uia, +Vid) )
k=1 k=1
where k and i run over the whole configuration space (k =1, ..., A) and U and V are transformation matrices.

The Hermitian conjugation of these equations gives the quasiparticle operators. Therefore, we have unitary
transformation is a transformation from the system of single particle operators to the system of quasiparticle operators),

0= (G003 sl ) > B= (B B3 B s BY) (10

which it can be written in the matrix form [4]:

é = v a =W a an
ﬁ-{- VTUT af af
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The matrices U and V satisfy the relations:
vu+rv=1, uvU'+rv’=1

. (12)
Uv+v'u=0, Urr+rvu’=0
and allows us to invert Egs. (8) and (9),

A
a, =Y (U;B+V;B) (13)

i=1

El A A

al =Y (V.B +U,B') (14)

which means that the Bogoliubov transformation of Eq. (11) is unitary and it can be easily inverted,

CH(V] ZiJ[§*J2W+[§TJ (15)

Using the inverse Bogoliubov transformation Egs. (13) and (14), the Hamiltonian in Eq. (1) can be expressed in
terms of the generalized quasiparticle operators

A o " 1 " PSS
A=t + S HL BB, +5 S (HR BB, +he)+ ¥ (HE BB, +he)

kiky kiky kikoksk,y

. 1 P
+ Z (H£|22k3k4ﬁ;ﬁ/;ﬁ/j}ﬂk4 +hC)+— Z (Hliizk3k4ﬁ/jlﬁ/jzﬁk3ﬂk4 +hC)

kikaoksky Fykaoksky

(16)

the last three terms in Eq. (16) are usually involved in so called residual interaction term IA{im. So, the expression of
Eq. (16) is written as:

H=H"+Y H BB, + Z(H;‘,; BB, + h.c.)H:Iim (17)
kyky

kiky

The HFB is a variational theory that treats in a unified fashion MF and pairing correlations. The HFB equations can be

written in matrix form as:
h=2 A UA_ (U
A A\ )T (18)

where Ej are the quasiparticle energies, A is the chemical potential, # and A are the HF Hamiltonian and the pairing
potential, respectively, and the Uy and V' are the upper and lower components of the quasiparticle wave functions.

These equations are solved subject to constraints on the average numbers of neutrons and protons in the system,
which determine the two corresponding chemical potentials, A, and A,. Pairing is important as one moves away from
spherical closed shell nuclei and therefore becomes a necessary ingredient within MF models for describing properties
that vary strongly with shell effects. Pairing correlations are accounted for within the HF framework by generalizing the
MF concept to include a pairing field, which is calculated through the HFB equations [6].

As we move away from close shells, pairing correlations play an important role and should be taken into account. If
one were dealing with a fundamental many-body Hamiltonian, where one of the proceed to apply HFB formalism to it,
and dealing with Skyrme force that have been simplified with the aim of reproducing average, one would have to include
additional parameterization in order to warranty that sensible pairing matrix elements are obtained [4].

3. SKYRME TENSOR INTERACTION

The Skyrme tensor interaction is the sum of the triplet-even and triplet-odd tensor zero range tensor parts, has the
following form [7]:

v, = %T{[(j.12’)(&,12’)—%1{'2(1.62)}5(71—?2)

19)

where the coupling constant 7" and U measure the strength of the tensor forces in even and odd states of relative motion.
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The combined effect of central exchange interactions a plus tensor contribution f give extra terms to the energy
density

AH () =3 e 72 (7)+ 12 (7) [+ £, (7)1, 7) (0)

whereJ (¥)andJ , () are the spin-orbit densities for neutrons and protons, respectively, defined by [8]

ST R i) AU )1 ) -3 R ) @

J 7 =
! (r) 47[}" i=n,l,j

where i runs over all occupied states having the given ¢: the isospin quantum number g = (1-£,)/2 for neutrons and protons
(g =0,1), respectively. v is refers to the occupation probability determined by the BCS theory. The spin-orbital potential

is given by [9]
Vo (F)=Us, (F)ls (22)
with U ¢, (7) defined by [10]
d , J J,
vt ()= [ 2 %P 2P0\ [ gley ge (23)
o 2r dr dr r r

Interactions between like, and unlike particles are presented by ¢ (¢') where the first term comes from the Skyrme
two body spin-orbit interaction. The second term with ¢ =o;, +¢, and =, + . where [ are the parameters of

the central exchange part [11,7]

1 1
2 :g(tl _tz)_g(tlxl +0,),
: (24)
B.= _g(tlxl + tzxz)
and in terms of the tensor parameters
o, :iU ,
2 (25)
T+U
By = (T+0)

4. DENSITY PROFILE, PAIRING STRENGTH AND NUCLEAR DEFORMATION
Nuclei is a quantum many-body system exhibiting the quadrupole collectivity associated with the shape of the mean

field. The collective degree of freedom is associated with the measure of the operator Q .
The local nucleon density is defined as [3]

A=Y > vy, (7.s) (26)

acq S
The total energy is composed as

E, =T+E

Skyrme

+E, +E +E (27)

Coulomb pair cm

where Ecuoms 1S the Coulomb energy

& 4
- favay ) [y 2 (3 (8)
|7 -7 P s
and the pairing energy is
1
Epair = pmr q I dV|§ | |:1 - :| (29)
‘Ie pon} 0, pair

where dV stands for the volume element in full three-dimensional space, € is the elementary charge with ¢>=1.43989
MeV.fm, and fq is the pairing density
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& (F)=2"> " wu, v, 0, (Fos)w, (F.s) (30)

acq S

where w, stands for a soft cut-off of pairing space. The s € £1 variables indicate the spinor component of the wave
functions.

The pairing energy contains the parameter pop. which regulates the balance between volume and surface
pairing [12]. Nuclear deformation is defined as the deviation from the spherical symmetry about center of mass (c.m.)
which expressed by the electric quadrupole moment. Thus, the most important moments are the center of mass
moments [3]

_Jar7p,,.(7)
[av p,,.(F)

where "type" can refer to proton from p, neutron from p, isoscalar or total from the total density p- p,+p, or isovector
moment from the isovector density pr=1 = (N/4) pp, <(Z/A) p,. The anisotropic combinations can be quantified in terms of
the spherical quadrupole moments

€2))

tpe

Ospipe = [ V7Y, (F- Ry, (32)

The axial symmetry allows non-vanishing quadrupole moments only for m=0. It is often convenient to express them
as a dimensionless quadrupole moment (quadrupole deformation parameter)

4r QO
ﬂzo = 202 >
3 AR
We briefly outline the formalisms used in our calculations. Further details can be found in the cited references.

R=RA", R,=12fm (33)

5. RESULTS AND DISCUSSIONS
The calculated quadrupole deformation parameter (f») for Kr, Sr, Zr, and Mo isotopes from N = 52 to 58 neutron numbers
are shown in Fig. 1. Results were calculated using the HFB method with SLy4 parameterization and listed in Table 1.

Table 1. SkX, Skxta, Skxtb, Skxcsb, SkM, and SLy4 Skyrme parameterizations [2]

Parameters SkX Skxta Skxtb Skxesb SkM SLy4
a 0.5 0.5 0.5 0.5 0.5 0.167
X 0 0 0 0 0 0
Xe 0 0 0 0 0 0
X 0.72 - 091 -
X - - - 0.014+0.002 - -
to -1445.3 -1443.180 -1446.8 -1437.353 -1803.1 -2488.91
t 246.9 257.229 250.9 238.390 273.8 486.82
t2 -131.8 -137.843 -133.0 -111.766 -95.9 -546.39
t3 12103.9 12139.420 12127.6 12157.747 12755.1 13777.0
Xo 0.340 0.341 0.329 0.348 0.306 0.834
X1 0.580 0.580 0.518 -0.845 0.225 -0.344
Xz 0.127 0.167 0.139 0.407 0.698 -1.000
X3 0.030 0.000 0.018 0.373 0.116 1.354
W 148.6 180.441 153.1 149.779 155.9 123.0
a - 93.6 -83.9 - - -
p - 94.2 96.1 - - -

One can see different equilibrium distributions around =0 with two minima for 8-°%92Kr, °09294Srand **Mo, but
these two minima are arranged symmetric about 3,=0, then the breaking symmetry for B, # 0 removed in a symmetry
point [13] and the nuclei will as a spherical shape with weakly bound structure. For °>%4%Zr and °*°*Mo have a spherical
shape. The curve for **Kr has prolate and oblate quadrupole deformations corresponding to the two close-lying energy
minima; this indicates that their ground states have shape coexistence. All the isotopes with N=58, *°Sr, **Zr, and *’Mo,
have an oblate shape (corresponding to the significant negative deformations).

The weakly bound structure of these nuclei is observed due to their occupancy in the 2ds;, neutron single particle
state; when it is completely filled, this state causes deformation of nuclei shapes. The pairing correlations and collective
motion of the nucleons result in an oblate shape for all isotopes with neutron number N =58. Many Skyrme
parameterizations are fitted to the properties of the nuclei: Skxta and Skxtb with the tensor term, SkX, SkM, SLy4 without
tensor term, and Skxcsb with consideration of the effect of charge symmetry breaking (CSB), which is tabulated in
Table 1. Based on the Skyrme parameterizations, Figs 2 and 3 show the neutron and proton shell gaps for '®Sn, as
compared to the experimental data [14] shown in Tables 2 and 3.

Skxcsb parameterization includes CSB in the s- wave part of Skyrme interaction together with the usual direct and
exchange Coulomb terms. The CSB modification of the Skyrme is expressed as a change to proton-proton and neutron-
neutron s- wave interaction [15]:
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where x, =-0.014£0.002 [14]. Charge symmetry assumption is based on the equality of p-p and n-n interactions.
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Figure 1. The quadrupole deformation parameter as a function of binding energy of the Kr, Sr, Zr, and Mo isotopes
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According to SLy4 parameterization, the gaps between the states are too large compared to experimental data. This
parameterization fails to describe the spin-orbit splitting between the states, whereas using the SkX, SkM, and Skxtb
parameterizations, the state ordering of single-particle energies is nearly identical and gives good results compared with
the experimental data. The Skxta fails to give acceptable results. The interaction with the Skxcsb gives outstanding results
where the symmetry-breaking effects on the nuclear structure are associated with Coulomb interaction between nucleons.

2 — 8 —

100Gy, 1008

2d,,

e .“%Zp, 2

H —2p,

Neutron Single Particle Energy (MeV)
Proton Single Particle Energy (MeV)

L | (ST
Exp.  Skxta Skxtb Skresb SKX SkM  SLyd L Bxp. Skia Skdb Skxesb SKX  SkM  SLy4

Figure 2. The neutron particle states for '%9Sn with different Figure 3. The proton particle states for '°Sp with different
Skyrme parameterizations Skyrme parameterizations

Table 2. Experimental and calculated neutron single particle energy for 1°9Sn in MeV by using different Skyrme parameterizations
Skxta, Skxtb, Skxcsb, SkX, SkM, and SLy4

nlj €exp [13] €Skxta £Skxth €Skxesb ESkX ESkM £SLy4
A2V -8.60 -6.73 -7.67 -7.85 -7.66 -7.57 -5.67
v2dip -9.20 -9.49 -9.24 -9.34 -9.25 -9.29 -7.83
v3s12 -9.30 -9.40 -9.25 -9.33 -9.23 -9.37 -8.18
vigm -10.93 -11.39 -10.02 -10.09 -10.06 -9.70 -8.19
v2ds) -11.13 -11.27 -11.29 -11.36 -11.27 -11.41 -10.47
vigon -17.93 -15.50 -16.44 -16.52 -16.44 -16.46 -16.34
v2p1n -18.38 -18.75 -18.62 -18.62 -18.64 -18.78 -19.45

Table 3. Experimental and calculated proton single particle energy for '%9Sn in MeV by using different Skyrme parameterizations Skxta,
Skxtb, Skxcsb, SkX, SkM, and SLy4

nlj €exp [13] €Skxta ESkxth ESkxesb €SkX €SkM ESLy4
nlgn 3.90 3.00 4.22 4.40 431 4.60 4.44
n2ds» 3.00 3.03 3.02 3.03 3.04 2.84 2.67
nlgon -2.92 -1.29 -2.10 -2.16 -2.16 -2.16 -2.39
a2p1n -3.53 -4.13 -3.98 -3.91 -4.00 -4.12 -5.23
n2p3n -6.38 -5.30 -5.30 -5.18 -5.29 -5.47 -6.94
nlfin -8.71 -9.33 -10.05 -9.96 -10.12 -10.29 -12.84

Proton and neutron Fermi energies for '%°Sn as a function of the quadrupole deformation parameter 3, are shown in
Fig. 4 (a and b) (on the left). Fermi energy correlates with the potential energy surface (on the right) in terms of binding
energy. Interestingly, the ground state of the potential energy surface at 5,=0 reflected with large proton and neutron Fermi
energies. In contrast, the appearance of minima around f,=0 (transition between prolate and oblate shape) decreased the
binding of the single-particle energies, which affected the nucleus's stability. As a result, one can conclude that the
collective motion and the pairing correlations between the protons and neutrons caused a slight distortion in the energy
curve. However, the symmetry in the number of protons and neutrons filling the same orbit enhances the stability of '°Sn.

Fig. 5 depicts the corresponding neutron pairing strength and neutron density profile in two dimensions (on the right)
and the deformation for '%°Sr (on the left). The pairing strength effect is found as the nucleons are concentrated. No pairing
strength for £,=0 (region a) with a large concentration of nucleons in the central region as compared with $,=0.252
(region b), where there is a small concentration of nucleons on the exterior surface, leads to the slight distortion.
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Furthermore, the red and blue colors correspond to the high density (0.08 fm™) and low density (0.02 fm™) of the neutron

density profile. The central density of £, = 0 is very high compared to the central density of f, = 0.252.

18

Proton Fermi Encrgy (McV)
N
L S e S e

7 O T T T T A A B

(@)""Sn

- -804

-810

04 03503 02502 01501005 0 005 01 015 02 025 03 035 04

-816

Neutron Fermi Energy (MeV)

&
B3
T T T T T T T

Y T A A I A A T

Energy (MeV)

(b)!*iSn |

-822

045 04035 03 02502 015 -0.1 005 0 005 0.1 045 02 025 0.3 035 04

£

02 04

A
Figure 4. Left: The Fermi energy curve of %Sz of (a) protons and (b) neutrons and Right: the potential energy curve, with tensor
force term as a function of the quadrupole deformation parameter

-798

-804 —

2
=)

Energy (MeV)

2
>

-822

10{a Vpair

B2=00

-10 0 10
r (fm)

Vpair

~10{ B, =0252

-10

0 10
r (fm)

0.00150
0.00125
0.00100
0.00075
0.00050
0.00025
0.00000

0.001

0.000

1014 Pn
5
R 0.08
€ o
N
- 0.06
-101 B, =0.0
-10 0 10
r (fm) 0.04
10{ b Pn
0.02
5
E o
N 0.00
-5
-101 B, =0.252
-10 0 10
r (fm)

Figure 5. Left: The Potential energy curve of '%%Sn with tensor force term as a function of the quadrupole deformation parameter.
The pairing strength and density profile of neutrons for 1°°Sn corresponding to the two regions, marked a and b, are shown in the

Right panel

In Fig. 6 the corresponding pairing energies for 'Sy is plotted along with quadrupole deformation. It is found that
there is a great correlation between the n-p pairings leads to a small distortion in the region f>= 0.252.
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6. CONCLUSIONS

In summary, we have used the SHFB method to estimate the quadrupole deformation and examine the bound
structure of nuclei around the magic number N=50. We find that while the neutrons in the 2ds, state increase, nuclei have
a weakly bound structure, the deformed shape developed, and then the nuclei with filled 2ds), state (N=58) have total
deformation in their ground state (0%); *#Kr,”°Sr,”8Zr, and '®Mo. Shell gaps of doubly magic number '®Sn with different
Skyrme parameterizations are giving rise that SLy4 and Skxta falling in describing the spin-orbit splitting between the
states. In contrast, Skxtb and Skxcsb in both calculations give acceptable results with the experimental data. More results
have been performed by using a few other calculations of neutron pairing strength and neutron density profile in two
dimensions using Skyrme tensor parameterization and the deformations of 1°°Sn. The energy curve gives rise to a weakly
bound structure leading to a slight distortion. However, the symmetry in the number of protons and neutrons filling the
same orbit enhances the stability.

We find that the equilibrium contribution is deformed for the isotopes with a small number of nucleons outside the
closed shell (N=50) might be attributed to the pairing correlations that lead to raising the collective motion between the
nucleons, and this fact changes the bound structure of these nuclei around N=50.
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JOCIIIKEHHS CIABKO3B’SI3AHOI CTPYKTYPH AJEP HABKOJIO MATTYHOTI'O YACJIA N = 50
Pysaiina C. O0eiig, Aui A. Ansybani
Jlenapmamenm ¢izuxu, Hayxosuii konedoic, Bazoaocwvkutl yHisepcumem, bazoad, Ipax

HocnimkeHo kBaapynonbHy aedopmariro izoromis Kr, Sr, Zr i Mo 3a gonomororo meroxy HFB Ta mapamerpusanii SLy4 Skyrme.
JlocnikeHo MepIIoyeproBy poiib 3aiHATOCTI OAHOYACTHHKOBOTO cTaHy 2ds;2 y cnadko3s's3aHiil ctpykTypi HaBkoso N = 50. Hlinuan
B 00OJIOHII PO3PAXOBYIOTHCS 3a JONOMOTOI0 KUIBKOX HIIMX PO3PaxyHKiB [yIs MOABiMHOro Mariyaoro uucia '%Sn 3 Bukopucranuam
pi3nux mapametpiB Ckipma. J[ocmimKeHO B3a€EMOJII0 MiXK CHIIOI CHONYYEHHs HEWTPOHIB i MpodijeM I'yCTHHH HEHTPOHIB y IBOX
BUMipax y HanpamKy nedopmaniii B 1°°Sn.

KurouoBi ciioBa: crabossldzana cmpykmypa; k6adpynonvHa oeghopmayis; cuna cnomydeHHs
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In this paper, the interacting bosons model-1 (IBM-1), a variable moment of inertia (VMI) and generalized moment of inertia
(GVMI) models were used to calculate the energy levels of the positive parity and its gamma transitions as a function of the angular
momentum of even-even (§5Ges,) nucleus. To determine the dynamic symmetry of this nucleus, the ratios of the energy levels
Ef/ES, Ef/ES,and EZ /EZ) were evaluated and compared with experimental energy values and the ideal scheme of the three
dynamic symmetries SU(5), SU(3), and O(6). The current study showed that the dynamic symmetry of this nucleus is determined to
be O(6) - SU(5). The intersection of the energy band and the phenomenon of back bending were also studied using the (VMI) and
(GVMI) models. These consequences were compared with the experimental results, and the results obtained have been in good
agreement.

Keywords: Nuclear structure, §5Ges,, (IBM-1, GVMI and VMI) Models

PACS: 21.45.-v, 21.60.Fw, 14.20.Dh.

INTRODUCTION

The importance of the nuclear models lies in studying and explaining many nuclear properties. One of these
models is the Interacting Bosons Model (IBM), as it is considered one of the important nuclear models that succeeded
in finding most of the nuclear properties. It gives good theoretical values that are compared to practical values and its
ability to explain the decay of excited nuclear levels that lead to the emission of gamma rays [1].

The first interacting boson model (IBM-1) treated the movement of nucleons inside the nucleus as the movement
of a group of paired particles called bosons, which represent either pair of protons or neutrons or proton-neutrons
nearest outside the outermost closed shell [2].

The simplest concept of the first model of interacting bosons, developed by Arima and lachello, (1974) [3],
assumed that the low-lying collective energy levels in even-even medium and heavy nuclei are far from closed shells,
with magic numbers 2, 8, 20, 28, 50, 82 and 126 are the ones in which only valence protons and neutrons prevail, while
the core of the shell is inactive, in addition to that, it is assumed that similar particles are interacting together in pairs
with an angular momentum of L = 0 called s-boson and L = 2 are called d-boson[4]. This model can describe the
nuclear levels with positive parity only, which have medium and heavy mass numbers, except for those with closed
shells, because the number of bosons equals zero. This model depends on “Unitary group theory” in six components
called U(6), that then produces three subsection symmetries; vibrational U(5), rotational SU(3), and y-unstable O(6)
[1,5]. Determining dynamic symmetry depends on the ground energy levels, as it explains many nuclear properties [6].

Several models were introduced for associating a large number of experimental data for energy levels bands of
even-even nuclei, in particular, the variable moment of inertia (VMI) model [7]. This model proposes that moment of
inertia is mutable, the energy of a level with angular momentum (L) comprises in addition to the usual rotational term, a
potential energy term which depends on the change of the moment of inertia (39;) from that of the ground state (9,). It
can be said that this model succeeded in describing the energy levels of the rotational and, to some extent, vibrational
nuclei.

The (GMI) [8] model is easier and more comprehensive than the (VMI) model, although it consists of the basic
building blocks upon which the (VMI) model is built. The energy levels, which are a function of spin (L), are reduced
to two limits in the new model. This model gave results that are highly consistent with the experimental findings of
nuclei that have limitations within the SU(3) and SU(5) regions [9].

The phenomenon of back bending was demonstrated using both the VMI model and the GVMI model. This
phenomenon can be explained by using band crossing and Coriolis force effect. The phenomenon of back bending was
discovered by Johnson and his group in 1971. This phenomenon is one of the characteristics of the moment of inertia of
deformed nuclei [10].

BAND CROSSING
The phenomenon of bands crossing states that if an energy band, such as (y — band) with a moment of inertia ¢
and the ground state band (g — band) with a moment of inertia ¢ so that (¢, > 9,), an intersection between the two
bands at a certain angular momentum (L,.,ss) L. Will be occurred. what is meant by this intersection is that the high

7 Cite as: 1.A. Hamdi, and A.K. Aobaid, East Eur. J. Phys. 2, 85 (2023), https://doi.org/10.26565/2312-4334-2023-2-06
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moment energy band will substitute energy by a low moment of inertia when the angular momentum is increased from
L.. At the intersection of two bands, all nucleons have a spin equal to zero under the influence of the pairing correlation
interaction. In this case, the nucleus is considered super-soft and its self-energy is less than the double-bonding energy,
and the nucleus has a small moment of inertia. The phenomenon of band crossing is an important characteristic of the
moment of inertia [11].

CORIOLIS FORCE EFFECT

The force or effect of Coriolis is a physical term given to the visible and exposed deformation in the movement of
objects when observed from a rotational frame of reference, and it was named after the French scientist Gustave
Coriolis who described this deformation during 1835 AD. The Coriolis effect occurs due to the Coriolis force that
appears in the equation of motion for a specific body in a rotational reference frame [12].

When the angular momentum of the nucleons is high, the effect of the Coriolis force begins to increase. This leads
the boson located outside the closed shells to decoupling into two neutrons, where a new band called a Two-
quasiparticle (2QP) band appears. While if the boson splits into a proton-neutron, here a four-quasiparticle (4QP) band
appears. The intersection of the bands that appeared with (g — band) at a certain angular momentum leads to the
occurrence of the phenomenon of back bending [13].

SUMMARY OF THE FIRST INTERACTING BOSON MODEL (IBM-1)
The Hamiltonian operator for IBM-1 is given [14],

A=e+YU,. (1)

Where ¢;: represents the energy of the boson.

U;;: The energy of interacting bosons.

N: It is the sum of the number of bosons of nucleons.
Thus

A=e(5'8)+e, Y. did, +U (u=0,£1,%2,.). )
U
Where
&s: The energy of s-type bosons.
£4: The energy of d-type bosons.

However, it is more mutual to write the Hamiltonian of the IBM-1 as a multipole extension, grouped into different
boson-boson interactions [15]:

H=e(i,)+a, (ﬁ,ﬁ)+ o, (£,£)+ a, (QQ)+ a, (f3.f3)+ a, (ﬁ.ﬁ) . 3)
Where, € =€, — & is the energy of the bosons. And (7,) is the boson number operator and the pairing bosons
operator isoctupole operator, and the hexadecapole . The angular momentum operator, the quadruple operator, the (£ )

operator are ([:) (Q) () (f . ) respectively. And ay, @4, a;, @3, a, are the phenomenological parameters.
Thus,

L=/101d" xd1" “)
O =[(d"x8)+(S'xd)]® -~ CHI[d" xd]?
[, =[d" xd]?
T, =[d"xd]®
CHI = — g is for the rotational limitation and it equals zero for vibrational and y-soft limitations.

The interacting boson model can be divided into three chains or three analytic solutions according to the eigenvalues
problem of IBM-1 Hamiltonian. And these chains are [16],

U6)o2SUB)>0(5)>0(3)20(2) (5)

Eq. 5 means anharmonic spherical vibrator.



87
Description of Nuclear Structure for Germanium (°°, Ge, ) Nucleus under Frame... EEJP. 2 (2023)

U(6) > SU(3) 2 0(3) 2 0(2). (6)

Eq. 6 means axially—deformed rotovibrator
U(6) 20(6) 20(5) 20(3)>0(2). (7
Finally, Eq. 7 represents y-unstable deformed rotovibrator.

The region of the transition 0(6) — SU(5)
The region is meant to represent the joint characteristics of two dynamical symmetries 0(6) — SU(5). The
Hamiltonian operator's function can be expressed as [17].

f=ei,)+a,p.P)+e(l.L) ®

The ratio (¢/a) was necessary for solving the equation (8). When the ratio is high, the vibration dynamical
symmetry SU(5) is under the control. While the gamma-unstable dynamical symmetry O(6) is in charge while the ratio
is low.

Summary of the variable moment of inertia (VMI) model
In the VMI model, the energy of level E(L) with Angular momentum (L) can be written as [18],

- ¢ — 9.2
E(L) ) L(L+1) + Z[9(L) — U,]°. )
Where, $(L): the moment of inertia with angular momentum L, 9J,: the moment of inertia with ground state, C: the
restoring force constant

According to the variable moment of inertia model, the nuclear softness coefficient & can be written in the

following form [7],
1

6= E. ( 10)
The back bending phenomenon occurs due to an increase in the moment of inertia, which is accompanied by a
decrease in the rotational energy at a certain angular momentum in some nuclei. The total angular momentum L(L + 1)

can be separated into two parts L(L + 1) and (L — 2)(L — 1). The square of the rotational energy (wh)? and the

moment of inertia i—f can be written for (g-band) as [19],
E(L-~L-2) 2
2 _ L=
(wh)” = [JL(L+1)—J(L—2)(L-2+1) (11)
29 4L-2 4L-2
n2 " EWL)-E(ty)  Ey (12)
Fory — band as [18],
2
2 _ E(L-L-1)
(wh)” = L/L(L+1)—\/(L—1) ‘ (13)
ﬁ _ L+1)-L(L-1) _ 2L (14)

h2  E(L-L-1)  E,

The transition energy E, of g-band and any other band are the difference between the energy of the initial angular
momentum E(L;) and the energy of the final momentum E (Lf). Meaning that E,, equals to E(L) — E(L — 2) regarding
to g-band, while E, equals to E(L) — E(L — 1) following to y-band.

Chi-square represents the suitability of VMI and GVMI models is given [20],

2 _ (Ecal_Eexp)Z

X (15)
(Eexp)z
Where, (E.,;) theoretically calculated energy and (Eexp) is the experimental error in the excitation energy.
The root mean square of the standard deviation was calculated from the following equation [20],
Standard Deviation = \/[%Z?Ll(l‘?caz - Eexp)z]. (16)

where, N is the number of data points entering the fitting procedure.
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CALCULATION PROCEDURES
Calculation of energy levels

. The energy levels of the nucleus under study were calculated using the IBM model by programming Equation 3
in the FN95-Plato program and through the /BM program code.
. The energy levels for the same core were calculated using the VMI model by programming Equation 9 in the

same computer program through the code VMI For.
. The energy levels of the studied nuclei were calculated using the GVMI model through the code GVMI.For.

The principle of matching between the values of the energy levels theoretically calculated in the IBM-1 model and
its experimentally measured values is the first criterion adopted in our study. Table (1) shows the values of the
parameters of the Hamiltonian function represented in Equation (3) were appropriated and adjusted.

Table 1. The parameters for which the best fit is chosen, which represent Equation 3. These parameters are the energies operator
measured in (MeV).

Eps PP L. 0.0 T,T, T,. T, CHI SO6
(MeV)  (MeV) (MeV) (MeV) (Mev) (MeV) (MeV) (MeV)
%Ges, 2 3 5 0.5532 0.0269 0.0444 0.0365 0.0184  0.0071  0.0001 0.0001

Nuclei N Ny, N

While the energy levels were theoretically calculated using the (IVM) and (GVMI) models by applying
Equation (9). These parameters were selected and fitted to obtain the smallest value of the chi-square (y?).

According to the best selected parameters: moment of inertia (9-/h), recovery force (C), band head energy (Ey),
for the VMI model. As for the (GVMI) model, it depends on the three parameters in addition to the parameter (Y) is the
constant parameter fitted with experimental data as shown in Table (2). The last three columns contain, respectively, the
values of the nuclear ductility coefficient §, standard deviation, and chi-squared 2.

Table 2. The consistent parameters of (VMI) and (GVMI) models for $5Ges, nucleus

= 9/ C Ei Y Standard 2
Isotope g Model ()1 (Mev)3  (MeV)  (MeV) d deviation X

¢ VMI 0516370 0.036550 0.000000 - 99357262 0.203520  0.036356
S6ce GVMI  2.034200 3.999000 0.000000 0.085224  0.024644  0.248871  0.052858
320634 VML 4.178000  0.040400 1300000  -—-ev 0.169701  0.182449  0.061080

GVMI  1.000000 2.112000 0.100000 0.004224  0.469485  0.152464  0.038602

The values of the energy levels of the nucleus under study are shown in Figure (1). These results were compared
according to the applied programs and the experimental values [22], and there was a good agreement between the
experimental values and the theoretical values for these levels.
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Figure 1. Experimental [22] and theoretical energy levels studied by (IBM-1) and (VMI) and (GVMI) models.

It is possible to identify and know the type of dynamic symmetry, which is considered one of the important
nuclear properties to describe the behavior of the nucleus, and it can be reached by relying on the ratios for energy values
calculated experimentally [23] and the theoretically calculated values of the nucleus under study and comparing them with
the ideal values shown in Table (3), where practical and theoretical calculations indicate that this nucleus belongs to the
two determinations 0 (6) — SU(5) and according to the appearance of energy bands (g, y). The presence of the (y — band)
immediately after the (g — band) confirms that the nucleus under study has O(6) dynamic symmetry.
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Table 3. Perfect energy ratios for the three main limitations [23] compared with experimental [22] and theoretical values

Limit E4}/E27 E6{/E2} E8%i/E2{ Dynamicl symmetry

2 3 4 SUGS)
Identical values [23] 3.33 7 12 SU@3)
25 45 7 0(6)

Exp[22]. 22712 3.8186 5.5997 0(6)-SU(5)

IBM-1 22735 3.8065 5.5999 0(6)-SU(5)

VMI 2.2905 3.7999 5.4801 0(6)-SU(5)

GVMI 22714 37823 55071 0(6)-SU(5)

The Energy Band Crossing
The importance of the energy band crossing phenomenon lies in explaining the back bending of deformed nuclei.
Fig. (2) shows the band crossing of the nucleus under study using the (VMI) and (GVMI) models, depending on the

energy equation (4). In both models, the (g-band) and (y-band) intersect approximately at (L. = 6).
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Figure 2. The energy levels calculated theoretically by means of a) the VMI model and b) the GVMI model for the nucleus under study.

The back bending phenomenon
In nuclear physics, the effect of the moment of inertia is an important topic in order to identify and study the
phenomenon of back bending. To get acquainted with this phenomenon, both (29-/#) and (hw)? were calculated by
computing the equations (11, 12,13, and 14) using a computer simulation programs (VMI.For) and (GVMI . Model).
Fig. (3) shows the relationship between the moment of inertia (29./h) as a function of the rotational energy squared
(hw)? of the nucleus under study using the (VMI) and (GVMI) models. It was observed that there are backbends in the

ground state band (g-band) and the (y-band).
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Figure 3. The relationship between moment of inertia (2.9/h2) and rotational energy (hw)? of the nucleus under study within the
scope of a) the (GVMI) model and b) the (VMI) model.

CONCLUSIONS
The three models (IBM-1, VMI and GVMI) achieved acceptable success in this study. In this study, it was found
that the models used gave a good agreement in calculating the energy levels and excited energies as a function of
angular momentum, compared with the experimental calculations.
It was concluded that the determination of dynamic symmetry by calculating the energy ratios for each of the three
models and comparing them with the ideal values with the nucleus under study develops the determination of O(6) -SU(S5).
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With regard to the intersection of bands, it was found that each of the g — band and the y — band, which were
calculated through the VMI and GVMI models, intersect at angular momentum L, = 6. This leads to the occurrence of
the back bending phenomenon.

Through the theoretical results obtained, it was found that the models can give many explanations in the nuclear
structure.
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OIKAC CTPYKTYPU SIJIPA TEPMAHIIO $5Ge;, 3 BAKOPUCTAHHSM SIIEPHUX MOJIEJIEA IBM-1, GVMI TA VMI
Iman A. Xampi, Aai K. Aobeiin
Kageopa ghizuxu, @axyromem oceimu 0ns uucmoi nayku, Anbapcokuii ynisepcumem, Anbap, Ipax

VY miii cTarTi WA po3paxyHKy PiBHIB €Hepril MO3UTHBHOI MAPHOCTI Ta i raMMa-Tiepexo/iB K (yHKIlsI KyTOBOrO MOMEHTY HapHO-
napHoro ($5Ges,) siipa BUKOPHUCTOBYBAIMCS MOJEb B3aeMoirounx 603oHiB (IBM-1), Mmomens 3miHHOro momenry inepiii (VMI) i
y3aranbHeHoro MomeHty iHepuii (GVMI). Takox Oynu owuiHeHi chiBBigHOLICHHS piBHIB eHepriii Ef /E3, Ef/EF, and E{/EF) Ta
TIOPIBHSHI 3 eKCIEPUMEHTAIPHUMHU 3HAUCHHSMH SHEpril Ta ifeanbHOI0 CXeMOIo Ui Tphox JuHaMmivamx cumerpiit SU(S), SU(3) Ta
O(6), 106 BU3HAYUTH JUHAMIYHY CHUMETPIIO IBOTO SIpa TMOTOYHE JOCTIHKEHHS T0Ka3ao, M0 MPH JHHAMIYHA CUMETPisl BU3HAUCHHS
O(6)-SU(5). Ilepetun eHepreTudHoOi 30HH Ta SBHUIIE BUTHHY Ha3a] TaKOXK BHBYAIH 3a gomomororo mozenei (VMI) ta (GVMI). Li
HACIJIIIKH TTOPIBHIOBAJIH 3 EKCIIEPUMEHTAIbHUMHU Pe3yIbTaTaMHt, i OTPUMaHi pe3ysIbTaTH JoOpe y3ro pKyBaInCs.

