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The review highlights the main achievements in the theory of the vortex dynamo in rotating media. Various models of a vortex 
dynamo in rotating media are discussed: a homogeneous viscous fluid, a temperature-stratified fluid, a moist atmosphere, and a 
stratified nanofluid. The main analytical and numerical results for these models obtained by the method of multiscale asymptotic 
expansions are presented.  The main attention is paid to models with a non-spiral external force. For a rotating moist atmosphere, 
characteristic estimates of the spatial and temporal scales of the generated vortex structures are obtained. New effects of the vortex 
dynamo in a rotating stratified nanofluid, which arise due to thermophoresis and Brownian motion of nanoparticles, are shown. The 
results of the analysis of the nonlinear equations of the vortex dynamo in the stationary regime are presented in the form of spiral 
kinks, periodic nonlinear waves, and solitons. 
Keywords:  dynamo theory; large-scale instability; Coriolis force; multiscale asymptotic expansions; α - effect; solitons; kinks 
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1. INTRODUCTION
The review is devoted to modern problems with the vortex dynamo theory. This is an extensive area of research 

that includes the generation and nonlinear evolution of large-scale vortex structures. The focus of the review will be on 
the influence of the rotation of turbulent media on the generation of structures. The reason for the importance of this 
factor is both the widespread nature and the nontriviality of its influence. Rotation effects play an important role in 
many practical and theoretical applications of fluid mechanics [1] and are especially important in geophysics and 
astrophysics [2]-[5], where one has to deal with such rotating objects as the Earth, Jupiter, the Sun, etc. A variety of 
wave and vortex motions can be excited in rotating liquids. For example, gyroscopic waves, Rossby waves, internal 
waves, localized vortices, and coherent vortex structures. Large-scale vortex structures are of the greatest interest 
because they carry out efficient transfer of energy and momentum. Large-scale structures are understood to mean 
structures whose characteristic scale is much greater than the scale of turbulence or the scale of the external force that 
excites this turbulence. The study of the problem of generation of large-scale vortex structures (LSVS) is of great 
importance for a number of geophysical and astrophysical problems, such as the problem of the origin of Jupiter's Great 
Spot, Venus superrotation, vortex structures in solar prominences, the spiral structure of galaxies, etc. [6]-[7]. 
Geophysical problems include studies on the generation of LSVSs such as tropical cyclones (typhoons), tornadoes, etc. 
These LSVS play an important role in the global circulation of the atmosphere, which is very important for weather and 
climate [8]-[9] forecasts on our planet. The actual effect of LSVS generation in turbulence is called the vortex dynamo. 

According to the Kolmogorov-Obukhov local theory of turbulence, large-scale violations of homogeneity and 
isotropy are restored on small scales of turbulent flow. In this regard, the question arises: can such turbulence enhance 
large-scale perturbations? In magnetohydrodynamics, the answer to this question was obtained earlier. It was shown in 
[10] that initially homogeneous, isotropic, and mirror-symmetric turbulence cannot enhance large-scale magnetic fields. 
However, if the mirror symmetry of turbulence is broken, then such a medium can enhance the large-scale magnetic 
field. The process of amplification of a large-scale field occurs under the action of a turbulent e.m.f. proportional to the
average magnetic field = Hα

 
 , and the coefficient α  is proportional to the average helicity rt tv otvα    of the

velocity field. The phenomenon of generation of large-scale magnetic fields by homogeneous isotropic but mirror-
asymmetric (helical) turbulence discovered in [10] was called the α -effect. On the basis of this effect, the dynamo 
theory [11]-[12] was constructed by the efforts of many researchers and explains the origin of magnetic fields in various 
astrophysical objects: the Earth, planets, the Sun, galaxies, etc. Helical turbulence is characterized by a violation of the 
mirror symmetry of the turbulent velocity field, for which the correlation t tv rotv   is non-zero. Such a turbulent velocity
field is characterized by the fact that right-handed and left-handed vortices are observed with different probabilities, i.e., 
there are more vortices of one sign than another. 

The concept of a vortex dynamo was first developed in [13]–[14], where a hypothesis was put forward that helical 
turbulence is capable of generating large vortices. This hypothesis was based on the similarity of the equations of 
induction of a magnetic field and a vortex in hydrodynamics. It was hypothesized in [13] that helical turbulence is 
capable of generating large eddies similarly to a large-scale magnetic field in magnetohydrodynamics. The physical 
essence of this phenomenon lies in the inverse cascade of energy transfer from small vortices to larger ones. However, it 
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was shown in [15] that there is no effect on generating large-scale vortices by homogeneous isotropic helical turbulence 
in an incompressible fluid. The reason for the negative effect lies in the certain symmetry of the Reynolds stress tensor 
in the averaged Navier-Stokes equation. The Reynolds stresses are a linear functional of the mean velocity field (for 
weak fields), which can be represented as a series 

( ) (0) (1) (2)= = ,t t t t
k k i k k i i ik k ikl k lv v v v T T V T V∇ ∇ + + ∇ +

where the expansion coefficients of the tensors ( )nT  are expressed in terms of the moments of the turbulent fields. If the 
tensor t t

k iv v  is symmetric in indices, then the tensor (2)
iklT  must also be symmetric in indices ,i k  and not be expressed in 

terms of the antisymmetric tensor iklε . The tensor of the third rank cannot be constructed only from Kronecker tensors

ikδ ; therefore, the hydrodynamic α -effect is absent in the homogeneous isotropic turbulence of an incompressible
fluid. However, a reverse energy cascade in helical turbulence is possible. This requires an additional symmetry break
of the Reynolds stresses. The effect of generating large-scale eddies is associated with the appearance of the term αΩ


: 

rot
t

α ν∂Ω + Ω = ΔΩ
∂

  
, 

where T Tv rotvα   is expressed in terms of the turbulence helicity, rotVΩ =
 

, V


 is a large-scale field of fluid 
velocity, ν  is a turbulent kinematic viscosity. This effect is called the hydrodynamic alpha effect. The further 
development of the vortex dynamo theory was based on the search for additional factors that break the symmetry of the 
equations. These factors, in addition to the compressibility of the medium, are, for example, an inhomogeneous 
flow [16], a temperature gradient in a gravity field [17], and a specific water content and temperature gradient in a 
gravity field [18]. 

It should be noted that free convection, or heat and mass transfer of matter in the gravity field, plays a special role 
in the processes of LSVS generation in the atmosphere of the Earth and other planets. The occurrence of LSVS in 
convective systems was studied both within the laminar theory [19] and in the turbulent one [15]-[18]. The most 
developed is the turbulent theory (vortex dynamo), which shows the existence of large-scale instability in convective 
systems with small-scale helical turbulence [17]-[18], which results in the formation of one convective cell, which is 
interpreted as a huge tropical cyclone-type vortex. This theory was confirmed in a number of numerical and analytical 
calculations [20]. Large-scale vortex instability in rotating turbulent flows has been studied in many papers [21]-[24]. 
So, when considering rotating convective systems, attempts were made to apply the results obtained to the theory of the 
occurrence of tropical cyclones. The linear theory of the vortex dynamo [15]-[24] is best developed within the 
framework of the statistical approach, which also uses the second-order correlation approximation. Thus, the question 
arose about the mechanisms of saturation of large-scale instability and the emergence of stationary vortex structures. 
However, the construction of a nonlinear theory of the vortex dynamo within the framework of the statistical theory has 
great difficulties associated with the problem of closure of the averaged equations. 

The nonlinear theory of the vortex dynamo was developed within the framework of a dynamic approach based on 
the method of multiscale asymptotic expansions. In [25], for the first time, the method of multiscale asymptotic 
expansions was applied to describe the generation of LSVSs in non-reflective, invariant turbulence. In this work, it was 
shown that parity violation in small-scale turbulence (external small-scale forces) leads to large-scale instability, the so-
called anisotropic kinetic alpha effect (AKA effect). In another work [26], the inverse energy cascade and nonlinear 
saturation of the instability were studied. The instability of the hydrodynamic α -effect, obtained within the framework 
of the dynamic approach, can be interpreted as a new type of parametric instability arising from a special type of 
pumping (external force). Under the action of an external small-scale periodic force 0F


, fluctuations of the velocity 

field 0v  arise, the nonlinear interaction of which affects large-scale velocity perturbations W


. The Reynolds stresses

=ij i jR v v  (where averaged over the period) are modified by large-scale perturbations, and in the linear approximation, 
the gradient series can be expanded into a Taylor series [27]: 

=ij ijl l ijlm l mR W Wα ν− − ∇ +  

The first term is known as the anisotropic kinetic α -effect (AKA) [25], which describes the generation of LSVSs. 
Thus, an external force that creates a small-scale parity violation can lead to non-trivial changes in the large-scale flow. 
In contrast to [25], in [27], a small-scale force was considered that creates a parity-invariant turbulent flow. In this case,
the AKA effect is absent, and the dynamics of small large-scale perturbations W


 is determined by the turbulent 

viscosity. Although parity violation is a more general concept than helicity, it is helicity 0vrotv ≠   that is a widespread
mechanism for parity violation in hydrodynamic flow. In [28]-[29], a nonlinear theory of the convective vortex dynamo 
was developed, where the method of multiscale asymptotic expansions was applied. Paper [28] is a more complete 
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version of [29], which presents the linear theory of LSVS generation in more detail. The small Reynolds number of 
small-scale motions is a parameter of the asymptotic expansions.  

This method makes it possible to single out the main order of the emergence of instability from the entire 
hierarchy of perturbations. Nonlinear stabilization of large-scale convective instability, considered in [28]-[29], leads to 
the formation of helical vortex solitons or kinks of a new type in the fluid, despite stable stratification. The structure of 
the equations in [28]-[29] describing the instability in the linear approximation is similar to the AKA effect equation. 
But, unlike the AKA effect, α  is a function of the Rayleigh number Ra . This means that in an unstratified fluid, 

= 0Ra , the instability disappears. In addition, in [28]-[29] helical turbulence was assumed to be given, in contrast 
to [25]-[26].  

Using the method of multiscale asymptotic expansions, in [30], a large-scale vortex instability was obtained in a 
rotating viscous fluid under the action of an external small-scale helical force. In this work, the nonlinear stage of 
instability and the generation of vortex kinks of a new type were also investigated. The paper [30] was generalized to 
the case of a rotating moist atmosphere in [31], where it was shown that taking into account the effects of stratification 
in a rotating atmosphere, such as temperature heating and an additional source of condensation heat release, enhances 
large-scale vortex disturbances. It was shown in [31] that the helicity of the small-scale velocity field is due not only to 
the action of the Coriolis force, as in a homogeneous medium [30], but also to the stratification of the moist atmosphere. 
This circumstance leads to the appearance of a new instability of the α -effect type, as a result of which large-scale 
vortex structures are generated. 

The origin of helical turbulence in natural conditions is usually associated with the influence of the Coriolis force 
on the turbulent motion of the medium [10], which was initially uniform, isotropic and mirror-symmetric. Thus, a 
problem arises in the origin of helicity itself. The natural hypothesis is that helicity itself arises as a result of the action 
of the Coriolis force on convective turbulence. In this case, large-scale instabilities in the atmosphere should appear 
self-consistently, without additional assumptions. For the first time, the question of the generation of large-scale vortex 
fields under the action of a small-scale force with zero helicity 0 0 = 0F rotF

 
 in a rotating homogeneous medium, i.e., 

without taking into account convective phenomena, was considered in [32]-[33], and taking into account convective 
phenomena in [34]-[36].  It was also demonstrated that nonlinear Beltrami waves and localised vortex structures such as 
kinks emerge as a result of the development of a large-scale instability in an obliquely rotating fluid. 

The generation of the LSVS by a large-scale instability of the hydrodynamic α -effect has a threshold character 
and depends on the magnitude of the helicity. In this connection, the search for large-scale helical vortex instability 
based on atmospheric data was started in [37]. An extensive review of studies aimed at applying the theoretical 
hypothesis of a turbulent vortex dynamo to the study of tropical cyclogenesis is presented in [38]. The review presents 
the results of a numerical simulation of the spiral self-organization of humid-convective atmospheric turbulence during 
the formation of tropical cyclones. Particular attention is paid here to the influence of the initial conditions on the 
generation of helicity in the first hours of the experiments. These studies contributed to the application of the vortex 
dynamo theory for diagnosing the onset of cyclogenesis in a favorable tropical environment. 

The question of the appearance of helicity, leading to the appearance of a LSVS, is central to any formalism. An 
important difference between these formalisms is that in statistical turbulence, it is difficult to correctly separate small-
scale motions from large-scale ones, which leads to the problem of the influence of some scales on others and requires 
the use of additional hypotheses. However, this can be done consistently in the multiscale formalism. The difference in 
averaging over small-scale turbulent fluctuations (in the statistical theory) and small-scale motions (in the multiscale 
method) rather indicates the closeness of these theories. Therefore, it can be assumed that the average helicity arising in 
the statistical theory is quite similar to the average helicity in the multiscale method.        

Next, we discuss in more detail the new types of large-scale instabilities and localized vortex structures in rotating 
turbulent media considered in our papers [30]-[36]. 

2. LARGE-SCALE INSTABILITY OF A ROTATING FLUID WITH A SMALL-SCALE FORCE
Let's start with a discussion of large-scale instability in a rotating viscous fluid under the action of a small-scale 

external force, which was first considered in [30]. The small-scale external force simulates the action of small-scale 
turbulence and maintains turbulent fluctuations at a certain stationary level. It was shown in [30] that, as a result of the 
development of a large-scale instability in a rotating fluid, nonlinear large-scale helical vortex structures such as 
Beltrami vortices or localized kinks with an internal helical structure arise. 

2.1. Basic equations and statement of the problem 
Consider the equations of motion of an incompressible rotating fluid with an external force in a rotating coordinate 

system 

0
0

1( ) = 2[ ]V V V P V V F
t

ν
ρ

∂ + ∇ − ∇ + ×Ω + Δ +
∂

      
(1)

= 0divV


(2)
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Here, Ω


 is the constant angular velocity of rotation of the fluid, ν  is the viscosity, and 0ρ  is the constant density of 

the fluid. The vector of angular velocity of rotation Ω


 is directed along the axis OZ , and the external force 0F


 acts in a 
plane that is perpendicular to the axis of rotation (see Fig. 1). 

Figure 1. The angular velocity vector Ω


 is directed perpendicular to the plane ( , )X Y  in which the external force 0F


 is located. 

Let us denote the characteristic amplitude of the force 0f , and its characteristic spatial and temporal scales, 
respectively, as 0λ  and 0t . The external force has the following properties: 

0 0 0 0 0 0
0 0

= , , = 0, 0.x tF f F divF F rotF
tλ

 
≠ 

 

    
(3)

The main role of this force is the creation of small-scale helical fluctuations in the velocity field 0v  with a small

Reynolds number 0 0

0

= 1
v t

R
λ

 , or, in other words, the maintenance of stationary small-scale helical turbulence. It is 

obvious that the characteristic speed caused by an external force has the same characteristic scales: 

0 0
0 0

= ,x tv v
tλ

 
 
 

 

Let's maintain the old notation of variables but replace the dimensioned variables in the system of equations (1) and (2) 
with dimensionless variables for convenience: 

0
0

0 0 0 0 0 0

, , , , ,Fx t V Px t V F P
t v f Pλ ρ

→ → → → →
     

2 2
0 0 0 0 0

0 0 0 02
0 0

= , = , = , = .
v v f

t P f v
λ ν ν λ
ν λ νλ

 

Then, in dimensionless variables, equations (1)-(2) take the form: 

0( ) = [ ] ,V R V V P V D V F
t

∂ + ⋅∇ −∇ + × + Δ +
∂

      
(4)

= 0divV


. (5)

Here, 0 0=
v

R
λ
ν

 is the Reynolds number of small-scale pulsations, 
2
02

= i
iD

λ
ν

Ω
 is the dimensionless rotation parameter 

on the scale 0λ  ( = 1, 2, 3i ), associated with the Taylor number 2=i iTa D , and which is a characteristic of the degree of 
influence of Coriolis forces over viscous forces. 

In what follows, the Reynolds number 1R  will be assumed to be small, and we will construct an asymptotic 
expansion from this small parameter. We consider the parameter D  to be independent of the asymptotic expansion 
scheme. Of course, the Reynolds number on a large scale can be large. Consider the following formulation of the 
problem: we will consider the external force as small-scale and high-frequency. This force leads to small scale velocity 
fluctuations. After averaging, the rapidly oscillating fluctuations disappear. However, due to small non-linear 
interactions, non-zero terms may appear after averaging in some orders of perturbation theory. This means that these 
terms are not oscillatory, i.e., they are on a large scale. From a formal point of view, these members are secular. The 
difference from zero of such “constant” contributions leads to a rapid collapse of the asymptotic expansions. Therefore, 
the conditions for the conservation of the asymptotic expansion are based on the vanishing of the secular terms. This 
leads to conditions for the solvability of equations for large-scale perturbations. We discuss these equations below. 
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2.2. The method of multiscale asymptotic expansions and the equation for the large-scale velocity field 
We denote the small-scale variables ( )0 0 0= ,x x t , and the large-scale ( )= ,X X T


 ones. Denote the derivative 

0
ix

∂
∂

by i∂ , and the derivative
0t

∂
∂

by t∂ . To designate large-scale spatial and temporal derivatives, the following

notation will be used: 

,i T
iX T

∂ ∂≡ ∇ ≡ ∂
∂ ∂

The spatial and temporal derivatives now turn into the corresponding derivatives with respect to both fast small-
scale variables and slow large-scale variables. Therefore, we replace the spatial and temporal derivatives in equations 
(4)-(5) with operators of the form: 

2 4,i i t T
i

R R
x t
∂ ∂→ ∂ + ∇ → ∂ + ∂

∂ ∂
(6)

 To construct a nonlinear theory, we represent the variables ,V P


 in the form of asymptotic series:  

( ) ( ) ( ) 2 3
1 0 0 1 2 3

1, =V x t W X v x Rv R v R v
R − + + + + +

       (7)

( ) 2 3
13 2 1 0 1 2 33 2

1 1 1( , ) = ( )P x t P P P P R P P X R P R P
RR R− − −+ + + + + + + +  

Substituting the expansions (6)-(7) into the system of equations (4)-(5) and collecting together the terms with R  the 
same orders up to the power inclusive 3R , we obtain the equations of the multiscale asymptotic expansion. Let us pay 
attention to the analysis of rather deep orders of equations with respect to a small parameter, which is necessary to 
obtain equations for large-scale motions. This is typical for this method. There is only one equation in order 3R− : 

( )3 3 3= 0 =i P P P X− − −∂  (8)

In order 2R− , we have the equation:  

( )2 2 2= 0 =i P P P X− − −∂  (9)

In order 1R− , we get a system of equations:  

2
1 1 1 1 3 1 1= , = 0i k i i i

t k i i k ijk j k k iW W W P P W W D e Wε− − − − − − −∂ + ∂ −∂ − ∇ + ∂ + ∂ (10)

Averaging equations (10) over fast variables gives the secular equation, 

3 = 0,i ijk j kP W Dε−−∇ + (11)

which corresponds to the equation of geostrophic equilibrium. 
In order zero 0R , we have the following system of equations:  

2
0 1 0 0 1 0 2 0 0 0=i k i k i i j i

t k k i i k ijk kv W v v W P P v v D Fε− − −∂ + ∂ + ∂ −∂ − ∇ + ∂ + + (12)

0 = 0i
i v∂  

These equations give one secular equation: 

2 2= 0 =P P const− −∇  (13)

 Consider a first-order 1R  approximation: 

( ) 2
11 1 1 0 0 1 1 1 1 1 1 1 1 1= 2 ,i k i k i k i k i i i j

t k k k k i i k k k ijk kv W v v v v W W W P P P v W v Dε− − − − − −∂ + ∂ + ∂ + ∂ + ∇ −∇ − ∂ + + ∂ + ∂ ∇ + (14)

1 1 = 0i i
i iv W−∂ + ∇

Secular equations follow from this system of equations: 

1 1 1=k i
k iW W P− − −∇ −∇ (15)
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1 = 0i
iW−∇ (16)

Secular equations (15)-(16) satisfy the following field geometry:   

( ) ( )( )1 1 1 1= , , 0 , =x yW W Z W Z P const− − − −


(17)

For the second order 2R , we get the equations: 

2
2 1 2 0 1 1 0 0 1 1 0 2 1 2 0 2 0 2= 2 ,i k i k i k i k i k i k i i i j

t k k k k k k i i k k k ijk kv W v v v W v v W v v v W P P v v v Dε− − − −∂ + ∂ + ∂ + ∇ + ∇ + ∂ + ∂ −∇ − ∇ + ∂ + ∂ ∇ +  (18) 

2 0 = 0i i
i iv v∂ + ∇

It is easy to see that there are no secular terms in this order. Finally, we come to the most important order 3R . In 
this order, the equations are: 

3 1 1 3 0 2 1 1 0 0 1 1 1 1
i i k i k i k i k i k i k i

t T k k k k k kv W W v v v W v v v v v v W− − − −∂ + ∂ + ∂ + ∂ + ∇ + ∇ + ∂ + ∇ +

( ) 2
12 0 3 1 3 1 3 1 1 3= 2 ,k i k i i i i j

k k i i k k k ijk kv v v W P P P v v W v Dε− −+ ∂ + ∂ −∂ − ∇ + + ∂ + ∂ ∇ + Δ + (19)

3 1 = 0i i
i iv v∂ + ∇  

Averaging these equations over fast variables, we obtain the main secular equation describing the evolution of large-
scale perturbations: 

( ) 11 1 0 0 =i i k i
T k iW W v v P− −∂ − Δ + ∇ −∇ (20)

Equation (20) describes the evolution of a large-scale vortex field W


, but the final closure of equation (20) will be 
carried out after calculating the Reynolds stress ( )0 0

k i
k v v∇ . To do this, it is necessary to find solutions for the small-

scale velocity field 0v .

2.3. Velocity field in zero approximation 
Let us write the equation of the asymptotic expansion in the zeroth approximation (12) in the following form: 

 0 0 0 0 0= ,i j i
i ijk kD v P v D Fε−∂ + + (21)

where the operator  0D  is introduced 

 2
0 1= .k

t k kD W−∂ − ∂ + ∂  

The pressure 0P  is found in the condition 0 = 0i
i v∂ :  

  1 2 30 0 0 0=P P u P v P w+ + (22)

Here we introduced the notation for the operators 

  2 3 1 23 1
1 2 32 2 2= , = , = ,z y y xx zD D D DD D

P P P
∂ − ∂ ∂ − ∂∂ − ∂

∂ ∂ ∂
 

and velocities 0 0=xv u , 0 0=yv v , 0 0=zv w . Then, excluding the pressure from (21), we obtain a system of equations for 
finding the zero-order velocity field:  

 ( ) ( ) ( )0 0 3 0 2 0 01 2 3 = x
x x xD p u p D v p D w F+ + − + +

( )  ( ) ( )03 0 0 1 0 01 2 3 = y
y y yD p u D p v p D w F+ + + + − (23)

( ) ( )  ( )02 0 1 0 0 01 2 3 = z
z z zp D u p D v D p w F− + + + +

The tensor components  ijp  are as follows:
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  
22

2 3 1 23 1
1 2 32 2 2= , = , = ,x z x y x y xx x z

x x x

D D D DD D
p p p

∂ ∂ − ∂ ∂ ∂ ∂ − ∂∂ − ∂ ∂
∂ ∂ ∂

 

  
2 2

2 3 3 1 1 2
1 2 32 2 2= , = , = ,y z y y x y z y y x

y y y

D D D D D D
p p p

∂ ∂ − ∂ ∂ ∂ − ∂ ∂ ∂ − ∂ ∂

∂ ∂ ∂
(24)

  
2 2

2 3 1 23 1
1 2 32 2 2= , = , = .z z y z y z xz x z

z z z

D D D DD D
p p p

∂ − ∂ ∂ ∂ ∂ − ∂ ∂∂ ∂ − ∂
∂ ∂ ∂

 

In accordance with the problem statement, we choose the coordinate system so that the axis OZ  coincides with 
the direction of the angular velocity of rotation. Then the components of the rotation parameter are 

1 2 3= = 0, =D D D D . To solve the system of equations (23), it is necessary to specify the force 0F


 explicitly. Taking 
into account condition (3), we choose an external force in a rotating coordinate system in the following form: 

( )0 0 2 1 0= cos cos , = 0,zF f i j Fφ φ+
  

(25)

where 0f  is the amplitude of the external force, 

( ) ( )1 1 0 2 2 0 1 0 2 0= , = , = 1,0,1 , = 0,1,1 .k x t k x t k k k kφ ω φ ω− −
        

Thus, the external force is given in the plane ( , )X Y  orthogonal to the axis of rotation, and the divergence of this force 
is zero. We seek the solution of the system of equations (23) according to the Cramer rule: 

 ( )  ( ) ( ) ( ){ ( ) ( ) ( )  ( ) }0 0 00 1 1 0 2 1 3 02 3 2 3 3 2 2 3
1= x y

y z z y x z x zu D p D p p D p D F p D p D p D D p F   + + − + − + + + − − +   Δ
(26) 

 ( )  ( ) ( ) ( ){ ( ) ( ) ( )  ( ) }0 0 00 2 2 0 1 2 3 01 3 3 1 3 1 1 3
1= y x

x z x z y z y zv D p D p p D p D F p D p D D p D p F   + + − + − + − − − + +   Δ
 (27) 

( ) ( )  ( ) ( ){ ( ) ( )  ( ) ( ) }0 00 3 1 2 0 3 2 1 01 2 2 1 2 1 1 2
1= x y

y z y z x z x zw D p p D D p p D F p D p D D p p D F   + + − + − + − − − + +   Δ
  (28) 

Here Δ  is the determinant of the system of equations (23), which in its expanded form has the form: 

 ( )  ( )  ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 3 1 2 3 1 21 2 3 1 2 3 2 3 1= x y z y z x x y zD p D p D p D p p D p D p D p D p DΔ + + + + + + + + − − − −

( )  ( ) ( ) ( ) ( )  ( ) ( ) ( )  ( )0 0 02 2 1 1 3 33 2 1 2 3 1 1 2 3x y z z y x y x zp D D p p D p D p D D p D p p D D p− + + − − + − + − + − +  (29) 

To calculate expressions (26)-(29), we write the external force (25) in complex form: 

0 02 1
0 = . .

2 2
i if fF i e j e c cφ φ+ +

  
(30)

Then all operators in formulas (26)-(29) act from the left on eigenfunctions: 

  ( )   ( )1 1 2 20 0 0 01 0 2 0= , , = , ,i i i iD e e D k D e e D kφ φ φ φω ω− − ( ) ( )1 1 2 2
1 0 2 0= , , = ,i i i ie e k e e kφ φ φ φω ωΔ Δ − Δ Δ −  (31) 

To simplify the formulas, we set 0 = 1ω , 0 = 1k  and introduce new notation: 

 ( )  ( )  ( )  ( )
* *

0 1 0 21 0 1 2 0 2, = = 2 1 , , = = 2 1D k A i W D k A i Wω ω− − − − − −  (32)

Here and below, complex conjugate quantities will be denoted by an asterisk. When performing further calculations, 
parts of the components in the tensors  ( )1ijp k  and  ( )2ijp k  vanish, so we write out only the non-zero components: 

 ( )   ( )  ( )  ( )   ( ) * * *
1 1 11 1 1 1 111 12 32 22 33= , = , = , = , = ,

2 2
D Dp k A p k p k p k D p k A− (33)

 ( )   ( )  ( )  ( )   ( )  ( ) * * *
2 2 22 2 2 2 2 211 12 21 22 31 33= , = , = , = , = , = .

2 2
D Dp k A p k D p k p k A p k p k A− −  
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Taking into account formulas (31)-(33), we find the determinant: 

( )   ( )  
2 2* *2 * *2

1 1 2 21 2= , =
2 2

D Dk A A k A A
   

Δ + Δ +   
   

(34)

In a similar way, we find the velocity field of the zero approximation: 



 

*
2 120 0

0 2 2*2 *2
2 1

= . .,
2 4

2 2

i if fA e Deu c c
D DA A

φ φ

+ +
+ +

(35)







*
2 110 0

0 2 2*2 *2
2 2

= . .,
4 2

2 2

i if fDe A ev c c
D DA A

φ φ

− + +
+ +

(36)

 

2 1
0 0

0 2 2*2 *2
2 1

= . .
4 4

2 2

i if fDe Dew c c
D DA A

φ φ

− +
+ +

(37)

The relations obtained for the velocity field in the zeroth approximation make it possible to find the Reynolds stresses 
necessary to close the equation. 

2.4. Reynolds stresses and large-scale instability 
Consider large-scale fields that satisfy the geometry of the problem within the framework of the “quasi-two-

dimensional” model (17). Large-scale derivatives with respect to Z are then preferred.  

, .Z Z X Y
∂ ∂ ∂∇ ≡

∂ ∂ ∂
  

In this case, equation (20) can be written in the coordinate form: 

( )2
1 1 0 0 1 1= 0,z x x

T Z ZW W v v W W−∂ − ∇ + ∇ ≡ (38)

( )2
2 2 0 0 2 1= 0,z y y

T Z ZW W v v W W−∂ − ∇ + ∇ ≡ (39)

To close the equations (38)-(39) it is necessary to calculate the Reynolds stresses 0 0w u  and 0 0w v . These terms are 
easily calculated using formulas (35)-(37). As a result, we get:     

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 22
0 0

0 0 2 22 2
2 2 2 2

1 1 2 2

2 22
0 0

0 0 2 22 2
2 2 2 2

2 2 1 1

=
8 2

16 1 4 1 16 1 4 1
2 2

=
8 2

16 1 4 1 16 1 4 1
2 2

f fD Dw u
D DW W W W

f fD Dw v
D DW W W W

− +
   

− + + − − − + + − −   
   

− −
   

− + + − − − + + − −   
   

(40)

Now equations (38)-(39) have a closed form: 

1 1 0 0 2 2 0 0= 0, = 0.T TW W w u W W w v
Z Z
∂ ∂∂ − Δ + ∂ − Δ −

∂ ∂
(41)

For small values of 1,2W  the Reynolds stress (40) can be expanded into a series in 1,2W . As a result, we obtain the 
following linearized equations (41): 

2
1 1 1 1 2 2=T Z Z ZW W W Wα α∂ − ∇ ∇ − ∇ (42)

2
2 2 1 2 2 1=T Z Z ZW W W Wα α∂ − ∇ ∇ + ∇ (43)

where  
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( )
( )( )

2 22 2
20 0

1 2 222

32 10
= , = , = .

8 2 6 64

D Df f
D D

D
α α α α α

−

+ +
 

The solution of the linear system of equations (42)-(43) will be found in the form of plane waves with the wave vector
K OZ

 , i.e. 

( )1,2 1,2
= expWW A i T iKZω− + (44)

Substituting (44) into the system of equations (42)-(43), we obtain the dispersion equation: 

( )22 2 2
1 2 = 0i K i K Kω α α− + − − (45)

Dispersion equation (45) shows the existence of unstable oscillatory solutions with the oscillation frequency 
2

20=
8
f

D Kω α  

and instability increment 
2

20=
2
f

D K Kγ α −  

The instability is large-scale because the unstable term dominates the damping at large scales: 
2

0 >
2
f

D Kα . The 

maximum instability increment is 2 4 2
max 0= /16f Dγ α  and is achieved on the wave vector 2

max 0= / 4K f Dα . 
Thus, in the considered stationary small-scale “turbulent” medium, large-scale motions arise and grow 

exponentially. It can be expected that stabilization of this instability will occur at the nonlinear stage. We show below 
that, as a result of the development of instability in the system, large-scale spiraling, circularly polarized vortices of the 
Beltrami type are generated. 

2.5. Stationary nonlinear vortex structures 
Obviously, as the amplitude increases, the nonlinear terms decrease and the instability saturates. As a result, 

stationary, nonlinear vortex structures are formed. To find them, we put in equations (41) = 0T∂  and integrate the
equations once over Z. We obtain the following system of equations: 

1 0 0 1

2 0 0 2

=

=

d W w u C
dZ
d W w v C

dZ

+

+
(46)

From equations (46), follow: 
0 0 11

2 0 0 2

=
w u CdW

dW w v C
+
+

(47)

Integrating the system of equations (47), we get: 

0 0 1 2 1 0 0 2 1 2=w v dW C W w u dW C W+ +  (48)

The integrals in expression (48) are calculated through elementary functions, which give the expression for the first 
integral of motion J  of equations (47): 

( ) ( )

( ) ( )

( ) ( )

2
2

2 1 1
1

2 5/2 2 2
22 22

1 12 2

1 2 1 41 2= ln
8 2 ( 8)1 1 2 1 44 1 16 1 22

DW D WWDJ
D DW D WD W W

− + − + +
+ +

+  − − − + ++ − − + −  

 

( )
( )

( ) ( )

2
2

21
2

2 22
1 2 2

1 1

1 4
2

4 1 88( 8)
4 1 16 1

2

DW WD D
WD D W W

− − −
+ − +

−+  
+ − − + − 

 
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( ) ( )

( ) ( )

( )
( )

2 2
2 2

2 2 2

1 2 2 15/2 2 2 2
2 2

2 2

1 1 2 4 1 41 2 2ln
4 12 ( 8) 8( 8)1 2 1 4

2

D DW W D WD C W C W
WD D DW D W

− + − + + − − −
+ + + +

−+ +− − − + +

It is clear that system (46) is analogous to a dynamical system in which the coordinate Z plays the role of time. As 
a result, the standard methods for studying dynamical systems apply. A phase portrait of a dynamic system is thus used 
to gain a qualitative understanding of all possible modes implemented in it. The phase portrait of the system (46) is 
depicted in Fig. 2. From which the most interesting modes of behaviour are easily noticeable. Such regimes correspond 
to trajectories in the phase portrait connecting hyperbolic points with stable and unstable foci. 

Figure 2. Phase portrait of a dynamical system (46) with parameters 1 2= 1, = 0.03, = 0.03D C C− . One can see two hyperbolic 
singular points, as well as stable and unstable nodes.  

On the left side of Fig. 3, we see the solution corresponding to the trajectory connecting the hyperbolic singular 
point with the stable node. On the right in Fig. 3, the solution corresponds to the trajectory connecting the unstable and 
stable foci. All these solutions correspond to large-scale localized vortex structures, such as kinks with rotation, which 
are generated by the instability considered here. The kink connecting a hyperbolic point to a stable knot contains 
rotations around the stable knot, as shown on the left in Fig. 3. In the kink that connects the unstable and stable foci, the 
velocity vector field W  rotates around both singular points, as can be seen from the right side of Fig. 3. Note that, in 
contrast to previous works on the hydrodynamic α -effect in a rotating fluid, the method of asymptotic expansion 
makes it possible to construct a nonlinear theory in a natural way and study stationary nonlinear vortex kinks. 

Figure 3. On the left, a kink is shown connecting a hyperbolic point to a stable knot with parameters 1 2= 1, = 0.04, = 0.04D C C . 
When approaching a stable node, the rotation of the velocity field is observed. On the right, a kink is shown connecting the unstable 
and stable foci with the 1 2= 1, = 0.04, = 0.04D C C  parameters. Here you can see the internal helical structure of the kink 

3. NONLINEAR LARGE-SCALE VORTEX STRUCTURES IN AN OBLIQUELY ROTATING FLUID
This section presents the results of works [32]-[33], where a large-scale instability was studied that occurs in an

obliquely rotating viscous fluid with small-scale turbulence. In [32]-[33], turbulence is modelled by an external small-
scale and high-frequency force with a small Reynolds number. However, the main difference from the results of [30], 
which were presented in the previous section, is that the external force has no helicity. Therefore, the instability 
discussed above should be absent. The mathematical aspects of the theory [32]-[33] are based on a rigorous multiscale 
asymptotic expansion method. In the third order of perturbation theory, nonlinear equations were obtained for a large-
scale velocity field. A study was also carried out of the linear and nonlinear stages of instability, and in the stationary 
mode, nonlinear periodic waves and vortex kinks were found [32]-[33]. 



17
Vortex Dynamo in Rotating Media EEJP. 2 (2023)

3.1 Statement of the problem and equation for a large-scale velocity field 
Let us consider a turbulent flow in an obliquely rotating viscous fluid whose axis of rotation does not coincide 

with the OZ  axis. We will model turbulence with an external small-scale and high-frequency force 0F


 located in the 
plane ( , )X Y  (see Fig. 4). This force is not random and is set in a deterministic way in the following way: 

( )
( ) ( )

0 0 0 2 1

1 1 0 2 2 0 1 0 2 0

= 0, = cos cos ,

= , = , = 1,0,0 , = 0,1,0

zF F f i j

k x t k x t k k k k

φ φ

φ ω φ ω
⊥ +

− −

  

       (49)

Obviously, the non-helical external force (49) satisfies the following properties: 

0 0 0 0 0 0 0
0 0

= 0, = 0, 0, = ;x tdivF F rotF rotF F f F
tλ

 
≠  

 

     
(50)

In addition, the external force (49) is invariant with respect to the parity transformation 0 0( , ) = ( , )F x t F x t− −
   . 

Figure 4. The angular velocity Ω


 is inclined with respect to the plane ( , )X Y in which the external force 0F ⊥


 is located. 

In the absence of rotation = 0Ω , an external force 0F


excites a small-scale flow 0v  with a small Reynolds number

0 0

0

= 1
v t

R
λ

  and zero helicity 0 0 = 0v rotv  . To describe a turbulent flow in an obliquely rotating viscous

incompressible fluid, we use the Navier-Stokes equations in a rotating coordinate system (1)-(2), which in a 
dimensionless form have the form (4)-(5). Further, the problem is to find an equation for a large-scale, slow velocity
field W


. To do this, we also apply the method of multiscale asymptotic expansion with a small parameter R . Then, 

already in the third order of the perturbation theory, we obtain nonlinear equations for the large-scale components of the 
velocity field 1 2( , )W W  in the framework of the “quasi-two-dimensional” model (17): 

( )2
1 1 0 0 1 1= 0,z x x

T Z ZW W v v W W−∂ − ∇ + ∇ ≡ (51)

( )2
2 2 0 0 2 1= 0,z y y

T Z ZW W v v W W−∂ − ∇ + ∇ ≡ (52)

These equations are supplemented by the secular equations (11), (15), and (16). The fundamental difference between 
equations (51)-(52) and (38)-(39) is the Reynolds stresses, since the small-scale velocity fields 0v  included in them will 
be different. Naturally, to close equations (51)-(52), it is necessary to find solutions for the small-scale velocity field 0v . 

3.2. Small-scale velocity field in the zeroth approximation in R  
Using the results of Section 2.2, we calculate the zero-approximation velocity field, considering the geometry of 

the problem (see Fig. 4) and the selection of external force (49). We find expressions for the operator  0D  by 
representing (49) in complex form (30): 

 ( )  ( )  ( )  ( )
* *

0 1 0 21 0 1 2 0 2, = = 1 1 , , = = 1 1D k A i W D k A i Wω ω− − − − − −  (53)

and non-zero components of the tensors  ( )1ijp k  and  ( )2ijp k : 

 ( )  ( )  ( )  ( )1 3 1 2 2 3 2 121 31 12 32= , = , = , = .p k D p k D p k D p k D− − (54)

Here, to simplify the formulas, it was assumed that 0 0 0= 1, = 1, = 1k fω . Taking into account formulas (53)-(54), we 
find the determinant:  
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( )  ( ) ( )  ( )* *2 * *22 2
1 1 2 21 1 2 2= , =k A A D k A A DΔ + Δ + (55)

Using formulas (26)-(29) and (53)-(55) it is easy to find the zero approximation velocity field:  




*
2 2

0 *2 2
2 2

1= . .
2

ie Au c c
A D

φ

+
+

(56)





*
1 1

0 *2 2
1 1

1= . .
2

ie Av c c
A D

φ

+
+

(57)

 

2 1
2 1

0 *2 *22 2
2 12 1

1 1= . .
2 2

i ie D e D
w c c

A D A D

φ φ

− +
+ +

 (58)

Note that the angular velocity component 3D  has dropped out of the expressions for the zero-approximation 
velocity, which is a consequence of the choice of an external force. 

3.3. Reynolds stresses and large-scale instability 
To close equations (51)-(52), we need to calculate the Reynolds stresses 0 0w u  and 0 0w v . These terms are easily 

calculated using formulas (56)-(58). As a result, we get: 

2
0 0 22 2

2 2

1= ,
2

D
w u

A D+
 1

0 0 22 2
1 1

1= .
2

D
w v

A D
−

+
(59)

Now equations (51)-(52) are closed and take the form: 

( ) ( )

( ) ( )

2
1 1 22 2

2 2 2 2

1
2 2 22 2

1 1 1 1

1 = 0,
2 4 1 2

1 = 0
2 4 1 2

T

T

D
W W

Z W D W W

D
W W

Z W D W W

∂∂ − Δ +
∂  − + + − 

∂∂ − Δ −
∂  − + + − 

(60)

For small values 1 2,W W , equation (60) can be linearized, which gives: 

1 1 2 2

2 2 1 1

= 0

= 0,

T

T

W W W
Z

W W W
Z

α

α

∂∂ − Δ −
∂
∂∂ − Δ +

∂

(61)

System (61) describes the positive feedback between the velocity components 1 2,W W , which is carried out by 
projections of the Coriolis force through the coefficients  1,2α :

( )
( )

( )
( )

2 2
1 1 2 2

1 22 22 2
1 2

2 2
= 2 , = 2

4 4

D D D D

D D
α α

− −

+ +

The solution to the linear system (61) will be sought in the form: 

( )1 2, expW W T iKZγ + (62)

Substituting equation (62) into equation (61), we obtain the dispersion equation: 
2

1 2= K Kγ α α± − (63)

Dispersion equation (63) shows the existence of a large-scale instability 1 2 > 0α α  with a maximum increment

1 2
max =

4
α α

γ , with a wave vector max 1 2
1=
2

K α α .

As a result of the development of instability in the system, large-scale helical vortices of the Beltrami type are 
generated. At 1 2 < 0α α , damped oscillations with frequency 0 1 2= Kω α α  appear instead of instability. As can be 
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seen from (63), the increment of large-scale instability γ  depends on the values of 1 2,D D , i.e., on how the external 
forces 0 0,x yF F  are located with respect to the perpendicular projection of the angular velocity of rotation. If one of the 
components 1 2,D D  vanishes or is equal to 2 , then there is no instability. Instability exists in the following cases:  

• 1 2> 2, > 2,D D

• 1 2 1 2, > 0, < 2, < 2,D D D D  
• 2 2

1 2 1 2> 0, > 0, < 2, < 2,D D D D   
• 2 2

1 2 1 2> 0, > 0, < 2, < 2,D D D D   
• 2 2

1 2 2 1< 0, < 0, > 2, < 2D D D D , или 2 2
2 1< 2, < 2,D D

• 2 2
1 2 2 1> 0, < 0, > 2, < 2D D D D , или 2 2

2 1< 2, > 2D D . 
Of course, the instability should stabilise at the nonlinear stage, which we discuss below. 

3.4. Stationary solutions of the nonlinear equation for a large-scale velocity field 
As the perturbation amplitude 1 2,W W  increases, the nonlinear terms in (60) decrease, and the instability saturates. 

As a result, stationary, nonlinear vortex structures are formed. To find them in equation (63), we set = 0
T
∂

∂
and

integrate the equations once with respect to Z . As a result, we obtain the following system of equations: 

( ) ( )
1 2

122 2
2 2 2 2

1=
2 4 1 2

dW D
C

dZ W D W W
+

 − + + − 
,

( ) ( )
2 1

222 2
1 1 1 1

1=
2 4 1 2

dW D
C

dZ W D W W
− +

 − + + − 
 (64) 

Let's move on to some convenient variables in this system:  1 21 21 = ,1 =W W W W− − . Then we get 



( ) ( ) 



( ) ( )  

1 2
12 42 2 2

22 2 2

2 1
22 2 42 2

1 11 1

1=
2 1 2 1

1=
2 1 2 1

DdW C
dZ D D W W

DdW C
dZ D D W W

− +
+ + − +

+
+ + − +

(65)

Again, considering Z  as a variable analogous to time, we can use the usual methods of dynamical systems. So the 
system of equations (65) can be written in the Hamiltonian form:  







1 2

2 1
= , =dW dW

dZ dZW W
∂ ∂−

∂ ∂
 

where the Hamiltonian   has the form: 
( ) ( )1 21 1 2 2= , ,D W D W+   (66)

The function ( ),D W  is

( )
( ) ( )22 2 2 4

, =
2 1 2 1

D dWD W CW
D D W W

+
+ + − +


 

 
 (67)

The integral in formula (67) is calculated using elementary functions. Let's put it simply: 1 2= = = 1D D D . Then 
function (67) is  

( )  

 






2

2 2

1 2 2 2= ln
16 2 2 2

W W WW arctg CW
W W W

 + + + + 
− + −  

 (68)

The amounts  ( ) ( )1 21 2W W+  can be combined into one formula. Then the Hamiltonian is 

 ( )
 ( )

 ( )
 ( )

 ( )  ( )
 ( )  

 
2 2 2 2
1 1 2 2 2 1 1 2

1 21 222 2 2 2
1 1 2 2 1 2 1 2

2 2 2 2 2 2 2 21 1= ln
16 162 2 2 2 2 4

W W W W W W W W
arctg C W C W

W W W W W W W W

+ + + + − + −
+ + +

− + − + + − −
 (69)
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For Hamiltonians (69), it is easy to construct a phase portrait (Fig. 5), where for constant parameters 1 0.1C = , 

2 0.1C = . The phase portrait shows the presence of closed trajectories on the phase plane around elliptical points and 
separatrices that connect hyperbolic points. Obviously, closed trajectories correspond to nonlinear periodic solutions 
(see the left side of Fig. 6), and localized solutions, such as kinks, correspond to separatrices (see the right side 
of Fig. 6). 

Figure. 5. The phase plane for the Hamiltonian (69) for constants 1 2( = 0.1, = 0.1)C C  is shown. One can see the presence of closed 
trajectories around the elliptic points and separatrices that connect the hyperbolic points. 

Figure. 6. The non-linear helical beltrami wave is shown on the left, which corresponds to a closed trajectory on the phase plane. The 
spiral is oriented along the axis Z and inclined with respect to the axis of rotation. On the right is a localized solution (kink) that 
corresponds to a separatrix on the phase plane. Solutions are obtained with parameters 1 2( = 0.1, = 0.1)C C . 

4. NONLINEAR LARGE-SCALE VORTEX STRUCTURES IN AN OBLIQUELY
ROTATING STRATIFIED FLUID 

In this section, we discuss the nonlinear theory of generation of large-scale vortex structures (LSVS) in an 
obliquely rotating stratified medium with small-scale non-spiral turbulence, which was developed in [34]. Here 
turbulence was modeled by an external small-scale force with zero helicity, which creates small-scale flows with a 
small Reynolds number. Analytical results were obtained based on the method of multiscale asymptotic expansions. 
Nonlinear equations were found to describe the evolution of large-scale motions in the third order of perturbation 
theory. Linear instability and stationary nonlinear regimes were studied, and stationary solutions were obtained in the 
form of nonlinear Beltrami waves and localized vortex structures-kinks of a new type [34]. 

When temperature stratification is present, there are significant differences from the findings presented in works 
[32]-[33]. Firstly, the physical state changes completely. Accounting for temperature stratification in a gravitational 
field leads to free convection, resulting in the creation of vortex convective cells. The outcomes of [32]-[33] are not 
applicable in this scenario. Secondly, the mechanism of helicity generation is different here. Initially, non-helical 
external forces and the Coriolis force excite mirror-symmetric turbulence that organizes convective cells in such a way 
that the average helicity of small-scale motions is not zero (α -effect). Thirdly, the regime of large-scale instability is 
significantly altered. The increment of instability becomes much greater in the presence of convection 0Ra ≠ . 

4.1. Equations for Large Scale Fields 
The Boussinesq-Oberbeck approximation describes the perturbations of velocity, temperature, and pressure in a 

rotating coordinate system with a constant temperature gradient. The system of equations is as follows: 

Momentum equation: 

0
1= 2 ii i

k i ijk j k i
k i

V V PV V V ge T F
t x x

ν ε β
ρ

∂ ∂ ∂+ Δ − + Ω + +
∂ ∂ ∂

(70)
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Energy equation: 

=k k k
k

T TV Ae V T
t x

χ∂ ∂+ − Δ
∂ ∂

(71)

Continuity equation: 

= 0i

i

V
x

∂
∂

(72)

The system of equations (70)-(73) describes the evolution of perturbations against the background of the main 
equilibrium state, set by a constant temperature gradient =T Ae∇ −   (heating from below > 0A ) and hydrostatic
pressure: =P g rρ ρ   ∇ − Ω× Ω×  

   , where r  is the radius vector of the fluid element. The vector of the angular

velocity of rotation Ω


 is considered constant (solid-body rotation) and inclined with respect to the plane ( , )X Y , as 
shown in Fig. 7, i.e., for the Cartesian geometry of the problem: ( )1 2 3= , ,Ω Ω Ω Ω


; = (0,0,1)e  is a unit vector in the

direction of the Z axis; gravity is directed vertically downwards = (0,0, )g g− ; β  is the coefficient of thermal

expansion. Equation (70) includes an external force 0F


, which simulates an excitation source in the medium of small-

scale and high-frequency fluctuations of the velocity field 0v  with a small Reynolds number 0 0

0

= 1
v t

R
λ

 .

Figure 7. The angular velocity of rotation Ω


 is not perpendicular to the plane ( , )X Y  in which the external force 0F ⊥


is located, but 

inclined at an angle with respect to it. 

In this context, we employ an external non-helical force in the form of equation (49) and with properties (50). To 
simplify notation, we switch to dimensionless variables in equations (70)-(72), while retaining the notation for the 
dimensional variables 

0
0

0 0 0 0 0

, , , , ,Fx t V Px t V F P
t v f pλ ρ

→ → → → →
 

   
2
0 0 0

0 0 0 2
0 00

= , = , = ,
v v Tt p f T

A
λ ν ν
ν λ λλ

→ .

In dimensionless variables, equations (70)-(72) take the form:  


0= ii i

k i ijk j k i
k i

V V PRV V V D e RaT F
t x x

ε
∂ ∂ ∂+ Δ − + + +
∂ ∂ ∂

(73)

1=k k k
k

T TRV e V Pr T
t x

−∂ ∂+ − Δ
∂ ∂

(74)

= 0i

i

V
x

∂
∂

(75)

New dimensionless parameters have appeared here:  = RaRa
Pr

, 
2
0=

g A
Ra

β λ
νχ

 is the Rayleigh number on the scale 

0λ , =Pr ν
χ

 is the Prandtl number. We consider the Reynolds number 0 0

0

= 1
v t

R
λ

  to be a small parameter of the 

asymptotic expansion, and the parameters iD  and Ra  are arbitrary and do not affect the expansion scheme. The 
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primary objective of this section is to obtain the solvability equations for the multiscale asymptotic expansion, which 
involves finding equations for large-scale perturbations. As in the previous sections, we express the spatial and temporal 
derivatives in equations (73)-(75) using an asymptotic expansion (6). In constructing the nonlinear theory, we represent 
the variables V


, P  as an asymptotic series (7), and the temperature perturbations T  as the following series: 

 ( ) ( ) 2 3
1 0 0 1 2 3

1( , ) =T x t T X T x RT R T R T
R − + + + + +  (76) 

To obtain the equations of the multiscale asymptotic expansion, we substitute the expansions (6)-(7), (76) into the 
system of equations (73)-(75) and group together the terms with the same orders in R  up to the power of 3R . The 
algebraic structure of the asymptotic expansion in equations (73)-(75) differs from the asymptotic expansion presented 
in Section 2.2 due to the presence of terms related to the expansion of temperature perturbations. The fundamental 
secular equations, or equations for large-scale fields, are derived at the third order in R :  

 ( ) 11 1 0 0 =i i k i
T k iW W v v P− −∂ − Δ + ∇ −∇  (77) 

 ( )1
1 1 0 0= k

T kT Pr T v T−
− −∂ − Δ −∇  (78) 

Equations (77)-(78) are supplemented by secular equations:  


3 1 = 0i i ijk j kP Rae T W Dε− −−∇ + + , 1 1 1=k i

k iW W P− − −∇ −∇  

1 1 = 0k
kW T− −∇ , 1 = 0i

iW−∇ , 1 = 0zW− . 

These equations are satisfied by choosing the following geometry for the velocity field: 

 ( ) ( )( ) ( )1 1 1 1 1 1= , , 0 , = , =x yW W Z W Z T T Z P const− − − − − −


 (79) 

In the framework of a quasi-two-dimensional problem, when large-scale derivatives with respect to Z  are 
preferable, i.e. 

,Z Z X Y
∂ ∂ ∂∇ ≡

∂ ∂ ∂
  

Then the system of equations (77)-(78) is simplified and takes the following form: 

 ( )2
1 1 0 0 1 1= 0, =z x x

T Z ZW W v v W W−∂ − ∇ + ∇  (80) 

 ( )2
2 2 0 0 1 2= 0, =z y y

T Z ZW W v v W W−∂ − ∇ + ∇  (81) 

 ( )1
1 1 0 0 = 0z

T ZT Pr T v T−
− −∂ − Δ + ∇  (82) 

Equations (80)-(82) describe the evolution of large-scale vortex fields W


, but the final closure of these equations is 
achieved after calculating the Reynolds stresses ( )0 0

k i
k v v∇ . This shows that we need to find solutions for the small-

scale velocity field 0v . 
 

4.2. Solving Equations for Small-Scale Fields and Calculating Reynolds Stresses 
We write the asymptotic expansion equations in the zeroth approximation in the following form: 

  
0 0 0 0 0=i j i

W i i ijk kD v P Rae T v D Fε−∂ + + +  (83) 

 
0 0= k

kD T e vθ  (84) 

 0 = 0i
i v∂  (85) 

where the notation for the operators is introduced:  

  2 1 2
1 1= , =k k

W t k k t kD W D Pr Wθ
−

− −∂ − ∂ + ∂ ∂ − ∂ + ∂  

Small-scale temperature oscillations are easily found from equation (84): 
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
0

0 =
zv

T
Dθ

(86)

 Substituting (86) into (83), and using the condition of solenoidality of the fields 0v  and 0F


, we find the pressure 0P :  

  1 2 30 0 0 0=P P u P v P w+ + (87)

Here we introduce the notation for the operators 

   


2 3 1 23 1
1 2 32 2 2 2

= , = , =z y y xx z z
D D D DD D

P P P Ra
Dθ

∂ − ∂ ∂ − ∂∂ − ∂ ∂
+

∂ ∂ ∂ ∂
and velocities: 0 0=xv u , 0 0=yv v , 0 0=zv w . Using expression (87), we can eliminate the pressure from equation (83) and, 
as a result, obtain a system of equations for finding the zero-order velocity field: 

 ( ) ( ) ( )0 3 0 2 0 01 2 3 = x
W x x xD p u p D v p D w F+ + − + +

( )  ( ) ( )3 0 0 1 0 01 2 3 = y
Wy y yD p u D p v p D w F+ + + + − (88)

( ) ( )  



2 0 1 0 01 2 3 = 0Wz z z

Rap D u p D v D p w
Dθ

 
− + + + − +  

 
 

The components of the tensor  ijp  have the following form:

   
22

2 3 1 23 1
1 2 32 2 2 2

= , = , = ,ˆ
x z x y x y xx x z x z

x x x

D D D DD D
p p p Ra

Dθ

∂ ∂ − ∂ ∂ ∂ ∂ − ∂∂ − ∂ ∂ ∂ ∂
+

∂ ∂ ∂ ∂

   
2 2

2 3 3 1 1 2
1 2 32 2 2 2

= , = , = ,ˆ
y z y y x y z y y x y z

y y y

D D D D D D
p p p Ra

Dθ

∂ ∂ − ∂ ∂ ∂ − ∂ ∂ ∂ − ∂ ∂ ∂ ∂
+

∂ ∂ ∂ ∂
(89)

   
2 2 2

2 3 1 23 1
1 2 32 2 2 2

= , = , = ˆ
z z y z y z xz x z z

z z z

D D D DD D
p p p Ra

Dθ

∂ − ∂ ∂ ∂ ∂ − ∂ ∂∂ ∂ − ∂ ∂
+

∂ ∂ ∂ ∂

The solution to the system of equations (88) is easily found according to Cramer's rules (26)-(28). Then, using the 
complex form of the external force (49), we find the zero approximation velocity field: 



 

*
20 2

0 03 04* 2
2 22

= . . =
*2

i

W

f
u e c c u u

D D

φ + +
+




 (90)



 

*
10 1

0 01 02* 2
1 11

= . . =
*2

i

W

f
v e c c v v

D D

φ + +
+




(91)

   
0 01 21 2

0 01 02 03 04* *2 2
1 21 21 2

= . . =
* *2 2

i i

W W

f fD D
w e e c c w w w w

D D D D

φ φ− + + + + +
+ + 

, (92)

where  

  



*
1,2 1,2

1,2

*
=

*W
RaD

Dθ

− .

This indicates that the zero-order velocity field is not influenced by the angular velocity component 3D , as a result 
of the chosen external force (49). It is worth noting that the velocity components follow the subsequent relationships: 

( )*
02 01=w w , ( )*

04 03=w w , ( ) ( )* *
02 01 04 03= , =v v v v , ( )*

02 01=u u , ( )*
04 03=u u .

In order to solve equations (80)-(81), which portray the development of large-scale vortex fields, it is crucial to 
compute the Reynolds stress 0 0=ik i kT v v , specifically its components: 
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( ) ( ) ( ) ( )* * * *31
0 0 01 01 01 01 03 03 03 03= =T w u w u w u w u w u+ + + (93)

( ) ( ) ( ) ( )* * * *32
0 0 01 01 01 01 03 03 03 03= =T w v w v w v w v w v+ + + (94)

By substituting the solutions for the small-scale velocity field (90)-(92) into formulas (93)-(94), we can obtain the 
following expressions for the correlators: 

 

 

*2
2 231 0 2

2
2

2 22

( )
=

4
W

f D
T

D D

+

+

 


,      

 

 

*2
1 132 0 1

2
2

1 11

( )
=

4
W

f D
T

D D

+
−

+

 


(95)

If we assume the medium is the atmosphere, the Prandtl number is approximately equal to one = 1Pr . In this case, the 
expressions for the Reynolds stress components become simplified: 

2 2
31 0 2

2 2 2 2 2 2 2 2
2 2 2 2 2

(1 )=
2 (1 )((1 ) 2( )(1 ) ( ) )
f W RaT D

W W D Ra W D Ra
+ −

+ + + − − + −


   (96)

2 2
32 0 1

1 2 2 2 2 2 2 2
1 1 1 1 1

(1 )=
2 (1 )((1 ) 2( )(1 ) ( ) )
f W RaT D

W W D Ra W D Ra
+ −

−
+ + + − − + −


   (97)

By substituting (96)-(97) into (80)-(81), we can obtain closed equations for the evolution of large-scale vortex
fields W


: 

2 2
2 0 2

1 2 2 2 2 2 2 2 2
2 2 2 2 2

1( ) =
2 (1 )((1 ) 2( )(1 ) ( ) )T Z Z
f W RaW D

W W D Ra W D Ra
 + −

∂ − ∇ ∇  + + + − − + − 


   (98)

2 2
2 0 1

2 1 2 2 2 2 2 2 2
1 1 1 1 1

1( ) =
2 (1 )((1 ) 2( )(1 ) ( ) )T Z Z
f W RaW D

W W D Ra W D Ra
 + −

∂ − ∇ − ∇  + + + − − + − 


   (99)

These closed equations (98)-(99) can be considered as the equations of a nonlinear vortex dynamo in a stratified fluid 
that is rotating obliquely with a non-spiral force acting on the small-scale. If the rotation effect disappears ( = 0Ω ) or 
the rotation axis coincides with the OZ  axis ( OZΩ


 ), the usual diffusion spreading of large-scale fields will occur. In 

the limit of a homogeneous fluid = 0Ra , equations (98)-(99) are completely equivalent to equations (60) when 0 = 1f .  

4.3. Large scale instability 
Equations (98)-(99) are used to describe the nonlinear behavior of large-scale perturbations in the vortex field. 

Consequently, it is important to investigate the stability of small perturbations in the field W


. For small values of 
( )1 2= ,W W W


, equations (98)-(99) can be simplified to a system of linear equations: 

2
1 1 2 2

2
2 2 1 1

= 0
= 0

T Z Z

T Z Z

W W W
W W W

α
α

∂ − ∇ − ∇
∂ − ∇ + ∇

(100)

where the following notation for the coefficients is introduced: 

2 2 2
2 1 1

1 0 1 2 2 2
1

( 2)(2 ) (4 ( ) )
=

(4 ( ) )
D Ra Ra Ra D Ra

f D
D Ra

α
 − − − + + −
 + − 

, 

2 2 2
2 2 2

2 0 2 2 2 2
2

( 2)(2 ) (4 ( ) )
=

(4 ( ) )
D Ra Ra Ra D Ra

f D
D Ra

α
 − − − + + −
 + − 

. (101)

This shows that equations (100) are similar to the equations for a vortex dynamo or hydrodynamic α -effect. To 
study the large-scale instability described by equation (100), we choose perturbations in the form of plane waves with 
the wave vector K OZ


 . As a result, we find the dispersion equation: 

( )22 2
1 2 = 0i K Kω α α− + − (102)
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Representing 0= iω ω + Γ , from equation (102) we find:  

 2
1 2= =Im K Kω α αΓ ± −  (103) 

Solutions (103) show the existence of instability at 1 2 > 0α α  for large-scale vortex disturbances. If 1 2 < 0α α , then 

instead of instabilities, damped oscillations occur, respectively, with frequency 0 1 2= Kω α α . By means of the 
coefficients 1α , 2α  a positive feedback is established between the velocity components, which is carried out by 
projections of the Coriolis force. Note that in the linear theory considered here, the coefficients 1α , 2α  do not depend 
on the field amplitudes but only on the rotation parameters 1,2D , the Rayleigh number Ra , and the amplitude of the 
external force 0f . Let us analyze the dependence of these coefficients on dimensionless parameters, assuming the 
dimensionless amplitude of the external force to be equal to 0 = 10f . Fixing the level of the dimensionless force means 
choosing a certain level of the stationary background of small-scale and fast oscillations. In the coefficients  1α , 2α  
instead of the Cartesian projections 1D  and 2D , it is convenient to pass to their projections in the spherical coordinate 
system ( , , )D φ θ  (see Fig. 8). 

Figure 8. The conversion between the Cartesian projections of the rotation parameter D  (or the rotation angular velocity vector Ω ) 
and their projections in a spherical coordinate system is demonstrated. 

The coordinate surface represented by =D const  forms a sphere, where θ  stands for latitude ( [0, ]θ π∈ ) and φ  
denotes longitude ( [0, 2 ]φ π∈ ). To investigate the impact of rotation and stratification on the gains 1α , 2α , we assume 
that 1D  and 2D  are equal, corresponding to a fixed longitude value of = / 4 nφ π π+ , where = 0,1, 2...n k , k  is an 
integer. Under this assumption, the amplification factors for vortex disturbances are given by: 

2 2 2 22
2

1 2 0 2 2 2 2

4( 2 4)(2 ) 2 (16 ( sin 2 ) )sin= = = 2 sin
(16 ( sin 2 ) )

D Ra Ra Ra D Raf D
D Ra

θ θα α α θ
θ

 − − − + + −
 + − 

 

This implies that generating vortex disturbances at the poles ( = 0, = )θ θ π  is not efficient since 0α → . The left 
side of Fig. 9 illustrates the dependence of the coefficient α on the fluid stratification parameter (Rayleigh number Ra ) 
at a fixed value of latitude = / 2θ π  and number = 2D . 

 
Figure 9. a) Plot of the dependence of the α -effect on the medium stratification parameter Ra  (Rayleigh number); b) plot of the 
dependence of the α -effect on the medium rotation parameter D . 
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It also shows the case of a homogeneous medium, where large-scale vortex disturbances are generated by the 
external small-scale non-spiral force and the Coriolis force. Fig. 9 indicates that temperature stratification ( 0Ra ≠ ) can 
result in a significant increase in the coefficient α , leading to faster generation of large-scale vortex disturbances than 
in a homogeneous medium. This effect is particularly significant at higher numbers. Moreover, an increase in Rayleigh 
numbers leads to a decrease in the values of the coefficient. We are also interested in exploring the impact of the 
medium rotation effect on the amplification factor or the process of generating large-scale disturbances. Therefore, we 
set the Rayleigh number to = 2Ra  at = / 2θ π . On the right-hand side of Fig. 9, the functional relationship ( )Dα  is 
presented. It is evident from the graph that the coefficient attains its maximum value maxα at a specific rotation
parameter D after which it gradually diminishes with an increase in D . This implies that the α -effect is suppressed. 
Similar behavior was observed in the magnetohydrodynamic α -effect [39]. On the left side of Fig. 10, the combined 
impact of rotation and stratification on the ( , )D Ra  plane is depicted. The gray shaded region indicates the > 0α  

instability area. The maximum instability increment 1 2=
4max

α α
Γ is achieved for wave numbers 1 2=

2maxK
α α

. The 

graph on the right-hand side of Fig. 10 shows the dependence of the instability increment Γ  on the wave numbers K , 
which has a conventional pattern similar to the α -effect. Consequently, a rotating stratified atmosphere experiences the 
generation of large-scale helical circularly polarized vortices of the Beltrami type due to the development of a large-
scale instability. 

Figure 10. The image on the left displays a graph representing the ( , )D Ra  plane. The region indicating positive values of α  
(representing unstable solutions) is shaded in gray, while the region indicating negative values of  α is shown in white. On the right-
hand side, there is a plot showing the relationship between the increment of instability and the wave numbers K , with 

= 2D and = 2Ra as the parameters. 

4.4. Stationary nonlinear vortex structures 
Obviously, with an increase in the amplitude of perturbations, the nonlinear terms decrease and the instability 

saturates. As a result, nonlinear vortex structures are formed. To find them, we put in equations (98)-(99) = 0T∂ and
integrate the equations once over Z. Furthermore, we make the assumption that the projections 1D  and 2D  hold 
identical values. To simplify the calculations, we assign the latitudinal angle a value of = / 2θ π . Consequently, we 
derive a set of nonlinear equations in the following format: 

2
21 2

0 12 2 2 2 2 2 2
2 2 2

1= 2
(1 )(4(1 ) 4( 2 )(1 ) ( 2 ) )

dW W Raf D C
dZ W W D Ra W D Ra

+ −
− +

+ + + − − + −

 
   (104)

2
22 1

0 22 2 2 2 2 2 2
1 1 1

1= 2
(1 )(4(1 ) 4( 2 )(1 ) ( 2 ) )

dW W Raf D C
dZ W W D Ra W D Ra

+ −
+

+ + + − − + −

 
   (105)

1 2,C C  are integration constants that can take any value. It is important to note that the system of dynamic equations 
(104)-(105) is conservative, meaning it possesses a Hamiltonian. To obtain the Hamiltonian, we can express equations 
(104)-(105) in the Hamiltonian form. 







1 2

2 1
= , =dW dW

dZ dZW W
∂ ∂−

∂ ∂
 

where the Hamiltonian   has the form: 
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    1 2 1 21 2 2 1= ( ) ( )W W C W C W+ + −    (106) 

and functions 1,2  are 

 
2

1,2 1,22
1,2 0 2 2 2 2 2 2 2

1,2 1,2 1,2

(1 )
= 2

(1 )(4(1 ) 4( 2 )(1 ) ( 2 ) )
W Ra dW

f D
W W D Ra W D Ra

+ −
+ + + − − + −

 
    

Assuming = = 2D Ra  and 0 = 10f  one can easily calculate the Hamiltonian (106): 

 



 


   

2 2
1 1 2 2

1 2 1 22 12 22 2
1 2

( 3) ( 3)25= 2
2 ( 1) ( 1)

W W W W arctgW arctgW C W C W
W W

 + + − + + + + −
 + + 

  

Equations (104)-(105) being Hamiltonian implies that the phase space can only have two types of fixed points: 
elliptic and hyperbolic fixed points. This can be observed through a qualitative analysis of the system by linearizing the 
right-hand sides of equations (104)-(105) near fixed points, determining their type, and constructing a phase portrait. 
Through this analysis, we have identified four fixed points, two of which are hyperbolic and two of which are elliptic. 
The phase portrait of the dynamic system of equations (104)-(105) with parameters 1 = 1C − , 2 = 1C , 

= = 2D Ra and 0 = 10f  is shown in Fig. 11, which allows us to qualitatively describe possible stationary solutions. The 
phase portrait also reveals the presence of closed trajectories around elliptic points and separatrices connecting 
hyperbolic points. Closed trajectories correspond to nonlinear periodic solutions or nonlinear waves (see Fig. 12a), 
while separatrices correspond to localized kink-type vortex structures (see Fig. 12b), which are the most interesting 
localized solutions. 

 
Figure 11. The phase plane for the dynamic system of equations (104)-(105) under the condition 1 = 1C −  and 2 = 1C . Here you can 
see the presence of closed trajectories around elliptical points and separatrices that connect hyperbolic points. 

 
Figure 12. a) The phase plane displays a non-linear helical wave, which corresponds to a closed trajectory.  b) Localized nonlinear 
vortex structure (kink), which corresponds to the separatrix on the phase plane ( 1 = 1C − , 2 = 1C , = = 2D Ra ). 

 
5. NONLINEAR VORTEX DYNAMO IN A ROTATING STRATIFIED MOIST ATMOSPHERE 

A moist atmosphere is composed of dry air, water vapor, and fluid water droplets. If the specific humidity value is 
below saturation, the atmosphere behaves like a binary mixture of dry air and water vapor, following the usual 
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hydrodynamic equations. However, when the specific humidity reaches saturation, excess water vapor condenses and 
forms a new substance called water content. This process releases a large amount of energy, although we only consider 
its energy effect here as describing a phase transition is a difficult task. This section presents the results of large-scale 
instability in a rotating stratified moist atmosphere with small-scale helicity at low Reynolds numbers, as described in 
[31]. The small-scale helicity is induced by an external force that considers the influence of Coriolis force and 
stratification in a moist atmosphere. The method of multiscale asymptotic expansions was applied in [31], resulting in 
averaged nonlinear equations for large-scale fields in the third order of Reynolds number in a rotating moist 
atmosphere. The instability of the hydrodynamic α -effect was obtained for small amplitudes of large-scale velocity 
perturbations, and the criteria for the development of this instability were determined based on the rotation and 
stratification of the medium. The numerical estimates of the characteristic times and scales of instability given in [31] 
may explain the origin of the large-scale spiral structure of cloud mesovortices and typhoons at the initial stage of their 
development. Furthermore, a numerical analysis of the nonlinear equations in the stationary regime was conducted 
in [31], which revealed the existence of localized helical vortex structures of the kink type.  

5.1. Statement of the problem and basic equations for large-scale vortex fields 
The problem statement is as follows: Consider a layer of the atmosphere where the specific humidity is equal to 

the saturated humidity. The negative gradient of the saturated value of specific humidity in the atmosphere is 
determined by the stationary vertical gradients of temperature and pressure. When ascending air flows, twisted by the 
Coriolis force, condense water vapor and release latent thermal energy. In this medium, small-scale non-spiral 
turbulence is present, which is modeled by an external small-scale force. The main objective of this section is to 
understand how moisture phase transitions affect the dynamics of large-scale or averaged fields. To describe the process 
of wet convection, we use the well-known Boussinesq approximation to write hydrodynamic equations for perturbations 
of velocity V , temperature T , pressure P , and specific water content m  in a rotating coordinate system. 

( )1 0
1= 2 W ii i

k i ijk j k i
k i

V V PV V V ge T m F
t x x

ν ε β β
ρ

∂ ∂ ∂+ Δ − + + + +
∂ ∂ ∂

(107)

=k k k
k p

T T LV Ae V T K
t x c

χ∂ ∂+ − Δ +
∂ ∂

(108)

=k k k
k

m mV Be V d m K
t x

∂ ∂+ − Δ +
∂ ∂

(109)

= 0i

i

V
x

∂
∂

(110)

The system of equations (107)-(110) describes the evolution of disturbances against the background of the main 
equilibrium state ( )T z , ( )zρ , ( )m z , specified by a constant temperature gradient =T Ae∇ −   ( > 0)A  (heating from

below), an equilibrium gradient of specific water content  =m Be∇ −   ( < 0)B , and hydrostatic pressure:

=P g rρ   ∇ − Ω× Ω×  
   , where r  is the radius vector of the fluid element. Here ( )= 0, 0,g g−  is the gravitational

acceleration vector directed along the OZ axis. The angular velocity vector Ω


 is constant, which means that the 
medium is rotating as a solid body around the OZ axis. The direction of the vector is also along the OZ axis, which 
means that the rotation is around a vertical axis. The constant rotation is an assumption of the problem, which simplifies 
the analysis of the equations and allows us to study the effects of moisture phase transitions on the large-scale 
dynamics. The heat balance equation (108) includes the source of latent heat release from saturated air 
condensation [18]: 

= = , = ,n
k k

p p

dqL LQ K cAe v c
c c dT

(111)

where L  is the specific heat of condensation of water vapor, pc  is the heat capacity of dry air at constant pressure, K

is the rate of condensation, and nq  is the specific saturated humidity or mass fraction of saturated steam. ( )= 0, 0,1e  is
a unit vector in the direction of the Z axis directed vertically upwards, β  is the coefficient of thermal expansion, 

1
,

1=
T Pm

ρβ
ρ

∂ −  ∂ 
 and d  is the diffusion coefficient. 

The Navier-Stokes equation (107) includes an external small-scale force 0F , which models the excitation source in 
the medium of small-scale and high-frequency pulsations of the velocity field 0v  with a small Reynolds number 
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0 0

0

= 1
v t

R
λ

 . The main role of this force is to maintain a small level of small-scale motions in the presence of 

dissipation. Here we consider a small-scale external force of the form (25) with properties (3). Applying the usual 
dimensionless procedure to the variables 0, , , , ,x t V P F T  as well as to perturbations of the specific water content 

0/m m Bλ→ , we write equations (107)-(110) in a dimensionless form: 

  ( ) 0= ii i
mk i ijk j i

k i

V V PRV V D V e RaT R m F
t x x

ε
∂ ∂ ∂+ Δ − + + + +
∂ ∂ ∂

 (112) 

 1=k k k
k

T TRV ae V Pr T
t x

−∂ ∂+ − Δ
∂ ∂

 (113) 

 1=k k k
k

m mRV be V S m
t x

−∂ ∂+ − Δ
∂ ∂

 (114) 

 = 0i

i

V
x

∂
∂

 (115) 

Here, new dimensionless parameters have appeared that are characteristic of a moist atmosphere:  = m
m

R
R

S
, 

4
1 0=m

g B
R

d
β λ
ν

 is the diffusion analogue of the Rayleigh number on the scale 0λ ; =S
d
ν  is the Schmidt number, 

= 1 , = 1
p

c cAa L b
c B

+ + . The small parameter of the asymptotic expansion will be the Reynolds number R  of small-

scale motions, and the parameters Ra , mR  and D will be considered arbitrary, not affecting the expansion scheme. 
Consider the problem statement below. Moist air found in certain parts of the atmosphere is made up of dry air, 

water vapor, and fluid water droplets. This environment experiences small-scale, high-frequency movements supported 
by an external force. The Coriolis force twists ascending airflows, leading to the condensation of water vapor into water 
and the release of latent thermal energy. The negative gradient of the saturated value of specific humidity in the 
atmosphere is determined by stationary vertical gradients of temperature and pressure. The impact of moisture phase 
transitions can significantly affect the dynamics of large-scale or averaged fields. To obtain equations for large-scale 
fields, the multiscale asymptotic expansion method is used. This method identifies the equations for large-scale 
perturbations by separating them from the hierarchy of perturbations. By using the technique described in the previous 
sections, the spatial and temporal derivatives in the system (112)-(115) are represented as an expansion (6). The 
variables , ,V P T


 are represented as an asymptotic series (7) and (76). In constructing a nonlinear theory, perturbations 

of specific water content m are also represented as an asymptotic series. 

 ( ) ( ) ( ) 2 3
1 0 0 1 2 3

1, =m x t M X m x Rm R m R m
R − + + + + +  (116) 

The algebraic structure of the asymptotic expansion of equations (112)–(115) in various orders R  is given in [31]. It is 
also shown that it is in order 3R  that the main secular equations, or equations for large-scale fields in a moist 
atmosphere, are obtained: 

 ( ) 11 1 0 0 =i i k i
T k iW W v v P− −∂ − Δ + ∇ −∇  (117) 

 ( )1
1 1 0 0= k

T kT Pr T v T−
− −∂ − Δ −∇  (118) 

 ( )1
1 1 0 0= k

T kM S M v m−
− −∂ − Δ −∇  (119) 

Equations (117)-(119) are supplemented by the following secular equations: 

 
3 1 1 = 0k

mi i i ijkP Rae T e R M D Wε− − −−∇ + + + , 1 1 1=k i
k iW W P− − −∇ −∇ , 1 1 = 0k

kW T− −∇  

1 1 = 0k
kW M− −∇ , 1 = 0i

iW−∇ , 1 = 0zW− . 
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These equations are satisfied by large-scale fields of the Beltrami type: 

( ) ( )( ) ( ) ( )1 1 1 1 1 1 1 1= , , 0 , = , = , =x yW W Z W Z M M Z T T Z P const− − − − − − − −


(120)

In the framework of the “quasi-two-dimensional” problem, when large-scale derivatives with Z  are preferable 

,Z Z X Y
∂ ∂ ∂∇ ≡

∂ ∂ ∂


the system of equations (117)-(119) is simplified and takes the following form: 

( )2
1 1 0 0 1 1= 0,z x x

T Z ZW W v v W W−∂ − ∇ + ∇ ≡ (121)

( )2
2 2 0 0 2 1= 0,z y y

T Z ZW W v v W W−∂ − ∇ + ∇ ≡ (122)

( )1
1 1 0 0 = 0z

T ZT Pr T v T−
− −∂ − Δ + ∇ (123)

( )1
1 1 0 0 = 0z

T ZM S M v m−
− −∂ − Δ + ∇ (124)

The system of equations (121)-(124) describes the evolution of large-scale disturbances in a rotating moist 
atmosphere within the framework of the condensation heat release model. To study the dynamics of a large-scale vortex 
field, it is necessary to obtain equations (121)–(122) in a closed form, i.e., to calculate the Reynolds stresses ( )0 0

k i
k v v∇ .

It is clear that in order to solve this problem, it is necessary to find solutions for a small-scale velocity field 0v .

5.2. Small-scale fields in zero order by R
Let us consider the equations for zero order in R  equations (112)-(115) 

  0 0 0 0 0 i 0 0=i j i
mi ijk k iD v P D v e Rae T R e m Fε−∂ + + + + (125)


0 0= k

m kD m be v (126)


0 0= k

kD T ae vθ (127)

where the notation for the operators is introduced 

  2 1 2 1 2
0 1 1 1= , = , = .k k k

mt k t k t kD W D S W D Pr Wθ
− −

− − −∂ − ∂ + ∂ ∂ − ∂ + ∂ ∂ − ∂ + ∂  

Using the condition of solenoidality of the fields 0v and 0F


, we exclude from equation (125) the pressure 0P

( )  0 0 0 0
0 2 2 2=

y x
mx y z z

D v v Ra T R m
P

∂ − ∂ ∂ ∂
+ +

∂ ∂ ∂
(128)

From equations (126)-(127) we find expressions for small-scale temperature 0T  and specific water content 0m :  

 
0 0

0 0= , =
z z

m

av bv
T m

D Dθ

. (129)

Putting (129) into (128), we get 

( ) 





0 0
0 02 2 2

=
y x

x y m z
z

m

D v v aRa bRP v
D Dθ

∂ − ∂  
+ + ∂  ∂ ∂ ∂ 

. (130)

As a result of substituting (130) into (125), we obtain a system of equations for finding the velocity field of the zero 
approximation: 
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  

  

  

0 0 0 011 12 13

0 0 0 021 22 23

0 0 0 031 32 33

=

=

=

x y z x

x y z y

x y z z

p v p v p v F

p v p v p v F

p v p v p v F

 + +
 + +
 + +

(131)

The tensor components  ijp  are as follows:

    





2

011 12 132 2 2= , = , = ,mx y x x z

m

aRa bRp D D p D D p
D Dθ

∂ ∂  ∂ ∂ ∂
− − +  ∂ ∂ ∂ 

 

   





022 23 312 2 2= , = , = ,mx y y z z y

m

aRa bRp D D p p D
D Dθ

∂ ∂ ∂ ∂ ∂ ∂ 
+ + −  ∂ ∂ ∂ 

    





2 2

021 32 332 2 2= , = , = 1my z x z

m

aRa bRp D D p D p D
D Dθ

 ∂    ∂ ∂ ∂
− − + + −       ∂ ∂ ∂   

In equation system (131), we utilize the explicit form of the external helical force 0F , which is determined by 
expression (25). The small-scale velocity fields 0 0 0( , , )x y zv v v are obtained by applying Cramer's rule to the components of 
the external helical force, as described in equations (26)-(28). Following similar procedures as in section 2.3, we 
determine the zero-approximation velocity field in R :  

1 2
0 1 2 01 02 03 04= . . =i iu C e A e c c u u u uφ φ+ + + + + (132)

1 2
0 1 2 01 02 03 04= . . =i iv A e C e c c v v v vφ φ− + + + + (133)

1 2
0 1 2 01 02 03 04= . . =i iw C e C e c c w w w wφ φ− + + + + + (134)

Here ( )*
02 01=w w , ( )*

04 03=w w , ( )*
02 01=v v , ( )*

04 03=v v , ( )*
02 01=u u  ,  and new designations are introduced:

 







  







*
1,2

1,2 1,20
1,2

2* *
1,2 1,2

1,2 1,2

1
* *2

= ,
2

1
* *2 2

m

m

m

m

aRa bRD
D Df

A

bRaRa DD D
D D

θ

θ

 
 − + 
 
 

  
  − + +  

    

  







0
1,2

2* *
1,2 1,2

1,2 1,2

=
4

1
* *2 2

m

m

f DC

aRa bR DD D
D Dθ

  
  − + +  

    

 (135) 

In contrast to the case of a homogeneous medium examined in Section 2, the small-scale velocity field (132)-(134) 
is influenced by the temperature gradient, specific water content gradient, and processes related to heat release during 
vapor condensation. This matter will be further addressed when analyzing the stability of small perturbations of a large-
scale velocity field W


. 

5.3. Nonlinear vortex dynamo equations and large-scale instability 
To close the system of equations (121)-(122) describing the evolution of large-scale velocity fields W


, it is 

necessary to calculate the correlators of the following form: 

( ) ( ) ( ) ( )* * * *31
0 0 01 01 01 01 03 03 03 03= =T w u w u w u w u w u+ + + (136)

( ) ( ) ( ) ( )* * * *32
0 0 01 01 01 01 03 03 03 03= =T w v w v w v w v w v+ + + (137)

Formulas (136), (137) determine the Reynolds stresses, for which we need expressions for small-scale velocity fields 
(132)-(134). After substituting these expressions into formulas (136)-(137), we find:  

231 * *
1 2 2 2 2= 2T C C A C A− + + ,              ( )232 * *

2 1 1 1 1= 2T C C A C A− − + (138)

Substituting expressions (135) into formulas (138), we find expressions for the Reynolds stresses: 
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 













 







1 1

2 2
2 22 2 231 0 0

2 2
2 22 21 1 2 2

1 2

1 1 2 2

1
2 2

=
8 2

2 2 2 2 2 2

m

m

m m

m m

a Pr b SRa R
D Df fDT D

D a D b D D a D b DD Ra R D Ra R
D D D D

θ

θ θ

− −
 
 − − 
 
 − +

   
   + − + + − +
   
   

 (139) 

 













 







1 1

2 2
2 22 1 132 0 0

2 2
2 22 22 2 1 1

2 1

2 2 1 1

1
2 2

=
8 2

2 2 2 2 2 2

m

m

m m

m m

a Pr b SRa R
D Df fDT D

D a D b D D a D b DD Ra R D Ra R
D D D D

θ

θ θ

− −
 
 − − 
 
 − −

   
   + − + + − +
   
   

 (140) 

As a result, equations (121)-(122) take a closed form. If the properties of the medium are such that the Prandtl =Pr ν
χ

and Schmidt =S
d
ν numbers are equal to one, we find

( )

( )
  ( )


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2 22
131 0

2 22
2 2 2 4 2 2

1 1 1 1 1

4
=
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D R RW W W R W D W
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− +

  
+ + + − + − − − −  

   



    


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  ( )


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2
22
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2 22

2 2 2 4 2 2
2 2 2 2 2

4
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2
4 16 4 16 4

2 4 2

RD W
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D R RW W W R W D W

 
+ − 

 +
  

+ + + − + − − − −  
   



    
(141)

( )

( )
  ( )


( )

2 22
232 0

2 22
2 2 2 4 2 2

2 2 2 2 2

4
=

8
4 16 4 16 4

2 4 2

D WfT
D R RW W W R W D W

+
− −

  
+ + + − + − − − −  

   



    
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  ( )


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2
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0
2 22

2 2 2 4 2 2
1 1 1 1 1

4
2

2
4 16 4 16 4

2 4 2

RD W
f

D R RW W W R W D W

 
+ − 

 −
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+ + + − + − − − −  
   



    
(142)

In formulas (141)-(142), the following designation is adopted:  = mR aRa bR+ . As a rule, in atmospheric 
convection, the equilibrium gradient of specific water content is small B c A   and taking into account that the 

expression 1

p

L
c

β
β

  for R  can be represented as a sum  = 1 = ,q
p

cR L Ra Ra R
c

 
+ +  

 
 where 

4
0

2=
g A

Ra
β λ
ν

 is the 

Rayleigh number for "dry" convection at = = dν χ , 
( )

2= m a
q

g
R

β γ γ
ν

−
 is a number characterizing the intensity of 

condensation heat release, and mγ is a wet adiabatic and =a
p

g
c

γ is a dry adiabatic gradient related by the relation [19]:

= n
m a

p

dqL
c dz

γ γ + (143)

Please note that when the medium is homogeneous ( = 0mRa R = ), equations (141)-(142) are equivalent to the 
findings presented in reference [30]. Equations (121)-(122) describe the nonlinear vortex dynamo equations in a humid, 
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rotating atmosphere with a small external force on a small scale. In case of the disappearance of the rotational effect 
( = 0)Ω  or the external force's amplitude is zero ( 0 = 0f ), the large-scale fields will undergo conventional diffusion
spreading.

Initially, we examine the stability of small perturbations, followed by investigating the likelihood of stationary 
structures. When the 1,2W  values are small, the Reynolds stresses (141)-(142) can be expanded into a series in 1,2W , 
resulting in linearized equations (121)-(122). 

2
1 1 1 1 2 2=T Z Z ZW W W Wα α∂ − ∇ ∇ − ∇  (144)

2
2 2 1 2 2 1=T Z Z ZW W W Wα α∂ − ∇ ∇ + ∇  (145)

Here 
2

20
1 =

8
f

Dα α  , 
 2

0
2 0= 1

2 10 25
f R RDα α α

  
− −     

, (146)

( )  
0 22 22

4= ,
6 64 12 1

10
DD R R

α
 

+ + + − + 
 

     

 

( )  

2
2 2 2

222 22

332 10 1
10 50

=

6 64 12 1
10

DD D R RD

DD R R

α

  
− + + +     

  
+ + + − +     

. 

We seek a solution to the linear system of equations (144)-(145) in the form of plane waves with wave vector
K OZ

 . This results in a dispersion equation of the form (45). The solutions of this equation demonstrate the existence 

of unstable oscillatory solutions for large-scale vortex disturbances. It is important to note that the gain 2α for small
amplitudes of large-scale disturbances depends on the amplitude of the external force 0f  (turbulence intensity), the 

rotation parameter D , and the stratification parameter R , which takes into account the characteristics of Ra  “dry” and 

qR  “wet” convection. To start, we examine how the values of coefficient 2α  change with the parameter R , for a fixed 

rotation parameter = 1D  and external force amplitude 0 = 10f . The functional dependence 
2 ( )Rα  is illustrated in

Fig. 13a. The coefficient 2α value at  = 0R  corresponds to a homogeneous medium where the generation of large-scale
vortex disturbances is caused by the Coriolis force and the action of an external small-scale force [30]. Fig. 13a 
illustrates that the presence of temperature stratification ( 0Ra ≠ ) and an additional source of condensation heat release 
( 0qR ≠ ) can increase the coefficient 2α , resulting in faster generation of large-scale vortex disturbances than in a 

homogeneous medium. At a critical value of the stratification parameter   0=R R , the generation of perturbations ceases 
because 2 = 0α . Beyond this point, for   0>R R , the sign of the gain 2α changes. The rising mode becomes damped,
and vice versa. Additionally, we examine the influence of the medium's rotational effect on the gain or the process of 
generating large-scale disturbances by fixing the value of parameter  = 2R  and the external force amplitude 0 = 10f . 
The functional dependence 2 ( )Dα  is illustrated on the right side of Fig. 13. An analysis of the dependence on the 
rotation parameter 2 ( )Dα  reveals that the coefficient 2 0α →  decreases with “fast” rotation D → ∞ , implying that the 
α -effect is suppressed.

Figure 13. a) Plot of dependence of α - effect on medium stratification parameter R . b) Plot of dependence of α - effect on
medium rotation parameter D . 

The graph depicting the dependency 2 ( )Dα  shows that there are certain parameter D values at which the 
generation of vortex disturbances ceases ( 2 = 0α ). Fig. 14a illustrates a graphic representation of the combined 
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influence of rotation and stratification in the plane ( , )D R , highlighting the region of instability 2 > 0α  in gray. The

maximum instability increment 
2
2=

4max
α

Γ is attained at the wavenumbers 2=
2maxK

α
. The dependence graph 

(Fig. 14b) of the instability increment Γ on the wavenumbers K  has a standard form, typical of the α -effect. As a 
consequence of the development of large-scale instability in a rotating humid atmosphere, large-scale spiral circularly 
polarized vortices of the Beltrami type are generated.  

Figure 14. a) The plot illustrates the values of coefficient 2α in the ( , )D R  plane, where the area corresponding to unstable solutions
(positive values of 2α ) is shaded in gray, and the area corresponding to stable solutions (negative values of 2α ) is shown in white. b)

The plot shows the dependence of instability increment on wavenumbers K  for parameters = 1D ,  = 2R  and 0 = 10f .

In conclusion to this section, we can estimate the typical spatial 21 /maxL α  and time 2
21 /maxT α  scales of the 

unstable mode and its growth under the conditions of the hydrodynamic α -effect in a rotating moist atmosphere. To 
achieve this, we calculate the coefficient 2α using the standard characteristics of atmospheric turbulence, such as the
characteristic velocity 0 0.1v ≈  in m/s, the scale of fluctuations 3

0 10λ ≈  in meters, and the turbulent viscosity 510ν ≈
in m/s, as described in references [5] and [18]. 

Hence the characteristic time of turbulent pulsations 2
0 0= / 10t λ ν ≈ s and the value of the rotation parameter 

2 3
0= 2 / 1.4 10D λ ν −Ω ≈ ⋅  (the angular velocity of the Earth's rotation 57 10−Ω ≈ ⋅ s-1) and the Reynolds number 

3
0 0= / 10R v λ ν −≈ . Let’s compare the dimensionless parameters , , mD Ra R  with respect to the Reynolds number R : 

6 6
1/ > 1, / = ·10 > 1, / = ·10 > 1,mD R Ra R A R R Bβ β  

which is consistent with the asymptotic expansion scheme used here. The smallness of the rotation parameter D  makes 
it possible to neglect the terms of order 2D  when estimating the coefficient 2α

2
0

2 = ,
2
f

Dα κ (147)

where the value of 24.5 10κ −≈ ⋅  is calculated according to formulas (146) for the stratification parameter  = 5R . 
Let us express the hydrodynamic helicity 0 0 0= ( / 3)v t v rotvα  (see, for example, [11]) in terms of the 

dimensionless source amplitude: 
2

20 0
0

0

= ,
3v
t v

fα
λ

(148)

Here 0f  is the dimensionless amplitude of the external force included in formula (147). When deriving this formula, it 
is assumed that there is a balance between the source and dissipation, which corresponds to the stationary case. 
Substituting (148) into (147), we find expressions for the characteristic spatial and temporal scales:  

0
2 2

0 0
2 2 2

2 = 106 km,
3
4 = 1.3 days.
9

v
max

max
v

DL
v R
t v RT

D

α κ

α κ

≈

≈
(149)

Here, the hydrodynamic helicity coefficient 210vα −≈  m/s was considered [5]. Thus, quite acceptable estimates (149) of 
the characteristic scales of instability have been obtained, which can explain the origin of the large-scale spiral structure 
of cloudy mesovortices and typhoons at the initial stage of development. 
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5.4. Stationary nonlinear vortex structures 
Clearly, with an increase in the amplitude of perturbations 1,2W , the nonlinear terms decrease and the instability 

saturates. As a result, nonlinear vortex structures are formed. Next, we put = 0T∂  in equations (121)-(122) and 
integrate the equations once over Z, and we get a system of nonlinear equations of the following form: 
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− +
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 (150) 
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 (151) 

Here, 1 2,C C  are arbitrary constants of integration. Let us now find out what types of stationary vortex structures are 
described by the system of equations (150)-(151). Let's start a qualitative analysis of the system of equations (150)-
(151), assuming for simplicity of calculations that the dimensionless parameters are 0 = = 1f D ,  = 2R . 

For a given set of values of the parameters, the phase portrait of equations (150)-(151) can be determined based on the 
constants 1C  and 2C . It has been established using standard methods that the system of equations has four fixed points in the 
region shown in Fig. 15. No fixed points exist outside of this region, and degenerate cases are observed on the boundary, 
resulting in two fixed points. When the parameter values D  are slightly modified, the region of existence of four fixed points 
is slightly deformed, altering its size and shape. Linearizing the vector field (150)-(151) in the neighborhood of the fixed 
points for the values of constants 1C  and 2C  (as shown in Fig. 15) where there are four fixed points, we can determine the 
type of fixed points. For four fixed points, two are hyperbolic, and the remaining two are stable and unstable focus. The 
position and type of the fixed points are used to construct the phase portrait of the system (150)-(151). The phase portrait 
enables us to describe all possible stationary vortex solutions qualitatively. Fig. 16 illustrates the phase portrait of the system 
of equations (150)-(151). The most interesting localized solutions are those that correspond to the phase portrait trajectories 
connecting fixed points on the phase plane. For instance, a separatrix linking a hyperbolic singular point with a stable focus 
corresponds to a solution for a localized kink-type vortex structure with rotation. 

 
Figure 15. The boundary of the parameter region 1 2( , )C C in the phase portrait is marked by the dashed line. Within this region, there 
are two hyperbolic fixed points, as well as a stable and an unstable focus. Outside of this region, there are no fixed points. This area 
was constructed numerically for a value of 0 = = 1f D ,  = 2R . 
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Figure 16. Phase portrait of the system of equations (150)-(151) at 0 = = 1f D ,  = 2R , 1 = 0.01C −  and 2 = 0.01C . One can see the 
presence of two hyperbolic singular points and stable and unstable foci. 

Fig. 17a illustrates the solution obtained through numerical integration. It corresponds to a spiral kink of one type. 
Another type of spiral kink is represented by the solution in Fig. 17b, for which the separatrix on the phase plane 
connects the unstable and stable focus. These solutions result in large-scale localized vortex structures, including kinks 
with rotation, which are produced by the instability of the α -effect. 

Figure 17. a) The image displays a kink that connects a hyperbolic point with a stable focus. As the stable focus is approached, the 
velocity field exhibits rotations. b) The picture illustrates the kink connecting the unstable and stable focus. It shows the internal 
helical structure of the kink. These solutions were obtained using the parameters: 0 = = 1f D ,  = 2R  and 1 = 0.01C − , 2 = 0.01C  .  

6. VORTEX DYNAMO IN A ROTATING MOIST ATMOSPHERE WITH A SMALL-SCALE
NON-HELICAL FORCE 

This section presents the findings of a study conducted in [35] on a large-scale instability in a rotating stratified 
humid atmosphere subjected to a small-scale non-helical force. The previous section explored helical turbulence. 
Helical turbulence in natural conditions is typically attributed to the influence of the Coriolis force on the previously 
uniform, isotropic, and mirror-symmetric (non-spiral) turbulent motion of the medium. This raises a question about the 
origin of helicity itself. The natural hypothesis is that helicity arises due to the Coriolis force acting on convective 
turbulence. In this scenario, large-scale instabilities in the atmosphere should emerge self-consistently, without 
additional assumptions.  

The turbulence in reference [35] was simulated by utilizing an external small-scale force that had no helicity 

0 0 = 0F rotF
 

 and induced velocity fluctuations with a low Reynolds number 0 0

0

= 1
v t

R
λ

 . Additionally, the medium's 

rotation axis was assumed to deviate from the vertical direction. The authors employed the method of multiscale asymptotic 
expansions and derived the equations of a nonlinear vortex dynamo. The study investigated linear instability and stationary 
nonlinear regimes and resulted in the discovery of localized vortex structures, namely nonlinear Beltrami waves and kinks. 

6.1. Closed equations for large-scale vortex fields 
We utilize equations (112)-(115) in the Boussinesq approximation with an external non-helical force 0F


 to 

describe the generation of large-scale vortex structures, such as tropical cyclones. This approach differs from the 
method used in Section 5, which involved a helical force as the source of turbulence for a vortex dynamo in a moist 
atmosphere (see Fig. 18). 

Instead, we use an external non-helical force of the form (49) with properties (50). To understand how the small-
scale motions created by this non-helical force influence the dynamics of large-scale perturbations, we apply the method 
of multiscale asymptotic expansion. The algebraic structure of the asymptotic expansion of equations (112)-(115) in 
different orders in is presented in [35]. By considering the third order of the asymptotic expansion in the Reynolds 
number R , we obtain the basic equations for the evolution of the vortex field in “quasi-two-dimensional” geometry, 
which take the form (121)-(124). 
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Figure 18. The angular velocity Ω


 is inclined with respect to the plane ( , )X Y  in which the external force 0F


is located. 

To derive these equations in a closed form, it is necessary to calculate the Reynolds stresses ( )0 0
k i

k v v∇  by first

obtaining solutions for a small-scale velocity field 0v . It is important to note that this velocity field will differ from the
one found in Section 5.2 for two reasons. Firstly, because a non-helical external force is being considered, and secondly, 
because all projections of the Coriolis force (oblique rotation) are taken into account. To reflect this difference, the term 

0
j

ijk kD v eε  in equation (125) is replaced with 0
j

ijk kv Dε . By performing the same mathematical operations as in Section
5.2, we obtain the zero approximation velocity field: 
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where 

  







* *
1,2 1,2

1,2 1,2

=
* *

m

m

aRa bRA D
D Dθ

− − (155)

This indicates that the component of the rotation parameter 3D  is eliminated due to the choice of an external force of 
the form (49). The resulting small-scale velocity field 0v  (152)-(154) has a non-trivial topology due to the rotation of
the medium, which gives rise to the topological characteristic of helicity 0 0H = v rotv  . Helicity is a measure of the

“knotting” of the field lines of force [5]. We will now demonstrate that an external force without helicity 0 0 = 0F rotF
 

, 
when combined with the Coriolis force, generates an average helicity H 0≠ . In coordinate representation, the average 
helicity is defined as follows:  

0 0 0 0
0 0 0 0H = ,
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or after substituting formulas (152)-(154)  
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For the Prandtl and Schmidt numbers Pr = = 1S , the average  helicity H takes the form: 


 ( )

2
2 1 1

0 2 2 2 2 2 2 2
1 1 1 1 1

(1 )H =
(1 ) (1 ) 2( )(1 ) ( )

D W Rf
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  


 ( )

2
2 2

2 2 2 2 2 2 2
2 2 2 2 2

(1 )
(1 ) (1 ) 2( )(1 ) ( )

D W R
W W D R W D R

+ + +
+ + + − − + − 


  

(156)
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Reynolds stresses are calculated by formulas (136)-(137), using expressions (152)-(155) we obtain 
 

 

*2
2 231 0 2

2
2

2 2 2

( )
=

4
f D A A

T
A D D

+

+
,      

 

 

*2
1 132 0 1

2
2

1 1 1

( )
=

4
f D A A

T
A D D

+
−

+
(157)

If the properties of the medium are such that the Prandtl number Pr  and the Schmidt number S  are equal to one, then 
the expressions for the Reynolds stress components will be simplified:  


 

2 2
31 0 2

2 2 2 2 2 2 2 2
2 2 2 2 2

(1 )=
2 (1 )((1 ) 2( )(1 ) ( ) )
f W RT D

W W D R W D R
+ −

+ + + − − + −


   (158)


 

2 2
32 0 1

1 2 2 2 2 2 2 2
1 1 1 1 1

(1 )= ,
2 (1 )((1 ) 2( )(1 ) ( ) )
f W RT D

W W D R W D R
+ −

−
+ + + − − + −


   (159)

where  = mR aRa bR+ . 

As a result, the equations for the components of the large-scale velocity field W


 take a closed form: 


 

2 2
2 0 2

1 2 2 2 2 2 2 2 2
2 2 2 2 2

1( ) =
2 (1 )((1 ) 2( )(1 ) ( ) )T Z Z
f W RW D

W W D R W D R
 + −

∂ − ∇ ∇  
+ + + − − + − 


   (160)


 

2 2
2 0 1

2 1 2 2 2 2 2 2 2
1 1 1 1 1

1( ) =
2 (1 )((1 ) 2( )(1 ) ( ) )T Z Z
f W RW D

W W D R W D R
 + −

∂ − ∇ − ∇  
+ + + − − + − 


   (161)

Equations (160)-(161) represent the equations of a nonlinear vortex dynamo in a rotating stratified moist 
atmosphere with a small-scale non-helical force. It is important to note that this vortex dynamo effect occurs only in a 
turbulent medium that is undergoing rotation. Equations (160)-(161) have a similar form to equations (98)-(99), except 
that the stratification parameter in equations (160)-(161) contains the parameters of both dry and wet convection: 

 = 1 = q
p

cR L Ra Ra R
c

 
+ +  

 
. When there is no rotation ( 0Ω = ) or external force ( 0 0F = ), the large-scale fields are 

dampened by viscous dissipation. In the limit of a dry atmosphere = 0qR , equations (160)-(161) are identical to 

equations (98)-(99), and in the limit of a homogeneous fluid  = 0R , equations (160)-(161) are identical to equations 
(60) when 0 = 1f . 

6.2. Large scale instability 
Let us consider the initial stage of the evolution of vortex disturbances 1,2W . Then, for small perturbations 

( )1 2,W W , expression (156) can be linearized: 

   
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where 01 02H H+   is the constant average helicity of the small-scale field for very small perturbations  ( )1 2, 0W W → :







2
0

01 02 1 22 2 2 2
1 2

2 2=
2 4 ( ) 4 ( )
f R RH H D D

D R D R

 + ++ − ⋅ + ⋅  + − + − 
(162)

This indicates that the helicity of a velocity field on a small scale in a moist atmosphere that is rotating is influenced by 
both the Coriolis force and an external force that lacks helicity. As a result, the rotation of the medium produces helicity 
and suggests the emergence of a hydrodynamic α -effect, which is responsible for creating large-scale vortices. When 
the values are small 1,2W , equations (160)-(161) become linearized, reducing to the following set of linear equations: 
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2
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(163)

where the following notation is introduced for the coefficients 

   
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(164)

The above statement suggests that the amplification coefficients 1,2α consist of a fixed average helicity 01,02H .
Equations (163) bear a resemblance to the equations used to describe vortex dynamos in media that have helical 
turbulence [5]. In order to analyze the large-scale instability that is described by the system of equations (163), we opt 
to use perturbations in the form of plane waves that have a wave vector K OZ


 , which can be represented as 

1,2 exp( )W i t iKZω− + . By applying this approach to the system of equations (163), we derive the dispersion equation. 

( )22 2
1 2 = 0i K Kω α α− + − (165)

Representing 0= iω ω + Γ , from equation (165) we find 

2
1 2= =Im K Kω α αΓ ± − (166)

The solutions presented in (166) demonstrate that large-scale vortex disturbances exhibit instability when 
1 2 > 0α α . On the other hand, if 1 2 < 0α α , damped oscillations with frequency 0 1 2= Kω α α are observed instead of 

instabilities. Positive feedback between the velocity components is established through the projections of the Coriolis 
force, facilitated by the coefficients 1α  and 2α . It is worth noting that in the linear theory being discussed here, the 
coefficients 1α  and 2α are independent of the field amplitudes but rather depend on the rotation parameters 1,2D , the 

total Rayleigh number R , and the amplitude of the external force 0f . When examining the coefficients 1α  and 2α , it is 
convenient to switch from Cartesian projections to their projections in the spherical coordinate system ( , , )D ϕ θ , where 
the coordinate surface =D const  represents a sphere, with θ  representing latitude ( [0, ]θ π∈ ) and ϕ  representing 
longitude ( [0, 2 ]φ π∈ ). In this case, the rotation parameters 1D  and 2D  in the amplification coefficients of vortex 
disturbances 1α  and 2α  are 

1 2= sin cos , = sin sin .D D D Dθ ϕ θ ϕ  

By setting the rotation parameter D , the stratification parameter R , and the amplitude of the external force 0f  to 
fixed values, we can determine the relationship between the gain and the latitude θ  and longitude ϕ  (as shown 
in Figure 19). 

Figure 19. Contour plot for gain α  versus longitude ϕ  and latitude θ with increasing stratification parameters: )a   = 3R ; )b  
 = 5R ; )c   = 15R . The calculations were carried out for = 2D and 0 = 10f .

Figure 19 indicates that as the stratification parameter R  increases, the maximum gain α  shifts towards the 
equator (latitude = / 2θ π ) and longitude = / 4ϕ π . It is less effective to generate large-scale vortex disturbances at the 
poles ( = 0, = )θ θ π  (where 0α → ), which is consistent with meteorological observations [4], [8] that indicate the 
absence of large-scale cyclones at the Earth's poles. Subsequent calculations will focus on latitude = / 2θ π  and 



40
EEJP. 2 (2023) Michael I. Kopp, Volodymyr V. Yanovsky

longitude = / 4ϕ π  Next, we will examine the impact of the medium rotation D  on the gain α  or the process of 
generating large-scale perturbations by setting the value of the number  = 5R . 

On the left side of Fig. 20a it is shown that at a certain value of the rotation parameter D , the coefficient α  
reaches its maximum value maxα . Further, as the number D  increases, the coefficient α  gradually tends to zero, i.e.,

the α -effect is suppressed. The dependence of the coefficient α  on the medium stratification parameter R  at a fixed 
value of the number = 3D  is also shown in Fig. 20. The case of a homogeneous medium  = 0R  is shown in Fig. 20b, 
where the generation of large-scale vortex disturbances is due to the action of an external small-scale non-helical force 
and the Coriolis force [32]. From Fig. 20c we see that the presence of stratification for “dry” and “wet” convection 
(  0R ≠ ) can lead to a significant increase in the coefficient α  and, as a result, faster generation of large-scale vortex 
disturbances than in a homogeneous medium. Further, with an increase in the Rayleigh numbers R , a decrease in the 
values of the coefficient α  is observed. Fig. 21 is a graph showing the combined effect of rotation and stratification in 
the ( , )D R  plane. Here, the region of instability > 0α  is highlighted in grey. The graph of the dependence (see the right 
side of Fig. 21) of the instability increment Γ on the wave numbers K  has a standard form, typical for the α -effect. 

Figure 20. a) plot of the dependence of the α -effect on medium rotation parameter D ; b) the graph shows the value in the case of a 
homogeneous medium  = 0R ; c) plot of the α -effect versus the medium stratification parameter R . The calculations were carried 
out for 0 = 10f . 

Figure 21. On the left is a graph for α  in the ( , )D R  plane, where the area corresponding to positive values of α  (unstable 
solutions) is shown in grey and the area corresponding to negative values of α  is shown in white; on the right is a graph of the 
dependence of the instability increment Γ  on the wave numbers K  for the parameters = 3D ,  = 5R . 

6.3. Stationary nonlinear vortex structures 
It is evident that the exponential growth of small perturbations 1,2W  resulting from the development of large-scale 

instability eventually saturates. This is attributed to the emergence of nonlinear effects, which weaken the coefficient of 
the nonlinear α -effect ( 4

1,21 / Wα  ) and increase the amplitude of perturbations. Consequently, nonlinear vortex 
structures are formed. To search for stationary structures, we substitute into equations (160)-(161) = 0T∂ and integrate
these equations once over Z. We focus on the case of the maximum value of maxα , where latitude = / 2θ π  and
longitude = / 4ϕ π  This results in a system of nonlinear equations in the following form: 


 

2
21 2

0 12 2 2 2 2 2 2
2 2 2

dW 1= 2
(1 )(4(1 ) 4( 2 )(1 ) ( 2 ) )

W Rf D C
dZ W W D R W D R

+ −
− +

+ + + − − + −

 
   (167)


 

2
22 1

0 22 2 2 2 2 2 2
1 1 1

dW 1= 2
(1 )(4(1 ) 4( 2 )(1 ) ( 2 ) )

W Rf D C
dZ W W D R W D R

+ −
+

+ + + − − + −

 
   (168)
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Here 1 2,C C  are arbitrary constants of integration. Note that the dynamic system of equations (167)-(168) is 
conservative and therefore Hamiltonian. It is easy to find it by writing equations (167)-(168) in the Hamiltonian form: 







1 2

2 1

d d d d= , =
d dd d
W H W H
Z ZW W

−  

where the Hamiltonian H has the form: 

    1 2 1 21 2 2 1H = ( ) ( )H W H W C W C W+ + −  (169) 

the functions 1,2H  are  


 

2
1,2 1,22

1,2 0 2 2 2 2 2 2 2
1,2 1,2 1,2

(1 )dW
H = 2

(1 )(4(1 ) 4( 2 )(1 ) ( 2 ) )
W R

f D
W W D R W D R

+ −
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 
    

The integral in the Hamiltonian 1,2H  is not calculated exactly in quadratures, so we calculate it for fixed rotation 

parameters = 10D  and stratification  = 5R , which were used in the linear theory. Under these conditions, 
Hamiltonian (169) takes the form: 

 



 


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2 2
1 1 2 2

1 2 1 22 12 22 2
1 2

(11 21) (11 21)25H = 5 11( )
4 ( 1) ( 1)

W W W W arctgW arctgW C W C W
W W

 + + − + + + + −
 + + 

 

After performing a qualitative analysis of the system of equations (167)-(168), we found that only two types of 
fixed points can be observed in the phase space: elliptic and hyperbolic fixed points. By linearizing the right-hand side 
of equations (167)-(168) in the vicinity of fixed points, we determined their type and constructed a phase portrait. 
Through this analysis, we identified the presence of four fixed points, two of which are hyperbolic and two are elliptic. 
The phase portrait of the dynamic system of equations (167)-(168) for constants 1 = 0.05C − , 2 = 0.05C and parameters 

= 10D ,  = 5R  and 0 = 10f  is displayed in Fig. 22. This figure shows the existence of closed trajectories on the 
phase plane around elliptic points and separatrices that link hyperbolic points. The closed trajectories correspond to 
nonlinear periodic solutions or nonlinear waves, while the separatrices correspond to localized kink-type vortex 
structures (as depicted in Fig. 23). 

 
Figure 22. Phase plane for the dynamic system of equations (167)-(168) under the conditions 1 = 0.05C −  and 2 = 0.05C . Here you 
can see the presence of closed trajectories around elliptical points and separatrices that connect hyperbolic points. 

 
Figure 23. On the left is a non-linear spiral wave that corresponds to a closed trajectory on the phase plane; on the right is a localized 
non-linear vortex structure (kink), which corresponds to a separatrix on the phase plane. 
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7. VORTEX DYNAMO IN AN OBLIQUELY ROTATING STRATIFIED NANOFLUID WITH A SMALL-
SCALE NON-HELICAL FORCE

An important factor to consider is the impact of small particles present in the hydrodynamic medium, which is of
interest due to its prevalence in both technological and natural environments. The presence of nanoparticles in the 
medium results in what is commonly referred to as a nanofluid. One issue that arises with nanofluids is the generation 
of large-scale structures, which is discussed in this section based on the results of a study (reference [36]). The study 
revealed the occurrence of a large-scale instability in an obliquely rotating stratified nanofluid, caused by an external 
small-scale non-helical force. Nonlinear equations for large-scale motions were obtained using a method of multiscale 
asymptotic expansions, and a linear large-scale instability was examined as a function of rotation parameters D , 
temperature stratification Ra , and nanoparticle concentration  nR . The study also discovered a new effect of LSVS 
generation in a nanofluid associated with an increase in nanoparticle concentration. This effect resulted in the formation 
of circularly polarized Beltrami vortices. The saturation mode of the large-scale instability was studied, and a dynamic 
system of equations for large-scale perturbations of the velocity field was obtained in the stationary regime. Numerical 
solutions of this system of equations were found, which showed the existence of localized vortex structures in the form 
of nonlinear Beltrami waves and kinks.  

7.1. Equations and Statement of the Problem 
The system being considered is an infinite horizontal layer of an incompressible nanofluid that undergoes constant 

rotation at a fixed angular velocity ( )1 2 3= , ,Ω Ω Ω Ω


, with inclination in relation to the ( , )X Y  plane, as illustrated 
in Fig. 24. 

Figure 24. The angular velocity Ω


 is inclined with respect to the plane ( , )X Y  in which the external force 0F ⊥


is located. 

The nanofluid is contained between two parallel planes, = 0z  and =z h , where the temperature and volume 
fraction of nanoparticles remain constant:  

= , = при = 0,
= , = при = ,

d d

u u

T T z
T T z h

φ φ
φ φ

(170)

at > , >d u u dT T φ φ . Both boundary surfaces are assumed to be free. The hydrodynamic equations governing the 
behavior of a viscous, incompressible, rotating nanofluid under the Boussinesq approximation are given by the 
following expressions (as seen, for instance, in references [40]-[41]):  

2
00 00 00 0= [ (1 ) (1 ( ))] 2p u

V V V P V T T g V F
t

ρ μ φρ φ ρ β ρ
 ∂ + ⋅∇ −∇ + ∇ + + − − − + × Ω + ∂ 

        (171)

2( ) = ( )f f p B T
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T T Tc V T k T c D T D
t T

ρ ρ φ
 ∂ ∇ ⋅∇ + ⋅∇ ∇ + ∇ ⋅∇ +  ∂   


 (172)

2 2= T
B

u

DV D T
t T
φ φ φ∂ + ⋅∇ ∇ + ∇

∂


(173)

= 0V∇


(174)

Equations (171)-(174) are accompanied by boundary conditions for the velocity of the nanofluid. The vertical 
impermeability condition of the layer boundaries and the absence of tangential stresses at these boundaries result in the 
following boundary conditions for the velocity: 

2

2= 0, = 0, при = 0,z
z

V
V z h

dz
∂

(175)
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Here, 00 = (1 )p fρ φρ φ ρ+ −  is the density of the nanofluid at the control temperature uT , pρ  is the density of the 
nanoparticles, fρ  is the density of the base fluid at the temperature uT , φ  is the volume fraction of the nanoparticles, 
and β  is the coefficient of thermal expansion. The unit vector = (0,0,1)e  is directed towards the positive Z axis. 
Gravity is directed vertically downwards = (0,0, )g g− ; ( ) , ( )f pc cρ ρ  is the effective heat capacity of the base fluid 
and nanoparticles; BD - Brownian diffusion coefficient, TD  - thermophoretic diffusion coefficient. The signs of the 
coefficients and are positive, and they are respectively equal: 

 
0.26

= , = ,
3 2

f fB
B T

p f f p

kk T
D D

d k k
μ

πμ ρ
   
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where pd  is the diameter of the nanoparticles, Bk  is the Boltzmann constant, ,f pk k  is the thermal conductivity of the 

base fluid and nanoparticles, and fμ  is the viscosity of the base fluid. Equation (171) includes an external force 0F


, 
which simulates an excitation source in the medium of small-scale and high-frequency fluctuations of the velocity field 

with a small Reynolds number 0 0

0

= 1
v t

R
λ

 , where 0λ  is the characteristic scale, 0t  is the characteristic time. Let us 

pass in equations (171)-(174) and boundary conditions (170), (175) to dimensionless variables, which we denote by an 
asterisk (*):  
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Omitting the asterisk (*) in the system of dimensionless equations (176)-(179) and boundary conditions (180), we get 

 2
0

1 = ( )
Pr n m

V V V P V eR eR eRaT Ta V F
t

φ
 ∂ + ⋅∇ −∇ + ∇ − − + + × Ω + ∂ 

          (176) 

 2= ( ) ( )B A B

e e

N N NT V T T T T T
t L L

φ∂ + ⋅∇ ∇ + ∇ ⋅∇ + ∇ ⋅∇
∂


 (177) 

 2 21= A

e e

NV T
t L L
φ φ φ∂ + ⋅∇ ∇ + ∇

∂


 (178) 

 = 0V∇ ⋅


  (179) 

 

2

2

2

2

= 1, = 0, = = 0 при = 0,

= 0, = 1, = = 0 при = 1,

z
d d z

z
u u z

V
T V z

z
V

T V z
z

φ

φ

∂
∂

∂
∂

 (180) 

where 00Pr = / fμ ρ χ  is the Prandtl number, 3= ( )( ) /n p f u d fR ghρ ρ φ φ μχ− −  is the concentration Rayleigh number, 
3= ( (1 ) /m p d f d fR ghρ φ ρ φ μχ+ −  is the Rayleigh number of the base density, 3

00= ( ) /d u fRa T T g hρ β μχ−  is the 

Rayleigh number, 2 4 2 2
0 00= 4 /Ta h ρ μΩ  is the Taylor number, = /e f BL Dχ  is the Lewis number, 

( )
= ( )

( )
p

B u d
f

c
N

c
ρ

φ φ
ρ

− ⋅  

is the coefficient characterizing the increase in the density of nanoparticles, and = ( ) / ( )A T d u B u u dN D T T D T φ φ− −  is the 
modified diffusion coefficient. Let us represent all the quantities in equations (176)-(179) as the sum of the ground 
(stationary) state and the perturbed one:  

 ' ' ' '= , = ( ) , = ( ) , = ( ) .b b bV V T T z T z P P z Pφ φ φ+ + +
 

 (181) 

After substituting (181) into equations (176)-(179), we find the evolution equations for the perturbed quantities 
' ' ', ,V T φ


: 
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' ' '
' ' ' 2 ' ' '

'
' '

= ( )

2( )

b b bB B
z

e e

bA B A B

e e

dT d dTN NT dT dV T V T T
t dz L L dz dz dz dz

dTN N N N dTT T
L L dz dz

φ φφ  ∂ + ⋅∇ + ∇ + ∇ ⋅∇ + + + ∂  

+ ∇ ⋅∇ +



(182)

'
' ' ' 2 ' 2 '1=b A

z
e e

d NV V T
t dz L L

φφ φ φ∂ + ⋅∇ + ∇ + ∇
∂


 

against the background of the main equilibrium state, set by constant gradients of temperature and volume fraction of 
nanoparticles: 

0 = b
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φ− − − +

22

20 = b b b bB A B

e e

d T d dT dTN N N
L dz dz L dzdz

φ   + +   
   

(183)

2 2

2 20 = .b b
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d d T
N

dz dz
φ

+  

Using boundary conditions (180), from equations (183) we find solutions for = 1bT z−  and =b zφ , which have a linear
dependence on z . 

Let the external force 0F


 have the form (49) and satisfy the properties (50). The simple physical form of the 
external force (49) can be easily implemented in laboratory experiments. Let us rescale the variables in the equations for 
perturbations (182):   

' '
0

0
0 0 0 0 0

, , , , ,Fx t V Px t V P F
t v p fλ

→ → → → →
  ''

0 0 0 0 0
2

0 0 0 0

, , = = = 1.
p t f t tTT

R R v v
φφ

λ λ
→ →  

As a result, we obtain the following system of equations for perturbations:  

 2
0

1 =
Pr

n
V RV V P V e R eRaT V D F
t

φ
 ∂ + ⋅∇ −∇ + ∇ − + + × + ∂ 

        (184)

2= ( )B B
z

e e

N NT dT dRV T V T R T
t L L dz dz

φφ∂  + ⋅∇ − ∇ + ∇ ⋅∇ + − + ∂  


(185)

2
( )A B A B

e e

N N N N dTR T T
L L dz

+ ∇ ⋅∇ −

2 21= A
z

e e

NRV V T
t L L
φ φ φ∂ + ⋅∇ + ∇ + ∇

∂


(186)

where new designations are introduced 

 
2

2 3 3
00 0 0 0

2= , = , = .n n
hD R R Ra Raρ λ λ λ
μ

Ω ⋅ ⋅  

In equations (184)-(186), we treat the Reynolds number 0 0

0

= 1
v t

R
λ

  as a small parameter for the purpose of 

asymptotic expansion, while considering the other parameters  , ,nD R Ra  as arbitrary and not impacting the expansion 
scheme. An external force acting on the equilibrium state results in small-scale and high-frequency velocity oscillations. 
Although the average values of these oscillations are zero, nonlinear interactions generate terms in certain orders of the 
perturbation theory that do not cancel out upon averaging. 