Kurouosi ciioBa: cmpyxmypa siopa; $5Ges,, mooeni (IBM-1, GVMI ma VMI)
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In this study, the longitudinal charge |F,,(q)|? and |F(C2, q)|*form factors for the nuclei °Be and 2*Si lying in the p and sd shells are
studied by employing the Harmonic Oscillator potential (HO) and Skyrme effective interaction (Sk35—Skzs*). The C0O and C2 from
factors calculated for the ground state 3/27, the 5/2° (2.429 MeV) and 7/2° (6.380 MeV) for °Be, while the ground state 0" and 2*
(1.779 MeV) state for ?Si nucleus. Calculations of microscopic perturbations that involve intermediate one-particle, one-hole
excitation from the core and MS orbits into all upper orbits with nhwexcitations are utilized to generate the effective charges necessary
to account for the “core polarization effect”. The shell model calculations are utilized on the extended model space to include all 1s,
1p, 2s-1d, 2p-1f orbits with (0 + 2)Aw truncation. Bohr-Mottelson collective model and Tassie model with properly estimated
effective neutron and proton charges are taken into account to consider the effect of the core contribution. The estimated form factors
were compared with the measured available data and they were in good agreement for most of the studied states. A conclusion can be
drawn that (0 + 2)Aw truncation is very good choice to study the longitudinal form factors.
e The choice of Harmonic Oscillator potential (HO) and Skyrme effective interaction (Sk35—Skzs*) is adequate for form
estimation of longitudinal form factors.
e  Theestimation of the effective charges based on microscopic perturbations that involve intermediate one-particle, one-hole
excitation from the core and MS orbits into all upper orbits with nhw excitations is adequate.
e  The (0 + 2)hw truncation proves to be very successful to perform the study.
Keywords: Shell Model; Charge form factor, Longitudinal Form Factors;, Harmonic Oscillator, Skyrme Interactions
PACS: 21.60.Cs, 13.40.Gp, 25.30.Dh, 03.65.—w, 21.30.Fe

INTRODUCTION

The investigation of nuclei has more access neutrons, than what is known as “neutron-rich nuclei” far from the line
of stability is important for understanding nuclear structure. Exotic features differ from those of stable nuclei and deserve
experimental and theoretical exploration. One of the most striking characteristics of neutron-rich nuclei is nuclear
deformation, which may be studied both theoretically and empirically using electromagnetic properties like electric
quadrupole (Q) moments and magnetic dipole (1) moments. Using a microscopic particle vibration model, Sagawa and
Asahi [1] investigated the N/Z dependence of the quadrupole polarization charges of C isotopes. The single-particle wave
functions and gigantic quadrupole resonances are approximated using the Hartree-Fock and random-phase
approximations. The polarization charges of nuclei with a high N/Z ratio experienced a significant quenching. Cohen and
Kurath [2] model properly explain the features of low energy p shell nuclei, but it fails to represent the form factors of
higher momentum transfer. Radhi et al. [3-6] have previously stated that the CP effects must be taken into account for
nuclei in the p shell and sd shell to improve form factor calculations. Taihua Heng et al. [7] used the ab initio no-core full
configuration NCFC technique to explore the characteristics of "Li with the NNLOoy chiral nucleon-nucleon and JISP16
interactions, as well as "Be with the JISP16 interaction. They calculated observables like energy spectra, proton point
radii at the root mean value, transitions, and electromagnetic moments. Zheng et al. performed calculations based on
large-basis shell model without core calculations for p-shell nuclei using six main shells (from s to 3p-2f-1h) 8, 9]. All
nucleons are active in these calculations, according to Zheng et al., If computer resources are restricted, we have to adopt
a truncated calculation without core with some freezing orbits, in which only a few Aw excitations of the lowest
unperturbed configurations are evaluated can be used. The result will converge and approximate that of the full no-core
calculations as the number of Aw increases. In the work of Navratil ef al. [10] it is found that the predicted rate of the E2
transition with 4Aw space for °Li is weaker than 6Aw space prediction. Majeed et al. [11-13] revealing that the form
factor calculation on a large basis of the shell model was used to analyze nuclei in the p, sd, and Fp shells, including the
contribution of high-energy configurations beyond the p, sd, and Fp shell space model space is essential to be considered
to consider the effect of the core polarization contribution arises from the closed core.

' Cite as: S.M. Obaid, S.A. Abbas, A.A. Hussein, N.A. Mohammed, and F.A. Majeed, East Eur. J. Phys. 2, 91 (2023), https://doi.org/10.26565/2312-
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In this study, the longitudinal charge and C2 form factors for °Be and 2%S exotic nuclei utilizing the shell model
calculations by considering the major shells 1s, 1p, 2s—1d, 2p—1f, with partially inert core using the model space spsdpf
with wbt effective interaction using the code NushellX@MSU [14]. Since the space configuration is a very large
dimension, the shell model calculations in the whole spsdpf space are not possible, therefore a truncation is required in
the valence space. We will consider the (0 4+ 2)hw truncated spsdpf model space (ms) calculation. The form factors will
be calculated by considering the residual interactions, between harmonic oscillator (HO) and Skyrme effective interaction
(Sk35—Skzs*) [15] with using the Tassie and Bohr-Mottelson collective models. The core polarization (CP) will be
considered by evaluating the suitable effective charges at zero photon point. Theoretical results of CO and C2 were
compared with the available measured data for each studied case for the studied nuclei.

METHOD DETAILS
Tassie and Bohr-Mottelson models were adopted along with Harmonic Oscillator potential and Skyrme effective
interaction (Sk35—Skzs*) with suitable parametrization were adopted. As mentioned in Ref. [16], the neutron and proton
effective charges for the model of Tassie are predicted by using microscopic perturbation calculations that include
intermediate (1p-1h) excitations from the orbit contribution MS and core to include higher orbits with nhw excitations.
The effective proton and neutron charges for Bohr-Mottelson were estimated using the equations [17]

el (t,) = e(t,) + ebe(t,)
eSe(t,) = Z/A—032(N —Z)/A — 2t,[0.32 — 0.3(N — 2)/A], (1)

where t,(p) = 1/2 and t,(n) = —1/2

In terms of transition charge density, the element matrix of Coulomb can be represented as the sum of the MS and
CP elements [18]

0(CA, q) = q [ drr2j, (qr)pils () + [, drr2j, (qr)ap,(r) )

where the momentum transfer is q and j, (qr) is spherical Bessel function. For the initial (i) and final (f) nuclear states,
the nucleons charge density F of the transition is described using the one-body density matrix [18]

P () = Xk, F(, fo ke, kp, A, w)al1Yalljp) Rigr, (W) Ry, (1), 3)

where k stands for (n [ j) the s.p. states and (u) is the index which refers to either neutrons or protons.
The transition density for the CP valence model is given by [18]

Apy (r) = Seppis (1) + Senp)ls (r) 4)

de, , e, are the charges associated with the neutron and protons to account for polarization.
The CP for Tassie model transition density is provided by

_ dpc’ore+MS(r) _ dpc’ore+MS(r)
Bpp(r) e rAt = = N 5)
The charge density of the ground state is [18]
dpsy M (r) = ZRhe ™M F G f kar kb, 0,0)GalYolljn) Rugry (M) Ry, () (6)

At the photon point, the proportionality constant N is given by the matrix elements of gamma transitions M(E1), q =
E,/hc, where E,, is the energy due to excitation [18]

© 4 2.1 Ms o 5 241 2065 M@
M(EQ) = {e Jy drr?ri(gr)piy () + N [ drr?r T} 7
The matrix of gamma transition elements can be described as MS matrix elements with effective charges.
M(ED) = )" [ drr2r(qrplls(r) + ei/ [ drr2 v (qrp}ls () ®)

Equating Eq. (7) with Eq. (8) yields the constant of proportionality N by means of the effective charges. A detailed
discussion of these above-mentioned models for effective neutrons and protons [18]

T 1

IFa(@)1? = 2 —-10(CA, @) 12|Ean () Fy5 (@) )

T z22j41
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Skyrme energy is produced through Skyrme interaction. According to Eskyme 1S @ two-body density-dependent
interaction that represents central spin-orbit and tensor components in coordinate space and replicates the strong force in
the particle-hole channel [19]

Vlz = to(l + xoﬁg)é‘(ﬁ - Fz) +%(1 + xlpa-) (1226(?1 - Fz) + 6(1;)1 - Fz)i’(\z) + tz(l + pro')i’(\'é‘(?l - ?2)]2 +

77')1 + 'Fz

here R = and « is the force of Skyrme parameters. The operators k = (Vl - Vz) /2i and k=- (51 - %2) / 2i are

the relative momentum wavevectors for the two nucleons acting to the right and left, with coordinate 7 respectively. When
the nuclear structure data is fitted, the variables to, t;, t, t3, X1, X2, X3, and Wy are free parameters taken to describe the
components of various interactions. The Pauli matrices (&), the spin-exchange operator, and the delta function of Dirac
8(#, + 7,) are all mathematical terms. The energy of the total density of the nucleus is expressed as follows in the (SHF)
model [19]:

E= Ekin + ESky(pu + Tu + §u +ju + 55u) + ECoul + Epair - Ecm (1 1)

Here Ey;n, refers to energy of kinetic motion, Egy,, refers to Skyrme energy which include time even (nucleon p,,

kinetic energy t,, and orbital-spin §u and the odd-time (current J,,, spin §,,, and the vector of the kinetic energy Tu) both
densities and the pairing energy Epq; and the mass at the center E.,. The u label refers to neutrons or protons. The
Skyrme type of parametrization is taken to perform the calculations is (Sk35—Skzs*) [16].

The “mean square charge radius” is expressed by the formula [16]

2
(12) = )+ (RE) + 2 + 3 (5 (12)
(r?) = (2) +0.769 — 20.1161 + 0.033 (13)

Here 1, is the radius comes from the distribution of the proton point of the nucleus, R, and 7;, are the charge radii of
the free proton and neutron, and the final term is known as the Darwin-Foldy term (0.033 fin?).

RESULTS AND DISCUSSION

The longitudinal Coulomb charge |F,,(q)|? and |F(C2, q)|? form factors for the °Be and 2*Si nuclei have been
calculated by considering a truncated spsdpf model space with wbt effective interaction [20] with (0 + 2)Aw. The CO and
C2 from factors calculated for the ground state 3/2-, the 5/2° (2.429 MeV) and 7/2" (6.380 MeV) for °Be, while the ground
state 0" and 27 (1.779 MeV) state for 28Si nucleus. In all proceeding figures (see Fig.1, panels a, b, ¢, and d), the dotted
grass green and magenta curves display the results of the calculations of the Tassie and Bohr-Mottelson models using the
valence model (MS) calculations only, while the solid red and blue curves show the calculations of Tassie and Bohr-
Mottelson models including the core polarization effect by means of effective charge of protons and neutrons.

’Be nucleus
The nucleus °Be is a neutron-halo with 4 protons and 5 neutrons considered as (4a+n) and it is stable with the ground
state is 3/2". The effective charge at the zero-photon point considered in this work is taken from Ref. [21]. The longitudinal
Coulomb charge |F,;,(q)|? and |F(C2, q)|? Form factors for the ground state have been calculated (]}T =3/27,T=1/2)
of the ?Be as displayed in Figure 1 panels (a, b, c and d) by utilizing the Tassie and Bohr-Mottelson collective models.
Due to large number of dimensions to be used in the model space spsdpf, a truncation has to be used, therefore the
truncation is taken as (0 + 2)Aw following the restriction adopted in Ref. [16].

The state (3/27 1/2) at 0.000 MeV (g.s)

The CO and C2 form factors and their sum (C0+C2) for the ground state 3/2" are depicted in Fig.1 , b, ¢, and d.
The calculations were performed by using harmonic oscillator (HO) and Skyrme effective interactions (Sk35—Skzs*)
for both Tassie and Bohr-Mottelson models. Panels a and b represent the Tassie model with the Harmonic Oscillator
potential (HO) and Skyrme effective interaction (Sk35—Skzs*), while in ¢ and d in Fig.1, represent Bohr-Mottelson
model Tassie model with the Harmonic Oscillator potential (HO) and Skyrme effective interaction (Sk35—Skzs*). The
effective charges for neutron and proton are 0.70¢ and 1.075¢e, respectively [21], while for Bohr-Mottelson estimated
using Eq.1 as 0.17 and 0.4 for the proton and neutron respectively. The observed data from Ref. [22] for this state form
factor. The data could not be reproduced in all regions of the momentum transfer using bare model space computations.
Introducing the effective charge in both Tassie and Bohr Mottelson with account for the core polarization effect makes
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a remarkable improvement especially for Bohr Mottelson calculations shown in panel (a) where the solid bule line
which is (C0+C2) form factor matches the measured data in all momentum transfer regions using HO as the residual
effective interaction.
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Figure 1. Longitudinal CO and C2 form factors and their sum CO+C2 for the Tassie and Bohr-Mottelson models by using the
Harmonic Oscillator potential (HO) and Skyrme effective interaction (Sk35—Skzs*) in comparison to the measured data [22].

The state (5/27 1/2) 2.429 MeV
Figure 2 shows the calculation of the form factor for C2 for the state (5/2° 1/2) at E,=2.429 MeV. The bare model
space calculation for both Bohr-Mottelson collective model and Tassie model by using the Harmonic Oscillator potential
(HO) and Skyrme effective interaction (Sk35—Skzs*) underestimates the measured data in all momentum transfer regions.
The measured data for this state are taken from [22-24]. The form factor of Bohr-Mottelson model reproduces the high q
values of the effective charge to consider the CP effects, explains the data up ¢ = 1.5fm™2.
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Figure 2. The C2 longitudinal form factors for the Tassie and Bohr-Mottelson models by using the Harmonic Oscillator potential
(HO) and Skyrme effective interaction (Sk35—Skzs*) in comparison to the measured data [23, 24].
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The state (7/27 1/2) 2.429 MeV
The longitudinal C2 form factor for (7/2- 1/2) at E,=6.380 MeV. The calculation of the model space for the Tassie
and Bohr-Mottelson models at the peak value, it underpredicts the data by nearly a factor of three. The measured data are
scattered therefore Introducing the effective charge in both Tassie and Bohr Mottelson to account for the core polarization
effect aren’t able to reproduce the measured data for these states. The measured data are taken from [22] (Fig. 3).
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Figure 3. The C2 longitudinal form factors for the Tassie and Bohr-Mottelson models by using the Harmonic Oscillator
potential (HO) and Skyrme effective interaction (Sk35—Skzs*) in comparison to the measured data [23, 24].

8Si nucleus
The nucleus 2%Si is even-even nucleus with 14 protons and 14 neutrons and it is stable with the ground state is 0™,
The longitudinal Coulomb charge |F.;, (q)|? and |F(C2, q)|? form factors are calculated for the transitions to the ground
state (]}T =0%T= 0) of the 2Si as demonstrated in Figure 4 by utilizing the Tassie and Bohr-Mottelson collective
models. Due to large number of dimensions to be used in the model space spsdpf, a truncation has to be used, therefore
the truncation is taken as (0 + 2)Aw following the restriction model from Ref. [16].

The state (0* 0) 0.000 MeV (g.s)

The CO form factor for the ground state 0*is displayed in Fig.4. The calculations were performed by using Harmonic
oscillator (HO) and Skyrme effective interactions (Sk35—Skzs*) for both Bohr-Mottelson collective model and Tassie
model. In both Tassie and Bohr Mottelson models, the effective charge is included to account for the core polarization
effect. The measured data is taken from [25]. The theoretical calculations of the model space only don’t reproduce the
measured data for all q values. The inclusion of the core polarization in the Bohr Mottelson model harmonic oscillator
(HO) describes the experimental data very well up to momentum transfer ¢ = 1.5fm™2 and is able to reproduce the
measured data very well and agrees with previous theoretical work in Ref. [6].

10° E T T T T T T 10° E T T T T T T
o' 2Gj (0*) 0.000 MeV 1 10" . *Si (0*) 0.000 MeV
3 (HO) i 3 (Sk35-Skzs*)
3 ...'$ —— C0:B-M (Ms+CP) b .5.$ — C0:B-M (MS+CP)
102L o CO: Tassie (MS+CP) ] 102kF ° CO: Tassie (MS+CP)
E o\ = CO:B-M (M5 Only) o — = - CO: B-M (MS Only)
sl . - CO:Tassie (MSOnly) | a L ‘\ """"" — CO:Tassie (M5 Only)
107 . 1 107 ®e e Exp.
E ° ®e® e Exp. 3 \
el 1 =l .
G 10 : | OQ‘ G 10 |
S .f \/ * S s | .
w 10° I ] w 10° \ - i
j \\ o ot . i \i o,
10°F ! | * 10°F I'I *
1 ¢ . E 1 i * .
E i I/ . E i I ¢
107 | | ¢ 107 |
f ] I :
10° ! i T 10° | i |
E ] 1 ‘
10-9 L 1 1 1 1 ﬂ 1 1 1 10-9 1 1 1 1 1 1 1
0 0.5 1 1.5 2 25 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5
q(fm™) q(fm-)

Figure 4. Longitudinal CO form factors for the Tassie and Bohr-Mottelson models by using the Harmonic Oscillator potential (HO)
and Skyrme effective interaction (Sk35—Skzs*) in comparison to the measured data [25].
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The state (2* 0) 1.779 MeV

Figure 5 displays the longitudinal C2 calculations with their comparison to the measured data for the state (27 0) at
1.779 MeV to the ground state (0" 0). The measured data is taken from [25] The model space (0 + 2) only with Harmonic
oscillator (HO) and Skyrme effective interactions (Sk35—Skzs*) for Bohr-Mottelson collective model and Tassie model
underestimate the experimental data in the first maxima and second maxima. The inclusion of the core polarization in the
Bohr Mottelson model harmonic oscillator (HO) and Skyrme effective interactions (Sk35—Skzs*) describe the
experimental data very well up to momentum transfer ¢ = 1 fm~2. The effects of core polarization enhance the C2 form
factors at the first and second maximums, bringing the calculated values extremely near to the experimental data.
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Figure 4. Longitudinal C2 form factors for the Tassie and Bohr-Mottelson models by using the Harmonic Oscillator potential (HO)
and Skyrme effective interaction (Sk35—Skzs*) in comparison to the measured data [25].

CONCLUSION

The longitudinal charge |F,,(q)|? and |F(C2, q)|? form factors the nuclei (°Be and 2*Si) in the p-and sd-shells by
utilizing the shell model calculations by considering the major shells 1s, 1p, 2s—1d, 2p—1f, including a partially inert core
using the model space spsdpf with wbt effective interaction using the code NushellX@MSU were conducted. The residual
interactions used in the calculation of the form factors are harmonic oscillator (HO) and Skyrme effective interaction
(Sk35—Skzs*) by employing Tassie and Bohr-Mottelson collective models. The result of the form factors with (0 + 2)Aw
shell is not able to reproduce the data for all momentum transfer regions for both nuclei under study. Introducing the
effective charges in both Tassie and Bohr Mottelson to account for the core polarization effect makes a remarkable
improvement especially for Bohr Mottelson calculations.
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JOCIIKEHHA OBOJOHKOBOI MOJIEJ TESKUX p-TA sd-OBOJIOHKOBHUX SIJTEP
3 TAPMOHIYHUM OCIIMJIATOPOM TA SKYRME B3A€MOAISIMA
Capa M. O6eiin?, lllaiima A. A66ac, Aiima Axi Xyceiin®, Hyp Axian MoxammenS, ®yan A. Mamxkin®
aJlenapmamenm inocenepHoi meduunoi gizuxu ma padiomepanii, Inxcenepro-mexuiunuil konedxc Anv-Haodocag,
Texuiunuii ynisepcumem Ano-Oypam Anv-Aycam, Ano-Haoocag, Ipax
b Tenapmamenm ¢hisuxu, Oceimnuiti konedc wucmoi nayxu (I6u-Anvxaiimam), bazoadcvkuil ynicepcumem, bazoao, Ipax
“Minicmepcmeo oceimu, I enepanvruii oupexmopam oceimu Rusafa3, bazoao, Ipax
4llenapmamenm pizuxu, Oceimuiti koredsic wucmux nayx, Basunoucvxuii ynisepcumem, Basunon, Ipax

V uboMy AociipKenHi nosaosxHiit sapsn |Fa (q)|? 1 |F(C2, q)|?hopmbaktopu mns saep *Be i 28Si, mo nesxath B p i sd 060710HKaX,
BHUBYAIOTKLCS 3a JIOTIOMOTO0 MOTEHITiany rapmoHiuHoro ociisitopa (HO) Ta epextuBna Skyrme B3aemonii (Sk35—Skzs+). CO1 C2 3
(axTopiB, po3paxoBaHKX Il OCHOBHOTO cTany 3/2-, 5/2- (2,429 MeB) i 7/2- (6,380 MeB) mist *Be, BoaHouac sk OCHOBHHA cTan 0+ i
2+ (1,779 MeB) nns sapa 28Si. PospaxyHku MiKpOCKONIYHHX 30ypeHb, SKi Hepea0adyaloTh IPOMiKHE 30yKEHHS ONHIET YACTUHKH,
onHiel gipku 3 opOiT siapa Ta MS Ha Bei BepxHi 0pOiTH 3 30YIKEHHAME N/1(0, BHKOPHCTOBYIOTHCS ISl CTBOPEHHS €(PEKTUBHUX 3apsiB,
HEOOXiMHUX Ui BpaxyBaHHsS «e(eKTy monspusanii sapa». Po3paxyHKH Mozeni OOOJOHKH BHKOPHCTOBYIOTHCS B PO3LIHPEHOMY
TIPOCTOPI MOJIEN JUIsl BKJIIOUSHHS Beix opOiT 1s, 1p, 2s—1d, 2p 1f 3 ycikanmsam (0 +2)ho. Konextneaa Moznens bopa-Motrenscona ta
Mmozenb Tacci 3 mpaBUIIBHO OLIHEHUMHU C(EKTHBHUMH HEHTPOHHHMH Ta MPOTOHHHMH 3apsiaMH BPaxOBYIOTHCS Ul BpaxXyBaHHs
edekTy BHeCKy saapa. OuineHi hpopM-hakTopu MOPiBHIOBAIK 3 HASBHUME BUMIPSIHUMH TJAHUMH, 1 BOHHU J100pe 30iraiucs Jyis OUIbIIOCTi
JOCIIKyBaHHUX cTaHiB. MO)KHA 3p0OHUTH BUCHOBOK, 110 (0 +2)%@® CKOPOYEHHS € Ty)Ke XOPOIINM BHOOPOM 15l BUBUSHHS MO3OBXKHIX
¢dopm-pakTOopiB.

. Bubip norenuiany rapmosniiinoro ocumisitopa (HO) ta epexruBroi Skyrme B3aemogii (Sk35—Skzs*) € anexkBaTHUM AJIsI OLIHKK

(dbopmu I03710BXKHIX HopMPaKTOpiB.

. Ominka e)eKTUBHUX 3apsfiB HA OCHOBI MiKPOCKOMIYHUX 30ypeHb, SKi BKIIOYAIOTh MPOMDKHI OJHOYACTHHKOBI, OHOIPKOBI
30y/uKeHHA Bif opOiT siapa Ta MS 1o BCiX BEepXHiX OpOiT 31 30yIKEHHAMH NA®, € aJJeKBaTHOIO.
. Ckopouenns (0 +2)A® BUSABISLETHCS TyXKe YCHILIHUM JUTs BAKOHAHHS TOCITIIKCHHSI.

KuarouoBi cioBa: modens obononxu; gopm-ghaxmop 3apsdy; no3008dicHi popm-gpaxmopu, eapmoniunuii ocyunsmop; Skyrme
83a€M00ii
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The main intention of this study is to differentiate the stable and realisable solutions between the dual solutions of the water-based
hybrid nanofluid flow driven by a solid cone along with energy transfer in the form of heat and mass by employing a new approach
called stability analysis. The deviation of thermal radiation, chemical responses and heat absorption/generation are reserved into
account. The leading equations which support the mathematical representation of this study are renovated by utilizing a set of similarity
variables and solved by the MATLAB built-in bvp4c solver scheme. The outcomes of this study are presented both graphically and
numerically. From this study, two kind of flow solutions have been achieved where one of them is related to the time-independent
solutions and stable in nature. Also, the speed of the hybrid nanofluid can be controlled by applying magnetic field, but we should keep
in mind that excessive amount of magnetic parameter may damage the system by burning.

Keywords: Hybrid nanofluid; Solid cone; Thermal radiation;, Chemical reaction; Dual solutions, Stability Analysis

PACS: 44.10.+i; 44.30.+v; 44.40.+a; 44.20.+b; 47.11.4j

INTRODUCTION

In recent times, physics of nanofluid flow has achieved important significance due to their various significance in
diverse areas such as medicine, electronics and heat transfer devices etc. Nanofluids have better performance in different
thermo-physical properties compared to the base fluids like water and oil etc. The mixture of nanoparticles with base
fluids are termed as “Nanofluid” which was first coined by Choi [1].

The nanoparticles with different oxidation stages such as metallic or non-metallic particles like Cu, Al, Ag, Fe, Al,05
and CuO etc that are typically used in a base fluid like water, ethylene glycol, Kerosene and different bio-fluids to form
nanofluids. Due to the vast applications of nanofluids, researchers have motivated to study the importance of nanofluids
and interpreted different kind of results associated with nanofluids and their properties. Recently, Mishra et al. [2] have
investigated the water based nanofluid containing Ag-nanoparticle under different slip effects. Chanie et al. [3] have
explored the flow behaviour of water-based nanofluid containing Cu and Ag particles and found that the motion of the
fluid containing Cu is more effective than the Ag — H,0.

Hybrid nanofluids are new kind of fluids that are made up of two or more different nanoparticles with traditional
base fluids. This kind of fluid has advance features than the general nanofluids. An individual matter can never has all
the required characteristic that is the material may be omitted or deficient some properties. The hybrid nanoparticles can
be customized in such a way that it can process better significant than the other nanofluids. Al,0; + Cu, Al,05 +
Ni,MgO + Fe&Al,05 + Si0, etc are some examples of hybrid nanomaterials. Turcu et al. [4] and Jana et al. [S] were
the foremost authors who have studied hybrid nanofluid experimentally. They have examined that the rate of heat transfer
of the hybrid nanofluids is noticeably superior than the general nanofluids. This kind of fluids have better significant
thermo-physical properties than the nanofluids.

In this study, we have investigated the water-based hybrid nanofluid containing Cu and Al, 05 nanoparticles by
considering a solid cone with the influence of both thermal and mass transmissions. This type of hybrid nanoparticles is used
for oxygen storage, production and many other industrial applications [6]. There are many applications of fluid flow due to
a solid cone in different industrial and engineering sciences such as the solder tip, the conical heater and the continuous
variable transmission (CVT) in modern car [7]. Recently, many authors [2,7,8,9,10,11] have investigated the nanofluid and
hybrid nanofluid flow caused due to a solid cone and given different importance outcomes and characteristics of cone.

Different physical areas recognise the importance of the synchronised effects of heat and mass transmissions on the
flow of magnetised fluid under various flow geometries. Many industrial and engineering processes such as annealing and
thickening of copper wire, paper production, MHD pump and MHD generators etc need both heat and mass transfers
phenomenon with magnetic field effects. Dey and Borah [12] and Dey ef al. [13,14 15] have investigated the boundary-layer
fluid flow under the influence of both heat and mass transfers by considering different geometries. Alzahrani et al. [16] have
examined the flow behaviour of hybrid nanofluid over a flat plate with the effects of both heat and mass transfers. Devi and
Anjali Devi [17] and Khashi’ie ef al. [18] have looked towards improving thermal transmission of Cu — Al,05 hybrid
nanofluid flow over a extending surface. Researchers [2,7,19] have investigated the hybrid nanofluid flow due to a solid and
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rotating cone under different flow factors such as heat and mass transfers etc. Abdullah et al. [20] have analysed the
convective heat transfer characteristics of hybrid nanofluid driven by square enclosure.

Also, the thermal radiation and chemical reaction effects on the fluid flow problems have played an important role
in different physical fields. From the several decades, many researchers have given attention on these two flow factors as
because of their multifarious application in different industrial, engineering and medical applications. Chamkha et al. [21]
have examined the effects of radiation on mixed convection fluid flow by suspending nanoparticles. Sulochana ef al. [22]
have explored the influence of both thermal radiation and chemical reaction on magnetohydrodynamics nanofluid flow
due to moving surface. Recently, Sharma et al. [23] have explored the effects of radiation parameter on the hybrid
nanofluid flow over an extending surface with Joule heating. Dey et al. [24] have analyzed the stability analysis of
magnetized fluid flow with the effects of chemical reaction. Saleem et al. [25] have investigated the MHD nanofluid flow
over a rotating cone under the influence thermal radiation.

Due to the lack of information about the smoothness of the surface of the considering geometry and mathematical
tools with assumptions, some initial complexity in the flow is observed which may develop non-uniqueness flow
solutions. This initial complexity in the flow classifies the flow solutions into two categories, one solution is stable and
physically tractable. Markin [26] was the first author who has explored the idea of dual solutions and their stability.
Recently, Ghosh and Mukhopadhyay [27], Dey and Borah [12], Dey et al. [14], Dey et al. [24], Waini et al. [28] and
Dey et al. [29] have explored the nature of non-uniqueness solutions and their stability behaviour by considering different
fluids model.

The present work is all inspired by the above literatures and its immense relevance in different physical fields. We
were able to ascertain via the literature review that this study has novelty like effects of thermal radiation, considering
nanoparticles to form hybrid nanofluid, dual solutions and its stability analysis and will have a significant influence on
other experts in the field. To the authors’ awareness, this type of fluid model obtained by inserting the nanoparticles Cu +
Al, 05 with water which is driven by a solid cone along with energy transfers has not yet been taken into account while
analysing dual solutions and their stability.

The intention of this work is to analyze the dual solutions and their stability of the water-based hybrid nanofluid
driven by a solid cone which is sited in a porous medium under the influence of thermal radiation and chemical reaction
with different slip flow effects such as velocity, thermal and concentration slips. Here, we have initially suspended the
Cu solid nanoparticle of volume fraction ¢, = 0.06 into the water base fluid to form Cu/water nanofluid. Again, Al,05
solid nanoparticle of volume fraction ¢p; = 0.1 is added into Cu/water nanofluid and achieved the Al,0; — Cu/water
hybrid nanofluid. Also, a harmonized magnetic field is applied in the normal direction of the conical surface which plays
an important role to enhance the thermal properties of the fluid. The leading equations which support the mathematical
model of this problem are renovated by utilizing a set of similarity variables and solved by the MATLAB built-in bvp4c
solver technique. Stability analysis is executed between the flow solutions to characterise the stable and physically
achievable solution. Also, for the verification of our numerical codes, we established a reasonable uniformity when we
compared our findings to the previously published article Mishra et al. [2].

FORMULATION OF THE PROBLEM

We have constructed a mathematical model of this study by considering a permeable cone of radius r(x) which is
immersed in a steady, incompressible and two-dimensional hybrid nanofluid. The flow diagram and its coordinate system
are shown in Fig. 1. Where, the x- axis is measured along the surface of the cone and y- axis is taken in the normal
direction of the conical surface such that vertex of the cone is taken as the origin of the system. In this study, we have
considered the influence of both heat and mass transfers such that T,, and C,, prescribe the constant wall temperature and
concentration respectively and T, &C,, the temperature and concentration at free stream region. A uniform magnetic field
of strength By, is applied in the normal direction of the conical surface. Here, we have considered the hybrid nanofluid
which is formed by adding Al,0; nanoparticles into the Cu/H,0 nanofluid and hence Al,0; — Cu/H,0 hybrid
nanofluid is found. Table 1 discusses the thermo-physical characteristics of the base fluid and solid particles.

X, U

Figure 1. Flow diagram and its coordinate system.
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Table 1. Thermo-physical properties of base fluid and solid particles (Mohmed et al. [7]).

Property H,0 Cu Al,04
o (Kg-m™) 997.1 8933 3970
C,[J(Kg K)"] 4179 385 765
k tw(mky™] 0.613 400 40
o (Sm™) 5.5x107° 59.6x10° 35%10°

Under the aforesaid assumptions and boundary-layer approximations, we have considered the following leading
equations which govern the present problem ([7] and [2]).

a(ru) , a(rv)

ox oy =0, M
ou ou 0%u « Himf 1 9inf

U—+Vv—=V,r— + T —T,)CosA — C—-C,)CosA ————u — Béu =0, 2
7% oy = Vinf 552 9B( ) 9B ( ) Pins Pin ou (2)

ar | 9T _  kimg 0T | Mins (6u)2 Qo Imf _ p2.2 1 dar
uZ v o u —T,) +—Inf_p2y? dar, 3
ox ay (pCP)pns 0¥~ (PCP)pny \Oy (PCP)hnf ( ) (PCPYims  ° (PCP)ing Oy @)
w4 v%-p ZC_krc—c). (4)

ax dy ma 2

Here, we have initially suspended the Cu solid nanoparticle of volume fraction ¢p, = 0.06 into the water base fluid
to form Cu/H,0 nanofluid. Again, Al,0; solid nanoparticle of volume fraction ¢, = 0.1 is added into Cu/H,0
nanofluid and achieved the Al,0; — Cu/H,0 hybrid nanofluid. The properties of hybrid nanofluidis given below such
that the base fluid and the nanoparticles are denoted with the subscript f, s;&s, [7].