7.2. Large scale instability 
By employing the method of multiscale asymptotic expansions in the context of the “quasi-two-dimensional” 

problem, we derived a closed system of equations for the large-scale velocity field W


. This system has the form of 
equations (80)-(81), and the expressions for the Reynolds stress components at = 1Pr  are given by: 
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, (187) 

where  1,2 0 0 1,2= k Wω ω − . The expressions for the coefficients  
1,2nl ,

1,2np , 
1,2nr  have a very cumbersome form and are 

given in [36]. 
When the amplitude ( )1 2,W W  is small, the nonlinear equations for W


can be approximated by linear vortex 

dynamo equations similar to system (100). The solutions of this linear system describe circularly polarized plane waves, 
known as Beltrami waves. The amplitude of these waves grows exponentially over time. The large-scale velocity field 
satisfies the Beltrami flow, which satisfies the following condition: 

= 0W rotW×
 

 

To determine the conditions under which a large-scale vortex instability occurs, we first examine the dependence 
of the amplification nfα  on the angle θ  of inclination of the axis of rotation of the nanofluid. The solid line in Fig. 25 
represents this dependence for fixed values of  

 
0 0= 2, = 2, = = 1, Pr = 5, = 0.122, = 5, = 5000n A eD Ra k R N Lω . 

 
Figure 25. The solid line shows the dependence of the gain nfα  for a nanofluid on the angle of inclination θ , and the dashed line 
shows the dependence of the gain bα  for a pure fluid on the angle of inclination θ . Graphs a) are built for the Prandtl number 
Pr = 5 , and graphs b) for  Pr = 1. 

The values of the nanofluid parameters Pr, , ,n A eR N L  ( 2 3Al O -water) are taken from [40]. As can be seen from 
Fig. 25a, the maximum value nfα  for a nanofluid is the angle of inclination / 5max nθ π π≈ + , and the minimum value 
is / 2min nθ π π≈ + . The dashed line in Fig. 25a corresponds to the dependence ( )bα θ  in the case of a “pure” fluid with 
the Prandtl number Pr = 5 . The graphs in Fig. 25a show that the maximum amplification coefficient = ( ) =0b nf Rn

α α  for 

a “pure” fluid is greater than that for a nanofluid. The same conclusion remains valid for the Prandtl numbers Pr = 1. In 
this case, the maximum gains in nano- and “pure” fluids are at the deflection angles / 2 nθ π π≈ +  (see Fig. 25b). 
Hence, it follows that the characteristic time nfT  and characteristic scale nfL  of large-scale vortices generated in a 
nanofluid exceed the corresponding scales ,b bT L  in a “pure” fluid: 

 2 1 1 2 1 1, , ( / 4) , ( / 2) , ( / 4) , ( / 2)nf b nf b nf nf nf nf b b b bT T L L T L T Lα α α α− − − −≈ ≈ ≈ ≈   

Let us consider the influence of the nanofluid rotation effect on the amplification factor nfα  or the process of large-

scale vortex generation. For these purposes, we fix the nanofluid parameters Pr, , ,n A eR N L , and the Rayleigh number 
 = 2Ra . 

The incline angle chosen is 0.645 / 5maxθ π≈  , which corresponds to the maximum values of the gain 
(see Fig. 26a). As can be seen from Fig. 26a, at a certain value of the rotation parameter D , the coefficient ( )nf bα α  
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reaches its maximum value ( , )
max

nf bα . Further, as the number D  increases, the gains gradually tend to zero, i.e., the
α -effect is suppressed.

Figure 26. a) The solid line shows the dependence of the gain nfα for a nanofluid on the rotation parameter D , and the dashed line
shows the dependence of the gain bα  for a pure fluid on the rotation parameter D ; b) The solid line shows the dependence of the 

gain nfα for a nanofluid on the Rayleigh number Ra , and the dashed line shows the dependence of the gain bα  for a “pure” fluid on

the Rayleigh number Ra ; c) Point 1 corresponds to the value nfα (nanofluid) at  = 0Ra , and Point 2 corresponds to the value

bα (“pure” fluid) at  = 0Ra .  

Further, fixing the nanofluid parameters Pr, , ,n A eR N L , rotation = 2D  and tilt angle 0.645maxθ ≈ , we determine 
the dependence of the coefficient nfα on the Rayleigh number Ra .  It can be seen from Fig. 26b that the maximum

value of the gain ( )nf bα α  corresponds to small Rayleigh numbers Ra . Large-scale vortices are efficiently generated in

the range of Rayleigh numbers  [0,3]Ra ∈ ; this means that at high Rayleigh numbers Ra , large-scale instability does 
not occur in nano- and ordinary fluids, but ordinary convective instability arises. Under the condition when there is no 
heating  = 0Ra , the amplification factor in pure fluid bα  (point 2 in Fig. 26c) is less than that in nanofluid nfα (point 1
in Fig. 26c): >nf bα α . On Figs. 26a-26b it is also observed that the maximum gain = ( ) =0b nf Rn

α α for a “pure” liquid

is greater than that for a nanofluid. On Fig. 27a is a graph showing the combined effect of rotation and temperature 
stratification in the ( , )D Ra  plane. Here, the region of instability > 0nfα  is highlighted in grey. Curve 1 corresponds to 

the instability boundary for a nanofluid (  = 0.122nR ), and curve 2 corresponds to the instability boundary for a pure 
fluid ( = 0)nR . 

Figure 27. a) Plot nfα in the plane ( , )D Ra , where the area corresponding to positive values nfα (unstable solutions) is shown in

grey and negative values are shown in white. Curve 1 corresponds to the instability boundary for a nanofluid (  = 0.122nR ), and 
curve 2 corresponds to the instability boundary for a pure fluid ( = 0)nR . b) A graph of the nfα -effect versus the Rayleigh

concentration number  nR .  

Now let's analyze the influence of the Rayleigh concentration number  nR  on the gain or generation of the LSVS 
for the following fixed parameters: 

0 0= 2, = 3, = = 1, Pr = 5, = 5, = 5000, 0.645A eD Ra k N Lω θ ≈ . On Fig. 27b, the 

intersection of the graphs (curve 1 and curve 2) is at point  (0) (0)( , )n nfC R α . Curve 1 is constructed for the case when there 
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is a temperature gradient  = 3Ra . At  = 0nR , curve 1 shows the maximum value st
bα  (point A) which corresponds to a 

“pure” stratified fluid. A further increase in the concentration of nanoparticles leads to a decrease in nfα . Curve 2 is
plotted for the case when there is no temperature gradient. It can be seen from the behaviour of curve 2 that an increase 
in the concentration of nanoparticles first leads to an increase nfα  and then to a decrease. At  = 0nR , curve 2 shows the

maximum value h
bα  (point B) corresponding to the amplification factor for a homogeneous fluid [32]. Here we see that 

in a “pure” stratified fluid, the generation of LSVSs is more efficient than in a homogeneous fluid, which is consistent 
with the conclusions of [34]. Thus, at a certain value of the number 

(0)
nR  (the concentration of nanoparticles), we obtain 

equal rates of LSVS generation (point C in Fig. 27b) in the nanofluid both with  0Ra ≠  and without a temperature 
gradient  = 0Ra . Physically, this process can be explained as follows. An increase in the concentration of nanoparticles 
on the upper surface layer leads to the appearance of a flow due to the gravitational segregation of nanoparticles on the 
lower surface. In turn, in the presence of a temperature gradient, a heat flux ( ) /d uq e T T h−   arises that prevents the
nanoparticles from settling on the lower surface layer. With an increase in the concentration of nanoparticles  nR , a 
decrease in the proportion of heat flux occurs and, as a result, a decrease in the gain nfα . On the charts in Fig. 28, the
dependence of the instability increment Γ  on the wave numbers K  for the hydrodynamic nfα -effect in a nanofluid at

constant parameters  = 2, = 2, Pr = 5, = 0.122, = 5, = 5000, 0.645n A eD Ra R N L θ ≈  is shown. 
As can be seen from Fig. 28a, with an increase in the frequency 0ω  of the external force 0F  at 0 = 1k , the 

maximum growth rate maxΓ of large-scale vortex disturbances decreases. Fixing the frequency of the external force at

0 = 1ω , we plot the growth rate (see Fig. 28b) as the small-scale wavenumber 0k  changes. For numbers 0 < 1k , one can 
observe both an increase in the maximum growth rate maxΓ of large-scale vortex disturbances ( 0 = 0.8k ) relative to the
level maxΓ at 0 = 1k , and a decrease in the maximum growth rate of large-scale vortex disturbances at 0 = 0.5k . This 
behavior is due to the structural dependence of the coefficient nfα on small-scale parameters of the external force

0 0( , )kω .

Figure 28. a) Plot of the dependence of the instability increment Γ  on the wave numbers  for different frequencies 0ω  of the 

external force 0F


 at 0 = 1k . b) Plot of the dependence of the instability increment Γ on the wave numbers K  for different wave 

numbers 0k  of the external force 0F


at 0 = 1ω .

7.3. Instability saturation and nonlinear structures 
An increase in 1W  and 2W  leads to saturation of the instability. As a result of the development and stabilization of the 
instability, nonlinear structures arise. In the stationary case, these structures are described by nonlinear equations in the 
Hamiltonian form  

1 2

2 1

d dd d= , =
d d d d
W WH H
Z W Z W

− (188)

where the Hamiltonian H  has the form: 

1 1 2 2 2 1 1 2= ( ) ( )H H W H W C W C W+ + −

and the functions 1,2H  are 
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20 1,2

( )d2
= sin

4 2 Pr( )

nk k Ra l Wf
H D

k

ω
θ

ω

+ − −

+ Λ
 . (189)

The integral in the Hamiltonian 1,2H  is not calculated exactly in quadratures. We used the values of nanofluid 

parameters Pr = 1, = 0.122, = 5, = 5000n A eR N L  ( 2 3Al O -water) [40]. As a result of the analysis of nonlinear 
equations, four fixed points were found, two of which are of the hyperbolic type and two of the elliptic type. 

The figure in Fig. 29 depicts the phase portrait of a dynamic system of equations, which bears resemblance to 
equations (104)-(105), given certain constants 1 = 0.005C −  and 2 = 0.005C  parameters = = 2D Ra , 0 0= = 1k ω , 

0 = 10f . Through the phase portrait, we can qualitatively describe potential stationary solutions. Of particular interest 
are localized solutions that can be found in the phase portrait trajectories connecting fixed (singular) points on the phase 
plane. As shown in Fig. 29, closed trajectories are present on the phase plane surrounding elliptical points and 
separatrices that link hyperbolic points. Nonlinear periodic solutions, such as nonlinear waves, correspond to closed 
trajectories, while localized kink-type vortex structures (as seen in Fig. 30) correspond to separatrices. 

Figure 29. Phase plane of the dynamic system of equations (188) for constants 1 = 0.05C −  and 2 = 0.05C . Here you can see the 
presence of closed trajectories around elliptical points and separatrices that connect hyperbolic points. 

Figure 30. On the left is a non-linear spiral wave that corresponds to a closed trajectory on the phase plane; on the right is a localized 
non-linear vortex structure (kink), which corresponds to a separatrix on the phase plane. 

8. CONCLUSIONS
The review paper presents the theoretical findings of the authors [30]-[36] in the area of vortex dynamo in rotating 

media. The focus is on the mechanisms behind the generation of large-scale vortex structures resulting from both non-
helical external forces and the Coriolis force. A comprehensive analysis of closed systems of nonlinear equations 
describing the linear and nonlinear stages of the growth of large-scale vortex flows in rotating turbulent media has been 
conducted. The authors have obtained reasonable estimates of the characteristic scales of instability in a rotating moist 
atmosphere, which can explain the formation of the large-scale spiral structure of cloudy mesovortices and typhoons at 
the initial stage of their development. A promising direction in the development of the vortex dynamo theory for 
rotating nanofluid media containing floating microorganisms. For these media, the theory of large-scale instability can 
also be developed using the asymptotic method of multiscale expansions. We can anticipate the discovery of new large-
scale stationary vortex structures in rotating porous media saturated with nanofluids. The investigation of these 
structures is not only useful for geophysical applications but also for a variety of technological problems. 
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ВИХРОВЕ ДИНАМО У СЕРЕДОВИЩАХ, ЩО ОБЕРТАЮТЬСЯ 
Михайло Й. Коппa,  Володимир В. Яновськийa,b 

aІнститут монокристалів, Національна Академія Наук України, пр. Леніна 60, 61072 Харків, Україна 
bХарківський національний університет імені В.Н. Каразіна, майдан Свободи, 4, 61022, Харків, Україна 

В огляді висвітлено основні досягнення теорії вихрового динамо в середовищах, що обертаються. Обговорюються різні 
моделі вихрового динамо в таких середовищах: однорідна в'язка рідина, температурно-стратифікована рідина, волога 
атмосфера і стратифікована нанорідина. Наведено основні аналітичні та чисельні результати для цих моделей, що отримані 
методом багатомасштабних асимптотичних розкладів. Головна увага приділяється моделям із неспіральною зовнішньою 
силою. Для вологої атмосфери, що обертається, отримані характерні оцінки просторового і часового масштабів вихрових 
структур. Виявлено нові ефекти вихрового динамо у стратифікованій нанорідині, що обертається, які виникають за рахунок 
термофорезу та броунівського руху наночастинок. Результати аналізу нелінійних рівнянь вихрового динамо у 
стаціонарному режимі приводять до існування спіральних кінків, періодичних нелінійних хвиль та солітонів. 
Ключові слова: теорія динамо; великомасштабна нестійкість; сила Коріоліса; багатомасштабні асимптотичні 
розкладання; α-ефект; солітони; кінки 
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In this work, we have considered steady laminar magnetohydrodynamics (MHD) mixed convection flow of an electrically conducting fluid 
in presence of AlଶOଷ nanoparticle while water is the base fluid in a vertical square duct. The walls of the duct are thermally insulated. In 
the energy equation, the effect of viscous dissipation and Joule heat are also considered. In this case, the walls of the duct are kept at a 
constant temperature. By using dimensionless quantities, the governing equations of momentum, induction, and energy are first 
transformed into dimensionless equations and then the reduced equations are solved using an explicit finite difference approach. The 
velocity, temperature, and induced magnetic field profiles are plotted graphically to analyze the effect of different flow parameters. It is 
observed that the nanofluid motion expedites with the increase of the value of the magnetic parameter, Reynolds number, and Prandtl 
number. The current research may find its application in the numerous industrial as well as cooling sectors. This study observed its 
importance with the view to increasing the heat transfer efficiency for practical applications relevant to industry and engineering issues. 
The issues discussed in this study have not been included in the earlier investigation for steady nanofluid flow due to a square duct. 
Keywords: Nanofluids; Explicit finite-difference numerical method (EFDM); MHD flow; Buoyancy force; Mixed convection; square 
duct; Heat transfer; Magnetic field 
PACS: 44.20.+b, 44.40.+a, 44.30.+v, 47.11.-j, 47.11.Bc 

1. INTRODUCTION
Nanofluids which have a wide range of applications in industry are defined as suspensions of solid nanoparticles in 

some form of organic or inorganic materials in basic fluids which are mainly utilized for heat transfer applications. These 
nanoparticles improve the heat transfer performance by raising conduction and convection coefficients which enables 
them to be more effective in various applications. The currently available heat transfer fluids which are used for these 
purposes including water, ethylene glycol mixture, engine oil, etc., possess poor heat transfer capability. In recent times, 
the consideration of nanofluids in engineering and industrial applications has drawn a lot of attention from scientists due 
to their improved thermal properties and advantageous heat transfer characteristics without any pressure drop. As a result 
of their large thermal conductivity, nanofluids are used in place of base fluids as working fluids nowadays. Mixed 
convection flow is the combination of forced and natural convection flows. Further, mixed convection flow in a channel 
or duct is encountered in the Dual-Coolant Lead-Lithium (DDCL) flow for fusion power as a tritium breeder and many 
industrial applications and engineering devices such as a cooling systems for electronic components and reactors. Choi 
and Eastman [1] introduced the concept of nanofluids and presented impressive results with many possibilities for usage. 
Nanofluids are new classes of nano-technology-based materials concerning nanoparticles (1nm to 100 nm) dispersed in 
base fluids. These heat transfer fluids have promoted great interest among researchers in the last few years, mainly due 
to their potential applications. The nanofluids have higher thermal conductivities in comparison to the base fluids, which 
could result in higher heat transfer rates. 

Convection process in a square duct is relevant to certain heat transfer engineering applications acting as electronic 
equipment, food drying, heat exchangers, cooling, and nuclear reactors. Experimentally and numerically in recent years, 
many researchers have studied natural convection and mixed convection in a square duct under a wide range. The mixed 
convection of 𝐀𝐥𝟐𝐎𝟑/𝐰𝐚𝐭𝐞𝐫 nano fluid interior of a square duct accommodates boiling quadrilaterals obstacles on its 
bottom wall considered by Doustdar and Yekani [2]. Mixed convection flows in a square duct partially heated from below 
using nanofluid were studied by Mansour et al. [3]. The results of a numerical study on the mixed convection in a square 
duct filled with a 𝐀𝐥𝟐𝐎𝟑/𝐰𝐚𝐭𝐞𝐫  nanofluid was investigated by Ghasemi and Aminossadati [4]. They concluded that the 
heat transfer rate can be reduced by adding a considerable amount of nanoparticles into the distilled water cases of upward 
and downward sliding walls. Abu-Nada and Oztop [5] investigated the effect in natural convection processes with 
nanofluid which are enclosed in containers. Hemmat Esfe et al. [6] studied the heat transfer and Mixed-convection fluid 
flow of an 𝐀𝐥𝟐𝐎𝟑/𝐰𝐚𝐭𝐞𝐫  nanofluid with effective thermal conductivity and viscosity is dependent on temperature and 
nanoparticle concentration core of a square duct. Their results stipulated that adding 𝐀𝐥𝟐𝐎𝟑 nanoparticle produces an 
extraordinary enhancement of heat transfer concerning that of the unmixed fluid. The effect of the Prandtl number and 
Reynolds number for laminar mixed convection in a top wall moving, the bottom heated square duct was discussed by 
Moallemi and Jang [7]. They investigated that when Reynolds number and Grashof numbers were kept constant, 
increment of Prandtl number enhanced the heat transfer rate. The mixed convection in a square duct having a side wall 
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moving and a local heat source at the bottom wall was investigated by Yang and Aydin [8]. Analyzed mixed convection 
for a square duct with both side walls moving by Dagtekin and Oztop [9]. They conducted the study for three different 
configurations based on the direction of moving walls. Wong and De Leon [10] carried out a review paper detailing the 
current and future applications of nanofluids. Li et al. [11] investigated the forced convective heat transfer of nanofluids 
in solar collectors during the day and night, with distilled water and nanoparticles of 𝐀𝐥𝟐𝐎𝟑,𝐙𝐧𝐎, and 𝐌𝐠𝐎. The nanofluid 
achieved a 𝟑℃ temperature difference during the daytime peak solar radiation compared with the base fluids. With a 
concentration of 𝟎.𝟐%  𝐙𝐧𝐎, a temperature difference of 𝟐.𝟓𝟓℃ for daytime and 𝟏℃ for nighttime was reached, and 
this was determined to be the most attractive option for solar energy utilization. Tooraj et al. [12] witnessed a 28% 
performance improvement in a flat plate collector when it was operated with 𝐀𝐥𝟐𝐎𝟑/𝐰𝐚𝐭𝐞𝐫 nanofluids. Otanicar [13] 
studied the economic and environmental influences of using nanofluids to enhance solar collector efficiency with 
conventional solar collectors. The thermophysical properties of the nanofluid are calculated density by Pak and Cho [14], 
and thermal conductivity by Yu and Choi [15]. The specific heat of the nanofluid is calculated by Xuan and Roetzel [16]. 
The 3D flow of MHD nanofluid with varied nanoparticles including 𝐅𝐞𝟑𝐎𝟒,𝐂𝐮,𝐀𝐥𝟐𝐎𝟑 and 𝐓𝐢𝐎𝟐 and water as the base 
fluid past an exponentially stretched surface was discussed by Jusoh et al. [17]. Hung et al. [18] indicated that 𝐀𝐥𝟐𝐎𝟑/𝐖𝐚𝐭𝐞𝐫 nanofluids require less pumping power, followed by 𝐂𝐮𝐎/𝐖𝐚𝐭𝐞𝐫 nanofluid and 𝐓𝐢𝐎𝟐/𝐖𝐚𝐭𝐞𝐫 nanofluid 
for 1% nanoparticle volume concentration. The computed numerical results are presented graphically for velocity, 
temperature, and induced magnetic field for different flow parameters. 

Sheikhpour et al. [19] examined the role of nanofluids in drug delivery and biomedical technology. Majumder and 
Das [20] presented a short review of organic nanofluids preparation, surfactants, and applications. Dehaj et al. [21] 
observed the efficiency of the parabolic solar collector using NiFeଶOସ/water nanofluid and U-tube. Sivaraj and 
Banerjee [22] studied the transport properties of non-Newtonian nanofluids and applications, and Thumma et al. [23] 
examined that generalized differential quadrature analysis of unsteady three-dimensional MHD radiating dissipative 
Casson fluid conveying tiny particles. Lahmar et al. [24] analyzed heat transfer by squeezing unsteady nanofluid flow 
under the effects of an inclined magnetic field and variable thermal conductivity. Rosca and Pop [25] studied hybrid 
nanofluid flows determined by a permeable power-Law stretching/shrinking sheet modulated by orthogonal surface shear. 
Selimefendigil and Oztop [26] examined thermal management and modeling of forced convection and entropy generation 
in a vented cavity by simultaneous use of a curved porous layer and magnetic field. Jamshed studied [27] the numerical 
investigation of MHD impact on Maxwell nanofluid. Jamshed et al. [28] observed the computational framework of 
Cattaneo-Chritov heat flux effects on Engine Oil-based Williamson hybrid nanofluids. Jamshed studied [29] that thermal 
augmentation in solar aircraft using tangent hyperbolic hybrid nanofluid: a solar energy application. Rao and Deka [30] 
took the Buongiorno model to analyze the heat and mass transfer phenomena of Williamson nanofluid past a moving 
cylinder. Recently, Rao and Deka [31] made a numerical investigation on the unsteady MHD Casson nanofluid flow 
caused due to a porous stretching sheet and found that thermal radiation played a very important role in the heat transfer 
character of the fluid.  

Yusuf et al. [32] investigated entropy generation on flow and heat transfer of a reactive MHD Sisko fluid through 
inclined walls with a porous medium. Hamzah et al. [33] studied MHD mixed convection and entropy generation of CNT-
water nanofluid in a wavy lid-driven porous enclosure at different boundary conditions. Khan et al [34] analyzed the 
analytical assessment of (Al2O3-Ag/H2O) hybrid nanofluid influenced by induced magnetic field for second law analysis 
with mixed convection, viscous dissipation, and heat generation.  Ahmed and Pop [35] investigated mixed convection 
boundary layer flow from a vertical flat plate embedded in a porous medium filled with nano-fluids. Malvandi and 
Ganji [36] studied the mixed convection of alumina-water nanofluid inside a concentric annulus considering 
nanoparticle migration. Tayebi et al. [37] studied the Magnetohydrodynamic natural convection heat transfer of a 
hybrid nanofluid in a square enclosure in the presence of a wavy circular conductive cylinder. Shah et al. [38] examined 
radiative MHD Casson nanofluid flow with activation energy and chemical reaction over past nonlinearly stretching 
surfaces through entropy generation. Rajesh et al. [39] observed that hydromagnetic effects on hybrid nanofluid Cu −AlଶOଷ/water flow with convective heat transfer due to a stretching sheet. Molli and Naikoti [40] studied the MHD 
natural convective flow of 𝐶𝑢/𝑤𝑎𝑡𝑒𝑟 nanofluid over a past infinite vertical plate with the presence of time-dependent 
boundary conditions. Khashi [41] concludes that flow and heat transfer of hybrid nanofluid over a permeable shrinking 
cylinder with Joule heating. Alighamdi [42] studied the boundary layer stagnation point flow of the Casson hybrid 
nanofluid over an unsteady stretching surface. Shahzad et al. [43] observed computational investigation of magneto-
cross fluid flow with multiple slips along wedge and chemically reactive species, and Ibrar et al. [44] discovered the 
interaction of single and multi-walls carbon nanotubes in magnetized-nano Casson fluid over radiated horizontal 
needle. Lund et al. [45] analyzed the effects of Stefan blowing and slip conditions on unsteady MHD Casson nanofluid 
flow over an unsteady shrinking sheet. Recently, Rao and Deka [46] studied the numerical investigation of transport 
phenomena in a nanofluid under the transverse magnetic field over a stretching plate associated with solar radiation. 
Rao and Deka [47] investigated numerical solution using EFDM for unsteady MHD radiative Casson nanofluid flow 
over a porous stretching sheet with stability analysis. 

The present paper aims to investigate the laminar steady MHD mixed convection flow of an electrically conducting 
fluid in a vertical square duct in the presence of a strong transverse magnetic field using a finite difference scheme. The 
walls of the duct are assumed as thermally insulating and walls have a constant temperature. The local balance equations 
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of momentum, magnetic induction, and energy are solved numerically by the finite difference method using the Hartmann 
number ሺ𝐻𝑎ሻ, Grashof number ሺ𝐺௥ሻ, Reynolds number ሺ𝑅௘ሻ, Prandtl number ሺ𝑃௥ሻ, and magnetic Reynolds number ሺ𝑅௠ሻ 
as the parameters. The computed numerical results are presented graphically for velocity, temperature, and induced 
magnetic field for flow parameters. 

• To consider a suitable mathematical model involving governing equations and boundary conditions for the
nanofluid MHD flow across the square duct.

• Nondimensionalization of the governing equations and performance of the explicit finite difference method.
• Plotting graph for the velocity, temperature, and induced magnetic field distribution for different physical

parameters.
• We will compare the obtained results with previous work to validate the efficiency of the numerical approach.

Table 1. Thermo-physical numerical values of water ሺ𝐻ଶ𝑂ሻ and aluminum (𝐴𝑙ଶ𝑂ଷሻ 
Density ሺ𝝆ሻ Specific heat capacity ሺ𝑪𝒑ሻ Thermal conductivity ሺ𝒌ሻ Electrical conductivity ሺ𝝈ሻ 𝐴𝑙ଶ𝑂ଷ 3970 765 40 35×106 𝐻ଶ𝑂 997.1 4179 0.613 0.05

2. MATHEMATICAL FORMULATION AND SOLUTIONS
Description of geometry 

The steady laminar flow of a Newtonian fluid in a vertical square duct with a uniform horizontal magnetic field of 
constant intensity 𝐵௢ applied transverse to the duct walls is considered. 

Figure 1. Physical model and the coordinate system 

Let 𝑎 be the length of the cross-section of the duct. It is assumed that the fluid occupies an area between 𝑥 ൌ 0, 𝑥 ൌ 𝑎; 
and  𝑦 ൌ 0, 𝑦 ൌ 𝑎. The flow is to be consumed by a constant pressure slop డ௣డ௭ and is constrained to proceed in the 
z-direction. 𝑇௢ is a uniform temperature at the walls of the duct is simulate. By the axiom of fully developed flow, the
velocity and temperature fields are side by side, and the only non-vanishing fundamental of velocity and temperature𝑉௭ሺ𝑥,𝑦ሻ  𝑎𝑛𝑑 𝑇ሺ𝑥,𝑦ሻ are side by side to the duct axis and independent of the perpendicular coordinate. The uniform
horizontal applied magnetic field of force 𝐵௢ acts along the y-direction and it induces a magnetic field 𝐵௭ሺ𝑥,𝑦ሻ in the
flow direction. In this study, an electrically conducting fluid flows along the axis of the duct under the influence of an
externally imposed driving pressure gradient and the Lorentz forces caused by the interaction of the flow with the uniform
magnetic field, directed along 𝑦. Buoyancy forces, caused by density changes that result from temperature variation, can
easily be included thus giving rise to mixed MHD convection.
The following assumptions are made in this study:

• The flow is steady, fully developed and fluid is Newtonian.
• The duct is considered to be infinite so that all the fluid properties except the pressure gradient are independent

of the variable 𝑧.
The velocity 𝑉ሬ⃗ , magnetic field 𝐵ሬ⃗  and temperature 𝑇  shall be the ensuing form 𝑉ሬ⃗ ൌ ሼ0,0,𝑉௭ሺ𝑥,𝑦ሻሽ,   𝐵ሬሬሬሬ⃗ ൌ ሼ0,𝐵௢,𝐵௭ሺ𝑥,𝑦ሻሽ,   𝑇 ൌ 𝑇ሺ𝑥,𝑦ሻ 

3. GOVERNING EQUATIONS
The equation of continuity is ൫∇.𝑉ሬ⃗ ൯ ൌ 0. (1)
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The Momentum equation is 𝜌௡௙ ቂడ௏ሬሬ⃗డ௧ + ൫𝑉ሬ⃗ .∇൯𝑉ሬ⃗ ቃ = −∇𝑝 + 𝜇௡௙∇ଶ𝑉ሬ⃗ + ൫𝐽 × 𝐵ሬ⃗ ൯ + 𝑔ሺ𝜌𝛽ሻ௡௙(𝑇 − 𝑇௢). (2)

Maxwell’s equation is ∇.𝐵ሬ⃗ = 0, (3)∇ × 𝐵ሬ⃗ = (𝜇௘)௡௙𝐽. (4)

Ohm’s law: 𝐽 = 𝜎௡௙൫𝐸ሬ⃗ + 𝑉ሬ⃗ × 𝐵ሬ⃗ ൯. (5)

The magnetic induction equation is given by   డ஻ሬ⃗డ௧ = ∇ × ൫𝑉ሬ⃗ × 𝐵ሬ⃗ ൯ + 𝜆௡௙∇ଶ𝐵ሬ⃗ . (6)

Now using equations (1) and (3) in (6) we have డ஻ሬ⃗డ௧ + ൫𝑉ሬ⃗ .∇൯𝐵ሬ⃗ = ൫𝐵ሬ⃗ .∇൯𝑉ሬ⃗ + 𝜆௡௙∇ଶ𝐵ሬ⃗ . (7)

The energy equation or temperature equation: ൫𝜌𝐶௣൯௡௙ ቂడ்డ௧ + ൫𝑉ሬ⃗ .𝛻൯𝑇ቃ = 𝑘௡௙𝛻ଶ𝑇 + 𝜇௡௙𝜙 + ௃మఙ೙೑, (8)

where 𝜈௡௙ = ఓ೙೑ఘ೙೑, (9)𝜆௡௙ = ଵఙ೙೑(ఓ೐)೙೑. (10)

Brinkman's [48] model for the dynamic viscosity of nanofluid is 𝜇௡௙ = ఓ೑(ଵିథ)మ.ఱ. (11)

Following Khan [49], the effective density of nanofluid is considered as 𝜌௡௙ = ൤1 − 𝜙 + 𝜙 ఘೞఘ೑൨ 𝜌௙. (12)

The effective magnetic permeability of nanofluid is given by (𝜇௘)௡௙ = ൤1 − 𝜙 + 𝜙 (ఓ೐)ೞ(ఓ೐)೑൨ (𝜇௘)௙. (13)

Maxwell [50] gives the electrical conductivity of nanofluid 𝜎௡௙ = ቂ1 + ଷ(ఙିଵ)థ(ఙାଶ)ି(ఙିଵ)థቃ 𝜎௙. (14)

The heat capacitance of the nanofluid is given [51] by Khanafer ൫𝜌𝐶௣൯௡௙ = ቈ1 − 𝜙 + 𝜙 ൫ఘ஼೛൯ೞ൫ఘ஼೛൯೑቉ ൫𝜌𝐶௣൯௙. (15)

The thermal expansion coefficient of nanofluid is (𝜌𝛽)௡௙ = (1 − 𝜙)(𝜌𝛽)௙ + 𝜙(𝜌𝛽)௦. (16)

Maxwell-Garnet determined the thermal conductivity of nanofluid 𝑘௡௙ = ൤௞ೞାଶ௞೑ିଶథ൫௞೑ି௞ೞ൯௞ೞାଶ௞೑ାథ൫௞೑ି௞ೞ൯ ൨ 𝑘௙, (17)

where 𝑘௦  𝑎𝑛𝑑  𝑘௙ are solid and fluid thermal conductivity respectively. 
Using velocity, temperature, and current density distribution stated above for steady case, equations (2), (7), and (8) give 
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 ଵ(ଵିథ)మ.ఱ   𝜇௙ ቂడమ௏డ௫మ + డమ௏డ௬మቃ + ஻೚ ቈଵିథାథ(ഋ೐)ೞ(ഋ೐)೑቉ (ఓ೐)೑  డ஻డ௬ + ൤1 − 𝜙 + 𝜙 ఘೞఘ೑൨ 𝜌௙ 𝑔𝛽௙(𝑇 − 𝑇௢)  − డ௣డ௭ = 0, (18) 

  ଵቈଵିథାథ(ഋ೐)ೞ(ഋ೐)೑቉ (ఓ೐)೑ ቂଵା య(഑షభ)ഝ(഑శమ)ష(഑షభ)ഝቃ ఙ೑ ቂడమ஻డ௫మ + డమ஻డ௬మቃ + 𝐵௢ డ௏డ௬ = 0, (19) 

 
 

(20) 
 
 
 

The corresponding boundary conditions are: 
 
 
 

(21) 
 
 
 

The above equations (18), (19), and (20) can be transformed into dimensionless parameters that are defined 

 𝑥̅ = ௫௔  ,𝑦ത = ௬௔  ,𝑉ത = ௏௏೚  ,𝐵ത = ஻஻೚  ,𝑇ത = ்ି ೚்∆் . (22) 

Where 𝐵௢ = −𝑎ଶ(𝜇௘)௡௙ට ఙ೙೑ఘ೙೑ఔ೙೑ డ௣డ௭ ,𝑉௢ = − ௔మఘ೙೑ఔ೙೑ డ௣డ௭ ,∆𝑇 = ௏೚మ஼೛, 
Using dimensionless quantities (22) in equations (18), (19), and (20) and release bullet, become 

 డమ௏డ௫మ + డమ௏డ௬మ +  ஻೚మ௔మቂଵା య(഑షభ)ഝ(഑శమ)ష(഑షభ)ഝቃ഑೑ഋ೑ (ଵିథ).ఱ
௏೚௔ቈଵିథାథ(ഋ೐)ೞ(ഋ೐)೑቉(ఓ೐)೑ቂଵା య(഑షభ)ഝ(഑శమ)ష(഑షభ)ഝቃఙ೑   డ஻డ௬ + ௚ఉ೑௔య(்ି ೚்)ఔ೑మ . ఔ೑௏೚௔  + 1 = 0, (23) 

 డమ஻డ௫మ + డమ஻డ௬మ + 𝑉௢𝑎 ൤1 − 𝜙 + 𝜙 (ఓ೐)ೞ(ఓ೐)೑൨ (𝜇௘)௙ ቂ1 + ଷ(ఙିଵ)థ(ఙାଶ)ି(ఙିଵ)థቃ 𝜎௙  డ௏డ௬ = 0, (24) 

డమ்డ௫మ + డమ்డ௬మ + ఓ೑஼೛(ଵିథ)మ.ఱ௞೑൥ೖೞశమೖ೑షమഝቀೖ೑షೖೞቁೖೞశమೖ೑శഝቀೖ೑షೖೞቁ ൩ . ௏೚మ஼೛∆் ൤ቀడ௏డ௫ቁଶ + ቀడ௏డ௬ቁଶ൨    +
஻೚మ௔మቂଵା య(഑షభ)ഝ(഑శమ)ష(഑షభ)ഝቃ഑೑ഋ೑ 

௏೚మ௔మቈଵିథାథ(ഋ೐)ೞ(ഋ೐)೑቉మቂଵା య(഑షభ)ഝ(഑శమ)ష(഑షభ)ഝቃమఙ೑మ(ఓ೐)೑మ  ൥ೖೞశమೖ೑షమഝቀೖ೑షೖೞቁೖೞశమೖ೑శഝቀೖ೑షೖೞቁ ൩    
  . ఓ೑஼೛௞೑ . ௏೚మ஼೛∆் ൤ቀడ஻డ௫ቁଶ + ቀడ஻డ௬ቁଶ൨ = 0. (25) 

Let 𝐸ଵ = ଵ(ଵିథ)మ.ఱ , 𝐸ଶ = ൤1 − 𝜙 + 𝜙 ఘೞఘ೑൨ , 𝐸ଷ = ൤1 − 𝜙 + 𝜙 (ఓ೐)ೞ(ఓ೐)೑൨ , 𝐸ସ = ቂ1 + ଷ(ఙିଵ)థ(ఙାଶ)ି(ఙିଵ)థቃ , 𝐸ହ = ቈ1 − 𝜙 + 𝜙 ൫ఘ஼೛൯ೞ൫ఘ஼೛൯೑቉ , 𝐸଺ =൤௞ೞାଶ௞೑ିଶథ൫௞೑ି௞ೞ൯௞ೞାଶ௞೑ାథ൫௞೑ି௞ೞ൯ ൨. 
Therefore, the equations (23), (24), and (25) in terms of 𝐸ଵ,  𝐸ଶ,  𝐸ଷ,  𝐸ସ,  𝐸ହ, 𝐸଺ are 

 డమ௏డ௫మ + డమ௏డ௬మ +  ு௔మோ೘ ாరாభாయாర డ஻డ௬ + ீೝோ೐ 𝑇 + 1 = 0, (26) 

 డమ஻డ௫మ + డమ஻డ௬మ +  𝑅௠𝐸ଷ𝐸ସ డ௏డ௬  = 0, (27) 

 డమ்డ௫మ + డమ்డ௬మ + ாభாల 𝑃௥  ൤ቀడ௏డ௫ቁଶ + ቀడ௏డ௬ቁଶ൨ + ு௔మ௉ೝோ೘మ  ாరாయమாరమாల    ൤ቀడ஻డ௫ቁଶ + ቀడ஻డ௬ቁଶ൨ = 0, (28) 

where 

൤௞ೞାଶ௞೑ିଶథ൫௞೑ି௞ೞ൯௞ೞାଶ௞೑ାథ൫௞೑ି௞ೞ൯ ൨ 𝑘௙ ቂడమ்డ௫మ + డమ்డ௬మቃ + ଵ(ଵିథ)మ.ఱ  𝜇௙ ൤ቀడ௏డ௫ቁଶ + ቀడ௏డ௬ቁଶ൨ +ଵ൫(ఓ೐)೑൯మቈଵିథାథ(ഋ೐)ೞ(ഋ೐)೑቉మቂଵା య(഑షభ)ഝ(഑శమ)ష(഑షభ)ഝቃ ఙ೑  ൤ቀడ஻డ௫ቁଶ + ቀడ஻డ௬ቁଶ൨ = 0. 

𝑉௭ = 0,      𝐵௭ = 0,     𝑇 = 𝑇௢,       𝑎𝑡 𝑦 = 0, 𝑉௭ = 0,      𝐵௭ = 0,     𝑇 = 𝑇௢       𝑎𝑡  𝑦 = 𝑎, 𝑓𝑜𝑟 0 ≤ 𝑥 ≤ 𝑏, 𝑉௭ = 0,      𝐵௭ = 0,     𝑇 = 𝑇௢,      𝑎𝑡 𝑥 = 0, 𝑉௭ = 0,      𝐵௭ = 0,     𝑇 = 𝑇௢,      𝑎𝑡 𝑥 = 𝑎, 𝑓𝑜𝑟 0 ≤ 𝑦 ≤ 𝑏. 
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𝐻𝑎 = 𝐵௢𝑎 ටఙ೑ఓ೑, is the Hartmann number, 𝐺௥ = ௚ఉ೑(்ି ೚்)௔యఔ೑మ , is the thermal Grashof number, 𝑃௥ = ఓ೑஼೛௞೑ ,  is the Prandtl number, 𝑅௘ = ௏೚௔ఔ೑ , is the Reynolds number, 

and  𝑅௠ = 𝑉௢𝑎(𝜇௘)௙𝜎௙, is the magnetic Reynolds number. 

The corresponding boundary conditions (21) gives 

(29) 

4. NUMERICAL TECHNIQUE AND GRID INDEPENDENCE STUDY
The dimensionless governing equations (26), (27), and (28) along with the boundary conditions (29) were discretized 

using the finite difference technique. In this numerical procedure, the computational domain is divided into a uniform 
grid system. Both the second-derivative and the squared first-derivative terms are discretized using the central 
difference of second-order accuracy. The finite difference form of 𝜕ଶ𝑉/𝜕𝑥ଶ and 𝜕𝑉/𝜕𝑥, for example, were discretized 
as డమ௏డ௫మ = ௏೔శభ,ೕିଶ௏೔,ೕା௏೔షభ,ೕ∆௫మ + 𝑂(∆𝑥ଶ) and డ௏డ௫ = ௏೔శభ,ೕି௏೔షభ,ೕଶ∆௫ + 𝑂(∆𝑥ଶ), respectively. Therefore, the resultant difference
equations become 𝑉௜ ,௝ = 𝐴ଷ൫𝑉௜ାଵ,௝+ 𝑉௜ିଵ,௝ ൯ + 𝐴ସ ቀ𝑉௜ ,௝ାଵ+ 𝑉௜ ,௝ିଵ ቁ + 𝐴ହ ቀ𝐵௜ ,௝ାଵ− 𝐵௜ ,௝ିଵ ቁ + 𝐴଺൫𝑇௜ ,௝ ൯ + 𝐴଻ (31)

(32) 

𝐴ଵ = 𝐻𝑎ଶ𝑅௠ 𝐸ସ𝐸ଵ𝐸ଷ𝐸ସ ,   𝐴ଶ = 𝐺௥𝑅௘ ,   𝐴ଷ = 𝑘ଶ2(ℎଶ + 𝑘ଶ) ,  𝐴ସ = ℎଶ2(ℎଶ + 𝑘ଶ) ,  𝐴ହ = 𝐴ଵℎଶ𝑘2(ℎଶ + 𝑘ଶ) ,   𝐴଺ = 𝐴ଶℎଶ𝑘ଶ(ℎଶ + 𝑘ଶ), 𝐴଻ = ௛మ௞మ௛మା௞మ ,   𝐴଼ = 𝑅௠𝐸ଷ𝐸,  𝐴ଽ = ஺ఴ௛మ௞ଶ(௛మା௞మ) ,  𝐴ଵ଴ = ாభாల 𝑃௥ ,  𝐴ଵଵ = ு௔మ௉ೝோ೘మ ாరாయమாరమாల , 𝐴ଵଶ = ஺భబ௞మସ(௛మା௞మ) ,  𝐴ଵଷ = 𝐴ଵ଴ℎଶ4(ℎଶ + 𝑘ଶ) ,    𝐴ଵସ = 𝐴ଵଵ𝑘ଶ4(ℎଶ + 𝑘ଶ) ,    𝐴ଵହ = 𝐴ଵଵℎଶ4(ℎଶ + 𝑘ଶ) 

are constants, ∆𝑥 = ℎ 𝑎𝑛𝑑 ∆𝑦 = 𝑘. 
The corresponding discretized boundary conditions are: 

(33) 

Using boundary conditions (32) the values 𝑉௜ ,௝ ,  𝐵௜ ,௝ and  𝑇௜ ,௝ in the equations (30), (31), and (32) with the parameters (𝐻𝑎), (𝑅௠), (𝑃௥), (𝑅௘), (𝐺௥) have been iterated. We have repeated the process, till the converged solution for 𝑉௜ ,௝ ,  𝐵௜ ,௝ 
and  𝑇௜ ,௝ in the grid system are obtained. 

5. RESULTS AND DISCUSSION
“To obtain some physical insight into the problem, a numerical simulation has been constructed to justify the effect 

of various physical parameters that governed are by the system with the inclusion of various physical situations, on the 

𝑉 = 0,      𝐵 = 0,      𝑇 = 0,     𝑤ℎ𝑒𝑛  𝑦 = 0, 𝑉 = 0,      𝐵 = 0,      𝑇 = 0,     𝑤ℎ𝑒𝑛  𝑦 = 1, 𝑉 = 0,      𝐵 = 0,      𝑇 = 0,     𝑤ℎ𝑒𝑛  𝑥 = 0, 𝑉 = 0,      𝐵 = 0,     𝑇 = 0,      𝑤ℎ𝑒𝑛  𝑥 = 1. 

𝑇௜ ,௝ = 𝐴ଷ൫𝑇௜ାଵ,௝+ 𝑇௜ିଵ,௝ ൯+ 𝐴ସ ቀ𝑇௜ ,௝ାଵ+ 𝑇௜ ,௝ିଵ ቁ + 𝐴ଵଶ൫𝑉௜ାଵ,௝− 𝑉௜ିଵ,௝ ൯ଶ +𝐴ଵଷ ቀ𝑉௜ ,௝ାଵ− 𝑉௜ ,௝ିଵ ቁଶ + 𝐴ଵସ൫𝐵௜ାଵ,௝− 𝐵௜ିଵ,௝ ൯ଶ + 𝐴ଵହ ቀ𝐵௜ ,௝ାଵ− 𝐵௜ ,௝ିଵ ቁଶ.

𝑉௜ ,ଵ = 0,            𝐵௜ ,ଵ = 0,          𝑇௜ ,ଵ = 0,      𝑤ℎ𝑒𝑛  𝑗 = 1, 𝑉௜ ,௡ାଵ = 0,       𝐵௜ ,௡ାଵ = 0,      𝑇௜ ,௡ାଵ = 0,    𝑤ℎ𝑒𝑛  𝑗 = 𝑛 + 1,    𝑓𝑜𝑟 1 ≤ 𝑖 ≤ 𝑚 + 1, 𝑉ଵ,௝ = 0,        𝐵ଵ,௝ = 0,          𝑇ଵ,௝ = 0,         𝑤ℎ𝑒𝑛  𝑖 = 1, 𝑉௠ାଵ,௝ = 0,      𝐵ଵ,௠ାଵ = 0,    𝑇ଵ,௠ାଵ = 0,    𝑤ℎ𝑒𝑛  𝑖 = 𝑚 + 1,   𝑓𝑜𝑟 1 ≤ 𝑗 ≤ 𝑛 + 1  . 
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fluid variables, such as velocity, temperature, and induced magnetic field. The effect Hartmann number (𝐻𝑎), Thermal 
Grashof number (𝐺௥), Reynolds number (𝑅௘), Prandtl number (𝑃௥)  and magnetic Reynolds number (𝑅௠) on the velocity, 
temperature, and induced magnetic field profiles are shown graphically. 

The velocity profile of 𝐴𝑙ଶ𝑂ଷ/𝑊𝑎𝑡𝑒𝑟 nanofluid for different values of Hartmann number (𝐻𝑎) is shown in Figure 2. 
It is observed that a rise in the Hartmann number causes a decrease in the velocity profile. This is due to the fact that when 
a magnetic field is applied to an electrically conducting fluid a Lorentz force is produced. This force retards the fluid 
velocity in the boundary layer region as the magnetic field opposes the transport phenomena. 

Figure 2. Effect of Hartmann number (𝐻𝑎) on the velocity 
profile, when 𝐻𝑎 = 2,𝑃௥ = 0.71,𝑅௠ = 10,𝐺௥ = 2,𝑅௘ = 10,ℎ = 𝑘 = 0.001,𝑚 = 𝑛 = 200,𝜙 = 0.02, 𝑘௙ = 40, 𝑘௦ = 0.613 

Figure 3. Effect of Hartmann number (𝐻𝑎) on the temperature 
profile, when 𝐻𝑎 = 2,𝑃௥ = 0.71,𝑅௠ = 10,𝐺௥ = 2,𝑅௘ = 10,ℎ = 𝑘 = 0.01,𝑚 = 𝑛 = 200,𝜙 = 0.02, 𝑘௙ = 40, 𝑘௦ = 0.613 

On the other hand, in Figure 3, it is observed that the temperature distribution in the boundary layer region increases 
with the increase in Hartmann number (𝐻𝑎). According to the Lorentz force effect, the flow encounters frictional 
resistance, which causes the boundary layer to heat up. In consequence, the temperature profile increases as (𝐻𝑎) increase. 
The effect of magnetic fields on nanofluid has many industrial applications in the cooling sector also.  

The effect of thermal Grashof number (𝐺𝑟) on the velocity profile of AlଶOଷ/Water nanofluid is shown in Figure (4). 
Thermal Grashof number can be defined as the ratio of thermal buoyancy force to the viscous force in the boundary layer 
regime. With large values of this parameter, buoyancy dominates, and for small values viscosity dominates. In the above 
figure the velocity of AlଶOଷ/Water  nanofluid is found to increase with the increase in thermal Grashof number (𝐺௥). 
This means that the buoyancy force accelerates the velocity field. An increase in the value of the thermal Grashof number 
tends to induce much flow in the boundary layer due to the effect of thermal buoyancy. Again, it is found in Figure 5 that, 
the temperature of AlଶOଷ/Water  nanofluid decreases with the increase in thermal Grashof number (𝐺௥). This means that 
buoyancy force reduces the temperature field. 

  

Figure 4. Effect Thermal Grashof number (𝐺௥) on the velocity 
profile, when 𝐻𝑎 = 2, 𝑃௥ = 0.71, 𝑅௠ = 1,  𝐺௥ = 6, 𝑅௘ = 1.5,ℎ = 𝑘 = 0.01,𝑚 = 𝑛 = 200,𝜙 = 0.02,  𝑘௙ = 40, 𝑘௦ = 0.613 

Figure 5. Effect Thermal Grashof number (𝐺௥) on the temperature 
profile, when 𝐻𝑎 = 100,𝑃௥ = 1.0,𝑅௠ = 10,𝐺௥ = 2, 𝑅௘ = 1.5,ℎ = 𝑘 = 0.001,𝑚 = 𝑛 = 200,𝜙 = 0.02, 𝑘௙ = 40, 𝑘௦ =0.613 
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Figure 6 shows the variation of the velocity field of AlଶOଷ/Water  nanofluid for various values of Reynolds number (𝑅௘). It is defined as the ratio of inertia force to viscous force. The Reynolds number depends on the relative internal 
movement due to different fluid velocities. For fluid flow analysis, the Reynolds number is considered to be a prerequisite. 
When viscous force dominates over the inertia force, the flow is smooth and at low velocities, the Reynolds number value 
is comparatively less, therefore velocity with AlଶOଷ/Water nanofluid decreases as Reynolds number increases. Again 
Figure 7 shows the variation of the temperature field of  AlଶOଷ/Water  nanofluid for various values of Reynolds number (𝑅௘). It is seen that the temperature field increases as the (𝑅௘) increases, and thus the rate of heat transfer is enhanced. 
However, the Reynolds number starts to decrease with temperature when the temperature exceeds the critical value 
depending on the corresponding concentration. 

Figure 6. Effect Reynolds number (𝑅௘) on the velocity profile, 
when 𝐻𝑎 = 5, 𝑃௥ = 0.71,  𝑅௠ = 5,  𝐺௥ = 2,  𝑅௘ = 10, ℎ =𝑘 = 0.001, 𝑚 = 𝑛 = 200,𝜙 = 0.02, 𝑘௙ = 40, 𝑘௦ = 0.613 

Figure 7. Effect Reynolds number (𝑅௘) on the temperature profile, 
when 𝐻𝑎 = 2,  𝑃௥ = 6.93,  𝑅௠ = 10, 𝐺௥ = 2,𝑅௘ = 10, ℎ =𝑘 = 0.01, 𝑚 = 𝑛 = 200,𝜙 = 0.02, 𝑘௙ = 40, 𝑘௦ = 0.613. 

The effect of Prandtl number (𝑃௥) on velocity and temperature profiles is demonstrated graphically in Figures 8 
and 9, respectively. It can be observed that the velocity of the nanofluid flow inside the boundary layer region increases 
whereas the temperature profile decreases due to an increase in Prandtl number (𝑃௥). Prandtl number is the ratio of 
momentum diffusivity to thermal diffusivity. With a higher value of the Prandtl number, the momentum diffuses more 
rapidly than the heat, indicating that fluids with a higher Prandtl number have low thermal conductivity and a thinner 
thermal layer structure. This results in the temperature in the boundary layer region to decreases with the increase in the 
Prandtl number owing to the increase in the heat transfer rate of the fluid.  

Figure 8. Effect Prandtl number (𝑃௥) on the velocity profile, 
when  𝐻𝑎 = 2, 𝑃௥ = 6.93,  𝑅௠ = 5, 𝐺௥ = 2,   𝑅௘ = 1, ℎ =𝑘 = 0.01, 𝑚 = 𝑛 = 200, 𝜙 = 0.02, 𝑘௙ = 40, 𝑘௦ = 0.613 

Figure 9. Effect Prandtl number (𝑃௥) on the temperature profile, 
when 𝐻𝑎 = 100, 𝑃௥ = 0.71,  𝑅௠ = 10,𝐺௥ = 2, 𝑅௘ = 1, ℎ =𝑘 = 0.01,𝑚 = 𝑛 = 200,𝜙 = 0.02, 𝑘௙ = 40, 𝑘௦ = 0.613 

Figure 10 shows the variation of the velocity field of  AlଶOଷ/Water  nanofluid at various values of magnetic 
Reynolds number (𝑅௠). It can be seen that the velocity profile rises with the increase in magnetic Reynolds number. 

Again, Figure 11 shows the variation in the temperature profile of  AlଶOଷ/Water  nanofluid at various values of 
Magnetic Reynolds number (𝑅௠). The magnetic Reynolds number is the magnetic analog of the Reynolds number, which 
is a fundamental dimensionless group that occurs in magnetohydrodynamics (MHD). It gives an estimate of the relative 
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effects of the advection or induction of a magnetic field by the motion of a conducting medium, often a fluid, to magnetic 
diffusion. Therefore, the temperature profile decreases as the value of (𝑅௠) increases. 

  
Figure 10. Effect Magnetic Reynolds number (𝑅௠) on the 
velocity profile, when 𝐻𝑎 = 2,𝑃௥ = 6.93,𝑅௠ = 5, 𝐺௥ = 2,𝑅௘ = 1, ℎ = 𝑘 = 0.001,𝑚 = 𝑛 = 200,𝜙 = 0.02,𝑘௙ = 40,𝑘௦ = 0.613 

Figure 11. Effect Magnetic Reynolds number (𝑅௠) on the 
temperature profile, when 𝐻𝑎 = 100,𝑃௥ = 0.71, 𝑅௠ = 1,𝐺௥ = 4, 𝑅௘ = 10,ℎ = 𝑘 = 0.01,𝑚 = 𝑛 = 200,𝜙 = 0.02,𝑘௙ = 40, 𝑘௦ = 0.613 

In Figures 12 (A), 12 (B), 12 (C), and 12 (D), the distribution of induced magnetic field 𝐵 for mixed convection 
with the transverse magnetic field are plotted for 𝐻𝑎 = 100, 𝐺௥ = 100;  𝐻𝑎 = 200, 𝐺௥ = 100, 𝐻𝑎 = 300, 𝐺௥ =100;  𝐻𝑎 = 400,  𝐺௥ = 100 and other parameters are fixed. It is observed that 𝐵 becomes flattened for increasing values 
of Hartmann number 𝐻𝑎. Moreover, current lines and magnetic fields are almost orthogonal in almost all the duct cross-
sections. 

  
A B 

  
C D 

Figure 12. (A) Induced magnetic field for 𝐻𝑎 = 100 and 𝐺௥ = 100; (B) Induced magnetic field for 𝐻𝑎 = 100 and 𝐺௥ = 200; 
(C) Induced magnetic field for 𝐻𝑎 = 100 and 𝐺௥ = 300; (D) Induced magnetic field for 𝐻𝑎 = 100 and 𝐺௥ = 400 
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6. CONCLUSIONS
In the present exploration, we have made an investigation over the nanofluid flow (with base fluid water and 

nanoparticles as aluminum) through a square duct under the action of the strong transverse magnetic field. The numerical 
results are obtained by implementing the finite difference scheme coded in MATLAB software. The findings are 
summarized below: 

• The velocity profile of the nanofluid declines with the increase in the value of the Hartmann number, whereas it
increases with the increase in the value of the Prandtl number.

• The temperature profile of the nanofluid increase with the increase in Hartmann number and Reynolds number.
• The temperature profile of the nanofluid decelerates with the increase in the Prandtl number and Magnetic

Reynolds number.
• The velocity profile of the nanofluid increase with the increase in the Prandtl number and Magnetic Reynolds

number.
• The present study provides a model for enhanced heat transfer phenomena and hence finds its application in the

cooling sector in industries, post-accidental heat removal in nuclear reactors, and heat exchangers. Besides these,
some other important scientific applications of this study may be relevant to manufacturing industries, solar
collectors, and so on.

Nomenclature 𝑎 length of the cross-section of the square duct 𝐵ത  magnetic field 𝐵௢ applied magnetic field 𝐶௣ specific heat at constant pressure 𝐻𝑎 Hartmann number 𝐺௥ Grashof number 𝑅௘ Reynolds number 𝑃௥ Prandtl number 𝑅௠ Magnetic Reynolds number 𝑔 acceleration due to gravity 

𝑝 Pressure force 𝑇 fluid temperature 𝑇௢ wall temperature 𝑉 velocity in the z-direction 𝑥,𝑦, 𝑧 Cartesian coordinates 𝛽 coefficient of thermal expansion 𝜌௡௙ density of nanofluid 𝜎௡௙ electrical conductivity of nanofluid 𝜇௡௙ dynamic viscosity of nanofluid 

Subscripts 𝑛𝑓 nanofluids  𝑓 Base Fluid 𝑠 Solid particles of nanofluid 
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ЧИСЛОВИЙ АНАЛІЗ МГД ЗМІШАНОГО КОНВЕКЦІЙНОГО ПОТОКУ НАНОРІДИН Al2O3/H2O 
(АЛЮМІНІЙ-ВОДА) У ВЕРТИКАЛЬНОМУ КВАДРАТНОМУ КАНАЛІ 

Бішну Рам Дас, П.Н. Дека, Шива Рао 
Факультет математики, Університет Дібругарх, Дібругарх-786004, Ассам, Індія 

У цій роботі ми розглянули стаціонарну ламінарну магнітогідродинамічну (МГД) змішану конвекцію електропровідної 
рідини в присутності наночастинок AlଶOଷ, тоді як вода є основною рідиною у вертикальному квадратному каналі. Стінки 
воздуховода утеплені. У рівнянні енергії також враховується ефект в'язкої дисипації та джоулева теплота. У цьому випадку 
на стінках каналу підтримується постійна температура. Використовуючи безрозмірні величини, керівні рівняння імпульсу, 
індукції та енергії спочатку перетворюються на безрозмірні рівняння, а потім скорочені рівняння розв’язуються за допомогою 
явного методу кінцевих різниць. Профілі швидкості, температури та індукованого магнітного поля будуються графічно для 
аналізу впливу різних параметрів потоку. Помічено, що рух нанофлюїду прискорюється зі збільшенням значення магнітного 
параметра, числа Рейнольдса та числа Прандтля. Сучасні дослідження можуть знайти застосування в багатьох галузях 
промисловості та охолодження. У цьому дослідженні відзначено його важливість для підвищення ефективності теплопередачі 
для практичних застосувань, пов’язаних із промисловістю та технікою. Проблеми, які обговорюються в цьому дослідженні, 
не були включені в попередні дослідження сталого потоку нанофлюїдів через квадратну трубу. 
Ключові слова: нанофлюїди; явний чисельний метод кінцевих різниць (EFDM); МГД потік; сила виштовхування; змішана 
конвекція; квадратний повітропровід; теплопередача; магнітне поле 
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Quantum electrodynamics (QED) is a highly precise and successful theory that describes the interaction between electrically charged 
particles and electromagnetic radiation. It is an integral part of the Standard Model of particle physics and provides a theoretical basis 
for explaining a wide range of physical phenomena, including the behavior of atoms, molecules, and materials. In this work, the 
Lagrangian density of Composite Fermions in QED has been expressed in a fractional form using the Riemann-Liouville fractional 
derivative. The fractional Euler-Lagrange and fractional Hamiltonian equations, derived from the fractional form of the Lagrangian 
density, were also obtained. When α is set to 1, the conventional mathematical equations are restored. 
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1. INTRODUCTION
Composite Fermions are a theoretical concept in condensed matter physics that explains the behavior of 

electrons when subjected to a strong magnetic field [1-4]. These electrons can form composite particles with unique 
physical properties, such as those seen in fractional quantum Hall states [5-7]. Understanding composite fermions 
provides insights into the behavior of electrons in high magnetic fields and has applications in various fields, from 
technology development to the discovery of basic physical principles.  

Fractional derivatives [8-12] have become a valuable tool in various fields because they provide the ability to 
accurately model physical phenomena that cannot be captured by ordinary derivatives. There has been a surge of 
research in fractional calculus, leading to its application in physics, engineering, and related areas [13-16]. The 
Maxwell equations have been expressed in fractional form [17-19], as have those in quantum mechanics, including 
the fractional Schrödinger equation [20, 21] and the fractional Dirac equation [22]. These advancements demonstrate 
the versatility of fractional calculus in describing a wide range of physical systems.  

The main goal of this work is to examine the composite Fermions QED Lagrangian density and transform it into 
a fractional form using the Riemann-Liouville (RL) fractional derivative. The ultimate purpose is to derive the 
fractional Hamilton's equations and fractional Euler-Lagrange (EL) equations from this reformulation, thereby 
providing a fresh perspective on the dynamics of composite Fermions within a QED framework. 