Hr

Hing = (1 — ¢1)2_5(1 — ¢2)2_5rphnf = (1 - ¢2)[(1 - ¢1)pf + ¢1psl] + ¢z,052'
(PCplimg = (1 = D[ = d1)(pCr) s + 1(pCp)s, | + d2(0Cp)s,,
King _ (s, + 2kyp — 26 (Jeny ksz)) oy _ (K, + 2k — 2651 (K — ksl))
Kor (ke + 2oy + dalkny —ks,)) " Kr (g, + 2kp + 3 (ky — Ks,))

Omf _ 4 4 _ Oy _ ¢z ‘@=1+ - - b !
Obr (ﬁ 2) — (ﬁ — ) of (ﬁ 2) — (ﬁ — 1)
Opf + Opf ¢2 of + of ¢1

The related boundary conditions are:

y=0:u=uw+llz , v =1,,T= T‘Hza ,C=20C, +l3a’ )
y—->owo:u—>0T->T,C - C,.

Where, [,l, &I, are the slip factors and vanishing of /,,/, &, implies the no slip flow in the system. To alter the nature
of equations (1)-(4), we have adopted the following set of variables [2].

n= /%/‘y,uﬁ\/avfxrf(n),mxsinA,e(n)=YZ__%, n —CCW__% ,

) (6)

} :%aa—y_ axf v ==+ =2 fav, 1,

From the Roseland approximation (followmg Prameela et al. [30]), the local radiative heat flux term for optically
thick gray fluid is given by
40, oT*  160,T: OT

= — =~ — w—’ 7
773k oy 3k, oy @

where T* =4T>T —3T* (by Taylor series approximation). As a result,
% = _—160_0T: aZ_T (8)
dy 3k, o

After utilizing the equations (6) and (8) into the equations (1)-(4), we have achieved the following set of equations
and the equation (1) which represents the conservation of mass identically satisfies the similarity variables (6).

Af "+ GrO—Gmo— Ak f'~ A AMS '~ [P +2f"=0, ©)
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1
A, P—(l + Nr@"+ A,Ecf "+ 4,00+ A, MEcf " +2£6'=0, (10)
T
@"+ Scf ¢'—ScCr¢ =0. (11)
The boundary restrictions become in the following form:
f(0)=S,£(0)=1+L,f"(0),6(0) =1+ Lr6'(0),$(0) = 1+ L (0), 12)

f (@) = 0,6() = 0,p(x) = 0.
Where, 4,(i=1,2,3,4,5,6,7) ’s are defined in the following way:

Al=ﬂ,A2=o-hnf,A3= pf ,A4= k/mf/kf ,A5= :Uhnf/luf ,
U o Py (PC )y [(PC) s (PCo)uy [(PC)
o ./o'.
A= (pCo), [(PCp)yy » 4y = WL
° : f/ e (pCP)hn//(pCP)/‘
The dimensionless parameters are:
T,-T. "(c,-C v o,B)’ C,),v
GV:MsGm=MJﬂ =L M ="1"% pr= (PCp), v, 0= 9 ,
ax ax ka pa k, a(pC,),

ax)’ 160,T° v l
= (@) P, ,Nr = %o ,Sc=—L Cr—— L L, =——.
(pcp)f(Tw_Tw) 3k2kf D,,, 1[ /CZ 4¢1)f/a ,M)f/a
During this study, we have observed three types of physical quantities which play an important role in different
physical fields by computing shear stress, rate of heat transfer and rate of mass development at the surface. These physical
quantities are defined in the following way [2], [7]:

Hinf (Ou Xkpnf oT x ac
=2 — Nu, = —————(— =— - . 1
Cr PFUS (ay)yzo' tx k¢ (Tiy=Tx) (6y)y:0 Shy (Cw=Cx) (ay)yzo (3)

Now, using the equation (6) into the equation (13), we have achieved the following normalize form of the above quantities as:

. L k 1 L
C, =2 ‘z"f (Re,) 2 £"(0),Nu, = —%(ReX)Z 6'(0),Sh, =—(Re, )2 ¢'(0), (14)
s /
where, the local Reynolds number, Re, = xvﬂ
f
FLOW STABILITY

Due to the considering geometry and lack of mathematical tools and assumptions, some initial disturbances in the
flow have been occurred which are decay or growth with time. These disturbances classify the flow solutions into two
categories, one of them converges to its time-independent flow solutions as the initial complexity in the flow decay with
time. The flow stability is needed to characterize the stable and unstable solutions between the dual solutions. To

implement the stability analysis of this problem, the unsteady governing equations are essential which are obtained by

adding the terms 3—1; Z—T& into the equations (2), (3) & (4) respectively. Due to the presence of time variable, equation

(6) takes a modified form as given below:

a , _ _ C- Coc _

= \/:—fy,lp = Javexrf(n,1),r = xsin4,0(n, 1) = T) = ,T=at (15)

The time-dependent governing equations after using equation (15) become:

af ar\? 2f  9%f
A1 L+ Gro—Gmp— A k1 — A M~ (%) +2f 5L =0, (16)
A4(1+N)—+AE ( ’;) +A,00 + A, MEc(a;) +2f Z‘: 0, (17)
W+Scf%—ScCr¢—Sc;=0. (18)
The surface restrictions become:
of(0,7) 0%f(0,7) 9f(,1)
0, = S, =1 L ) Or
FOD) =575 == 14 Ly~ 5, =
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a6(
P)

_ 2¢(0,7)
¢0,1)=1+ LmT:d)(OO:T) - 0.

To test the stability of the steady flow solution f(n) = f,,0(n) = 6, and ¢(n) = ¢, fulfilling the equations
(9)-(11), a set of perturb equations is employed for differentiating the variables ([26], [12] and [14, 24]):

f@ = fom) +e “TF(n),
() = 0o(n) +e~“*G(n), (20)
o) = Ppo(m) + e “TH().

Where, w is an unknown eigenvalue parameter, F, G&H the small associated to time-independent solutions. Inserting
equation (20) into the equations (16)-(18), fixing T — 0 and simplifying the equations, we have achieved the following
linearized eigenvalue problems.

0(0,7) =1+Ly

g"),e(oo, 1) -0, (19)

AF" + GrG — GmH — A1k F — AyAsMF' = 2f,F + 2(foF '+ Ffy) + wF =0, (1)
;‘—1(1 + Nr)G" + 2AsEcfy F' + AgQG + 2A,MEcfyF + 2(f,G + FOy) + wG =0, (22)
H'+ Sc(fyH + Fy) — ScCrH + ScwH = 0. (23)

Relevant boundary conditions are:
F(0)=0,F'(0)=0,6(0) =0,H(0) =0,
F'(0) = 0,G(0) » 0,H () - 0. (24)

Following Mishra et al. [31] and Dey and Borah [12], the equations (21)-(23) are solved together with adjusted
boundary conditions (referring Wahid et al. [28] and Dey and Borah [32]). It is noticed that this eigenvalue problem gives
an infinite number of eigenvalues w, < w, < w3 < -+, where w; signifies the smallest eigenvalue. The flow stability can
be examined with the help of this smallest eigenvalue. If w; > 0, then the initial complexity in the flow decay with time
and the flow solution becomes stable. Otherwise, the flow solution to be unstable due to the escalation of complexity in
the flow with time.

RESULT AND DISCUSSION

The set of equations (9)-(11) and (21)-(23) along with their two-point boundary conditions have been solved
numerically by utilizing the MATLAB built-in bvp4c solver scheme. This technique performs the three-stage Lobatto Illa
formula and executes the finite difference method. It controls and adjusts the error upto 10™° by its residuals.

The numerical explanations of this study have been achieved for the velocity f'(1), thermal fractiond ()and mass
fraction ¢p(n) profiles of the hybrid nanofluid as an outcomes of different novel flow parameters and have been displayed
in figures (2)-(9). In this problem, we have achieved two types of solutions, first solution is represented by the solid line
and it is related to the time-independent solution. The dashed line signifies the second solution which is converged slowly
to its free stream region due to the presence of flow disturbance.

Before conferring the numerical results, we afford confirmation of our numerical code by solving the model
presented in [2] and comparing the present numerical results (first solution) with the results reported in [2].
Mishra et al. [2] have analysed the water based nanofluid flow containing the Ag nanoparticle over a solid cone with the
influence of heat and mass transfers. In the non-appearance of thermal radiation and hybrid nanofluid, our leading
equations during steady case of this study are matched with Mishra et al. [2] works. Table 2 reflects the comparison of
the numerical code in terms of local Nusselt number and gives a good conformity for our results.

Table 3 is developed to check the flow stability between the dual solutions with the help of evaluated smallest
eigenvalues for different values of suction parameter (S). From this table, it is noticed that the smallest eigenvalues are
positive and negative for first solution and second solution respectively. Due to the positive values of least eigenvalues,
the initial disturbances in the flow lie down as time evolves and the flow solution converges quickly to its time-
independent solution. Hence, the first solution becomes stable and physically achievable. But, negative values of least
eigenvalues develop the initial disturbances in the flow and hence the flow solution (second solution) is being as unstable
behaviour and slowly converges to its free stream region.

Table 4 is inserted to show the skin friction coefficient numerically during time-dependent and time-independent
cases for developing values of the Prandtl, Schmidt and Eckert numbers. These quantities help to evaluate the effects of
shear stress at the surface of the cone. It appears from this data that the skin friction coefficient has been experienced a
reduction from the noble gas (Pr = 0.015) to sea-water (Pr = 13.5). Again, the effects of shear stress at the surface
have been enhanced from the hydrogen (Sc = 0.22) to water vapour (Sc = 0.60). It is also seen from this table is that
increasing values of the Eckert number (Ec¢) raises the influence of shear stress during both the solutions at the surface
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of the cone. It is also observed that the effects of shear stress of the fluid at the surface of the cone during time-dependent
case (second solution) is fewer than the first solution. Table 5 is inserted to show the heat transfer rate of the fluid at the
surface of the cone for developing values of Prandtl and Eckert numbers. From this table, it is achieved that the Prandtl
number develops the rate of heat transfer of the fluid during both the cases. But the Eckert number reduces the rate of
heat transfer at the surface of the cone.

Table 2. Numerical presentation of Nusselt number (—0’(0)) of Ag/H,0 nanofluid for different values of M when
Pr=07,S=1,1L,=01,Ly =0.1,L,, =0.1,Ec = 0.05,Q =0.1,S =0.4,¢, = 0.1,6r = Gm = 0.1,k; = 0.5,Nr = 0.

Mishra et al. [2] works Present Results

M —6'(0) —0'(0)

0.5 2.279557 2.265545

0.7 2.259399 2.251232
1 2.231499 2.221432

Table 3. Numerical presentation of smallest eigenvalue for different values of S when
M=05Gr=1,6m=2,0Q=01,Nr=02,k; =05,L,=02,L; =0.1,L,, =0.2,S5¢c = 0.22,Pr = 0.71,Ec = 0.3.

Smallest Eigenvalue (w)

S First Solution Second Solution
0.25 0.20209420 -1.220506212
0.63 1.20955422 -3.02148542
0.82 2.26992567 -4.00797213

Table 4. Numerical presentation of skin friction coefficient for different values of Pr, Sc&Ec when
M=05Gr=16m=2,Q=01Nr=0.2,k; =05L,=02,Ly =0.1,L,, =0.2.

Pr Sc Ec : ' Skin friction coefficient (C) .
First Solution Second Solution

0.015 -1.88491462 -2.35204790
0.22

7 0.005 -1.91532212 -2.41139078

13.5 -1.92660748 -2.40977806

0.22 -1.88406043 -2.35823329

0.30 -1.88286201 -2.35613715

071 0.60 -1.87858313 -2.34883267

0.0 -1.88408938 -2.35828831

0.22 0.3 -1.88235554 -2.35499662

1 -1.87833480 -2.34738988

Table 5. Numerical presentation of local Nusselt number for different values of Pr&Ec when

M=0506r=16m=20Q=01,Nr =02k, =05,L, = 02,Ly = 0.1, L, = 0.2,Sc = 0.22.

Pr Ec Local Nusselt Number (Nu,,)
First Solution Second Solution
0.015 0.24259499 0.264506742
7 0.005 1.26955410 3.12148393
13.5 2.29992551 4.32797261
0.0 0.18628192 0.35992906
0.71 0.3 0.07307090 0.11873327
1.0 -0.18963456 -0.43981793

The effect of M on the hybrid nanofluid's velocity and thermal fraction is shown in Figs. (2) and (3).

Pr=0.71, Sc=2, k‘=0.5. Q=0.5, First solution ‘ Pr=0.71, Sc=2, k,=0.5, Q=0.5,
Y S DS T | . H
Cr=0.1,Gr=6m=0.1Ec=0.5Nr=05, Second sotion .

0.7 $=0.25L =0.1L;=L =01

Cr=0.1,Gr=Gm=0.1,Ec=0.5Nr=0.5,
S=0.25.Lv=0,1.LT=Lm=0.1

(n)

First solution ===
Second solution *===*===

01 " L L " 0 L
0 05 1 15 2 25 3 35 4 0 1 2 3 4 5 6

Figure 2. Velocity profile for incremental amount of M Figure 3. Sketch of thermal fraction for incremental amount of M
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From these figures, it is believed that the hybrid nanofluid's velocity has been decelerated with the increasing amount of
M during both the cases, whereas the thermal fraction of the fluid has been developed with M. A resistive type force known as
the "Lorentz force" is produced as a result of the application of a magnetic field and has the power to control fluid motion. As a
result, the hybrid nanofluid's velocity is decreased with increased values of M. Again, due to the effects of magnetic field, the
velocity of the fluid has been decelerated and a frictional force is developed between the fluid and surface of the cone which
generates additional energy in terms of heat at the surface of the cone and hence the thermal fraction of the hybrid nanofluid is
enhanced withM. From Figure (2), it appears that the hybrid nanofluid moves more slowly in the time-dependent (second
solution) situation than in the time-independent (first solution) case. Due to this reason, fluid’s temperature during second
solution superiors than the first solution in the vicinity of the surface of the cone. Figures (4)-(6) are depicted to show the effects
of porosity of the porous medium on the velocity, thermal fraction and mass fraction of the hybrid nanofluid.

From Figure (4), it is noticed that the speed of the fluid has been enhanced with the increasing values of k; during
both the cases. As a result, the overall pressure of the hybrid nanofluid reduces and the thermal fraction and mass fraction
of the fluid are directly proportional to the pressure and hence the thermal fraction and mass fraction are experienced
reduction with k; (see Fig. 5 and Fig. 6). Also, the second solution of the velocity distribution and mass fraction of the
fluid are comparatively fewer than the first solution.

Figure (7) shows how Nr affects the thermal fraction of the hybrid nanofluid. It can be seen from this figure that
when Nr increases, the thermal portion of the hybrid nanofluid decreases in both cases.

First solution Pr=0.71, Sc=2, Cr=0.5, M=0.5, > Pr=0.71, Sc=2, Cr=0.5, M=0.5,
Second solution «ememe=s - Q=0.5,Gr=Gm=0.1,Ec=0.5Nr=0.5, || 1A=, N, Q=0.5,Gr=Gm=0.1,Ec=0.5Nr=0.5, |]
i $=0.25L =0.1L;=L =0.1 §=025L =0.1L;=L =01

First solution s——

k1 =0.2,04,06 Second solution S
0.1 - . - - - 0 - - Tl
0 05 1 15 n 2 25 3 35 4 0 1 2 n 3 4 5 6
Figure 4. Velocity profile for incremental amount of k4 Figure 5. Sketch of thermal fraction for incremental amount of k

1

N Nr=02,04,06

First solution Pr=0.71, Sc=2, Cr=0.5, M=0.5, 17 Pr=0.71, Sc=2, k,=0.5,Q=0.5,
Second solution *=*=+=+= Q=0.5Gr=Gm=0.1,Ec=0.5,Nr=0.5, s Cr=0.1,Gr=Gm=0.1 Ec=0.5M=05

038 = = =L = 1
) §=0.25L =0.1L,=L =0.1 15 §=0.25L =0.1.L =L =01

0.6

k;=0.204,06

0.2

First solution
Second solution +=s=s===

Figure 6. Sketch of mass fraction for incremental amount of k; Figure 7. Sketch of thermal fraction for incremental amount of Nr
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First solution s Pr=0.71, Sc=2, k‘=0.5, M=0.5,
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Figure 8. Sketch of thermal fraction for incremental amount of ¢ Figure 9. Sketch of mass fraction for incremental amount of Cr.

The cause of this occurrence is that the thermal radiation parameter (N7) is directly proportional to the third power
of the temperature of fluid at free stream region. Therefore, as Nr increases, the hybrid nanofluid's thermal fraction over
the cone decreases. Also, it is seen that the thermal fraction of the fluid during the second solution is larger than the first
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solution near the surface of the cone. Figure (8) reflects the impact of heat generation parameter (Q) on the thermal
fraction of the fluid. From this figure, it is perceived that the thermal fraction of the hybrid nanofluid has been increased
with Q. Influence of Cr on the mass fraction of the hybrid nanofluid is presented in Fig. 9. The chemical reaction is
occurred mainly due to the effects of suction/injection of the fluid flow and presence of flow slips effects. The chemical
reaction parameter has the capacity to fall down the mass fraction of the considering fluid. It can also be observed that
the concentration level of the hybrid nanofluid during the second solution is fewer and slowly conversed to its free stream
region over the first solution.

We have found from this study that all flow profiles display dual solutions up to a specific area of the similarity
variable (17) and asymptotically meet the far-field boundary conditions.

CONCLUSION
This paper analyzes Cu — Al,O3/water hybrid nanofluid flow driven by a solid cone which sited in a porous medium.
The energy transfer in terms of heat and mass is encountered with the effects of magnetic field, thermal radiation and
chemical reaction. The leading equations are solved through numerical method called “three-stage Lobatto I1la formula”
by using MATLAB built in bvp4c solver scheme. Major results have been obtained as follows:

1) The velocity of the hybrid nanofluid has been decelerated with the improving amount of M, but it has enhanced
the thermal fraction of the fluid during both the cases.

2) Due to the increasing amount of k,, the velocity of the fluid has accelerated. Whereas, thermal and mass fractions
of the hybrid nanofluid have been controlled by employing k;.

3) Thermal fraction of the hybrid nanofluid flow is a decreasing function of the thermal radiation (Nr) and an
increasing function of the heat generation (Q) parameters.

4) Mass fraction of the hybrid nanofluid during the second solution is fewer than the first solution with the increasing
amount of Cr.

5) Effects of shear stress is dropped down for incremental values of the Prandtl number. But we should keep in
mind that the excessive amount of the Prandtl number may damage the system by developing the rate of heat
transfer at the surface of the cone.

6) “According to the stability point of view, the first solution, which converges to the steady flow solution more
quickly, is stable, whereas the second solution is unstable and impractical.
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JYAJIbHI PIIUEHHA JUIS FIBPUIHOL TEYIEI HAHOPLIAHHU IO KOHYCY 3 BINIMBOM TEILJIOBOI'O
BUIMTPOMIHIOBAHHS I XIMIYHOI PEAKIIT TA AHAJII3 if CTABIJTIBHOCTI
Je6acim Jeii®, Pymukori Bopax®, Ammm JIxkiiori Bapyax®
?Jlenapmamenm mamemamuxu, Ynieepcumem [Hiopyeapx, [iopyzapx-786004, Accam, Inois
b Tenapmamenm mamemamuru, Hampyn xoneoaic, JJiopyeapx -786623, Accam, Indis

OcHOBHa MeTa [IbOTO JOCIIIKEHHS MOJISATAE B TOMY, I100 pO3pi3HUTH cTablIbHI Ta peani3oBaHi pillleHHS MiXK MOJABIHHUMH PillICHHSIMHA
MOTOKY Ti0puaHoi HaHOMIIOIIM Ha BOIHIM OCHOBI, III0 PYXAE€THCS TI0 TBEPAOMY KOHYCY, Pa3oM i3 mepenadero eHeprii y ¢gopmi Terma
Ta MacH, BUKOPHCTOBYIOUM HOBUHM MiAXiA, SKHHA HAa3WBAETHCSA AaHANI3OM CTaOUIFHOCTI. BpaxoBaHO BigXWIICHHS TEIUIOBOTO
BUTIPOMIHIOBAHHS, XIMIYHMX peakmiii 1 NOTrJIMHaHHS/yTBOpeHHA Teruia. I[IpoBimHi pIBHAHHA, SKi HiATPUMYIOTH MaTeMaTH4HE
TIIPE/ICTABJICHHS bOTO JOCIIIJDKEHHS, OHOBJIEH] 3a IOMOMOT0I0 Habopy 3MIHHHX IOAIOHOCTI Ta po3B’sI3aHi 3a JOIIOMOT0I0 BOYI0BaHOT
cxemu pimenns piBasHb MATLAB bvp4c. [Ipencrasneni rpadivni Ta YMceIbHI pe3yIbTaTh IOTO AOCTIIKEHHS. Y pe3yabTaTi IbOro
JIOCIIIKEHHST OYJIO OTPUMAaHO JIBa THITH IIOTOKOBHX PIllIeHb, /1€ OAWH 13 HUX OB’ SI3aHMH i3 HE3aIeKHUMH BiJl 4acy pillleHHSMH Ta €
cTabinmbHUM 3a CBOEI mpupoporo. Kpim Toro, mBuakicts Tewil riOpuaHOro HaHO(IIOILY MOXKHA KOHTPOJIOBATH, 3aCTOCOBYIOUH
MarHitTHe moje, aje Tpeba MaTH Ha yBa3i, 0 HaAMIpHA KUIBKICTh MarHiTHOTO HapamMerpa MOXeE MOLIKOAUTH CHUCTEMY LLIIXOM
OKHUCJICHHSL.
KurouoBi ciioBa: 2idpuonuil Hanoghnoio;, meepouil KOHyc;, meniose UNPOMIHIOBAHHSA, XIMIYHA peaKyisn, NOOSIUHI PIUEHHSA, AHANI3
cmabinbrnocmi
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In this paper we are considering a fluid flows problem that contains two equation of motions and more than two parameters in the

governing equation of motion. Which is namely Radiative Boundary Layer Flow in Porous Medium due to Exponentially Shrinking
Permeable Sheet. The parameters are K = C—k", Pr = ﬂ, N = 403 Teo”
LY Koo 3k1keo
radiation parameter and is the thermal conductivity variation parameter respectively. The governing differential equation can be
obtained by using similarity variable technique and then the governing equation of motion can be Fuzzified by the help of Zadeh
extension theorem. The a — cut technique is used for the validation of the uncertainty of the equation of the motion. The effect of
the K, Pr, N and ¢ are discussed with the fuzzified governing equation of motion under fuzzy environment. It is observed none of the
parameters are directly involved in the occurrence of the uncertainty of the solutions. The uncertainty occurs in the problem is due to
the assumption and the numerical computation. Finally, the solution is being carried out under fuzzy environment. It is found that the
increasing values of permeability parameter, the values of both the numbers Skin friction coefficient as well as Nusselt number are
increases.
Keywords: Shrinking sheet; Fuzzified; computer codes;, a — cut
PACS: 44.05 +e, 44.30 +v, 47.10 A

and ¢ denote the permeability parameter, Prandtl number, and

1. INTRODUCTION

Flow and heat Transfer in boundary layer flow of viscous fluid due to deforming surface is pivotal in many industrial
processes cutting across different realms. Specially radiative thermal regime in porous medium has drawn much attention
recently due to large application in gasification of oil shale waste heat storage in aquifer and many more.

Vast application of radioactive thermal in porous medium we need to study this class of problems in different ways.
Due to involvement of nonlinear differential equation, there is no direct process available to solve exactly. Here we
consider such a mechanical problem for our discussion in which the governing equations of motion can have two non-
linear differential equations of motion (One for velocity profile and another one is for temperature profile) and four
parameters in the governing equation of motion and one parameter in the boundary conditions. The specific problem is
Radiative Boundary Layer Flow in Porous Medium due to Exponentially Shrinking permeable Sheet.

A few relevant research has been presented in recent years (2010 to cont.). Radiative flow of Jeffery fluid with
variable thermal conductivity in a porous medium was discussed by Elbashbeshy and Emam (2011), Hayat et al. (2012)
about the effects of radiation and heat transfer over an unsteady stretching surface embedded in a porous medium. Paresh
Vyas and Nupur Srivastava studied (2016) about the flow past and exponentially shrinking placed at the bottom of fluid
saturated porous medium taking variable thermal conductivity and radiation using fourth order Runge-kutta scheme
together with shooting method.

Here we introduce a new approach of solving of the said problem using fuzzy set theory. In this chapter our objective
is to find is there any kind of uncertainty involved in the specific problem i.e. Radiative Boundary Layer Flow in Porous
Medium due to Exponentially Shrinking permeable Sheet using fuzzy environment. For the graphical interpretation we
developed computer codes for the said problem and represent the parameter’s effect on the uncertainty involved in the
flow of motion. On the basic concept of fuzzy differential equations Chakraverty et al., (2016) proposed some numerical
methods for fuzzy fractional differential equations. Hazarika and Bora (2017, 2018) studied about the fuzzification of
some numerical problems. J. Bora et al (2020) discussed some fluids problems using fuzzy set theory.

2. FORMULATION OF THE PROBLEM
2.1. Derivation of The Basic Equation
Let us consider the steady 2D boundary layer flow of optical thick viscous Newtonian fluid and associated heat
transfer over a permeable sheet placed at bottom of the fluid saturated porous medium having permeability of specific
form. A Cartesian coordinate system is chosen where the x-axis is taken along the sheet and y-axis is normal to it. The
flow is caused by the sheet shrinking in an exponential fashion. A suction is applied normal to sheet to contain the

7 Cite as: A. Barhoi, G.C. Hazarika, H. Baruah, and P. Borah, East Eur. J. Phys. 2, 107 (2023), https://doi.org/10.26565/2312-4334-2023-2-09
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vorticity. The fluid considered here is without phase change, optically dense, absorbing-emitting radiation but a
nonscattering medium. The thermal conductivity of the fluid is assumed to vary linearly with temperature. The radiation
flux in the energy equation is presumed to follow Rosseland approximation. The boundary layer equations for the

considered setup are
ou  Jdu

ax "oy 0, M
ulpvlt=p(Z8) - ot @
pcp(ug—i+vg—§)=%(kz—§)—z—i: 3)
With the boundary condition
Aty=0, u=1U,(x) = —ce’_lc, v=V,(x) = —voe%, T=T,(x) =T, + Toe%

and at
y-oo0o,u—=0T->T, “®

where u, v are the velocity components along x and y directions, respectively, k is the permeability, c,is the specific heat
at constant pressure, v is the kinematic viscosity, p is the density, and 7, u, and x are the temperature, viscosity and thermal
conductivity of the fluid, respectively. Further, L is the characteristic length, T, is the variable temperature at the sheet,
T, is the constant reference temperature, and T, is the constant free stream temperature. U,, and V,, are the shrinking
velocity of the sheet and mass transfer velocity, respectively, where ¢ > 0 is the shrinking constant and v, is a constant
(where vy < 0 corresponds to mass suction).
Let us introduce the stream function (x, y) as
Y Y
u= a = — a (5)

Thus equation (5.1) is identically satisfied and the similarity transformation can be written as

W = VZoLef (n)ein = y\/%e%, and (x) = —= ©)

TW _TOO

On using (5.5) and (6.5) we obtain the expression for velocity component in non-dimensional form as

w=cf'(n) eand v = — [ (nf' () + f(n))et ™

In order to obtain the similarity solutions, it is assumed that the permeability & of the porous medium takes the
following form

k(x) = 2kge L (8)

Where k, is the reference permeability.
As in our setup the thermal conductivity of the fluid is assumed to vary with temperature in a linear function as

k = ko, (1+€ 6) ©)

Where € is the thermal conductivity variation parameter. In general, € > 0 for fluids such as water and air, while €<0 for
fluids such as lubrication oils. The radiative heat flux in the energy equation is presumed to follow Rosseland

approximation and is given by
40y OT*

& ="3c o (10)

Where g, is the Stephan-Boltzmann constant and k; is the mean absorption constant. It is further assumed that the
temperature difference within the fluid is sufficiently small sothat T* may be expressed as a linear function of temperature
T. This is done by expanding T* in a Taylor series about T,,and omitting higher-order terms to yield

T* = AT, T — 3T,,*
Thus, the equation of momentum (5.2) and energy (5.3) reduces to the following non dimensional form
nr " 12 f’ _
frffr -2 L =0 (1n
(1+5) 0" +€00" + €62 + Pr(fo' — f") = 0 (12)

With the boundary conditions
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n=0:f'(m)=-1f)= UC/Z Tooar = 50 =1, > 0oif'() > 0,6(n) - 0 (13)
Where
_ ko _ MG o 405Te?
k= L9’ Pr= Koo’ N = 3k1keo

Denote the permeability parameter, Prandtl number, and radiation parameter respectively.

2.2. Conversion of The Basic Equation into Fuzzified Form
Now we Applying Zadeh fuzzy Extension theorem in (5.11-5.12) and (5.13-5.14)

e+ i -2 =L =0 (15)
A+ 0" +¢e0a7 +é0™ +Pr (f6" - 0f") = 0 (16)
And the boundary condition became as (Fuzzy Environment)
~0:f1m=-1Lfm) = W =500 =1, 17
A —&: f'(n) - 0,6() 0 (18)

Considering the Fuzzified (5.15) equations as triangular fuzzy number then the Fuzzified equation became the
following:
" meoEr s o Err 2 /2 L f_
L F T UL E TV T = 227 7| = o = 10,0,0]

K K]

Using fuzzy arithmetic we have,
= [f", ", F™]+[minT, Ty, maxT]- [2f'2, 2f"”,2f*| - [min S, S;, maxS] =[0,0,0]
= [f" +minT, f + To, f + maxT ] - [2f_’2+ min S, 2f" + S, 21" + maxs] = [0,0,0]

= [f"” +minT — (2f 2 + maxS), " + Ty — 2f" +S,), f"" + maxT — (2f"” + minS) ] = [0,0,0]

Thus, we have,

f" 4+ minT — (Zf_’z+ maxS) =0 (19)
" +Ty— (2 +5,) = 0. (20)
f7 +maxT — (2f” + min§) =0 Q1)
Where § = f= L é L ndSo——
K'K'K’'K

T = Elr’zfn,fiu’ﬁ’ and TO — ff”

Similarly considering the Fuzzified (5.16) equations as triangular fuzzy number then the Fuzzified equation
became the following:

1+%,1+ +— [67,6",6"] + € €¢€][0,6,0](6",6",0"] + [, € €| [6'%6'26'%] + [ Pr,Pr, Pr]
(£.r7]|e.e.e]-f.r.F]le.6.8]1=10,0,0]

= [minX, X, maxX] + [€ € €] [minY, ¥, max Y] + [min Z, Z,max Z] +[ Pr, Pr, Pr] {{min4, 4, maxA] —
[min B, B,max B] } = [0,0,0]

= [minX, X, maxX] + [minY, ¥, ,maxYy] + [minZ, Z,max Z] + [ Pr,Pr, Pr| [minA — maxB, A —
B, maxA — minB] = [0,0,0]

= [min X + min¥, + minZ, X + ¥y + Z, max X 4+ max Y, + max Z] + [min AyB,, AyBy, max AyB,] = [0,0, 0]
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= [minX + minYy + minZ + min AyBy, X + Vo + Z + A,B,, maxX + max Y, + maxZ + max4,B,] = [0,0,0] (22)
Where

X=1+Z0"1+260",1+20",1+2 06" andX=1+= 0"

J— —_——

Y=60",00",600",060", and ¥ = 66"

AoBy = Pr (minA —maxB) , Pr (maxA —minB), Pr (min4A —maxB), Pr (maxA—minB), 4,B, =
Pr (A-B),
Now we can re-write the equation (5.22) as follows

minX + minYy + minZ + min 4,8, = 0 (23)
X+Yy+Z+ AyBy =0, (24)
max X + max Y, + maxZ + max A,B, = 0, (25)

Similarly if we convert the boundary condition into Fuzzified form then a new system of equation will arise as follows
f"" 4+ minT — (Zf_’2 + maxS) =0
minX + minYy, + minZ + min 4,8, = 0

With the boundary conditions
—vp

= 0:ft) = =1 f() =72 =5, 60 = Ly~ o /() > 0.6(n) ~ 0 (26)

" +Ty— (2" +5,) =0
X+Y,+Z+ A,B, =0,
With the boundary conditions
. £ _ _ TV __ _ . £
n=0:f)=-1f0)=7=5="500)=1n- o f(n)-0060) >0 @7

]m+ maxT — (Zf’2 + minS) =0 max X + maxYy + maxZ + maxA4yBy, = 0

With the boundary conditions

f'(m) = 0,60 -0 (28)

8l

n-

3. Definition of Skin Friction C; and Nusselt Number Nu,
The physical quantities of principal interest are the skin friction coefficient C; and the local Nusselt number Nu,,
which are defined as

Re,'/2C,=f"(0) and  Re, */?Nu, = —6'(0)

Where Re, = @ is the local Reynolds number.

4. Result and Discussion
The system of equations (26-28), the fuzzified equations of motion with fuzzified boundary conditions are solved
numerically by using finite difference scheme. The discretized fuzzified equations are solved using an iterative method
based on Gauss Seidel iterative method by developing suitable codes in python.



111
Numerical Solution of Radiative Boundary Layer Flow in Porous Medium... EEJP. 2 (2023)

The numerical computations carried out for different sets of values of the parameters entering into the problem have
been depicted through graphs and tables. Result is obtained for different values for the parameter s = 1, K = .25, €= .1,
Pr = 0.7 and for different @ — cut of the fuzzified system of equations (26-28)

In each of the following graphs the blue curve is the solution for the right values of the of the fuzzified velocity
profile, green curve is the solution for the mid values of the fuzzified velocity profile which is same as the crisp velocity
profile and blue curve is the solution for the right values of the of the Fuzzified velocity profile.

The Figure (1-3) exhibits the Fuzzified temperature profile for @ — cut with a = 0.3,0.6,0.9, and K = 0.25,n =
0.5,Pr = 0.7 ,e=0.1,s = 1. It is observed from the graph that there is a deflection on the curve in the right solution of
the temperature profile as compare to the left solution of the temperature profile from the mid value solution (i.e. crisp
solution). Which is the indication of the uncertainty involved in the temperature profile.
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Figure 1. Fuzzified Temperature profile for a — Figure 2. Fuzzified Temperature profile for o —
cut,witha =0.3,s =1,K = .25,e=.1,Pr = 0.7 cut with a=0.6,s = 1,K = .25,e=.1,Pr = 0.7
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Figure 3. Fuzzified Temperature profile for
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Figure (4-7) are the fuzzified temperature profiles for ¢ — cut with a = 0.5 and different values of the parameters
s=1and 2,K = 0.25and 0.5,Pr = 0.7 and 1.1, = 0.1 and 0.3.
It is observed from the Figures that there is no significant deflection of right solution as compare to left solution
from the mid value solution (Crisp solution). Which is due to the changes of these parameter are not the cause of the
uncertainty involved in the solution of the temperature profile.
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Figure 4. Fuzzified temperature profile for « — cut with a =0.5,s = 1and 2,K = .25,€e=.1,Pr = 0.7
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Figure 5. Fuzzified temperature profile for « — cut with ¢ =0.5,s = 1,K =.25and 0.5,€=.1,Pr = 0.7
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Figure 6. Fuzzified temperature profile for « — cut with a =0.5,s = 1,K = .25,€=0.1and 0.3,Pr = 0.7
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Figure 7. Fuzzified temperature profile for ¢ — cut witha =0.5,s = 1,K = .25, €=.1,Pr =0.7and 1.1

Figure (7-9) represent the crisp velocity profile for different values of s, € and Pr. It is observed in Figure 7 that
with the increasing values of suction parameter s the velocity decrease. Whereas velocity decreases with increase of Pr
in Figure 8. It is found that the pattern of the flows is almost similar in the temperature profile for the changes of the
parameter. Also, we see that 8(n) decay with the increase of Pr. Whereas 8(n) increases with increasing value of € in
Figure 9.

As the parameter changes are not affect in the uncertainty of the solution of the temperature profile so we are
discussed the effect of the parameter in Crisp Solution i.e., ¢ — cut = 1.

Figure (10) is the Fuzzified velocity profile for @ — cut witha = 0.5,and K = 0.25, n = 0.5, Pr =0.7,€e= 0.1,
s = 1. It is observed from the graph that there is a deflection on the curve in the right solution of the velocity profile
(Green curve) as compare to the left solution of the velocity profile (Light yellow curve) from the mid value solution i.e.
crisp solution (Violet curve). Which is the indication of the uncertainty involved in the solution of the velocity profile.
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Figure 7. Crips Temperature profile for Figure 8. Crips Temperature profile for
€= 0.1 (blue), 0.5 (Orange), 0.9 (Green), 1.2 (Brown) s = 1(Blue), 3 (Green), 5 (Orange)
and s =1,K = .25,Pr = 0.7 and K = .25,€=.1,Pr =0.7
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Figure 9. Crips Temperature profile for Figure 10. Fuzzified Velocity profile for
Pr = 21.7 (Light Pink),17(dark brown), a — cut with « =0.5,s = 1,K =.25,€=.1,Pr =0.7

13.7(Violet), 10.7(brown), .7(Green),4.7(0range),0.7 (Blue)
ands =1, K =.25, e=.1

Fig (11-14) are the fuzzified velocity profiles for a — cut with a« = 0.5 and different values of the parameters
s=1and 2, K=0.25and 0.5,Pr =0.7and 1,& = 0.1 and 0.5. It is observed from the Figures that there are no
significant deflections of right solution as compare to left solution from the mid value solution ( Crisp solution ). This is
due to the changes of these parameter are not the cause of the uncertainty involved in the solution of the velocity profile.

As the parameter changes are not affect in the uncertainty of the solution of the velocity profile so we are discussed
the effect of the parameter in Crisp Solution i.e. & — cut = 1.

0.0 ——————

—1.0 A1
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Figure 11. Fuzzified Velocity profile for « — cut with ¢ =0.5,s = 1and 2,K = .25,€e=.1,Pr = 0.7



114

EEJP. 2 (2023) Amir Barhoi, G.C. Hazarika, et al.

0.0 — 0.0 1
_05 -0.5
-1.0 A -1.0 1
z 2
& &
S 15 2 15
g <
—2.0 -2.01
=25 -2.51
-3.0 -3.0 1
1.0

0.0 0.2 0.4 0.6 0.8 1.0
n

Figure 12. Fuzzified Velocity profile for @ — cut with @ =0.5,s = 1,K = .25 and 0.5,€=.1,Pr = 0.7

Velocity
Velocity

1.0 1.0

Figure 13. Fuzzified Velocity profile for &« — cut with « =0.5,s =1, K = 0.25,€= 0.1 and 0.5, Pr = 0.7

0.0 1

-1.0 4

Velocity
Velocity
|
o
w

-2.51

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
n

n

Figure 14. Fuzzified Velocity profile for ¢ — cut with « =0.5, s=1, K =0.25, €=.1, Pr=0.7and 1

Figure (15) represent the crisp velocity profile for the different values of the parameter € and fix value of the
parameter = 0.25, s = 1 and Pr = 0.7 . It is observed that with the increasing value of € the velocity profile decreases.

Again Figure (16) represents the crisp velocity profile for the different values of the parameter s and fix value of the
parameter K = 0.25, €= 0.1 and Pr = 0.7 respectively. It is observed that with the increasing value of s the velocity
profile also increases.

It is observed from the graphs of the crisp velocity profile in Fig. (15-16) that the solution shows the occurrence of
reverse flow. The occurrence of the sharp point in the back flow this is due to the numerical difficulties as the numbers
of subdivision are less in number. If we increase the number of divisions to as large extend time complicity arise in the

fuzzified solution but the curve would be smooth.
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Figure 15. Crips Velocity profile for Figure 16. Crips Velocity profile for
€= 0.1(Violet), 0.5(yellow), 1(pink) and s = 1,K = .25, s = 9(Blue), 5(Green), 1(Orange) and K = .25,e= .1,
Pr=10.7 Pr =0.7

5. Comparison of Skin Friction Coefficient C; and Local Nusselt Number Nu,
The two important parameters in fluid flow problem are the skin friction coefficient C¢ and local nusselt number Nu,, we
have computed these two parameters for different values of the Permiability parameter which are given in the following Table.

Table

Permiability Cr Nu,
Parameter Crips Fuzzified Crisp Fuzzified
10 0.264853 0.243849 -2.13187057 -2.00200567
20 0.265152 0.244158 -2.13187043 -2.0020055
30 0.265251 0.244261 -2.13187038 -2.00200544
40 0.265301 0.244313 -2.13187036 -2.00200541

It is observed from the table that with the increasing values of permeability parameter the values of the Skin friction
coefficient increases. Similarly with the increasing values of permeability parameter the values of Nusselt number also
increases. The results are well agreed with those of crisp values. The effect of fuzzification is also observed from the

above Table.

6. Conclusion
In this chapter, the Radiative boundary layer flow in Porous medium due to exponentially shrinking steady MHD
stagnation point flow due to shrinking permeable sheet has been theoretically considered under fuzzy environment. The
effect of suction parameter, velocity ration parameter, Prandlt number on the flow and heat transfer have been studied
under fuzzy environment. The numerical results have been obtained by developing computer codes on PYTHON. Thus,
we conclude the followings from the above discussion:

(1) The involvement of uncertainty in the equation of motion of this problem.

(2) None of the parameters are directly involved in the occurrence of the uncertainty of the solutions. The
uncertainty occurs in the problem is due to the assumption and the numerical computation.

(3) The crisp solution of velocity profile as well as temperature profile and the fuzzified velocity profile as well as
temperature profile are in good agreements. The flow pattern for both the case velocity profile as well as
Temperature profile are almost similar for different values of parameters.

(4) With the increasing values of permeability parameter, the values of both the numbers Skin friction coefficient
as well as Nusselt number are increases.

(5) The effect of fuzzification is observed in the values of the physical quantities of the Skin friction coefficient Cr

and local Nusselt number Nu,.
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YHACJOBE PIIIEHHSA TEUIi PAJIAIIAHOIO NPUKOPAOHHOI'O IAPY B IOPUCTOMY CEPEJIOBHIIII
YEPE3 EKCIOHEHIIAJIBHO 3TUCHYTU NPOHUKHUI IIAP B HEUITKHX YMOBAX
Amip Bapxoii?, I'.K. XazapikaP®, Xpimukem Bapyax?, IIpanaxan Bopa®
“Koneoxc [Jyniadocana, [Ayniadxcan, Acam, IHoia
bYuisepcumem Jiopyeapx, Jiopyeapx, Accam, Indis
¢D.R. Koneooc, I'onoexam, Acam, Inois
V wiii cTarTi po3rSIHYTO 3a7ady PO Tedil piAuHY, siIKa MICTHUTH J1Ba PIBHAHHS pyXy Ta Oijblie JBOX MapaMeTpiB y BU3HAYAILHOMY
piBHsiHHI pyxy. lle came panianiiiHuii NMOTIK NPHKOPAOHHOTO LIApy B IOPHCTOMY CEPEIOBUILI 4Yepe3 NPOHUKHHN JIUCT, IO

. . ck uc 401 To®
€KCIOHEHLIHHO cTHCKacThes. [lapamerpy piBnsuns K = —2, Pr = —2 N = ==
L9 Keo 3k koo

yncito [IpannTist, mapaMeTp BUIIPOMIHIOBAHHS Ta IapameTp Bapiamii TerronposigHocTi. OCHOBHE audepeHniaibHe PIBHIHHSI MOXe
OyTH oTpHMaHe 3 BUKOPHCTaHHIM METOJy 3MIHHHX IOAIOHOCTI, a ITOTIM OCHOBHE PIBHSHHS pyXy Moxe OyTtu fuzzified 3a momomororo
TeopeMH po3mmpeHHs 3ane. MeTox o-3pi3y BHKOPHCTOBYETBHCS JUISl NEPEBIPKM HEBM3HAYEHOCTI PIiBHSAHHS pyxy. OOroBoproeThbcest
BB K, Pr, N Ta € 3 HEUiTKUM KepylOUHMM piBHSHHSIM PyXy B HEUITKOMY CepeJIOBHIIi. 3HalIEHO, 0 JKOEH i3 mapaMeTpiB He Gepe
Oe3nocepeiHbOi y4acTi y BHHUKHEHHI HEBH3HAYCHOCTI pinieHb. HeBH3HA4eHICTh BHHHMKAE 4epe3 MPUITYLICHHS Ta YHCEIbHUM
po3paxynok. Haperuri, pilieHHs BHKOHAHO y HEYITKOMY cepeloBHII. BcTaHOBIEHO, 110 3i 30UIbIICHHSIM 3HA4YCHHS MapaMerpa
MIPOHHUKHOCTI 3pOCTAIOTh 3HAUYEHHS 000X YHcelN: Koe(illieHTa MOBEPXHEBOTO TEPTH, a TakoXkK uncia Hyccenpra.

KurouoBi cinoBa: mepmosodisicruil nucm, Heuimxicms, KOMN'TOmepHi Koou, a-3pi3

€ 03Ha4YaI0Th Bi/IIOBIJHO ITAPaMETP IPOHUKHOCTI,
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The total wave function and the bound state energy are investigated by involving Nikiforov-Uvarov method to Schrodinger equation
in spherical coordinates employing Hartmann Potential (HP). The HP is considered as non-central potential that is mostly recognized
in nuclear field potentials. Every wave function is specified by principal quantum number #, angular momentum number [/, and magnetic
quantum number m. The radial part of the wave function is obtained in terms of the associated Laguerre polynomial, using the
coordinate transformation x = cos 8 to obtain the angular wave function that depends on inverse associated Legendre polynomials.
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INTRODUCTION

The Hartmann Potential is a kind of non-central potentials that have been studied in nuclear physics field, which

consider as the coulomb potential surrounded by the ring-shaped inverse square potential. Organic molecules such as

cyclic polyenes and benzene, handling this potential since 1972 [1-2]. In spherical coordinate the Hartmann potential is

coulomb potential adding a one potential proportional to ( tan 8)~2. So, it defined by [3-4]:
a . PBcos?h

V(r,08)=—-+

r  r2sin2@’

M

Where o, § are constants that consider as positive real numbers. Obtaining this HP in Schrodinger equation, assuming
(u=nh=1)[5]

Far (%) + o (500 55) + oy (32) + = = 2B 522} (. 6,0) + 2B9(,0,0) = 0. (2)

r2sin2 6 r r2sin2 6

The equation (2) depends on the total coordinates in spherical coordinates (7, 8, @), to find the total wave function
we need apply separation of variables method on equation (2). The main object in this work is to determine the bound
state energy and the wave function.

SEPARATION OF VARIABLES METHOD
Obviously, in spherical potential, we let [6]:

P(r,0,0) =22 H(O) $(p). 3)
Now, by Separating variables in equation (2), we hold that:

The Radial Part

d2u(r)
dr?

a A
+ [ZE + 27‘72] u@r) =0,
where A is separation constant. And, to solve the equation, we let

A=T0+1) - 28.

m2—m2
B=—

Where [" and m’ are positive integers or zero.

L=§{J1+4[(k+m)(k+JWH)—zﬁ]—l}. @
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So, one can easily show that A = L(L + 1) (see Appendix I)
The radial Schrodinger equation can displayed as:
d2u(r)
dr?

+ |26+ 22 -2y =o. )

r

Where the angular part can displayed as:

The Angular part
Insert a new variable x = cos 8 and using Chain rules technique, to get the angular Schrodinger equation.
d*H(x)  2x dH(x) 1 ( B m2+2ﬁ) B
dx2 1-x2 dx + 1—x2 /1 + Zﬁ 1—x2 H(x) = 0 (6)

Andwelet, A+ 28 =1L+ 1), m2=m?+2Bandv ='(' + 1).
After applying all assumes into equation (6), we get

d’H(x)  2x (dH(x) (—v'x?+v'-m'2) _
dx? 1—x2{ dx } (1-x2)2 H(x) =0. ™
The Azimuthal Part
1 d? )
2@ (dT)z) (@) =m?. ®

Where m is the magnetic quantum number.

NIKIFOROV-UVAROV METHOD
The Nikiforov-Uvarov method is a one of the methods used to predict the solutions of generalized second order liner
differential equation like Schrodinger equation with particular orthogonal function, we could be obtaining the solution by
NU-method when make some transforming to Schrodinger equation to be the same of the below equation [7]

ut(z) + 22 0 (2) + 28

o(z) 02(z)

u(z) = 0. 9

Where equation (9) is considering the standard form of NU-method. Where, ¢(z) and & (z) are polynomials with a
maximum degree of 2; ¥ (z)is polynomial with a maximum degree of 1; u(z) is a hypergeometric function type, and the
primes intending the derivatives respect to z. by supposing that:

u(z) = ¢p(2)X(2). (10)
The equation (9) become as hypergeometric form:
o)X (2)+1(2)X (2) + 1 X(2) =0. (11)
Where
1(2)=2n(@) +1(2) ,+-1(2)<0. (12)
Where 1t(z) is a parameter of 1 polynomial degree and introduces by equation (13):
. 2
m(z) ="+ J("z") —6(2) + ko. (13)
While A is introduced by equation (14)
A=k+1(2). (14)

Since 7(z) is 1% degree polynomial, this implies that second order function under square root must be equal to zero,
then the quadratic equation can determine k.
To obtain ¢(z) we can use the integral below equation:

92 _ n(2)
b o) (15)
And the parameter A in equation (14) defined by;
A=21,=-nt(2) — nn-1) o (2). (16)

2

The weight function p(z) is obtained in (Eq. 17).
~lo(2) p()] = 1(2) p(2). (17
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While the Rodrigue relation (Eq. 18) is used to determine X, (z).

B, am

Xa(2) = 25 220" p(2)] (18)

Where B,is normalization constant, now Substitute X,,(z) and ¢(z) into equation (10) to find u(z) [8-12].

DEVELOPING HARTMANN POTENTIAL IN SCHRODINGER EQUATION
The Radial Schrodinger Equation
From equation (5) we can write the radial part by the below form
d2u(r)
dar?

+ riZ[ZErZ +2ar — L(L + D]UG) = 0. (19)

By comparing equation (9) by equation (19) to obtain the NU-Coefficients, we get

t(r)=0, (20-a)
or)=r, (20-b)
F () =2Er?+2ar —L(L +1). (20-c)
Using equations (20-a) (20-b) and (20-c) into equation (13) to get the parameter (r)
n(r) =§i§J—8Er2 +4(k —20)r+4L(L+ 1D + 1. @0
Now, taking this quadratic equation's discriminant equal zero, then the value of constant k could be determined.
k% — dak + 4a® + 2E{4L(L + 1) + 1} = 0. (22)
The quadratic equation (22) provides two roots for k
ky =2a +/—2E{4L(L + 1) + 1}. (23)
Substituting equation (23) into equation (21), to get:
() =m,,(r) = %+ {\/—_ZEr + (L + %)}, (24-a)
m,(r) =ny(r) = %+ {\/—_ZEr — (L + %)}, (24-b)
m3(r) = ng(r) = i— { —2Er + (L + %)], (24-¢)
my(r) =m__ (r) = - {\/—_ZEr —(L+ %)} (24-d)
Taking 1, (1) where t(r) is negative in equation (12) to hold the well value by NU method; so:
T, =1-2 <\/ﬁr - (L + %)) 25)
Returning to the equations (14) and (16) respectively, and developing equation (25) we get:
A=2a— 2L+ 2)V—2E. (26)
An = 2n(V—-2E). 27)
Comparing equations (26) and (27) one can predict bound state energy.
E= o (28)

2(L+n+1)2’

Where L is given by equation (4).
Depending on previous result especially equation 25 we can hold the function ¢ () and the weight function p(r)
that in equations (15) and (17) in a new form:

(l)(,r) — T.(L+1)e— —2Er (29)
p(r) — e—2v—2Err(2L+1) (30)

By obtaining equation (18) and (30); one can establish the polynomial X, (r):

- _ A" [ o =
X,(r) = Be?V-2Ery (2L+1) ﬁ[e 2 2Err(2L+1+n)] 31
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Also, the wave function U(r) is hold by multiply X,,(r) with ¢ ().

— L+1) ,—V=2Er ,2V=2E7,.—(2L+1) 4" [ ,—2v=2Er.(2L+1+n
Uy (r) = B, rttVe e r-CL+D) el 4 7 .

Involving associated Laguerre polynomial in equation [4] then U,,;(r) can be defined as:
Uni(r) = B, r(t+De=V=2ET [2L+1(9\[_2F7). (32)

By substituting vV—2E as in equation (28) where @ = ze?, then the radial wave function R(r), which defined as
R(r) = @ is obtained as:

Zez 2
— L, Tans)’ j2L+1 [_22€
R;,(r) = Byrte @+ L2 ( LoD r). (33)

Where, B, is the normalized constant for orthogonally associated Laguerre polynomial. So, the normalized constant equal

L
B, = J s A (34)

r(2L+n+2) {2n+2L+2}

Substituting equation (34) to write the final form of radial Schrodinger equation

9ge2 2L*3 2ze2
n! (L+n+1) L -, 2L+1( 2ze? )
= 2 e
R"l(r) r(2L+n+2) 2{n+L+1} (r) € L" (L+n+1)r 335)

The Angular Schrodinger Equation
Now, to determine the angular wave function H(x); compare equation (7) with equation (9) to obtain

T (x) =—-2x (36-a)
o(x) =1 —x? (36-b)
Fx)=—vxt+v —m? (36-¢)

Substitute equations (36 — a), (36 — b)and (36 — ¢) into (13), then one can conclude 7 (x):

nx) =t/ —k)x2—v +m2+k 37)
following the NU-method technic, both values of constant k.
ki=v-m?, k,=v (38)
So, the values of parameter 7 (x) giving by;
M1 () = D2 = m'x (39-a)
My, (x) = —W =—-mx (39-b)

Ty (x) =Vm2 =m (39-¢)
Ty (x) = —Vm'2 = —m’ (39-d)

Substituting the four values of (x) into equation (14) and equation (36-a), we obtain 7(z); where T°,(r) < 0
T,(x) = —2x —2m’x (40)
We have obtained the constants A and A,, from the equations (14) and (16) respectively.
A=v —m?—-m (41)
Ay =-—n(-2-2m) +nn-1) (42)
Comparing equation (41) with equation (42), we get:

l‘:—%+%J1+4{n+\/m2+23}(n+\/m2+2ﬁ+1)} (43)

Now, depending on the upon result we return to use equations (15) and (17) to determine the function ¢(r) and weight
function p(r)
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¢ (x) _—mx
p(x)  1-x2
p(r) {=2x(1+m)+ 2x}
p(r) 1—x2
By integration the above equations we get;
P =1 -x)*F (44)
p(x) =1 —x)™ (45)
Now we can determine the polynomial X, (r) by equation (18) and (45).
X, (1) = By(1—2)™ o[- 2™ (1-x?)"] (46)

And by using H(x) = X,,(x) ¢(x) that are defined by equations (46) and (44) and where

n+m =1
N m r-m
Ho(x) = (-D'B, (1 —x) 72 L [(x? - 1) @7)
By use some relations in associated Legendre polynomials
(=™ _m g -m) .
-m _ A2 2 _ L — (1 \ym: m
pi o (1-x3)77 e (62 = 1) = (-1) S P ()
1 1
e (2 = D= (CDm (- ) S (6 - 1! (48)
Now apply the equation (48) into equation (47);
Ha() =~ By(1 = 277 fem(@ — 2™ S0 (2 — 1) (49)
Where:
= (D)™ (=m)! (50)
+m)!
Where associated Legendre polynomials is giving by equation [13];
So, equation (49) become:
. 2t .
Hy (%) = (=1)" By e 5 P () (51
Where the normalization constant is
2l
= (=" By Com (52)
So H,(x)become H,(x) = Ny, pI" (x).
To find the normalized constant, use the normalized condition f_ll H2(x)dx = 1.
By use associated Legendre polynomials orthogonally [13], we get
2141 (0-m)!
Nim = |75~ (C+m)! (>3)
So, the angular wave function become:
2l+1 (' = m)!
H =
8e) J Ty P
Where associated Legendre polynomials equal;[14]
r-m
(—DrEer-2v+1) P —2v

2

™ () = _ZEZ

P (¥) = (1= x%)2 021\v!(l‘—m‘—2v)!l“(l‘—v+1)x
v=

So, after replacing x = cos 6 the angular wave function equal;
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r-m
[z @-md)r ——  (-1)'T@l-2v+1) P —2v
Hn(x) = 2 (C+m)! sin™ 6 X ZV=0 2UpI(C-m —20)IT (' -v+1) (cos6) (54)

The Azimuthal Wave Function
From equation (8) we can easily determine the azimuthal part equation [15]:

$(p) = =em® (55)

by including the equations (35), (54) and (55), then the total wave function ¥ (, 8, ¢) can be expressed as:

2ze2 2L*3 _2ze?
_@TAn+D

Y(r,6,0) = n {ftnt) (ke z 7 L%L"'l( 2ze? r) 9

r(2L+n+2) 2{n+L+1} (L+n+1)
r-m
2141 (U-m)! . 2 (-1)r(2r'-2v+1) r-m-2vy_1 _—img
\/ 2 (4+m)! sin™" 0 v=0 2Upl(I'—m —2v)IT(L -v+1) (cos 0) Xx/ﬁe (56)

CONCLUSIONS
The total wave function and bound state energy using Hartmann potential are determined explicitly where they show
a great similarity with other studies. The total wave function depends firstly, on associated Laguerre functions in the radial
part, secondly, on the value of cosine in the angular part, and lastly, on the exponential function in the azimuthal part.
The number of states n and quantum numbers [, m are also appeared and established.
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Appendix (I)
d2u(r) JE+ 2" A UG = 0
a2 2T -|ve -
A=0C+1)—-28 (1)
p=r @)

L=%{\/1+4[(k+m)(k+ 23+m2+1)—2ﬁ]—1}

Substation equation (2) into equation (1):
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A=TC+1D)-m?+m? 3)
Let '=k+m
k=0-m

From equation (2), we get:
26 +m? =m?
From equation (3), we get:
A=k2+2km’+m2+k+m + 1 —m?+m?
A= k% +2k\J2B + m2 + /2B + m2 + 2k + /2B + m2 + m?
A =Kk?%+2k\2B + m? + 2\/28 + m? + 2k + m?
To proof L(L + 1) = A, we use Some simple calculations.

LP+L=2
7‘1‘{\/1+4[(k+\/23+m2)(k+\/2ﬁ +m2+1)—2[3]—1}2+%{\/1+4[(k+J2ﬁ +m2)(k+¢2ﬁ+m2+1)—2[3]—1}:;1 “4)

The value that under square root in equation (4):

(k+ V2B +m?) (k+ 2B +m? +1) = k? + 2km + k +m? +m’

Equation (4) become:

1 2 1
Z{J1+4[k2+2km‘+k+m‘2+m‘—2ﬁ]—1} +E{\/1+4[k2+2km‘+k+m‘2+m‘—2ﬁ]—1}=l

After use equation (2), we get:

2
i{\/1+4[k2+2km‘+k+m‘2+m‘—m‘2+m2]—1} +%{\/1+4[k2+2km‘+k+m‘2+m‘—m‘2+m2]—1}=/1 ®)

Substation equation (1) into equation (5), and simple mathematics.

1 2 1
Z{\/l +4[C —m)Z+ 20 —m)m + [ +m2 -1} + E{‘/l 4T —m)Z+ 200 —m)m + T +m2] — 1}
=I'(C+1)-m?+m?

by expand the Quadratic Arc, we get:

1 1 1
2t (P —m)?2+2(0 —m)Y)m' + ' + m?] — E‘/l +4[( —=m)2 +2(0 = m)m' + ' + m2] + 2

1 1

+ 5\/1 +4[(" =m)2 +2(' =mOY)m’ + ' + m?] — 3= FC+1)-m?2+m?
1 1
2t [T -—m)?+2(0 —m)Ym + '+ m?] — i FC+1)-—m?2+m?
C-m+20-mm++m? =0 +1)—-m?+m?
=2ml+m?+2im —-2m2+0+m?> =01+ 1)—m?+m?
P+lr-m?2+m?=0r(C+1) —-m?+m?
FC+1) —m2+m? =00 +1) —m?2+m?

3ACTOCYBAHHS METOAY HIKI®OPOBA-YBAPOBA 10 PIBHSIHHSA HIPEJAIHI'EPA, 3 BUKOPUCTAHHSAM
HOTEHLIAJIY TAPTMAHA
Maxmyna A. Aab-Xasamae?, Aoayapaxman H. Axyp®, Eman K. [lkapagar?®, Omap K. J:xapagar®
“Dizuynuii paxynsmem, Yuicepcumem Myma, Hopdanis
b Tenapmamenm pynoamenmanvnux nayx, xonedsc Ano-Xycon, npuxradnuii ynisepcumem Anv-banka, Hopoanis
@axynomem mamemamuxu, Ynisepcumem Myma, Hopoanis
[ToBHa XBHIIEOBA (DYHKIIIS Ta €HEPTis 3B’S13aHOTO CTaHY AOCITIPKYIOThest MeTotoM Hikidoposa-YBaposa mo pisusuHs llpeninrepa B
ceprIHUX KOOpAMHATaX 3 BUKOpHCTaHHAM moteHiiany [aptmana (HP). HP BBaxkaeThcs HELEHTpaJIbHUM IOTECHIIATIOM, KU B
OCHOBHOMY BU3HAEThCS B IOTEHIiaNax syiepHoro mojst. KokHa XBUIbOBa (DyHKIiSE BU3HAYAETHCS TOJIOBHUM KBAaHTOBHM YHCIIOM 1,
YUCIOM KYTOBOTO MOMEHTY / i MarHiTHUM KBaHTOBMM YMCIOM m. PajianbHy 4yacTHHY XBHIbOBOI (YHKLIl OTpMMaHO uepes
acouifioBanuii oniHoM Jlareppa 3a JOIOMOTOIO NEPETBOPEHHSI KOOPAMHAT X = €OS 6§ JUIsl OTPUMaHHS KyTOBOI XBHJILOBOI (PyHKIII,
sIKa 3aJIKUThH Bil 00EPHEHHX acolliiioBaHUX ToJiHOMIB Jlexxanapa.
KurouoBi cinoBa: pisusnns Llpedinzepa,; memoo Hixighoposa-Yeaposa; nomenyian I apmmana
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The paper discusses three different modes of electromagnetic field generation by an ensemble of oscillators placed at the radiation
wavelength in the one-dimensional case. The excitation of the resonator field is considered, which, as a rule, is determined by the
geometry of the system, with and without taking into account the eigenfields of the emitters. The superradiance regime of the same
ensemble of oscillators is also analyzed. In fact, superradiance is formed due to the emitters' own fields even in the absence of a
resonator. It is noted that the maximum achievable amplitudes of induced fields both in the superradiance regime and in the regime of
excitation of the resonator field are comparable. This makes us think about the role of the self-fields of emitters in electronic devices.
It is shown that in describing the resonator excitation mode, in addition to the resonator field, it is also necessary to take into account
the sum of the natural fields of the emitters in the active zone. Synchronization of emitters leads not only to an increase in the
resonator field, but also, as in the superradiance regime, it significantly increases the amplitude of the sum of the oscillator fields. It is
shown that in the practically interesting case of open systems (dissipative generation modes), taking into account the eigenfields of
the emitters significantly reduces the characteristic time for the development of the generation process and increases the maximum
achievable oscillation amplitude. This account also changes the conditions for achieving the maximum energy flow from the system.
This can change the operating point of the generation process, which is determined by the requirement for the maximum rate of
energy output from the system.

Keywords: Ensemble of oscillators; Resonator field; Sum of oscillators eigenfields; Resonator field excitation mode; Superradiance
excitation mode

PACS: 03.65.Sq

Introduction

Field generation in waveguides and resonators. The traditional description of the process of generating or
amplifying a high-frequency field in waveguides and resonators of electronic devices in a nonlinear mode actually
began with work [1], based on the formalism presented there. A significant increase in interest in describing the
excitation of oscillations by beams of charged particles and oscillators in waveguide systems has caused numerous
publications. The bibliographies of works [2,3] contain material that is very useful for understanding such a description.

The modes with output or loss of energy. The need to take into account absorption, as well as the output of
radiation energy from electronic devices, forced us to consider the so-called dissipative generation modes [4-7]. Such
modes of generation and amplification in such open (for energy output) systems were of practical interest to the creators
of electronic devices. In addition, the analysis of such regimes makes it possible to take into account the effect of
different levels of energy extraction on the generation efficiency.
It was in such devices that it was possible to find operating points that ensure the maximum output of energy from the
system, as was, in particular, presented in [6,7]. The considered problems were solved under conditions when oscillators
(or emitters) in the active zone of waveguides and resonators interacted only with a waveguide or resonator field, the
form of which was determined by the geometry of the system. The induced field of the resonator or waveguide
synchronized the oscillators due to phase change (or the emitters due to bunching), which led to a significant self-
consistent amplification of the field amplitude. Moreover, the interaction of oscillators (or emitters) with each other was
usually neglected, excluding their total field from consideration.
Apparently, at first it was believed that due to the spread of phases emitted by particles and oscillators, the intensity of
their integral radiation would remain insignificant. On the other hand, it was believed that if the radiation of particles
and oscillators is spontaneous, then their total radiation will also remain spontaneous. In other words, this radiation will
be much less than the intensity of the waveguide or resonator field, which is obviously induced field. There was also a
point of view that the field of emitters in a waveguide or resonator would rather quickly be rebuilt into a set of
eigenmodes of waveguides and resonators. It was believed that under these conditions, the self-field of the emitters can
be ignored. The last consideration made sense in the case of a single act of radiation by a particle in a waveguide and
resonator. Although in the continuous mode, even under conditions of partial rearrangement of the eigenfields of the
emitters into waveguide and resonator modes, their total field does not go anywhere and should be taken into account.

At the same time, it was known that the process of phase synchronization of oscillators (or spatial synchronization
of emitters), even in the absence of waveguide and resonator fields, led to the regime of superradiance, with induced
fields [8].
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The superradiance field arises as a total field of initially spontaneously emitting oscillators even in the absence of
a waveguide and a resonator. Obviously, the own field of each oscillator (or emitter) is spontancous. However, under
the influence of the total ensemble field external to each particle, the phase of radiation of this particle can change. If
the amplitude of the external field is large compared to the value of the spontaneous field of a given particle, the phase
of its own radiation changes. This is the nature of phase synchronization of oscillators (and spatial synchronization of
emitters) and the appearance of superradiance (see, for example, [9]).

Recall that the superradiance regime discovered for a compact bunch of particles [10] manifested itself as the
appearance of coherence in the study of most emitters and oscillators. This phenomenon was clearly manifested both in
the quantum case and in the classical case. In distributed systems of electronics, due to rather large distances between
particles, the interaction between them, as a rule, occurs only due to their own electromagnetic fields.

The mechanism of phase synchronization of radiation of an ensemble of classical oscillators was discussed in
[9,11,12]. Let us show that this process of phase synchronization of emitters and oscillators in the volume of the active
zone of the waveguide, in addition to generating waveguide and resonator fields, can also excite superradiance fields
with an intensity comparable to that of the waveguide or resonator field [13, 14].

Accounting for fields of particles. Let us return to the discussion of the processes of excitation and amplification of
oscillations by particles in waveguides and resonators. The development of high-current electronics required taking into
account slowly changing currents and fields of charged particles in the active zone of the waveguide, which was first
pointed out by Ya.B. Fainberg in his work “Plasma electronics”, published in the “Ukrainian journal of physics” in
1978. This was required at first to search for the stability of charged particle beams and systems of oscillators [15].
Later N.I. Karbusev in the early 1980s drew attention to the high-frequency radiation fields of individual emitters and
generators.