The structure of the paper is as follows: In Sec. 2, a brief explanation of RL fractional derivative is provided. 
The topic of the QED Lagrangian density is discussed in Sec. 3. In Sec. 4, the fractional form of the Lagrangian 
density and the fractional Euler-Lagrange equations are presented. The focus of Sec. 5 is on the Hamiltonian equations 
derived from the Lagrangian density. The paper concludes with a concise summary of the key points in Sec. 6. 

2. PRELIMINARIES
This section provides essential definitions used in this study. For a more comprehensive understanding, readers 

can refer to reference [23]. The following are the definitions of the left and right RL fractional derivative. 
The Left RL fractional derivative   ௔𝐷௫ఈ 𝑓ሺ𝑥ሻ = ଵ୻(୬ି஑) ቀ ୢୢ୶ቁ୬ ׬  (x − τ)୬ି஑ିଵ௫ୟ  f(τ) 𝑑τ. (1)

The right RL fractional derivative  ௫𝐷௕ఈ 𝑓(𝑥) = ଵ୻(୬ି஑)  ቀ− ୢୢ୶ቁ୬ ׬  (τ − x)୬ି஑ିଵ௕୶  f(τ) 𝑑τ. (2)

The value of α signifies the order of differentiation, where n-1≤α<n, with Γ symbolizing the gamma function. 
In cases where α is an integer, the derivative is calculated using the conventional definition. 

ቐ ௔𝐷௫ఈ 𝑓(𝑥) =  ቀ ௗௗ௫ቁ௡  𝑓(𝑥)
௔𝐷௧ఈ 𝑓(𝑥) =  ቀ ௗௗ௫ቁ௡  𝑓(𝑡). (3)α = 1,2, … 
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3. COMPOSITE FERMIONS QED LAGRANGIAN DENSITY 
The Lagrangian density for composite fermions in QED, with the speed of light set to 1, has the following 

mathematical form [1]: 

 ℒ = ψ൫𝑖𝛾ఓ𝜕ఓ −𝑚൯𝜓 −  ଵସ 𝐹ఓఔ𝐹ఓఔ + ௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓఔఘ𝐴ఓ  𝜕ఔ𝐴ఘ  − ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఓ𝜓 𝐴ఓ . (4) 

This equation involves the Levi-Civita symbol 𝜀ఓఔఘ, which is an antisymmetric tensor, as well as 𝜓  which is a 
Dirac's spinor and made up of four complex parts, ψ = 𝜓ା𝛾଴, 𝛾ఓ is Dirac matrix, 𝑒 is the charge of an electron, 𝜙଴ is 
a unit of magnetic flux, it also includes a gauge parameter, 𝜃, for the Chern-Simons fields. 𝐹ఓఔ is the electromagnetic 
field tensor and the 𝐴ఓ  are electromagnetic fields. The first term represents the fields that are associated with spinors, 
while the second term represents fields related to electromagnetism. The third term involves gauge Chern-Simons 
fields, and the final two terms describe the coupling of the spinor fields to both the electromagnetic fields and the 
Chern-Simons fields. 

 
4. FRACTIONAL FORM OF COMPOSITE FERMIONS QED LAGRANGIAN DENSITY 

The fractional Lagrangian density of (4) can be written as: 

 ℒ = ψቀ𝑖𝛾ఓ 𝐷௫ഋఈ௔௖ − 𝑚ቁ𝜓 −  ଵସ 𝐹ఓఔ𝐹ఓఔ + ௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓఔఘ𝐴ఓ  𝐷௫ഌఈ௔ 𝐴ఘ  − ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఓ𝜓 𝐴ఓ . (5) 

Begin by expanding the second term in the Lagrangian:   𝐹ఓఔ𝐹ఓఔ =  𝑔ఓఘ𝑔ఔఒ  ቀ 𝐷௫ഋఈ௔ 𝐴ఔ − 𝐷௫ഌఈ௔ 𝐴ఓቁ ቀ 𝐷௫ഐఈ௔ 𝐴ఒ − 𝐷௫ഊఈ௔ 𝐴ఘቁ 

Hence, we have ℒ = ψቀ𝑖𝛾ఓ 𝐷௫ഋఈ௔௖ − 𝑚ቁ𝜓 −  14  𝑔ఓఘ𝑔ఔఒ  ቀ 𝐷௫ഋఈ௔ 𝐴ఔ − 𝐷௫ഌఈ௔ 𝐴ఓቁ ቀ 𝐷௫ഐఈ௔ 𝐴ఒ − 𝐷௫ഊఈ௔ 𝐴ఘቁ + 

 + ௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓఔఘ𝐴ఓ  𝐷௫ഌఈ௔ 𝐴ఘ  − ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఓ𝜓 𝐴ఓ  (6) 

In the case of a Lagrangian involving multiple fields, there will be a separate equation for each field. The EL 
equation for the field 𝐴ఉ is expressed as follows:  

 డℒడ஺ഁ −  𝐷௫഑ఈ௔ ቈ డℒడቀ ஽ೣ഑ഀೌ  ஺ഁቁ቉ = 0. (7) 

Thus, the equation of motion is expressed as ௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓఔఘ𝛿ఓఉ  𝐷௫ഌఈ௔ 𝐴ఘ − ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఓ𝜓 𝐴ఓ 𝛿ఓఉ − 𝐷௫഑ఈ௔ ൤− ଵସ  𝑔ఓఘ𝑔ఔఒ ൫𝛿ఓఙ𝛿ఔఉ − 𝛿ఔఙ𝛿ఓఉ൯ ቀ 𝐷௫ഐఈ௔ 𝐴ఒ −𝐷௫ഊఈ௔ 𝐴ఘቁ − − ଵସ  𝑔ఓఘ𝑔ఔఒ ൫𝛿ఘఙ𝛿ఒఉ − 𝛿ఒఙ𝛿ఘఉ൯ ቀ 𝐷௫ഋఈ௔ 𝐴ఔ − 𝐷௫ഌఈ௔ 𝐴ఓቁ + ௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓఔఘ𝐴ఓ 𝛿ఔఙ 𝛿ఘఉ  ൨ = 0  

௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఉఔఘ 𝐷௫ഌఈ௔ 𝐴ఘ − ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఉ𝜓 𝐴ఓ − 𝐷௫഑ఈ௔ ൤− ଵସ  ൫𝑔ఙఘ𝑔ఉఒ − 𝑔ఉఘ𝑔ఙఒ൯ ቀ 𝐷௫ഐఈ௔ 𝐴ఒ − 𝐷௫ഊఈ௔ 𝐴ఘቁ −−ଵସ  ൫𝑔ఓఙ𝑔ఔఉ − 𝑔ఓఉ𝑔ఔఙ൯ ቀ 𝐷௫ഋఈ௔ 𝐴ఔ − 𝐷௫ഌఈ௔ 𝐴ఓቁ + ௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓఙఉ 𝐷௫഑ఈ௔ 𝐴ఓ  ൨ = 0  

௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఉఔఘ 𝐷௫ഌఈ௔ 𝐴ఘ − ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఉ𝜓 − 𝐷௫഑ఈ௔ ൤− ଵସ  ൫ 𝐷௫഑ఈ௔ 𝐴ఉ − 𝐷௫ఈഁ௔ 𝐴ఙ − 𝐷௫ఈഁ௔ 𝐴ఙ + 𝐷௫഑ఈ௔ 𝐴ఉ൯ −−ଵସ  ൫ 𝐷௫഑ఈ௔ 𝐴ఉ − 𝐷௫ఈഁ௔ 𝐴ఙ − 𝐷௫ఈഁ௔ 𝐴ఙ + 𝐷௫഑ఈ௔ 𝐴ఉ൯ + ௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓఙఉ 𝐷௫഑ఈ௔ 𝐴ఓ  ൨ = 0  

or alternatively,  𝑒𝜋 𝑣ଶ௘௙௙2𝜃𝜙଴ ቀ𝜀ఉఔఘ 𝐷௫ഌఈ௔ 𝐴ఘ − 𝜀ఓఙఉ 𝐷௫഑ఈ௔ 𝐴ఓ  ቁ − ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఉ𝜓 − 𝐷௫഑ఈ௔ ൫ 𝐷௫഑ఈ௔ 𝐴ఉ − 𝐷௫ఈഁ௔ 𝐴ఙ൯ = 0 

using 𝐹ఙఉ = ൫ 𝐷௫഑ఈ௔ 𝐴ఉ − 𝐷௫ఈഁ௔ 𝐴ఙ൯, as a result of this 𝑒𝜋 𝑣ଶ௘௙௙2𝜃𝜙଴ ቀ𝜀ఉఔఘ 𝐷௫ഌఈ௔ 𝐴ఘ − 𝜀ఉఙఓ 𝐷௫഑ఈ௔ 𝐴ఓ  ቁ − ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఉ𝜓 − 𝐷௫഑ఈ  𝐹ఙఉ௔ = 0 

By replacing the dummy indices 𝜈 with 𝜇 and 𝜌 with 𝜎 in the first term on the left-hand side, we obtain 

 
௘గ ௩మ೐೑೑ఏథబ 𝜀ఉఓఙ 𝐷௫഑ఈ௔ 𝐴ఓ − ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఉ𝜓 − 𝐷௫഑ఈ  𝐹ఙఉ௔ = 0, (8) 
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on the other hand, the EL equation for ψ reads as  

 డℒడந −  𝐷௫഑ఈ௔ ቈ డℒడቀ ஽ೣ഑ഀೌ நቁ቉ = 0, (9) 

which becomes 

 ቀ𝑖𝛾ఓ 𝐷௫ഋఈ௔ − 𝑚ቁ𝜓 − ൫1 + 𝑣௘௙௙൯𝑒 𝛾ఓ𝜓 𝐴ఓ = 0, (10) 

finally, the EL equation of the field 𝜓 is presented as follows: 

 డℒడట −  𝐷௫഑ఈ௔ ቈ డℒడቀ ஽ೣ഑ഀೌ టቁ቉ = 0, (11) 

which can be written as −𝑚ψ− ൫1 + 𝑣௘௙௙൯𝑒 𝛾ఓψ 𝐴ఓ − 𝐷௫഑ఈ௔ ൫ψ 𝑖𝛾ఓ 𝛿ఓఙ൯ = 0 

 𝑚ψ + ൫1 + 𝑣௘௙௙൯𝑒 𝛾ఓψ 𝐴ఓ = −𝑖𝛾ఙ 𝐷௫഑ఈ௔ ψ . (12) 

 
5. FRACTIONAL HAMILTONIAN FORMULATION 

In the following section, we will derive the fractional Hamiltonian equations using the RL fractional derivative 
approach, based on the fractional Lagrangian density. Let us consider the fractional Hamiltonian density as 

 ℋ = ቀ ψ,𝜓, 𝐷௫ೕఈ௔ 𝜓,𝐴ఓ , 𝐷௫ೕఈ௔ 𝐴ఓ ,𝜋ത ,𝜋,  𝜋ఓ ቁ. (13) 

Now, taking the total differential of ℋ, we get: 𝑑ℋ = డℋడந 𝑑ψ + డℋడట 𝑑𝜓 + డℋడ஺ഋ 𝑑𝐴ఓ + డℋడ൬ ஽ೣೕഀೌ ట൰ 𝑑 ቀ 𝐷௫ೕఈ௔ 𝜓ቁ + డℋడ൬ ஽ೣೕഀ஺ഋೌ ൰ 𝑑 ቀ 𝐷௫ೕఈ௔ 𝐴ఓቁ + డℋడగഥ 𝑑𝜋ത + డℋడగ 𝑑𝜋 + డℋడ గഋ 𝑑 𝜋ఓ
  (14) 

The canonical momenta 𝜋ത ,𝜋,  𝜋ఓ are  given as follows: 

 𝜋 = డℒడቀ ஽೟ഀೌ ஏቁ ;           𝜋ത  = డℒడቀ ஽೟ഀೌ நቁ ;                  𝜋ఓ = డℒడቀ ஽೟ഀೌ ஺ഋቁ ; (15) 

In order to construct ℋ, we start by defining it in its general form as follows: 

 ℋ = 𝜋ത  𝐷௧ఈ௔ ψ + 𝜋 𝐷௧ఈ௔ 𝜓 ±  𝜋ఓ 𝐷௧ఈ௔ 𝐴ఓ − ℒ൫ 𝜓,ψ, 𝐷௫഑ఈ௔ ψ,𝐴ఉ , 𝐷௫഑ఈ௔ 𝐴ఉ  ൯. (16) 

The total differential of ℋ can also be defined as: 

 𝑑ℋ = 𝜋ത  𝑑൫ 𝐷௧ఈ௔ ψ൯ + 𝐷௧ఈ௔ ψ  𝑑𝜋ത + 𝜋 𝑑൫ 𝐷௧ఈ௔ 𝜓൯ + 𝐷௧ఈ௔ 𝜓  𝑑𝜋 +  𝜋ఓ 𝑑൫ 𝐷௧ఈ௔ 𝐴ఓ൯ + 𝐷௧ఈ௔ 𝐴ఓ𝑑 𝜋ఓ − డℒడట 𝑑𝜓 −                                             −  డℒడந 𝑑ψ − డℒడቀ ஽ೣ഑ഀೌ நቁ 𝑑൫ 𝐷௫഑ఈ௔ ψ൯ − డℒడ஺ഁ 𝑑𝐴ఉ + డℒడቀ ஽ೣ഑ഀ஺ഁೌ ቁ 𝑑൫ 𝐷௫഑ఈ 𝐴ఉ௔ ൯, (17) 

but 

 డℒడట = 𝐷௧ఈ௔ 𝜋 + 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ந൰൱, (18) 

 డℒడந = 𝐷௧ఈ௔ 𝜋ത + 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ந൰൱, (19) 

and  

 డℒడ஺ഋ = 𝐷௧ఈ௔  𝜋ఓ + 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ஺ഋ൰൱. (20) 

Using Eqs. (18), (19), and (20) Eq. (17) can be written as  
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𝑑ℋ = 𝜋ത  𝑑൫ 𝐷௧ఈ௔ ψ൯ + 𝐷௧ఈ௔ ψ  𝑑𝜋ത + 𝜋 𝑑൫ 𝐷௧ఈ௔ 𝜓൯ + 𝐷௧ఈ௔ 𝜓  𝑑𝜋 +  𝜋ఓ 𝑑൫ 𝐷௧ఈ௔ 𝐴ఓ൯ + 𝐷௧ఈ௔ 𝐴ఓ𝑑 𝜋ఓ − 𝐷௧ఈ௔ (𝜋)𝑑𝜓 −𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ந൰൱𝑑𝜓 − 𝐷௧ఈ௔ (𝜋ത )𝑑ψ − 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ந൰൱ 𝑑ψ − డℒడቀ ஽ೣ഑ഀೌ நቁ 𝑑൫ 𝐷௫഑ఈ௔ ψ൯ − 𝐷௧ఈ௔ ൫ 𝜋ఓ ൯𝑑𝐴ఉ −
− 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ஺ഁ൰൱ 𝑑𝐴ఉ − డℒడቀ ஽ೣ഑ഀ஺ഁೌ ቁ 𝑑൫ 𝐷௫഑ఈ 𝐴ఉ௔ ൯, (21)

or 

𝑑ℋ = 𝐷௧ఈ௔ ψ  𝑑𝜋ത + 𝐷௧ఈ௔ 𝜓  𝑑𝜋 + 𝐷௧ఈ௔ 𝐴ఓ 𝑑 𝜋ఓ − 𝐷௧ఈ௔ (𝜋)𝑑𝜓 − 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ந൰൱ 𝑑𝜓 − 𝐷௧ఈ௔ (𝜋ത  )𝑑ψ −
− 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ந൰൱ 𝑑ψ − డℒడቀ ஽ೣ೔ഀೌ நቁ 𝑑൫ 𝐷௫೔ఈ௔ ψ൯ − 𝐷௧ఈ௔ ൫ 𝜋ఉ ൯𝑑𝐴ఉ − 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ஺ഁ൰൱ 𝑑𝐴ఉ −− డℒడቀ ஽ೣ೔ഀ஺ഁೌ ቁ 𝑑൫ 𝐷௫೔ఈ𝐴ఉ௔ ൯  (22) 

By comparing Eqs. (14) and (22), we obtain Hamilton’s equation of motion 

డℋడ஺ഋ = − 𝐷௧ఈ௔ ൫ 𝜋ఓ ൯ − 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ஺ഋ൰൱, (23)

డℋడట = − 𝐷௧ఈ௔ 𝜋 − 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ந൰൱, (24)

డℋడந = − 𝐷௧ఈ௔ (𝜋ത ) − 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ந൰൱, (25)

𝐷௧ఈ௔ 𝐴ఓ = డℋడగഋ  ,    𝐷௧ఈ௔ 𝜓 = డℋడగ  ,    𝐷௧ఈ௔ ψ = డℋడగ  , (26)

డℒడ൬ ஽ೣೕഀೌ ந൰ = − డℋడ൬ ஽ೣೕഀೌ ந൰    ,  డℒడ൬ ஽ೣೕഀೌ ஺ഁ൰ = − డℋడ൬ ஽ೣೕഀ஺ഋೌ ൰. (27)

Consider the Lagrangian density given in Eq. (5) 

ℒ = ψቀ𝑖𝛾ఓ 𝐷௫ഋఈ௔ − 𝑚ቁ𝜓 − 14𝐹ఓఔ𝐹ఓఔ + 𝑒𝜋 𝑣ଶ௘௙௙2𝜃𝜙଴ 𝜀ఓఔఘ𝐴ఓ 𝐷௫ഌఈ௔ 𝐴ఘ  − ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఓ𝜓 𝐴ఓ
We can determine  𝜋ത, 𝜋 and 𝜋௜ such that: 𝜋ത  = డℒడቀ ஽೟ഀೌ நቁ = 0, (28a)𝜋 == డℒడቀ ஽೟ഀೌ ஏቁ = 𝑖𝛾଴ψ, (28b)

൞ 𝜋௜ = డℒడቀ ஽೟ഀೌ ஺೔ቁ = −𝐹௢௜ + ௘గ ௩మ೐೑೑ଶఏథబ 𝜀௜௝𝐴௝ 𝜋଴ = డℒడቀ ஽೟ഀೌ ஺బቁ = 0     . (28c)

Then we can write the fractional Hamiltonian density of the system as follows: ℋ = ℋ = 𝜋ത  𝐷௧ఈ௔ ψ + 𝜋 𝐷௧ఈ௔ 𝜓 +  𝜋ఓ 𝐷௧ఈ௔ 𝐴ఓ − ℒ൫ 𝜓,ψ, 𝐷௫഑ఈ௔ ψ,𝐴ఉ , 𝐷௫഑ఈ௔ 𝐴ఉ  ൯. (29)

By inserting Eqs. (5) and (28) into Eq. (29), we obtain 

ℋ = 𝑖𝛾଴ψ 𝐷௧ఈ௔ 𝜓 +  𝜋௜ ቆ− 𝜋௜ + 𝑒𝜋 𝑣ଶ௘௙௙2𝜃𝜙଴ 𝜀௜௝𝐴௝  + 𝐷௫೔ఈ௔ 𝐴଴ ቇ − 𝑖𝛾଴ψ 𝐷௧ఈ  ௔ 𝜓 − ψቀ𝑖𝛾ఓ 𝐷௫ೕఈ௔௖ − 𝑚ቁ𝜓 + 12𝐹଴௜𝐹଴௜+ 14𝐹௜௝𝐹௜௝ − 𝑒𝜋 𝑣ଶ௘௙௙2𝜃𝜙଴ 𝜀ఓ଴௜𝐴ఓ ቆ− 𝜋௜ + 𝑒𝜋 𝑣ଶ௘௙௙2𝜃𝜙଴ 𝜀௜௝𝐴௝  + 𝐷௫೔ఈ௔ 𝐴଴ቇ − 𝑒𝜋 𝑣ଶ௘௙௙2𝜃𝜙଴ 𝜀ఓ௜ఘ 𝐴ఓ 𝐷௫೔ఈ௔ 𝐴ఘ+ ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఓ𝜓 𝐴ఓ
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Substituting for 𝐹଴௜ from equation (28c), we get ℋ = − ଵଶ 𝜋௜ଶ +  𝜋௜ 𝐷௫೔ఈ௔  𝐴଴ − ψቀ𝑖𝛾௝ 𝐷௫ೕఈ௔ − 𝑚ቁ𝜓 − ଵଶ  ൬௘గ ௩మ೐೑೑ଶఏథబ 𝜀௜௝൰ଶ 𝐴௝ ଶ + ଵସ 𝐹௜௝𝐹௜௝ − ௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓ଴௜𝐴ఓ ൫− 𝜋௜ −𝐷௫೔ఈ௔ 𝐴଴൯ − ௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓ௜ఘ𝐴ఓ 𝐷௫೔ఈ௔ 𝐴ఘ   + ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఓ𝜓 𝐴ఓ .  (30) 

Now we will find the Hamiltonian equations of motion for the same system. Initially, the equation of motion for 𝐴ఓ 

డℋడ஺ഋ = − 𝐷௧ఈ௔ ൫ 𝜋ఓ ൯ − 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ஺ഋ൰൱ − ൬௘గ ௩మ೐೑೑ଶఏథబ 𝜀௜ఓ൰ଶ 𝐴ఓ − ௘గ ௩మ೐೑೑ଶఏథబ 𝜀௞଴ఓ ቀ− 𝜋ఓ + 𝐷௫ഋఈ௔ 𝐴଴ቁ −௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓ௜ఘ 𝐷௫ೕఈ௔ 𝐴ఘ + ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఓ𝜓 = 𝐷௧ఈ௔ 𝐹଴௝ − ௘గ ௩మ೐೑೑ଶఏథబ 𝜀௜ఓ଴ 𝐷௧ఈ௔ 𝐴ఓ − 𝐷௫ೕఈ௔ (−𝐹௝௞) + + 𝐷௫ೕఈ௔ (−𝐹଴௝) − ௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓ௝௞ 𝐷௫ೕఈ௔ 𝐴ఓ . (31) 

The substitution of 𝐷ఙఈ௔ 𝐹ఙఉ = 𝐷௧ఈ௔ 𝐹଴ఉ + 𝐷௝ఈ௔ 𝐹௝଴ + 𝐷௝ఈ௔ 𝐹௝௞ into Eq. (31) gives  

−൬௘గ ௩మ೐೑೑ଶఏథబ 𝜀௜ఓ൰ଶ 𝐴ఓ − ௘గ ௩మ೐೑೑ଶఏథబ 𝜀௞଴ఓ ቀ− 𝜋ఓ + 𝐷௫ഋఈ௔ 𝐴଴ቁ − ௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓ௜ఘ 𝐷௫ೕఈ௔ 𝐴ఘ + ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఓ𝜓 =௘గ ௩మ೐೑೑ଶఏథబ 𝜀௜ఓ଴ 𝐷௧ఈ௔ 𝐴ఓ  +  −௘గ ௩మ೐೑೑ଶఏథబ 𝜀ఓ௝௞ 𝐷௫ೕఈ௔ 𝐴ఓ + 𝐷ఙఈ௔ 𝐹ఙఉ.  (32) 

By substituting Eq. (28c) into Eq. (32) and undergoing mathematical manipulation, the following equation is 
obtained: 

 
௘గ ௩మ೐೑೑ఏథబ 𝜀ఉఓఙ 𝐷௫഑ఈ௔ 𝐴ఓ − ൫1 + 𝑣௘௙௙൯𝑒ψ 𝛾ఉ𝜓 − 𝐷௫഑ఈ  𝐹ఙఉ௔ = 0. (33) 

While the equation of motion for 𝜓 reads డℋడట = − 𝐷௧ఈ௔ 𝜋 − 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ந൰൱  

 𝑚 ψ + ൫1 + 𝑣௘௙௙൯𝑒 𝛾ఓψ 𝐴ఓ = −𝑖𝛾଴ 𝐷௧ఈ௔  ψ  − 𝐷௫ೕఈ௔  ൫ψ 𝑖𝛾௝൯, (34) 

but 𝑖𝛾଴ 𝐷௧ఈ௔  ψ+ 𝑖𝛾௝ 𝐷௫ೕఈ௔  ψ =  𝑖𝛾ఙ 𝐷௫഑ఈ௔ ψ 
Thus, Eq. (34) becomes  

 𝑚 ψ + ൫1 + 𝑣௘௙௙൯𝑒 𝛾ఓψ 𝐴ఓ = −𝑖𝛾ఙ 𝐷௫഑ఈ௔ ψ. (35) 

Similarly, the equation of motion for ψ is 

డℋడந = − 𝐷௧ఈ௔ (𝜋ത ) − 𝐷௫ೕఈ௔ ൭ డℒడ൬ ஽ೣೕഀೌ ந൰൱  

or  
 ቀ𝑖𝛾௝ 𝐷௫ೕఈ௔ − 𝑚ቁ𝜓 − ൫1 + 𝑣௘௙௙൯𝑒 𝛾ఓ𝜓 𝐴ఓ = 0. (36) 

The results from Eqs. (33), (35), and (36) are in full accordance with those derived from the fractional EL 
method. 
 

6. CONCLUSION 
The Riemann-Liouville fractional derivative were employed to reformulate the composite Fermions QED 

Lagrangian density. It was observed that the fractional Euler-Lagrange equations and the fractional Hamilton's 
equations of motion, both derived from the same Lagrangian density, produced the same outcomes. The fractional 
formulation was demonstrated to encompass the classical results as a specific case. 
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ЩІЛЬНІСТЬ ЛАГРАНЖІАНА КОМПОЗИЦІЙНИХ ФЕРМІОНІВ QED У ДРОБОВОМУ ФОРМУЛЮВАННІ 
Амер Д. Аль-Окалі 

Департамент фізики, Університет Мута, Аль-Карак, Йорданія 
Квантова електродинаміка (КЕД) – точна й успішна теорія, яка описує взаємодію між електрично зарядженими 
частинками та електромагнітним випромінюванням. Вона є невід’ємною частиною Стандартної моделі фізики 
елементарних частинок і забезпечує теоретичну основу для пояснення широкого спектру фізичних явищ, у тому числі 
поведінки атомів, молекул і матеріалів. У цій роботі щільність Лагранжіана композитних ферміонів у КЕД була виражена 
у дробовій формі за допомогою дробової похідної Рімана-Ліувіля. Були також отримані дробове рівняння Ейлера-
Лагранжа і дробове рівняння Гамільтона, виведені з дробової форми лагранжіана густини. Коли α встановлено на 1, 
відновлювались звичайні математичні рівняння. 
Ключові слова: квантова електродинаміка; композитні ферміони; дробова похідна; щільність лагранжіана; рівняння 
Ейлера-Лагранжа 
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The aim of this study, is to investigate, in a phenomenological way, the backbending effect in platinum Pt-186 nucleus, in order to get 
a good description of the bends by using new parameters. VMI model and interacting boson model IBM-1 have been used to perform 
this research for a heavy mass nucleus (Z = 78). Energy ratios and arrangement of the bands show that the platinum Pt-186 have O(6)-
SU(3) dynamical symmetry. Our current calculations gave results that are reasonably consistent with the most recent experimental data, 
especially the results calculated according to the VMI-model. Variable moment of inertia has been applied to describe successfully the 
effect of backbending in  deformed even-even Pt-186 nucleus. Backbending was observed in the ground and 𝛽-bands, due to the change 
of the moment of inertia but not for (𝛾ଵ, 𝛾ଶ) bands, because no changing in the moment of inertia. 
Keywords: Nuclear structure; IBM; nuclear physics; VMI model; back-bending 
PACS: 21.45.+v, 21.60.gx 

1. INTRODUCTION
There are two nuclear collections particles: protons, and neutrons so called nucleons, separately divided over certain 

energy level subjected to the restrictions of the Pauli exclusion principle. All nuclei have ground and excited states, and 
the nucleons in excited states can be removed from, or added to, nuclei. The nuclear structure gained by studying these 
phenomena [1]. The IBM-1 was used to description the nuclear collective motion suggested firstly, by Iachello and Arima 
in order to study the collective states in e-e positive parity nuclei. This model does not distinguish between neutron bosons 
and proton bosons [2,3]. This research, aims to calculate energy levels, gamma transition and study the backbending 
phenomena, using the IBM-1 and VMI models. 

Backbending has been observed experimentally in the band of the ground state [4,5] or in the rotational band of some 
deformed nuclei. The effect occurs because, the moment of inertia (𝒥) rapidly increases with the rotational frequency (𝜔) 
towards the solid value [6]. When the rotational energy ħω is greater than the energy needed to separate a pair of protons or 
neutrons  𝑆ଶ௣௢௥ଶ௡, the separated proton or neutron moves to another orbit, which result in change of the moment of inertia [7]. 
An explanation of this effect is attributed to a disappearance of the pairing by band crossing of two rotational energy and Corielis 
force effect [8,9], this effect of Corielis force increases with rotational frequency at high angular momentum for some bands, 
leads to depairing nucleon pairs, the first pair depairing called “two quasi particles”. the case where the depairing of two quasi 
particles, which may couple with the collective rotation to produce a new band, this effect leads to back-bending 
phenomena [10]. Many researchers have been interested in studying the phenomenon of backbending using different methods, 
including Regan(2003) [10] who used the E-Gos method by drawing the relation between the transitional energy Eஓ over spin 
( ుಋೕ ) for two successive levels and the spin (J).Some theoretical researchers have recently focused on studying the nuclear 
properties of platinum isotopes, including N. Ashok and A.Joseph(2019)[11] studied the ground state properties of Pt 
isotopes with the help of Skyrme-Hartree-Fock-Bogoliutov (HFB)theory by using harmonic oscillator H.O. and 
transformed harmonic oscillator T.H.O. to calculate 𝑆ଶ௡ (separation energy of 2-neutrons) and  r.m.s radii of proton and 
neutron. The results obtained are in good agreement with the practical data. 

M. Khalil et al (2019) [12] studied the platinum isotopes properties using particle rotor model VMI and IBM to
calculate the energies of single particle spectrum and investigated the phenomena of the back-bending. S.H. Al-Fahdawi, 
A.K. Aobaid (2021) [13] used the first model of interacting bosons and the generalized moment of inertia model to study 
some of the nuclear properties of deformed heavy nuclei and obtained acceptable results compared to the experimental 
values and concluded the success of these two models for the study of heavy nuclei. E.A. Al-Kubaisi, A.K. Aobaid (2021) 
[14] also used the first model of the interacting bosons and vibrator moment of inertia (VAVM) model to calculate the
energy levels, the quadrupole moment for even-even 𝐷𝑦-162 nucleus and showed that the (VAVM) model are better than
the results calculated by (IBM-1).

2. THEORETICAL ASPECT
2.1. IBM-1 Basis 

The interacting b3oson model-1 is an important model used to study the low-lying collective states structure in deformed 
e-e nuclei, and has been considered as systems composed of interacting (s –d) bosons, which described in terms of monopole 
boson with 𝑠ℓୀ଴ and quadrupole boson with 𝑑ℓୀଶ [15]. The formula of the Hamiltonian operator can be written by [16]: 

† Cite as: A.K. Aobaid, East Eur. J. Phys. 2, 69 (2023), https://doi.org/10.26565/2312-4334-2023-2-04 
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𝐻෡=∑ ε௜ே௜ୀଵ  + ∑ 𝑉௜௝ே௜ழ௝ . (1)

Where ε௜ is the energy of bosons 𝑖, 𝑉௜௝ is the potential energy between the bosons 𝑖 and j. 
General formula for Hamiltonian operator in Eq. 1 assumed by Iachello and Arima can be written as [16,17]: 

Where: (𝑠ற,𝑑ற), (𝑠̂, 𝑑መ) are creation and annihilation operators respectively, 𝐶ℓୀ଴,ଶ,ସ, 𝑈ℓୀ଴,ଶ, 𝑉ℓୀ଴,ଶ describes the bosons 
interactions with each other, ε = εd - εS represent the bosons energy. The energy of the boson s (εS) was considered to be 
zero, therefore: ε = εd. The other formulas of Hamiltonian operator in equation (2) can be written as multipole expansion 
mutual into equation of various boson-boson interactions [18]: 𝐻 =෢ ε𝑛ොௗ + 𝛼଴𝑃෠𝑃෠ + 𝛼ଵ𝐿෠𝐿෠ + 𝛼ଶ𝑄෠𝑄෠ + 𝛼ଷ𝑇ଷ෢𝑇ଷ෢ + 𝛼ସ𝑇ସ෡ 𝑇ସ෡ . (3)

Where the parameters( 𝛼଴,𝛼ଵ,𝛼ଶ,𝛼ଷ,𝛼ସ) represents the strength of the pairing, angular momentum,quadrupole, octupole 
and hexadecapole interactions between bosons respectively.  

2.2. VMI Model Basis 
The (VMI) model proposed firstly, by M. Mariscotti et al. 1969 [19] to calculate the energy states values for any 

band as: 𝐸௃ሺ𝒥) = ଵଶ 𝐶(𝒥 − 𝒥଴)ଶ + ଵଶ [J(J+1)]/𝒥 (4)

Moment of inertia can be determined from equilibrium condition [19,20]: డா(𝒥)డ𝒥 = 0       (5)

Determines 𝒥௃ (in ħଶ unit) as a function of (J). 
The parameter C is the hardness coefficient and 𝒥଴ is the moment of inertia of the ground state (for 𝒥଴ > 0). 
From equations (4,5) can obtained: 𝒥௃ଷ − 𝒥଴𝒥௃ଶ =[J(J+1)]/2C (6)

Eq. 6 contains one real root for any value when  (𝒥଴,C) finite and positive. 
The lest fit-to-square (l.s.f.) procedure has been applied to all measured 𝐸௃ values for any state. 
The energy of the J-level according to the rotational model is given by the relation [21]: 𝐸௃ = ħమమ𝒥 𝐽(𝐽 + 1) (7)

As for the transition energy between levels J → J-2 is given by the relationship [22,23]: ∆Eஓ = E୎ − E୎ିଶ = ħమమ𝒥 (4J − 2)  for (g, β) band (8) ∆Eஓ = ಶమభశర  (J+2)         for 𝛾 –unstable O(6) (9) 

In order to study the phenomenon of backbending, the moment of inertia (2𝒥/ħ^2 ) must be calculated from the 
Eq. 8 and the square of the rotational energy (ħ𝜔)ଶ as:  ଶ𝒥ħమ = ସ௃ିଶ∆୉ಋ      for (g, β) band (10) 

Where ∆Eஓ=E୎ − E୎ିଶ ଶ𝒥ħమ = ଶ௃∆୉ಋ  for gamma band (11) 

Equation (8) can be written for harmonic oscillator as: Eஓ(J→J-2) = ħω (12)

While the rotational energy squared (ħ𝜔)ଶ can be written as [22,23]: 

(ħ𝜔)ଶ = (𝐽ଶ − 𝐽 + 1) ቂ ∆୉ಋଶ௃ିଵቃଶ (13)

𝐻෡ = 𝜀௦(𝑠ற. 𝑠̃) + 𝜀ௗ൫𝑑ற.𝑑ሚ൯ + ෍ 12 (2ℓ + 1)ଵଶ𝐶ℓ ቂ(𝑑ற × 𝑑ற)(ℓ) ⊗ ൫𝑑ሚ ⊗ 𝑑ሚ൯(ℓ)ቃ(଴)
ℓୀ଴,ଶ,ସ+ 1√2𝑈ଶ[(𝑑ற ⊗ 𝑑ற)(ଶ) × ൫𝑑ሚ ⊗ 𝑠̃൯(ଶ) + (𝑑ற ⊗ 𝑠ற)(ଶ) ⊗ ൫𝑑ሚ ⊗ 𝑑ሚ൯(ଶ)](଴)

+ 12𝑈଴[(𝑑ற ⊗ 𝑑ற)(଴) ⊗ (𝑠̃ ⊗ 𝑠̃)(଴) + (𝑠ற ⊗ 𝑠ற)(଴) ×  ൫𝑑ሚ ⊗ 𝑑ሚ൯(଴)](଴) +𝑉ଶ [(𝑑ற ⊗ 𝑠ற)(ଶ) ⊗ ൫𝑑ሚ ⊗ 𝑠̃൯(ଶ)]଴ + ଵଶ 𝑉଴[(𝑠ற ⊗ 𝑠ற)(଴) ⊗ (𝑠̃ ⊗ 𝑠̃)(଴)](଴). 
(2)
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The nuclear stiffness parameter 𝜎 was introduced, which measures the initial variation of moment of inertia w.r.t. 
angular momentum, can be calculated from equation (6) as [19,24]: 

 𝜎 = ቂଵ𝒥  ୢ𝒥ௗ௃ቃ௃ୀ଴ = ଵଶ஼𝒥బయ (14) 

 
3. HAMILTONIAN INTERACTION PARAMERERS 

The Hamiltonian parameters in the IBM computer program “PHINT COD” [25] was used to make the Hamiltonian 
diagonal. The equivalent program for PHINT code is (IBM1.For) and the input file called “Bos.inp.”. All parameters can 
be changed indepently fitting with the experimentally energy spectrum for the nucleuos, and  from these  calculations, we 
find  the nuclear structure of the Pt-186 spectra  by the Hamiltonian interaction paramerers values, These coefficients that 
have reasonable agreement with the experimental data were shown in Table 1. These chosen parameters depended on 
number of proton bosons 𝑁గ and neutron bosons number 𝑁௩ were calculated from the nearst closed shell, and the  number 
of total bosons N = 𝑁గ + 𝑁௩. The nucleuos of even-even Pt-186 have atomic number equel 78 protons ,so there are 4 holes 
(2 protons bosons) to fill the shell Z = 82, and neutrons number equel 108, so there are 18 holes to fill the shell N = 126 
or 9 neutrons bosons. The total numbers of bosons N=11. 

While the results of VMI model were calculated using VMI. For program from file “Par.input” this file depends on 
(𝒥బħమ, C, Ek) parameters, where: 𝒥బħమ moment of inertia for ground state, C is constant parameter fitted with experimental data, 
Ek is the head of the band energy. 
The other files called “Enr. out” and “Enr1.out” these files calculated the following: 

1 – Theoretical energy 𝐸௖௔௟. 
2 – Rotational energy square (ħ𝜔)ଶ and (ଶ𝒥ħమ). 
3 – Nuclear softness (𝜎)from equation (12) 
4 – Deviation (∆) [26,27] which determined the deviation between calculate energy states  𝐸௖௔௟. and experimental 

values 𝐸௘௫௣. from equation: 

 ∆ = [భೖ ∑ (𝐸௖௔௟. − 𝐸௘௫௣.)ଶ ]ଵ ଶൗ௞௜ୀଵ , (15) 

where k is the number of levels. 
5 – Chi-squared (χ2) from equation [19]: 

 𝜒ଶ = (   ா೎ೌ೗.ିா೐ೣ೛.ா೐ೣ೛. )ଶ (16) 

Where all calculations for VMI model were chosen from the smallest (χ2) as in Table.1. 
Table 1. Best fitted interaction parameters for the energies of IBM-1 and VMI model 

The parameters used for IBM-1 in MeV units except CHI and SO6 unless units 
SO6 CHI αସ αଷ αଶ αଵ α଴ ε N 

1.0000 0.0000 0.0010 0.1206 0.0000 0.0041 0.0399 0.0000 11 
The parameters used for VMI model parameters 𝝈, ∆ and χ2 unless units 

χ2 ∆ 𝜎 Ek (MeV) C (MeV)3 𝒥బħమ (MeV)-1 Band 
0.006069 0.039794 0.380508 0.001020 0.0010200 10.881000 g-band 
0.071045 0.114324 0.870504 0.471000 0.000820 8.8810008 𝛽-band 
0.130763 0.130298 0.001146 1.000000 0.011100 34.000000 𝛾ଵ- band 
0.015812 0.095356 0.000011 0.770000 90.500500 7.832500 𝛾ଶ- band 

 
The ratios of the excitation energies 4ଵା, 6ଵା and 8ଵା dividing on the energy level of the first exited 2ଵା for Pt-186 

nucleus using IBM-1 and VMI have been calculated and compared with the identical values for the three limits, 
SU(5),SU(3) and O(6) as in Table 2, these calculations shows that the platinum-186 has Gamma unstable O(6) dynamical 
symmetry, but the  arrangement of the bands according to their appearance (g, 𝛽,  𝛾ଵ, 𝛾ଶ) bands shows that the nucleus 
under study belong to rotational dynamic SU(3)limit. 
Table 2. Ideal energy ratios of three chains [18] compared with experiment [28,29] and theoretical (IBM-1 and VMI) values 

Energy Ratios R E41+/E21+ E61+/E21+ E81+/E21+ Dynamical symmetry 

Identical values [18] 
2.0 3.0 4.0 SU(5) 

3.33 7 12 SU(3) 
2.500 4.500 7 O(6) 

Experimental data [28,29] 2.565 4.592 7.026 O(6) 
IBM-1 Model 2,290 3.881 5.761 O(6) 
VMI Model 2,623 4.623 6.916 O(6) 
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4. RESULTS AND DISCUSSION
4.1. Energy levels 

The ideal, practical, and theoretically calculated energy ratios in Table 2 show that the platinum nucleus belongs to 
gamma unstable O(6) limit, while the arrangement of the band (g, 𝛽, 𝛾) indicates that it belongs to rotational SU(3) limit, 
because the level (0ଶା) appeared before (2ଶା) level  this means that a beta band (𝛽) had appeared and therefore the nucleus 
understudy had O(6)-SU(3) dynamical symmetry. 

The calculated of energy levels values for IBM-1 and VMI are compared with the experimental values [28,29] for 
all bands are shown in Table 3. 
Table 3. Comparision of experimental and calculated results for IBM-1 and VMI model 𝑃𝑡଻଼ଵ଼଺  E୎ (MeV) Eஓ (MeV) J → J − 2 2𝜗ħଶ(𝑀𝑒𝑉)ଶ 

(ħ𝜔)ଶ𝑒𝑥𝑝. (𝑀𝑒𝑉)ଶ band J୧ା Exp. [28,29] IBM-1 VMI Exp. [28,29] IBM-1 VMI 

G--band 

0ଵା 0.000 0.000 0.000 ---- ---- ----- ----- ----- 2ଵା 0.191 0.193 0.191 0.191 0.193 0.191 20.942 0.034 4ଵା 0.490 0.442 0.501 0.299 0.249 0.310 26.755 0.088 6ଵା 0.877 0.749 0.883 0.367 0.307 0.382 31.007 0.149 8ଵା 1.342 1.112 1.321 0.465 0.363 0.438 34.408 0.215 10ଵା 1.858 1.532 1.803 0.516 0.420 0.482 38.759 0.265 12ଵା 2.336 2.008 2.324 0.478 0.476 0.521 50.209 0.228 
(14ଵା) 2.825 2.542 2.879 0.489 0.534 0.555 57.259 0.238 
(16ଵା) 3.394 3.133 3.465 0.569 0.591 0.586 56.239 0.323 
(18ଵା) 4.051 3.782 4.079 0.657 0.649 0.614 54.794 0.431 
(20ଵା) 4.788 4.488 4.719 0.737 0.706 0.640 54.274 0.542 

𝛽1 -
band 

0ଶା 0.471 0.482 0.471 --- --- --- --- --- 2ଶା 0.607 0.555 0.670 0.136 0.073 0.199 5.012 0.017 4ଶା 0.991 0.925 0.976 0.384 0.370 0.306 37.974 0.145 
(6ଶା) 1.470 1.233 1.346 0.479 0.308 0.370 30.075 0.227 
(8ଶା) 2.004 1.597 1.766 0.534 0.364 0.420 71.428 0.284 

(10ଶା) 2.108 2.018 2.226 0.104 0.421 0.460 50.420 0.010 
(12ଶା) 2.611 2.498 2.722 0.503 0.480 0.496 69.651 0.252 
(14ଶା) 3.192 3.035 3.249 0.581 0.537 0.527 49.689 0.337 
(16ଶା) 3.664 3.630 3.805 0.472 0.595 0.556 114.64 0.222 
(18ଶା) 4.258 4.285 4.385 0.594 0.655 0.580 75.757 0.352 
(20ଶା) 4.956 5.943 4.990 0.698 0.605 0.605 --- --- 

𝛾1- 
band 

2ଷା 0.798 0.675 0.954 --- --- --- --- ---3ଵା 0.956 0.909 1.047 0.158 0.234 0.093 --- --- 4ଷା 1.222 0.926 1.172 0.266 0.017 0.125 --- --- 
(5ଵା) 1.362 1.349 1.328 0.140 0.423 0.156 --- --- 
(6ଷା) 1.600 1.353 1.604 0.238 0.004 0.276 --- --- 
(7ଵା) 1.801 1.765 1.735 0.201 0.412 0.131 --- --- 
(8ଷା) 2.123 1.837 1.984 0.322 0.072 0.249 --- --- 
(9ଵା) 2.280 2.038 2.266 0.157 0.201 0.282 --- --- 

(10ଷା) 2.544 2.378 2.578 0.264 0.340 0.312 --- --- 11ଵା --- 2.669 2.922 --- 0.291 0.344 --- ---
(12ଷା) 2.864 2.916 3.296 --- 0.247 0.374 --- --- 

𝛾2- 
band 

2ସା 1.175 1.038 1.153 --- --- --- --- --- 3ଶା 1.417 1.474 1.535 0.242 0.436 0.382 --- --- 4ସା 2.159 1.632 2.046 0.742 0.158 0.511 --- --- 5ଶା --- 1.934 2.684 --- 0.302 0.638 --- ---6ସା --- 1.963 3.450 --- 0.029 0.766 --- ---7ଶା --- 2.452 4.343 --- 0.489 0.893 --- ---

In Table 3 The values of the energy levels are calculated theoreticaly for the spins (11ଵା, 5ଶା, 6ସା, 7ଶା) respectively which 
are not determined experimentally, especially in γଶ –band. Theoretical calculations also showed that the value of the 
uncertain practical energy, which is equal to (2.825MeV)for the spin{(141

+)}, is more probable to the confirmed value, 
especially for VMI model (2.879 MeV) also at the spin {(16ଵା),( 18ଵା), (20ଵା),(14ଶା), (20ଶା),(5ଵା), (6ଷା), (9ଵା), (10ଷା)}. 

The energy spectram of platinum Pt-186 for (g, 𝛽, γଵ , γଶ ) bands as a comparison of IBM-1 and VMI calculations 
with experimental data were plotted in Figure 1. 

The experimental data and calculated of energy bands for the ground and 𝛽-bands were plotted in Figure 2. Good 
agreements from the comparison of the IBM-1 and VMI model calculations (energies, spin and parity) with the 
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experimental data. But in γଵ − band, the agreements were acceptable in the low-lying states, while it is deviated in the 
high spin (energies)of the experimental data because, the calculations of IBM-1 have been performed with no distinction 
made between neutron and proton bosons. 

In γଶ − band VMI calculations were in agreements with experimental data while, the calculations of IBM-1 were 
not good with experimental data because the interacting boson model does not distinguish between neutron and proton 
bosons, there were no experimental values for the energy states for band. 

 
Figure 1. The energy spectra for Pt-186 nucleus as a comparison of IBM-1 and VMI calculations 

with the available experimental data [28,29] 

 
Figure 2. The experimental [28,29] and theoretical results IBM-1, VMI, E(L) versus L for g,𝛽, 𝛾,-bands 

 
4.2. Backbending phenomena 

For the purpose of identifying the properties of the nuclei and studying the possibility of backbending in them, the 
moment of inertia (ଶ𝒥ħమ) and Rotational energy squared(ħ𝜔)ଶ were calculated using equations (10 and 12) respectively, 
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these values are shown in Table 3. The relation between (ଶ𝒥ħమ) and (ħ𝜔)ଶ was drawn for the ground and beta bands in which 
a backbending appeared in it, and shown in Figures 3 and 4. The backbending of these bands occur, due to the change in 
the moment of inertia and 𝛽-band lies in SU(3) limit, and no backbending was observed in the (𝛾ଵ,𝛾ଶ) bands, because the 
moment of inertia does not change ,also these bands belonging to 𝛾-unstable limit. 

The drawing of the ground state band Figure 3 had a backbending between the levels 12ଵା, and (18ଵା), due to the 
deformation of these levels, also, the backbending occurs due to the rapid increase in the moment of inertia at relatively 
high spin than the expected value according to the rotational motion model of some nuclei, which causes a decrease in 
the expected energy value at these cases result in a backbending in the moment of inertia curve as a result of the 
disengagement of one or two pairs of nucleons and their re-engagement, which reduces the expected energy value that 
causes the backbending . 

Figure 3. Moment of inertia (2𝒥/ħ^2 ) as a function of Rotational energy squared (ħ𝜔)ଶ for g-band experimental 

Figure 4. Moment of inertia (2𝜗/ħ^2 ) as a function of Rotational energy squared (ħ𝜔)ଶ for 𝛽-band experimental 

5. CONCLUSIONS
In the present work, the IBM-1and VMI model have been applied successfully in description deformed e-e Pt-186 

nucleus and I got: 
1. The results of state bands show reasonable agreement with empirically but had been found a little difference in

high states, due to the interacting boson model do not distinguish between proton and neutron bosons. 
2. The IBM-1 calculations show that the currently results of the energy states were in good agreement with practical

calculations for the g-band and in reasonable agreement with the beta band and high in (𝛾ଵ, 𝛾ଶ)  band, also some of the 
energy states calculated in my current research did not calculate empirically, especially in γଶ – band. 

3. The results of VMI successfully investigated energy bands in low and high spin levels, and the predictions of this
model gave a good description of the occurrence of backbending in the ground and beta bands due to the small rotational 
frequency (ω) of nucleons, and thus, the nucleon pair behavior at high angular momentum appears to be crucial for this 
an effect, and either the lack of backbending in the gamma bands may be attributed to the presence the deformation of an 
octupole or a hexadecabol in these bands. 
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4. From the curves of the backbending of the energy bands is clear that the 𝛽-band lies in SU(3) limit, and this is
confirmed by the arrangement of the energy bands and the appearance of the backbending in them. while the energy ratios 
shows that the platinum Pt-186 has Gamma unstable O(6) limit. 
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ТЕОРЕТИЧНИЙ ОПИС ПАРНО-ПАРНОГО ЯДРА ПЛАТИНИ Pt-186 З ВИКОРИСТАННЯ МОДЕЛЕЙ IBM ТА (VMI) 
Алі К. Аобейд 

Освітній коледж чистої науки, факультет фізики, Анбарський університет, Анбар, Ірак 
Метою цього дослідження є феноменологічне дослідження backbending ефекту в ядрі платини Pt-186, з метою отримати 
покращений опис вигинів за допомогою нових параметрів. Модель VMI та модель взаємодіючого бозона IBM-1 
використовувалися для виконання цього дослідження для ядра важкої маси (Z = 78). Енергетичні співвідношення та 
розташування смуг показують, що платина Pt-186 має O(6)-SU(3) динамічну симетрію. Наші поточні розрахунки дали 
результати, які досить узгоджуються з останніми експериментальними даними, особливо тими, що розраховані відповідно до 
VMI-моделі. Змінний момент інерції був застосований для успішного опису back-bending ефекту в деформованому парно-
парному ядрі Pt-186. Backbending спостерігався в основному та β-смугах через зміну моменту інерції, але не для (𝛾ଵ, 𝛾ଶ) смуг, 
оскільки не змінювався момент інерції. 
Ключові слова: структура ядра; IBM; ядерна фізика; модель VMI; backbending 
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An investigation of the quadrupole deformation of Kr, Sr, Zr, and Mo isotopes has been conducted using the HFB method and SLy4 
Skyrme parameterization. The primary role of occupancy of single particle state 2d5/2 in the existence of the weakly bound structure 
around N = 50 is probed. Shell gaps are performed using a few other calculations for the doubly magic number 100Sn using different 
Skyrme parameterizations. We explore the interplays among neutron pairing strength and neutron density profile in two dimensions, 
along with the deformations of 100Sn. 
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PACS: 21.10.−k, 21.60.Cs, 21.60.Ev 

1. INTRODUCTION
The mass region around neutron number N = 50 is a fascinating region characterized by many phenomena. Unlike other 

shape phenomena, nuclear deformation leads to the bound structure of a quantum state characterized by different equilibrium 
contributions. Many theories and experiments have been performed to study these contributions. One of the most influential 
theories widely used to study nuclear deformation and structure is the Skyrme-Hartree-Fock (SHF) theory. The nuclear 
system is a self-bound system consisting of nucleons that move in a mean field (MF). The nucleons occupy single-particle 
states according to the Pauli exclusion principle. HF theory is a fundamental MF theory that was studied using Skyrme 
parameterizations to describe the nuclear interaction with different terms in the framework of the Slater determinant. 

The Hartree-Fock-Bogoliubov (HFB) method is formulated for the Hamiltonian. It is expressible in the second 
quantization, which includes two phenomena: the HFMF and the pairing correlations, considering the relationship 
between them. This method will be used in the present work to investigate the deformed shape of nuclear systems with 
SLy4 Skyrme parameterization using the HFBTHO (v1.66p) code [1]. This code uses the axially transformed harmonic 
oscillator (THO) on a single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes the HFB 
Hamiltonian based on the Skyrme forces and zero-range pairing interaction until a self-consistent solution is found. In 
addition, the single-particle energy of 100Sn will be investigated using the shell model with different Skyrme 
parameterizations as single particle potential via the shell model code NuShellX@MSU [2], which used data files for 
different model spaces, mixing configurations, and Hamiltonians to generate input for NuShellX. As well as the 
quadrupole deformation, Fermi level, pairing strength, and density profile of 100Sn with Skyrme tensor parameterization 
are studied using the code [3], which is a highly optimized two-dimensional HF+ Bardeen-Cooper-Schrieffer (BCS) code 
used for computing ground states and deformation energy surfaces for axially symmetric deformed nuclei. 

2. HARTREE-FOCK-BOGOLIUBOV METHOD
In the HFB method, the Hamiltonian is essentially reduced to two potentials: the self-consistent average potential (Γ) 

from HF method, and an additional pairing field (Δ), known from the BCS, the BCS theory states basically that the pairing 
strength is constant for the matrix elements. 

In the following section we will introduce the general quasiparticle picture in the standard HFB formalism. The basic 
idea in the most general quasiparticle concept is to define the HFB approximate ground state of the many-body system as 
a vacuum with respect to quasiparticles. The many-body Hamiltonian of a system of fermions can be expressed in terms 
of a set of annihilation and creation operators [4]: 

† † †1ˆ ˆ ˆ ˆ ˆ ˆ ˆ
4ij i j ijkl i j l k

ij ijkl
H t a a a a a aυ= +  (1) 

where the first term corresponding to the kinetic energy and the second term ῡijkl=<ij|V|kl> is anti-symmetrized two-body 
interaction matrix elements of the effective nucleon-nucleon interaction. An eigenstate of this Hamiltonian can be 
expanded as a sum over states which all have the same total number of nucleons, but with the nucleons occupying the 
available single-particle states in all possible combinations. The Skyrme interaction for nuclear structure calculations was 
developed from the idea that the energy functional could be expressed in terms of a zero-range expansion, leading to a 
simple derivation of the HF equations, in which the exchange terms have the same mathematical structure as the direct 
terms. This approximation greatly reduces the number of integrations over single-particle states when solving the 
equations. 

† Cite as: R.S. Obaid, and A.A. Alzubadi, East Eur. J. Phys. 2, 76 (2023), https://doi.org/10.26565/2312-4334-2023-2-05 
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The Skyrme effective interaction is a two-body density-dependent interaction that models the strong force in the 
particle-hole channel and contains a central and spin-orbit, given by Ref [5]: 
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 (2) 

where ( ),Sky i jV r r   is the Skyrme effective interaction and k̂, k̂ʹ are the relative momentum operators, which operate on the 
wave functions to the right and to the left, given by: 

 ( ) ( )1 2 1 2
1 1ˆ ˆ  ,  
2 2

k k
i i

′ ′ ′= ∇ − ∇ = − ∇ − ∇
   

 (3) 

The terms t˳, t1, t2, t3, x˳, x1, x2, x3, α and W˳ are the free parameters describing the strengths of the different interaction 
terms which are fitted to the nuclear structure data. The t˳ parameter represents the central term, the parameters (t1, t2) are 
the momentum dependent term, the t3 parameter represents the effective density-dependence term, the W˳ parameter 
represents a two-body spin-orbit term and p̂σ being the spin exchange operator: 

 ( )1 2
1ˆ ˆ ˆ1
2

Pσ σ σ= + ⋅  (4) 

To obtain HF equations, we have to evaluate the expectation value of the Hamiltonian in a Slater determinant HF . 
It is given by: 

 ( )
1

1ˆ ˆ ,
2

A A

HF HF i i ij ij
i ij

E H T V i jφ φ φ φ φ φ
=

= = +   (5) 

The expectation value of the HF Hamiltonian or energy of the Skyrme can be rewritten as a spatial integral over a 
Hamiltonian density: 

 ( )3 ˆE d r H r= 
   (6) 

By substituting the Skyrme interaction terms into the full energy expression, the form of the density function, H can 
be derived. Where V(i,j) contains all parts of the nucleon-nucleon force, including the coulomb interaction. The full 
expression for the expectation value of the HF equations with the Skyrme force is then: 
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In the HFB method, the ground state wave function is defined as the quasiparticle vacuum, where the quasiparticle 
operators ( β̂ , †β̂ ) are connected to the original particle operators ( â , †â ) via a linear Bogoliubov transformation [4] 

 ( ) ( )† * * † † † †

1 1

ˆ ˆ ˆ ˆ ˆ=
A A

i ki k ki k ik k ik k
k k

U a V a U a V aβ
= =

= + +   (8) 
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= + +   (9) 

where k and i run over the whole configuration space (k = 1, …, A) and U and V are transformation matrices. 
The Hermitian conjugation of these equations gives the quasiparticle operators. Therefore, we have unitary 

transformation is a transformation from the system of single particle operators to the system of quasiparticle operators),  

 ( ) ( )† † † †
1 1 1 1

ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ,..., ; ,..., ,..., ; ,...,m K m Ka a a a a β β β β β= → =  (10) 

which it can be written in the matrix form [4]: 

 
† †

†
† ††

ˆ ˆ ˆ
ˆ ˆ ˆT T

a aU V
W

a aV U
β

β

      
= =              

 (11) 



78
EEJP. 2 (2023) R.S. Obaid, Ali A. Alzubadi

The matrices U and V satisfy the relations: 

 
† † † *

† *

1,      1
0,    0 

T

T T T

U U V V UU V V
U V V U UV V U

+ = + =
+ = + =

 (12) 

and allows us to invert Eqs. (8) and (9), 

 ( )* * †

1

ˆ ˆˆ
A

l li i li i
i

a U Vβ β
=

= +  (13) 

 ( )† †

1

ˆ ˆˆ
A

l li i li i
i

a V Uβ β
=

= +  (14) 

which means that the Bogoliubov transformation of Eq. (11) is unitary and it can be easily inverted, 

 
*

†
† * † †

ˆ ˆˆ
ˆ ˆˆ

a U V
W

a V U
β β
β β

      
= =               

 (15) 

Using the inverse Bogoliubov transformation Eqs. (13) and (14), the Hamiltonian in Eq. (1) can be expressed in 
terms of the generalized quasiparticle operators 

 
( ) ( )

( ) ( )

1 2 1 2 1 2 1 2 1 2 3 4 1 2 3 4
1 2 1 2 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
1 2 3 4 1 2 3 4

11 † 20 † 40 † † † †

31 † † † 22 † †

1ˆ . . . .
2

1    . . . .
4

k k k k k k k k k k k k k k k k
k k k k k k k k

k k k k k k k k k k k k k k k k
k k k k k k k k

H H H H h c H h c

H h c H h c

β β β β β β β β

β β β β β β β β

= + + + + +

+ + + +

  

 



 (16) 

the last three terms in Eq. (16) are usually involved in so called residual interaction term intĤ . So, the expression of 
Eq. (16) is written as: 

 ( )1 2 1 2 1 2 1 2
1 2 1 2

11 † 20 †
int

ˆ ˆ. . +Hk k k k k k k k
k k k k

H H H H h cβ β β β= + + +   (17) 

The HFB is a variational theory that treats in a unified fashion MF and pairing correlations. The HFB equations can be 
written in matrix form as: 

 *
k k

k
k kV

h
E

h
U U

V
λ

λ∗

   
= 

− Δ 
 −  

  
Δ − + 

 (18) 

where Ek are the quasiparticle energies, λ is the chemical potential, h and Δ are the HF Hamiltonian and the pairing 
potential, respectively, and the Uk and Vk are the upper and lower components of the quasiparticle wave functions. 

These equations are solved subject to constraints on the average numbers of neutrons and protons in the system, 
which determine the two corresponding chemical potentials, λn and λp. Pairing is important as one moves away from 
spherical closed shell nuclei and therefore becomes a necessary ingredient within MF models for describing properties 
that vary strongly with shell effects. Pairing correlations are accounted for within the HF framework by generalizing the 
MF concept to include a pairing field, which is calculated through the HFB equations [6].  

As we move away from close shells, pairing correlations play an important role and should be taken into account. If 
one were dealing with a fundamental many-body Hamiltonian, where one of the proceed to apply HFB formalism to it, 
and dealing with Skyrme force that have been simplified with the aim of reproducing average, one would have to include 
additional parameterization in order to warranty that sensible pairing matrix elements are obtained [4]. 
 

3. SKYRME TENSOR INTERACTION 
The Skyrme tensor interaction is the sum of the triplet-even and triplet-odd tensor zero range tensor parts, has the 

following form [7]: 

 

( ) ( ) ( ) ( )

( ) ( )( ) ( )

( ) ( ) ( ){
( ) ( )

2
1 2 1 2 1 2

2
1 2 1 2 1 2

1 1 2 2

1 2 1 2

1 1 
2 3

1         + 
3

         +         

1         
3

T T k k k r r

r r k k k

U k r r k

k r r k

υ σ σ σ σ δ

δ σ σ σ σ

σ δ σ

σ σ δ

 ′ ′ ′= ⋅ ⋅ − ⋅ −  
 − ⋅ ⋅ − ⋅   

′⋅ − ⋅

′− ⋅  ⋅ −  

      

      

    

   

 (19) 

where the coupling constant T and U measure the strength of the tensor forces in even and odd states of relative motion. 
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The combined effect of central exchange interactions α plus tensor contribution β give extra terms to the energy 
density 

( ) ( ) ( ) ( ) ( )2 21  
2 n p n pH r J r J r J r J rα β Δ = + + 

      (20) 

where ( )nJ r and ( )pJ r are the spin-orbit densities for neutrons and protons, respectively, defined by [8]

( ) ( ) ( ) ( ) ( )2 2
3

, ,

1 3 2 1 1 1  
4 4q i i i i i i i

i n l j
J r j j j l l R r

r
υ

π =

 = + + − + −  
  (21) 

where i runs over all occupied states having the given q: the isospin quantum number q = (1-tz)/2 for neutrons and protons 
(q = 0,1), respectively. 2

iυ  is refers to the occupation probability determined by the BCS theory. The spin-orbital potential 
is given by [9] 

( ) ( ). . . . . q
S O S OV r U r l s=  (22)

with ( ). .
q
S OU r  defined by [10]

( ) 0
. . = 2

2
q q q qq

S O

d d J JWU r
r dr dr r r

ρ ρ
α β′ ′   

+ + +   
   

 (23)

Interactions between like, and unlike particles are presented by q (qʹ) where the first term comes from the Skyrme 
two body spin-orbit interaction. The second term with T cα α α= +  and T cβ β β= +  where ,c cα β  are the parameters of 
the central exchange part [11,7] 

( ) ( )

( )

1 2 1 1 2 2

1 1 2 2

1 1 ,  
8 8

1
8

c

c

t t t x t x

t x t x

α

β

= − − +

= − +
(24) 

and in terms of the tensor parameters 

( )

5 ,
12
5

24

T

T

U

T U

α

β

=

= +
(25)

4. DENSITY PROFILE, PAIRING STRENGTH AND NUCLEAR DEFORMATION
Nuclei is a quantum many-body system exhibiting the quadrupole collectivity associated with the shape of the mean 

field. The collective degree of freedom is associated with the measure of the operator Q̂ . 
The local nucleon density is defined as [3] 

( ) ( ) 22 ,q
q S

r r sα α
α

ρ υ ψ
∈

=  (26)

The total energy is composed as 

tot Skyrme Coulomb pair cmE T E E E E= + + + + (27) 

where ECulomb is the Coulomb energy 

( ) ( )
1

42 2 3
33 3

2 4
p p

C p

r re eE dVdV dV
r r

ρ ρ
ρ

π
′  ′= −  ′−   

 
  (28) 

and the pairing energy is 

{ }

2
,

, 0,

1= 1
4pair pair q q

q p n pair

E V dV ρξ
ρ∈

 
− 

  
  (29) 

where dV stands for the volume element in full three-dimensional space, e is the elementary charge with e2=1.43989 
MeV.fm, and qξ  is the pairing density 
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 ( ) ( ) ( ), ,q
q S

r w u r s r sα α α α α
α

ξ υ ψ ψ
∈

=    (30) 

where wα stands for a soft cut-off of pairing space. The s ϵ ±1 variables indicate the spinor component of the wave 
functions. 

The pairing energy contains the parameter ρ0,pair which regulates the balance between volume and surface 
pairing [12]. Nuclear deformation is defined as the deviation from the spherical symmetry about center of mass (c.m.) 
which expressed by the electric quadrupole moment. Thus, the most important moments are the center of mass 
moments [3] 

 
( )

( )
type

type
type

dV r r
R

dV r

ρ

ρ
= 


 


  (31) 

where ''type'' can refer to proton from ρp neutron from ρn isoscalar or total from the total density ρ= ρp+ρn or isovector 
moment from the isovector density ρT=1 = (N/A) ρp –(Z/A) ρn. The anisotropic combinations can be quantified in terms of 
the spherical quadrupole moments  

 ( )2
2 , 2m type m type typeQ dVr Y r Rρ= −

  (32) 

The axial symmetry allows non-vanishing quadrupole moments only for m=0. It is often convenient to express them 
as a dimensionless quadrupole moment (quadrupole deformation parameter) 

 1 320
20 0 02

4 ,   ,    1.2 fm
3

Q R R A R
AR

πβ = = =  (33) 

We briefly outline the formalisms used in our calculations. Further details can be found in the cited references. 
 

5. RESULTS AND DISCUSSIONS 
The calculated quadrupole deformation parameter (β2) for Kr, Sr, Zr, and Mo isotopes from N = 52 to 58 neutron numbers 

are shown in Fig. 1. Results were calculated using the HFB method with SLy4 parameterization and listed in Table 1. 
Table 1. SkX, Skxta, Skxtb, Skxcsb, SkM, and SLy4 Skyrme parameterizations [2] 

Parameters SkX Skxta Skxtb Skxcsb SkM SLy4 
α 0.5 0.5 0.5 0.5 0.5 0.167 
Χw 0 0 0 0 0 0 
Χc 0 0 0 0 0 0 
Χ 0.72 - - - 0.91 - 
Χa - - - 0.014±0.002 - - 
t0 -1445.3 -1443.180 -1446.8 -1437.353 -1803.1 -2488.91 
t1 246.9 257.229 250.9 238.390 273.8 486.82 
t2 -131.8 -137.843 -133.0 -111.766 -95.9 -546.39 
t3 12103.9 12139.420 12127.6 12157.747 12755.1 13777.0 
Χ0 0.340 0.341 0.329 0.348 0.306 0.834 
Χ1 0.580 0.580 0.518 -0.845 0.225 -0.344 
Χ2 0.127 0.167 0.139 0.407 0.698 -1.000 
Χ3 0.030 0.000 0.018 0.373 0.116 1.354 
W0 148.6 180.441 153.1 149.779 155.9 123.0 
α - 93.6 -83.9 - - - 
β - 94.2  96.1 - - - 

One can see different equilibrium distributions around β2=0 with two minima for 88,90,92Kr, 90,92,94Sr, and 98Mo, but 
these two minima are arranged symmetric about β2=0, then the breaking symmetry for β2 ≠ 0 removed in a symmetry 
point [13] and the nuclei will as a spherical shape with weakly bound structure. For 92,94,96Zr and 94,96Mo have a spherical 
shape. The curve for 94Kr has prolate and oblate quadrupole deformations corresponding to the two close-lying energy 
minima; this indicates that their ground states have shape coexistence. All the isotopes with N=58, 96Sr, 98Zr, and 199Mo, 
have an oblate shape (corresponding to the significant negative deformations). 

The weakly bound structure of these nuclei is observed due to their occupancy in the 2d5/2 neutron single particle 
state; when it is completely filled, this state causes deformation of nuclei shapes. The pairing correlations and collective 
motion of the nucleons result in an oblate shape for all isotopes with neutron number N = 58. Many Skyrme 
parameterizations are fitted to the properties of the nuclei: Skxta and Skxtb with the tensor term, SkX, SkM, SLy4 without 
tensor term, and Skxcsb with consideration of the effect of charge symmetry breaking (CSB), which is tabulated in 
Table 1. Based on the Skyrme parameterizations, Figs 2 and 3 show the neutron and proton shell gaps for 100Sn, as 
compared to the experimental data [14] shown in Tables 2 and 3. 

Skxcsb parameterization includes CSB in the s- wave part of Skyrme interaction together with the usual direct and 
exchange Coulomb terms. The CSB modification of the Skyrme is expressed as a change to proton-proton and neutron-
neutron s- wave interaction [15]: 
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( )( )0 01 1pp
Skyrme aV t x x δ= − + (34)

( )( )0 01 1nn
Skyrme aV t x x δ= − − (35)

where 0.014 0.002ax = − ± [14]. Charge symmetry assumption is based on the equality of p-p and n-n interactions.

Figure 1. The quadrupole deformation parameter as a function of binding energy of the Kr, Sr, Zr, and Mo isotopes 
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According to SLy4 parameterization, the gaps between the states are too large compared to experimental data. This 
parameterization fails to describe the spin-orbit splitting between the states, whereas using the SkX, SkM, and Skxtb 
parameterizations, the state ordering of single-particle energies is nearly identical and gives good results compared with 
the experimental data. The Skxta fails to give acceptable results. The interaction with the Skxcsb gives outstanding results 
where the symmetry-breaking effects on the nuclear structure are associated with Coulomb interaction between nucleons. 

Figure 2. The neutron particle states for 100Sn with different 
Skyrme parameterizations 

Figure 3. The proton particle states for 100Sn with different 
Skyrme parameterizations 

Table 2. Experimental and calculated neutron single particle energy for 100Sn in MeV by using different Skyrme parameterizations 
Skxta, Skxtb, Skxcsb, SkX, SkM, and SLy4 

nlj ɛexp [13] ɛSkxta ɛSkxtb ɛSkxcsb ɛSkX ɛSkM ɛSLy4 
ν1h11/2 -8.60 -6.73 -7.67 -7.85 -7.66 -7.57 -5.67
ν2d3/2 -9.20 -9.49 -9.24 -9.34 -9.25 -9.29 -7.83
ν3s1/2 -9.30 -9.40 -9.25 -9.33 -9.23 -9.37 -8.18
ν1g7/2 -10.93 -11.39 -10.02 -10.09 -10.06 -9.70 -8.19
ν2d5/2 -11.13 -11.27 -11.29 -11.36 -11.27 -11.41 -10.47
ν1g9/2 -17.93 -15.50 -16.44 -16.52 -16.44 -16.46 -16.34
ν2p1/2 -18.38 -18.75 -18.62 -18.62 -18.64 -18.78 -19.45

Table 3. Experimental and calculated proton single particle energy for 100Sn in MeV by using different Skyrme parameterizations Skxta, 
Skxtb, Skxcsb, SkX, SkM, and SLy4 

nlj ɛexp [13] ɛSkxta ɛSkxtb ɛSkxcsb ɛSkX ɛSkM ɛSLy4 
π1g7/2 3.90 3.00 4.22 4.40 4.31 4.60 4.44 
π2d5/2 3.00 3.03 3.02 3.03 3.04 2.84 2.67 
π1g9/2 -2.92 -1.29 -2.10 -2.16 -2.16 -2.16 -2.39
π2p1/2 -3.53 -4.13 -3.98 -3.91 -4.00 -4.12 -5.23
π2p3/2 -6.38 -5.30 -5.30 -5.18 -5.29 -5.47 -6.94
π1f7/2 -8.71 -9.33 -10.05 -9.96 -10.12 -10.29 -12.84

Proton and neutron Fermi energies for 100Sn as a function of the quadrupole deformation parameter β2 are shown in 
Fig. 4 (a and b) (on the left). Fermi energy correlates with the potential energy surface (on the right) in terms of binding 
energy. Interestingly, the ground state of the potential energy surface at β2=0 reflected with large proton and neutron Fermi 
energies. In contrast, the appearance of minima around β2=0 (transition between prolate and oblate shape) decreased the 
binding of the single-particle energies, which affected the nucleus's stability. As a result, one can conclude that the 
collective motion and the pairing correlations between the protons and neutrons caused a slight distortion in the energy 
curve. However, the symmetry in the number of protons and neutrons filling the same orbit enhances the stability of 100Sn. 

Fig. 5 depicts the corresponding neutron pairing strength and neutron density profile in two dimensions (on the right) 
and the deformation for 100Sn (on the left). The pairing strength effect is found as the nucleons are concentrated. No pairing 
strength for β2=0 (region a) with a large concentration of nucleons in the central region as compared with β2=0.252 
(region b), where there is a small concentration of nucleons on the exterior surface, leads to the slight distortion. 
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Furthermore, the red and blue colors correspond to the high density (0.08 fm-3) and low density (0.02 fm-3) of the neutron 
density profile. The central density of β2 = 0 is very high compared to the central density of β2 = 0.252. 

 
Figure 4. Left: The Fermi energy curve of 100Sn of (a) protons and (b) neutrons and Right: the potential energy curve, with tensor 

force term as a function of the quadrupole deformation parameter 

  
Figure 5. Left: The Potential energy curve of 100Sn with tensor force term as a function of the quadrupole deformation parameter. 
The pairing strength and density profile of neutrons for 100Sn corresponding to the two regions, marked a and b, are shown in the 
Right panel 

In Fig. 6 the corresponding pairing energies for 100Sn is plotted along with quadrupole deformation. It is found that 
there is a great correlation between the n-p pairings leads to a small distortion in the region β2 = 0.252. 

 
Figure 6. The potential energy curve (a) and (b) the corresponding neutrons and protons pairing energies for 100Sn 
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6. CONCLUSIONS
In summary, we have used the SHFB method to estimate the quadrupole deformation and examine the bound 

structure of nuclei around the magic number N=50. We find that while the neutrons in the 2d5/2 state increase, nuclei have 
a weakly bound structure, the deformed shape developed, and then the nuclei with filled 2d5/2 state (N=58) have total 
deformation in their ground state (0+); 94Kr,96Sr,98Zr, and 100Mo. Shell gaps of doubly magic number 100Sn with different 
Skyrme parameterizations are giving rise that SLy4 and Skxta falling in describing the spin-orbit splitting between the 
states. In contrast, Skxtb and Skxcsb in both calculations give acceptable results with the experimental data. More results 
have been performed by using a few other calculations of neutron pairing strength and neutron density profile in two 
dimensions using Skyrme tensor parameterization and the deformations of 100Sn. The energy curve gives rise to a weakly 
bound structure leading to a slight distortion. However, the symmetry in the number of protons and neutrons filling the 
same orbit enhances the stability. 

We find that the equilibrium contribution is deformed for the isotopes with a small number of nucleons outside the 
closed shell (N=50) might be attributed to the pairing correlations that lead to raising the collective motion between the 
nucleons, and this fact changes the bound structure of these nuclei around N=50. 
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ДОСЛІДЖЕННЯ СЛАБКОЗВ’ЯЗАНОЇ СТРУКТУРИ ЯДЕР НАВКОЛО МАГІЧНОГО ЧИСЛА N = 50 
Рувайда С. Обейд, Алі А. Алзубаді 

Департамент фізики, Науковий коледж, Багдадський університет, Багдад, Ірак 
Досліджено квадрупольну деформацію ізотопів Kr, Sr, Zr і Mo за допомогою методу HFB та параметризації SLy4 Skyrme. 
Досліджено першочергову роль зайнятості одночастинкового стану 2d5/2 у слабкозв'язаній структурі навколо N = 50. Щілини 
в оболонці розраховуються за допомогою кількох інших розрахунків для подвійного магічного числа 100Sn з використанням 
різних параметрів Скірма. Досліджено взаємодію між силою сполучення нейтронів і профілем густини нейтронів у двох 
вимірах у напрямку деформацій в 100Sn. 
Ключові слова: слабозв�язана структура; квадрупольна деформація; сила сполучення 
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In this paper, the interacting bosons model-1 (IBM-1), a variable moment of inertia (VMI) and generalized moment of inertia 
(GVMI) models were used to calculate the energy levels of the positive parity and its gamma transitions as a function of the angular 
momentum of even-even (ଷଶ଺଺Geଷସ) nucleus. To determine the dynamic symmetry of this nucleus, the ratios of the energy levels Eସା⁄Eଶା ,  E଺ା⁄Eଶା , 𝑎𝑛𝑑 Eା଼⁄Eଶା) were evaluated and compared with experimental energy values and the ideal scheme of the three 
dynamic symmetries SU(5), SU(3), and O(6). The current study showed that the dynamic symmetry of this nucleus is determined to 
be O(6) - SU(5). The intersection of the energy band and the phenomenon of back bending were also studied using the (VMI) and 
(GVMI) models. These consequences were compared with the experimental results, and the results obtained have been in good 
agreement. 
Keywords: Nuclear structure, ଷଶ଺଺𝐺𝑒ଷସ, (IBM-1, GVMI and VMI) Models 
PACS: 21.45.-v, 21.60.Fw, 14.20.Dh. 

INTRODUCTION 
The importance of the nuclear models lies in studying and explaining many nuclear properties. One of these 

models is the Interacting Bosons Model (IBM), as it is considered one of the important nuclear models that succeeded 
in finding most of the nuclear properties. It gives good theoretical values that are compared to practical values and its 
ability to explain the decay of excited nuclear levels that lead to the emission of gamma rays [1]. 

The first interacting boson model (IBM-1) treated the movement of nucleons inside the nucleus as the movement 
of a group of paired particles called bosons, which represent either pair of protons or neutrons or proton-neutrons 
nearest outside the outermost closed shell [2]. 

The simplest concept of the first model of interacting bosons, developed by Arima and Iachello, (1974) [3], 
assumed that the low-lying collective energy levels in even-even medium and heavy nuclei are far from closed shells, 
with magic numbers 2, 8, 20, 28, 50, 82 and 126 are the ones in which only valence protons and neutrons prevail, while 
the core of the shell is inactive, in addition to that, it is assumed that similar particles are interacting together in pairs 
with an angular momentum of 𝑳 = 𝟎 called s-boson and 𝑳 = 𝟐 are called d-boson[4]. This model can describe the 
nuclear levels with positive parity only, which have medium and heavy mass numbers, except for those with closed 
shells, because the number of bosons equals zero. This model depends on “Unitary group theory” in six components 
called U(6), that then produces three subsection symmetries; vibrational U(5), rotational SU(3), and γ-unstable O(6) 
[1,5]. Determining dynamic symmetry depends on the ground energy levels, as it explains many nuclear properties [6]. 

Several models were introduced for associating a large number of experimental data for energy levels bands of 
even-even nuclei, in particular, the variable moment of inertia (VMI) model [7]. This model proposes that moment of 
inertia is mutable, the energy of a level with angular momentum (L) comprises in addition to the usual rotational term, a 
potential energy term which depends on the change of the moment of inertia (𝝑L) from that of the ground state (𝝑𝒐). It 
can be said that this model succeeded in describing the energy levels of the rotational and, to some extent, vibrational 
nuclei. 

The (GMI) [8] model is easier and more comprehensive than the (VMI) model, although it consists of the basic 
building blocks upon which the (VMI) model is built. The energy levels, which are a function of spin (L), are reduced 
to two limits in the new model. This model gave results that are highly consistent with the experimental findings of 
nuclei that have limitations within the SU(3) and SU(5) regions [9]. 

The phenomenon of back bending was demonstrated using both the VMI model and the GVMI model. This 
phenomenon can be explained by using band crossing and Coriolis force effect. The phenomenon of back bending was 
discovered by Johnson and his group in 1971. This phenomenon is one of the characteristics of the moment of inertia of 
deformed nuclei [10]. 

BAND CROSSING 
The phenomenon of bands crossing states that if an energy band, such as (𝛾 − 𝑏𝑎𝑛𝑑) with a moment of inertia ϑ2 

and the ground state band (𝑔 − 𝑏𝑎𝑛𝑑) with a moment of inertia  ϑ1 so that (ଶ > ଵ), an intersection between the two 
bands at a certain angular momentum (𝐿௖௥௢௦௦) 𝐿ୡ will be occurred. what is meant by this intersection is that the high 
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moment energy band will substitute energy by a low moment of inertia when the angular momentum is increased from 
Lc. At the intersection of two bands, all nucleons have a spin equal to zero under the influence of the pairing correlation 
interaction. In this case, the nucleus is considered super-soft and its self-energy is less than the double-bonding energy, 
and the nucleus has a small moment of inertia. The phenomenon of band crossing is an important characteristic of the 
moment of inertia [11]. 

CORIOLIS FORCE EFFECT 
The force or effect of Coriolis is a physical term given to the visible and exposed deformation in the movement of 

objects when observed from a rotational frame of reference, and it was named after the French scientist Gustave 
Coriolis who described this deformation during 1835 AD. The Coriolis effect occurs due to the Coriolis force that 
appears in the equation of motion for a specific body in a rotational reference frame [12]. 

When the angular momentum of the nucleons is high, the effect of the Coriolis force begins to increase. This leads 
the boson located outside the closed shells to decoupling into two neutrons, where a new band called a Two-
quasiparticle (2QP) band appears. While if the boson splits into a proton-neutron, here a four-quasiparticle (4QP) band 
appears. The intersection of the bands that appeared with (𝑔 − 𝑏𝑎𝑛𝑑) at a certain angular momentum leads to the 
occurrence of the phenomenon of back bending [13]. 

SUMMARY OF THE FIRST INTERACTING BOSON MODEL (IBM-1) 
The Hamiltonian operator for IBM-1 is given [14], Ĥ =

1

N N

i ij
i i j

Uε
= <

+  . (1) 

Where εi: represents the energy of the boson. 𝑈௜௝: The energy of interacting bosons. 
N: It is the sum of the number of bosons of nucleons. 

Thus Ĥ = ˆˆˆ ˆ( ) ( 0, 1, 2, ...)s ds s d d Uμ μ
μ

ε ε μ+ ++ + = ± ±  . (2) 

Where 𝜀ୱ: The energy of s-type bosons. 𝜀ௗ: The energy of d-type bosons. 
However, it is more mutual to write the Hamiltonian of the IBM-1 as a multipole extension, grouped into different 

boson-boson interactions [15]: 

( ) ( ) ( ) ( ) ( ) ( )0 1 2 3 3 3 4 4 4
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ . . . . .dn P P L L Q Q T T T Tε α α α α αΗ = + + + + + . (3) 

Where,  Ԑ = Ԑௗ − Ԑ௦  is the energy of the bosons. And )ˆ( dn is the boson number operator and the pairing bosons 
operator isoctupole operator, and the hexadecapole . The angular momentum operator, the quadruple operator, the )ˆ( P

operator are )ˆ(L )ˆ(Q )ˆ( 3T )ˆ( 4T , respectively. And 𝛼଴, 𝛼ଵ, 𝛼ଶ, 𝛼ଷ, 𝛼ସ are the phenomenological parameters.
Thus,  

†

2 2
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4

ˆˆˆ ( . )
1ˆ ˆ ˆˆ ˆ ˆˆ 1 / 2( . ) 1 / 2( . ) ( )
2

ˆˆˆ 10[ ]
ˆˆˆ ˆˆ ˆ[( ) ( )] [ ]

ˆˆˆ [ ]
ˆˆˆ [ ]

dn d d

P d d S S d s

L d d

Q d S S d CHI d d

T d d

T d d

= 
= − = − 

= × 
= × + × − × 
= × 
= × 



    









(4) 

𝐶𝐻𝐼 = −√଻ଶ  is for the rotational limitation and it equals zero for vibrational and γ-soft limitations. 
The interacting boson model can be divided into three chains or three analytic solutions according to the eigenvalues 

problem of IBM-1 Hamiltonian. And these chains are [16], 𝑈(6) ⊃ 𝑆𝑈(5) ⊃ 𝑂(5) ⊃ 𝑂(3) ⊃ 𝑂(2) (5)

Eq. 5 means anharmonic spherical vibrator. 
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𝑈(6) ⊃ 𝑆𝑈(3) ⊃ 𝑂(3) ⊃ 𝑂(2). (6)

Eq. 6 means axially−deformed rotovibrator 𝑈(6) ⊃ 𝑂(6) ⊃ 𝑂(5) ⊃ 𝑂(3) ⊃ 𝑂(2). (7)

Finally, Eq. 7 represents γ-unstable deformed rotovibrator. 

The region of the transition 𝑶(𝟔) − 𝑺𝑼(𝟓) 
The region is meant to represent the joint characteristics of two dynamical symmetries 𝑂(6) − 𝑆𝑈(5). The 

Hamiltonian operator's function can be expressed as [17]. 

( ) ( ) ( )LLPPnd
ˆ.ˆˆ.ˆˆˆ

10 ααε ++=Η . (8) 

The ratio (𝜀 𝛼⁄ ) was necessary for solving the equation (8). When the ratio is high, the vibration dynamical 
symmetry SU(5) is under the control. While the gamma-unstable dynamical symmetry O(6) is in charge while the ratio 
is low. 

Summary of the variable moment of inertia (VMI) model 
In the VMI model, the energy of level E(L) with Angular momentum (L) can be written as [18], 

E(L) = 1
2ϑ(L)

 L(L+1) + ಴మሾ𝜗(𝐿) − 𝜗௢ሿଶ. (9)

Where, ϑ(L): the moment of inertia with angular momentum L, 𝜗௢: the moment of inertia with ground state, C: the 
restoring force constant  

According to the variable moment of inertia model, the nuclear softness coefficient δ can be written in the 
following form [7], 

δ = ଵଶ஼ణ೚య. (10)

The back bending phenomenon occurs due to an increase in the moment of inertia, which is accompanied by a 
decrease in the rotational energy at a certain angular momentum in some nuclei. The total angular momentum 𝐿(𝐿 + 1) 
can be separated into two parts 𝐿(𝐿 + 1) and (𝐿 − 2)(𝐿 − 1). The square of the rotational energy (𝜔ℏ)ଶ and the 
moment of inertia ଶణℏమ  can be written for (𝑔˗𝑏𝑎𝑛𝑑) as [19], (𝜔ℏ)ଶ = ൤ ா(௅→௅ିଶ)ඥ௅(௅ାଵ)ିඥ(௅ିଶ)(௅ିଶାଵ)൨ଶ (11)

ଶణℏమ = ସ௅ିଶா(௅೔)ିா൫௅೑൯ = ସ௅ିଶாം . (12)

For 𝛾 − 𝑏𝑎𝑛𝑑 as [18], (𝜔ℏ)ଶ = ൤ ா(௅→௅ିଵ)ඥ௅(௅ାଵ)ିඥ(௅ିଵ)൨ଶ. (13)

ଶణℏమ = ௅(௅ାଵ)ି௅(௅ିଵ)ா(௅→௅ିଵ) = ଶ௅ாം. (14)

The transition energy 𝐸ఊ of 𝑔˗𝑏𝑎𝑛𝑑 and any other band are the difference between the energy of the initial angular 
momentum 𝐸(𝐿௜) and the energy of the final momentum 𝐸൫𝐿௙൯. Meaning that 𝐸ఊ equals to 𝐸(𝐿) − 𝐸(𝐿 − 2) regarding 
to 𝑔˗𝑏𝑎𝑛𝑑, while 𝐸ఊ equals to 𝐸(𝐿) − 𝐸(𝐿 − 1) following to 𝛾˗𝑏𝑎𝑛𝑑. 

Chi-square represents the suitability of VMI and GVMI models is given [20], 𝜒ଶ = ൫ா೎ೌ೗ିா೐ೣ೛൯మ൫ா೐ೣ೛൯మ . (15)

Where, (𝐸௖௔௟) theoretically calculated energy and ൫𝐸௘௫௣൯ is the experimental error in the excitation energy. 
The root mean square of the standard deviation was calculated from the following equation [20], 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = ටቂଵே ∑ ൫𝐸௖௔௟ − 𝐸௘௫௣൯ଶே௜ୀଵ ቃ. (16)

where, N is the number of data points entering the fitting procedure. 
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CALCULATION PROCEDURES 
Calculation of energy levels 

• The energy levels of the nucleus under study were calculated using the IBM model by programming Equation 3
in the FN95-Plato program and through the IBM program code.
• The energy levels for the same core were calculated using the VMI model by programming Equation 9 in the
same computer program through the code VMI.For.
• The energy levels of the studied nuclei were calculated using the GVMI model through the code GVMI.For.

The principle of matching between the values of the energy levels theoretically calculated in the IBM-1 model and
its experimentally measured values is the first criterion adopted in our study. Table (1) shows the values of the 
parameters of the Hamiltonian function represented in Equation (3) were appropriated and adjusted. 
Table 1. The parameters for which the best fit is chosen, which represent Equation 3. These parameters are the energies operator 
measured in (MeV). 

Nuclei Nπ Nυ N EPS
(MeV) 

ˆ ˆP.P
(MeV) 

L.L ˆˆ
(MeV) 

Q.Q ˆˆ
(MeV) 

33 T.T ˆˆ
(MeV) 

44 T.T ˆˆ
(MeV) 

CHI 
(MeV) 

SO6 
(MeV) Geଷଶ଺଺ ଷସ 2 3 5 0.5532 0.0269 0.0444 0.0365 0.0184 0.0071 0.0001 0.0001 

While the energy levels were theoretically calculated using the (IVM) and (GVMI) models by applying 
Equation (9). These parameters were selected and fitted to obtain the smallest value of the chi-square (𝜒ଶ).  

According to the best selected parameters: moment of inertia (𝜗° ℏ⁄ ), recovery force (C), band head energy (𝐸୩), 
for the VMI model. As for the (GVMI) model, it depends on the three parameters in addition to the parameter (Y) is the 
constant parameter fitted with experimental data as shown in Table (2). The last three columns contain, respectively, the 
values of the nuclear ductility coefficient δ, standard deviation, and chi-squared 𝜒ଶ. 
Table 2. The consistent parameters of (VMI) and (GVMI) models for Geଷଶ଺଺ ଷସ nucleus 

Isotope 

Ba
nd

 

Model 𝝑° ℏ⁄  (𝐌𝐞𝐕)ି𝟏 
C (𝐌𝐞𝐕)𝟑 

𝐄𝐤 
(MeV) 

Y 
 (MeV) δ Standard 

deviation 𝝌𝟐 

Geଷଶ଺଺ ଷସ g VMI 0.516370 0.036550 0.000000 ------- 99.357262 0.203520 0.036356 
 GVMI 2.034200 3.999000 0.000000 0.085224 0.024644 0.248871 0.052858 
γ VMI 4.178000 0.040400 1.300000 ------- 0.169701 0.182449 0.061080 
 GVMI 1.000000 2.112000 0.100000 0.004224 0.469485 0.152464 0.038602 

The values of the energy levels of the nucleus under study are shown in Figure (1). These results were compared 
according to the applied programs and the experimental values [22], and there was a good agreement between the 
experimental values and the theoretical values for these levels. 

Figure 1. Experimental [22] and theoretical energy levels studied by (IBM-1) and (VMI) and (GVMI) models. 
It is possible to identify and know the type of dynamic symmetry, which is considered one of the important 

nuclear properties to describe the behavior of the nucleus, and it can be reached by relying on the ratios for energy values 
calculated experimentally [23] and the theoretically calculated values of the nucleus under study and comparing them with 
the ideal values shown in Table (3), where practical and theoretical calculations indicate that this nucleus belongs to the 
two determinations 𝑂(6) − 𝑆𝑈(5) and according to the appearance of energy bands (𝑔, 𝛾). The presence of the (𝛾 − 𝑏𝑎𝑛𝑑) 
immediately after the (𝑔 − 𝑏𝑎𝑛𝑑) confirms that the nucleus under study has O(6) dynamic symmetry. 
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Table 3. Perfect energy ratios for the three main limitations [23] compared with experimental [22] and theoretical values 

Limit 𝑬𝟒𝟏ା 𝑬𝟐𝟏ା⁄  𝑬𝟔𝟏ା 𝑬𝟐𝟏ା⁄  𝑬𝟖𝟏ା 𝑬𝟐𝟏ା⁄    Dynamicl symmetry 

Identical values [23] 
2 3 4 SU(5)

3.33 7 12 SU(3) 
2.5 4.5 7 O(6)

Exp[22]. 2.2712 3.8186 5.5997 O(6)-SU(5) 
IBM-1 2.2735 3.8065 5.5999 O(6)-SU(5) 
VMI 2.2905 3.7999 5.4801 O(6)-SU(5)

GVMI 2.2714 3.7823 5.5071 O(6)-SU(5) 

The Energy Band Crossing 
The importance of the energy band crossing phenomenon lies in explaining the back bending of deformed nuclei. 

Fig. (2) shows the band crossing of the nucleus under study using the (VMI) and (GVMI) models, depending on the 
energy equation (4). In both models, the (𝑔˗𝑏𝑎𝑛𝑑) and (𝛾˗𝑏𝑎𝑛𝑑) intersect approximately at (Lc = 6). 

(a) (b) 
Figure 2. The energy levels calculated theoretically by means of a) the VMI model and b) the GVMI model for the nucleus under study. 

The back bending phenomenon 
In nuclear physics, the effect of the moment of inertia is an important topic in order to identify and study the 

phenomenon of back bending. To get acquainted with this phenomenon, both (2𝜗° ℏ⁄ ) and (ħ𝜔)ଶ were calculated by 
computing the equations (11, 12,13, and 14) using a computer simulation programs (VMI.For) and (GVMI.Model). 
Fig. (3) shows the relationship between the moment of inertia (2𝜗° ℏ⁄ ) as a function of the rotational energy squared (ħ𝜔)ଶ of the nucleus under study using the (VMI) and (GVMI) models. It was observed that there are backbends in the 
ground state band (𝑔˗𝑏𝑎𝑛𝑑) and the (𝛾˗𝑏𝑎𝑛𝑑). 

(a) (b)

Figure 3. The relationship between moment of inertia (𝟐/ħ𝟐)  and rotational energy (ħ𝝎)𝟐 of the nucleus under study within the 
scope of a) the (GVMI) model and b) the (VMI) model. 

CONCLUSIONS 
The three models (IBM-1, VMI and GVMI) achieved acceptable success in this study. In this study, it was found 

that the models used gave a good agreement in calculating the energy levels and excited energies as a function of 
angular momentum, compared with the experimental calculations . 

It was concluded that the determination of dynamic symmetry by calculating the energy ratios for each of the three 
models and comparing them with the ideal values with the nucleus under study develops the determination of O(6) -SU(5) . 
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With regard to the intersection of bands, it was found that each of the 𝑔 − 𝑏𝑎𝑛𝑑 𝑎𝑛𝑑 𝑡ℎ𝑒 𝛾 − 𝑏𝑎𝑛𝑑, which were 
calculated through the VMI and GVMI models, intersect at angular momentum 𝐿௖ = 6. This leads to the occurrence of 
the back bending phenomenon. 

Through the theoretical results obtained, it was found that the models can give many explanations in the nuclear 
structure. 

ORCID IDs 
Ali K. Aobaid, https://orcid.org/0000-0002-1135-3675 

REFERENCES 
[1] A.M. Al-Nuaimi, R.B. Alkhayat, and M.A. Al-Jubbori, “Investigating the Nuclear Properties of 162-172 Er Isotopes using IBM-1,

SEF, and NEE,” Karbala International Journal of Modern Science, 8, 391-396 (2022).  https://doi.org/10.33640/2405-609X.3249
[2] S.S. Hummadi, O.A.M. Safauldeen, A.M. Hadee, and R.H. Honi, “Calculate Energy Levels, Energy Ratios and Electric

Quadrupole Transition Probability B (E2), of the Even-Even Yb-164 Isotopes Using IBM-1,” Al-Mustansiriyah Journal of
Science, 31, 71-75 (2020). https://doi.org/10.23851/mjs.v31i1.606

[3] F. Iachello, and A. Arima, “Boson Symmetries in Vibrational nuclei,” Phys. Lett. B, 53, 309-312 (1974).
https://doi.org/10.1016/0370-2693(74)90389-X

[4] H.N. Hady, and M.K. Muttalb, “Investigation of transition symmetry shapes of 160-168Yb nuclei using IBM,” Iraqi Journal of
Science, 62, 1135-1143 (2021). https://doi.org/10.24996/ijs.2021.62.4.10

[5] T. Otsuka, A. Arima and F. Iachello, “Shell model description of interacting bosons,” Phys. Lett. B, 76, 139-143 (1978).
https://doi.org/10.1016/0370-2693(78)90260-5

[6] Y.Y. Kassim, M.A. Al-Jubbori, I.M. Ahmed, H.Y. Abdullah, and F.I. Sharrad, “Microscopic description of 170Er, 172Yb, 174Hf,
176W isotones,” in: IOP Conference Series: Materials Science and Engineering. (IOP Publishing, 2020), pp. 072124.

[7] G. Scharf-Goldhaber, C.B. Dover, and A.I. Goodman, “The Variable Moment of Inertia (VMI) Model and Theories of Nuclear
Collective Motion,” Annu. Rev. Nucl. Sci. 26, 239-317 (1976). https://doi.org/10.1146/annurev.ns.26.120176.001323

[8] D. Bonatsos, and A. Klein, “Generalized phenomenological models of the yrast band,” Phys. Rev. C, 29, 1879-1886 (1984).
https://doi.org/10.1103/PhysRevC.29.1879

[9] I.T. Al-Alawy, K.S. Ibraheim, and A.K. Aobaid, “The effect of the VMI, VAVM and GVMI moment of inertia and rotational
motion on the nuclear structure of 𝐹𝑒ଷ଴ଶ଺ହ଺  nucleus,” J. Coll. Edu. 1, 233-252 (2016).

[10] A. Johnson, H. Ryde, and J. Sztarkier, “Evidence for a “singularity” in the nuclear rotational band structure,” Phys. Let. B, 34,
605-608 (1971). https://doi.org/10.1016/0370-2693(71)90150-X

[11] D. Ward, R.L. Graham, J.S. Geiger, and H. R. Andrews, “Anomalous Moments of Inertia for High-spin Levels in The Beta
Vibration Band of 154Gd,” Phys. Lett. B, 44, 39-40 (1973). https://doi.org/10.1016/0370-2693(73)90294-3

[12] V. Apostolyuk, Coriolis Vibratory Gyroscopes Theory and Design, editor, (Springer International Pub. Switzerland, 2016).
[13] B.L. Birbrair, “Influence of the nuclear Meissner - effect on the ground - state rotational bands of deformed nuclei,” Phys. Let.

B, 39, 489-491 (1972). https://doi.org/10.1016/0370-2693(72)90326-7
[14] G.A.H. Jaber, and M. K. Muttaleb, “Studying The Breaking Symmetry for O(6) Even Hg Isotopes in Interacting Boson Model

(1 and 2),” in AIP Conference Proceedings, 2144, (AIP Publishing LLC, 2019), pp. 030014. https://doi.org/10.1063/1.5123084
[15] H.N. Hady, and M.K. Muttalb, “Geometric structure features in 72-80𝑆𝑒 isotopes,” J. Rad. Nucl. Appl. 5, 147-152 (2020).

https://www.naturalspublishing.com/download.asp?ArtcID=21429
[16] A. Frank, J. Jolie, and P.V. Isacker, “Symmetry in Nuclear Physics: The Interacting Boson Model,” in: Symmetries in Atomic

Nuclei, (Springer Nature, Switzerland AG, 2019), pp. 71-102.
[17] K.S. Ibrahim, I.T. Al-Alawy, and N.M. Umran, “The Potential Energy Surface (P.E.S.) of 𝐶𝑑଺ସସ଼ଵଵସ  and 𝑁𝑑଼଺଺଴ଵସ଺  of U(5)–O(6)

Dynamical symmetries,” J. Coll. Edu. 1, 281-298 (2018). https://www.iasj.net/iasj/pdf/210cac021a430477
[18] A.M. Khalaf, M.D. Okasha, G.S.M. Ahmed, and A. Abdelsalam, “Identical bands in doubly even nuclei in framework of

variable moment of inertia (VMI) and interacting boson models,” Nucl. Phys. A, 997, 121719 (2020).
https://doi.org/10.1016/j.nuclphysa.2020.121719

[19] R. Nojarov, and E. Nodjakov, “Band Coupling and Crossing in Nuclei,” Nucl. Phys. A, 397, 29-60 (1983).
https://doi.org/10.1016/0375-9474(83)90077-5

[20] M.R. Spiegel, and L.J. Stephens, “The Standard Deviation and Other Measures of Dispersion,” in: Schaum's Outlines Statistics,
6th ed., (Mc Graw Hill Education, 2018), pp. 100-105.

[21] M. Sakai, “Quasi-Bands in Even–Even Nuclei,” Atomic data and nuclear data tables, 31, 399-432 (1984).
https://doi.org/10.1016/0092-640X(84)90010-X

[22] E. Browne, and J.K. Tuli, “Nuclear Data Sheet for A=66,” 111(4), 1093-1209 (2010). https://doi.org/10.1016/j.nds.2010.03.004
[23] A.M. Ali, Y.Y. Kassim, and M.M. Yosuf, “Study of Nuclear Structure of Even–Even Dy Isotopes,” J. Edu. and Sci. 30, 94-105

(2021). http://dx.doi.org/10.33899/edusj.2021.129809.1151

ОПИС СТРУКТУРИ ЯДРА ГЕРМАНІЮ 𝐆𝐞𝟑𝟐𝟔𝟔 𝟑𝟒 З ВИКОРИСТАННЯМ ЯДЕРНИХ МОДЕЛЕЙ IBM-1, GVMI ТА VMI 
Імад А. Хамді, Алі К. Аобейд 

Кафедра фізики, Факультет освіти для чистої науки, Анбарський університет, Анбар, Ірак 
У цій статті для розрахунку рівнів енергії позитивної парності та її гамма-переходів як функція кутового моменту парно-
парного ( Geଷଶ଺଺ ଷସ) ядра використовувалися модель взаємодіючих бозонів (IBM-1), модель змінного моменту інерції (VMI) і 
узагальненого моменту інерції (GVMI). Також були оцінені співвідношення рівнів енергій Eସା Eଶା⁄ ,  E଺ା Eଶା⁄ , 𝑎𝑛𝑑 Eା଼ Eଶା⁄ ) та 
порівняні з експериментальними значеннями енергії та ідеальною схемою для трьох динамічних симетрій SU(5), SU(3) та 
O(6), щоб визначити динамічну симетрію цього ядра поточне дослідження показало, що при динамічна симетрія визначення 
O(6)-SU(5). Перетин енергетичної зони та явище вигину назад також вивчали за допомогою моделей (VMI) та (GVMI). Ці 
наслідки порівнювали з експериментальними результатами, і отримані результати добре узгоджувалися. 
Ключові слова: структура ядра; Geଷଶ଺଺ ଷସ; моделі (IBM-1, GVMI та VMI) 
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In this study, the longitudinal charge |𝐹௖௛(𝑞)|ଶ and |𝐹(𝐶2,𝑞)|ଶform factors for the nuclei 9Be and 28Si lying in the p and sd shells are 
studied by employing the Harmonic Oscillator potential (HO) and Skyrme effective interaction (Sk35−Skzs∗). The C0 and C2 from 
factors calculated for the ground state 3/2-, the 5/2- (2.429 MeV) and 7/2- (6.380 MeV) for 9Be, while the ground state 0+ and 2+ 
(1.779 MeV) state for 28Si nucleus. Calculations of microscopic perturbations that involve intermediate one-particle, one-hole 
excitation from the core and MS orbits into all upper orbits with 𝑛ℏ𝜔excitations are utilized to generate the effective charges necessary 
to account for the “core polarization effect”. The shell model calculations are utilized on the extended model space to include all 1s, 
1p, 2s–1d, 2p-1f orbits with (0 + 2)ℏ𝜔  truncation. Bohr-Mottelson collective model and Tassie model with properly estimated 
effective neutron and proton charges are taken into account to consider the effect of the core contribution. The estimated form factors 
were compared with the measured available data and they were in good agreement for most of the studied states. A conclusion can be 
drawn that (0 + 2)ℏ𝜔 truncation is very good choice to study the longitudinal form factors. 

• The choice of Harmonic Oscillator potential (HO) and Skyrme effective interaction (Sk35−Skzs∗) is adequate for formestimation of longitudinal form factors.
• The estimation of the effective charges based on microscopic perturbations that involve intermediate one-particle, one-hole 

excitation from the core and MS orbits into all upper orbits with 𝑛ℏ𝜔 excitations is adequate.
• The (0 + 2)ℏ𝜔 truncation proves to be very successful to perform the study.

Keywords: Shell Model; Charge form factor; Longitudinal Form Factors; Harmonic Oscillator; Skyrme Interactions 
PACS: 21.60.Cs, 13.40.Gp, 25.30.Dh, 03.65.−w, 21.30.Fe 

INTRODUCTION 
The investigation of nuclei has more access neutrons, than what is known as “neutron-rich nuclei” far from the line 

of stability is important for understanding nuclear structure. Exotic features differ from those of stable nuclei and deserve 
experimental and theoretical exploration. One of the most striking characteristics of neutron-rich nuclei is nuclear 
deformation, which may be studied both theoretically and empirically using electromagnetic properties like electric 
quadrupole (Q) moments and magnetic dipole (μ) moments. Using a microscopic particle vibration model, Sagawa and 
Asahi [1] investigated the N/Z dependence of the quadrupole polarization charges of C isotopes. The single-particle wave 
functions and gigantic quadrupole resonances are approximated using the Hartree-Fock and random-phase 
approximations. The polarization charges of nuclei with a high N/Z ratio experienced a significant quenching. Cohen and 
Kurath [2] model properly explain the features of low energy p shell nuclei, but it fails to represent the form factors of 
higher momentum transfer. Radhi et al. [3-6] have previously stated that the CP effects must be taken into account for 
nuclei in the p shell and sd shell to improve form factor calculations. Taihua Heng et al. [7] used the ab initio no-core full 
configuration NCFC technique to explore the characteristics of 7Li with the NNLOopt chiral nucleon-nucleon and JISP16 
interactions, as well as 7Be with the JISP16 interaction. They calculated observables like energy spectra, proton point 
radii at the root mean value, transitions, and electromagnetic moments. Zheng et al. performed calculations based on 
large-basis shell model without core calculations for p-shell nuclei using six main shells (from 1s to 3p-2f-1h) [8, 9]. All 
nucleons are active in these calculations, according to Zheng et al., If computer resources are restricted, we have to adopt 
a truncated calculation without core with some freezing orbits, in which only a few ℏ𝜔  excitations of the lowest 
unperturbed configurations are evaluated can be used. The result will converge and approximate that of the full no-core 
calculations as the number of ℏ𝜔 increases. In the work of Navratil et al. [10] it is found that the predicted rate of the E2 
transition with 4ℏ𝜔 space for 6Li is weaker than 6ℏ𝜔 space prediction. Majeed et al. [11-13] revealing that the form 
factor calculation on a large basis of the shell model was used to analyze nuclei in the p, sd, and Fp shells, including the 
contribution of high-energy configurations beyond the p, sd, and Fp shell space model space is essential to be considered 
to consider the effect of the core polarization contribution arises from the closed core. 

† Cite as: S.M. Obaid, S.A. Abbas, A.A. Hussein, N.A. Mohammed, and F.A. Majeed, East Eur. J. Phys. 2, 91 (2023), https://doi.org/10.26565/2312-
4334-2023-2-07 

https://periodicals.karazin.ua/eejp/index
https://doi.org/10.26565/2312-4334-2023-2-07
https://portal.issn.org/resource/issn/2312-4334
https://orcid.org/0000-0001-7534-9125
https://orcid.org/0000-0002-5580-233X
https://orcid.org/0000-0002-2408-4347
https://orcid.org/0000-0002-3647-0384
https://orcid.org/0000-0002-0701-9084


92
EEJP. 2 (2023) Sarah M. Obaid, Shaimaa A. Abbas, et al.

In this study, the longitudinal charge and C2 form factors for 9Be and 28S exotic nuclei utilizing the shell model 
calculations by considering the major shells 1s, 1p, 2s–1d, 2p–1f, with partially inert core using the model space spsdpf 
with wbt effective interaction using the code NushellX@MSU [14]. Since the space configuration is a very large 
dimension, the shell model calculations in the whole spsdpf space are not possible, therefore a truncation is required in 
the valence space. We will consider the (0 + 2)ℏ𝜔 truncated spsdpf model space (ms) calculation. The form factors will 
be calculated by considering the residual interactions, between harmonic oscillator (HO) and Skyrme effective interaction 
(Sk35−Skzs∗) [15] with using the Tassie and Bohr-Mottelson collective models. The core polarization (CP) will be 
considered by evaluating the suitable effective charges at zero photon point. Theoretical results of C0 and C2 were 
compared with the available measured data for each studied case for the studied nuclei. 

METHOD DETAILS 
Tassie and Bohr-Mottelson models were adopted along with  Harmonic Oscillator potential and Skyrme effective 

interaction  (Sk35−Skzs∗) with suitable parametrization were adopted. As mentioned in Ref. [16], the neutron and proton 
effective charges for the model of Tassie are predicted by using microscopic perturbation calculations that include 
intermediate (1p-1h) excitations from the orbit contribution MS and core to include higher orbits with 𝑛ℏ𝜔 excitations. 
The effective proton and neutron charges for Bohr-Mottelson were estimated using the equations [17] 𝑒௘௙௙(𝑡୸) = 𝑒(𝑡୸) + 𝑒𝛿𝑒(𝑡୸) 𝑒𝛿𝑒(𝑡୸) = 𝑍/𝐴 − 0.32(𝑁 − 𝑍)/𝐴 −  2𝑡௭[0.32 − 0.3(𝑁 − 𝑍)/𝐴] , (1)

where 𝑡୸(𝑝) = 1/2 and 𝑡୸(𝑛) = −1/2 

In terms of transition charge density, the element matrix of Coulomb can be represented as the sum of the MS and 
CP elements [18] Ο(𝐶𝜆, 𝑞) = 𝑞 ׬ 𝑑𝑟𝑟ଶ𝑗ఒஶ଴ (𝑞𝑟)𝜌ఒ,௣ெௌ(𝑟) + ׬ 𝑑𝑟𝑟ଶ𝑗ఒஶ଴ (𝑞𝑟)∆𝜌ఒ(𝑟) (2)

where the momentum transfer is q and 𝑗ఒ(𝑞𝑟) is spherical Bessel function. For the initial (𝑖) and final (𝑓) nuclear states, 
the nucleons charge density F of the transition is described using the one-body density matrix [18] 𝜌ఒ,௨ெௌ(𝑟) = ∑ 𝐹(𝑖,𝑓, 𝑘௔,𝑘௕, 𝜆,𝑢)⟨𝑗௔||𝑌ఒ||𝑗௕⟩ெௌ௞ೌ,௞್ 𝑅௡ೌ௟ೌ(𝑟)𝑅௡್௟್(𝑟), (3)

where 𝑘 stands for (𝑛 𝑙 𝑗) the s.p. states and (𝑢) is the index which refers to either neutrons or protons.  
The transition density for the CP valence model is given by [18] ∆𝜌ఒ௏(𝑟) = 𝛿𝑒௣𝜌ఒ,௣ெௌ(𝑟) + 𝛿𝑒௡𝜌ఒ,௡ெௌ(𝑟) (4)𝛿𝑒௣ , 𝛿𝑒௡ are the charges associated with the neutron and protons to account for polarization. 
The CP for Tassie model transition density is provided by 

∆𝜌ఒ,௣் (𝑟) ∝ 𝑟ఒିଵ ௗఘబ,೛೎೚ೝ೐శಾೄ(௥)ௗ௥ = 𝑁𝑟ఒିଵ ௗఘబ,೛೎೚ೝ೐శಾೄ(௥)ௗ௥ (5)

The charge density of the ground state is [18] 𝑑𝜌଴,௣௖௢௥௘ାெௌ(𝑟) = ∑ 𝐹(𝑖, 𝑓, 𝑘௔, 𝑘௕, 0,𝑝)⟨𝑗௔||𝑌଴||𝑗௕⟩஼௢௥௘ାெௌ௞ೌ,௞್ 𝑅௡ೌ௟ೌ(𝑟)𝑅௡್௟್(𝑟) (6)

At the photon point, the proportionality constant 𝑁 is given by the matrix elements of gamma transitions 𝑀(𝐸𝜆), 𝑞 =𝐸ఊ ℏ𝑐⁄ , where 𝐸ఊ is the energy due to excitation [18] 𝑀(𝐸𝜆) = ൜𝑒 ׬ 𝑑𝑟𝑟ଶஶ଴ 𝑟ఒ(𝑞𝑟)𝜌ఒ,௣ெௌ(𝑟) + 𝑁׬ 𝑑𝑟𝑟ଶ𝑟ଶఒାଵஶ଴ ௗఘబ,೛೎೚ೝ೐శಾೄ(௥)ௗ௥ ൠ (7)

The matrix of gamma transition elements can be described as MS matrix elements with effective charges. 𝑀(𝐸𝜆) = 𝑒௣௘௙௙ ׬ 𝑑𝑟𝑟ଶஶ଴ 𝑟ఒ(𝑞𝑟)𝜌ఒ,௣ெௌ(𝑟) + 𝑒௡௘௙௙ ׬ 𝑑𝑟𝑟ଶஶ଴ 𝑟ఒ(𝑞𝑟)𝜌ఒ,௡ெௌ(𝑟) (8)

Equating Eq. (7) with Eq. (8) yields the constant of proportionality N by means of the effective charges. A detailed 
discussion of these above-mentioned models for effective neutrons and protons [18] |𝐹௅ఒ(𝑞)|ଶ = ସగ௓మ ଵଶ௝೔ାଵ |Ο(𝐶𝜆, 𝑞)|ଶห𝐹௖௠(𝑞)𝐹௙௦(𝑞)หଶ (9)
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Skyrme energy is produced through Skyrme interaction. According to ESkyrme is a two-body density-dependent 
interaction that represents central spin-orbit and tensor components in coordinate space and replicates the strong force in 
the particle-hole channel [19] 

 𝜈ଵଶ = 𝑡଴൫1 + 𝑥଴𝑃෠ఙ൯𝛿(𝑟ଵ − 𝑟ଶ) + ௧భଶ ൫1 + 𝑥ଵ𝑃෠ఙ൯ ቀ𝑘෠ଶ𝛿(𝑟ଵ − 𝑟ଶ) + 𝛿(𝑟ଵ − 𝑟ଶ)𝑘෠ሖ ଶቁ + 𝑡ଶ൫1 + 𝑥ଶ𝑃෠ఙ൯𝑘෠ሖ .𝛿(𝑟ଵ − 𝑟ଶ)𝑘෠ +௧య଺ ൫1 + 𝑥ଷ𝑃෠ఙ൯𝜌ఈ൫𝑅ሬ⃗ ൯𝛿(𝑟ଵ − 𝑟ଶ) + 𝑖𝑊଴𝑘෠ሖ (𝜎ොଵ + 𝜎ොଶ) × 𝑘෠𝛿(𝑟ଵ − 𝑟ଶ) (10) 

here 𝑅ሬ⃗ = ௥⃗భା௥⃗మଶ  and 𝛼 is the force of Skyrme parameters. The operators 𝑘෠ = ൫∇ሬሬ⃗ ଵ − ∇ሬሬ⃗ ଶ൯ 2𝑖⁄  and 𝑘෠ሖ = −ቀ∇ሖ⃖ሬሬଵ − ∇ሖ⃖ሬሬଶቁ 2𝑖ൗ  are 
the relative momentum wavevectors for the two nucleons acting to the right and left, with coordinate 𝑟́ respectively. When 
the nuclear structure data is fitted, the variables t0, t1, t2, t3,  x1,  x2,  x3, and W0 are free parameters taken to describe the 
components of various interactions. The Pauli matrices (𝜎ො), the spin-exchange operator, and the delta function of Dirac 𝛿(𝑟ଵ + 𝑟ଶ) are all mathematical terms. The energy of the total density of the nucleus is expressed as follows in the (SHF) 
model [19]: 

 𝐸 = 𝐸௞௜௡ + 𝐸ௌ௞௬൫𝜌௨ + 𝜏௨ + 𝑠௨ + 𝚥௨ + ℌሬሬ⃗ ௨൯ + 𝐸஼௢௨௟ + 𝐸௣௔௜௥ − 𝐸௖௠ (11) 

Here 𝐸௞௜௡ refers to energy of kinetic motion, 𝐸ௌ௞௬ refers to Skyrme energy which include time even (nucleon 𝜌௨, 
kinetic energy 𝜏௨ and orbital–spin ℌሬሬ⃗ ௨ and the odd-time (current 𝚥௨, spin 𝑠௨, and the vector of the kinetic energy 𝑇ሬ⃗௨) both 
densities and the pairing energy 𝐸௣௔௜௥ and the mass at the center 𝐸௖௠. The 𝑢 label refers to neutrons or protons. The 
Skyrme type of parametrization is taken to perform the calculations is (Sk35−Skzs∗) [16].  

 
The “mean square charge radius” is expressed by the formula [16] 

 〈𝑟௖ଶ〉 = 〈𝑟௣ଶ〉 + 〈𝑅௣ଶ〉 + ே௓ 〈𝑟௡ଶ〉 + ଷସ ൬ ℏெ೛௖൰ଶ (12) 

 〈𝑟௖ଶ〉 = 〈𝑟௣ଶ〉 + 0.769 − ே௓ 0.1161 +  0.033 (13) 

Here 𝑟௣ is the radius comes from the distribution of the proton point of the nucleus, 𝑅௣ and 𝑟௡ are the charge radii of 
the free proton and neutron, and the final term is known as the Darwin-Foldy term (0.033 fm2). 

 
RESULTS AND DISCUSSION 

The longitudinal Coulomb charge |𝐹௖௛(𝑞)|ଶ and |𝐹(𝐶2, 𝑞)|ଶ form factors for the 9Be and 28Si nuclei have been 
calculated by considering a truncated spsdpf model space with wbt effective interaction [20] with (0 + 2)ℏ𝜔. The C0 and 
C2 from factors calculated for the ground state 3/2-, the 5/2- (2.429 MeV) and 7/2- (6.380 MeV) for 9Be, while the ground 
state 0+ and 2+ (1.779 MeV) state for 28Si nucleus. In all proceeding figures (see Fig.1, panels a, b, c, and d), the dotted 
grass green and magenta curves display the results of the calculations of the Tassie and Bohr-Mottelson models using the 
valence model (MS) calculations only, while the solid red and blue curves show the calculations of Tassie and Bohr-
Mottelson models including the core polarization effect by means of effective charge of protons and neutrons. 

 
9Be nucleus 

The nucleus 9Be is a neutron-halo with 4 protons and 5 neutrons considered as (4𝛼+n) and it is stable with the ground 
state is 3/2-. The effective charge at the zero-photon point considered in this work is taken from Ref. [21]. The longitudinal 
Coulomb charge |𝐹௖௛(𝑞)|ଶ and |𝐹(𝐶2, 𝑞)|ଶ Form factors for the ground state have been calculated ൫𝐽௙గ = 3 2⁄ ି ,𝑇 = 1 2⁄ ൯ 
of the 9Be as displayed in Figure 1 panels (a, b, c and d) by utilizing the Tassie and Bohr-Mottelson collective models. 
Due to large number of dimensions to be used in the model space spsdpf, a truncation has to be used, therefore the 
truncation is taken as (0 + 2)ℏ𝜔 following the restriction adopted in Ref. [16]. 
 

The state (3/2- 1/2) at 0.000 MeV (g.s) 
The C0 and C2 form factors and their sum (C0+C2) for the ground state 3/2- are depicted in Fig.1 , b, c, and d. 

The calculations were performed by using harmonic oscillator (HO) and Skyrme effective interactions (Sk35−Skzs∗) 
for both Tassie and Bohr-Mottelson models. Panels a and b represent the Tassie model with the Harmonic Oscillator 
potential (HO) and Skyrme effective interaction (Sk35−Skzs∗), while in c and d in Fig.1, represent Bohr-Mottelson 
model Tassie model with the Harmonic Oscillator potential (HO) and Skyrme effective interaction (Sk35−Skzs∗). The 
effective charges for neutron and proton are 0.70e and 1.075e, respectively [21], while for Bohr-Mottelson estimated 
using Eq.1 as 0.17 and 0.4 for the proton and neutron respectively. The observed data from Ref. [22] for this state form 
factor. The data could not be reproduced in all regions of the momentum transfer using bare model space computations. 
Introducing the effective charge in both Tassie and Bohr Mottelson with account for the core polarization effect makes 



94
EEJP. 2 (2023) Sarah M. Obaid, Shaimaa A. Abbas, et al.

a remarkable improvement especially for Bohr Mottelson calculations shown in panel (a) where the solid bule line 
which is (C0+C2) form factor matches the measured data in all momentum transfer regions using HO as the residual 
effective interaction. 

Figure 1. Longitudinal C0 and C2 form factors and their sum C0+C2 for the Tassie and Bohr-Mottelson models by using the 
Harmonic Oscillator potential (HO) and Skyrme effective interaction (Sk35−Skzs∗) in comparison to the measured data [22]. 

The state (5/2- 1/2) 2.429 MeV 
Figure 2 shows the calculation of the form factor for C2 for the state (5/2- 1/2) at Ex=2.429 MeV. The bare model 

space calculation for both Bohr-Mottelson collective model and Tassie model by using the Harmonic Oscillator potential 
(HO) and Skyrme effective interaction (Sk35−Skzs∗) underestimates the measured data in all momentum transfer regions. 
The measured data for this state are taken from [22-24]. The form factor of Bohr-Mottelson model reproduces the high q 
values of the effective charge to consider the CP effects, explains the data up 𝑞 ≥ 1.5𝑓𝑚ିଶ. 