The question arose about the role of the radiation of particles in the process of generation and amplification of
oscillations in waveguides and resonators. For even in the absence of a waveguide and a resonator, the ensemble of
these active elements is capable of generating superradiance fields comparable to waveguide and resonator fields [13].
That is, for a correct description of the process of excitation or amplification in such devices, in addition to the
waveguide or resonator field, it is important to take into account these own fields of the particles of the active zone.

The purpose of this work is to compare the fields generated by open systems in the cases of 1) excitation of only
the resonator field, 2) excitation of only the self-radiation fields of active oscillators, that is, the superradiance field, and
3) joint excitation of the resonator field, taking into account the intrinsic fields of oscillators. Let us show that, in
addition to the resonator field, it is necessary to take into account the self-radiation field of oscillators, because it
qualitatively affects all characteristics of the oscillation generation mode.

1. The Excitation of the Fields of Oscillators
We discuss the nature of the excitation of the field with a system of oscillators. Consider an oscillator whose
charge (electron) moves along the OX axis, that is 7 = (x(¢),0, z,) , where x(¢)=i-a-exp{—ia¥+iy}, at the same time
whose speed (electron) dx/dt =a- @, -exp{—iat+iy} is along the OX axis, Rex =a-sin(ayt —y) . The current can be
recorded as J, =—edx/dt=—e-a- @, -exp{—iax +iy}. The equation describing the excitation of the field with the current
of the oscillator

O’E. 19°D, 4rdJ, 4rm . . .
. ——2—2‘=—2—X=C—2-e-a-a{)z-l-exp{—lat+ll//}~§(z—zo), (1)

The dielectric permittivity of the medium in the absence of oscillators is taken as equal to one &, =1. We will look

for a solution for the electric field amplitude in the form E= (E -exp{—iax +ikz},0,0), i.e. E =Eexp{—iax+ikz},

assuming a slow change of the complex amplitude E (¢,z):

L 9% (1,2)

1 9
- — —E_(1,
E (t,z) ot E (82)

=@ (t,z) 0z

<k. 2)

x

Below we consider the excitation of the field of the resonators ensemble, which in our one -dimensional case are
evenly distributed in the active zone at the interval equal to the length of the radiation wave. We will discuss three
generation regimes of fields by the oscillator ensemble.

The first mode of excitation of the resonator field (or waveguide) meets the traditional description of the generation
(or amplification) in electronics devices, when all oscillators (emitters) interact only with the resonator field, which houses
an active zone. The interaction of the oscillators in this case will exclude. That is, we do not take into account the own
fields of emitters in the active zone. The conclusion of the equations describing this process is given in Appendix 1.

The second mode of excitation of the field with the emitters ensemble takes into account only the own fields of
emitters located in the same interval of the active zone, and there is no resonator field in this case. It is not difficult to
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see that this process meets the superradiation regime. By the way, at the same time, a resonator or waveguide in this
case may be completely absent. The withdrawal of equations to describe such a process is considered in Appendix 2.
And the third regime of excitation of oscillations with oscillators takes into account both the resonator
(waveguide) field and the amount of its own fields of particles. It is this case that meets the correct description of the
excitation of oscillations in resonators and waveguides.
In further calculations, the number of oscillators is chosen N = 1000. The initial amplitude of the external field in
expressions (6) and (11) is equal 0.01, accounting for non -linearity (relativism) is determined by a coefficient or= 1.

2. The Excitation of The Resonator Field with The Exclusion of The Interaction of The Oscillators To
Each Other
In the traditional description of generation, all oscillators interact only with the resonator field, in which an active
zone is located. Oscillators do not interact with each other. We use equations in a dimensionless form (see Appendix 1)
that describe this process. The resonator field in this case can be represented in the form of the sum of two waves that
spread in opposite directions
E, . (Z,7)=E, (1)’ +E_(1)e"*™, 3)

wg

Moreover, the components of radiation in different directions can be recorded

OE ! o

9L L oE =LY A e 4
a7 ’ NZ ’ @
9B LoE = LT A e, 5)
oT N< T

At the initial moment we should set their value
E,.(0)=E,, and E (0)=E,_. (6)
Movement equations for oscillators take the form

dA,
dt

i 2
=7-|Aj| A,~E, (Z,7). @)

For this case of excitation of the resonator field, excluding the fields of the oscillators, the field intensity o| E |*
1 d|EV
|E* dr

energy output O | E |* (dashed) are presented in Fig. 1 (a). If you focus on the excitation regime of the resonator field

(continuous line), the reverse time (increment) 7/:[ ] of the process (stroke-dashed), and the rate of

without taking into account its fields of the oscillators, then the most effective output of energy would occur in the area
of about ® = 3 (see also [6]).

3. The Excitation of The Same Oscillators Ensemble
In this section, we take into account only the own fields of oscillators located in the same interval of the active
zone. The resonator field is absent, like the resonator itself. The dimensionless system of equations in this case (see
Appendix 2) takes the following form. For fields are fair the form

1 & ;
Esr (Z,T) = aZAS . g 2PZZ,] , (8)
s=1

And the equations of movement describing the dynamics of the oscillators can be recorded as

dA. o 2

7:7|A1| A/.—E(Z/.,T), (9)
where for a common field the expression is true

E(Z,7)=E,_(Z,7)+E_(Z,7), (10)

Moreover, the second term in (10) is an external field that is usually used to accelerate the process in the form.
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E.(Z,7)=E, ¢ +E, ¢ an

1 d|EV
|E] drt
(strokh- dashed), energy withdrawal © | E|* (dashed) are presented in Fig. 1 (b). The most effective output of energy

For the field intensity o| £ [ (continuous line), the reverse time y:[ j (increment) of the process
max

would be near the values © = 2.5-3, and with an output one and a half times larger than in the case of an excitation only
the resonator field.

0.06 :

006 01 Emax

2
k - _GEmax

0.04 2l gl I ot

0 VU~ ~
0.054=02 T~
By
i 0
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Figure 1. Field intensity o| E [ (continuous line), the reverse time (incremental) of the process ¥ (stroke-dashed), the rate of energy
output © | £ |* (dashed) as function of energy loss @ for cases: (a) of the generation of the resonator field, excluding the oscillator
radiation field, (b) of the supperradiation mode, (c) the generation of the resonator field together with the radiation field of the oscillators.

4. The Excitation of the Resonator Field When Taking into Account
the Interaction of Oscillators to Each Other
Using the entered variables and the expressions obtained in the applications for the fields, you can represent the
system of equations for the excitation of the resonator, and we will additionally take into account the total field of
oscillators. It is clear that thereby it is possible to take into account the direct interaction of the oscillators with each
other. Here you cannot take into account the external initial field (11), the role of which will be assumed by the
resonator field (4)-(5). The equation of motion for oscillators can be written in the form

dA,
dt

o 2
=7|Aj| A,-E(Z,.7). (12)

Here, the resonator field and the total field of radiation of the oscillators are simultaneously taken into account
E(Z,7)=E,(Z,7)+E,  (Z,7), where E _(Z,7) it is described by expressions (3-5), and E _(Z,7) by expression (8).

wg wg
The initial conditions for the fields of the resonator will choose the same (6). The nature of the excitation of the
resonator field, taking into account the own fields of the oscillators, the field intensitye<| E |* (continuous line), the

1 d|E}

\Ef dr

reverse time (increment) of the process 7:( ] (stroke-dashed), the rate of energy output © | E |’

(dashed) are represented in Fig. 1 (c).

E2

max

0.04

0.02

Figure 2. Dependence on the level of energy loss © : (a) - the square of the field amplitude | E[*, (b) - the rate of energy output
d|EJ
|E} dt

excluding the oscillator radiation field (continuous line), the superradiation mode (stroke-dashed), and the generation of the
resonator field together with the radiation field of the oscillators (dashed).

O | E |, (c) - the inverse time (increment) of the process o< [ ] . Here are cases: the generation of the resonator field,
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It can be seen here that joint accounting for the excitation of the resonator field and the oscillator field leads to a
noticeable increase in energy selection, and for large values about © = 5.

5. Comparison of Three Modes

Consider three modes. A solid line on the graphs marks the resonator regime without taking into account the
impact on the process of generating oscillators fields, The superradiation mode is represented by dashed lines on the
graphs, and the strokh- dashed line on the graphs is responsible for the case of excitation of the resonator, taking into
account the influence of the fields of the oscillators.

In the mode of excitation of the resonator, taking into account fields of emitters, the field intensity and output of
energy are the highest. A slightly inferior to him is the superradiation mode. The working points (the rate of energy
output from the system that meets the maximum), are realized for different values © . But the working point, for
resonators, where we taking into account fields of oscillators is shifted in the large values of ® .The characteristic times
of the process near the highest energy output is half as much as for resonator which don't taking into account the of the
own fields of the oscillators.

6. Conclusion

Three different generation modes of the electromagnetic field are discussed for the oscillators ensemble, placed on
the length of the radiation wave. The consideration is carried out for an open system, which is characterized by the
output of energy from the system. The parameter of the degree of openness is a value that is determined by the ratio of
the attenuation to the value of the reverse characteristic time of the process (increment) in the absence of losses. The
following generation modes are considered.

1. The generation of an open resonator, excluding own fields of oscillators - emitters.

2. The superradiation mode - the generation of the field in the open system of the same ensemble of the oscillators
without resonator.

3. The excitation of an open resonator, taking into account the own fields of oscillators emitters.

The superradiation regime, which is of independent interest, demonstrates the nature of the synchronization of
emitters (see Appendix 2). The superradiation, as you know, arises due to its own fields of emitters even in the absence
of a resonator. As a result of the phase synchronization of fixed oscillators, an integral field is formed, which is not
spontaneous, but induced field. It is this field that synchronizes the noticeable part of the emitters. It is important that
the total field intensity of the is exceeds the intensity of the own field of emitter. Although the distributed system does
not allow synchronizing all the oscillators, especially in areas where the total field of the ensemble is small.

Accounting for own radiation of the oscillators significantly reduces the characteristic time of the development of
the generation process in resonators and waveguide, increases the most achievable amplitude of oscillations. At the
same time, the conditions for achieving the maximum energy flow from the system also change. This is able to
significantly shift the work point of the generation process, determined, for example, by the requirement of the
maximum pace of energy output from the system.

In conclusion, the authors express gratitude to V.A. Buts, V.V. Yanovsky and A.V. Kirichok for a constructive
discussion of the results of the work.

Appendix 1. The Field of Resonator
In the resonator (or waveguide), the field can be formed in such a way that the type of field will not depend on the
radiation of individual oscillators. Note that such a field generally speaking should consist of running waves in two
directions

E =E, -exp{—iawt+ikz}+ E_-exp{—iawt—ikz}, (A1)

where the slowly changing complex amplitude of the waves has the form E, = E, |-exp{ig, } .
The interaction of oscillators with these fields can be described by the equation [9,13]

2iw, (%+ 5DJ =—ew’, %Iasdz -exp{iy, Fikz}-6(z-z,), (A2)
)

where added 6, - the decrement of the absorption of the wave in the absence of sources, 4, =a; exp(iy; ) .

The equations of the movement will present in the form

4V ok =B (20 (A3)
dt 1 |vi |2 m v

2
c

where x,(¢)=i-a, -exp{—ia¥ +iy} =id-exp{—iax}, v, =w-a, exp{—iax+iy}=wA exp{-iar}.
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We further assume that the resonator has size b, equal to wavelength (without loss of generality the results are
generalized to the case of several wavelengths), group velocity of radiation ¢, effective decrement of field damping
equals J, =c/b, number of oscillators equal to M =b-n, .

Equation (A2) for slowly varying amplitudes then takes the form
oE,

0 _
5=

2re-w-M 1

1
— > A -exp(Fikz )=2rm-e-w-n,-— Y A -exp(Fikz ). A4
ek by 2 exp(Ekz,) (A4)

The equation of motion (A3) can be represented as

dd. oo e E,(tz;)
i _iwoy o Bk tz) AS
dt 2 ]() 2-0-m (A5)
E, (t,2) = E, -explikz) + E_- exp(—ikz) (A6)

Here E,,(2,z) is the resonator field, the parameter ¢ = 3|A|2 K’ / 4 takes into account the weak dependence of the

relativistic mass of the particle on speed.
Choosing dimensionless variables and parameters

2
A=Alay, k=277, y=w0,/2, V=, 14=""5 yi=7, B=m/m, kb=2zb,
m

2m-v. @
5=%, 0=5/y, E,=0P% g_p/g. a=j—w(kao)2,

e %o
we get an expression for the resonator field an expression

E,(Z7)=E, (7)¢*™ +E_(1)e ™" . a7

where the components corresponding to spreading of radiation in different directions can be written as

JE 1 iz

—+OE, =—> A", Al
o7 TNet (48
JE_ 1 277

——+OE_=—> A", A9
ar T NeE (49

moreover, at the initial moment you should set their values
E.(0)=E,, and E_(0)=E,_. (A10)

Movement equations for oscillators take the form
dA,
dt

i 2
=7-|A‘,| A-E,(2,7). (Al1)
We can get the law of conservation of energy in the form

0 0 &
—+20 J|E. F +|E_[fl=2— AL Al12
(a; j{| LFHIE P aﬁg ;| (A12)

Appendix 2. Description of the Superraiation Mode
Generally speaking, the field excited in the system of oscillators consists of the sum of all fields of individual
oscillators. Consider the superradiation mode when the resonator field or a waveguid field is absent. It is also possible
to determine the total field of radiation of oscillators in the same volume, as presented in Appendix 1. An important
circumstance is the conditions for synchronization of the oscillators. It turns out, as noted, for example, in the work of
Yu.A. Il'inskii, and N.S. Maslova, “Classical analog of superradiance in a system of interacting nonlinear oscillators”
published in 1988, that only when the nonlinearity of oscillators is taken into account in this case, it becomes possible to
ensure phase synchronization of the field and the oscillator (see also [11]).
The field of one oscillator. For the amplitude of the radiation field slowly changing in the space, the equation is
fair
oE

a—:Zeaa)z%~exp{il//+ikz}-5(z—zo):/16(2—20). (A13)
z c
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Chose solution is form of E=C+A-6(z—z,) where 8(z<0)=0, 6(z=0)=1. Since for the wave radiated by
the oscillator the equation D(@,k)=(@’e,—k*)=0, the roots of which k,=*(a,Reg,/c)(1+ilme,/Reg,) =
=*(a, / cg,)(1+i0) , for the wave, which propagates in the direction Z > Z,, the wave number is equal k =%, >0 and

the value of the constant C should be selected equal to zero in order to avoid unlimited growth of the field at infinity.
For a wave which propagates in the direction Z < Z, the wave number is equal k =k, <0 , the value of constant C in

the same reasons should be selected equal —A . The amplitude of the electric field while

E =2reaw,M - ¢ exp{—iwt + iy} [explik,(z —z,) - 0(z — z,) +

(A14)
+exp{—ik(z —z,)-6(z—z,)}

For one particle in such a volume of a single section and the length of the resonator b, M it is numerically equal to
one. The equation of motion for the oscillating electron has the form (A3).
The particle ensemble field. Using these designations, we will write particle ensemble field in the form

ﬂ_i|3Aj o’ A.+i|3Aj0 [

2 J 2 jo =
dt 4c 4c (A15)

2 N ’
_ e M 1 ik(z;-z,) —ik(z;-z,)
St DI GRS )

Let choose dimensionless variables and parameters

2
A=dlay, kz=21Z, y=0,12 R =, 14="" yi=1, B=m/m, kb=27b,
2mv - w-
5=5, 0=6/y, E, =02 p_pip =3 ).
b e 4y,

Let consider the excitation of the field in the resonator, the size of which b, equal to the wavelength (without
losing community, the results are generalized in case of several wavelengths) group radiation speed ¢, and the effective

decrement of the fading of the field is equal & :% . If you take into account radiation from the system (which, due to
the small size of the system, can be considered distributed), then the increment of the process y=%, /6 =7,/©, and
0> y,. It should be noted that in all cases under discussion, due to the selected placement of the ensemble of the

oscillators, the the increment of the regime without energy loss ©=0 is equal y, [13]. One gets the expression for the
superradiation field

N
E, (Z,7)= @LNZAX VR (A16)
=1

moreover, the equation of movement describing the dynamics of the oscillators takes the form

dA. o 2
= A [ A-E(z,.7) (A17)
where for a common field the expression is true
E(Z,7)=E,(Z,7)+E, (Z,7). (A18)

The second term in (A 18) is an external stimulation field that is often necessary to accelerate the process can be
recorded as

E, (Z,7)=E,, """ +E, "™ . (A19)

The nature of the synchronization of the oscillators in this and other regimes is quite obvious [13]. Let return
back to equation (A17), which can be recorded differently

dDA/‘|eXp(iV/J‘ )J
dt

:%a.|Aj|2 |Aj|.exp(il//j)—‘E(Zj,T)‘.exp(l-(o)' (A20)
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Then the equation for the oscillator phase, which follows from (A20), takes the form
dy . .
Tt/_%' |Aj|2 = _{‘E (ZJ’T)‘/|AJ|}' sin(p-v, ). (a2D)

You can pay attention to the fact that the right part of the last equation is quite large ‘E(Z j,z') / A j‘ > 1. This

forces the phase of a separate oscillator to synchronize with the phase of the total field of the ensemble y;, — ¢ . The

2
value 0.5-ic- |A_/| gives regularisation, i.e. a certain spread of phase values.
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PO HEOBXIJHICTbh OBJIKY BJIACHHUX IOJIB BUIIPOMIHIOBAYIB TP OIUACI PEXKUMIB T'EHEPAILII{
Boaoaumup M. Kykain, €sren B. Iloki1oHcbKmit
Xaprxiecvkuil HayionanvHuil ynisepcumem imeni B. H. Kapasina, Xapxkis, Yxpaina

Y poboTi 0OroBOPIOIOTECS TPH Pi3HI PEKHUME T€HEpallii eNeKTPOMATHITHOTO MOl aHCaMOJIeM OCIIJISITOPIB, PO3MILICHUX Ha JOBKUHI
XBWJII BUIIPOMIHIOBAaHHS B OJJHOBUMIPHOMY BHUITQJIKy. PO3rstHYTO 30YyMKEHHS pEe30HATOPHOIO MO, SIKE, SIK IPABHIIO, BH3HAYAETHCS
TEOMETPIEI0 CHUCTEMH, 3 YpaxyBaHHAM Ta 0€3 ypaxyBaHHsS BJIACHMX IIOJIIB BHIIPOMIHIOBAaYiB. AHANI3y€ThCS TAKOX PEKHM
HaJIBUNPOMIHIOBAHHS TaKOro X aHcaMOIo ocuuiaTopiB. DakTHYHO HAIBUIPOMIHIOBAHHS (POPMYETHCS 32 PaXyHOK BJIACHUX MOJIB
BUIIPOMIHIOBa4iB HaBiTh 0€3 pe30HATOpa. 3a3HAa4aeThCsl, [0 MAKCHMMAIbHO MOXIIMBI aMIUTITYyIM iHZyKOBaHHX IOJIB SIK Y PeXHUMI
HaIBUIIPOMIHIOBaHHS, TaK 1 B PeXHMI IeHepallii Mot pe30HaTopa MOXKHA TOPiBHATH. Lle 3MyIlye MojymMaT 1mpo poiib BIACHHUX IOJIB
BUNPOMIHIOBAUiB y MpWJIaJax eJNeKTPOHIKH. Harojomyerscs Ha MOMMJIKOBOCTI TPaJWIIMHOTO MiAXOAy A0 ONHCY 30YMKEHHS
PE30HATOPIB 1 XBHIIEBOIB, ¢ OOJIK CyMH BIACHHX IIOJiB BHIIPOMIHIOBa4iB HE IpoBoAmBCs. [lokazaHo, 10 TPH KOPEKTHOMY OIHCI
pexuMy 30yIDKEHHSI pe30HaTopa, KpiM IOyl pe30HaTopa, HEOoOXiIHO BpaxoBYBaTH TaKOXK CyMy BJIQCHHX IIOJTIB BHIPOMIHIOBAadiB B
aKkTUBHIH 30HI. CHHXpOHI3aIlis BUIIPOMIHIOBAYiB TAKOXK, SIK 1 B PEKUMI HaJBUIIPOMIHIOBaHHS, IPUBOJIUTH /IO ITOSBH 3HAYHOI aMIDTITY I
IHIYKOBaHOTO IOJISI CHCTEMHU OCLMIISITOPIB. [Toka3aHo, 110 B MPAKTUYHO LIKABOMY BHIIAJIKY BIIKPUTHX CHCTEM (IMCHUIIATHBHI PEKUMHU
reHeparii) el o0iK MOMITHO 3MEHIITy€e XapaKTepHUI 4ac pO3BUTKY reHeparlil, 301IbIIye MaKCUMaJIbHO MOYKIIMBY aMIUTITY/Ty KOJINBAHb.
OOk BIIAaCHMX IOJIB BHUIIPOMIHIOBAYiB TaKOXK 3MIHIOE YMOBH IOCSTHEHHSI MaKCHMAJIbHOIO IOTOKY eHeprii i3 cuctemu. Lle 3maTHe
3MiHIOBaTH po0ouy TOUKY IIPOLeCy reHepallii, 110 BU3HAYA€ThCs BAMOTOI0 MAKCHMAJIBHOTO TEMITY BUBEJICHHS SHEpril i3 CUCTEMH.
KuirouoBi clioBa: ancambne ocyunamopie, noie pe3oHAmopa, Cymd IACHUX NOIE GUNPOMIHIOBAYIE, pedcum 30Y0XHCEeHHS NOJsl 6
pe30Hamopi; 30Y0xHCeHHs NOJA 8 PeXHCUMI HAOBUNPOMIHIOBAHHS
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First-principles computations of the electronic structure of AlAs have been carried out using the density functional theory (DFT) within
Local Density Approximation-LDA and Generalized Gradient Approximation - GGA. We utilized the CASTEP's plane wave basis set
implementation for the total energy computation (originally from Cambridge Serial Total Energy Package). We have used to examine
structure parameter in structure of AlAs The electronic structure calculation using the two approximations show that the LDA and the
GGA methods underestimated the band gap while the band gap predicted by the GGA is closer to the experimental result. according to
the electronic structure calculation utilizing the two approximations. The GGA calculation shows a direct band-gap semiconductor of
2.5 eV. The energy band diagram is used to calculate the total and partial densities of AlAs states. Multiple configurations of the ionic
model were calculated for AI"™As™ (0.0<x<1) also performed utilizing free-atom profiles. According to the ionic model,
0.75 electrons would be transferred from the valence 5p state of aluminium to the 3p state of Arsenide.

Keywords: generalized gradient approximation; localized density approximation, Density functional theory, energy band gap, density
of states, lonic model; Compton profiles

PACS:02.70.-c, 71.15.Ap, 71.15.Mb, 17.20.-b, 71.15.Dx , 73.20.At

1. INTRODUCTION

Groups III-V have been the focus of a great deal of research during the past few decades. LEDs, lasers, photo
detectors, integrated circuits, modulators, and filters are only some of the electronic and optoelectronic devices that benefit
from the AlAs compound [1]. These compounds often crystallize into the zincblende (ZB) form under standard
circumstances [2]. AlAs's band structure has only been fully calculated using a SCOPW model by Stukel and Euwema [3].
There is a several theoretical calculations of the electrical structures of AlAs over the past two decades [4-6]. But to our
knowledge, only fitting methods like the tight-binding model [7,8,9] exist. Almost all theoretical analyses of the AlAs
band structure have produced band gaps that differ to variable degrees from the actual values [4-6,10-13]. Density-
functional-theory (DFT) [14,15] was used to conduct first-principles calculations [16], and the open-source software
package Quantum ESPRESSO was used to approximate the exchange-correlation functional using the local density
approximation. Existing theories and experiments are linked to the outcomes achieved. They have come to a satisfactory
accord. The electrical, optical, and structural characteristics of AlAs are the subject of a variety of theoretical
investigations [3,17-25]. However, because to its high hygroscopicity [26-29], very few experimental experiments are
conducted on bulk AlAs. Stukel and Euwema [3] presented energy band calculations for cubic AlAs using a first-
principles plane-wave approach self-consistent orthogonalized. Using the pseudo potential approach in the local density
approximation, Cohen and Froyen [17] investigated the structural properties of various I1I-V semiconductor compounds
and the static, including Aluminum-Arsenide (LDA). Many researchers [19-21] have published AlAs's electrical
characteristics, total energy, effective mass, lattice constants, etc. Using the empirical pseudo potential technique, Joshi
and Sharma [22] reported a few years ago on the theoretical directional Compton profiles of AIP and Aluminum-Arsenide.
(EPM). This paper is structured as follows: in Section 2, presented the paper's theoretical framework and computational
details. Section 3 contains the discussion and results in the final section have been provided a conclusion.

2. METHODOLOGY DETAILS
2.1. Computation Method
The ion-electron interactions in the electronic structure computations have been performed using the non-local ultra
soft pseudo potential developed by Vanderbilt [30]. The computations employed the LDA with the Ceperley Alder
PerdewZunger [31] and the GGA with the Perdew-Burke Ernzerh of Solid [32] exchange correlation potentials. Al 3s? 3p!
and As 4s? 4p3 are studied by pseudo-atom computations. Total energy converges to 0.5E-05 eV/atom, which is
self-consistent. Our estimates' convergence is verified through in-depth exploration of the interplay between the k-point
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and the cut-off energy set mesh on the Monk horst-Pack grid. For the computational expense, we use a Monk horst-Pack
mesh with 16x16%16 k-points for the Brillouin zone sample and a plane wave basis set with an energy cutoff of 800 eV.
In addition, Vanderbilt's [30] non-local ultra soft pseudo potential is used. Kramer's-Kronig transform accuracy and the
energy range that can be accounted for are both sensitive to the number of conduction bands that are included in the
calculation. The electrical structure is investigated here by employing the Cambridge Serial Total Energy Package
(CASTEP) [33,34], which takes into account not only the occupied bands but also the 16 unoccupied ones.

2.2. Ionic model
The free atom profiles-FA of Aluminum and Arsenide, the data were taken from a table Biggs [35], were used to
produce the theoretical Compton profiles of Aluminum-Arsenide for various ionic configurations. We were able to
identify the valence profiles of a wide variety of AI"™* As™ (x ranges from 0 to 1) combinations by transferring an electron
from Al’s 3p or 3s shell into As’s 4p shell. The valence profiles were combined to the core contributions to generate the
entire profiles [36], which were then normalized to (19.966¢) in the range of 0 to 7 a.u. in order to give a direct comparison
with other studied in the same experimental data [37].

3. RESULTS AND DISCUSSION
3.1. Electronic properties
Herein, density functional theory (using LDA and GGA) was used to examine the electrical characteristics of the
binary compound AlAs in the zinc mix structure. Researchers have found that AlAs exhibits a direct band gap (G-G). You

can see the outcomes in Fig. 1 (a and b).
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Figure 1. Band gap structure of AlAs applying (a) LDA and (b) GGA approximation

The band gap values generated by GGA are more in line with the known experimental results than the LDA values.
The LDA is known to consistently understate the energy gap [38]. The GGA technique can provide a more stable band
structure because it is based on potential optimization. Band gap values computed using the GGA approach fare far better
in comparison to experiment than those produced using the LDA method. Our recent calculations indicate that the GGA
approximation performs a decent job of characterizing the band features, and that the GGA results may be compared to
those produced using more expensive approaches, such as GW and hybrid functional for band gaps. It can be used to
simulate the electronic characteristics of semiconductors. It has a direct band gap of 1.38 eV (LDA) and 1.415 eV (GGA),
with the valence and conduction band minimums both located at the G point. The measured findings are roughly in
agreement with our calculated band gap size [39]. Using the data shown in Fig. 1, we can see that the Fermi energy of
aluminum arsenide (AlAs) is 0.699eV (LDA) and 0.689eV (GGA), and that the G-point symmetry point is where the
valence bad-VB is at its maximum and the conduction band-CB is at its minimum. As the valence band maximum and
conduction band minimum are positioned on distinct symmetry points, AlAs is a direct band gap semiconductor with an
energy gap value of 1.38¢V (LDA) and 1.414 eV. The Al 3p-like and 3s-like electrons and the As 4p-like electrons are
responsible for the 3 bands found below the Fermi level. Because of the presence of Al 3p-like states and as 4p-like ones,
the conduction bands-CB above the Fermi level are empty. The theoretical values for Aluminum-Arsenide [40] correspond
with the calculated energy gaps. The higher ionic nature of AlAs causes it to exhibit a wider optical band gap and a higher
rate of charge transfer. These similarities in structure also explain why it exhibits metallic and covalent characteristics.
AlAs is commonly used in applications that need higher temperature operation due to its broad band gap, which pointing
to the ability of Aluminum-Arsenide for higher photon energy in reflectivity measurements. As a result of their direct
band gap and large band gap, they are a prospective option for use in semiconductor technology. Because of this, it is also
used as an active material in the production of LEDs and other optoelectronic devices. Applications in the technology of
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higher power and higher frequency electronic devices in the short wave length region have also gained traction.
Light-emitting diodes, blue and ultraviolet lasers, photo detectors, optical pumping devices, and hetero structures all rely
on AlAs as a fundamental material [41,42].

3.2. Density of State
According to the Density of State Diagram for AlAs, the 4p states of As and 3p states of Al are responsible for the
small peaks in Fig. 2(a and b) above its Fermi energy. The p-like and s-like electrons of as are what give rise to the longer
peaks near the Fermi energy. The third zone is composed of the top (2) valence bands, which are mostly p-like. The anion
state, which is comparable to that of the alkali halides, displays both the density of states and the band structure [43,44].
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Figure 2. The total density of states of compounds binary AlAs using the LDA and GGA approaches

3.3. Charge Transfer
Particularly, Figure (3) illustrates. The current study uses theoretical approaches as opposed to earlier research,
which relied on experimental valence Compton profiles of the elemental solids [37].
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Figure 3. Comparison of the theoretical and experimental Compton profiles of AlAs.
The measuring of the differences between various ionic configurations [37].

We have also included free atom valence profiles in the current charge transfer analysis. The 4s 4p states of As and
the 3s 3p states of Al are included in these profiles. In the inset, we see the matching difference profiles (convoluted
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ionic - experiment) shown. Importantly, it is necessary to convolute the ionic profiles with the resolution function of the
instrument and to normalize them to the free atom area, which is equal to 19.967 electrons. for 0 to 7 a.u. before a
comparison of ionic values with experimental data can be made [37]. From the inset, it is clear that the effect of changing
charges on As and Al is not noticeable until the charge reaches 1.5 au. All ionic configurations behave identically and
overlap at distances greater than 1.5 a.u. We have calculated y? as follows, which allows us to test the global concordance
of all ionic configurations with the experiment:

2

2 _ V7 A (pz)
X" = Zp,=o | o(p)

)

where o(p,) represents a random error in the experiment [37]. According to X2 tests, the best agreement among the ionic
structures is found in the AI3°As~3state.

According to the basic ionic model, the charge in this molecule must flow from Aluminum to Arsenide. The same
explanations are also given in the ref [36]. However, this process requires three electrons to be transferred from Al3s23p?
state to As4s?4p3state, indicating that AlAs bonds primarily through ionic interactions. There is a clear limitation of the
ionic model in the low momentum area, where the discrepancies between the convoluted ionic and experimental profiles
are quite large. It is worth noting that the ionic model's predicted charge transfer is greater than the value derived by a
different technique [37].

4. CONCLUSIONS

The present research summarizes the results of a density functional theory (DFT) analysis of electronic AlAs
Compound in the LDA and GGA approximations. Following is a brief synopsis of the key findings: The direct gap at G
is the only exception; otherwise, our calculated band gaps agree quite well with the experimental findings. The intrinsic
property of LDA pseudo potentials means that the estimated band gap values are smaller than the experimental values.
The reason for this is the reduced complexity of the exchange correlation functional. The estimated electronic band
structure reveals that AlAs is a Semiconductors with a direct band gap of 1.38 eV (LDA) and 1.414 eV (GGA),
respectively. When compared to other theoretical calculations obtained, this shows a significant improvement.
Semiconductors have conducting properties, as indicated by the fact that the DOS energy level within them reveals a
particularly high situation of electron occupation and that the DOS seen near the Fermi level for semiconductors is zero.
For the spherically averaged electron momentum density (EMD), there is good agreement between the measured and
estimated values. Calculations using the ionic model for a variety of (AlI'™) (As™) (x varies from 0 to 1), combinations
result in a 0.75 electron transfer from the 3s? 3p' Aluminum valence state to the 4s> 4p>Arsenide valence state.
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OCHOBHI pO3paxyHKH eJISKTPUYHHUX XapakTepucTUK AlAs Oymu poBesieHi 3 BUKOPUCTaHHAM Teopii ¢pyHkuioHany mitsHocTi (DFT) i
nokaseHOl miinmbHOCTI (LDA), meroniB (DFT) i y3aranbHenoi rpanientHoi anpokcumarii (GGA). Mu BUKOpHCTanu peaiizamito
6a3oBoro Habopy rurockux xBuib CASTEP st obuucinenns 3aranbHoi eneprii (cnouarky 3 Cambridge Serial Total Energy Package).
Paninre My IUBHIINCS HAa CTPYKTypHHUil mapamerp cTpykTypu AlAs. Illupuna 3a6oponenoi 30HU Oyna mepeoliHeHa 3a JOIOMOTOI0
y3arajibHEHOI TpafgieHTHOI anpokcuMaiii Ta meronis LDA, xouya muprHaa 3a00poHEHO1 30HH, nependadena GGA, Oinbie Biamosigae
€KCTIepIMEHTAILHUM BUCHOBKAM, 3T1IHO 3 PO3PAaXyHKOM €IEeKTPOHHOI CTPYKTYPH 3 BUKOPHCTAHHSIM JBOX HAONIDKEHb. 3a JOMOMOTOIO0
GGA po3paxyHKy BUSBJICHO HalliBIPOBITHUK i3 ITUPHHOIO 3a00poHeH0i 300U 2,5 eB. EnepreTnuna 30HHa aiarpama Oyina BUKOPHCTaHa
JUIsL PO3PaxyHKy IIOBHOI Ta 4acTKOBOi rycTuHH crtaHiB AlAs. Byno po3paxoBaHo Kijbka KoHGirypauiii ioHHoi moxmemi. AI™*As™
(0.0<x<1) Tako)X BUKOHYIOTbCSI 3 BUKOPUCTAHHAM IpOoQisiB BUIbHUX aTtoMiB. BiamosigHo 1o ioHHOT Mozerni, 0,75 enekrpoHa Oyne
HEPEeHECEHO 3 BAJICHTHOTO Sp-CTaHy alIOMiHiI0 B 3p-CTaH apceHiny.
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Nuclear structure of 2%2?Ne isotopes has been studied via the shell model with Skyrme-Hartree-Fock calculations. In particular, the
transitions to the low-lying positive and negative parity excited states have been investigated within three shell model spaces; sd for
positive parity states, spsdpf large-basis (no-core), and zbme model spaces for negative parity states. Excitation energies, reduced
transition probabilities, and elastic and inelastic form factors were estimated and compared to the available experimental data. Skyrme
interaction was used to generate a one-body potential in the Hartree-Fock calculations for each selected excited state, which is then
used to calculate the single-particle matrix elements. Skyrme interaction was used to calculate the radial wave functions of the single-
particle matrix elements, from which a one-body potential in Hartree-Fock theory with SLy4 parametrization can be generated.
Furthermore, we have explored the interplays among neutron and proton density profiles in two dimensions, along with the
deformations of 2%2?Ne using Hartree-Fock plus BCS calculations.