Figure 2. The C2 longitudinal form factors for the Tassie and Bohr-Mottelson models by using the Harmonic Oscillator potential 
(HO) and Skyrme effective interaction (Sk35−Skzs∗) in comparison to the measured data [23, 24]. 
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The state (7/2- 1/2) 2.429 MeV 
The longitudinal C2 form factor for (7/2- 1/2) at Ex=6.380 MeV. The calculation of the model space for the Tassie 

and Bohr-Mottelson models at the peak value, it underpredicts the data by nearly a factor of three. The measured data are 
scattered therefore Introducing the effective charge in both Tassie and Bohr Mottelson to account for the core polarization 
effect aren’t able to reproduce the measured data for these states. The measured data are taken from [22] (Fig. 3). 

 
Figure 3. The C2 longitudinal form factors for the Tassie and Bohr-Mottelson models by using the Harmonic Oscillator 

potential (HO) and Skyrme effective interaction (Sk35−Skzs∗) in comparison to the measured data [23, 24]. 
 

28Si nucleus 
The nucleus 28Si is even-even nucleus with 14 protons and 14 neutrons and it is stable with the ground state is 0+. 

The longitudinal Coulomb charge |𝐹௖௛(𝑞)|ଶ and |𝐹(𝐶2, 𝑞)|ଶ form factors are calculated for the transitions to the ground 
state ൫𝐽௙గ = 0ା,𝑇 = 0൯ of the 28Si as demonstrated in Figure 4 by utilizing the Tassie and Bohr-Mottelson collective 
models. Due to large number of dimensions to be used in the model space spsdpf, a truncation has to be used, therefore 
the truncation is taken as (0 + 2)ℏ𝜔 following the restriction model from Ref. [16].  
 

The state (0+ 0) 0.000 MeV (g.s) 
The C0 form factor for the ground state 0+is displayed in Fig.4. The calculations were performed by using Harmonic 

oscillator (HO) and Skyrme effective interactions (Sk35−Skzs∗) for both Bohr-Mottelson collective model and Tassie 
model. In both Tassie and Bohr Mottelson models, the effective charge is included to account for the core polarization 
effect. The measured data is taken from [25]. The theoretical calculations of the model space only don’t reproduce the 
measured data for all q values. The inclusion of the core polarization in the Bohr Mottelson model harmonic oscillator 
(HO) describes the experimental data very well up to momentum transfer 𝑞 ≥ 1.5𝑓𝑚ିଶ and is able to reproduce the 
measured data very well and agrees with previous theoretical work in Ref. [6]. 
 

 

Figure 4. Longitudinal C0 form factors for the Tassie and Bohr-Mottelson models by using the Harmonic Oscillator potential (HO) 
and Skyrme effective interaction (Sk35−Skzs∗) in comparison to the measured data [25]. 
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The state (2+ 0) 1.779 MeV 
Figure 5 displays the longitudinal C2 calculations with their comparison to the measured data for the state (2+ 0) at 

1.779 MeV to the ground state (0+ 0). The measured data is taken from [25] The model space (0 + 2) only with Harmonic 
oscillator (HO) and Skyrme effective interactions (Sk35−Skzs∗) for Bohr-Mottelson collective model and Tassie model 
underestimate the experimental data in the first maxima and second maxima. The inclusion of the core polarization in the 
Bohr Mottelson model harmonic oscillator (HO) and Skyrme effective interactions (Sk35−Skzs∗) describe the 
experimental data very well up to momentum transfer 𝑞 ≥ 1 𝑓𝑚ିଶ. The effects of core polarization enhance the C2 form 
factors at the first and second maximums, bringing the calculated values extremely near to the experimental data. 

Figure 4. Longitudinal C2 form factors for the Tassie and Bohr-Mottelson models by using the Harmonic Oscillator potential (HO) 
and Skyrme effective interaction (Sk35−Skzs∗) in comparison to the measured data [25]. 

CONCLUSION 
The longitudinal charge |𝐹௖௛(𝑞)|ଶ and |𝐹(𝐶2, 𝑞)|ଶ form factors the nuclei (9Be and 28Si) in the p-and sd-shells by 

utilizing the shell model calculations by considering the major shells 1s, 1p, 2s–1d, 2p–1f, including a partially inert core 
using the model space spsdpf with wbt effective interaction using the code NushellX@MSU were conducted. The residual 
interactions used in the calculation of the form factors are harmonic oscillator (HO) and Skyrme effective interaction 
(Sk35−Skzs∗) by employing Tassie and Bohr-Mottelson collective models. The result of the form factors with (0 + 2)ℏ𝜔 
shell is not able to reproduce the data for all momentum transfer regions for both nuclei under study. Introducing the 
effective charges in both Tassie and Bohr Mottelson to account for the core polarization effect makes a remarkable 
improvement especially for Bohr Mottelson calculations.  
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ДОСЛІДЖЕННЯ ОБОЛОНКОВОЇ МОДЕЛІ ДЕЯКИХ p-ТА sd-ОБОЛОНКОВИХ ЯДЕР 
З ГАРМОНІЧНИМ ОСЦИЛЯТОРОМ ТА SKYRME ВЗАЄМОДІЯМИ 

Сара М. Обейдa, Шайма А. Аббасb, Айша Алі Хусейнb, Нур Аділь Мохаммедc, Фуад А. Маджідd 
aДепартамент інженерної медичної фізики та радіотерапії, Інженерно-технічний коледж Аль-Наджаф, 

Технічний університет Аль-Фурат Аль-Аусат, Аль-Наджаф, Ірак 
bДепартамент фізики, Освітній коледж чистої науки (Ібн-Альхайтам), Багдадський університет, Багдад, Ірак 

cМіністерство освіти, Генеральний директорат освіти Rusafa3, Багдад, Ірак 
dДепартамент фізики, Освітній коледж чистих наук, Вавилонський університет, Вавилон, Ірак 

У цьому дослідженні поздовжній заряд |𝐹௖௛(𝑞)|ଶ і |𝐹(𝐶2,𝑞)|ଶформфактори для ядер 9Be і 28Si, що лежать в p і sd оболонках, 
вивчаються за допомогою потенціалу гармонічного осцилятора (HO) та ефективна Skyrme взаємодії (Sk35−Skzs∗). C0 і C2 з 
факторів, розрахованих для основного стану 3/2-, 5/2- (2,429 МеВ) і 7/2- (6,380 МеВ) для 9Be, водночас як основний стан 0+ і 
2+ (1,779 МеВ) для ядра 28Si. Розрахунки мікроскопічних збурень, які передбачають проміжне збудження однієї частинки, 
однієї дірки з орбіт ядра та MS на всі верхні орбіти з збудженнями nℏω, використовуються для створення ефективних зарядів, 
необхідних для врахування «ефекту поляризації ядра». Розрахунки моделі оболонки використовуються в розширеному 
просторі моделі для включення всіх орбіт 1s, 1p, 2s–1d, 2p 1f з усіканням (0 +2)ℏω. Колективна модель Бора-Моттельсона та 
модель Тассі з правильно оціненими ефективними нейтронними та протонними зарядами враховуються для врахування 
ефекту внеску ядра. Оцінені форм-фактори порівнювали з наявними виміряними даними, і вони добре збігалися для більшості 
досліджуваних станів. Можна зробити висновок, що (0 +2)ℏω скорочення є дуже хорошим вибором для вивчення поздовжніх 
форм-факторів. 
• Вибір потенціалу гармонійного осцилятора (HO) та ефективної Skyrme взаємодії (Sk35−Skzs∗) є адекватним для оцінки

форми поздовжніх формфакторів.
• Оцінка ефективних зарядів на основі мікроскопічних збурень, які включають проміжні одночастинкові, однодіркові

збудження від орбіт ядра та MS до всіх верхніх орбіт зі збудженнями nℏω, є адекватною.
• Скорочення (0 +2)ℏω виявляється дуже успішним для виконання дослідження.
Ключові слова: модель оболонки; форм-фактор заряду; поздовжні форм-фактори; гармонічний осцилятор; Skyrme
взаємодії
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The main intention of this study is to differentiate the stable and realisable solutions between the dual solutions of the water-based 
hybrid nanofluid flow driven by a solid cone along with energy transfer in the form of heat and mass by employing a new approach 
called stability analysis. The deviation of thermal radiation, chemical responses and heat absorption/generation are reserved into 
account. The leading equations which support the mathematical representation of this study are renovated by utilizing a set of similarity 
variables and solved by the MATLAB built-in bvp4c solver scheme. The outcomes of this study are presented both graphically and 
numerically. From this study, two kind of flow solutions have been achieved where one of them is related to the time-independent 
solutions and stable in nature. Also, the speed of the hybrid nanofluid can be controlled by applying magnetic field, but we should keep 
in mind that excessive amount of magnetic parameter may damage the system by burning. 
Keywords: Hybrid nanofluid; Solid cone; Thermal radiation; Chemical reaction; Dual solutions; Stability Analysis 
PACS: 44.10.+i; 44.30.+v; 44.40.+a; 44.20.+b; 47.11.+j 

INTRODUCTION 
In recent times, physics of nanofluid flow has achieved important significance due to their various significance in 

diverse areas such as medicine, electronics and heat transfer devices etc. Nanofluids have better performance in different 
thermo-physical properties compared to the base fluids like water and oil etc. The mixture of nanoparticles with base 
fluids are termed as “Nanofluid” which was first coined by Choi [1].  

The nanoparticles with different oxidation stages such as metallic or non-metallic particles like 𝐶𝑢,𝐴𝑙,𝐴𝑔,𝐹𝑒,𝐴𝑙ଶ𝑂ଷ 
and 𝐶𝑢𝑂 etc that are typically used in a base fluid like water, ethylene glycol, Kerosene and different bio-fluids to form 
nanofluids. Due to the vast applications of nanofluids, researchers have motivated to study the importance of nanofluids 
and interpreted different kind of results associated with nanofluids and their properties. Recently, Mishra et al. [2] have 
investigated the water based nanofluid containing 𝐴𝑔-nanoparticle under different slip effects. Chanie et al. [3] have 
explored the flow behaviour of water-based nanofluid containing 𝐶𝑢 and 𝐴𝑔 particles and found that the motion of the 
fluid containing 𝐶𝑢 is more effective than the 𝐴𝑔 − 𝐻ଶ𝑂. 

Hybrid nanofluids are new kind of fluids that are made up of two or more different nanoparticles with traditional 
base fluids. This kind of fluid has advance features than the general nanofluids. An individual matter can never has all 
the required characteristic that is the material may be omitted or deficient some properties. The hybrid nanoparticles can 
be customized in such a way that it can process better significant than the other nanofluids. 𝐴𝑙ଶ𝑂ଷ + 𝐶𝑢 , 𝐴𝑙ଶ𝑂ଷ +𝑁𝑖,𝑀𝑔𝑂 + 𝐹𝑒&𝐴𝑙ଶ𝑂ଷ + 𝑆𝑖𝑂ଶ etc are some examples of hybrid nanomaterials. Turcu et al. [4] and Jana et al. [5] were 
the foremost authors who have studied hybrid nanofluid experimentally. They have examined that the rate of heat transfer 
of the hybrid nanofluids is noticeably superior than the general nanofluids. This kind of fluids have better significant 
thermo-physical properties than the nanofluids. 

In this study, we have investigated the water-based hybrid nanofluid containing 𝐶𝑢  and 𝐴𝑙ଶ𝑂ଷ  nanoparticles by 
considering a solid cone with the influence of both thermal and mass transmissions. This type of hybrid nanoparticles is used 
for oxygen storage, production and many other industrial applications [6]. There are many applications of fluid flow due to 
a solid cone in different industrial and engineering sciences such as the solder tip, the conical heater and the continuous 
variable transmission (CVT) in modern car [7]. Recently, many authors [2,7,8,9,10,11] have investigated the nanofluid and 
hybrid nanofluid flow caused due to a solid cone and given different importance outcomes and characteristics of cone. 

Different physical areas recognise the importance of the synchronised effects of heat and mass transmissions on the 
flow of magnetised fluid under various flow geometries. Many industrial and engineering processes such as annealing and 
thickening of copper wire, paper production, MHD pump and MHD generators etc need both heat and mass transfers 
phenomenon with magnetic field effects. Dey and Borah [12] and Dey et al. [13,14 15] have investigated the boundary-layer 
fluid flow under the influence of both heat and mass transfers by considering different geometries. Alzahrani et al. [16] have 
examined the flow behaviour of hybrid nanofluid over a flat plate with the effects of both heat and mass transfers. Devi and 
Anjali Devi [17] and Khashi’ie et al. [18] have looked towards improving thermal transmission of 𝐶𝑢 − 𝐴𝑙ଶ𝑂ଷ hybrid 
nanofluid flow over a extending surface. Researchers [2,7,19] have investigated the hybrid nanofluid flow due to a solid and 
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rotating cone under different flow factors such as heat and mass transfers etc. Abdullah et al. [20] have analysed the 
convective heat transfer characteristics of hybrid nanofluid driven by square enclosure.  

Also, the thermal radiation and chemical reaction effects on the fluid flow problems have played an important role 
in different physical fields. From the several decades, many researchers have given attention on these two flow factors as 
because of their multifarious application in different industrial, engineering and medical applications. Chamkha et al. [21] 
have examined the effects of radiation on mixed convection fluid flow by suspending nanoparticles. Sulochana et al. [22] 
have explored the influence of both thermal radiation and chemical reaction on magnetohydrodynamics nanofluid flow 
due to moving surface. Recently, Sharma et al. [23] have explored the effects of radiation parameter on the hybrid 
nanofluid flow over an extending surface with Joule heating. Dey et al. [24] have analyzed the stability analysis of 
magnetized fluid flow with the effects of chemical reaction. Saleem et al. [25] have investigated the MHD nanofluid flow 
over a rotating cone under the influence thermal radiation. 

Due to the lack of information about the smoothness of the surface of the considering geometry and mathematical 
tools with assumptions, some initial complexity in the flow is observed which may develop non-uniqueness flow 
solutions. This initial complexity in the flow classifies the flow solutions into two categories, one solution is stable and 
physically tractable. Markin [26] was the first author who has explored the idea of dual solutions and their stability. 
Recently, Ghosh and Mukhopadhyay [27], Dey and Borah [12], Dey et al. [14], Dey et al. [24], Waini et al. [28] and 
Dey et al. [29] have explored the nature of non-uniqueness solutions and their stability behaviour by considering different 
fluids model. 

The present work is all inspired by the above literatures and its immense relevance in different physical fields. We 
were able to ascertain via the literature review that this study has novelty like effects of thermal radiation, considering 
nanoparticles to form hybrid nanofluid, dual solutions and its stability analysis and will have a significant influence on 
other experts in the field. To the authors’ awareness, this type of fluid model obtained by inserting the nanoparticles 𝐶𝑢 +𝐴𝑙ଶ𝑂ଷ with water which is driven by a solid cone along with energy transfers has not yet been taken into account while 
analysing dual solutions and their stability. 

The intention of this work is to analyze the dual solutions and their stability of the water-based hybrid nanofluid 
driven by a solid cone which is sited in a porous medium under the influence of thermal radiation and chemical reaction 
with different slip flow effects such as velocity, thermal and concentration slips. Here, we have initially suspended the 𝐶𝑢 solid nanoparticle of volume fraction 𝜙ଶ = 0.06 into the water base fluid to form 𝐶𝑢/𝑤𝑎𝑡𝑒𝑟 nanofluid. Again, 𝐴𝑙ଶ𝑂ଷ 
solid nanoparticle of volume fraction 𝜙ଵ = 0.1 is added into 𝐶𝑢/𝑤𝑎𝑡𝑒𝑟 nanofluid and achieved the 𝐴𝑙ଶ𝑂ଷ − 𝐶𝑢/𝑤𝑎𝑡𝑒𝑟 
hybrid nanofluid. Also, a harmonized magnetic field is applied in the normal direction of the conical surface which plays 
an important role to enhance the thermal properties of the fluid. The leading equations which support the mathematical 
model of this problem are renovated by utilizing a set of similarity variables and solved by the MATLAB built-in bvp4c 
solver technique. Stability analysis is executed between the flow solutions to characterise the stable and physically 
achievable solution. Also, for the verification of our numerical codes, we established a reasonable uniformity when we 
compared our findings to the previously published article Mishra et al. [2]. 

FORMULATION OF THE PROBLEM 
We have constructed a mathematical model of this study by considering a permeable cone of radius 𝑟(𝑥) which is 

immersed in a steady, incompressible and two-dimensional hybrid nanofluid. The flow diagram and its coordinate system 
are shown in Fig. 1. Where, the 𝑥- axis is measured along the surface of the cone and 𝑦- axis is taken in the normal 
direction of the conical surface such that vertex of the cone is taken as the origin of the system. In this study, we have 
considered the influence of both heat and mass transfers such that 𝑇௪ and 𝐶௪ prescribe the constant wall temperature and 
concentration respectively and 𝑇ஶ&𝐶ஶ the temperature and concentration at free stream region. A uniform magnetic field 
of strength 𝐵଴ is applied in the normal direction of the conical surface. Here, we have considered the hybrid nanofluid 
which is formed by adding 𝐴𝑙ଶ𝑂ଷ  nanoparticles into the 𝐶𝑢/𝐻ଶ𝑂  nanofluid and hence 𝐴𝑙ଶ𝑂ଷ − 𝐶𝑢/𝐻ଶ𝑂  hybrid 
nanofluid is found. Table 1 discusses the thermo-physical characteristics of the base fluid and solid particles. 

Figure 1. Flow diagram and its coordinate system. 
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Table 1. Thermo-physical properties of base fluid and solid particles (Mohmed et al. [7]). 

Property 𝑯𝟐𝑶 𝑪𝒖 𝑨𝒍𝟐𝑶𝟑 
ρ 3( )Kg m−⋅  997.1 8933 3970 

PC 1[ ( ) ]J Kg K −⋅  4179 385 765 

k 1[ ( ) ]W mK −  0.613 400 40 

σ 1( )Sm−  65.5 10−×  659.6 10×  635 10×  

Under the aforesaid assumptions and boundary-layer approximations, we have considered the following leading 
equations which govern the present problem ([7] and [2]). 

 డ(௥௨)డ௫ + డ(௥௩)డ௬ = 0, (1) 

 𝑢 డ௨డ௫ + 𝑣 డ௨డ௬ = 𝜈ℎ௡௙ డమ௨డ௬మ + 𝑔𝛽(𝑇 − 𝑇∞)𝐶𝑜𝑠𝐴 − 𝑔𝛽∗(𝐶 − 𝐶∞)𝐶𝑜𝑠𝐴 − ఓℎ೙೑ఘℎ೙೑ ଵ௞೛ 𝑢 − ఙℎ೙೑ఘℎ೙೑ 𝐵଴ଶ𝑢 = 0, (2) 

 𝑢 డ்డ௫ + 𝑣 డ்డ௬ = ௞ℎ೙೑(ఘ஼ು)ℎ೙೑ డమ்డ௬మ + ఓℎ೙೑(ఘ஼ು)ℎ೙೑ ቀడ௨డ௬ቁଶ + ொబ(ఘ஼ು)ℎ೙೑ (𝑇 − 𝑇∞) + ఙℎ೙೑(ఘ஼ು)ℎ೙೑ 𝐵଴ଶ𝑢ଶ − ଵ(ఘ஼ು)ℎ೙೑ డ௤ೝడ௬ , (3) 

 𝑢 డ஼డ௫ + 𝑣 డ஼డ௬ = 𝐷௠ డమ஼డ௬మ − 𝐾𝑟(𝐶 − 𝐶∞). (4) 

Here, we have initially suspended the 𝐶𝑢 solid nanoparticle of volume fraction 𝜙ଶ = 0.06 into the water base fluid 
to form 𝐶𝑢/𝐻ଶ𝑂  nanofluid. Again, 𝐴𝑙ଶ𝑂ଷ  solid nanoparticle of volume fraction  𝜙ଵ = 0.1  is added into 𝐶𝑢/𝐻ଶ𝑂 
nanofluid and achieved the 𝐴𝑙ଶ𝑂ଷ − 𝐶𝑢/𝐻ଶ𝑂 hybrid nanofluid. The properties of hybrid nanofluidis given below such 
that the base fluid and the nanoparticles are denoted with the subscript 𝑓, 𝑠ଵ&𝑠ଶ  [7]. 𝜇ℎ௡௙ = 𝜇௙(1 − 𝜙ଵ)ଶ.ହ(1 − 𝜙ଶ)ଶ.ହ ,𝜌ℎ௡௙ = (1 − 𝜙ଶ)ൣ(1 − 𝜙ଵ)𝜌௙ + 𝜙ଵ𝜌௦భ൧ + 𝜙ଶ𝜌௦మ , (𝜌𝐶௉)ℎ௡௙ = (1 − 𝜙ଶ)ൣ(1 − 𝜙ଵ)(𝜌𝐶௉)௙ + 𝜙ଵ(𝜌𝐶௉)௦భ൧ + 𝜙ଶ(𝜌𝐶௉)௦మ , 𝑘ℎ௡௙𝑘௕௙ = ቀ𝑘௦మ + 2𝑘௕௙ − 2𝜙ଶ൫𝑘௕௙ − 𝑘௦మ൯ቁቀ𝑘௦మ + 2𝑘௕௙ + 𝜙ଶ൫𝑘௕௙ − 𝑘௦మ൯ቁ , 𝑘௕௙𝑘௙ = ቀ𝑘௦భ + 2𝑘௙ − 2𝜙ଵ൫𝑘௙ − 𝑘௦భ൯ቁቀ𝑘௦భ + 2𝑘௙ + 𝜙ଵ൫𝑘௙ − 𝑘௦భ൯ቁ , 

𝜎ℎ௡௙𝜎௕௙ = 1 + 3 ൬ఙೞమఙ್೑ − 1൰𝜙ଶ൬ఙೞమఙ್೑ + 2൰ − ൬ఙೞమఙ್೑ − 1൰𝜙ଶ ,𝜎௕௙𝜎௙ = 1 + 3 ൬ఙೞభఙ೑ − 1൰𝜙ଵ൬ఙೞభఙ೑ + 2൰ − ൬ఙೞభఙ೑ − 1൰𝜙ଵ. 
The related boundary conditions are: 

 𝑦 = 0:𝑢 = 𝑢௪ + 𝑙ଵ డ௨డ௫  , 𝑣 = 𝑣௪ ,𝑇 = 𝑇௪ + 𝑙ଶ డ்డ௬  ,𝐶 = 𝐶௪ + 𝑙ଷ డ஼డ௬ , (5) 𝑦 → ∞:𝑢 → 0,𝑇 → 𝑇∞,𝐶 → 𝐶∞. 
Where, 1 2 3, &l l l  are the slip factors and vanishing of 1 2 3, &l l l  implies the no slip flow in the system. To alter the nature 
of equations (1)-(4), we have adopted the following set of variables [2].  
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From the Roseland approximation (following Prameela et al. [30]), the local radiative heat flux term for optically 
thick gray fluid is given by

  
34

0 0

2 2

4 16
3 3r

TT Tq
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, (7) 

where 434 34 ∞∞ −≈ TTTT  (by Taylor series approximation). As a result, 
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3

r Tq T
y k y

σ ∞∂ ∂≈ −
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 (8) 

After utilizing the equations (6) and (8) into the equations (1)-(4), we have achieved the following set of equations 
and the equation (1) which represents the conservation of mass identically satisfies the similarity variables (6). 

 2
1 1 1 2 3''' ' ' ' 2 '' 0A f Gr Gm A k f A A Mf f ffθ φ+ − − − − + = , (9) 
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2 2
4 5 6 7

1 (1 ) '' '' ' 2 ' 0,
Pr

A Nr A Ecf A Q A MEcf fθ θ θ+ + + + + = (10)

'' ' 0.Scf ScCrφ φ φ+ − = (11)
The boundary restrictions become in the following form: 𝑓(0) = 𝑆, 𝑓 ′(0) = 1 + 𝐿௩𝑓 ′′(0),𝜃(0) = 1 + 𝐿்𝜃 ′(0),𝜙(0) = 1 + 𝐿௠𝜙′(0), (12)𝑓 ′(∞) → 0,𝜃(∞) → 0,𝜙(∞) → 0. 
Where, ( 1,2,3,4,5,6,7)iA i = ’s are defined in the following way: 
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P hnf P f

k k
A A A A A

C C C C

A C C A
C C
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The dimensionless parameters are: 
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During this study, we have observed three types of physical quantities which play an important role in different 
physical fields by computing shear stress, rate of heat transfer and rate of mass development at the surface. These physical 
quantities are defined in the following way [2], [7]:  𝐶௙ = 2 ఓℎ೙೑ఘ೑௎మೢ ቀడ௨డ௬ቁ௬ୀ଴ ,𝑁𝑢௫ = − ௫௞ℎ೙೑௞೑(்ೢ ି ∞்) ቀడ்డ௬ቁ௬ୀ଴ , 𝑆ℎ௫ = − ௫(஼ೢି஼∞) ቀడ஼డ௬ቁ௬ୀ଴. (13)

Now, using the equation (6) into the equation (13), we have achieved the following normalize form of the above quantities as: 

( ) ( ) ( )
1 1 1
2 2 22 Re ''(0), Re '(0), Re '(0),hnf hnf

f x x x x x
f f

k
C f Nu Sh

k
μ

θ φ
μ

−= = − = −  (14)

where, the local Reynolds number, 𝑅𝑒௫ = ௫௎ೢఔ೑ . 
FLOW STABILITY 

Due to the considering geometry and lack of mathematical tools and assumptions, some initial disturbances in the 
flow have been occurred which are decay or growth with time. These disturbances classify the flow solutions into two 
categories, one of them converges to its time-independent flow solutions as the initial complexity in the flow decay with 
time. The flow stability is needed to characterize the stable and unstable solutions between the dual solutions. To 
implement the stability analysis of this problem, the unsteady governing equations are essential which are obtained by 
adding the terms డ௨డ௧ , డ்డ௧ & డ஼డ௧  into the equations (2), (3) & (4) respectively. Due to the presence of time variable, equation 
(6) takes a modified form as given below:𝜂 = ට ௔ఔ೑ 𝑦,𝜓 = ඥ𝑎𝜈௙𝑥𝑟𝑓(𝜂, 𝜏), 𝑟 = 𝑥𝑠𝑖𝑛𝐴,𝜃(𝜂, 𝜏) = ்ି ∞்்ೢ ି ∞்

,𝜙(𝜂, 𝜏) = ஼ି஼∞஼ೢି஼∞ , 𝜏 = 𝑎𝑡 (15)

The time-dependent governing equations after using equation (15) become: 𝐴ଵ డయ௙డఎయ + 𝐺𝑟𝜃 − 𝐺𝑚𝜙 − 𝐴ଵ𝑘ଵ డ௙డఎ − 𝐴ଶ𝐴ଷ𝑀 డ௙డఎ − ቀడ௙డఎቁଶ + 2𝑓 డమ௙డఎమ − డమ௙డఎడఛ = 0, (16)

஺ర௉௥ (1 + 𝑁𝑟) డమఏడఎమ + 𝐴ହ𝐸𝑐 ቀడమ௙డఎమቁଶ + 𝐴଺𝑄𝜃 + 𝐴଻𝑀𝐸𝑐 ቀడ௙డఎቁଶ + 2𝑓 డఏడఎ − డఏడఛ = 0, (17)

డమథడఎమ + 𝑆𝑐𝑓 డథడఎ − 𝑆𝑐𝐶𝑟𝜙 − 𝑆𝑐 డథడఛ = 0. (18)

The surface restrictions become: 𝑓(0, 𝜏) = 𝑆,𝜕𝑓(0, 𝜏)𝜕𝜂 = 1 + 𝐿௩ 𝜕ଶ𝑓(0, 𝜏)𝜕𝜂ଶ ,𝜕𝑓(∞, 𝜏)𝜕𝜂 → 0,
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 𝜃(0, 𝜏) = 1 + 𝐿் డఏ(଴,ఛ)డఎ ,𝜃(∞, 𝜏) → 0, (19) 

𝜙(0, 𝜏) = 1 + 𝐿௠ 𝜕𝜙(0, 𝜏)𝜕𝜂 ,𝜙(∞, 𝜏) → 0. 
To test the stability of the steady flow solution 𝑓(𝜂) = 𝑓଴,𝜃(𝜂) = 𝜃଴  and 𝜙(𝜂) = 𝜙଴  fulfilling the equations 

(9)-(11), a set of perturb equations is employed for differentiating the variables ([26], [12] and [14, 24]):  𝑓(𝜂) = 𝑓଴(𝜂) + 𝑒ିఠఛ𝐹(𝜂), 
 𝜃(𝜂) = 𝜃଴(𝜂) + 𝑒ିఠఛ𝐺(𝜂), (20) 𝜙(𝜂) = 𝜙଴(𝜂) + 𝑒ିఠఛ𝐻(𝜂). 
Where, 𝜔 is an unknown eigenvalue parameter, 𝐹,𝐺&𝐻 the small associated to time-independent solutions. Inserting 
equation (20) into the equations (16)-(18), fixing 𝜏 → 0 and simplifying the equations, we have achieved the following 
linearized eigenvalue problems.  

 𝐴ଵ𝐹′′′ + 𝐺𝑟𝐺 − 𝐺𝑚𝐻 − 𝐴ଵ𝑘ଵ𝐹′ − 𝐴ଶ𝐴ଷ𝑀𝐹′ − 2𝑓଴′𝐹′ + 2(𝑓଴𝐹′′ + 𝐹𝑓଴′′) + 𝜔𝐹′ = 0, (21) 

 ஺ర௉௥ (1 + 𝑁𝑟)𝐺 ′′ + 2𝐴ହ𝐸𝑐𝑓଴′′𝐹′′ + 𝐴଺𝑄𝐺 + 2𝐴଻𝑀𝐸𝑐𝑓଴′𝐹′ + 2(𝑓଴𝐺 ′ + 𝐹𝜃଴′ ) + 𝜔𝐺 = 0, (22) 

 𝐻′′ + 𝑆𝑐(𝑓଴𝐻′ + 𝐹𝜙଴′ ) − 𝑆𝑐𝐶𝑟𝐻 + 𝑆𝑐𝜔𝐻 = 0. (23) 

Relevant boundary conditions are: 𝐹(0) = 0,𝐹′(0) = 0,𝐺(0) = 0,𝐻(0) = 0, 
 𝐹′(∞) → 0,𝐺(∞) → 0,𝐻(∞) → 0. (24) 

Following Mishra et al. [31] and Dey and Borah [12], the equations (21)-(23) are solved together with adjusted 
boundary conditions (referring Wahid et al. [28] and Dey and Borah [32]). It is noticed that this eigenvalue problem gives 
an infinite number of eigenvalues 𝜔ଵ < 𝜔ଶ < 𝜔ଷ < ⋯, where 𝜔ଵ signifies the smallest eigenvalue. The flow stability can 
be examined with the help of this smallest eigenvalue. If 𝜔ଵ > 0, then the initial complexity in the flow decay with time 
and the flow solution becomes stable. Otherwise, the flow solution to be unstable due to the escalation of complexity in 
the flow with time. 
 

RESULT AND DISCUSSION 
The set of equations (9)-(11) and (21)-(23) along with their two-point boundary conditions have been solved 

numerically by utilizing the MATLAB built-in bvp4c solver scheme. This technique performs the three-stage Lobatto IIIa 
formula and executes the finite difference method. It controls and adjusts the error upto 610−  by its residuals.  

The numerical explanations of this study have been achieved for the velocity 𝑓 ′(𝜂), thermal fraction𝜃(𝜂)and mass 
fraction 𝜙(𝜂) profiles of the hybrid nanofluid as an outcomes of different novel flow parameters and have been displayed 
in figures (2)-(9). In this problem, we have achieved two types of solutions, first solution is represented by the solid line 
and it is related to the time-independent solution. The dashed line signifies the second solution which is converged slowly 
to its free stream region due to the presence of flow disturbance. 

Before conferring the numerical results, we afford confirmation of our numerical code by solving the model 
presented in [2] and comparing the present numerical results (first solution) with the results reported in [2]. 
Mishra et al. [2] have analysed the water based nanofluid flow containing the 𝐴𝑔 nanoparticle over a solid cone with the 
influence of heat and mass transfers. In the non-appearance of thermal radiation and hybrid nanofluid, our leading 
equations during steady case of this study are matched with Mishra et al. [2] works. Table 2 reflects the comparison of 
the numerical code in terms of local Nusselt number and gives a good conformity for our results.  

Table 3 is developed to check the flow stability between the dual solutions with the help of evaluated smallest 
eigenvalues for different values of suction parameter (𝑆). From this table, it is noticed that the smallest eigenvalues are 
positive and negative for first solution and second solution respectively. Due to the positive values of least eigenvalues, 
the initial disturbances in the flow lie down as time evolves and the flow solution converges quickly to its time-
independent solution. Hence, the first solution becomes stable and physically achievable. But, negative values of least 
eigenvalues develop the initial disturbances in the flow and hence the flow solution (second solution) is being as unstable 
behaviour and slowly converges to its free stream region.  

Table 4 is inserted to show the skin friction coefficient numerically during time-dependent and time-independent 
cases for developing values of the Prandtl, Schmidt and Eckert numbers. These quantities help to evaluate the effects of 
shear stress at the surface of the cone. It appears from this data that the skin friction coefficient has been experienced a 
reduction from the noble gas (𝑃𝑟 = 0.015) to sea-water (𝑃𝑟 = 13.5). Again, the effects of shear stress at the surface 
have been enhanced from the hydrogen (𝑆𝑐 = 0.22) to water vapour (𝑆𝑐 = 0.60). It is also seen from this table is that 
increasing values of the Eckert number (𝐸𝑐) raises the influence of shear stress during both the solutions at the surface 
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of the cone. It is also observed that the effects of shear stress of the fluid at the surface of the cone during time-dependent 
case (second solution) is fewer than the first solution. Table 5 is inserted to show the heat transfer rate of the fluid at the 
surface of the cone for developing values of Prandtl and Eckert numbers. From this table, it is achieved that the Prandtl 
number develops the rate of heat transfer of the fluid during both the cases. But the Eckert number reduces the rate of 
heat transfer at the surface of the cone. 
Table 2. Numerical presentation of Nusselt number ቀ−𝜃′(0)ቁ of 𝐴𝑔/𝐻ଶ𝑂 nanofluid for different values of 𝑀 when 𝑃𝑟 = 0.7, 𝑆𝑐 = 1,  𝐿௩ = 0.1, 𝐿் = 0.1, 𝐿௠ = 0.1,𝐸𝑐 = 0.05,𝑄 = 0.1, 𝑆 = 0.4,𝜙ଵ = 0.1,𝐺𝑟 = 𝐺𝑚 = 0.1,𝑘ଵ = 0.5,𝑁𝑟 = 0. 

𝑴 
Mishra et al. [2] works Present Results −𝜽′(𝟎) −𝜽′(𝟎)

0.5 2.279557 2.265545
0.7 2.259399 2.251232
1 2.231499 2.221432

Table 3. Numerical presentation of smallest eigenvalue for different values of 𝑆 when 𝑀 = 0.5,𝐺𝑟 = 1,𝐺𝑚 = 2,𝑄 = 0.1,𝑁𝑟 = 0.2,𝑘ଵ = 0.5, 𝐿௩ = 0.2, 𝐿் = 0.1, 𝐿௠ = 0.2, 𝑆𝑐 = 0.22,𝑃𝑟 = 0.71,𝐸𝑐 = 0.3. 
𝑺 

Smallest Eigenvalue (𝝎𝟏) 
First Solution Second Solution 

0.25 0.20209420 -1.220506212
0.63 1.20955422 -3.02148542
0.82 2.26992567 -4.00797213

Table 4. Numerical presentation of skin friction coefficient for different values of 𝑃𝑟, 𝑆𝑐&𝐸𝑐 when 𝑀 = 0.5,𝐺𝑟 = 1,𝐺𝑚 = 2,𝑄 = 0.1,𝑁𝑟 = 0.2,𝑘ଵ = 0.5, 𝐿௩ = 0.2, 𝐿் = 0.1, 𝐿௠ = 0.2. 𝑷𝒓 𝑺𝒄 𝑬𝒄 
Skin friction coefficient (𝑪𝒇) 

First Solution Second Solution 
0.015 

0.22 
0.005 

-1.88491462 -2.35204790

7 -1.91532212 -2.41139078
13.5 -1.92660748 -2.40977806

0.71 

0.22 -1.88406043 -2.35823329
0.30 -1.88286201 -2.35613715
0.60 -1.87858313 -2.34883267

0.22 
0.0 -1.88408938 -2.35828831
0.3 -1.88235554 -2.35499662
1 -1.87833480 -2.34738988

Table 5. Numerical presentation of local Nusselt number for different values of 𝑃𝑟&𝐸𝑐 when 𝑀 = 0.5,𝐺𝑟 = 1,𝐺𝑚 = 2,𝑄 = 0.1,𝑁𝑟 = 0.2,𝑘ଵ = 0.5, 𝐿௩ = 0.2, 𝐿் = 0.1, 𝐿௠ = 0.2, 𝑆𝑐 = 0.22. 𝑷𝒓 𝑬𝒄 Local Nusselt Number (𝑵𝒖𝒙) 
First Solution Second Solution 

0.015 
0.005 

0.24259499 0.264506742
7 1.26955410 3.12148393 

13.5 2.29992551 4.32797261

0.71 
0.0 0.18628192 0.35992906 
0.3 0.07307090 0.11873327
1.0 -0.18963456 -0.43981793

The effect of 𝑀 on the hybrid nanofluid's velocity and thermal fraction is shown in Figs. (2) and (3). 

Figure 2. Velocity profile for incremental amount of 𝑀 Figure 3. Sketch of thermal fraction for incremental amount of 𝑀 
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From these figures, it is believed that the hybrid nanofluid's velocity has been decelerated with the increasing amount of 𝑀during both the cases, whereas the thermal fraction of the fluid has been developed with 𝑀. A resistive type force known as 
the "Lorentz force" is produced as a result of the application of a magnetic field and has the power to control fluid motion. As a 
result, the hybrid nanofluid's velocity is decreased with increased values of 𝑀. Again, due to the effects of magnetic field, the 
velocity of the fluid has been decelerated and a frictional force is developed between the fluid and surface of the cone which 
generates additional energy in terms of heat at the surface of the cone and hence the thermal fraction of the hybrid nanofluid is 
enhanced with𝑀. From Figure (2), it appears that the hybrid nanofluid moves more slowly in the time-dependent (second 
solution) situation than in the time-independent (first solution) case. Due to this reason, fluid’s temperature during second 
solution superiors than the first solution in the vicinity of the surface of the cone. Figures (4)-(6) are depicted to show the effects 
of porosity of the porous medium on the velocity, thermal fraction and mass fraction of the hybrid nanofluid. 

From Figure (4), it is noticed that the speed of the fluid has been enhanced with the increasing values of 𝑘ଵ during 
both the cases. As a result, the overall pressure of the hybrid nanofluid reduces and the thermal fraction and mass fraction 
of the fluid are directly proportional to the pressure and hence the thermal fraction and mass fraction are experienced 
reduction with 𝑘ଵ (see Fig. 5 and Fig. 6). Also, the second solution of the velocity distribution and mass fraction of the 
fluid are comparatively fewer than the first solution. 

Figure (7) shows how 𝑁𝑟 affects the thermal fraction of the hybrid nanofluid. It can be seen from this figure that 
when 𝑁𝑟 increases, the thermal portion of the hybrid nanofluid decreases in both cases. 

 
Figure 4. Velocity profile for incremental amount of 𝑘ଵ Figure 5. Sketch of thermal fraction for incremental amount of 𝑘ଵ 

  
Figure 6. Sketch of mass fraction for incremental amount of 𝑘ଵ Figure 7. Sketch of thermal fraction for incremental amount of 𝑁𝑟 

  
Figure 8. Sketch of thermal fraction for incremental amount of 𝑄 Figure 9. Sketch of mass fraction for incremental amount of 𝐶𝑟. 

The cause of this occurrence is that the thermal radiation parameter (𝑁𝑟) is directly proportional to the third power 
of the temperature of fluid at free stream region. Therefore, as 𝑁𝑟 increases, the hybrid nanofluid's thermal fraction over 
the cone decreases. Also, it is seen that the thermal fraction of the fluid during the second solution is larger than the first 
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solution near the surface of the cone. Figure (8) reflects the impact of heat generation parameter (𝑄) on the thermal 
fraction of the fluid. From this figure, it is perceived that the thermal fraction of the hybrid nanofluid has been increased 
with 𝑄. Influence of 𝐶𝑟 on the mass fraction of the hybrid nanofluid is presented in Fig. 9. The chemical reaction is 
occurred mainly due to the effects of suction/injection of the fluid flow and presence of flow slips effects. The chemical 
reaction parameter has the capacity to fall down the mass fraction of the considering fluid. It can also be observed that 
the concentration level of the hybrid nanofluid during the second solution is fewer and slowly conversed to its free stream 
region over the first solution. 

We have found from this study that all flow profiles display dual solutions up to a specific area of the similarity 
variable (𝜂) and asymptotically meet the far-field boundary conditions. 

CONCLUSION 
This paper analyzes 𝐶𝑢 − 𝐴𝑙ଶ𝑂ଷ/water hybrid nanofluid flow driven by a solid cone which sited in a porous medium. 

The energy transfer in terms of heat and mass is encountered with the effects of magnetic field, thermal radiation and 
chemical reaction. The leading equations are solved through numerical method called “three-stage Lobatto IIIa formula” 
by using MATLAB built in bvp4c solver scheme. Major results have been obtained as follows:  

1) The velocity of the hybrid nanofluid has been decelerated with the improving amount of 𝑀, but it has enhanced
the thermal fraction of the fluid during both the cases.

2) Due to the increasing amount of 𝑘ଵ, the velocity of the fluid has accelerated. Whereas, thermal and mass fractions 
of the hybrid nanofluid have been controlled by employing 𝑘ଵ.

3) Thermal fraction of the hybrid nanofluid flow is a decreasing function of the thermal radiation (𝑁𝑟) and an
increasing function of the heat generation (𝑄) parameters.

4) Mass fraction of the hybrid nanofluid during the second solution is fewer than the first solution with the increasing
amount of 𝐶𝑟.

5) Effects of shear stress is dropped down for incremental values of the Prandtl number. But we should keep in
mind that the excessive amount of the Prandtl number may damage the system by developing the rate of heat
transfer at the surface of the cone.

6) “According to the stability point of view, the first solution, which converges to the steady flow solution more
quickly, is stable, whereas the second solution is unstable and impractical.
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ДУАЛЬНІ РІШЕННЯ ДЛЯ ГІБРИДНОЇ ТЕЧІЇ НАНОРІДИНИ ПО КОНУСУ З ВПЛИВОМ ТЕПЛОВОГО
ВИПРОМІНЮВАННЯ І ХІМІЧНОЇ РЕАКЦІЇ ТА АНАЛІЗ ЇЇ СТАБІЛЬНОСТІ 

Дебасіш Дейa, Рупджоті Борахa, Ашим Джйоті Баруахb 
aДепартамент математики, Університет Дібругарх, Дібругарх-786004, Ассам, Індія 

bДепартамент математики, Намруп коледж, Дібругарх -786623, Ассам, Індія 
Основна мета цього дослідження полягає в тому, щоб розрізнити стабільні та реалізовані рішення між подвійними рішеннями 
потоку гібридної нанофлюїди на водній основі, що рухається по твердому конусу, разом із передачею енергії у формі тепла 
та маси, використовуючи новий підхід, який називається аналізом стабільності. Враховано відхилення теплового 
випромінювання, хімічних реакцій і поглинання/утворення тепла. Провідні рівняння, які підтримують математичне 
представлення цього дослідження, оновлені за допомогою набору змінних подібності та розв’язані за допомогою вбудованої 
схеми рішення рівнянь MATLAB bvp4c. Представлені графічні та чисельні результати цього дослідження. У результаті цього 
дослідження було отримано два типи потокових рішень, де один із них пов’язаний із незалежними від часу рішеннями та є 
стабільним за своєю природою. Крім того, швидкість течії гібридного нанофлюїду можна контролювати, застосовуючи 
магнітне поле, але треба мати на увазі, що надмірна кількість магнітного параметра може пошкодити систему шляхом 
окислення. 
Ключові слова: гібридний нанофлюїд; твердий конус; теплове випромінювання; хімічна реакція; подвійні рішення; аналіз 
стабільності 
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In this paper we are considering a fluid flows problem that contains two equation of motions and more than two parameters in the 
governing equation of motion. Which is namely Radiative Boundary Layer Flow in Porous Medium due to Exponentially Shrinking 
Permeable Sheet. The parameters are 𝐾 = ௖௞బ௅ణ , 𝑃𝑟 = ఓ௖೛௞ಮ ,𝑁 = ସఙభ ಮ்యଷ௞భ௞ಮ  and ε denote the permeability parameter, Prandtl number, and 
radiation parameter and is the thermal conductivity variation parameter respectively. The governing differential equation can be 
obtained by using similarity variable technique and then the governing equation of motion can be Fuzzified by the help of Zadeh 
extension theorem. The 𝛼 − 𝑐𝑢𝑡 technique is used for the validation of the uncertainty of the equation of the motion. The effect of 
the 𝐾, 𝑃𝑟,𝑁 and ε are discussed with the fuzzified governing equation of motion under fuzzy environment. It is observed none of the 
parameters are directly involved in the occurrence of the uncertainty of the solutions. The uncertainty occurs in the problem is due to 
the assumption and the numerical computation. Finally, the solution is being carried out under fuzzy environment. It is found that the 
increasing values of permeability parameter, the values of both the numbers Skin friction coefficient as well as Nusselt number are 
increases. 
Keywords: Shrinking sheet; Fuzzified; computer codes; 𝛼 − 𝑐𝑢𝑡 
PACS: 44.05 +e, 44.30 +v, 47.10 A- 

1. INTRODUCTION
Flow and heat Transfer in boundary layer flow of viscous fluid due to deforming surface is pivotal in many industrial 

processes cutting across different realms. Specially radiative thermal regime in porous medium has drawn much attention 
recently due to large application in gasification of oil shale waste heat storage in aquifer and many more.   

Vast application of radioactive thermal in porous medium we need to study this class of problems in different ways. 
Due to involvement of nonlinear differential equation, there is no direct process available to solve exactly. Here we 
consider such a mechanical problem for our discussion in which the governing equations of motion can have two non-
linear differential equations of motion (One for velocity profile and another one is for temperature profile) and four 
parameters in the governing equation of motion and one parameter in the boundary conditions. The specific problem is 
Radiative Boundary Layer Flow in Porous Medium due to Exponentially Shrinking permeable Sheet.  

A few relevant research has been presented in recent years (2010 to cont.). Radiative flow of Jeffery fluid with 
variable thermal conductivity in a porous medium was discussed by Elbashbeshy and Emam (2011), Hayat et al. (2012) 
about the effects of radiation and heat transfer over an unsteady stretching surface embedded in a porous medium. Paresh 
Vyas and Nupur Srivastava studied (2016) about the flow past and exponentially shrinking placed at the bottom of fluid 
saturated porous medium taking variable thermal conductivity and radiation using fourth order Runge-kutta scheme 
together with shooting method.  

Here we introduce a new approach of solving of the said problem using fuzzy set theory. In this chapter our objective 
is to find is there any kind of uncertainty involved in the specific problem i.e. Radiative Boundary Layer Flow in Porous 
Medium due to Exponentially Shrinking permeable Sheet using fuzzy environment. For the graphical interpretation we 
developed computer codes for the said problem and represent the parameter’s effect on the uncertainty involved in the 
flow of motion. On the basic concept of fuzzy differential equations Chakraverty et al., (2016) proposed some numerical 
methods for fuzzy fractional differential equations. Hazarika and Bora (2017, 2018) studied about the fuzzification of 
some numerical problems. J. Bora et al (2020) discussed some fluids problems using fuzzy set theory. 

2. FORMULATION OF THE PROBLEM
2.1. Derivation of The Basic Equation

Let us consider the steady 2D boundary layer flow of optical thick viscous Newtonian fluid and associated heat 
transfer over a permeable sheet placed at bottom of the fluid saturated porous medium having permeability of specific 
form. A Cartesian coordinate system is chosen where the x-axis is taken along the sheet and y-axis is normal to it. The 
flow is caused by the sheet shrinking in an exponential fashion. A suction is applied normal to sheet to contain the 

† Cite as: A. Barhoi, G.C. Hazarika, H. Baruah, and P. Borah, East Eur. J. Phys. 2, 107 (2023), https://doi.org/10.26565/2312-4334-2023-2-09 

https://orcid.org/0000-0003-3533-6000
https://orcid.org/0000-0003-3937-8919
https://orcid.org/0000-0002-0747-6103
https://orcid.org/0009-0007-6737-2027
https://periodicals.karazin.ua/eejp/index
https://doi.org/10.26565/2312-4334-2023-2-09
https://portal.issn.org/resource/issn/2312-4334


108
EEJP. 2 (2023) Amir Barhoi, G.C. Hazarika, et al.

vorticity. The fluid considered here is without phase change, optically dense, absorbing-emitting radiation but a 
nonscattering medium. The thermal conductivity of the fluid is assumed to vary linearly with temperature. The radiation 
flux in the energy equation is presumed to follow Rosseland approximation. The boundary layer equations for the 
considered setup are  
 డ௨డ௫ + డ௨డ௬ = 0, (1) 

 𝑢 డ௨డ௫ + 𝑣 డ௨డ௬ = 𝜗 ቀడమ௨డ௬మቁ − 𝜗 ௨௞  (2) 

 𝜌𝑐௣ ቀ𝑢 డ்డ௫ + 𝑣 డ்డ௬ቁ = డడ௬ ቀ 𝑘 డ்డ௬ ቁ − డ௤ೝడ௬  (3) 

With the boundary condition 

At 𝑦 = 0,  𝑢 =  𝑈௪ሺ𝑥ሻ =  −𝑐𝑒 ೗ೣ ,     𝑣 =  𝑉௪ሺ𝑥ሻ =  −𝑣଴𝑒మೣ೗,       𝑇 = 𝑇௪ሺ𝑥ሻ = 𝑇ஶ + 𝑇଴𝑒మೣ೗ 
and at 
  𝑦 → ∞, 𝑢 → 0, 𝑇 → 𝑇ஶ (4) 

where u, v are the velocity components along x and y directions, respectively, k is the permeability, 𝑐௣is the specific heat 
at constant pressure, υ is the kinematic viscosity, ρ is the density, and T, μ, and κ are the temperature, viscosity and thermal 
conductivity of the fluid, respectively. Further, L is the characteristic length, 𝑇௪is the variable temperature at the sheet, 𝑇଴ is the constant reference temperature, and 𝑇ஶ is the constant free stream temperature. 𝑈௪ and  𝑉௪ are the shrinking 
velocity of the sheet and mass transfer velocity, respectively, where c > 0 is the shrinking constant and 𝑣଴ is a constant 
(where 𝑣଴ < 0 corresponds to mass suction).  
Let us introduce the stream function 𝜓ሺ𝑥,𝑦ሻ as 

 𝑢 = డటడ௬ = −డటడ௫   (5) 

Thus equation (5.1) is identically satisfied and the similarity transformation can be written as   

 𝜓 =  √2𝜐𝐿𝑐𝑓(𝜂)𝑒మೣ೗ 𝜂 = 𝑦ට ௖ଶజ௅ 𝑒మೣ೗, and 𝜃(𝑥) = ்ି ಮ்்ೢ ି ಮ் (6) 

On using (5.5) and (6.5) we obtain the expression for velocity component in non-dimensional form as 

 𝑢 = 𝑐𝑓ᇱ(𝜂) 𝑒మೣ೗ and 𝑣 = −ට௩௖ଶ௅ ൫𝜂𝑓ᇱ(𝜂) + 𝑓(𝜂)൯𝑒మೣ೗ (7) 

In order to obtain the similarity solutions, it is assumed that the permeability k of the porous medium takes the 
following form 
 𝑘(𝑥) = 2𝑘଴𝑒ିಽೣ  (8) 

Where 𝑘଴  is the reference permeability. 
As in our setup the thermal conductivity of the fluid is assumed to vary with temperature in a linear function as 

 𝑘 = 𝑘ஶ (1+∈ 𝜃)  (9) 

Where ∈ is the thermal conductivity variation parameter. In general, ∈ > 0 for fluids such as water and air, while ∈<0 for 
fluids such as lubrication oils. The radiative heat flux in the energy equation is presumed to follow Rosseland 
approximation and is given by  
 𝑞௥ = −ସఙభଷ௞భ  డ்రడ௬  (10) 

Where 𝜎ଵ is the Stephan-Boltzmann constant and 𝑘ଵ is the mean absorption constant. It is further assumed that the 
temperature difference within the fluid is sufficiently small sothat 𝑇ସ may be expressed as a linear function of temperature 
T. This is done by expanding 𝑇ସ in a Taylor series about 𝑇ஶand omitting higher-order terms to yield 𝑇ସ ≅ 4𝑇ஶଷ𝑇 − 3𝑇ஶସ 

Thus, the equation of momentum (5.2) and energy (5.3) reduces to the following non dimensional form 

 𝑓ᇱᇱᇱ + 𝑓𝑓ᇱᇱ − 2𝑓ᇱଶ − ௙ᇲ௄ = 0  (11) 

 (1+ ସேଷ ) 𝜃ᇱᇱ + 𝜖𝜃𝜃ᇱᇱ + 𝜖𝜃′ଶ + Pr(𝑓𝜃ᇱ − 𝜃𝑓ᇱ) = 0  (12) 

With the boundary conditions 
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 𝜂 → 0: 𝑓ᇱ(𝜂) = −1, 𝑓(𝜂) = ି௩బඥజ௖ ଶ௅⁄ = 𝑆,𝜃(𝜂) = 1, 𝜂 → ∞:𝑓ᇱ(𝜂) → 0, 𝜃(𝜂) → 0 (13) 

Where 𝐾 = ௖௞బ௅ణ , 𝑃𝑟 = ఓ௖೛௞ಮ , 𝑁 = ସఙభ ಮ்యଷ௞భ௞ಮ  

Denote the permeability parameter, Prandtl number, and radiation parameter respectively. 
 

2.2. Conversion of The Basic Equation into Fuzzified Form 
Now we Applying Zadeh fuzzy Extension theorem in (5.11-5.12) and (5.13-5.14)  

 𝑓ᇱᇱᇱ෢ + 𝑓መ𝑓ᇱᇱ෢ − 2෠𝑓ᇱଶ෢ − ௙ᇲ௄෡ = 0  (15) 

 (1෠ + ସேଷ෢) 𝜃ᇱᇱ෢ + 𝜖̂𝜃෠𝜃ᇱᇱ෢ + 𝜖̂𝜃′ଶ෢ + Pr෢  ൫𝑓መ𝜃ᇱ෡ − 𝜃෠𝑓ᇱ෡ ൯ = 0෠  (16) 

And the boundary condition became as (Fuzzy Environment) 

 𝜂̂ → 0෠ : 𝑓ᇱ෡ (𝜂) = −1෢ , 𝑓መ(𝜂) = ି௩బඥజ௖ ଶ௅⁄෣ = 𝑆መ,𝜃෠(𝜂) = 1෠ , (17) 

 𝜂̂ → ∞ෝ : 𝑓ᇱ෡ (𝜂) → 0෠,𝜃෠(𝜂) → 0෠ (18) 

Considering the Fuzzified (5.15) equations as triangular fuzzy number then the Fuzzified equation became the 
following: [ 𝑓ᇱᇱᇱ , 𝑓ᇱᇱᇱ , 𝑓ᇱᇱᇱ] + [ 𝑓,𝑓 ,𝑓] [𝑓ᇱᇱ,𝑓ᇱᇱ,𝑓ᇱᇱ] − 2 ቂ𝑓ᇱమ ,𝑓ᇱమ , 𝑓ᇱమቃ − 

[ ௙ᇲ,௙ᇲ,௙ᇲ][௄,   ௄ ,௄]  = [0, 0, 0] 
Using fuzzy arithmetic we have, ⇒  [ 𝑓ᇱᇱᇱ, 𝑓ᇱᇱᇱ, 𝑓ᇱᇱᇱ] + [min𝑇, 𝑇଴, max𝑇 ] - ቂ2𝑓ᇱమ , 2𝑓ᇱమ , 2𝑓ᇱమቃ − [min𝑺,  𝑺଴, max𝑺] = [0, 0, 0] ⇒ [ 𝑓ᇱᇱᇱ + min𝑇, 𝑓ᇱᇱᇱ + 𝑇଴, 𝑓ᇱᇱᇱ + max𝑇 ] − ቂ2𝑓ᇱమ + min𝑺 , 2𝑓ᇱమ + 𝑺଴, 2𝑓ᇱమ + max𝑺ቃ =       [0, 0, 0] ⇒ [ 𝑓ᇱᇱᇱ + min𝑇 − (2𝑓ᇱమ + max𝑺), 𝑓ᇱᇱᇱ + 𝑇଴ − (2𝑓ᇱమ + 𝑺଴), 𝑓ᇱᇱᇱ + max𝑇 − (2𝑓ᇱమ + min𝑺) ] =  [0, 0, 0] 
Thus, we have, 

 𝑓ᇱᇱᇱ + min𝑇 − ቀ2𝑓ᇱమ + max𝑺ቁ = 0 (19) 

 𝑓ᇱᇱᇱ + 𝑇଴ − ൫2𝑓ᇱమ + 𝑆଴൯ = 0. (20) 

 𝑓ᇱᇱᇱ + max𝑇 − ቀ2𝑓ᇱమ + min𝑺ቁ = 0 (21) 

Where 𝑺 =  ௙ᇱ௄ , ௙ᇱ௄ , ௙ᇱ௄ , ௙ᇱ௄  and 𝑺଴ = ௙ᇱ௄  

𝑇 = 𝑓𝑓ᇱᇱ,𝑓𝑓ᇱᇱ,𝑓𝑓ᇱᇱ,𝑓𝑓′′, and 𝑇଴ = 𝑓𝑓′′ 
Similarly considering the Fuzzified (5.16) equations as triangular fuzzy number then the Fuzzified equation 

became the following: ൤ 1 + ସேଷ , 1 + ସேଷ , 1 + ସேଷ ൨ [ 𝜃ᇱᇱ,𝜃ᇱᇱ,𝜃ᇱᇱ] + ൣ∈,∈,∈൧ൣ𝜃,𝜃,𝜃൧[𝜃ᇱᇱ,𝜃ᇱᇱ,𝜃ᇱᇱ] + ൣ∈,∈,∈൧ [ 𝜃ᇱ ଶ,𝜃ᇱ ଶ,𝜃ᇱ ଶ] + [ 𝑃𝑟,𝑃𝑟,  𝑃𝑟] 
{ቂ 𝑓,𝑓, 𝑓ቃ ቂ𝜃′,𝜃′,𝜃′ቃ − ቂ 𝑓ᇱ,𝑓ᇱ,𝑓ᇱቃ ൣ𝜃,𝜃,𝜃൧} = [0, 0, 0] ⇒ [min𝑋,𝑋,෩ max𝑋] + ൣ∈,∈,∈൧ [min𝑌,  𝑌෩  , max𝑌] + [min𝑍,  𝑍෩ ,𝑚𝑎𝑥 𝑍] +ൣ 𝑃𝑟,𝑃𝑟,  𝑃𝑟൧ {[min𝐴,𝐴ሚ, max𝐴] −[min𝐵,𝐵෨ , max𝐵] } = [0, 0, 0] ⇒  [min𝑋,𝑋,෩ max𝑋] + [min𝑌଴,𝑌଴෩  , max𝑌଴] +  [min𝑍,  𝑍෩ ,𝑚𝑎𝑥 𝑍] + ൣ 𝑃𝑟,𝑃𝑟,  𝑃𝑟൧ [min𝐴 − max𝐵,𝐴ሚ −𝐵,෩ max𝐴 − min𝐵] = [0, 0, 0] ⇒ [min𝑋 + min𝑌଴ + min𝑍,𝑋෨ + 𝑌଴෩ + 𝑍෨, max𝑋 + max𝑌଴ + max𝑍]  + [min𝐴଴𝐵଴,𝐴଴𝐵଴෫ , max𝐴଴𝐵଴] = [0, 0, 0] 
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⇒ [min𝑋 + min𝑌଴ + min𝑍 + min𝐴଴𝐵଴ ,𝑋෨ + 𝑌଴෩ + 𝑍෨ +  𝐴଴𝐵଴෫ ,  max𝑋 + max𝑌଴ + max𝑍 + max𝐴଴𝐵଴]  = [0, 0, 0] (22) 
Where𝑋 = 1 + ସேଷ  𝜃′′, 1 + ସேଷ 𝜃′′ , 1 + ସேଷ  𝜃ᇱᇱ, 1 + ସேଷ  𝜃′′      and 𝑋෨ = 1 + ସேଷ  𝜃′′ 𝑌 = 𝜃 𝜃ᇱᇱ,𝜃 𝜃ᇱᇱ,  𝜃𝜃ᇱᇱ,𝜃 𝜃′′,   and  𝑌෨ =  𝜃𝜃′′

Z=  𝜖 𝜃ᇱଶ,  𝜖 𝜃ᇱଶ, 𝜖 𝜃ᇱଶ, 𝜖 𝜃ᇱଶ  and 𝑍෨ =  𝜖𝜃ᇱଶ𝑌଴ = ∈ min𝑌 ,∈ min𝑌 ,∈ max𝑌 ,∈ max𝑌,  and   𝑌଴෪ = ∈ 𝑌෨  𝐴 = 𝑓 𝜃ᇱ,  𝑓 𝜃ᇱ,𝑓𝜃ᇱ,𝑓 𝜃′,    and  𝐴ሚ =  𝑓𝜃′𝐵 =  𝑓ᇱ 𝜃,  𝑓ᇱ𝜃,𝑓ᇱ 𝜃,𝑓′ 𝜃,    and 𝐵 = 𝑓′𝜃 𝐴଴𝐵଴ = Pr  (min𝐴 − max𝐵) ,  Pr  (max𝐴 − min𝐵) ,   Pr  (min𝐴 − max𝐵) ,   Pr  (max𝐴 − min𝐵) ,  𝐴଴𝐵଴෫ =𝑃𝑟  (𝐴ሚ − 𝐵෨), 
Now we can re-write the equation (5.22) as follows min𝑋 + min𝑌଴ + min𝑍 + min𝐴଴𝐵଴ = 0 (23)𝑋෨ + 𝑌଴෩ + 𝑍෨ + 𝐴଴𝐵଴෫ = 0, (24) max𝑋 + max𝑌଴ + max𝑍 + max𝐴଴𝐵଴ = 0, (25)

Similarly if we convert the boundary condition into Fuzzified form then a new system of equation will arise as follows  𝑓ᇱᇱᇱ + min𝑇 − ቀ2𝑓ᇱమ + max𝑺ቁ = 0 min𝑋 + min𝑌଴ + min𝑍 + min𝐴଴𝐵଴ = 0 

With the boundary conditions 𝜂 → 0 : 𝑓′(𝜂) =  −1, 𝑓(𝜂) = ି௩బඥజ௖ ଶ௅⁄ = 𝑆,  𝜃(𝜂) = 1, 𝜂 → ∞: 𝑓′(𝜂) → 0,𝜃(𝜂) → 0 (26)𝑓ᇱᇱᇱ + 𝑇଴ − ൫2𝑓ᇱమ + 𝑆଴൯ = 0 𝑋෨ + 𝑌଴෩ + 𝑍෨ + 𝐴଴𝐵଴෫ = 0,

With the boundary conditions 𝜂 → 0 : 𝑓ᇱ(𝜂) = −1, 𝑓(𝜂) = ି௩బඥజ௖ ଶ௅⁄ = 𝑆,𝜃(𝜂) = 1, 𝜂 → ∞: 𝑓ᇱ(𝜂) → 0, 𝜃(𝜂) → 0 (27)𝑓ᇱᇱᇱ + max𝑇 − ቀ2𝑓ᇱమ + min𝑺ቁ = 0   max𝑋 + max𝑌଴ + max𝑍 + max𝐴଴𝐵଴ = 0 

With the boundary conditions 𝜂 → 0 : 𝑓ᇱ(𝜂) = −1, 𝑓(𝜂) = ି௩బඥజ௖ ଶ௅⁄ = 𝑆, 𝜃(𝜂) = 1, 𝜂 → ∞: 𝑓ᇱ(𝜂) → 0,𝜃(𝜂) → 0 (28)

3. Definition of Skin Friction 𝑪𝒇 and Nusselt Number   𝑵𝒖𝒙
The physical quantities of principal interest are the skin friction coefficient 𝐶௙  and the local Nusselt number  𝑁𝑢௫, 

which are defined as 𝑅𝑒௫ଵ/ଶ𝐶௙=𝑓′′(0) and       𝑅𝑒௫ିଵ/ଶ𝑁𝑢௫ = −𝜃′(0) 

Where 𝑅𝑒௫ = ௨ೣ(௫)௫௩   is the local Reynolds number. 

4. Result and Discussion
The system of equations (26-28), the fuzzified equations of motion with fuzzified boundary conditions are solved 

numerically by using finite difference scheme. The discretized fuzzified equations are solved using an iterative method 
based on Gauss Seidel iterative method by developing suitable codes in python. 
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The numerical computations carried out for different sets of values of the parameters entering into the problem have 
been depicted through graphs and tables. Result is obtained for different values for the parameter 𝑠 = 1,𝐾 = .25, ∈= .1,𝑃𝑟 = 0.7  and for different 𝛼 − 𝑐𝑢𝑡 of the fuzzified system of equations (26-28) 

In each of the following graphs the blue curve is the solution for the right values of the of the fuzzified velocity 
profile, green curve is the solution for the mid values of the fuzzified velocity profile which is same as the crisp velocity 
profile and blue curve is the solution for the right values of the of the Fuzzified velocity profile. 

The Figure (1-3) exhibits the Fuzzified temperature profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 = 0.3,0.6,0.9, and 𝐾 = 0.25,𝑛 =0.5 ,𝑃𝑟 = 0.7 ,∈= 0.1, 𝑠 = 1. It is observed from the graph that there is a deflection on the curve in the right solution of 
the temperature profile as compare to the left solution of the temperature profile from the mid value solution (i.e. crisp 
solution). Which is the indication of the uncertainty involved in the temperature profile. 

  
Figure 1. Fuzzified Temperature profile for 𝛼 −𝑐𝑢𝑡,𝑤𝑖𝑡ℎ 𝛼 = 0.3, 𝑠 = 1,𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 

Figure 2. Fuzzified Temperature profile for 𝛼 −𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼=0.6, 𝑠 = 1,𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 

 

Figure 3. Fuzzified Temperature profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 = 0.9, 𝑠 = 1,𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 

Figure (4-7) are the fuzzified temperature profiles for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 = 0.5  and different values of the parameters 𝑠 = 1 𝑎𝑛𝑑 2,𝐾 = 0.25 𝑎𝑛𝑑 0.5,𝑃𝑟 = 0.7 𝑎𝑛𝑑 1.1 , 𝜀 = 0.1 𝑎𝑛𝑑 0.3. 
It is observed from the Figures that there is no significant deflection of right solution as compare to left solution 

from the mid value solution (Crisp solution). Which is due to the changes of these parameter are not the cause of the 
uncertainty involved in the solution of the temperature profile. 

  
Figure 4. Fuzzified temperature profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝒔 = 𝟏 𝒂𝒏𝒅 𝟐,𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 
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Figure 5. Fuzzified temperature profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝑠 = 1,𝑲 =.𝟐𝟓 𝒂𝒏𝒅 𝟎.𝟓,∈= .1,𝑃𝑟 = 0.7 

Figure 6. Fuzzified temperature profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝑠 = 1,𝐾 = .25,∈= 𝟎.𝟏 𝒂𝒏𝒅 𝟎.𝟑,𝑃𝑟 = 0.7 

Figure 7. Fuzzified temperature profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝑠 = 1,𝐾 = .25, ∈= .1,𝑷𝒓 = 𝟎.𝟕𝒂𝒏𝒅 𝟏.𝟏 

Figure (7-9) represent the crisp velocity profile for different values of 𝑠,∈ 𝑎𝑛𝑑 𝑃𝑟. It is observed in Figure 7 that 
with the increasing values of suction parameter 𝑠 the velocity decrease. Whereas velocity decreases with increase of 𝑃𝑟 
in Figure 8. It is found that the pattern of the flows is almost similar in the temperature profile for the changes of the 
parameter. Also, we see that 𝜃(𝑛) decay with the increase of 𝑃𝑟. Whereas 𝜃(𝑛) increases with increasing value of ∈ in 
Figure 9. 

As the parameter changes are not affect in the uncertainty of the solution of the temperature profile so we are 
discussed the effect of the parameter in Crisp Solution i.e., 𝛼 − 𝑐𝑢𝑡 = 1. 

Figure (10) is the Fuzzified velocity profile for 𝛼 − 𝑐𝑢𝑡  𝑤𝑖𝑡ℎ 𝛼 = 0.5, and 𝐾 = 0.25, 𝑛 = 0.5 , 𝑃𝑟 = 0.7, ∈= 0.1,𝑠 = 1. It is observed from the graph that there is a deflection on the curve in the right solution of the velocity profile 
(Green curve) as compare to the left solution of the velocity profile (Light yellow curve) from the mid value solution i.e. 
crisp solution (Violet curve). Which is the indication of the uncertainty involved in the solution of the velocity profile. 
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Figure 7. Crips Temperature profile for  ∈= 0.1 (𝑏𝑙𝑢𝑒), 0.5 (𝑂𝑟𝑎𝑛𝑔𝑒), 0.9 (𝐺𝑟𝑒𝑒𝑛), 1.2 (𝐵𝑟𝑜𝑤𝑛)  𝑎𝑛𝑑  𝑠 = 1,𝐾 = .25,𝑃𝑟 = 0.7 

Figure 8. Crips Temperature profile for 𝒔 = 1(𝐵𝑙𝑢𝑒), 3 (𝐺𝑟𝑒𝑒𝑛), 5 (𝑂𝑟𝑎𝑛𝑔𝑒)  𝑎𝑛𝑑  𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 

  

Figure 9. Crips Temperature profile for 𝑷𝒓 = 21.7 (𝐿𝑖𝑔ℎ𝑡 𝑃𝑖𝑛𝑘), 17( 𝑑𝑎𝑟𝑘 𝑏𝑟𝑜𝑤𝑛),  13.7(𝑉𝑖𝑜𝑙𝑒𝑡), 10.7(𝑏𝑟𝑜𝑤𝑛), .7(𝐺𝑟𝑒𝑒𝑛),4.7(𝑂𝑟𝑎𝑛𝑔𝑒),0.7(𝐵𝑙𝑢𝑒) 
and 𝑠 = 1, 𝐾 = .25, ∈= .1 

Figure 10. Fuzzified Velocity profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ  𝛼 =0.5, 𝑠 = 1,𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 

Fig (11-14) are the fuzzified velocity profiles for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 = 0.5 and different values of the parameters 
s = 1 and 2, 𝐾 = 0.25 𝑎𝑛𝑑 0.5,𝑃𝑟 = 0.7 𝑎𝑛𝑑 1 , 𝜀 = 0.1 𝑎𝑛𝑑 0.5. It is observed from the Figures that there are no 
significant deflections of right solution as compare to left solution from the mid value solution ( Crisp solution ). This is 
due to the changes of these parameter are not the cause of the uncertainty involved in the solution of the velocity profile. 

As the parameter changes are not affect in the uncertainty of the solution of the velocity profile so we are discussed 
the effect of the parameter in Crisp Solution i.e.  𝛼 − 𝑐𝑢𝑡 = 1. 

  

Figure 11. Fuzzified Velocity profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝑠 = 𝟏 𝒂𝒏𝒅 𝟐,𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 
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Figure 12. Fuzzified Velocity profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝑠 = 1,𝐾 = .25 𝑎𝑛𝑑 0.5,∈= .1,𝑃𝑟 = 0.7 

Figure 13. Fuzzified Velocity profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ 𝛼 =0.5, 𝑠 = 1, 𝐾 = 0.25,∈= 0.1  𝑎𝑛𝑑  0.5, 𝑃𝑟 = 0.7 

Figure 14. Fuzzified Velocity profile for 𝛼 − 𝑐𝑢𝑡 𝑤𝑖𝑡ℎ  𝛼 = 0.5,  𝑠 = 1, 𝐾 = 0.25, ∈ = .1, 𝑃𝑟 = 0.7 𝑎𝑛𝑑 1 

Figure (15) represent the crisp velocity profile for the different values of the parameter ∈ and fix value of the 
parameter = 0.25, 𝑠 = 1 𝑎𝑛𝑑  𝑃𝑟 = 0.7 . It is observed that with the increasing value of ∈ the velocity profile decreases. 

Again Figure (16) represents the crisp velocity profile for the different values of the parameter 𝑠 and fix value of the 
parameter 𝐾 = 0.25, ∈= 0.1 𝑎𝑛𝑑  𝑃𝑟 = 0.7 respectively. It is observed that with the increasing value of 𝑠 the velocity 
profile also increases.  

It is observed from the graphs of the crisp velocity profile in Fig. (15-16) that the solution shows the occurrence of 
reverse flow. The occurrence of the sharp point in the back flow this is due to the numerical difficulties as the numbers 
of subdivision are less in number. If we increase the number of divisions to as large extend time complicity arise in the 
fuzzified solution but the curve would be smooth. 
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Figure 15. Crips Velocity profile for ∈= 0.1(𝑉𝑖𝑜𝑙𝑒𝑡), 0.5(𝑦𝑒𝑙𝑙𝑜𝑤), 1(𝑝𝑖𝑛𝑘) 𝑎𝑛𝑑 𝑠 = 1,𝐾 = .25,𝑃𝑟 = 0.7 

Figure 16. Crips Velocity profile for 𝑠 = 9(𝐵𝑙𝑢𝑒), 5(𝐺𝑟𝑒𝑒𝑛), 1(𝑂𝑟𝑎𝑛𝑔𝑒) 𝑎𝑛𝑑 𝐾 = .25,∈= .1,𝑃𝑟 = 0.7 

 
5. Comparison of Skin Friction Coefficient 𝑪𝒇 and Local Nusselt Number 𝑵𝒖𝒙 

The two important parameters in fluid flow problem are the skin friction coefficient 𝐶௙ and local nusselt number 𝑁𝑢௫ we 
have computed these two parameters for different values of the Permiability parameter which are given in the following Table. 
Table 

Permiability 
Parameter 

𝐶௙ 𝑁𝑢௫ 
Crips Fuzzified Crisp Fuzzified 

10 0.264853 0.243849 -2.13187057 -2.00200567 
20 0.265152 0.244158 -2.13187043 -2.0020055 
30 0.265251 0.244261 -2.13187038 -2.00200544 
40 0.265301 0.244313 -2.13187036 -2.00200541 

It is observed from the table that with the increasing values of permeability parameter the values of the Skin friction 
coefficient increases. Similarly with the increasing values of permeability parameter the values of Nusselt number also 
increases. The results are well agreed with those of crisp values. The effect of fuzzification is also observed from the 
above Table. 

 
6. Conclusion 

In this chapter, the Radiative boundary layer flow in Porous medium due to exponentially shrinking steady MHD 
stagnation point flow due to shrinking permeable sheet has been theoretically considered under fuzzy environment. The 
effect of suction parameter, velocity ration parameter, Prandlt number on the flow and heat transfer have been studied 
under fuzzy environment. The numerical results have been obtained by developing computer codes on PYTHON. Thus, 
we conclude the followings from the above discussion: 

(1) The involvement of uncertainty in the equation of motion of this problem. 
(2)  None of the parameters are directly involved in the occurrence of the uncertainty of the solutions. The 

uncertainty occurs in the problem is due to the assumption and the numerical computation. 
(3) The crisp solution of velocity profile as well as temperature profile and the fuzzified velocity profile as well as 

temperature profile are in good agreements. The flow pattern for both the case velocity profile as well as 
Temperature profile are almost similar for different values of parameters. 

(4) With the increasing values of permeability parameter, the values of both the numbers Skin friction coefficient 
as well as Nusselt number are increases. 

(5) The effect of fuzzification is observed in the values of the physical quantities of the Skin friction coefficient 𝐶௙ 
and local Nusselt number  𝑁𝑢௫. 

 
Funding: Not Applicable 
Consent Statement: Not Applicable 
Data Applicability: Not Applicable 
Conflict of Interested: Here with I declare there is no conflict of interested. 
 

ORCID IDs 
Amir Barhoi, https://orcid.org/0000-0003-3533-6000; G.C. Hazarika, https://orcid.org/0000-0003-3937-8919 
Hrishikesh Baruah, https://orcid.org/0000-0002-0747-6103; Pranjal Borah, https://orcid.org/0009-0007-6737-2027 



116
EEJP. 2 (2023) Amir Barhoi, G.C. Hazarika, et al.

REFERENCES 
[1] N.F.M. Noor, S.A. Kechil, and I. Hashim, “Simple non- perturbative solution for MHD viscous flow due to a shrinking sheet,”

Communications in Nonlinear Science and Numerical Simulation, 15(2), 144–148 (2010).
https://doi.org/10.1016/j.cnsns.2009.03.034

[2] T. Hayat, Z. Abbas, and M. Sajid, “On the analytic solution of magnetohydrodynamic flow of a second grade fluid over a shrinking 
sheet,” Journal of Applied Mechanics, Transactions ASME, 74(6), 1165-1171 (2007). https://doi.org/10.1115/1.2723820

[3] T. Fang, W. Liang, and C. F. F. Lee, “A new solution branch for the Blasius equation-A shrinking sheet problem,” Computers
and Mathematics with Applications, 56(12), 3088-3095 (2008). https://doi.org/10.1016/j.camwa.2008.07.027

[4] N.F. Mohd, and I. Hashim, “MHD flow and heat transfer adjacent to a permeable shrinking sheet embedded in a porous medium,” 
Sains Malaysiana, 38(4), 559-565 (2009).

[5] D.S. Chauhan, and R. Agrawal, “MHD flow and heat transfer in a channel bounded by a shrinking sheet and a plate with a porous
substrate,” Journal of Engineering Physics and Thermophysics, 84(5), 1034-1046 (2011). https://doi.org/10.1007/s10891-011-0564-y

[6] K. Bhattacharyya, “Boundary layer flow and heat transfer over an exponentially shrinking sheet,” Chinese Physics Letters, 28(7),
ID 074701 (2011). http://dx.doi.org/10.1088/0256-307X/28/7/074701

[7] B.S. Dandapat, B. Santra, and K. Vajravelu, “The effects of variable fluid properties and thermocapillarity on the flow of a thin
film on an unsteady stretching sheet,” International Journal of Heat and Mass Transfer, 50(5-6), 991-996 (2007).
https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.007

[8] P. Vyas, and A. Rai, “Radiative flow with variable thermal con- ductivity over a noniIsothermal Stretching sheet in a porous
medium, Int,” Journal of Contemporary Mathematical Sciences, 5, 2685-2698 (2010). http://www.m-hikari.com/ijcms-2010/53-
56-2010/raiIJCMS53-56-2010.pdf

[9] U. Sarma, and G.C. Hazarika, “Effects of variable viscosity and thermal conductivity on heat and mass transfer flow along a
vertical plate in the presence of a magnetic field,” Latin-American Journal of Physics Education, 5, 100-106 (2011).
https://dialnet.unirioja.es/descarga/articulo/3699657.pdf

[10] P. Vyas, and N. Srivastava, “Radiative MHD flow over a non- isothermal stretching sheet in a porous medium,” Applied
Mathematical Sciences, 4(49-52), 2475-2484 (2010). https://www.m-hikari.com/ams/ams-2010/ams-49-52-
2010/srivastavaAMS49-52-2010.pdf

[11] M.L. Puri, and D.A. Ralescu, “Differentials of fuzzy function,” Journal of Mathematical Analysis and Application, 91(2), 552-558 
(1983). https://doi.org/10.1016/0022-247X(83)90169-5

[12] O. Kaleva, “Fuzzy differential equation”, Fuzzy Sets and System, 24(3), 301-317 (1987).https://doi.org/10.1016/0165-
0114(87)90029-7

[13] O. Kaleva, “The Cauchy problems for fuzzy differentials equations”, Fuzzy Sets and System, 35(3), 389-396 (1990).
https://doi.org/10.1016/0165-0114(90)90010-4

[14] Y. Zhang, G. Wang, and S. Liu, “Frequently domain methods for solution of n-order fuzzy differentials equations”, Fuzzy Sets
and System, 2, 45-59 (1998).

[15] F. Rabie, F. Ismail, A. Ahmadian, and S. Salahshour, “Numerical solution of fuzzy differentials equation using Improved Runge-
Kutta Nystrom Method”, Mathematical Problems in Engineering, 2013, 803462 (2013). http://dx.doi.org/10.1155/2013/803462

[16] M.A. Kermani, and F. Saburi, “Numerical methods for fuzzy differential equations”, Applied Mathematical Sciences, (2007).
[17] V.A. Romanov, “Stability of plane-parallel Couette flow”, Funct. Anal. Appl. 7, 137-146 (1973).

https://doi.org/10.1007/BF01078886
[18] A. Barhoi, P. Dutta, and G.C. Hazarika, “Numerical solution of MHD viscous flow over a shrinking sheet with second order slip

under fuzzy Environment”, Adv. Math. Sci. J. 9(12), 10621-10631 (2020). https://doi.org/10.37418/amsj.9.12.47

ЧИСЛОВЕ РІШЕННЯ ТЕЧІЇ РАДІАЦІЙНОГО ПРИКОРДОННОГО ШАРУ В ПОРИСТОМУ СЕРЕДОВИЩІ
ЧЕРЕЗ ЕКСПОНЕНЦІАЛЬНО ЗТИСНУТИЙ ПРОНИКНИЙ ШАР В НЕЧІТКИХ УМОВАХ 

Амір Бархойa, Г.К. Хазарікаb, Хрішикеш Баруахa, Пранджал Бораc 
aКоледж Дуліаджана, Дуліаджан, Асам, Індія 

bУніверситет Дібругарх, Дібругарх, Ассам, Індія 
cD.R. Коледж, Гологхат, Асам, Індія 

У цій статті розглянуто задачу про течії рідини, яка містить два рівняння руху та більше двох параметрів у визначальному 
рівнянні руху. Це саме радіаційний потік прикордонного шару в пористому середовищі через проникний лист, що 
експоненційно стискається. Параметри рівняння 𝐾 = ௖௞బ௅ణ , 𝑃𝑟 = ఓ௖೛௞ಮ ,𝑁 = ସఙభ ಮ்యଷ௞భ௞ಮ , ε означають відповідно параметр проникності, 
число Прандтля, параметр випромінювання та параметр варіації теплопровідності. Основне диференціальне рівняння може 
бути отримане з використанням методу змінних подібності, а потім основне рівняння руху може бути fuzzified за допомогою 
теореми розширення Заде. Метод α-зрізу використовується для перевірки невизначеності рівняння руху. Обговорюється 
вплив K, Pr, N та ε з нечітким керуючим рівнянням руху в нечіткому середовищі. Знайдено, що жоден із параметрів не бере 
безпосередньої участі у виникненні невизначеності рішень. Невизначеність виникає через припущення та чисельний 
розрахунок. Нарешті, рішення виконано у нечіткому середовищі. Встановлено, що зі збільшенням значення параметра 
проникності зростають значення обох чисел: коефіцієнта поверхневого тертя, а також числа Нуссельта. 
Ключові слова: термозбіжний лист; нечіткість; комп'ютерні коди; α-зріз 
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The total wave function and the bound state energy are investigated by involving Nikiforov-Uvarov method to Schrodinger equation 
in spherical coordinates employing Hartmann Potential (HP). The HP is considered as non-central potential that is mostly recognized 
in nuclear field potentials. Every wave function is specified by principal quantum number n, angular momentum number 𝑙, and magnetic 
quantum number m. The radial part of the wave function is obtained in terms of the associated Laguerre polynomial, using the 
coordinate transformation 𝑥 = cos𝜃 to obtain the angular wave function that depends on inverse associated Legendre polynomials. 
Keywords: Schrödinger equation; Nikiforov-Uvarov method; Hartmann Potential 
PACS:  03.56.-w, 03.65.Fd, 03.65Ge 

INTRODUCTION 
The Hartmann Potential is a kind of non-central potentials that have been studied in nuclear physics field, which 

consider as the coulomb potential surrounded by the ring-shaped inverse square potential. Organic molecules such as 
cyclic polyenes and benzene, handling this potential since 1972 [1-2]. In spherical coordinate the Hartmann potential is 
coulomb potential adding a one potential proportional to ሺ𝑟 tan𝜃ሻିଶ. So, it defined by [3-4]: 𝑉ሺ𝑟,𝜃ሻ = −ఈ௥ + ఉ ୡ୭ୱమ ఏ௥మ ୱ୧୬మ ఏ. (1)

Where α, β are constants that consider as positive real numbers. Obtaining this HP in Schrodinger equation, assuming 
(𝜇 = ℏ = 1) [5]: ቄ ଵ௥మ డడ௥ ቀ𝑟ଶ డడ௥ቁ  + ଵ௥మ ୱ୧୬ఏ డడఏ ቀsin𝜃 డడఏቁ + ଵ௥మ ୱ୧୬మ ఏ ቀ డమడథమቁ + ଶఈ௥ − 2𝛽 ୡ୭ୱమ ఏ௥మ ୱ୧୬మ ఏቅ 𝜓ሺ𝑟,𝜃,𝜑ሻ + 2𝐸𝜓ሺ𝑟,𝜃,𝜑ሻ = 0. (2) 

The equation (2) depends on the total coordinates in spherical coordinates (𝑟,𝜃,𝜑), to find the total wave function 
we need apply separation of variables method on equation (2). The main object in this work is to determine the bound 
state energy and the wave function. 

SEPARATION OF VARIABLES METHOD 
Obviously, in spherical potential, we let [6]: 𝜓ሺ𝑟,𝜃,𝜑) = ௎ሺ௥)௥  𝐻ሺ𝜃) 𝜙ሺ𝜑). (3)

Now, by Separating variables in equation (2), we hold that: 

The Radial Part ௗమ௎ሺ௥)ௗ௥మ + ቂ2𝐸 + 2 ఈ௥ − ఒ௥మቃ 𝑈ሺ𝑟) = 0, 

where 𝜆 is separation constant. And, to solve the equation, we let 𝜆 = 𝑙`ሺ𝑙` + 1) − 2𝛽. 𝛽 = ௠`మି௠మଶ . 

Where 𝑙` and 𝑚` are positive integers or zero. 𝐿 = ଵଶ ቊට1 + 4ൣ൫𝑘 + ඥ2𝛽 + 𝑚ଶ൯൫𝑘 + ඥ2𝛽 + 𝑚ଶ + 1൯ − 2𝛽൧ − 1ቋ. (4)

† Cite as: M.A. Al-Hawamdeh, A.N. Akour, E.K. Jaradat, and O.K. Jaradat, East Eur. J. Phys. 2, 117 (2023), https://doi.org/10.26565/2312-4334-2023-2-10 

https://doi.org/10.26565/2312-4334-2023-2-10
https://periodicals.karazin.ua/eejp/index
https://portal.issn.org/resource/issn/2312-4334
https://orcid.org/0000-0002-9026-4098


118
EEJP. 2 (2023) Mahmoud A. Al-Hawamdeh, Abdulrahman N. Akour, et al.

So, one can easily show that 𝜆 = 𝐿(𝐿 + 1) (see Appendix I) 
The radial Schrodinger equation can displayed as: ௗమ௎(௥)ௗ௥మ + ቂ2𝐸 + 2 ఈ௥௥ − ௅(௅ାଵ)௥మ ቃ 𝑈(𝑟) = 0. (5)

Where the angular part can displayed as: 

The Angular part 
Insert a new variable 𝑥 = cos𝜃 and using Chain rules technique, to get the angular Schrodinger equation. ௗమு(௫)ௗ௫మ − ଶ௫ଵି௫మ ௗு(௫)ௗ௫   + ଵଵି௫మ ቀ𝜆 + 2𝛽 − ௠మାଶఉଵି௫మ ቁ𝐻(𝑥) = 0. (6)

And we let, 𝜆 + 2𝛽 = 𝑙`(𝑙` + 1), 𝑚`ଶ = 𝑚ଶ + 2𝛽 and 𝑣` = 𝑙`(𝑙` + 1). 
After applying all assumes into equation (6), we get ௗమு(௫)ௗ௫మ − ଶ௫ଵି௫మ ቄ ௗு(௫)ௗ௫ ቅ   + ൫ି௩`௫మା௩`ି௠`మ൯(ଵି௫మ)మ 𝐻(𝑥) = 0 . (7)

The Azimuthal Part  ଵథ(ఝ) ቀ ௗమௗథమቁ  𝜙(𝜑) = 𝑚ଶ. (8) 
Where 𝑚 is the magnetic quantum number. 

NIKIFOROV-UVAROV METHOD 
The Nikiforov-Uvarov method is a one of the methods used to predict the solutions of generalized second order liner 

differential equation like Schrodinger equation with particular orthogonal function, we could be obtaining the solution by 
NU-method when make some transforming to Schrodinger equation to be the same of the below equation [7] 𝑢``(𝑧) + ఛු (௭)ఙ(௭) 𝑢`(𝑧) + ఙ෕  (௭)ఙమ(௭)𝑢(𝑧) = 0. (9) 

Where equation (9) is considering the standard form of NU-method. Where,  𝜎(𝑧) and 𝜎ු (𝑧) are polynomials with a 
maximum degree of 2; 𝜏̌ (𝑧)is polynomial with a maximum degree of 1; 𝑢(𝑧) is a hypergeometric function type, and the 
primes intending the derivatives respect to z. by supposing that: 𝑢(𝑧) = 𝜙(𝑧)𝑋(𝑧). (10)

The equation (9) become as hypergeometric form: 𝜎(𝑧)𝑋``(𝑧) + 𝜏(𝑧)𝑋`(𝑧) + 𝜆 𝑋(𝑧) = 0. (11) 

Where 𝜏(𝑧) = 2π(z) + 𝜏̌ (𝑧)         , ௗௗ௭ 𝜏(𝑧) < 0. (12) 

Where π(z) is a parameter of 1st polynomial degree and introduces by equation (13): 𝜋(𝑧) = ఙ`ିఛුଶ ± ටቀఙ`ିఛුଶ ቁଶ − 𝜎ො(𝑧) + 𝑘𝜎. (13) 

While 𝜆 is introduced by equation (14) 𝜆 = 𝑘 + 𝜋`(𝑧). (14) 

Since 𝜋(𝑧)  is 1st degree polynomial, this implies that second order function under square root must be equal to zero, 
then the quadratic equation can determine k. 

To obtain 𝜙(𝑧) we can use the integral below equation: థ`(௭)థ(௭) = గ(௭)ఙ(௭). (15)

And the parameter 𝜆 in equation (14) defined by; 𝜆 = 𝜆௡ = −𝑛𝜏`(𝑧) − ௡(௡ିଵ)ଶ 𝜎``(𝑧). (16) 

The weight function 𝜌(𝑧) is obtained in (Eq. 17). ௗௗ௭ ሾ𝜎(𝑧) 𝜌(𝑧)ሿ =  𝜏(𝑧)  𝜌(𝑧). (17)
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While the Rodrigue relation (Eq. 18) is used to determine 𝑋௡(𝑧). 𝑋௡(𝑧) = ஻೙ఘ(௭)  ௗ೙ௗ௭೙ ሾ𝜎௡𝜌(𝑧)ሿ. (18)

Where 𝐵௡is normalization constant, now Substitute 𝑋௡(𝑧) and 𝜙(𝑧) into equation (10) to find 𝑢(𝑧) [8-12]. 

DEVELOPING HARTMANN POTENTIAL IN SCHRODINGER EQUATION 
The Radial Schrodinger Equation 

From equation (5) we can write the radial part by the below form ௗమ௎(௥)ௗ௥మ + ଵ௥మ ሾ2𝐸𝑟ଶ + 2𝛼𝑟 − 𝐿(𝐿 + 1)ሿ𝑈(𝑟) = 0. (19)

By comparing equation (9) by equation (19) to obtain the NU-Coefficients, we get 𝜏̌ (𝑟) = 0, (20-a)𝜎(𝑟) = 𝑟, (20-b)𝜎ු (𝑟) = 2𝐸𝑟ଶ + 2𝛼𝑟 − 𝐿(𝐿 + 1). (20-c)

Using equations (20-a) (20-b) and (20-c) into equation (13) to get the parameter 𝜋(𝑟) 𝜋(𝑟) = ଵଶ ± ଵଶඥ−8𝐸𝑟ଶ + 4(𝑘 − 2𝛼)𝑟 + 4𝐿(𝐿 + 1) + 1. (21)

Now, taking this quadratic equation's discriminant equal zero, then the value of constant 𝑘 could be determined. 𝑘ଶ − 4𝛼𝑘 + 4𝛼ଶ + 2𝐸ሼ4𝐿(𝐿 + 1) + 1ሽ = 0. (22)

The quadratic equation (22) provides two roots for 𝑘 𝑘± = 2𝛼 ± ඥ−2𝐸ሼ4𝐿(𝐿 + 1) + 1ሽ. (23)

Substituting equation (23) into equation (21), to get: 𝜋ଵ(𝑟) = 𝜋ାା(𝑟) = ଵଶ + ቄ√−2𝐸𝑟 + ቀ𝐿 + ଵଶቁቅ, (24-a)𝜋ଶ(𝑟) = 𝜋±(𝑟) = ଵଶ + ቄ√−2𝐸𝑟 − ቀ𝐿 + ଵଶቁቅ, (24-b)𝜋ଷ(𝑟) = 𝜋∓(𝑟) = ଵଶ − ቄ√−2𝐸𝑟 + ቀ𝐿 + ଵଶቁቅ, (24-c)𝜋ସ(𝑟) = 𝜋ିି (𝑟) = ଵଶ − ቄ√−2𝐸𝑟 − ቀ𝐿 + ଵଶቁቅ. (24-d)

Taking 𝜋ସ(𝑟) where τ(r) is negative in equation (12) to hold the well value by NU method; so: 𝜏ସ(𝑟) = 1 − 2 ൬√−2𝐸𝑟 − ቀ𝐿 + ଵଶቁ൰. (25)

Returning to the equations (14) and (16) respectively, and developing equation (25) we get: 𝜆 = 2𝛼 − (2L + 2)√−2𝐸. (26)𝜆௡ = 2𝑛൫√−2𝐸൯. (27)

Comparing equations (26) and (27) one can predict bound state energy. 𝐸 = − ఈమଶ(௅ା௡ାଵ)మ. (28)

Where 𝐿 is given by equation (4). 
Depending on previous result especially equation 25 we can hold the function 𝜙(𝑟) and the weight function 𝜌(𝑟) 

that in equations (15) and (17) in a new form: 𝜙(𝑟) = 𝑟(௅ାଵ)𝑒ି√ିଶா௥ (29)𝜌(𝑟) = 𝑒ିଶ√ିଶா௥𝑟(ଶ௅ାଵ) (30)

By obtaining equation (18) and (30); one can establish the polynomial 𝑋௡(𝑟): 𝑋௡(𝑟) = 𝐵௡𝑒ଶ√ିଶா௥𝑟ି(ଶ௅ାଵ)  ௗ೙ௗ௭೙ ቂ𝑒ିଶ√ିଶா௥𝑟(ଶ௅ାଵା௡)ቃ (31)
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Also, the wave function 𝑈(𝑟) is hold by multiply 𝑋௡(𝑟) with 𝜙(𝑟). 𝑈௡௟(𝑟) = 𝐵௡ 𝑟(௅ାଵ)𝑒ି√ିଶா௥𝑒ଶ√ିଶா௥𝑟ି(ଶ௅ାଵ)  ௗ೙ௗ௭೙ ቂ𝑒ିଶ√ିଶா௥𝑟(ଶ௅ାଵା௡)ቃ. 
Involving associated Laguerre polynomial in equation [4] then 𝑈௡௟(𝑟) can be defined as: 𝑈௡௟(𝑟) = 𝐵௡ 𝑟(௅ାଵ)𝑒ି√ିଶா௥  𝐿௡ଶ௅ାଵ൫2√−2𝐸𝑟൯. (32)

By substituting √−2𝐸 as in equation (28) where 𝛼 = 𝑧𝑒ଶ, then the radial wave function 𝑅(𝑟), which defined as 𝑅(𝑟) = ௎(௥)௥  is obtained as: 𝑅௟௡(𝑟) = 𝐵௡𝑟௅𝑒ି ೥೐మ(ಽశ೙శభ)௥ 𝐿௡ଶ௅ାଵ ቀ ଶ௭௘మ(௅ା௡ାଵ) 𝑟ቁ. (33)

Where, 𝐵௡ is the normalized constant for orthogonally associated Laguerre polynomial. So, the normalized constant equal 𝐵௡  = ට ௡!୻(ଶ௅ା௡ାଶ)  ஺మಽశయሼଶ௡ାଶ௅ାଶሽ (34)

Substituting equation (34) to write the final form of radial Schrodinger equation 

𝑅௡௟(𝑟) = ඨ ௡!୻(ଶ௅ା௡ାଶ) మ೥೐మ(ಽశ೙శభ)మಽశయଶሼ௡ା௅ାଵሽ (𝑟)௅𝑒ି మ೥೐మ(ಽశ೙శభ)మ ௥ 𝐿௡ଶ௅ାଵ ቀ ଶ௭௘మ(௅ା௡ାଵ) 𝑟ቁ (35)

The Angular Schrodinger Equation 
Now, to determine the angular wave function 𝐻(𝑥); compare equation (7) with equation (9) to obtain 𝜏̌ (𝑥) = −2𝑥 (36-a)𝜎(𝑥) = 1 − 𝑥ଶ (36-b)𝜎ු (𝑥) = −𝑣`𝑥ଶ + 𝑣` −𝑚`ଶ (36-c)

Substitute equations (36 − 𝑎), (36 − 𝑏)and (36 − 𝑐) into (13), then one can conclude 𝜋(𝑥): 𝜋(𝑥) = ±ඥ(𝑣` − 𝑘)𝑥ଶ − 𝑣` + 𝑚`ଶ + 𝑘 (37)

following the NU-method technic, both values of constant 𝑘. 𝑘ଵ = 𝑣` −𝑚`ଶ  , 𝑘ଶ = 𝑣` (38)

So, the values of parameter 𝜋(𝑥) giving by; 𝜋ଵଵ(𝑥) = ඥ(𝑚`ଶ)𝑥ଶ = 𝑚`𝑥 (39-a)𝜋ଵଶ(𝑥) = −ඥ(𝑚`ଶ)𝑥ଶ = −𝑚`𝑥 (39-b)𝜋ଶଵ(𝑥) = √𝑚`ଶ = 𝑚` (39-c)𝜋ଶଶ(𝑥) = −√𝑚`ଶ = −𝑚` (39-d)

Substituting the four values of 𝜋(𝑥) into equation (14) and equation (36-a), we obtain 𝜏(𝑧); where 𝜏`ଶ(𝑟) < 0 𝜏ଶ(𝑥) = −2𝑥 − 2𝑚`𝑥 (40)

We  have obtained the constants 𝜆 and 𝜆௡ from the equations (14) and (16) respectively. 𝜆 = 𝑣` −𝑚`ଶ − 𝑚 (41)𝜆௡ = −𝑛(−2 − 2𝑚`) + 𝑛(𝑛 − 1) (42)

Comparing equation (41) with equation (42), we get: 𝑙` = −ଵଶ + ଵଶට1 + 4 ൛𝑛 + ඥ𝑚ଶ + 2𝛽}൫𝑛 + ඥ𝑚ଶ + 2𝛽 + 1൯ൟ (43)

Now, depending on the upon result we return to use equations (15) and (17) to determine the function 𝜙(𝑟) and weight 
function 𝜌(𝑟) 
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𝜙`(𝑥)𝜙(𝑥) = −𝑚`𝑥1 − 𝑥ଶ𝜌`(𝑟)𝜌(𝑟) = ሼ−2𝑥(1 + 𝑚`) + 2𝑥}1 − 𝑥ଶ
By integration the above equations we get; 𝜙(𝑥) = (1 − 𝑥ଶ)೘`మ (44)𝜌(𝑥) = (1 − 𝑥ଶ)௠ (45)

Now we can determine the polynomial  𝑋௡(𝑟) by equation (18) and (45). 𝑋௡(𝑥) = 𝐵௡(1 − 𝑥ଶ)ି௠`  ௗ೙ௗ௫೙ ሾ(1 − 𝑥ଶ)௠`   (1 − 𝑥ଶ)௡ሿ (46)

And by using 𝐻(𝑥) = 𝑋௡(𝑥) 𝜙(𝑥) that are defined by equations (46) and (44) and where 𝑛 + 𝑚` = 𝑙` 𝐻௡(𝑥) = (−1)௟`𝐵௡ (1 − 𝑥ଶ)ି೘`మ ௗ೗`ష೘`ௗ௫೗`ష೘` ሾ(𝑥ଶ − 1)௟`ሿ (47)

By use some relations in associated Legendre polynomials 𝑝௟ି ௠` = (−1)௠`2௟ 𝑙! (1 − 𝑥ଶ)ି௠`ଶ 𝑑௟ି௠` 𝑑𝑥௟ି௠ ` (𝑥ଶ − 1)௟ = (−1)௠` (𝑙 − 𝑚`)!(𝑙 + 𝑚`)! 𝑝௟௠`(𝑥) 

ௗ೗ష೘` ௗ௫೗ష೘ ` (𝑥ଶ − 1)௟ = (−1)௠` (௟ି௠`)!(௟ା௠`)!  (1 − 𝑥ଶ)௠`  ௗ೗శ೘` ௗ௫೗శ೘ ` (𝑥ଶ − 1)௟ (48) 

Now apply the equation (48) into equation (47); 𝐻௡(𝑥) = (−1)௟`𝐵௡(1 − 𝑥ଶ)ି೘`మ  ቄ𝑐௟௠(1 − 𝑥ଶ)௠`  ௗ೗శ೘` ௗ௫೗శ೘ (𝑥ଶ − 1)௟ቅ (49)

Where: 𝑐௟௠` = (−1)௠` (௟ି௠`)!(௟ା௠`)! (50)

Where associated Legendre polynomials is giving by equation [13]; 
So, equation (49) become: 𝐻௡(𝑥) = (−1)௟`𝐵௡ 𝑐௟௠`  ଶ೗௟!(ିଵ)೘`  𝑝௟௠̀`(𝑥) (51)

Where the normalization constant is 𝑁௟௠` = (−1)௟`𝐵௡ 𝑐௟௠`  ଶ೗௟!(ିଵ)೘` (52)

So 𝐻௡(𝑥)become 𝐻௡(𝑥) = 𝑁௟௠` 𝑝௟௠̀`(𝑥). 
To find the normalized constant, use the normalized condition ׬ 𝐻௡ଶ(𝑥)𝑑𝑥ଵିଵ = 1. 
By use associated Legendre polynomials orthogonally [13], we get 𝑁௟௠` = ටଶ௟ାଵଶ (௟`ି௠`)!(௟`ା௠`)! (53)

So, the angular wave function become: 

𝐻௡(𝑥) = ඨ2𝑙 + 12 (𝑙` −𝑚`)!(𝑙` + 𝑚`)!   𝑝௟௠̀`(𝑥) 

Where associated Legendre polynomials equal;[14]  

𝑝௟௠̀`(𝑥) = (1 − 𝑥ଶ)௠`ଶ ෍ (−1)௩Γ(2𝑙` − 2𝑣 + 1)2௟`𝑣! (𝑙` −𝑚` − 2𝑣)! Γ(𝑙` − 𝑣 + 1) 𝑥௟`ି௠`ିଶ௩௟`ି௠`ଶ
௩ୀ଴  

So, after replacing 𝑥 = cos𝜃 the angular wave function equal; 
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𝐻௡(𝑥) = ටଶ௟ାଵଶ (௟`ି௠`)!(௟`ା௠`)!  sin௠`𝜃 × ∑ (ିଵ)ೡ୻(ଶ௟`ିଶ௩ାଵ)ଶ೗`௩!(௟`ି௠`ିଶ௩)!୻(௟`ି௩ାଵ) (cos𝜃)௟`ି௠`ିଶ௩೗`ష೘`మ௩ୀ଴ (54)

The Azimuthal Wave Function 
From equation (8) we can easily determine the azimuthal part equation [15]: 𝜙(𝜑) = ଵ√ଶగ 𝑒ି௜௠ఝ (55)

by including the equations (35), (54) and (55), then the total wave function 𝜓(𝑟,𝜃,𝜑) can be expressed as: 

𝜓(𝑟,𝜃,𝜑) = ඨ ௡!୻(ଶ௅ା௡ାଶ) మ೥೐మ(ಽశ೙శభ)మಽశయଶሼ௡ା௅ାଵ} (𝑟)௅𝑒ି మ೥೐మ(ಽశ೙శభ)మ ௥ 𝐿௡ଶ௅ାଵ ቀ ଶ௭௘మ(௅ା௡ାଵ) 𝑟ቁ ×ටଶ௟ାଵଶ (௟`ି௠`)!(௟`ା௠`)!  sin௠` 𝜃 ∑ (ିଵ)ೡ୻(ଶ௟`ିଶ௩ାଵ)ଶ೗`௩!(௟`ି௠`ିଶ௩)!୻(௟`ି௩ାଵ)  (cos 𝜃)௟`ି௠`ିଶ௩೗`ష೘`మ௩ୀ଴ × ଵ√ଶగ 𝑒ି௜௠ఝ (56)

CONCLUSIONS 
The total wave function and bound state energy using Hartmann potential are determined explicitly where they show 

a great similarity with other studies. The total wave function depends firstly, on associated Laguerre functions in the radial 
part, secondly, on the value of cosine in the angular part, and lastly, on the exponential function in the azimuthal part. 
The number of states 𝑛  and quantum numbers 𝑙,𝑚  are also appeared and established. 
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Appendix (I) dଶU(r)drଶ + ൤2E + 2𝛼𝑟 − 𝜆𝑟ଶ൨U(r) = 0 𝜆 = 𝑙`(𝑙` + 1) − 2𝛽 (1)𝛽 = ௠`మି௠మଶ (2)𝐿 = 12 ቊට1 + 4 ቂቀ𝑘 + ඥ2𝛽 + 𝑚ଶቁ ቀ𝑘 + ඥ2𝛽 + 𝑚ଶ + 1ቁ − 2𝛽ቃ − 1ቋ 

Substation equation (2) into equation (1): 
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𝜆 = 𝑙`(𝑙` + 1) −𝑚`ଶ + 𝑚ଶ (3)
Let  𝑙` = 𝑘 + 𝑚` 𝑘 = 𝑙` −𝑚` 

From equation (2), we get: 2𝛽 + 𝑚ଶ = 𝑚`ଶ 
From equation (3), we get: 𝜆 = 𝑘ଶ + 2𝑘𝑚` + 𝑚`ଶ + 𝑘 + 𝑚` + 𝑙` −𝑚`ଶ + 𝑚ଶ 𝜆 = 𝑘ଶ + 2𝑘ඥ2𝛽 + 𝑚ଶ + ඥ2𝛽 + 𝑚ଶ + 2𝑘 + ඥ2𝛽 + 𝑚ଶ + 𝑚ଶ 𝜆 = 𝑘ଶ + 2𝑘ඥ2𝛽 + 𝑚ଶ + 2ඥ2𝛽 + 𝑚ଶ + 2𝑘 + 𝑚ଶ 
To proof L(L + 1) = λ, we use Some simple calculations. 𝐿ଶ + 𝐿 = 𝜆 ଵସ ቊට1 + 4ൣ൫𝑘 + ඥ2𝛽 + 𝑚ଶ൯൫𝑘 + ඥ2𝛽 + 𝑚ଶ + 1൯ − 2𝛽൧ − 1ቋଶ + ଵଶ ቊට1 + 4ൣ൫𝑘 + ඥ2𝛽 + 𝑚ଶ൯൫𝑘 + ඥ2𝛽 + 𝑚ଶ + 1൯ − 2𝛽൧ − 1ቋ = 𝜆 (4)

The value that under square root in equation (4): ቀ𝑘 + ඥ2𝛽 + 𝑚ଶቁ ቀ𝑘 + ඥ2𝛽 + 𝑚ଶ + 1ቁ = 𝑘ଶ + 2𝑘𝑚` + 𝑘 + 𝑚`ଶ + 𝑚` 
Equation (4) become: 14 ቄඥ1 + 4ሾ𝑘ଶ + 2𝑘𝑚` + 𝑘 + 𝑚`ଶ + 𝑚` − 2𝛽ሿ − 1ቅଶ + 12 ቄඥ1 + 4ሾ𝑘ଶ + 2𝑘𝑚` + 𝑘 + 𝑚`ଶ + 𝑚` − 2𝛽ሿ − 1ቅ = 𝜆 

After use equation (2), we get: ଵସ ቄඥ1 + 4ሾ𝑘ଶ + 2𝑘𝑚` + 𝑘 + 𝑚`ଶ + 𝑚` −𝑚`ଶ + 𝑚ଶሿ − 1ቅଶ + ଵଶ ቄඥ1 + 4ሾ𝑘ଶ + 2𝑘𝑚` + 𝑘 + 𝑚`ଶ + 𝑚` −𝑚`ଶ + 𝑚ଶሿ − 1ቅ = 𝜆 (5) 

Substation equation (1) into equation (5), and simple mathematics. 14 ቄඥ1 + 4ሾ(𝑙` −𝑚`)ଶ + 2(𝑙` −𝑚`)𝑚` + 𝑙` + 𝑚ଶሿ − 1ቅଶ + 12 ቄඥ1 + 4ሾ(𝑙` −𝑚`)ଶ + 2(𝑙` −𝑚`)𝑚` + 𝑙` + 𝑚ଶሿ − 1ቅ= 𝑙`(𝑙` + 1) −𝑚`ଶ + 𝑚ଶ 

by expand the Quadratic Arc, we get: 14 + ሾ(𝑙` −𝑚`)ଶ + 2(𝑙` −𝑚`)𝑚` + 𝑙` + 𝑚ଶሿ − 12ඥ1 + 4ሾ(𝑙` −𝑚`)ଶ + 2(𝑙` −𝑚`)𝑚` + 𝑙` + 𝑚ଶሿ + 14+ 12ඥ1 + 4ሾ(𝑙` −𝑚`)ଶ + 2(𝑙` −𝑚`)𝑚` + 𝑙` + 𝑚ଶሿ − 12 = 𝑙`(𝑙` + 1) −𝑚`ଶ + 𝑚ଶ 14 + ሾ(𝑙` −𝑚`)ଶ + 2(𝑙` −𝑚`)𝑚` + 𝑙` + 𝑚ଶሿ − 14 = 𝑙`(𝑙` + 1) −𝑚`ଶ + 𝑚ଶ (𝑙` −𝑚`)ଶ + 2(𝑙` −𝑚`)𝑚` + 𝑙` + 𝑚ଶ = 𝑙`(𝑙` + 1) −𝑚`ଶ + 𝑚ଶ 𝑙ଶ` − 2𝑚`𝑙` + 𝑚`ଶ + 2𝑙`𝑚` − 2𝑚`ଶ + 𝑙` + 𝑚ଶ = 𝑙`(𝑙` + 1) −𝑚`ଶ + 𝑚ଶ 𝑙ଶ` + 𝑙` −𝑚`ଶ + 𝑚ଶ = 𝑙`(𝑙` + 1) −𝑚`ଶ + 𝑚ଶ 𝑙`(𝑙` + 1) −𝑚`ଶ + 𝑚ଶ = 𝑙`(𝑙` + 1) −𝑚`ଶ + 𝑚ଶ 

ЗАСТОСУВАННЯ МЕТОДУ НІКІФОРОВА-УВАРОВА ДО РІВНЯННЯ ШРЕДІНГЕРА, З ВИКОРИСТАННЯМ 
ПОТЕНЦІАЛУ ГАРТМАНА 

Махмуд А. Аль-Хавамдеa, Абдулрахман Н. Акурb, Емад К. Джарадатa, Омар К. Джарадатc 
aФізичний факультет, Університет Мута, Йорданія 
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Повна хвильова функція та енергія зв’язаного стану досліджуються методом Нікіфорова-Уварова до рівняння Шредінгера в 
сферичних координатах з використанням потенціалу Гартмана (HP). HP вважається нецентральним потенціалом, який в 
основному визнається в потенціалах ядерного поля. Кожна хвильова функція визначається головним квантовим числом n, 
числом кутового моменту l і магнітним квантовим числом m. Радіальну частину хвильової функції отримано через 
асоційований поліном Лагерра за допомогою перетворення координат 𝑥 = cos𝜃 для отримання кутової хвильової функції, 
яка залежить від обернених асоційованих поліномів Лежандра. 
Ключові слова: рівняння Шредінгера; метод Нікіфорова-Уварова; потенціал Гартмана 
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The paper discusses three different modes of electromagnetic field generation by an ensemble of oscillators placed at the radiation 
wavelength in the one-dimensional case. The excitation of the resonator field is considered, which, as a rule, is determined by the 
geometry of the system, with and without taking into account the eigenfields of the emitters. The superradiance regime of the same 
ensemble of oscillators is also analyzed. In fact, superradiance is formed due to the emitters' own fields even in the absence of a 
resonator. It is noted that the maximum achievable amplitudes of induced fields both in the superradiance regime and in the regime of 
excitation of the resonator field are comparable. This makes us think about the role of the self-fields of emitters in electronic devices. 
It is shown that in describing the resonator excitation mode, in addition to the resonator field, it is also necessary to take into account 
the sum of the natural fields of the emitters in the active zone. Synchronization of emitters leads not only to an increase in the 
resonator field, but also, as in the superradiance regime, it significantly increases the amplitude of the sum of the oscillator fields. It is 
shown that in the practically interesting case of open systems (dissipative generation modes), taking into account the eigenfields of 
the emitters significantly reduces the characteristic time for the development of the generation process and increases the maximum 
achievable oscillation amplitude. This account also changes the conditions for achieving the maximum energy flow from the system. 
This can change the operating point of the generation process, which is determined by the requirement for the maximum rate of 
energy output from the system. 
Keywords: Ensemble of oscillators; Resonator field; Sum of oscillators eigenfields; Resonator field excitation mode; Superradiance 
excitation mode 
PACS: 03.65.Sq 

Introduction 
Field generation in waveguides and resonators. The traditional description of the process of generating or 

amplifying a high-frequency field in waveguides and resonators of electronic devices in a nonlinear mode actually 
began with work [1], based on the formalism presented there. A significant increase in interest in describing the 
excitation of oscillations by beams of charged particles and oscillators in waveguide systems has caused numerous 
publications. The bibliographies of works [2,3] contain material that is very useful for understanding such a description. 

The modes with output or loss of energy. The need to take into account absorption, as well as the output of 
radiation energy from electronic devices, forced us to consider the so-called dissipative generation modes [4-7]. Such 
modes of generation and amplification in such open (for energy output) systems were of practical interest to the creators 
of electronic devices. In addition, the analysis of such regimes makes it possible to take into account the effect of 
different levels of energy extraction on the generation efficiency. 
It was in such devices that it was possible to find operating points that ensure the maximum output of energy from the 
system, as was, in particular, presented in [6,7]. The considered problems were solved under conditions when oscillators 
(or emitters) in the active zone of waveguides and resonators interacted only with a waveguide or resonator field, the 
form of which was determined by the geometry of the system. The induced field of the resonator or waveguide 
synchronized the oscillators due to phase change (or the emitters due to bunching), which led to a significant self-
consistent amplification of the field amplitude. Moreover, the interaction of oscillators (or emitters) with each other was 
usually neglected, excluding their total field from consideration.  
Apparently, at first it was believed that due to the spread of phases emitted by particles and oscillators, the intensity of 
their integral radiation would remain insignificant. On the other hand, it was believed that if the radiation of particles 
and oscillators is spontaneous, then their total radiation will also remain spontaneous. In other words, this radiation will 
be much less than the intensity of the waveguide or resonator field, which is obviously induced field. There was also a 
point of view that the field of emitters in a waveguide or resonator would rather quickly be rebuilt into a set of 
eigenmodes of waveguides and resonators. It was believed that under these conditions, the self-field of the emitters can 
be ignored. The last consideration made sense in the case of a single act of radiation by a particle in a waveguide and 
resonator. Although in the continuous mode, even under conditions of partial rearrangement of the eigenfields of the 
emitters into waveguide and resonator modes, their total field does not go anywhere and should be taken into account. 

At the same time, it was known that the process of phase synchronization of oscillators (or spatial synchronization 
of emitters), even in the absence of waveguide and resonator fields, led to the regime of superradiance, with induced 
fields [8]. 
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The superradiance field arises as a total field of initially spontaneously emitting oscillators even in the absence of 
a waveguide and a resonator. Obviously, the own field of each oscillator (or emitter) is spontaneous. However, under 
the influence of the total ensemble field external to each particle, the phase of radiation of this particle can change. If 
the amplitude of the external field is large compared to the value of the spontaneous field of a given particle, the phase 
of its own radiation changes. This is the nature of phase synchronization of oscillators (and spatial synchronization of 
emitters) and the appearance of superradiance (see, for example, [9]). 

Recall that the superradiance regime discovered for a compact bunch of particles [10] manifested itself as the 
appearance of coherence in the study of most emitters and oscillators. This phenomenon was clearly manifested both in 
the quantum case and in the classical case. In distributed systems of electronics, due to rather large distances between 
particles, the interaction between them, as a rule, occurs only due to their own electromagnetic fields. 

The mechanism of phase synchronization of radiation of an ensemble of classical oscillators was discussed in 
[9,11,12]. Let us show that this process of phase synchronization of emitters and oscillators in the volume of the active 
zone of the waveguide, in addition to generating waveguide and resonator fields, can also excite superradiance fields 
with an intensity comparable to that of the waveguide or resonator field [13, 14]. 

Accounting for fields of particles. Let us return to the discussion of the processes of excitation and amplification of 
oscillations by particles in waveguides and resonators. The development of high-current electronics required taking into 
account slowly changing currents and fields of charged particles in the active zone of the waveguide, which was first 
pointed out by Ya.B. Fainberg in his work “Plasma electronics”, published in the “Ukrainian journal of physics” in 
1978. This was required at first to search for the stability of charged particle beams and systems of oscillators [15]. 
Later N.I. Karbusev in the early 1980s drew attention to the high-frequency radiation fields of individual emitters and 
generators. 

The question arose about the role of the radiation of particles in the process of generation and amplification of 
oscillations in waveguides and resonators. For even in the absence of a waveguide and a resonator, the ensemble of 
these active elements is capable of generating superradiance fields comparable to waveguide and resonator fields [13]. 
That is, for a correct description of the process of excitation or amplification in such devices, in addition to the 
waveguide or resonator field, it is important to take into account these own fields of the particles of the active zone. 

The purpose of this work is to compare the fields generated by open systems in the cases of 1) excitation of only 
the resonator field, 2) excitation of only the self-radiation fields of active oscillators, that is, the superradiance field, and 
3) joint excitation of the resonator field, taking into account the intrinsic fields of oscillators. Let us show that, in
addition to the resonator field, it is necessary to take into account the self-radiation field of oscillators, because it
qualitatively affects all characteristics of the oscillation generation mode.

1. The Excitation of the Fields of Oscillators
We discuss the nature of the excitation of the field with a system of oscillators. Consider an oscillator whose

charge (electron) moves along the OX axis, that is 0( ( ), 0, )r x t z= , where ( ) exp{ }x t i a i t iω ψ= ⋅ ⋅ − + , at the same time
whose speed (electron) 0/ exp{ }dx dt a i t iω ω ψ= ⋅ ⋅ − +  is along the OX axis, 0Re sin( )x a tω ψ= ⋅ − . The current can be 
recorded as 0/ exp{ }.xJ edx dt e a i t iω ω ψ= − = − ⋅ ⋅ ⋅ − +  The equation describing the excitation of the field with the current 
of the oscillator 

{ } ( )
2 2

2
0 02 2 2 2 2

1 4 4 exp ,x x xE D J e a i i t i z z
z c t c t c

π π ω ω ψ δ∂ ∂ ∂
− = = ⋅ ⋅ ⋅ ⋅ ⋅ − + ⋅ −

∂ ∂ ∂
(1)

The dielectric permittivity of the medium in the absence of oscillators is taken as equal to one 0 1ε = . We will look

for a solution for the electric field amplitude in the form ( exp{ },0, 0)E E i t ikzω= ⋅ − +


, i.e. exp{ }xE E i t ikzω= − + ,
assuming a slow change of the complex amplitude ( , )xE t z : 
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Below we consider the excitation of the field of the resonators ensemble, which in our one -dimensional case are 
evenly distributed in the active zone at the interval equal to the length of the radiation wave. We will discuss three 
generation regimes of fields by the oscillator ensemble. 

The first mode of excitation of the resonator field (or waveguide) meets the traditional description of the generation 
(or amplification) in electronics devices, when all oscillators (emitters) interact only with the resonator field, which houses 
an active zone. The interaction of the oscillators in this case will exclude. That is, we do not take into account the own 
fields of emitters in the active zone. The conclusion of the equations describing this process is given in Appendix 1. 

The second mode of excitation of the field with the emitters ensemble takes into account only the own fields of 
emitters located in the same interval of the active zone, and there is no resonator field in this case. It is not difficult to 
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see that this process meets the superradiation regime. By the way, at the same time, a resonator or waveguide in this 
case may be completely absent. The withdrawal of equations to describe such a process is considered in Appendix 2. 

And the third regime of excitation of oscillations with oscillators takes into account both the resonator 
(waveguide) field and the amount of its own fields of particles. It is this case that meets the correct description of the 
excitation of oscillations in resonators and waveguides. 