Keywords: Sd model space; negative parity state; elastic and inelastic form factor; density distribution

PACS: 21.60.—n, 21.60.Cs, 21.10.—k

I. INTRODUCTION

For a microscopic description of the nucleus, different nuclear models have been utilized [1]. The most efficient one
is the Shell Model (SM) [2], based on the idea of an independent nucleon freely orbiting in a spherically symmetrical core
potential generated by all the other nucleons within the nucleus. In actual SM calculations, nuclear states are linear
combinations of states rather than pure states [3]. Always, SM computations are performed in a configuration space with
a limited number of single-particle states outside of an inert core, which is typically a doubly-magical nucleus. As a result
of this truncation, the residual interactions must be regarded as effective interactions, and choosing the proper N-N
interaction is not simple [4, 5]. The ground states of nuclei are created when nucleons fill shells to the Fermi level. Fermi’s
level is the same for protons and neutrons in stable nuclei, but the Coulomb repulsion between protons [6] explains why
the line of stability and the N = Z line on the chart of the nuclides do not correspond for heavier nuclei. The laws of
quantum mechanics govern the location and characteristics of the nucleus' discrete energy levels, just like they do for the
atom. The positions of excited states vary from nucleus to nucleus. Excitation energy (Ex) is influenced by each nucleus's
internal structure. Quantum numbers denote each excited state's angular momentum, parity, and isospin, in addition to its
electromagnetic and strong properties. Positive-parity spectra can be generated by considering only the /ds;», 25, and
1ds; orbits in the sd-shell configuration space. Any realistic negative parity calculation must account for both 1p and
2p-Ifactive shells. In the absence of such theoretical work, approaches to comprehending the structure of negative-parity
states typically rely on more generalized descriptions [7]. In a system of identical Fermions, the Pauli exclusion principle
dictates that the properties of a nucleus with a given number of protons and neutrons are defined by the filling of the
lowest energy single-particle levels (the nucleons in this case). The Pauli Exclusion Principle states that a particular set
of quantum numbers can only be occupied by a single proton or neutron. The average nuclear potential is determined by
the shape of the nuclear density distribution and the attractive short-range nucleon-nucleon interaction [8].

I1I. THEORETICAL FRAMEWORK
(a) Shell model calculations

The reduced matrix elements of the electron scattering X (ﬂ,)t operator between the final f'and initial i states can
be expressed as the sum of the one-body density matrix (OBDM) times the reduced single-particle matrix elements [9];
(F1£), i)=Y OBDM(fik b, 2) (K, | X (A), 1 K,) )
kakb

The OBDM of multipolarity (4 ) can be expressed in term of the second quantization notation as;

)
2
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where the single-partical state (k), and ¢ -1/2 and -1/2 for proton and neutron, respectively and i and f contain all the
quantum numbers needed to separate the states.
M1 operator is used to define the nuclear magnetic dipole moment as [10]

S

where the nuclear magneton uy = % =0.1051 efm. While, in terms of the E2 operator, the electric quadrupole moment
1

i ity 3)

is defined as
J, 2 J
0= 16”[_% . Jf] (rJoE2), [i)e, @

where the initial and final nuclear states |J> contain all the quantum numbers necessary to differentiate the nuclear
states.
The reduced of transition probability given as [11].

QeA+DIT

_ L >
BOX)= [z 7 } | F(XA,K)]| )

where k= Ex/hc, B(EA) is in unit of €’fin®* and B(M)) is in the unit of uy? fin?2.

With the realization that the energy functional could be written as a zero-range expansion, the Skyrme interaction
was developed for nuclear structure computations, resulting in a straightforward derivation of the Hartree-Fock (HF)
equations in which exchange terms have the same mathematical structure as direct terms. This approach decreases
significantly the number of single-particle state integrations necessary to solve the equations. The Skyrme energy (Esky)
reflects the strong force in the particle-hole channel in coordinate space and consists of central, spin-orbit, and tensor
contributions [6]. Central potential is represented by Skyrme potential. It is a one-body potential as a mean-field
potential.It is designed to approach the realistic nucleon—nucleon forces by providing the average field owing to all of the
nucleons constituting the nucleus. VSky equals the combination of two and three bodily components. [12] as:

Vo =D V2 + D VP (6)

i<j i<j<k

The two-body part is given by:
50 ; ! N -
Vs(lgy)(h]): ty(1+x,F5)0, +51(1+x1Pa)[k 2512+§12k2}
Saire 7B s (R+R) o Tre (R L EANOT
+ t,(1+x, P )k'0,k +€(1+x3P0)p o Oy + IWy k'8,,(6, +6,)xk o
t, Z TN R TN O Z ZE TR 2 Ty E TN xRN
+2([3(61 ) (6, K)=(61-6,)k7 |6, +8,,[3(61-K) (6, £)= (6, - 6)k* |
+1[ 361 K)35(8, k)= (6, 6,)K 5,k |

where &, =8 (7 —7 ), The k and k’ operators represent the relative wave vectors of two nucleons acting to the right and

left, respectively (i.e., complex conjugate wave functions with coordinate "), They possess the shape;

R=L(9,-9,) and K'=-2-(¥,-V,) ®)
2i 2i
Also
~ 1 A
P, :E(1+0'1 55) ©)

Electron scattering form factor between final and initial nuclear shell model states, including angular momentum A and
momentum transfer ¢, is given by [13].

‘Fl(q)\ [ jm )2()<f

where Jrand J; are the total angular momentum 4 of final and initial state, F, (¢) is the correction (center- of-mass) and
F(q) is the finite size of the nucleon, with y involving the transverse (7) and longitudinal (C) form factors. The nuclear

ﬂl‘ (||J

>ch(q)F . (@) (10)
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structure enters into the electron scattering through the longitudinal F¢ form factor and the transverse F” form factors (F*
and FM) are the electric and magnetic transverse form factor, respectively). The total longitudinal and transverse form
factors for electron scattering are given by:

) =Y | E @ (1
J20
77 (g)f = UFA @f +|r@f | (12
These form factors are functions of the momentum tra:lsfer q only.
2
7 @f mK alpg] ) (13)
el = el (14)
e s

The related to the electromagnetic transition operators as
(M7, T;. T}")

MG (@)= [drj(ary;, pr) (16)
13 <q>——jd3 VX jalan¥hn b )+ [ dr{ @ty b (17)
17 (@)= [ @r{jatanrtn S o)+ [ @ r{Vx jatargy, | (18)

where p(r), J(r),and f(r), are the nuclear charge, the magnetization current density operators is j, (¢r), Bessel
function of order 4, Y, is the spherical harmonic. The total form factor is equal to the addition of the longitudinal and

transverse relations:

|F @) =|Ff . 10 [ +tan’(Z )j\Fi (¢./i (19)

(b) Hartree-Fock plus BCS calculations
The self-consistent mean field based on HF plus BCS calculations are designed to describe the structure of nuclei
and study the evolution shapes, using the Skyrme forces performed to study the transitional in density shape where the
pairing correlation have been taken into account. HF method is probably the best method for anticipating the total binding
energies and single particle energies of closed shell nuclei [14]. Also SHF is a useful tool because this force is central and
has zero-range interactions [15]. Nuclei is a quantum many-body system exhibiting the quadrupole collectivity associated
with the shape of the mean field. The collective degree of freedom is associated with the measure of the operator ¢ .

From these single-particle wave functions and fractional occupation amplitudes, a mean-field theory can be
built v, i.c., [16]

vy vy, =1,..,Q} (20)

where Q denotes the size of the active single particle space.
The formula for the resulting BCS many-body state is [16].

10) =T T (e +vadiaz ) 0) @1

a>0
Where |0> is the particle-vacuum state, is the Fermion production operator @, in state ¥, , and is the time-reversed
partner to state ¢ . The local density of nucleons is defined as [16]

(7= 2|, (os)f 22)

aeq s

The local nucleon density is defined as [16]
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=SS 2w () (23)

aeq s
The total energy consists of
Etot = T+ESkynne +ECoulomb +Epazr E cm (24)
& a2 3 3
Pp 3e" (33 4/3
E avdV' ———————[dV —| — 25
e S Ls ) 03
where Ecuoms is the Coulomb energy
1
E .=— Y V. ‘5‘ — (26)
air air,
P 4 qe{p.n} P q Py , pair
the pairing energy is
fq(?)z T Xwyu, U, Wg (F.s)y, (7.s) 27
aeqs

where dV represents the volume element in whole three-dimensional space and is the fundamental charge e. with
€*=1.43989 MeV.fm, and ¢, 1s the pairing density, w, is a soft pairing space cut-off. The variables s € +1 represent the

spinor component of the wave functions.

The pairing energy includes the parameter po .- that controls the equilibrium between volume and surface pairing.
Deformation of the nucleus is defined as the departure from spherical symmetry about the center of mass (c.m), which is
quantified by the electric quadrupole moment. Hence, the most significant moments are center-of-mass moments [16]

[dVFp,, . (F)
szype = % (28)
14V Pyype (7)
In terms of the spherical quadrupole moments, the anisotropic combinations can be quantified
Oom,type =1 av Yy, p lype( Rtype) (29)
the quadrupole deformation parameter
4z Q0 1/3
=3 e s R=Ry 4 , Ry=121fm 30)

III. RESULTS AND DISCUSSION

In this study, the OBDM elements for low-lying positive parity J* states were calculated using the sd-shell model
space. For negative parity /™~ states, the spsdpf no core with (0, 1) ho restriction and the zbme shell model spaces have
been employed. Using the NuShellX@MSU code [17], all calculations were performed. As we mentioned previously,
the Skyrme interaction was used to calculate the radial wave functions of the single-particle matrix elements, from which
a one-body potential in HF theory with SLy4, parametrization can be generated in addition to the harmonic oscillator
(HO) and Wood-Saxson potentials. For 2%*?Ne isotopes, using USDC [18] two-body effective interaction in the
calculation of the OBDM and SLy4 parameterization yields root mean square (rms) charge radii of 2.954 and 2.9525 fmn,
which are in good agreement with the experimental values 3.005 and 2.9525 fm [19]. The calculated binding energies are
150.15 and 168.84 MeV, which are in reasonable agreement with the experimental values of
160.64 and 177.76 MeV [20]. The nuclear magnetic dipole moment is (1.076 and 0.780) nm, in good agreement with
experimental values of +1.08 and +0.65 nm [19], and the electric quadrupole moment (Q2) is -14.31, and -14.03 &°.fn?,
the experimental -23(3), -19(4) €°.fm?[19]. All these results together match the experimental value.

Also, we have used the code SkyAx [16] is a highly optimized two-dimensional HF+ Bardeen-Cooper-Schrieffer
(BCS) code is using for computing ground states and deformation energy surfaces for axially symmetric deformed nuclei.
The calculated results will be discussed in three sections. The first will focus on the Excitation Energies and reduce
transition probability, the second on electroexcitation Form Factor, and the third on structure densities in two dimensions
(Contour Lines), which will be given.

1. Excitation Energies and reduce transition probability
The excitation energies and reduced transition probabilities for low-lying positive and negative parity states in 2>?’Ne
isotopes are calculated and tabulated in Table 1 and compared with the corresponding experimental data. The OBDM
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elements for positive parity states were calculated using sd MS with the last updated two-body effective interactions
USDE [21] and USDC [18]. In contrast, for negative ones, we have used the spsdpf (no core with one ho restriction) and
zbme model spaces with WBP and REWILE effective interactions, respectively.

The majority of estimated excitation energies in all model spaces closely match experimental data. [19], except for
a few levels. Those levels with deviations exceeding 1.5 MeV include 2% at 7.833 MeV for °Ne and 43 at 6.345 MeV
for 2?Ne. The negative-parity energy levels are accurately predicted using zbme MS. However, for spsdpf MS, the
excitation energy state 17 at 7.119 MeV is overestimated by the experimental data. The coupling between the states, such
as the Ip;,» holes coupled to the /ds» neutron (1p-14), may account for these discrepancies. The additional pairing
correlation and a change in the proton—neutron interaction, which results in a more considerable quadrupole deformation
energy, reduce the energy of the 1p—1h state [8]. Fig.1 illustrates the extent of convergence between theoretical
calculations and experimental data.

The calculated reduced transition probabilities B(EL) for the low-lying positive and negative parity states in 2’Ne
and 2’Ne isotopes are presented in Table 2. The discrepancies with experimental data regarding the energy of transitions
from these states might be due to the possible admixture of states involving neutron and proton excitations. From a general
point of view, the B(EL) values for the transitions of low excitation energies agree reasonably well with experimental
data [20,22-24]. The B(E2) transition rates are slightly larger than the experimental data except for 2T, where the
agreement is quite good for 23 in ??Ne using the USDE interaction. The slight difference between the experimental data
and the theory could be because the quadrupole vibration was not taken into account. Regarding B(E3) and B(E1)
transition probabilities in 22Ne, the calculated results are in poor agreement with the experimental results.

Table 1. Excitation energies in MeV for a different transition to excited states using two-body interactions USDE, USDC, WBP, and
REWILE. The experimental data taken from Ref. [19]

Model Space
Nucleus ™ E,(Exp.) sd spsdpf zbme
USDE USDC WBP REWILE
20Ne 27 1.633(15) 1.736 1.735 --- ---
27 7.421(12) 7.548 7.532 --- ---
2% 7.833(15) 9.598 9.992 --- ---
4f 4.247(11) 4.192 4.146 --- ---
47 9.031(7) 9.974 9.956 --- ---
37 5.787(26) 7.119 6.099
17 5.621(17) --- --- 5.448 5.436
2Ne 27 1.274(7) 1.350 1.345 --- -
23 4.456(9) 4.301 4.321 --- -
2% 5.363(11) 5.160 5.130 --- ---
4f 3.357(5) 3.370 3.335 --- ---
47 6.345(10) 5.380 5.404 --- ---
31 5.910(9) --- --- 5.372 5.386
17 6.689(11) --- --- 6.671 5.720
12 I T ] T . . T I T I T 8 T I T I T I T I T I T I T
| (a) Theoretical exitation energy, 2’Ne | -(b) Theoretical exitation energy, 22Ne 4
L 1; -
10 v W — 7 4%
[ | L . 4
% “ 2l o a7
S 8 | 7 = i A ¥ ]
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Figure 1. Theoretical excitation energies in MeV states vs. experimental for the different transition to low-lying excited states using
USDE, WBP, and REWILE two-body effective interactions. The experimental data are taken from Ref. [19].
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Table 2. The reduced transition probabilities B(EL) in €*fm?" for the different transition to excited states using two-body interactions
USDE, USDC, WBP, and REWILE. The experimental data taken from Ref. [20, 22-24]

Nucleus | E,(Exp.) B (EL)Exp USDE B(EL)Theo. USDC
20Ne 2+ 1.633(15) 340(30) 462 247.1
2% 7.421(12) 0.13(0.03) 0.185 0.112
2% 7.833(15) 0.83(0.13) 2.901 2.474
4% 4.247(11) 0.6257E+05 0.6408E+05
4% 9.031(7) --- 0.3418E+04 0.3548E+04
WBP REWILE
37 5.787(26) 1763 2172 1528
17 5.621(17) --- 0.187E-03 0.252E-07
USDE USDC
2Ne 2F 1.274(7) 271(36) 384 393
2% 4.456(9) 13(2) 31.1 29.5
2% 5.363(11) 3.2(1.5) 3.802 2.48
47 3.357(5) 17000(4000) 20500 21930
47 6.345(10) --- 7076 6904
WBP REWILE
37 5.910(9) 870(250) 407.7 1278
17 6.689(11) 0.08(0.04) 0.914 E-05 0.349 E-03

2. Electroexcitation form factor
The nuclear structure can only enter the cross-section through longitudinal (FC), transverse (FE), and magnetic
(FM). These form factors are functions of the momentum transfer g only. The FC and FT form factors correspond to fields
parallel and perpendicular to the direction of momentum transfer, respectively [25]. [Fr(q)?, is influenced by both
magnetic and electric currents, whereas [FL(q)[? is caused solely by the electric Coulomb field.

A. Elastic electron scattering form factor (J™ = 0%1)

Fig. 2 (a) and (b) depicts the calculated elastic longitudinal CO electroexcitation form factors for the ground state
(GS) of 222Ne isotopes in the sd-shell MS wave functions employing SLy4, HO, and WS parameterization compared
with experimental data from Ref. [22,26]. Observable agreement exists in the momentum transfer region of ¢ (0-1.3) fin™!,
based on experimental data.

101 ET (| )Iz()-}\ll (|)+£O |1v1| \}) g 101 E LA N B S B N B B B ?
- (a e, e 3 - 2Ne 0 3
10° I 4 10° i () Ne, 0" (0 MeV) .
10" . 10" F E
10° E 10° E
< 10°k I oswk ]
v 10" F < < 10" F .
10° £ E 107 f— s E
10-6 é —— Ws2 - 10-6 é; \l\,l\?lsszson Model E:
7 F 00O Exp 7 F ooo Helm Model J
107 £ 107 E '
10'8 B [ B 10'8 i A IR NN T AT N R B ]
0O 05 1 15 2 25 3 0O 05 1 15 2 25 3

q(fm) q(fm?)

Figure 2. Theoretical longitudinal CO form factors (a) for ?’Ne isotope 0%, (0 MeV) (b) for 2Ne isotope 07, (0 MeV) using SLy4
parameterization, HO and WS compared with experimental data taken from Ref [22, 23]
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B. Inelastic scattering form factor

points.

1. Positive parity states

The calculated inelastic longitudinal C2 electroexcition form factors of transition at positive parity states 2* in 2’Ne
isotope are shown in Fig. 3; (a) 27(1.633 MeV), (b) 23(7.422 MeV), and (¢) 23(7.833 MeV), and for 2*Ne isotope Fig.4
(a) 21 (1.274 MeV), (b) 23(4.456 MeV), and (c) 2%(5.363 MeV). Inspection of these figures reveals that the longitudinal
form factors are all dominated by the electric quadrupole transition C2 components and are in reasonable agreement with
available experimental data [22,23] using all the single particle potentials. Although we have not been changing
parameters, they were altered to accommodate the experimental electron scattering data. The WS potential agrees
satisfactorily with experimental data, except 23, at (7.422MeV) higher than experimental data at all momentum transfer
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Figure 3. longitudinal C2 form factor for 2’Ne using SLy4, HO, and WS parametrizations vs with the experimental value taken
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Figure 4. longitudinal C2 form factor for ?Ne calculate by SLy4, HO, and WS parametrizations vs the experimental data taken
from Ref. [22,23].

Fig. 5 (a) and (b) show the calculated inelastic longitudinal C4 electroexcitation form factor of the transition to the
4" state in 2°Ne at (4.2477MeV) and in ’Ne at (3.357 MeV). It is obvious that the longitudinal form factor is dominated
by electric hexa transition C4 components and in reasonable agreement with experimental data in light of the fact that
parameters were not changed to fit the experimental electron scattering data [23,24].

2. Negative parity states
Based on the results obtained in showing the sensitivity of the effect of changing the single particle potentials. The
longitudinal form factors were calculated, considering the effect of the two-particle interactions in improving the
convergence with the practical values. Fig. 6 shows the calculated total form factors for the transition to the negative-
parity statels, (5.787 MeV) and 33, (5.624 MeV) for °Ne isotope compared with experimental data [23], which refer to
the total sum of (17 ,37) states together. The WBP interaction predicts a rapid increase in low-lying C3 concentration.



146
EEJP. 2 (2023) Omar A. Alswaidawi, Ali A. Alzubadi

While C1 form factor result under the experimental data. On the contrary, the REWILE result is in reasonable agreement
with experimental results for the C3 form factor, in contrast to the C1 result, which was based on experimental data.
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Figure 5. Theoretical longitudinal C4 form factor for 2’Ne and ??Ne isotope, using SLy4 parameterization in comparison with
experimental data taken from Ref. [23, 24].
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Figure 6. Total form factor for the transition "11(5.578) and “31(5.621MeV) using SLy4 parameterization in comparison with
experimental data taken from Ref [26]

Fig. 7 (a), and (b) show the calculated longitudinal C1, C3 form factors in ?Ne isotope for the transitions 17,
(6.689 MeV) and 37, (5.910 MeV) states. The WBP prediction agrees qualitatively with experimental data in all
momentum transfer regions of these data. Also, it can be observed that the REWILE prediction for the longitudinal C1
form factors under estimate the experimental result. The longitudinal C1 experimental data reveals an additional
maximum form factor. The theoretical C1 contribution does not include this maximum. From the our previous calculates
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we noted that WBP is the best in approximation with experimental data, thus means the contribution valance nucleon in

1p3,» state is accountable for the substantial C1, C3 strength.
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Figure 7. Theoretical longitudinal C1 and C3 form factor (a) forly, 6.689 MeV. (b) For 37, 5.910 MeV using SLy4

parameterization in comparison with experimental data taken from Ref. [23]

3. The Quadrupole Deformation using BCS Calculation

Fig. 8 and 9 shows the potential energy curve of 2% 22Ne isotopes (on the left) as a function of the quadrupole
deformation parameter 2. The corresponding neutron and proton structure densities are also displayed (on the right).
Following the color code, the red and blue colors correspond to the high density (~0.08 fm™) and low density (~0.02 fm),
respectively. The two local minima in Fig. 8 are predicted as (a) f,=-0.154 and (b) 5,=0.406. *°Ne have a stable quadrupole
deformation where the high neutron and proton density distribution is in the center for the two regions (a) and (b), as expected
(**Ne have the same numbers of protons and neutrons), where there is no effect of n-p pairing. For the ’Ne isotope, the two
local minima in Fig. 9 are predicted as (a) ,=-0.204 and (b) $,=0.404. We can notice that the stability decreases with
decreasing central proton density because of the two neutrons added to the last state, which increases the effect of n-p pairing.
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Figure 8. Left, the potential energy curve of 2’Ne as a function of the quadrupole deformation parameter. The neutron and proton
structure densities corresponding to the two local minima, marked a, and b are shown in the right panel
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Figure 9. Left, the potential energy curve of 2Ne as a function of the quadrupole deformation parameter. The neutron and proton
structure densities corresponding to the two local minima, marked a, and b are shown in the right panel

IV. CONCLUSION

In this study, the nuclear structure of 2>2>Ne isotopes was investigated in the framework of the shell model and
BCS calculation with Skyrme parametrization. In this context, excitation energies and the corresponding reduced
transition probabilities, the elastic and inelastic electroexcitation form factors for positive and negative parity states in the
momentum-transfer range 0.0 <gq< 3.0 fm"!, and quadrupole deformation parameter are discussed. Additionally, the work
inspects the effect of three single-particle potentials; in particular, HO, WS and SLy4 parameterizations. It can be
concluded that, on the whole, the impression of using different model spaces has fairly well reproduced the experimental
data for positive and negative parity states and is not sensitive for changing the single particle potentials rather than the
two-body effective interactions. The most important limitation lies in the fact that the strong collective feature of the
nuclei in this mass region and internally consistent interaction formulation.
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®OPM-®AKTOPU EJEKTPO3BYJIKEHHS TA JE®@OPMALIS I30TOIIB *2NE HA OCHOBI MOJEJIL
OBOJIOHKH TA PO3PAXYHKIB HARTREE-FOCK PLUS BCS
Omap A. Ancsaiinasi, Aui A. Anb3ybani
Daxynomem ¢hizuxu, Haykosuii konedawc, bazoadcvruii ynisepcumem, baeoao, Ipax

3a 1010MOro10 060JI0HKOBOT MOIesi 3 po3paxyHkamu Ckipma-XapTpi-Poka N0CIimKeHO SAepHY CTPYKTYpy i3oTomis 2%??Ne. 30kpema,
OyJIH IOCTIDKEH] epexo1u 10 30y/PKEeHUX CTaHiB HU3bKOTO PIBHS IIO3UTHBHOI Ta HETATHBHOI ITAPHOCTI B TPHOX MOJEISIX 000IOHOK;
sd 1y O3UTHUBHMX CTaHIB MAPHOCTI, spsdpf 3 BenukuM OasucoM (Oe3 siapa) Ta MPOCTOPU MOJENI zbme ISl CTaHIB 3 HETATUBHOIO
napHicTio. OniHeHo eHeprii 30y/PKeHHs, 3MEHIICHI HMOBIPHOCTI IIepexo.y, IPYXHI Ta HenpyxHi (popM-(akTopu Ta HOPIBHSIHO 3
HasiBHUMH EKCIEePUMEHTAIbHUMH JaHuMHU. Bzaemonis Ckipma Oyna BHKOpHCTaHA JUIsi CTBOPEHHS INOTCHIialy OJHOTO Tila B
po3paxyHkax Xaprpi-Poka a1 KOXXKHOrO BHOpaHOro 30YyIXKEHOIO CTaHy, SKHH IOTIM BHKOPHUCTOBYETbCS UISL PO3PAXyHKY
OJTHOYaCTHHKOBUX MAaTPUYHHX elleMeHTiB. B3aemonis Ckipma OyJjia BUKOPHCTaHa Ul PO3PAaXyHKY PajialbHUX XBHIbOBHX (YHKIIii
OTHOYACTHHKOBUX MATPUYHHUX EJIEMEHTIB, 3 SKUX MOKe OyTH 3reHEepOBaHWI MOTEHLIan OZHOro Tia B Teopii XapTpi-Poka 3
napamerpu3aniero SLy4. Kpim Toro, Mu Z0ocianmm B3a€EMOII0 MixK PO ISIMHU I'YCTHHH HEUTPOHIB 1 IPOTOHIB Y IBOX BUMipax pa3oM
i3 nedopmanismu 2%??Ne 3a nonomoror pospaxyHkis Xaprpi-Doka ta BCS.

Kuarouosi cimoBa: Sd modenvruii npocmip, cman ne2camugno2o napumemy, NPYICHULL i HeeracmudHuli opm-gpakmop, po3nooin
winbHoCmi
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In this work, we present a theoretical study on the equilibrium geometry and the energetic, electronic and magnetic properties of Fen
(n = 2-10) based on the use of density functional theory (DFT). The results are obtained using Both Generalized Gradient
Approximation according to the scheme described by Perdew-Burke-Ernzerhof (GGA-PBE). More stable structures obtained compared
to other isomers have not been previously found. It is shown by the results calculated as the calculated fragmentation energy, and the
second-order energy difference that Fen (n = 7,8,9) clusters are more stable than the other cluster sizes. The calculated magnetic
properties of the most stable clusters display varying magnetic torque between values 3.00 ps and 3.35 s, except for the Feio cluster,
which takes the upper value of 3.38 us. These results are very important for experimental experts who are active in designing new
nanocatalysis systems in the physical and chemical fields.

Keywords: Iron clusters; Relative stabilities; Density functional theory DFT; Binding energies; Magnetic properties

PACS: 36.40.Cg

1. INTRODUCTION

Iron is one of the most important materials due to its physical and magnetic properties among the first transition
(TM) metals. It also has high magnetism and in addition to the high value of transverse relaxation, iron metal and its
oxides make it a suitable component in magnetic nanoparticles (MNPs). The high values of transverse relaxation result
from the external magnetic field, and thus the detection of signals is facilitated through the transverse relaxation of iron
as well. The uses of compounds based on MNP materials fall into several fields, the most important of which are in
biosensing applications using magnetic resonance [ 1], as well as the detection of tuberculosis bacteria [2], As for magnetic
enrichment, it is used to detect the in vivo circulation of cancer cells [3].

Cluster physicists admit, according to their opinion, the difficulty of conducting accurate studies of iron clusters at
experimental levels [4,5]; however, applications have been made using density functional theory (DFT), which has been
successful and has become widely used in calculating TM properties during the past years [6]. Among the most important
advantages of the DFT theory is the ability to look for the correct and accurate electronic structure among many other
possible cases that has lower energy [5], this is what makes us obtain the accurate and correct magnetic and structural
properties. Thus, the presence of a strong correlation in partially filled d orbitals leads to the highest magnetic moments.
In previous theoretical studies of small iron, clusters [7-10] showed a close correlation between their size and the value
of their magnetic moment. The experimental study of clusters containing more than 500 atoms was also addressed.
Whereas, the obtained iron cluster structures were in deformed geometries and completely different from the bee crystal
structure of iron, this was predicted by Jahn-Teller [11].

In this work we confirm the value of the quality of the calculations of all electrons within the DFT framework and
find the most stable Fe, clusters compared to other isomers.

In addition, we also calculate the important electronic properties of these clusters such as homo—lumo energy,
second-order energy difference, vertical ionization potential (VIP) and vertical electronic affinity (VEA), this is for a
deeper understanding of the stability of the clusters and the differences between them. The next section reviews the
theoretical methodology used in the calculation briefly, while the third section presents the results of our calculations and
their analysis, while this work concludes with a general summary.

2. MATERIALS AND METHODS
Our calculations were performed in order to determine the ground-state structures within the framework of spin-
polarized density functional theory [12] with the use of the generalized gradient approximation (GGA) defined by Perdew,
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Burke, and Ernzerhof (PBE) [13,14] functional has been used for the exchange correlation energy as implemented in the
SIESTA package [15]. Among the features of this program is that it can be used for all kinds of non-local pseudo-standards
preservation method for Troullier-Martins [16]. The geometries were optimized without any symmetry constraints by
self-consistent field (SCF) solving of the Kohn—Sham equations with a convergence criterion of 10™a.u. on the electron
density and energy.

In order to avoid interaction between neighboring clusters, we used the cubic supercell of 20 A void, and also used
the conjugate gradient (CG) algorithm. Using the I' point approximation, the k grid integration was carried out.
Geometrical optimizations were considered as converged when the residual forces were smaller than 10 eV/A.

We employed the double polarizer & (DZ) basis with polarization function for all iron atoms. We have performed a
relaxation for a large number of possible initial structures for iron clusters in the size (n=2—10) atom-sized iron clusters
in a very recent and previously unpublished work. In this work we could find the most appropriate structures of Fe,
clusters by searching the various possible isomers.

We studied the various properties of iron Fe, clusters by determining their relative stability, which is represented by
the binding energy Es, fragmentation energy Ey, second-order energy difference A,E. The electronic properties represented
by the vertical ionization potential (VIP), vertical electronic affinity (VEA) and Chemical hardness 1, were also
investigated. All these quantities were calculated according to the following formulas:

The binding energy Ey/atom.

Ey (Fen) = [nE (Fe) — E (Fen)]/(n). )
Fragmentation energy E¢
E¢ (Fen) =E (Fen.1) + E (Fe) — E (Fe). 2)
Second-order energy difference AE
AsE (Fen) = E (Fens1) + E (Fen.1) — 2E (Fey). 3)
The HOMO-LUMO energy AE
AE = E (LUMO) — E (HOMO). 4
Vertical ionization potential (VIP)
VIP =E (Fe,") — E (Fen). 5)
Vertical electronic affinity VEA
VEA=E (Fey) — E (Fen). (6)
Chemical hardness 1
n = VIP - VEA. @)

Where E is the total energy of the given system.

3. RESULTS AND DISCUSSION
3.1. Structural Properties
We found a large number of isomers and determined the ground state structure of all Fe, clusters (n = 2—10) using
the above calculation scheme. The most stable structures were selected for each size among the lower energy isomers, as
shown in Figure 1.

oo oto D W R P A

Figure 1. The lowest energy structures of Fen (n = 2—10) clusters

In the Table we calculated bond length for Fe-Fe dimer is 1.98 A and its binding energy per atom of 1.40 eV. In
Figure 1 shows the most stable structures in this study, using SIESTA program based on DFT. Actually, this result is
close to theoretical results of B.V. Reddy et al. and S. Dhar et al. and J.L. Chen et al. [17-19] and experimental results of
the average bond length in the work of P.A. Montano et al. and H. Purdum et al. [20,21].

Table 1. Bond lengths of dimer Fex(A).

This work Other calculations Experimental
2.02 [17] 1.87 [20]
1.98 1.96 [18] 2.02 [21]

1.98 [19]
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Various values of the average bond length of clusters Fe, where (n= 2—10) are shown in Figure 2. For the clusters
of Fe, where (n=2-6), they are either linear or closed Chains in the plane, with an average bond length estimated as

198 A,2.11A,228A,2374A,2.53 A, respectively. Generally, it is observed that the average bond length increases with
the cluster size.

3.0

: Y

N

Average bond lengh (A)
T i
[ ]
n

o

Cluster Size (n)
Figure 2. Average bond lengths for Fen(n=2-10) clusters

Based on the results shown in Figure 2, we conclude that the values of the average bond length increase in parallel
with the increase in the cluster size. This is due to the fact that the ratio of atoms on the surface of the cluster is greater
than the ratio of atoms in the core of it. In fact, because they are less compact, they cause the increase in the bond length.

3.2. Relative Stability
One of the most important physical factors that must be studied in the physics of materials and clusters is:

Binding Energy (cohesion)

It shows the stability of clusters obtained by comparing the result of their binding energy to other previous results
for the same metal clusters. We report the calculated binding energies of Fe, (n =2 —10) clusters their growth with cluster
size is plotted for the lowest-energy of each cluster in Figure 3. Through the general form, we notice a direct relationship,
as the increase in the binding energy corresponds to the increase in the mass size. This behavior means that the clusters
can obtain energy continuously during the growth process.
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Figure 3. Binding energies per atom for the Fen (n = 2—10) clusters

Fragmentation energy
The fragmentation energy can also be considered as an indicator for forecasting the relative stability of the clusters.
In Figure 4 we feature the growth of Er as a function of the size clusters n. Overall through the general shape, fluctuating
behavior in the values was detected. The results obtained indicate that the Fe;, Feg and Feg clusters have bigger values

compared to the rest of the neighboring clusters and therefore, so the clusters are relatively more powerful in terms of
thermodynamic stability.
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Second-order energy difference
In addition to both the fragmentation energy and the binding energy, we can use another amount that has a great
indication of the stability of the clusters, which is second-order energy difference. In Figure 5, we show the growth of
A>E in terms of changing cluster size. Through the positive values reached at the following clusters for (n = 3,7 and 9)
clusters, indicating that these clusters may have special stability compared to the rest of the clusters.
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Figure 4. Fragmentation energy per atom Figure 5. The Second energy difference
for the Fen (n = 2-10) clusters for the Fen (n = 2-10) clusters

3.3. Electronic Properties
HOMO-LUMO energy
When the value of the energy gap HOMO-LUMO (AE) is small, the chemical reactivity is high, whereas a
considerable value is ascribed to an even higher chemical stability, for this reason, the HOMO-LUMO energy gap is
considered as a milestone and an important criterion for the chemical stability of small clusters. The AE change in terms
of the cluster size variation, for the most suitable structures, is shown in Figure 6.

0.30 -] u
| / ]
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| |
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Figure 6. HOMO-LUMO energy for the Fen (n = 2—10) clusters

An oscillatory behavior has been recorded in the growth of AE values when the volume of clusters is increased.
Generally, we note that AE of Fe, (n = 2,3) clusters are smaller than the rest of the existing iron clusters. This means that
these clusters come with a greater stability and a low reactivity compared to their neighbors and could be suitable to be
utilized as an essential element in developing new materials.

Vertical ionization potential (VIP) and vertical electronic affinity (VEA)
We calculate the vertical electronic affinity and vertical ionization potential for the Fe, (n =2-10) ground state, they
are plotted in Figures 7 and 8 as a function of the cluster size.
The vertical ionization potential (VIP) is used to determine the chemical stability of small clusters as the proportion
between the size of the cluster and its stability is inverse, meaning that the greater the size of the cluster, the less its
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chemical activity, and thus its stability. Through Figure 6, we observe a non-monotonic oscillating behavior in the
evolution of VIP values of Fe, clusters. We found the highest values for Fes worth an estimated 5.82 eV, followed by the
same value recorded for the Fe, and Fe; clusters with values of 5.73 eV. The results obtained are close to the theoretical
works of Keitel Cervantes-Salguero et al. and Gong and Zheng et al. [22,23].
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Figure 7. Vertical ionization potential (VIP) for the Fen Figure 8. Vertical Electron Affinity for the Fen
(n = 2-10) clusters (n = 2-10) clusters

Also, what is recorded for vertical electronic affinity (VEA) values, where a non-monotonic increase with cluster
size is observed, this is what the Figure 8 shows. Also, VEA in mass physics shows how stable and coherent a structure
is; it is seen that the small clusters approach the metallic state, the VEA values increase with the size of the cluster. Where
the following clusters recorded the smallest values of Fe; and Fey, with values estimated at 0.11 eV and 0.99 eV,
respectively. Our results are very close to what has been reached in the theoretical work of Keitel Cervantes-Salguero
et al., Chrétien and Salahub, and Castro and Salahub [22,24,25].

Chemical hardness n
Pearson [26] proposed the principle of maximum hardness (PMH) in order to distinguish between the relative
stability of the clusters; In general, if the clusters have less interaction, is more stability, the value of their chemical
hardness is greater. In Figure 9, we report the growth of n for the lowest-energy structures as a function of the cluster
size. The chemical hardness of the Fe, and Fe; clusters seems to be the largest values recorded compared to all other
clusters, this makes these two clusters very inert and they can be considered as good candidates for the fabrication of
cluster materials applicable to nanotechnologies and nanoelectronics.
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Figure 9. Chemical hardness 1 for the Fen (n =2-10) clusters

3.3. Magnetic Characteristics
Magnetic behavior can also be considered an important marker for small clusters. In fact, we can find small clusters
with specific magnetic moments that qualify them to be used in many important applications in nanotechnology. It is
clear from the obtained results that the magnetic torque value of the Fejo cluster takes the largest value and is estimated
at 3.38 ug which makes it available for use in designing new Nanocatalytic systems, while the rest of the clusters recorded
a value of magnetic moment ranging between 3.00 pg and 3.354 pg values. Our results regarding magnetic moment are
close to those reported in the works [27-29]. The magnetic moment results are shown in Figure 10.
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Figure 10. Magnetic moments for the Fen (n = 2—10) clusters

4. CONCLUSION

The equilibrium geometries, energetic, electronic and magnetic characteristics of Fe, (n = 2—10) clusters have been
performed by using DFT calculations, with the use of generalized gradient approximation GGA. The geometric structures
of the clusters are in good agreement with previous computational studies; the reported binding energy for the dimer is
closest to the experimental and theoretical value available. Furthermore, we find that the decay behavior of the binding
energy curve indicates that the obtained cluster structures are the ground states.

The calculated fragmentation energy, second-order energy difference, and HOMO-LUMO energy gap revealed that
the Fes, Feg and Fey clusters are more stable than other cluster sizes.

Compared to experimental and theoretical data, all of our VIP and VEA results are sometimes underestimated and
sometimes overstated. The Fe, cluster corresponds to the most stable structure in the chemical hardness analysis.

The calculated magnetic properties of the lowest energy Fe, clusters exhibited a total magnetic torque of
(3.00 - 3.354) us, except for the Feio cluster, which takes the value 3.385 pg. To our knowledge, the physicochemical
properties of iron groups have not yet been calculated with the SIESTA code. Therefore, the results obtained from this
fundamental work will be useful to guide future experiments, particularly in the fabrication of new nanocatalysts.
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JUTSL eKCIEePTiB-eKCIIePUMEHTATOPIB, SIKi aKTHBHO PO3POOIIAIOTs HOBI CHCTEMH HaHOKATaNi3y y (i3uHIN Ta XiMidHII oOsacTsx.
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This study used the casting method to prepared PMMA/Si3N4/TaC nanocomposites with variant content (0,2,4,6,8) % wt of SisN4/TaC
nanoparticles. The structural and electrical properties have been investigated. Scanning electron microscope (SEM) indicates the
homogenous, smooth and dispersed of SisN4and TaC NPs inside the PMMA matrix due to strong covalent interaction between the SizN4
and TaC NPs in the PMMA matrix, which means a good method for prepared films. Optical microscope images explained that increasing
nanoparticle content forms network paths inside the polymeric matrix that act as charge carriers. FTIR spectra indicate a physical
interference between the polymer matrix and nanoparticles. The AC electrical properties of nanocomposites obtained that the dielectric
constant and dielectric loss rise with rising content of nanoparticles and decrease with increasing frequency of applied electric field. While
the A.C. electrical conductivity rises with the rising frequency and weight content of SisN4/TaC nanoparticles. These results indicated that
the PMMA/Si3N4/TaC nanostructures could be considered promising materials for electronics and electrical nanodevices.

Keywords: Nanocomposites; PMMA; SisN4; TaC; AC electrical properties
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1. INTRODUCTION

Polymers hold the potential to revolutionize industrial thought by replacing the majority of materials with plastic
ones and enabling a wide range of applications. Additionally, it entered all sectors of the economy, including the medical
sector, and a variety of optical, electronic, and applications, including photovoltaic cells and optoelectronics [1]. Last
year, there was a lot of interest in innovative materials called nanocomposites polymers, composed of organic and
inorganic polymers and nanoparticles in a nanoscale region. These composite materials differ from pure polymers
regarding their chemical and physical characteristics. Impurity polymers' effects on the properties of polymers provide
them with more significant advantages and enable them to improve desirable features. In many different types of
applications, that might be highly significant and helpful [2,3].

A good thermoplastic polymer known as poly (methyl methacrylate, or PMMA) has papers describing how it can
be used as a gate insulator in organic transistors with thin films (OTFTs). PMMA is a great choice as a dielectric layer in
organic electronics due to its excellent mechanical and thermal durability, excellent electrical resistivity (>21015.cm),
appropriate dielectric characteristics, and thin film processability on vast regions by spin coating. We explore the optical,
electrical, and microgravimetric properties of PMMA thin sheets to assess their chemical sensing potential. This
tactility-dependent thermoplastic material is made of volatile organic compounds with high stiffness, transparency,
outstanding insulating qualities, excellent planarity, and thermal stability [4,5].

Polymers' chemical and physical composition and structure influence the size of their dielectric. The unique
characteristics of the molecular mobility of polymers, and consequently their chemical and physical structure, affect the
parameters that describe the dielectric loss and losing tangential. Due to their low conductivity, most polymers are
insulators in general. The inclusion of the proper dopants as well as thermally and electrically produced carriers affect the
conductivity [6,7]. Due to its excellent oxidation resistance and strong thermal conductivity, silicon nitride (SizsNy) is a
possible alternative to silica supports that are more frequently utilized in reactions where efficient heat transmission is
required. Because it still contains NH, and NH groups, amorphous silicon nitride made from sol-gel is especially
intriguing for solid base catalysis [8,9]. Silicon nitride is a good contender for use in material science, the microelectronics
industry, solar technology, and other fields due to its physical features. Due to the silicon nitride film's exceptionally high
transparent in the spectral range of 300-1200 nm, it is employed in solar cell technology as an antireflective coating and
to passivate silicon surfaces [10,11].

Tantalum Carbide (TaC), which is also a very promising ultra-high temperature material, has been found to be
wear-resistant as well as to have biocompatible qualities that make it suitable for biomedical applications [12,13]. TaC has
drawn investigation, but thorough comprehension has eluded researchers because, like other transition-metal carbides, it
appears in a broad variety of compositions, and as a result, its physical characteristics vary. Additionally, impurities can
affect characteristics, and well-characterized TaC materials, particularly single crystals, are typically hard to come by. TaC's
lattice dynamics and band structure, as well as its mechanical, thermal, and electrical characteristics, have all been
studied [14,15]. This paper aims to preparation of the PMMA/Si3N4/TaC nanocomposite and study the structural and AC
electrical properties.

7 Cite as: A.A. Mohammed, and M.A. Habeeb, East Eur. J. Phys. 2, 157 (2023), https://doi.org/10.26565/2312-4334-2023-2-15
© A.A. Mohammed, M.A. Habeeb, 2023


https://orcid.org/0000-0001-5064-2835
https://doi.org/10.26565/2312-4334-2023-2-15
https://periodicals.karazin.ua/eejp/index
https://portal.issn.org/resource/issn/2312-4334

158
EEJP. 2 (2023) Alaa Abass Mohammed, Majeed Ali Habeeb

2. MATERIALS AND METHOD

The casting method was used to create films of poly methyl methacrylate (PMMA) doped with silicon nitride
nanoparticles (SisNs NPs) and tantalum carbide nanoparticles (TaC NPs). PMMA pure film was created by dissolving
1.5 gm of this polymer in 30 ml of chloroform at room temperature with magnetic stirrer for half an hour. The
nanocomposites films were created by adding SizN4 and TaC NPs to a PMMA solution with concentrations of (2, 4, 6,
and 8) % wt. The structural characteristics of (PS/SiC/Sb,O3) nanocomposites examined by the scanning electron
microscopic (SEM) using a Hitachi SU6600 variable, Optical microscope (OM) provided by Olympus (Top View, type
Nikon-73346) and the Fourier Transformation Infrared Spectroscopy (FTIR) (Bruker company type vertex-70, German
origin) with variety wavenumber (500-4000) cm™. The dielectric characteristics were studied at range (=100 Hz to
5x10% Hz) by LCR meter (HIOKI 3532-50 LCR HI TESTER).
The dielectric constant (£) is given by [16,17]

)
i=2 (1)
where, Cp is capacitance and C, is a vacuum capacitance
Dielectric loss (¢7) is calculated by [18,19]:
& =¢D. 2
Where, D: is displacement
The A.C. electrical conductivity is determined by [20,21]
Opc = wé Eos (3)

where w angular frequency

3. RESULTS AND DISCUSSION
The scanning electron microscope (SEM) is used to study the morphological of PMMA/Si3N4/TaC nanocomposites.
The SEM images of pure PMMA and PMMA/Si3N4/TaC nanocomposites are revealed in Fig. (1) with various concentration
0,2, 4, 6 and 8 wt.% of SisNsand TaC NPs with a magnification 50 KX and scale 200 nm. From this figure in image A, it is
observed that the pure PMMA was homogenous and smooth this indicates a good method for prepared films. Also, it is
observed that in images (B, C, D and E) the homogeneous dispersed of SisNs and TaC NPs inside the PMMA matrix
respectively primarily due to strong covalent interaction between the SisN4and TaC NPs in the PMMA matrix [22,23].

2000m EHT = 10.00 &V Signal A=SEZ Date:13 Nov 2022 7r153| 200 mm EHT = 1000 KV SigualA=5E2  Date:13 Now2022 7 1s] 2008m EHT = 1060KV SignalA=SEZ  Date:13Nov2022 ZEnss
— WD= 44mm Mag= S000KX  UserTex= — WO = 43 mm Mag= S000KX  UserTemt= — WD= 42mm Mag= S000KX  UserTest=

2000m EHT = 1000k SgpaA=SE2  Date:13Nov2022 7FI%Y 2000m ENT= 100KV Signal = SE2 2 75y,
p— WD= 45 mm Mag= S00DKX  UserTea= — WD 35 mm Mag- SODOKX  UserTew=

Figure 1. SEM images of (PMMA/Si3N4/TaC) nanocomposites, (A) for (PMMA), (B) 2 wt.% SizN4 / TaC NPs,
(C) 4 wt.% SisNa / TaC NPs, (D) 6 wt.% SizN4 / TaC NPs, (E) 8 wt.% SizN4/ TaC NPs
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The optical microscope gives the change of surface morphology of PMMA/Si3;N4/TaC nanocomposites. Figure (2)
displays the PMMA/Si3N4/TaC nanocomposites optical microscope (OM) at magnification power (10x) for all specimens.
The polymer blend film surface image(A) shows an uniform phase without phase separation; in the other hand, it has a
finer morphology and smooth surface, demonstrating at this successful polymer ratio of PMMA. While image (B-E), it
can be seen, that SisN4/TaC NPs are well dispersed on the surface of the PMMA polymer films and this apparent more
evident with the increase in the wt.% of SisN4/TaC. The nanocomposite shows nearly elliptical structure of particles of
uniform shape. This is because the NPs have a large surface area while the polymeric solution containing different polar
groups has a high affinity for Si3sN4/TaC which leads to the orientation of the nanoparticles within the polymer chain and
thus the Si3N4/TaC structure becomes more compact and thus the consistency of the material increases. This provided a
suitable preparation method for preparing nanocomposite films [24-26].

e

Figure 2. OM images (10x) for (PMMA/Si3N4/TaC) nanocomposites A. pure polymer, B. 2 wt.% of Si3sN4/TaC NPs, C. 4 wt.% of
Si3sN4/TaC NPs, D. 6 wt.% of SisN4/TaC NPs and E. 8 wt.% of SisN4/TaC NPs

FTIR spectra provide information on the vibration and rotation of molecular groups in a material. Figure (3) displays
the FTIR spectra of (PMMA/Si3N4/TaC) nanocomposites in the range wave number (500-4000) cm™'. In the image (A),
FTIR spectra of (PMMA) polymer reveal an absorption band at 2950.45 cm™ corresponding to the CH; bending vibration
and the band 1723.22 cm-1 attributed to the C=O stretching vibration. CH3 stretching vibration indicate to the band
1434.60 cm’!. The absorption band at 1142.95 attribute to the symmetric stretching vibration of C-O. The bands
985.57 cm™!, 698.13 cm and 750.29 cm™! corresponding to the C—C bending and stretching vibration respectively. The
spectra of PMMA with variant concentration of Si3N4 and TaC NPs in images B, C, D and E respectively. In image B
where the additive 2 wt.% Si3N4 and TaC NPs caused change shift in some bands and intensities at low wavenumber
(1434.63, 1142.83) cm! and high wave number at bands (1723.30, 995.01, 750.01) cm™'but bands 2950.45 cm™ and
698.13 cm! there is not affected on this band while, the image C which additive concentration of 4 wt.% from SisN4 and
TaC NPs, affected change shift in some bands and intensities at low wavenumber (995.34, 750.45) cm™ and high wave
number at bands (1723.45, 1434, 1143) cm™'but bands 2950.45 cm™ and 698.13 cm' there is not affected on this band. the
image D which additive concentration of 6 wt.% from SizN4 and TaC NPs, shifted and changed several bands' intensity
at low wavenumber (995.42, 750.02) cm’' and high wave number at bands (1723.54, 1434.64, 1143) cm'but bands
2950.45 cm™ and 698.13 cm' has not been impacted and added concentration of 8 wt.% from Si;N4 and TaC NPs in image
E, caused shifts in certain bands and intensities at low wavenumber (994.90, 749.93) cm™! and high wave number at bands
(1724.04, 1434.68, 1143) cm'but bands 2950.45 cm™! and 698.13 cm! has not been impacted. The FTIR studies show
that adding different concentration of Si3N4/TaC in images B, C,D and E leads to the displacement of some of the bonds
and not emergence of new peaks therefore, there is no chemical interaction between SizN4/TaC nanoparticle and the
PMMA polymer matrix [27-29].
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Equation (1) was used to calculate the dielectric constant (¢') of (PMMA/Si3N4/TaC) nanocomposites. Figure (4)
explain the dielectric constant of (PMMA/Si3N4/TaC) nanocomposites with frequency. It is note that dielectric constant
decrease with rising of frequency for all the sample prepare which, as a result of the capabilities of dipoles in
nano-composites samples to transform in the direction of the applying electric current and the reduction of space charge
polarization [30-32]. Figure (5) explain the dielectric constant of (PMMA/Si3N4/TaC) nanocomposite with the content of
nanoparticle at 100 Hz. It is observed that dielectric constant rise with rising of concentration nanoparticle for all
illustrations of nano-composites. Interfacial polarization in the nanocomposites' internal alternating electric field and an
increase in the charge carriers are responsible for these processes of (PMMA/Si3N4/TaC) nanocomposite [33-35].
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Figure 3. FTIR spectra of PMMA/Si3N4/TaC nanocomposites A. pure polymer, B. 2 wt.% of SisN4/TaC NPs, C. 4 wt.%
of SisN4/TaC NPs, D. 6 wt.% of SisN4/TaC NPs and E. 8 wt.% of Si3sN4/TaC NPs
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Equation (2) was used to calculate the dielectric loss (€”) of the nanocompsites. Figure (6) shows the relation between
dielectric loss of PMMA/Si3N4/TaC nanocomposites and frequency. The dielectric losses for nanocomposites reduce as
the frequency increases for all samples. This phenomenon was linked to a reduction in the contributions of polarization
of space charges. According to the data, nanocomposites have a substantial dielectric loss at low frequencies. Due to the
reduced time available for the dipoles to align at high frequencies, the dielectric loss decreases [36-38]. The dielectric
loss of PMMA/Si3N4/TaC nanocomposites as a function of SisN4/TaC NPs are shown in Figure (7). From this figure, it
is note that the dielectric loss rises with rising content of the SisN4/TaC nanoparticle. This result attributed to increased
charge on the dipole [39-41].
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Figure 6. Variation of dielectric loss with frequency Figure 7. Influence of SisN4/TaC NPs concentrations on dielectric
of PMMA/Si3N4/TaC nanocomposite loss for (PMMA/ Si3sN4/TaC) nanocomposite at 100 Hz

Equation (3) was used to calculate the A.C electrical conductivity. Figure (8) shows the relationship between A.C.
electrical conductivity of PMMA/Si3N4/TaC nanocomposites and frequency. The mobility of charge carriers and the
hopping of ions from the cluster cause the A.C electrical conductivity of all specimens to increase as the frequency of the
electric field increases. At low frequencies, the amount of mobile ions and electrical conductivity decreased due to
increased charge accumulation at the electrode and electrolyte interface [42-44]. Because charge carriers moved more
easily at high frequencies, the electrical conductivity of PMMA/Si3N4/TaC nanocomposites increases with frequency
[45-47]. Figure (9) reveals that the electrical conductivity of nanocomposites rises with the rising of SizN4/TaC
nanoparticle content due to rise in the ionic charge carriers and the formation of a continuous network of SizN4/TaC
nanoparticles inside polymer matrix [48-50]. The results of the €', €”, and A.C. conductivity are shown in Table (1).
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Figure 8. Variation of AC electrical conductivity with Figure 9. Effect of SisN4/TaC NPs content on AC electrical
frequency of PMMA/Si3N4/TaC nanocomposite conductivity for PMMA/Si3N4/TaC nanocomposite at 100Hz

Table 1. The values of the Dielectric constant, Dielectric loss and AC electrical conductivity at 100 Hz of (PMMA/Si3N4TaC)
nanocomposites

Concentration Dielectric Dielectric loss A.C.
of Si3N4/TaC (wt.%) constant Conductivity (S/cm)
0 2.86 0.46 2.54E-11
2 3.61 0.76 4.21E-11
4 4.19 0.88 4.89E-11
6 471 2.35 1.31E-10
8 5.37 3.38 1.88E-10

4. CONCLUSION
This work summaries that the scanning electron microscope (SEM) indicate that the homogenous, smooth and
dispersed of Si3N4 and TaC NPs inside the PMMA matrix due to strong covalent interaction between the SisN4 and TaC
NPs in the PMMA matrix which mean a good method for prepared films. Optical microscope (OM) images explained
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that when increasing in content of nanoparticles that forming network paths inside the polymeric matrix that act as charge
carriers. FTIR exhibited that when combined, the polymer and the nanoparticles exist in a physical superposition. at the
concentrations of Si3N4 and TaC nanoparticles rise, the (PMMA/Si3N4/TaC) nanocomposites €', €”, and A.C conductivity
also rise. When the frequency is raised, the A.C. electrical conductivity raised while the €' and &” of nanocomposites
decreased. This behavior make it may be considered as excellent electronics materials for electrical applications.
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BIIJTUB HAHOMATEPIAJIIB SisN4/TaC HA CTPYKTYPHI TA EJIEKTPUYHI XAPAKTEPUCTUKHU
MNOJIMETUJIMETAKPUJIATY JUISA EJIEKTPOTEXHIKHU TA EJIEKTPOHIKH
Anaa Abac Moxammen, Makin Aui Xao6io
Basunoncvruii ynisepcumem, Ocgimmuiil konedoc yucmux nayk, Qisuunuil paxyrvmem, Ipax

Y npoMy JOCTIIKEHHI BUKOPHUCTOBYBABCSI METOJ JHUTTS IJIs OTpHUMaHHA HaHOKOMIO3uTiB PMMA/ Si3N4/TaC 3 pi3HEM BMicTOM
(0,2,4,6,8) % wmac. nmanowactuHok (HY) SizN4/TaC. docmipkeHO CTPYKTypHI Ta €NEKTPHYHI BIACTHBOCTI. JIOCTIDKEHHS Ha
CKaHYIOUOMY eJIeKTpoHHOMY Mikpockori (SEM) Bka3yioTs Ha ofHOpimHicTh, rmankicts i mucnepcito HU SisN4 1 TaC Bcepenuni
matpuii [IMMA depe3 cuibHy KoBaieHTHY B3aemonito Mixk HU SisNg i TaC B matpuiii [IMMA, 110 o3Hayae XOpOIIUi METOM ISt
MiATOTOBJICHUX IUTIBOK. 300pa)KeHHs 3 ONTHYHOI'O MIKPOCKOIA ITOSCHIOIOTH, IO 30UIBLIEHHS BMICTY HAaHOYaCTHHOK YTBOPIOE
MEpeKeBi LUIIXHA BCEPEIMHI MOIiMepHOT MaTpHili, sIKi AifoTh sik Hocii 3apsay. Cnekrpu FTIR BkasyroTs Ha ¢i3udny inTepdepeHniiito
MDK MOJIMEPHOI0 MAaTpPHICI0 Ta HAHOYACTHMHKAMH. EJIEKTpHYHI BIACTHBOCTI 3MIHHOTO CTPyMy HAHOKOMIIO3WTIB MOKa3ajd, IO
JieJIEKTpUYHA IPOHUKHICTS 1 TIeNEKTPUYHI BTPATH 3pOCTAIOTh 31 30UIBIICHHSM BMICTY HAHOYaCTHHOK 1 3SMEHITYFOTHCS 31 301IbIIIEHHIM
YacTOTH MPUKIAJCHOTO EEKTPHYHOTO NOMIA. TOi SIK eJIeKTPOIPOBIAHICTE 3MIHHOTO CTPYMY 3pOCTa€ 31 301IbIIEHHSIM YaCTOTH Ta Baru
HanodacTHHOK Si3Na/TaC. Lli pesympraté mokasamu, mo HaHOCTpYKTypH PMMA/Si3Ns/TaC MoxkHA BBa)KaTé IEPCHEKTHBHIMH
MatepiajlaMu JUIs @IeKTPOHIKH Ta eJIeKTPHIHUX HAaHOIPHCTPOIB.

Kumouosi ciioBa: nanoxomnozumu; IIMMA; SisNy; TaC; enexmpuuni enacmueocmi 3MiHHO20 CIpymy
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In this research, we computed transition probabilities, line strength, and oscillator strengths of more than 5000 transitions in C IV. Very
few values of these spectroscopic characteristics were previously known and reported. The calculation method, based on a combination
of the weakest bound electron model and numerical approximation, shows reliable values because the correlation between known and
calculated values is high. The transition probabilities calculated in this work are compared with known values of the NIST database
and those found in literature, and a reasonably good agreement has been observed. The lifetime of Rydberg levels ns, np, nd, nf, ng has
been reported up to n = 25. A general sixth-degree polynomial was developed, generating C IV lifetimes with reasonable accuracy.
Most of the results presented are new.

Keywords: carbon atom; transition probability; oscillator strength; Rydberg atom; quantum defects

PACS: 31.10, +z, 31.15.—p, 31.15.Ct, 31.90.+s

INTRODUCTION

The star’s atmosphere or other astronomical objects like interstellar nebula have various chemical elements. The
chemical composition varies from object to object; astronomers can identify it by recording and measuring the relative
amount of electromagnetic radiation emitted by each. Understanding stellar evolution requires precise abundances of various
elements, including carbon. The chemical abundance is also vital to understand the complex picture of stars. The study of
Excited states of atoms is the foundation of quantum mechanics and has grabbed the focus of scientists for many decades.
Many research papers and articles have been published with the application of the transition state of carbon atoms in
molecular physics, nanochemistry, medicinal chemistry, environmental chemistry, and material science [1-7]. In 1970,
Martinson measured the Mean lives of 16 excited levels in C II - C V with the beam-foil technique and found good agreement
for the C III 2s3d3D - 2s4f°F° (1923 A) transition and the C IV 2s%S - 2p?p° (1548 A) transition [8]. In 1971, Poulizac also
used the beam-foil excitation method to study the carbon spectra between 1100 A and 7000 A for C LCIL,CII, CIV,and
CV energy ranging from 0.18 to 2.0 MeV [9]. In 1979, Ganas used a semiempirical approach with Optical oscillator strengths
for excitations from the valence subshell of C (IV) and N (V) and obtained good agreement with experimental data [10]. In
1989, Baudinet-Robinet et al. applied the beam-foil-laser method to determine the lifetimes of two levels in multiply ionized
carbon atoms and found the results for C 11l 2s3d' D, 0.15+0.01 ns and CIV 3s%S, 0.2140.02 ns. These values are in good
agreement with the theoretical predictions. They also determined these lifetimes using the classical (nonselective) beam-foil
method and reported = 20% longer than the beam-foil-laser values. These factors limit the accuracy of the lifetime
determinations by the beam-foil-laser method [11]. In 1996, Gou used the multichannel saddle-point and saddle-point
complex-rotation methods for Seven triply excited states of lithium-like beryllium and carbon, using first-order perturbation
theory [12]. In 1997, Cheng improved the energy levels in neutral carbon using high-resolution infrared solar spectra. The
main source is the ATMOS spectrum measured by the Fourier transform spectroscopy technique from 600 to 4800 cm’!,
supplemented by the MARK IV balloon data, covering 4700 to 5700 cm™ [13]. P. Quinet, in 1998, by using the Ritz and the
polarization methods, calculated the term energiesupton = 30and! = 3 in CII, CIII, and C IV. His article also reported
the predicted wavelengths for these lines of high-n/ term energies and the related oscillator strengths [14].
Nengwu Zheng et al., in 2001, by employing the WBEPM, computed transition probabilities of C I, C II, C III, and C IV.
They calculated the required parameters for the calculation of transition probabilities through a proposed coupled equation
which relates the energy and radial expectation value (r),; of the Weakest Bound Electron [15]. In 2004, Agarwal
investigated Energy levels and radiative rates for transitions among the lowest 24 fine structure levels belonging to the 1s? nl
(n<5) configurations of C IV using the fully relativistic GRASP code. Additionally, collision strengths for transitions among
these levels have been computed over a wide energy range below 28 Ry using the Dirac Atomic R-matrix Code [16]. In
2002, Nengwu Zheng and Tao Wang computed the radiative lifetimes, transition probabilities, and oscillator strengths for
individual lines of different transitions for atomic carbon and oxygen. In their article, WBEPM theory has been employed
for calculations [17]. Zheng et al., in 2004, developed a unified WBEPM theory in which they presented the relativistic form
of the theory and combined it with the non-relativistic form they proposed earlier. They have employed the newly proposed
theory for calculating transition probabilities and F II oscillator strength, carbon atom energy levels, and Ionization potential
for oxygen-like ions [18]. In 2018, Lischka introduced the progress in time-resolved spectroscopy to explain the
characteristic features of excited states accurately. At the same time, the stable molecule's electronic ground state problems
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can efficiently solve with the implementation of quantum chemical methodology [19]. In 2020, Li et al. worked with the
multiconfiguration Dirac-Hartree-Fock and Relativistic Configuration Interaction methods for the General-purpose
Relativistic Atomic Structure Package GRASP2K to compute the Landé g-factors for states in C I-IV and other atoms.
Further, they compared the accuracy of the wave functions for the states and the resulting Landé g-factors' accuracy with the
computed excitation energies and energy separations with the National Institute of Standards and Technology (NIST)
recommended data [20]. In 2022, Whang et al. employed a neural network machine learning method to simulate interatomic
potentials for the structural properties of several carbon structures. First-principles Density Functional Theory (DFT)
calculations are used to train the potential with a database of crystalline and liquid structures. The excellent accuracy and
transferability of the NNP provide a promising tool for accurate atomistic simulations of various carbon materials with faster
speed and much lower cost [21].

THEORY

Due to its complex nature, the Schrodinger equation for atoms and ions having many electrons is difficult to solve.
However, an approximate solution for the hydrogen atom exists, with only one electron in its outermost shell. Like the
hydrogen atom, some atoms have only one electron in the outermost shells; thus, the interaction terms are no longer
required in the equation for the hydrogen-like atom. Hence Schrodinger equation for hydrogen atoms can be used for such
atoms and ions with the approximation that all other electrons in the inner shells together with the nucleus form the core,
like the hydrogen atom, e.g., hydrogen-like atoms and ions are Li I, Be II, B III, C IV, N V, and O VI. The theory used
in this work is the same as in [22]. The Schrodinger equation for hydrogen-like atoms and ions is given by,

d? *(1*+1) _
(55 -2v) -2+ 26) PG) = o, (1)
Here P(r) = rR(r), and R(r) is the radial wavefunction,
*(I*+1) _1+1) B A
r—z + V(T‘) = 3 + 7z + - (2)

1(1+1)
r2

The first term on the right side (
potential felt by the weakest bound electron. The energy of hydrogen-like atoms and ions is given by,

) is the same as for hydrogen atom, the second term (% + %) is the total

z*?

2n*?

E= 3

n* =n-—4, and " = | — §; are effective principal and orbital quantum numbers for hydrogen-like atoms and ions. § is

a quantum defect in principal and orbital quantum numbers (n, l). The quantum defect can be expressed as a polynomial
in x, where x is 1/(n — &,), the &, is the lowest value of quantum defect. The radial function can be defined as R(r) = @,

and can be expressed in terms of associated Laguerre polynomials.
The transition probability Af; of a transition for spontaneous emission between levels (nf, lf) & (n;, 1;) is given as,

3
L -6 (Ef-Ey)
Ap; = 2.0261 X 10 T S 4
E; > E; and are energies of upper and lower levels, S is the electric dipole line strength; it is proportional to the dipole

matrix element Plfll; which is given as,

Plfllf)_ = l> < nl-, li|r|nf, lf > = l> fOOO 7"3 RniliRnflde (5)
The lifetime (7) of Rydberg levels can be found by the following equation;
1
n=g (©)
RESULT AND DISCUSSION

The Martin formula was used to calculate energies and quantum defects of the Rydberg lithium levels like C IV. These
results calculated transition probabilities, oscillator strength, and line strength of five thousand two hundred and fifty
transitions. The transition probability mainly depends on the energy difference of the levels involved in the transition and
the line strength of the transition. Due to the unavailability of the wavefunction for the atoms and ions, it isn't easy to calculate
line strength which depends on the dipole matrix element. However, the Weakest Bound Electron Potential Model (WBEPM)
suggests hydrogen-like wavefunction for lithium-like atoms and ions. This wavefunction for C IV was used, and dipole
integral was evaluated using the wavefunction of WBEPM; consequently, line strength was evaluated, which was further
used in calculating transition probability. The energy levels of ns, np, nd, nf, and ng up to n = 30 have been calculated;
using selection rules, more than 5250 transitions in C IV were studied. In Table I, the first column gives the configuration of
the upper and lower levels of the transition (nlj). The first letter represents the principal quantum number, the second is the
sub-orbital corresponding to the orbital quantum number, and the term in the bracket is the total angular momentum of the
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level. The second column gives the transition probabilities determined in this work, NIST values, and Zheng's work. The
third and fourth columns give oscillator strengths & line strengths determined in this work and NIST values.

Out of these 5250, only 225 transition probabilities are given on the NIST site, the comparison of these transition
probabilities with those calculated in this work has a percentage error of less than 1% in most cases, and in a few cases,
it is up to 7%. Similar is the case upon comparing the transition probabilities of Zheng's work and this study. However,
there is one transition in each comparison with NIST data and Zheng's work, where a large deviation is seen from this
work, as mentioned below.

The Transition 1s?8s — 1s*2p
The transition probabilities for the transitions 158s32— 15*2p12 and 1s28sy,— 1s?2ps/» determined in this work are
5.75x107 and 1.15x108, the corresponding values in the NIST data are 1.66x10° and 3.22x10° respectively.
A difference of 99% between them can be seen. NIST data classifies these transitions in accuracy code B, which means
it has 10% or fewer errors. As mentioned below, Zheng did not measure this transition where a large deviation is seen
from this work.

The Transition 1s?3d-1s22p

The transition probabilities for the transitions 1s?3ds;» — 1s?2p1» determined in this work are 1.52x10', and the
corresponding value in Zheng's work is 1.47x10°. A big difference is observed between the two, whereas the reported
value in the NIST database is close to the value determined in this work (1.46x10'%). NIST data classifies it in accuracy
code B, which means it has a 10% or less error. The maximum probability is found for the transition 1s?3d — 1s%2p.

Fig. 1 compares transition probabilities calculated in this work and listed in the NIST database. An approximate
straight-line graph among transition probabilities between this work and NIST values indicates a good agreement between
both. The correlation coefficient between these probabilities is 0.999.

Since many transition probabilities are known, all possible transition probabilities from each level are known; hence
equation (6) can be used to find the lifetime of the levels. The lifetimes of Rydberg levels 1s? ns, 1s> np, 1s? nd, 1s? nf,
and 1s? ng up to n = 25 have also been determined. Table II gives the values of the lifetime of the corresponding level.

Table 1. List of transition calculated transition probabilities, oscillator strengths, and line strength compared with corresponding values
in the NIST database.

Configurations Transition Probability Oscillator Strength Line Strength
Lower level - Upper level This Work NIST Zheng (x10*) | This Work NIST NIST This Work
2pi1p — 3dsp 1.516E+10 1.460E+10 0.0147 0.6690 0.6460 1.6913 1.6300
3pir — 3dan 4.872E+05 4.890E+05 0.0049 0.0625 0.0629 8.5221 8.5700
2p3n — 3dan 3.030E+09 2.920E+09 29.3400 0.0669 0.0646 0.3385 0.3270
3psp — 3dsn 9.553E+04 9.580E+04 0.0010 0.0062 0.0062 1.7043 1.7100
2pin — 4dsp 5.045E+09 4.900E+09 49.7400 0.1262 0.1230 0.2402 0.2340
3pip — 4dsp 1.508E+09 1.470E+09 14.5600 0.5537 0.5410 4.0374 3.9400
4pip — 4dsp 1.527E+05 1.530E+05 0.0015 0.1115 0.1120 36.2447 36.4000
2p3p — 4dsp 1.008E+09 9.780E+08 9.9400 0.0126 0.0123 0.0480 0.0467
3psp — 4dspn 3.016E+08 2.940E+08 2.9130 0.0554 0.0541 0.8084 0.7890
4psp — 4dsp 2.995E+04 3.000E+04 0.0003 0.0111 0.0111 7.2487 7.2700
2pin — Sdip 2.340E+09 2.280E+09 23.2400 0.0471 0.0460 0.0805 0.0786
3pip — 5dan 7.614E+08 7.430E+08 7.4390 0.1352 0.1320 0.6854 0.6700
4p1p — 5dsp 3.026E+08 2.970E+08 2.9330 0.5239 0.5150 8.2970 8.1600
Spir — 5dan 5.523E+04 5.520E+04 0.0006 0.1551 0.1550 98.9188 99.0000
2p3n — 5din 4.676E+08 4.550E+08 4.6440 0.0047 0.0046 0.0161 0.0157
3psp — 5d3pn 1.522E+08 1.480E+08 1.4880 0.0135 0.0132 0.1371 0.1340
4psp — 5dsp 6.054E+07 5.930E+07 0.5869 0.0524 0.0515 1.6616 1.6300
S5pan — Sdin 1.082E+04 1.080E+04 0.0001 0.0154 0.0154 19.7832 19.8000
2pi1p — 6d3p 1.287E+09 1.250E+09 12.8200 0.0233 0.0226 0.0376 0.0366
3pip — 6din 4.293E+08 4.190E+08 4.2150 0.0561 0.0549 0.2441 0.2390
4p1p — 6d3p 1.842E+08 1.800E+08 1.8000 0.1386 0.1360 1.4475 1.4200
Spin — 6dsn 8.861E+07 8.720E+07 0.8621 0.5232 0.5160 15.3016 15.1000
6p12 — 6d3p 2.325E+04 2.180E+04 0.1961 0.1840 216.7812 204.0000
2p3p — 6d3pn 2.571E+08 2.500E+08 2.5630 0.0023 0.0023 0.0075 0.0073
3psn — 6din 8.582E+07 8.380E+07 0.8428 0.0056 0.0055 0.0488 0.0478
4psp — 6d3p 3.684E+07 3.600E+07 0.3601 0.0139 0.0136 0.2897 0.2840
S5pan — 6dsn 1.773E+07 1.740E+07 0.0524 0.0515 3.0652 3.0100
6p3p — 6dsp 4.550E+03 4.280E+03 0.0195 0.0183 43.3555 40.9000
2p3n — 3dsp 1.818E+10 1.750E+10 176.0300 0.6022 0.5810 3.0462 2.9400
3psp — 3dsp 5.770E+05 5.790E+05 0.0058 0.0560 0.0563 15.3405 15.4000
2p3n — 4dsp 6.050E+09 5.870E+09 0.1136 0.1100 0.4324 0.4210
3psn — 4dsp 1.809E+09 1.760E+09 17.4700 0.4986 0.4860 7.2736 7.0900
4psn — 4dsp 1.808E+05 1.810E+05 0.0018 0.0999 0.1000 65.2427 65.4000
2p3n — Sdsp 2.806E+09 2.730E+09 27.8700 0.0424 0.0414 0.1449 0.1410
3psn — Sdsp 9.135E+08 8.910E+08 8.9260 0.1217 0.1190 1.2343 1.2100
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Configurations Transition Probability Oscillator Strength Line Strength
Lower level - Upper level This Work NIST Zheng (x10*) | This Work NIST NIST This Work
4psp — 5dsp 3.632E+08 3.560E+08 3.5210 0.4719 0.4630 14.9503 14.7000
5pan — 5dsp 6.524E+04 6.520E+04 0.0007 0.1389 0.1390 178.0578 178.0000
2pan — 6ds; 1.543E+09 1.500E+09 15.3800 0.0209 0.0204 0.0677 0.0660
3pan — 6dsp 5.149E+08 5.030E+08 5.0570 0.0505 0.0494 0.4395 0.4300
4pan — 6ds; 2.210E+08 2.160E+08 2.1600 0.1248 0.1220 2.6069 2.5500
Span — 6dsp 1.064E+08 1.050E+08 1.0350 0.4713 0.4660 27.5757 27.3000
6p3n — 6dsp 2.747E+04 2.580E+04 0.1756 0.1650 390.2184 367.0000
2812 — 2pin 2.726E+08 2.640E+08 2.6490 0.0981 0.0952 1.0017 0.9720
2812 — 3pin 4.598E+09 4.630E+09 43.5200 0.0671 0.0678 0.1381 0.1390
3512 — 3pin 3.186E+07 3.160E+07 0.3140 0.1612 0.1600 6.1694 6.1300
3d3n — 4pin 1.238E+08 1.280E+08 0.0266 0.0138 0.2100 0.2180
2810 — 4pin 2.258E+09 2.270E+09 21.0900 0.0203 0.0204 0.0327 0.0329
38120 — 4pin 5.054E+08 5.030E+08 4.9210 0.0680 0.0678 0.4245 0.4230
4510 — 4pin 7.144E+06 7.110E+06 0.0709 0.2205 0.2200 20.8530 20.8000
3dsn — Spin 5.230E+07 5.470E+07 0.0051 0.0027 0.0270 0.0283
4dsn — Spin 6.511E+07 6.670E+07 0.0657 0.0337 1.1224 1.1500
281, — S5pin 1.207E+09 1.210E+09 11.2100 0.0090 0.0090 0.0131 0.0132
3812 — 5pin 3.117E+08 3.110E+08 3.0070 0.0219 0.0219 0.0987 0.0986
410 — S5pin 1.083E+08 1.080E+08 1.0650 0.0718 0.0717 0.9954 0.9940
5812 — 5pin 2.263E+06 2.260E+06 0.0225 0.2785 0.2790 52.5840 52.6000
3d3n — 6pin 2.722E+07 2.860E+07 0.0019 0.0010 0.0086 0.0091
4dsn — 6pin 3.191E+07 3.290E+07 0.0131 0.0068 0.1424 0.1470
5d3n — 6pin 3.251E+07 3.310E+07 0.1115 0.0569 3.5159 3.5900
2510 — 6pin 7.113E+08 7.150E+08 0.0048 0.0048 0.0067 0.0068
38120 — 6pin 1.914E+08 1.910E+08 0.0102 0.0102 0.0398 0.0398
4810 — 6pin 7.601E+07 7.560E+07 0.0236 0.0235 0.2238 0.2230
5812 — 6pin 3.319E+07 3.300E+07 0.0770 0.0766 1.9943 1.9900
6812 — 6p1n 8.893E+05 8.940E+05 0.3358 0.3380 111.0743 112.0000
3d3n — Tpin 1.609E+07 1.700E+07 0.0010 0.0005 0.0039 0.0042
4dsn — Tpin 1.817E+07 1.880E+07 0.0050 0.0026 0.0449 0.0465
5d3n — Tpin 1.763E+07 1.810E+07 0.0227 0.0117 0.4396 0.4520
6d3n — Tpin 1.707E+07 1.730E+07 0.1615 0.0820 8.4548 8.5800
2812 = Tpin 4.521E+08 4.550E+08 0.0029 0.0029 0.0039 0.0040
3812 — Tpin 1.239E+08 1.240E+08 0.0057 0.0057 0.0206 0.0206
4s10 — Tpin 5.102E+07 5.080E+07 0.0112 0.0112 0.0892 0.0890
5812 = Tpin 2.529E+07 2.520E+07 0.0254 0.0254 0.4340 0.4330
6812 — Tpin 1.271E+07 1.260E+07 0.0827 0.0821 3.5929 3.5700
7812 — Tpin 4.049E+05 4.080E+05 0.3928 0.3960 208.2167 210.0000
3dsn — Spin 1.034E+07 1.100E+07 0.0006 0.0003 0.0022 0.0023
4dsn — 8pin 1.142E+07 1.180E+07 0.0025 0.0013 0.0203 0.0210
5d3n — 8pin 1.072E+07 1.100E+07 0.0088 0.0046 0.1367 0.1410
6d3 — 8pin 9.956E+06 1.010E+07 0.0334 0.0170 1.0434 1.0600
251 — 8pin 3.044E+08 3.070E+08 0.0019 0.0019 0.0025 0.0025
3810 — 8pin 8.427E+07 8.400E+07 0.0035 0.0035 0.0122 0.0122
4810 — 8pin 3.524E+07 3.510E+07 0.0063 0.0063 0.0459 0.0458
5512 — 8pin 1.805E+07 1.800E+07 0.0122 0.0122 0.1701 0.1700
6812 — 8pin 1.025E+07 1.020E+07 0.0273 0.0272 0.7597 0.7570
7s12 — 8pin 5.673E+06 5.570E+06 0.0889 0.0875 5.9918 5.8900
8312, — 8pin 2.052E+05 2.070E+05 0.4495 0.4540 358.0851 361.0000
3d3n — pin 7.064E+06 7.580E+06 0.0004 0.0002 0.0013 0.0014
4ds, — 9pin 7.680E+06 7.780E+06 0.0015 0.0008 0.0111 0.0113
5d3n — Ipin 7.060E+06 7.280E+06 0.0045 0.0023 0.0613 0.0633
6d3n — Ipin 6.365E+06 6.650E+06 0.0131 0.0069 0.3207 0.3360
2s12 — Ipin 2.145E+08 2.110E+08 0.0013 0.0013 0.0017 0.0017
3812 = pin 5.973E+07 5.940E+07 0.0023 0.0023 0.0079 0.0079
4510 — Ipin 2.518E+07 2.460E+07 0.0040 0.0039 0.0272 0.0266
5812 = pin 1.307E+07 1.290E+07 0.0070 0.0069 0.0868 0.0858
65120 — Ipin 7.656E+06 7.700E+06 0.0131 0.0132 0.2930 0.2950
7812 — 9pin 4.770E+06 4.700E+06 0.0293 0.0289 1.2363 1.2200
8512 — Ipin 2.828E+06 2.850E+06 0.0953 0.0962 9.4203 9.5100
9512 — Ipin 1.128E+05 1.130E+05 0.5061 0.5070 576.9346 578.0000
2812 — 2pan 2.741E+08 2.650E+08 2.6630 0.1966 0.1900 2.0040 1.9400
251, — 3pan 4.593E+09 4.630E+09 43.4500 0.1341 0.1360 0.2758 0.2790
3812 — 3pan 3.205E+07 3.170E+07 0.3160 0.3230 0.3200 12.3406 12.2000
3dyn — 4pan 1.235E+07 1.280E+07 0.0053 0.0028 0.0419 0.0435
3dsp, — 4pan 1.112E+08 1.150E+08 0.0319 0.0165 0.3774 0.3910
2812 — 4pan 2.256E+09 2.270E+09 21.0700 0.0405 0.0408 0.0653 0.0658
38120 — 4pan 5.047E+08 5.040E+08 4.9120 0.1358 0.1360 0.8474 0.8480
4810 — 4pan 7.185E+06 7.150E+06 0.0713 0.4419 0.4410 41.7094 41.6000
3d3n — Span 5.220E+06 5.470E+06 0.0010 0.0005 0.0054 0.0057
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Configurations Transition Probability Oscillator Strength Line Strength
Lower level - Upper level This Work NIST Zheng (x10*) | This Work NIST NIST This Work

4dsn — Span 6.499E+06 6.680E+06 0.0131 0.0068 0.2240 0.2310
3dsp — Span 4.700E+07 4.920E+07 0.0061 0.0032 0.0486 0.0510
4ds, — Spin 5.851E+07 6.010E+07 0.0787 0.0405 2.0170 2.0800
2812 — 5pan 1.206E+09 1.210E+09 11.2000 0.0179 0.0180 0.0263 0.0264
3812 — 5pan 3.114E+08 3.110E+08 3.0020 0.0437 0.0437 0.1971 0.1970
4s12 — Span 1.081E+08 1.080E+08 1.0630 0.1433 0.1430 1.9863 1.9900
5812 = 5pan 2.277E+06 2.270E+06 0.0227 0.5582 0.5570 105.1729 105.0000
3d3p, — 6pan 2.717E+06 2.860E+06 0.0004 0.0002 0.0017 0.0018
4dsn — 6pan 3.186E+06 3.290E+06 0.0026 0.0014 0.0284 0.0294
S5d3p — 6pan 3.245E+06 3.310E+06 0.0223 0.0114 0.7015 0.7170
3dsp — 6pan 2.446E+07 2.580E+07 0.0023 0.0012 0.0155 0.0164
4ds, — 6pin 2.868E+07 2.960E+07 0.0157 0.0081 0.2560 0.2650
Sdsp — 6pan 2.922E+07 2.980E+07 0.1336 0.0683 6.3171 6.4500
2510 — 6p3n 7.108E+08 7.150E+08 0.0096 0.0097 0.0134 0.0135
3812 — 6pan 1.912E+08 1.910E+08 0.0203 0.0203 0.0796 0.0796
4810 — 6pan 7.589E+07 7.560E+07 0.0471 0.0470 0.4468 0.4460
5812 — 6psn 3.312E+07 3.300E+07 0.1535 0.1530 3.9781 3.9700
6812 — 6p3an 8.951E+05 9.000E+05 0.6731 0.6780 222.1530 224.0000
3d3n — Tpan 1.605E+06 1.700E+06 0.0002 0.0001 0.0008 0.0008
4dsp — Tpsn 1.814E+06 1.880E+06 0.0010 0.0005 0.0090 0.0093
5d3n — Tpan 1.760E+06 1.810E+06 0.0045 0.0023 0.0877 0.0904
6d3n — Tpan 1.704E+06 1.730E+06 0.0322 0.0164 1.6868 1.7200
3dsp — Tpan 1.445E+07 1.530E+07 0.0011 0.0006 0.0071 0.0075
4dsp — Tpan 1.633E+07 1.690E+07 0.0060 0.0031 0.0807 0.0836
Sdsp — Tpan 1.584E+07 1.620E+07 0.0272 0.0140 0.7901 0.8090
6dsn — Tpan 1.534E+07 1.560E+07 0.1935 0.0985 15.1918 15.5000
251, — Tp3n 4.517E+08 4.550E+08 0.0058 0.0058 0.0078 0.0079
3812 — Tpan 1.238E+08 1.240E+08 0.0113 0.0113 0.0411 0.0412
4510 — Tpan 5.095E+07 5.080E+07 0.0223 0.0223 0.1781 0.1780
5s12 = Tpan 2.524E+07 2.520E+07 0.0508 0.0508 0.8662 0.8660
6512 — Tpan 1.268E+07 1.260E+07 0.1650 0.1640 7.1649 7.1300
7812 — Tpan 4.077E+05 4.100E+05 0.7874 0.7930 416.4325 420.0000
3d3n — 8pan 1.032E+06 1.100E+06 0.0001 0.0001 0.0004 0.0005
4ds, — 8pin 1.140E+06 1.180E+06 0.0005 0.0003 0.0041 0.0042
S5d3n, — 8pan 1.070E+06 1.100E+06 0.0018 0.0009 0.0273 0.0281
6d32 — 8pan 9.939E+05 1.010E+06 0.0067 0.0034 0.2083 0.2120
3dsp, — 8pan 9.294E+06 9.870E+06 0.0007 0.0004 0.0039 0.0041
4dsp — 8pan 1.026E+07 1.070E+07 0.0030 0.0016 0.0365 0.0381
S5dsp — 8pan 9.633E+06 9.910E+06 0.0106 0.0055 0.2457 0.2530
6ds» — 8pan 8.948E+06 9.130E+06 0.0401 0.0205 1.8754 1.9200
2510 — 8pan 3.042E+08 3.070E+08 0.0038 0.0038 0.0050 0.0051
3s1, — 8pan 8.418E+07 8.400E+07 0.0070 0.0070 0.0243 0.0243
4510 — 8pan 3.519E+07 3.510E+07 0.0127 0.0127 0.0916 0.0916
5812 — 8pan 1.802E+07 1.800E+07 0.0243 0.0243 0.3397 0.3400
6512 — 8pan 1.023E+07 1.020E+07 0.0546 0.0545 1.5162 1.5100
7s1, — 8pan 5.658E+06 5.570E+06 0.1773 0.1750 11.9461 11.8000
8s1, — 8pan 2.067E+05 2.080E+05 0.9012 0.9090 716.1562 722.0000
3d3n — Ipan 7.049E+05 7.580E+05 0.0001 0.0000 0.0003 0.0003
4dsp — Ypsn 7.666E+05 7.780E+05 0.0003 0.0002 0.0022 0.0023
5d3n — pan 7.048E+05 7.280E+05 0.0009 0.0005 0.0122 0.0127
6d3» — 9psn 6.355E+05 6.650E+05 0.0026 0.0014 0.0640 0.0671
3dsp — 9pan 6.347E+06 6.820E+06 0.0004 0.0002 0.0024 0.0026
4dsn — 9psn 6.902E+06 7.010E+06 0.0018 0.0009 0.0200 0.0203
Sdsp — 9pan 6.345E+06 6.550E+06 0.0054 0.0028 0.1101 0.1140
6dsn — Ipan 5.721E+06 5.980E+06 0.0157 0.0082 0.5765 0.6040
251, — 9pan 2.144E+08 2.110E+08 0.0026 0.0026 0.0034 0.0034
3812 — 9pan 5.967E+07 5.940E+07 0.0047 0.0047 0.0157 0.0157
4510 — Ipan 2.515E+07 2.460E+07 0.0080 0.0078 0.0543 0.0533
5s12 — 9pan 1.305E+07 1.290E+07 0.0139 0.0138 0.1733 0.1720
6512 — pan 7.642E+06 7.700E+06 0.0262 0.0265 0.5848 0.5900
712 — 9pan 4.760E+06 4.700E+06 0.0585 0.0578 2.4668 2.4400
8s12 — pan 2.821E+06 2.850E+06 0.1901 0.1920 18.7786 19.0000
9812 — 9psn 1.136E+05 1.130E+05 1.0146 1.0100 1153.8298 1150.0000
2pin — 351 1.415E+09 1.420E+09 0.0372 0.0375 0.1029 0.1030
2p3n — 381 2.831E+09 2.850E+09 0.0373 0.0376 0.2061 0.2080
2p1n — 41 5.260E+08 5.320E+08 0.0069 0.0070 0.0136 0.0137
3pip — 4sin 3.574E+08 3.590E+08 0.0809 0.0814 0.6554 0.6600
2p3p — 4s12 1.052E+09 1.060E+09 0.0069 0.0070 0.0271 0.0274
3psp — 4sin 7.153E+08 7.180E+08 0.0810 0.0815 1.3131 1.3200
2pin — 5811 2.535E+08 2.570E+08 0.0026 0.0027 0.0045 0.0046
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Configurations Transition Probability Oscillator Strength Line Strength
Lower level - Upper level This Work NIST Zheng (x10*) | This Work NIST NIST This Work
3piz— Ssin 1.623E+08 1.630E+08 0.0155 0.0156 0.0812 0.0818
4pin — 581 1.165E+08 1.170E+08 0.1270 0.1280 2.2562 2.2700
2p3n — 581 5.072E+08 5.150E+08 0.0026 0.0027 0.0090 0.0092
3pan— Ssin 3.247E+08 3.260E+08 0.0155 0.0156 0.1626 0.1640
4psn — Ssip 2.332E+08 2.340E+08 0.1272 0.1280 4.5199 4.5400
2pip — 681 1.416E+08 1.430E+08 0.0013 0.0013 0.0021 0.0021
3p2 — 681 8.824E+07 8.880E+07 0.0060 0.0060 0.0264 0.0266
4pin — 651 5.977E+07 6.000E+07 0.0245 0.0246 0.2663 0.2680
Spia— 681 4.621E+07 4.640E+07 0.1741 0.1750 5.7538 5.7900
2p3n — 6511 2.834E+08 2.850E+08 0.0013 0.0013 0.0042 0.0043
3pan— 681 1.765E+08 1.770E+08 0.0060 0.0060 0.0529 0.0531
4p3n — 6811 1.196E+08 1.200E+08 0.0245 0.0246 0.5332 0.5360
Span— 681 9.249E+07 9.270E+07 0.1744 0.1750 11.5276 11.6000
2pin — Tsin 8.720E+07 8.660E+07 0.0007 0.0007 0.0012 0.0012
3piz— Tsin 5.351E+07 5.390E+07 0.0030 0.0031 0.0122 0.0124
4pip — Tsin 3.527E+07 3.540E+07 0.0095 0.0096 0.0844 0.0849
Spie— Tsin 2.575E+07 2.580E+07 0.0336 0.0338 0.6541 0.6570
6pin— Tsin 2.111E+07 2.120E+07 0.2219 0.2230 12.2465 12.3000
2p3n — Tsin 1.745E+08 1.730E+08 0.0007 0.0007 0.0024 0.0023
3pan— Tsin 1.071E+08 1.080E+08 0.0030 0.0031 0.0245 0.0248
4psp — Tsin 7.057E+07 7.080E+07 0.0095 0.0096 0.1689 0.1700
S5pan— Tsin 5.152E+07 5.170E+07 0.0337 0.0338 1.3098 1.3200
6pan— Tsin 4.224E+07 4.230E+07 0.2222 0.2230 24.5370 24.6000
2pin — 881 5.751E+07 1.610E+09 0.0005 0.0132 0.0007 0.0204
3pin— 8sin 3.497E+07 3.520E+07 0.0018 0.0018 0.0068 0.0069
4pinp — 8sin 2.269E+07 2.280E+07 0.0049 0.0049 0.0386 0.0389
S5piz— 881 1.612E+07 1.620E+07 0.0132 0.0133 0.2026 0.2040
6p1n— 8sin 1.248E+07 1.250E+07 0.0429 0.0430 1.3523 1.3600
Tpi2 — 8sin 1.070E+07 1.080E+07 0.2700 0.2730 23.0822 23.3000
2ps3n — 8si1n 1.151E+08 3.220E+09 0.0005 0.0132 0.0015 0.0408
3p3n2 — 8sin 6.996E+07 7.030E+07 0.0018 0.0018 0.0136 0.0137
4psn — 8sip 4.539E+07 4.550E+07 0.0049 0.0049 0.0773 0.0776
Span— 8sin 3.225E+07 3.230E+07 0.0132 0.0132 0.4056 0.4070
6p3n— 8sin 2.498E+07 2.500E+07 0.0429 0.0430 2.7077 2.7100
Tpan — 8sin 2.142E+07 2.160E+07 0.2704 0.2730 46.2496 46.7000
2pin — 981 3.993E+07 3.900E+07 0.0003 0.0003 0.0005 0.0005
3pi2— 9sin 2.413E+07 2.420E+07 0.0011 0.0012 0.0042 0.0043
4pip — 9sin 1.550E+07 1.520E+07 0.0029 0.0029 0.0214 0.0210
5piz— 981 1.084E+07 1.080E+07 0.0068 0.0068 0.0914 0.0913
6p1n— 9sin 8.170E+06 8.230E+06 0.0168 0.0170 0.4108 0.4140
Tpi2 — 981 6.625E+06 6.600E+06 0.0522 0.0520 2.4905 2.4900
8pin — 9sin 5.884E+06 5.930E+06 0.3184 0.3210 39.8587 40.2000
2p3n — 981 7.989E+07 7.800E+07 0.0003 0.0003 0.0010 0.0009
3p3n— 981 4.828E+07 4.840E+07 0.0011 0.0012 0.0085 0.0085
4psn — 9sin 3.101E+07 3.030E+07 0.0029 0.0028 0.0427 0.0418
5pan— 9sin 2.168E+07 2.170E+07 0.0068 0.0068 0.1830 0.1830
6pan — 9sip 1.635E+07 1.650E+07 0.0168 0.0170 0.8224 0.8310
Tps2 — 981 1.326E+07 1.320E+07 0.0522 0.0521 4.9868 4.9700
8pan— 9sin 1.178E+07 1.180E+07 0.3188 0.3200 79.8675 80.2000

Transition Probabilities in C IV transitions
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Figure 1. Plot of transition probabilities listed in the NIST database and corresponding calculated values
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Table II. Lifetimes of Rydberg levels of C IV

State Lifetime (ns) State Lifetime (ns) State Lifetime (ns) State | Lifetime (ns) State Lifetime (ns)
3s 0.236 2p 3.658 4d 0.127 4f 0.281 5¢g 0.918
4s 0.377 3p 0.216 5d 0.244 Sf 0.544 6g 1.571
Ss 0.626 4p 0.346 6d 0.416 6f 0.932 7g 2.479
6s 0.992 5p 0.573 7d 0.655 7f 1.467 8g 3.681
7s 1.495 6p 0.906 8d 0.971 8f 2.175 9¢g 5.216
8s 2.157 7p 1.362 9d 1.374 of 3.080 10g 7.126
9s 3.000 8p 1.961 10d 1.877 10f 4.206 11g 9.452
10s 4.046 9p 2.723 11d 2.489 11f 5.577 12¢g 12.235
11s 5.317 10p 3.665 12d 3.222 12f 7.218 13g 15.516
12s 6.837 1lp 4.810 13d 4.086 13f 9.152 14g 19.337
13s 8.627 12p 6.176 14d 5.093 14f 11.404 15¢g 23.739
14s 10.711 13p 7.784 15d 6.253 15f 13.998 l6g 28.763
15s 13.111 14p 9.653 16d 7.577 16f 16.960 17g 34.450
16s 15.849 15p 11.804 17d 9.077 17f 20.311 18g 40.841
17s 18.948 16p 14.256 18d 10.763 18f 24.079 19¢g 47.978
18s 22.432 17p 17.030 19d 12.646 19f 28.285 20g 55.902
19s 26.322 18p 20.145 20d 14.737 20f 32.956 21g 64.654
20s 30.641 19p 23.622 21d 17.046 21f 38.115 22g 74.275
21s 35412 20p 27.481 22d 19.586 22f 43.786 23g 84.807
22s 40.658 21p 31.742 23d 22.366 23f 49.994 24g 96.292
23s 46.401 22p 36.424 24d 25.398 24f 56.764 25g 108.769
24s 52.665 23p 41.548 25d 28.692 25f 64.119
25s 59.471 24p 47.134

25p 53.202

A locally developed python program was used to fit a polynomial for each of the known values of lifetimes of
Rydberg series. The lifetime for the series ns, np, nd, nf, and ng can be given a function of principal quantum number (n)
in the form of a sixth-degree polynomial; the coefficients for the respective series are given in Table III

Tp = Qo + an + a;n? + azn® + a,n* + agn® + agn®

Table III. Coefficients of the sixth-degree polynomial for calculation of lifetimes of C IV series

Series a ar az as a4 as as ‘n’ value

ng -8.26E-04 | -8.90E-03 | 5.07E-03 | 6.63E-03 | 9.77E-06 | -2.11E-07 | 1.93E-09 5<n

nf -7.74E-03 | -2.88E-04 | 2.22E-03 | 3.97E-03 | 2.90E-06 | -5.50E-08 | 4.56E-10 4<n

nd -1.73E-03 3.33E-04 | 8.48E-04 | 1.77E-03 | 1.91E-06 | -4.40E-08 | 4.28E-10 4<n

np 2.15E-01 | -7.53E-02 | 1.98E-02 | 1.49E-03 | 9.59E-05 | -2.56E-06 | 2.75E-08 3<n

ns 2.30E-01 | -7.87E-02 | 2.05E-02 | 1.75E-03 | 1.05E-04 | -2.79E-06 | 2.99E-08 3<n
CONCLUSION

An extended work has been carried out to determine the transition probabilities, oscillator strengths, and line strength
for the transition in Rydberg levels of C IV. Total of 5250 transitions were studied. The calculated values were compared
with the reported and NIST database values. The NIST database only contains 224 out of 5250 transitions (see Table I).
That is, most of the values are reported for the first time. The maximum value of transition probabilities does not occur
between the two lowest-lying levels, as is the case of the Li atom; instead, it occurs for the transition 1s?3ds,— 1522p1..
Most transition probabilities are close to the reported values; a difference up to 7% has been observed in a few cases. A
99.9% correlation is found between calculated and known values of Transition probabilities (see Fig. 1). The comparison
of calculated values of oscillator strengths and lines strengths with those listed in NIST shows a good agreement. Only
224 values of transition probabilities, oscillator strengths, and line strengths have been presented in this manuscript; a
separate supplementary file contains all the 5250 values. The lifetimes of the first 25 levels of the Rydberg Series ns, np,
nd, nf, and ng have also been calculated. A function of principal quantum number can calculate the lifetime; a sixth-
degree polynomial gives this function for each Rydberg series for C IV.
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PO3PAXYHOK XAPAKTEPUCTHUK C IV IEPEXO/IB
Myxamman Cain?, Hlagik ¥Yp Pexman®, Maxsimn Mo6in Xan®, 3axip Yanin®
aJlenapmamenm ¢hizuxu, Ynieepcumem Kapaui, [lakucman
bllenapmamenm npuxnaownoi ximii ma ximiunoi mexnonozii Yuisepcumemy Kapaui, ITaxucman

VY 11bOMy DOCTIKSHHI MH 00YHCIIHIN TMOBIPHOCTI MEPEXO0iB, MOTYKHICTh JiHii Ta MOTYKHICTH ocisTopa noHan 5000 mepexoais
y C IV. Jlyxe Hebarato 3Ha4CHb IIMX CIICKTPOCKOMIYHUX XapaKTEPUCTHK OYIIM paHilie Biomi Ta mosigomieHi. Ha ocHOBI moenHaHHS
MoOJeJl Haicmadumoro 3B’sI3Ky €JIEKTPOHA Ta YUCENbHOI alpoKCHMAIlil METOJ| pPO3pPaxyHKy IMOKa3ye HaIiiHiI 3HaYCHHS, OCKIIbKH
KOPEJIALisA MK BIIOMAMH Ta 00YHCICHIMHU 3HAYCHHSAMH BUCOKa. IMOBIpHOCTI mepexoiy, po3paxoBaHi B Iiif poOOTi, MOPiBHIOIOTHCS 3
JOCTYITHUMHY 3Ha4eHHsMH 0a3u fqanux NIST i Thmu, o MiCTAThCS B JIITEpaTypi, 1 CIOCTEepiraeThest JOCUTH Xopota 3roza. TpusaiicTs
XKUTTA piBHIB Pinbepra ns, np, nd, nf, ng 6yna mosigomiena no n = 25. Byno po3po6iieHo 3araqbHUIT TOJIIHOM IIOCTOTO CTYIEHS, IKAi
renepye 4ac xutTs C [V i3 10ocTaTHROIO TOYHICTIO. BinbIIicTh peaCTaBICHUX PE3yIbTATIB € HOBUMH.

KurouoBi ciioBa: amom gyeneyro; umosgipuicms nepexody; cuia ocyuiimopa, amom Piobepea, keanmosi oegpexmu