In further calculations, the number of oscillators is chosen N = 1000. The initial amplitude of the external field in 
expressions (6) and (11) is equal 0.01, accounting for non -linearity (relativism) is determined by a coefficient α = 1. 

 
2. The Excitation of The Resonator Field with The Exclusion of The Interaction of The Oscillators To 

Each Other 
In the traditional description of generation, all oscillators interact only with the resonator field, in which an active 

zone is located. Oscillators do not interact with each other. We use equations in a dimensionless form (see Appendix 1) 
that describe this process. The resonator field in this case can be represented in the form of the sum of two waves that 
spread in opposite directions 

 2 2E ( , ) E ( ) E ( )i Z i Z
wg Z e eπ πτ τ τ −

+ −= + , (3) 

Moreover, the components of radiation in different directions can be recorded  
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∂   (4) 
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At the initial moment we should set their value 

 0E (0) E+ +=  and 0E (0) E− −= . (6) 

Movement equations for oscillators take the form 

 2A
A A E ( , ).

2
j

j j wg j

d i Z
dt

α τ= ⋅ −  (7) 

For this case of excitation of the resonator field, excluding the fields of the oscillators, the field intensity 2| |E∝  

(continuous line), the reverse time (increment) 
2

2
max

1 | |
| |

d E
E d

γ
τ

 
=  
 

 of the process (stroke-dashed), and the rate of 

energy output 2| |EΘ  (dashed) are presented in Fig. 1 (a). If you focus on the excitation regime of the resonator field 
without taking into account its fields of the oscillators, then the most effective output of energy would occur in the area 
of about Θ  = 3 (see also [6]). 
 

3. The Excitation of The Same Oscillators Ensemble 
In this section, we take into account only the own fields of oscillators located in the same interval of the active 

zone. The resonator field is absent, like the resonator itself. The dimensionless system of equations in this case (see 
Appendix 2) takes the following form. For fields are fair the form 

 2 | |

1

1E ( , ) A s

N
i Z Z

sr s
s

Z e
N

πτ −

=

= ⋅
Θ  ,  (8) 

And the equations of movement describing the dynamics of the oscillators can be recorded as 

 2A
A A E( , )

2
j

j j j

d i Z
dt

α τ= ⋅ − ,  (9) 

where for a common field the expression is true 

 E( , ) E ( , ) E ( , )sr exZ Z Zτ τ τ= + , (10) 

Moreover, the second term in (10) is an external field that is usually used to accelerate the process in the form. 
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2 2
0 0E ( , ) E Ei Z i Z

ex Z e eπ πτ −
+ −= + . (11)

For the field intensity 2| |E∝  (continuous line), the reverse time 
2

2
max

1 | |
| |

d E
E d

γ
τ

 
=  
 

 (increment) of the process 

(strokh- dashed), energy withdrawal 2| |EΘ  (dashed) are presented in Fig. 1 (b). The most effective output of energy 
would be near the values Θ = 2.5-3, and with an output one and a half times larger than in the case of an excitation only 
the resonator field. 

a b c
Figure 1. Field intensity 2| |E∝  (continuous line), the reverse time (incremental) of the process γ  (stroke-dashed), the rate of energy 
output 2| |EΘ  (dashed) as function of energy loss Θ  for cases: (a) of the generation of the resonator field, excluding the oscillator 
radiation field, (b) of the supperradiation mode, (c) the generation of the resonator field together with the radiation field of the oscillators. 

4. The Excitation of the Resonator Field When Taking into Account
the Interaction of Oscillators to Each Other 

Using the entered variables and the expressions obtained in the applications for the fields, you can represent the 
system of equations for the excitation of the resonator, and we will additionally take into account the total field of 
oscillators. It is clear that thereby it is possible to take into account the direct interaction of the oscillators with each 
other. Here you cannot take into account the external initial field (11), the role of which will be assumed by the 
resonator field (4)-(5). The equation of motion for oscillators can be written in the form 
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A A E( , )

2
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j j j

d i Z
dt

α τ= ⋅ − . (12)

Here, the resonator field and the total field of radiation of the oscillators are simultaneously taken into account
E( , ) E ( , ) E ( , )sr wgZ Z Zτ τ τ= + , where E ( , )wg Z τ  it is described by expressions (3-5), and E ( , )sr Z τ  by expression (8). 
The initial conditions for the fields of the resonator will choose the same (6). The nature of the excitation of the 
resonator field, taking into account the own fields of the oscillators, the field intensity 2| |E∝  (continuous line), the 

reverse time (increment) of the process 
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 (stroke-dashed), the rate of energy output 2| |EΘ

(dashed) are represented in Fig. 1 (c). 

a) b) c) 
Figure 2. Dependence on the level of energy loss Θ : (a) - the square of the field amplitude 2| |E∝ , (b) - the rate of energy output 

2| |EΘ , (c) - the inverse time (increment) of the process
2
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. Here are cases: the generation of the resonator field, 

excluding the oscillator radiation field (continuous line), the superradiation mode (stroke-dashed), and the generation of the 
resonator field together with the radiation field of the oscillators (dashed).  
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It can be seen here that joint accounting for the excitation of the resonator field and the oscillator field leads to a 
noticeable increase in energy selection, and for large values about Θ = 5. 

 
5. Comparison of Three Modes 

Consider three modes. A solid line on the graphs marks the resonator regime without taking into account the 
impact on the process of generating oscillators fields, The superradiation mode is represented by dashed lines on the 
graphs, and the strokh- dashed line on the graphs is responsible for the case of excitation of the resonator, taking into 
account the influence of the fields of the oscillators. 

In the mode of excitation of the resonator, taking into account fields of emitters, the field intensity and output of 
energy are the highest. A slightly inferior to him is the superradiation mode. The working points (the rate of energy 
output from the system that meets the maximum), are realized for different values Θ . But the working point, for 
resonators, where we taking into account fields of oscillators is shifted in the large values of Θ .The characteristic times 
of the process near the highest energy output is half as much as for resonator which don't taking into account the of the 
own fields of the oscillators. 

 
6. Conclusion 

Three different generation modes of the electromagnetic field are discussed for the oscillators ensemble, placed on 
the length of the radiation wave. The consideration is carried out for an open system, which is characterized by the 
output of energy from the system. The parameter of the degree of openness is a value that is determined by the ratio of 
the attenuation to the value of the reverse characteristic time of the process (increment) in the absence of losses. The 
following generation modes are considered. 

1. The generation of an open resonator, excluding own fields of oscillators - emitters. 
2. The superradiation mode - the generation of the field in the open system of the same ensemble of the oscillators 

without resonator. 
3. The excitation of an open resonator, taking into account the own fields of oscillators emitters. 
The superradiation regime, which is of independent interest, demonstrates the nature of the synchronization of 

emitters (see Appendix 2). The superradiation, as you know, arises due to its own fields of emitters even in the absence 
of a resonator. As a result of the phase synchronization of fixed oscillators, an integral field is formed, which is not 
spontaneous, but induced field. It is this field that synchronizes the noticeable part of the emitters. It is important that 
the total field intensity of the is exceeds the intensity of the own field of emitter. Although the distributed system does 
not allow synchronizing all the oscillators, especially in areas where the total field of the ensemble is small.  

Accounting for own radiation of the oscillators significantly reduces the characteristic time of the development of 
the generation process in resonators and waveguide, increases the most achievable amplitude of oscillations. At the 
same time, the conditions for achieving the maximum energy flow from the system also change. This is able to 
significantly shift the work point of the generation process, determined, for example, by the requirement of the 
maximum pace of energy output from the system.  

In conclusion, the authors express gratitude to V.A. Buts, V.V. Yanovsky and A.V. Kirichok for a constructive 
discussion of the results of the work. 

 
Appendix 1. The Field of Resonator 

In the resonator (or waveguide), the field can be formed in such a way that the type of field will not depend on the 
radiation of individual oscillators. Note that such a field generally speaking should consist of running waves in two 
directions 

 exp{ } exp{ }xE E i t ikz E i t ikzω ω+ −= ⋅ − + + ⋅ − − , (A1) 

where the slowly changing complex amplitude of the waves has the form | | exp{ }E E iϕ± ± ±= ⋅ . 
The interaction of oscillators with these fields can be described by the equation [9,13] 

 { } ( )2 0
0 0

42 exp
2D s s s
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t N i
πω δ ω ψ δ±∂ + = − ⋅ ⋅ − ∂ ⋅    , (A2) 

where added Dδ - the decrement of the absorption of the wave in the absence of sources, exp( )j j jA a iψ= . 
The equations of the movement will present in the form 

 2
02

2

( , )
| |1

i
i x i

i

vd ex E z t
dt mv

c

ω+ = −

−

  (A3) 

where ( ) exp{ } exp{ }, exp{ } exp{ }i i i ix t i a i t i iA i t v a i t i A i tω ψ ω ω ω ψ ω ω= ⋅ ⋅ − + = ⋅ − = ⋅ ⋅ − + = ⋅ − . 
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We further assume that the resonator has size b, equal to wavelength (without loss of generality the results are 
generalized to the case of several wavelengths), group velocity of radiation c, effective decrement of field damping 
equals D c bδ = , number of oscillators equal to 0M b n= ⋅ . 

Equation (A2) for slowly varying amplitudes then takes the form 

0
( ) 2 1 1( ) exp( ) 2 exp( )D s s s s

s s

E t e ME t A ikz e n A ikz
t b N N

π ωδ π ω±
±

∂ ⋅ ⋅ ⋅+ = ⋅ = ⋅ ⋅ ⋅ ⋅ ⋅
∂    . (A4) 

The equation of motion (A3) can be represented as 

1 ( , )
( ) ,

2 2
j wg j

j

dA e E t zi A t
dt m

ωα
ω

⋅
= ⋅ −

⋅ ⋅
(A5)

( , ) exp( ) exp( )wgE t z E ikz E ikz+ −= ⋅ + ⋅ − .  (A6) 

Here ( , )wgE t z  is the resonator field, the parameter 2 2
1 3 4A kα =  takes into account the weak dependence of the 

relativistic mass of the particle on speed. 
Choosing dimensionless variables and parameters 
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we get an expression for the resonator field an expression 

( ) ( ) ( )2 2E , E Ei Z i Z
wg Z e eπ πτ τ τ −

+ −= + . (A7)

where the components corresponding to spreading of radiation in different directions can be written as 
2+

+
E 1E A ,si Z

s
s

e
N

π

τ
−∂ + Θ = ⋅

∂  (A8)

2E 1E A ,si Z
s

s
e

N
π

τ
−

−
∂ + Θ = ⋅
∂  (A9)

moreover, at the initial moment you should set their values 

0E (0) E+ +=  and 0E (0) E− −= . (A10)

Movement equations for oscillators take the form

( )2A
A A E , .

2
j

j j wg j

d i Z
dt

α τ= ⋅ −   (A11)

We can get the law of conservation of energy in the form 

{ }2 2 2

1
2 | | | | 2 | A |

N

j
j

θ
τ τ+ −

=

∂ ∂ + Ε + Ε = ∂ ∂ 
 (A12)

Appendix 2. Description of the Superraiation Mode 
Generally speaking, the field excited in the system of oscillators consists of the sum of all fields of individual 

oscillators. Consider the superradiation mode when the resonator field or a waveguid field is absent. It is also possible 
to determine the total field of radiation of oscillators in the same volume, as presented in Appendix 1. An important 
circumstance is the conditions for synchronization of the oscillators. It turns out, as noted, for example, in the work of 
Yu.A. Il'inskii, and N.S. Maslova, “Classical analog of superradiance in a system of interacting nonlinear oscillators” 
published in 1988, that only when the nonlinearity of oscillators is taken into account in this case, it becomes possible to 
ensure phase synchronization of the field and the oscillator (see also [11]). 

The field of one oscillator. For the amplitude of the radiation field slowly changing in the space, the equation is 
fair 

{ } ( ) ( )2
0 022 expE ea i ikz z z z z

z c k
πω ψ δ λ δ∂

= ⋅ + ⋅ − = ⋅ −
∂

.  (A13) 



130
EEJP. 2 (2023) Volodymyr M. Kuklin, Eugen V. Poklonskiy

Chose solution is form of 0( )E C z zλ θ= + ⋅ −  where (z 0) 0, (z 0) 1θ θ< = ≥ = . Since for the wave radiated by 
the oscillator the equation 2 2

0( , ) ( ) 0D k kω ω ε≡ − = , the roots of which 1,2 0 0 0 0( Re / )(1 Im / Re )k c iω ε ε ε= ± + ≈

0 0( / )(1 0)c iω ε≈ ± + , for the wave, which propagates in the direction 0Z Z> , the wave number is equal 1 0k k= >  and 
the value of the constant C should be selected equal to zero in order to avoid unlimited growth of the field at infinity. 
For a wave which propagates in the direction 0Z Z< , the wave number is equal 2 0k k= <  , the value of constant C in 
the same reasons should be selected equal λ− . The amplitude of the electric field while 

  
1

0 0 0 0

0 0

2 exp{ }[exp{ ( ) ( )
exp{ ( ) ( )}
xE ea M c i t i ik z z z z

ik z z z z
π ω ω ψ θ

θ

−= ⋅ − + − ⋅ − +
+ − − ⋅ −

 (A14) 

For one particle in such a volume of a single section and the length of the resonator b, M it is numerically equal to 
one. The equation of motion for the oscillating electron has the form (A3).  

The particle ensemble field. Using these designations, we will write particle ensemble field in the form 
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Let choose dimensionless variables and parameters 
2
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Let consider the excitation of the field in the resonator, the size of which b , equal to the wavelength (without 
losing community, the results are generalized in case of several wavelengths) group radiation speed c, and the effective 

decrement of the fading of the field is equal c
b

δ = . If you take into account radiation from the system (which, due to 

the small size of the system, can be considered distributed), then the increment of the process 2
0 0/ /γ γ δ γ≈ = Θ , and 

0δ γ> . It should be noted that in all cases under discussion, due to the selected placement of the ensemble of the 
oscillators, the the increment of the regime without energy loss 0Θ =  is equal 0γ  [13]. One gets the expression for the 
superradiation field 

 ( ) 2 | |

1

1E , A s

N
i Z Z

sr s
s

Z e
N

πτ −

=

= ⋅
Θ  ,  (A16) 

moreover, the equation of movement describing the dynamics of the oscillators takes the form 

 ( )2A
A A E ,

2
j

j j j

d i Z
d

α τ
τ

= ⋅ −   (A17) 

where for a common field the expression is true 

 ( ) ( ) ( )E , E , E ,sr exZ Z Zτ τ τ= + .  (A18) 

The second term in (A18) is an external stimulation field that is often necessary to accelerate the process can be 
recorded as 

  ( ) 2 2
0 0E , E Ei Z i Z

ex Z e eπ πτ −
+ −= +  .  (A19) 

The nature of the synchronization of the oscillators in this and other regimes is quite obvious [13]. Let return 
back to equation (A17), which can be recorded differently 
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j j
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Then the equation for the oscillator phase, which follows from (A20), takes the form 

( ){ } ( )2
A E , A sin

2
j

j j j j

d
Z

dt
ψ α τ ϕ ψ− ⋅ = − ⋅ − . (A21)

You can pay attention to the fact that the right part of the last equation is quite large ( )E , A 1j jZ τ  . This 

forces the phase of a separate oscillator to synchronize with the phase of the total field of the ensemble jψ ϕ→ . The 

value 
2

0.5 A jiα⋅ ⋅  gives regularisation, i.e. a certain spread of phase values. 
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ПРО НЕОБХІДНІСТЬ ОБЛІКУ ВЛАСНИХ ПОЛІВ ВИПРОМІНЮВАЧІВ ПРИ ОПИСІ РЕЖИМІВ ГЕНЕРАЦІЇ
Володимир М. Куклін, Євген В. Поклонський 

Харківський національний університет імені В. Н. Каразіна, Харків, Україна 
У роботі обговорюються три різні режими генерації електромагнітного поля ансамблем осциляторів, розміщених на довжині 
хвилі випромінювання в одновимірному випадку. Розглянуто збудження резонаторного поля, яке, як правило, визначається 
геометрією системи, з урахуванням та без урахування власних полів випромінювачів. Аналізується також режим 
надвипромінювання такого ж ансамблю осциляторів. Фактично надвипромінювання формується за рахунок власних полів 
випромінювачів навіть без резонатора. Зазначається, що максимально можливі амплітуди індукованих полів як у режимі 
надвипромінювання, так і в режимі генерації поля резонатора можна порівняти. Це змушує подумати про роль власних полів 
випромінювачів у приладах електроніки. Наголошується на помилковості традиційного підходу до опису збудження 
резонаторів і хвилеводів, де облік суми власних полів випромінювачів не проводився. Показано, що при коректному описі 
режиму збудження резонатора, крім поля резонатора, необхідно враховувати також суму власних полів випромінювачів в 
активній зоні. Синхронізація випромінювачів також, як і в режимі надвипромінювання, приводить до появи значної амплітуди 
індукованого поля системи осциляторів. Показано, що в практично цікавому випадку відкритих систем (дисипативні режими 
генерації) цей облік помітно зменшує характерний час розвитку генерації, збільшує максимально можливу амплітуду коливань. 
Облік власних полів випромінювачів також змінює умови досягнення максимального потоку енергії із системи. Це здатне 
змінювати робочу точку процесу генерації, що визначається вимогою максимального темпу виведення енергії із системи. 
Ключові слова: ансамбль осциляторів; поле резонатора; сума власних полів випромінювачів; режим збудження поля в 
резонаторі; збудження поля в режимі надвипромінювання 
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First-principles computations of the electronic structure of AlAs have been carried out using the density functional theory (DFT) within 
Local Density Approximation-LDA and Generalized Gradient Approximation - GGA. We utilized the CASTEP's plane wave basis set 
implementation for the total energy computation (originally from Cambridge Serial Total Energy Package). We have used to examine 
structure parameter in structure of AlAs The electronic structure calculation using the two approximations show that the LDA and the 
GGA methods underestimated the band gap while the band gap predicted by the GGA is closer to the experimental result. according to 
the electronic structure calculation utilizing the two approximations. The GGA calculation shows a direct band-gap semiconductor of 
2.5 eV. The energy band diagram is used to calculate the total and partial densities of AlAs states. Multiple configurations of the ionic 
model were calculated for Al+xAs−x (0.0 ≤ x ≤ 1) also performed utilizing free-atom profiles. According to the ionic model, 
0.75 electrons would be transferred from the valence 5p state of aluminium to the 3p state of Arsenide. 
Keywords: generalized gradient approximation; localized density approximation; Density functional theory; energy band gap; density 
of states; Ionic model; Compton profiles 
PACS:02.70.-c, 71.15.Ap, 71.15.Mb, 17.20.-b, 71.15.Dx , 73.20.At 

1. INTRODUCTION
Groups III–V have been the focus of a great deal of research during the past few decades. LEDs, lasers, photo 

detectors, integrated circuits, modulators, and filters are only some of the electronic and optoelectronic devices that benefit 
from the AlAs compound [1]. These compounds often crystallize into the zincblende (ZB) form under standard 
circumstances [2]. AlAs's band structure has only been fully calculated using a SCOPW model by Stukel and Euwema [3]. 
There is a several theoretical calculations of the electrical structures of AlAs over the past two decades [4-6]. But to our 
knowledge, only fitting methods like the tight-binding model [7,8,9] exist. Almost all theoretical analyses of the AlAs 
band structure have produced band gaps that differ to variable degrees from the actual values [4-6,10-13]. Density-
functional-theory (DFT) [14,15] was used to conduct first-principles calculations [16], and the open-source software 
package Quantum ESPRESSO was used to approximate the exchange-correlation functional using the local density 
approximation. Existing theories and experiments are linked to the outcomes achieved. They have come to a satisfactory 
accord. The electrical, optical, and structural characteristics of AlAs are the subject of a variety of theoretical 
investigations [3,17–25]. However, because to its high hygroscopicity [26-29], very few experimental experiments are 
conducted on bulk AlAs. Stukel and Euwema [3] presented energy band calculations for cubic AlAs using a first-
principles plane-wave approach self-consistent orthogonalized. Using the pseudo potential approach in the local density 
approximation, Cohen and Froyen [17] investigated the structural properties of various III-V semiconductor compounds 
and the static, including Aluminum-Arsenide (LDA). Many researchers [19-21] have published AlAs's electrical 
characteristics, total energy, effective mass, lattice constants, etc. Using the empirical pseudo potential technique, Joshi 
and Sharma [22] reported a few years ago on the theoretical directional Compton profiles of AlP and Aluminum-Arsenide. 
(EPM). This paper is structured as follows: in Section 2, presented the paper's theoretical framework and computational 
details. Section 3 contains the discussion and results in the final section have been provided a conclusion. 

2. METHODOLOGY DETAILS
2.1. Computation Method

The ion-electron interactions in the electronic structure computations have been performed using the non-local ultra 
soft pseudo potential developed by Vanderbilt [30]. The computations employed the LDA with the Ceperley Alder 
PerdewZunger [31] and the GGA with the Perdew-Burke Ernzerh of Solid [32] exchange correlation potentials. Al 3s2 3p1 
and As 4s2 4p3 are studied by pseudo-atom computations. Total energy converges to 0.5E-05 eV/atom, which is 
self-consistent. Our estimates' convergence is verified through in-depth exploration of the interplay between the k-point 

† Cite as: S.F. Mohammed, S.M.A. Ridha, A.M. Ghaleb, Z.T. Ghaleb, Y. Benkrima, and M.A. Abdullah, East Eur. J. Phys. 2, 132 (2023), 
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and the cut-off energy set mesh on the Monk horst-Pack grid. For the computational expense, we use a Monk horst-Pack 
mesh with 16×16×16 k-points for the Brillouin zone sample and a plane wave basis set with an energy cutoff of 800 eV. 
In addition, Vanderbilt's [30] non-local ultra soft pseudo potential is used. Kramer's-Kronig transform accuracy and the 
energy range that can be accounted for are both sensitive to the number of conduction bands that are included in the 
calculation. The electrical structure is investigated here by employing the Cambridge Serial Total Energy Package 
(CASTEP) [33,34], which takes into account not only the occupied bands but also the 16 unoccupied ones. 

2.2. Ionic model 
The free atom profiles-FA of Aluminum and Arsenide, the data were taken from a table Biggs [35], were used to 

produce the theoretical Compton profiles of Aluminum-Arsenide for various ionic configurations. We were able to 
identify the valence profiles of a wide variety of Al+x As-x (x ranges from 0 to 1) combinations by transferring an electron 
from Al’s 3p or 3s shell into As’s 4p shell. The valence profiles were combined to the core contributions to generate the 
entire profiles [36], which were then normalized to (19.966e-) in the range of 0 to 7 a.u. in order to give a direct comparison 
with other studied in the same experimental data [37]. 

3. RESULTS AND DISCUSSION
3.1. Electronic properties

Herein, density functional theory (using LDA and GGA) was used to examine the electrical characteristics of the 
binary compound AlAs in the zinc mix structure. Researchers have found that AlAs exhibits a direct band gap (G-G). You 
can see the outcomes in Fig. 1 (a and b). 

Figure 1. Band gap structure of AlAs applying (a) LDA and (b) GGA approximation 

The band gap values generated by GGA are more in line with the known experimental results than the LDA values. 
The LDA is known to consistently understate the energy gap [38]. The GGA technique can provide a more stable band 
structure because it is based on potential optimization. Band gap values computed using the GGA approach fare far better 
in comparison to experiment than those produced using the LDA method. Our recent calculations indicate that the GGA 
approximation performs a decent job of characterizing the band features, and that the GGA results may be compared to 
those produced using more expensive approaches, such as GW and hybrid functional for band gaps. It can be used to 
simulate the electronic characteristics of semiconductors. It has a direct band gap of 1.38 eV (LDA) and 1.415 eV (GGA), 
with the valence and conduction band minimums both located at the G point. The measured findings are roughly in 
agreement with our calculated band gap size [39]. Using the data shown in Fig. 1, we can see that the Fermi energy of 
aluminum arsenide (AlAs) is 0.699eV (LDA) and 0.689eV (GGA), and that the G-point symmetry point is where the 
valence bad-VB is at its maximum and the conduction band-CB is at its minimum. As the valence band maximum and 
conduction band minimum are positioned on distinct symmetry points, AlAs is a direct band gap semiconductor with an 
energy gap value of 1.38eV (LDA) and 1.414 eV. The Al 3p-like and 3s-like electrons and the As 4p-like electrons are 
responsible for the 3 bands found below the Fermi level. Because of the presence of Al 3p-like states and as 4p-like ones, 
the conduction bands-CB above the Fermi level are empty. The theoretical values for Aluminum-Arsenide [40] correspond 
with the calculated energy gaps. The higher ionic nature of AlAs causes it to exhibit a wider optical band gap and a higher 
rate of charge transfer. These similarities in structure also explain why it exhibits metallic and covalent characteristics. 
AlAs is commonly used in applications that need higher temperature operation due to its broad band gap, which pointing 
to the ability of Aluminum-Arsenide for higher photon energy in reflectivity measurements. As a result of their direct 
band gap and large band gap, they are a prospective option for use in semiconductor technology. Because of this, it is also 
used as an active material in the production of LEDs and other optoelectronic devices. Applications in the technology of 
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higher power and higher frequency electronic devices in the short wave length region have also gained traction. 
Light-emitting diodes, blue and ultraviolet lasers, photo detectors, optical pumping devices, and hetero structures all rely 
on AlAs as a fundamental material [41,42]. 

 
3.2. Density of State 

According to the Density of State Diagram for AlAs, the 4p states of As and 3p states of Al are responsible for the 
small peaks in Fig. 2(a and b) above its Fermi energy. The p-like and s-like electrons of as are what give rise to the longer 
peaks near the Fermi energy. The third zone is composed of the top (2) valence bands, which are mostly p-like. The anion 
state, which is comparable to that of the alkali halides, displays both the density of states and the band structure [43,44]. 

  
Figure 2. The total density of states of compounds binary AlAs using the LDA and GGA approaches 

 
3.3. Charge Transfer 

Particularly, Figure (3) illustrates. The current study uses theoretical approaches as opposed to earlier research, 
which relied on experimental valence Compton profiles of the elemental solids [37]. 

 
Figure 3. Comparison of the theoretical and experimental Compton profiles of AlAs. 

The measuring of the differences between various ionic configurations [37]. 

We have also included free atom valence profiles in the current charge transfer analysis. The 4s 4p states of As and 
the 3s 3p states of Al are included in these profiles. In the inset, we see the matching difference profiles (convoluted 
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ionic - experiment) shown. Importantly, it is necessary to convolute the ionic profiles with the resolution function of the 
instrument and to normalize them to the free atom area, which is equal to 19.967 electrons. for 0 to 7 a.u. before a 
comparison of ionic values with experimental data can be made [37]. From the inset, it is clear that the effect of changing 
charges on As and Al is not noticeable until the charge reaches 1.5 au. All ionic configurations behave identically and 
overlap at distances greater than 1.5 a.u. We have calculated 𝜒ଶ as follows, which allows us to test the global concordance 
of all ionic configurations with the experiment: 𝜒𝟐 = ∑ ቚ∆𝑱ሺ𝒑𝒛ሻ𝝈ሺ𝒑𝒛ሻ ቚ𝟐𝟕𝒑𝒛ୀ𝟎 (1) 

where 𝜎(pz) represents a random error in the experiment [37]. According to 𝑋ଶ tests, the best agreement among the ionic 
structures is found in the 𝐴𝐼ଷ.଴𝐴𝑠ିଷ.଴state. 

According to the basic ionic model, the charge in this molecule must flow from Aluminum to Arsenide. The same 
explanations are also given in the ref [36]. However, this process requires three electrons to be transferred from Al3𝑠ଶ3𝑝ଵ 
state to As4𝑠ଶ4𝑝ଷstate, indicating that AlAs bonds primarily through ionic interactions. There is a clear limitation of the 
ionic model in the low momentum area, where the discrepancies between the convoluted ionic and experimental profiles 
are quite large. It is worth noting that the ionic model's predicted charge transfer is greater than the value derived by a 
different technique [37]. 

4. CONCLUSIONS
The present research summarizes the results of a density functional theory (DFT) analysis of electronic AlAs 

Compound in the LDA and GGA approximations. Following is a brief synopsis of the key findings: The direct gap at G 
is the only exception; otherwise, our calculated band gaps agree quite well with the experimental findings. The intrinsic 
property of LDA pseudo potentials means that the estimated band gap values are smaller than the experimental values. 
The reason for this is the reduced complexity of the exchange correlation functional. The estimated electronic band 
structure reveals that AlAs is a Semiconductors with a direct band gap of 1.38 eV (LDA) and 1.414 eV (GGA), 
respectively. When compared to other theoretical calculations obtained, this shows a significant improvement. 
Semiconductors have conducting properties, as indicated by the fact that the DOS energy level within them reveals a 
particularly high situation of electron occupation and that the DOS seen near the Fermi level for semiconductors is zero. 
For the spherically averaged electron momentum density (EMD), there is good agreement between the measured and 
estimated values. Calculations using the ionic model for a variety of (Al+x) (As-x) (x varies from 0 to 1), combinations 
result in a 0.75 electron transfer from the 3s2 3p1Aluminum valence state to the 4s2 4p3Arsenide valence state. 
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ВИЗНАЧЕННЯ ЗОННОЇ СТРУКТУРИ ТА КОМПТОН ПРОФІЛІВ ДЛЯ АРСЕНІДУ АЛЮМІНІЮ 

З ВИКОРИСТАННЯМ ФУНКЦІОНАЛУ ГУСТИНИ 
Самін Ф. Мохаммедa, Салах М.А. Рідхаb, Абдулхаді Мірдан Галебb, Захра Таліб Галебc, 
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Основні розрахунки електричних характеристик AlAs були проведені з використанням теорії функціоналу щільності (DFT) і 
локальної щільності (LDA), методів (DFT) і узагальненої градієнтної апроксимації (GGA). Ми використали реалізацію 
базового набору плоских хвиль CASTEP для обчислення загальної енергії (спочатку з Cambridge Serial Total Energy Package). 
Раніше ми дивилися на структурний параметр структури AlAs. Ширина забороненої зони була переоцінена за допомогою 
узагальненої градієнтної апроксимації та методів LDA, хоча ширина забороненої зони, передбачена GGA, більше відповідає 
експериментальним висновкам, згідно з розрахунком електронної структури з використанням двох наближень. За допомогою 
GGA розрахунку виявлено напівпровідник із шириною забороненої зони 2,5 еВ. Енергетична зонна діаграма була використана 
для розрахунку повної та часткової густини станів AlAs. Було розраховано кілька конфігурацій іонної моделі. Al+xAs−x 
(0.0 ≤ x ≤ 1) також виконуються з використанням профілів вільних атомів. Відповідно до іонної моделі, 0,75 електрона буде 
перенесено з валентного 5p-стану алюмінію в 3p-стан арсеніду. 
Ключові слова: узагальнена градієнтна апроксимація; апроксимація локалізованої щільності; теорія функціонала густини; 
енергетична заборонена зона; щільність станів; іонна модель; Комптон-профілі 
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Nuclear structure of 20,22Ne isotopes has been studied via the shell model with Skyrme-Hartree-Fock calculations. In particular, the 
transitions to the low-lying positive and negative parity excited states have been investigated within three shell model spaces; sd for 
positive parity states, spsdpf large-basis (no-core), and zbme model spaces for negative parity states. Excitation energies, reduced 
transition probabilities, and elastic and inelastic form factors were estimated and compared to the available experimental data. Skyrme 
interaction was used to generate a one-body potential in the Hartree-Fock calculations for each selected excited state, which is then 
used to calculate the single-particle matrix elements. Skyrme interaction was used to calculate the radial wave functions of the single-
particle matrix elements, from which a one-body potential in Hartree-Fock theory with SLy4 parametrization can be generated. 
Furthermore, we have explored the interplays among neutron and proton density profiles in two dimensions, along with the 
deformations of 20,22Ne using Hartree-Fock plus BCS calculations. 
Keywords: Sd model space; negative parity state; elastic and inelastic form factor; density distribution 
PACS: 21.60.−n, 21.60.Cs, 21.10.−k 

I. INTRODUCTION
For a microscopic description of the nucleus, different nuclear models have been utilized [1]. The most efficient one 

is the Shell Model (SM) [2], based on the idea of an independent nucleon freely orbiting in a spherically symmetrical core 
potential generated by all the other nucleons within the nucleus. In actual SM calculations, nuclear states are linear 
combinations of states rather than pure states [3]. Always, SM computations are performed in a configuration space with 
a limited number of single-particle states outside of an inert core, which is typically a doubly-magical nucleus. As a result 
of this truncation, the residual interactions must be regarded as effective interactions, and choosing the proper N-N 
interaction is not simple [4, 5]. The ground states of nuclei are created when nucleons fill shells to the Fermi level. Fermi’s 
level is the same for protons and neutrons in stable nuclei, but the Coulomb repulsion between protons [6] explains why 
the line of stability and the N = Z line on the chart of the nuclides do not correspond for heavier nuclei. The laws of 
quantum mechanics govern the location and characteristics of the nucleus' discrete energy levels, just like they do for the 
atom. The positions of excited states vary from nucleus to nucleus. Excitation energy (Ex) is influenced by each nucleus's 
internal structure. Quantum numbers denote each excited state's angular momentum, parity, and isospin, in addition to its 
electromagnetic and strong properties. Positive-parity spectra can be generated by considering only the 1d5/2, 2s1/2, and 
1d3/2 orbits in the sd-shell configuration space. Any realistic negative parity calculation must account for both 1p and 
2p-1f active shells. In the absence of such theoretical work, approaches to comprehending the structure of negative-parity 
states typically rely on more generalized descriptions [7]. In a system of identical Fermions, the Pauli exclusion principle 
dictates that the properties of a nucleus with a given number of protons and neutrons are defined by the filling of the 
lowest energy single-particle levels (the nucleons in this case). The Pauli Exclusion Principle states that a particular set 
of quantum numbers can only be occupied by a single proton or neutron. The average nuclear potential is determined by 
the shape of the nuclear density distribution and the attractive short-range nucleon-nucleon interaction [8].  

II. THEORETICAL FRAMEWORK
(a) Shell model calculations

The reduced matrix elements of the electron scattering ( )ˆ
zt

X λ  operator between the final f and initial i states can

be expressed as the sum of the one-body density matrix (OBDM) times the reduced single-particle matrix elements [9]; 
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The OBDM of multipolarity ( λ ) can be expressed in term of the second quantization notation as; 
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where the single-partical state (k), and tz =1/2 and -1/2 for proton and neutron, respectively and i and f contain all the 
quantum numbers needed to separate the states. 

M1 operator is used to define the nuclear magnetic dipole moment as [10] 
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i f
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i f t

J J
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J J
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=  − 
  (3) 

where the nuclear magneton 𝜇ே = ௘ħଶ௠೛௖ = 0.1051 efm. While, in terms of the E2 operator, the electric quadrupole moment 

is defined as 
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where the initial and final nuclear states |J>   contain all the quantum numbers necessary to differentiate the nuclear 
states. 
The reduced of transition probability given as [11]. 
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21 (2 1)!!( )   | ( , ) |
4
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kλ

λλ λ
π
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 (5) 

where k= EX/ħc, B(Eλ) is in unit of e2fm2λ and B(Mλ) is in the unit of μN
2 fm2λ-2. 

With the realization that the energy functional could be written as a zero-range expansion, the Skyrme interaction 
was developed for nuclear structure computations, resulting in a straightforward derivation of the Hartree-Fock (HF) 
equations in which exchange terms have the same mathematical structure as direct terms. This approach decreases 
significantly the number of single-particle state integrations necessary to solve the equations. The Skyrme energy (ESky) 
reflects the strong force in the particle-hole channel in coordinate space and consists of central, spin-orbit, and tensor 
contributions [6]. Central potential is represented by Skyrme potential. It is a one-body potential as a mean-field 
potential.It is designed to approach the realistic nucleon–nucleon forces by providing the average field owing to all of the 
nucleons constituting the nucleus. VSky equals the combination of two and three bodily components. [12] as: 
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The two-body part is given by: 
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where ( )12 1 2r rδ δ= −  , The 𝑘෠  and 𝑘෠ᇱ operators represent the relative wave vectors of two nucleons acting to the right and 
left, respectively (i.e., complex conjugate wave functions with coordinate 𝑟ᇱ), They possess the shape; 

 1 2
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K
i

′ = − ∇ − ∇
 

 (8) 

Also 

 1 2
1ˆ ˆ ˆ(1 . )
2

Pσ σ σ= +  (9) 

Electron scattering form factor between final and initial nuclear shell model states, including angular momentum λ and 
momentum transfer q, is given by [13]. 

 

2
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 (10) 

where Jf and Ji are the total angular momentum λ of final and initial state, Fcm (q) is the correction (center- of-mass) and 
Ffs(q) is the finite size of the nucleon, with χ involving the transverse (T) and longitudinal (C) form factors. The nuclear 
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structure enters into the electron scattering through the longitudinal FC form factor and the transverse FT form factors (FE 

and FM ) are the electric and magnetic transverse form factor, respectively). The total longitudinal and transverse form 
factors for electron scattering are given by:  
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These form factors are functions of the momentum transfer q only.  
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The related to the electromagnetic transition operators as 
( , , )C e mM T Tλ λ λ  

 3 ˆ( ) ( ) ( )CM q d r j qr Y r
μ μλ λ λ ρ=   (16) 
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where ( )ˆ rρ , ( )Ĵ r , and ( )ˆ rμ ,  are the nuclear charge, the magnetization current density operators is ( )j qrλ , Bessel 
function of order λ , Yλμ  is the spherical harmonic. The total form factor is equal to the addition of the longitudinal and 
transverse relations: 
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(b) Hartree-Fock plus BCS calculations 

The self-consistent mean field based on HF plus BCS calculations are designed to describe the structure of nuclei 
and study the evolution shapes, using the Skyrme forces performed to study the transitional in density shape where the 
pairing correlation have been taken into account. HF method is probably the best method for anticipating the total binding 
energies and single particle energies of closed shell nuclei [14]. Also SHF is a useful tool because this force is central and 
has zero-range interactions [15]. Nuclei is a quantum many-body system exhibiting the quadrupole collectivity associated 
with the shape of the mean field. The collective degree of freedom is associated with the measure of the operator Q̂ . 

From these single-particle wave functions and fractional occupation amplitudes, a mean-field theory can be 
built υα, i.e., [16] 
 { }, , 1,...,α αψ υ α = Ω  (20) 

where Ω denotes the size of the active single particle space. 
The formula for the resulting BCS many-body state is [16]. 
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Where 0  is the particle-vacuum state, is the Fermion production operator âα
+  in state αψ , and is the time-reversed 

partner to state α . The local density of nucleons is defined as [16] 

 ( ) ( ) 22 ,q
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r r sα α
α
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The local nucleon density is defined as [16] 
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The total energy consists of 
tot Skyrme Coulomb pair cmE T E E E E= + + + + (24)
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where ECulomb is the Coulomb energy 
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the pairing energy is 
( ) ( ) ( ), ,r w u r s r sq
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∈

   (27)

where dV represents the volume element in whole three-dimensional space and is the fundamental charge e. with 
e2=1.43989 MeV.fm, and qξ  is the pairing density, wα is a soft pairing space cut-off. The variables s ϵ ±1 represent the 
spinor component of the wave functions. 

The pairing energy includes the parameter ρ0,pair that controls the equilibrium between volume and surface pairing. 
Deformation of the nucleus is defined as the departure from spherical symmetry about the center of mass (c.m), which is 
quantified by the electric quadrupole moment. Hence, the most significant moments are center-of-mass moments [16] 
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In terms of the spherical quadrupole moments, the anisotropic combinations can be quantified 
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III. RESULTS AND DISCUSSION
In this study, the OBDM elements for low-lying positive parity 𝐽ା states were calculated using the sd-shell model 

space.  For negative parity 𝐽ି states, the spsdpf no core with (0, 1) ћω restriction and the zbme shell model spaces have 
been employed. Using the NuShellX@MSU code [17], all calculations were performed.  As we mentioned previously, 
the Skyrme interaction was used to calculate the radial wave functions of the single-particle matrix elements, from which 
a one-body potential in HF theory with SLy4, parametrization can be generated in addition to the harmonic oscillator 
(HO) and Wood-Saxson potentials. For 20,22Ne isotopes, using USDC [18] two-body effective interaction in the 
calculation of the OBDM and SLy4 parameterization yields root mean square (rms) charge radii of 2.954 and 2.9525 fm, 
which are in good agreement with the experimental values 3.005 and 2.9525 fm [19]. The calculated binding energies are 
150.15 and 168.84 MeV, which are in reasonable agreement with the experimental values of 
160.64 and 177.76 MeV [20]. The nuclear magnetic dipole moment is (1.076 and 0.780) nm, in good agreement with 
experimental values of +1.08 and +0.65 nm [19], and the electric quadrupole moment (Q2) is -14.31, and -14.03 e2.fm2, 
the experimental -23(3), -19(4) e2.fm2 [19]. All these results together match the experimental value. 

Also, we have used the code SkyAx [16] is a highly optimized two-dimensional HF+ Bardeen-Cooper-Schrieffer 
(BCS) code is using for computing ground states and deformation energy surfaces for axially symmetric deformed nuclei. 
The calculated results will be discussed in three sections. The first will focus on the Excitation Energies and reduce 
transition probability, the second on electroexcitation Form Factor, and the third on structure densities in two dimensions 
(Contour Lines), which will be given.  

1. Excitation Energies and reduce transition probability
The excitation energies and reduced transition probabilities for low-lying positive and negative parity states in 20,22Ne 

isotopes are calculated and tabulated in Table 1 and compared with the corresponding experimental data. The OBDM 
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elements for positive parity states were calculated using sd MS with the last updated two-body effective interactions 
USDE [21] and USDC [18].  In contrast, for negative ones, we have used the spsdpf (no core with one ћω restriction) and 
zbme model spaces with WBP and REWILE effective interactions, respectively. 

The majority of estimated excitation energies in all model spaces closely match experimental data. [19], except for 
a few levels. Those levels with deviations exceeding 1.5 MeV include 2ଷା at 7.833 MeV for 20Ne and 4ଶା at 6.345 MeV 
for 22Ne. The negative-parity energy levels are accurately predicted using zbme MS. However, for spsdpf MS, the 
excitation energy state 1ଵି  at 7.119 MeV is overestimated by the experimental data. The coupling between the states, such 
as the 1p1/2 holes coupled to the 1d5/2 neutron (1p-1h), may account for these discrepancies. The additional pairing 
correlation and a change in the proton–neutron interaction, which results in a more considerable quadrupole deformation 
energy, reduce the energy of the 1p–1h state [8]. Fig.1 illustrates the extent of convergence between theoretical 
calculations and experimental data. 

The calculated reduced transition probabilities B(EL) for the low-lying positive and negative parity states in 20Ne 
and 22Ne isotopes are presented in Table 2. The discrepancies with experimental data regarding the energy of transitions 
from these states might be due to the possible admixture of states involving neutron and proton excitations. From a general 
point of view, the B(EL) values for the transitions of low excitation energies agree reasonably well with experimental 
data [20,22-24]. The B(E2) transition rates are slightly larger than the experimental data except for 2ଵା, where the 
agreement is quite good for 2ଷା in 22Ne using the USDE interaction. The slight difference between the experimental data 
and the theory could be because the quadrupole vibration was not taken into account. Regarding B(E3) and B(E1) 
transition probabilities in 22Ne, the calculated results are in poor agreement with the experimental results. 
Table 1. Excitation energies in MeV for a different transition to excited states using two-body interactions USDE, USDC, WBP, and 
REWILE. The experimental data taken from Ref. [19] 

Nucleus 𝐉𝛑 𝐄𝐱(𝐄𝐱𝐩. ) 
Model Space 

sd spsdpf zbme  
USDE USDC WBP REWILE 

20Ne 2ଵା 1.633(15) 1.736 1.735 --- --- 2ଶା 7.421(12) 7.548 7.532 --- --- 2ଷା 7.833(15) 9.598 9.992 --- --- 4ଵା 4.247(11) 4.192 4.146 --- --- 4ଶା 9.031(7) 9.974 9.956 --- --- 3ଵି  5.787(26) --- --- 7.119 6.099 1ଵି  5.621(17) --- --- 5.448 5.436 
22Ne 2ଵା 1.274(7) 1.350 1.345 --- --- 2ଶା 4.456(9) 4.301 4.321 --- --- 2ଷା 5.363(11) 5.160 5.130 --- --- 4ଵା 3.357(5) 3.370 3.335 --- --- 4ଶା 6.345(10) 5.380 5.404 --- --- 3ଵି  5.910(9) --- --- 5.372 5.386 1ଵି  6.689(11) --- --- 6.671 5.720 

  

Figure 1. Theoretical excitation energies in MeV states vs. experimental for the different transition to low-lying excited states using 
USDE, WBP, and REWILE two-body effective interactions. The experimental data are taken from Ref. [19]. 
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Table 2. The reduced transition probabilities B(EL) in e2fm2L for the different transition to excited states using two-body interactions 
USDE, USDC, WBP, and REWILE. The experimental data taken from Ref. [20, 22-24] 

Nucleus 𝐉𝛑 𝐄𝐱(𝐄𝐱𝐩. ) B (EL)Exp B(EL)Theo. 
USDE USDC

20Ne 2ଵା 1.633(15) 340(30) 462 247.12ଶା 7.421(12) 0.13(0.03) 0.185 0.1122ଷା 7.833(15) 0.83(0.13) 2.901 2.4744ଵା 4.247(11) --- 0.6257E+05 0.6408E+054ଶା 9.031(7) --- 0.3418E+04 0.3548E+04
 WBP REWILE3ଵି  5.787(26) 1763 2172 15281ଵି  5.621(17) --- 0.187E-03 0.252E-07
 USDE USDC

22Ne 2ଵା 1.274(7) 271(36) 384 3932ଶା 4.456(9) 13(2) 31.1 29.52ଷା 5.363(11) 3.2(1.5) 3.802 2.484ଵା 3.357(5) 17000(4000) 20500 219304ଶା 6.345(10) --- 7076 6904
 WBP REWILE3ଵି  5.910(9)  870(250) 407.7 1278 1ଵି  6.689(11) 0.08(0.04) 0.914 E-05 0.349 E-03 

2. Electroexcitation form factor
The nuclear structure can only enter the cross-section through longitudinal (FC), transverse (FE), and magnetic 

(FM). These form factors are functions of the momentum transfer q only. The FC and FT form factors correspond to fields 
parallel and perpendicular to the direction of momentum transfer, respectively [25]. |FT(q)|2, is influenced by both 
magnetic and electric currents, whereas |FL(q)|2 is caused solely by the electric Coulomb field.   

A. Elastic electron scattering form factor (𝑱𝝅 = 𝟎ା)
Fig. 2 (a) and (b) depicts the calculated elastic longitudinal C0 electroexcitation form factors for the ground state 

(GS) of 20,22Ne isotopes in the sd-shell MS wave functions employing SLy4, HO, and WS parameterization compared 
with experimental data from Ref. [22,26]. Observable agreement exists in the momentum transfer region of q (0-1.3) fm-1, 
based on experimental data. 

Figure 2. Theoretical longitudinal C0 form factors (a) for 20Ne isotope 0ା, (0 MeV) (b) for 22Ne isotope 0ା, (0 MeV) using SLy4 
parameterization, HO and WS compared with experimental data taken from Ref [22, 23] 
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B. Inelastic scattering form factor 
1. Positive parity states 

The calculated inelastic longitudinal C2 electroexcition form factors of transition at positive parity states 2+ in 20Ne 
isotope are shown in Fig. 3; (a) 2ଵା(1.633 MeV), (b) 2ଶା(7.422 MeV), and (c) 2ଷା(7.833 MeV), and  for 22Ne isotope Fig.4 
(a) 2ଵା(1.274 MeV), (b)  2ଶା(4.456 MeV), and (c) 2ଷା(5.363 MeV). Inspection of these figures reveals that the longitudinal 
form factors are all dominated by the electric quadrupole transition C2 components and are in reasonable agreement with 
available experimental data [22,23] using all the single particle potentials. Although we have not been changing 
parameters, they were altered to accommodate the experimental electron scattering data.  The WS potential agrees 
satisfactorily with experimental data, except 2ଶା, at (7.422MeV) higher than experimental data at all momentum transfer 
points. 

  

 
Figure 3. longitudinal C2 form factor for 20Ne using SLy4, HO, and WS parametrizations vs with the experimental value taken 

from Ref. [22,23] 



145
Electroexcitation Form factors and Deformation of 20,22Ne Isotopes Based on the Shell Model...     EEJP. 2 (2023)

Figure 4. longitudinal C2 form factor for 22Ne calculate by SLy4, HO, and WS parametrizations vs the experimental data taken 
from Ref. [22,23]. 

Fig. 5 (a) and (b) show the calculated inelastic longitudinal C4 electroexcitation form factor of the transition to the 
4+ state in 20Ne at (4.2477MeV) and in 22Ne at (3.357 MeV). It is obvious that the longitudinal form factor is dominated 
by electric hexa transition C4 components and in reasonable agreement with experimental data in light of the fact that 
parameters were not changed to fit the experimental electron scattering data [23,24]. 

2. Negative parity states
Based on the results obtained in showing the sensitivity of the effect of changing the single particle potentials. The 

longitudinal form factors were calculated, considering the effect of the two-particle interactions in improving the 
convergence with the practical values. Fig. 6 shows the calculated total form factors for the transition to the negative-
parity state1ଵ_ , (5.787 MeV) and 3ଵ_ , (5.624 MeV) for 20Ne isotope compared with experimental data [23], which refer to 
the total sum of (1ଵ_  ,3ଵ_ ) states together. The WBP interaction predicts a rapid increase in low-lying C3 concentration. 
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While C1 form factor result under the experimental data. On the contrary, the REWILE result is in reasonable agreement 
with experimental results for the C3 form factor, in contrast to the C1 result, which was based on experimental data. 

Figure 5. Theoretical longitudinal C4 form factor for 20Ne and 22Ne isotope, using SLy4 parameterization in comparison with 
experimental data taken from Ref. [23, 24]. 

Figure 6. Total form factor for the transition -11(5.578) and -31(5.621MeV) using SLy4 parameterization in comparison with 
experimental data taken from Ref [26] 

Fig. 7 (a), and (b) show the calculated longitudinal C1, C3 form factors in 22Ne isotope for the transitions  1ଵି , 
(6.689 MeV) and 3ଵି , (5.910 MeV) states. The WBP prediction agrees qualitatively with experimental data in all 
momentum transfer regions of these data. Also, it can be observed that the REWILE prediction for the longitudinal C1 
form factors under estimate the experimental result. The longitudinal C1 experimental data reveals an additional 
maximum form factor. The theoretical C1 contribution does not include this maximum. From the our previous calculates 
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we noted that WBP is the best in approximation with experimental data, thus means the contribution valance nucleon in 
1p3/2 state is accountable for the substantial C1, C3 strength. 

Figure 7. Theoretical longitudinal C1 and C3 form factor (a) for1ଵି , 6.689 MeV. (b) For 3ଵ_ , 5.910 MeV using SLy4 
parameterization in comparison with experimental data taken from Ref. [23] 

3. The Quadrupole Deformation using BCS Calculation
Fig. 8 and 9 shows the potential energy curve of 20, 22Ne isotopes (on the left) as a function of the quadrupole 

deformation parameter β2. The corresponding neutron and proton structure densities are also displayed (on the right). 
Following the color code, the red and blue colors correspond to the high density (~0.08 fm-3) and low density (~0.02 fm-3), 
respectively. The two local minima in Fig. 8 are predicted as (a) β2=-0.154 and (b) β2=0.406. 20Ne have a stable quadrupole 
deformation where the high neutron and proton density distribution is in the center for the two regions (a) and (b), as expected 
(20Ne have the same numbers of protons and neutrons), where there is no effect of n-p pairing. For the 22Ne isotope, the two 
local minima in Fig. 9 are predicted as (a) β2=-0.204 and (b) β2=0.404. We can notice that the stability decreases with 
decreasing central proton density because of the two neutrons added to the last state, which increases the effect of n-p pairing. 

Figure 8. Left, the potential energy curve of 20Ne as a function of the quadrupole deformation parameter. The neutron and proton 
structure densities corresponding to the two local minima, marked a, and b are shown in the right panel 

0 0.5 1 1.5 2 2.5 3
q (fm-1)

10-8

10-7

10-6

10-5

10-4

10-3

-1 wbp
-1 rewile
Exp

0 0.5 1 1.5 2 2.5 3
q(fm-1)

10-6

10-5

10-4

10-3

10-2

-3 wbp
-3 rewile
Exp

-0.6 -0.4 -0.2 0 0.2 0.4 0.6
ß 2

-152

-151

-150

-149

-148

-147

-146

-145

E n
 e r

 g y
   ( 

M
 e V

 ) 

20 Ne 

a 

b



148
EEJP. 2 (2023) Omar A. Alswaidawi, Ali A. Alzubadi

 

 

Figure 9. Left, the potential energy curve of 22Ne as a function of the quadrupole deformation parameter. The neutron and proton 
structure densities corresponding to the two local minima, marked a, and b are shown in the right panel 

IV. CONCLUSION 
In this study, the nuclear structure of 20,22Ne isotopes was investigated in the framework of the shell model and 

BCS calculation with Skyrme parametrization. In this context, excitation energies and the corresponding reduced 
transition probabilities, the elastic and inelastic electroexcitation form factors for positive and negative parity states in the 
momentum-transfer range 0.0 <q< 3.0 fm-1, and quadrupole deformation parameter are discussed.  Additionally, the work 
inspects the effect of three single-particle potentials; in particular, HO, WS and SLy4 parameterizations. It can be 
concluded that, on the whole, the impression of using different model spaces has fairly well reproduced the experimental 
data for positive and negative parity states and is not sensitive for changing the single particle potentials rather than the 
two-body effective interactions. The most important limitation lies in the fact that the strong collective feature of the 
nuclei in this mass region and internally consistent interaction formulation. 
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ФОРМ-ФАКТОРИ ЕЛЕКТРОЗБУДЖЕННЯ ТА ДЕФОРМАЦІЯ ІЗОТОПІВ 20,22NE НА ОСНОВІ МОДЕЛІ
ОБОЛОНКИ ТА РОЗРАХУНКІВ HARTREE-FOCK PLUS BCS 

Омар А. Алсвайдаві, Алі А. Альзубаді 
Факультет фізики, Науковий коледж, Багдадський університет, Багдад, Ірак 

За допомогою оболонкової моделі з розрахунками Скірма-Хартрі-Фока досліджено ядерну структуру ізотопів 20,22Ne. Зокрема, 
були досліджені переходи до збуджених станів низького рівня позитивної та негативної парності в трьох моделях оболонок; 
sd для позитивних станів парності, spsdpf з великим базисом (без ядра) та простори моделі zbme для станів з негативною 
парністю. Оцінено енергії збудження, зменшені ймовірності переходу, пружні та непружні форм-фактори та порівняно з 
наявними експериментальними даними. Взаємодія Скірма була використана для створення потенціалу одного тіла в 
розрахунках Хартрі-Фока для кожного вибраного збудженого стану, який потім використовується для розрахунку 
одночастинкових матричних елементів. Взаємодія Скірма була використана для розрахунку радіальних хвильових функцій 
одночастинкових матричних елементів, з яких може бути згенерований потенціал одного тіла в теорії Хартрі-Фока з 
параметризацією SLy4. Крім того, ми дослідили взаємодію між профілями густини нейтронів і протонів у двох вимірах разом 
із деформаціями 20,22Ne за допомогою розрахунків Хартрі-Фока та BCS. 
Ключові слова: Sd модельний простір; стан негативного паритету; пружний і нееластичний форм-фактор; розподіл 
щільності 
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In this work, we present a theoretical study on the equilibrium geometry and the energetic, electronic and magnetic properties of Fen 
(n = 2–10) based on the use of density functional theory (DFT). The results are obtained using Both Generalized Gradient 
Approximation according to the scheme described by Perdew-Burke-Ernzerhof (GGA-PBE). More stable structures obtained compared 
to other isomers have not been previously found. It is shown by the results calculated as the calculated fragmentation energy, and the 
second-order energy difference that Fen (n = 7,8,9) clusters are more stable than the other cluster sizes. The calculated magnetic 
properties of the most stable clusters display varying magnetic torque between values 3.00 μB and 3.35 μB, except for the Fe10 cluster, 
which takes the upper value of 3.38 μB. These results are very important for experimental experts who are active in designing new 
nanocatalysis systems in the physical and chemical fields. 
Keywords: Iron clusters; Relative stabilities; Density functional theory DFT; Binding energies;Magnetic properties 
PACS: 36.40.Cg 

1. INTRODUCTION
Iron is one of the most important materials due to its physical and magnetic properties among the first transition 

(TM) metals. It also has high magnetism and in addition to the high value of transverse relaxation, iron metal and its 
oxides make it a suitable component in magnetic nanoparticles (MNPs). The high values of transverse relaxation result 
from the external magnetic field, and thus the detection of signals is facilitated through the transverse relaxation of iron 
as well. The uses of compounds based on MNP materials fall into several fields, the most important of which are in 
biosensing applications using magnetic resonance [1], as well as the detection of tuberculosis bacteria [2], As for magnetic 
enrichment, it is used to detect the in vivo circulation of cancer cells [3]. 

Cluster physicists admit, according to their opinion, the difficulty of conducting accurate studies of iron clusters at 
experimental levels [4,5]; however, applications have been made using density functional theory (DFT), which has been 
successful and has become widely used in calculating TM properties during the past years [6]. Among the most important 
advantages of the DFT theory is the ability to look for the correct and accurate electronic structure among many other 
possible cases that has lower energy [5], this is what makes us obtain the accurate and correct magnetic and structural 
properties. Thus, the presence of a strong correlation in partially filled d orbitals leads to the highest magnetic moments. 
In previous theoretical studies of small iron, clusters [7-10] showed a close correlation between their size and the value 
of their magnetic moment. The experimental study of clusters containing more than 500 atoms was also addressed. 
Whereas, the obtained iron cluster structures were in deformed geometries and completely different from the bcc crystal 
structure of iron, this was predicted by Jahn-Teller [11]. 

In this work we confirm the value of the quality of the calculations of all electrons within the DFT framework and 
find the most stable Fen clusters compared to other isomers. 

In addition, we also calculate the important electronic properties of these clusters such as homo–lumo energy, 
second-order energy difference, vertical ionization potential (VIP) and vertical electronic affinity (VEA), this is for a 
deeper understanding of the stability of the clusters and the differences between them. The next section reviews the 
theoretical methodology used in the calculation briefly, while the third section presents the results of our calculations and 
their analysis, while this work concludes with a general summary . 

2. MATERIALS AND METHODS
Our calculations were performed in order to determine the ground-state structures within the framework of spin-

polarized density functional theory [12] with the use of the generalized gradient approximation (GGA) defined by Perdew, 

† Cite as: Y. Benkrima, D. Belfennache, R. Yekhlef, M.E. Soudani, A. Souigat, and Y. Achour, East Eur. J. Phys. 2, 150 (2023), 
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Burke, and Ernzerhof (PBE) [13,14] functional has been used for the exchange correlation energy as implemented in the 
SIESTA package [15]. Among the features of this program is that it can be used for all kinds of non-local pseudo-standards 
preservation method for Troullier-Martins [16]. The geometries were optimized without any symmetry constraints by 
self-consistent field (SCF) solving of the Kohn–Sham equations with a convergence criterion of 10-4a.u. on the electron 
density and energy.  

In order to avoid interaction between neighboring clusters, we used the cubic supercell of 20 Å void, and also used 
the conjugate gradient (CG) algorithm. Using the Γ point approximation, the k grid integration was carried out. 
Geometrical optimizations were considered as converged when the residual forces were smaller than 10-3 eV/Å. 

We employed the double polarizer ξ (DZ) basis with polarization function for all iron atoms. We have performed a 
relaxation for a large number of possible initial structures for iron clusters in the size (n= 2–10) atom-sized iron clusters 
in a very recent and previously unpublished work. In this work we could find the most appropriate structures of Fen 
clusters by searching the various possible isomers. 

We studied the various properties of iron Fen clusters by determining their relative stability, which is represented by 
the binding energy Eb, fragmentation energy Ef, second-order energy difference Δ2E. The electronic properties represented 
by the vertical ionization potential (VIP), vertical electronic affinity (VEA) and Chemical hardness η, were also 
investigated. All these quantities were calculated according to the following formulas: 
The binding energy Eb/atom. 

 Eb (Fen) = [nE (Fe) – E (Fen)]/(n). (1) 

Fragmentation energy Ef 

 Ef (Fen) = E (Fen-1) + E (Fe) – E (Fen). (2) 

Second-order energy difference Δ2E 

 Δ2E (Fen) = E (Fen+1) + E (Fen-1) – 2E (Fen). (3) 

The HOMO–LUMO energy ΔE 

 ΔE = E (LUMO) – E (HOMO). (4) 

Vertical ionization potential (VIP) 

 VIP = E (Fen
+) – E (Fen). (5) 

Vertical electronic affinity VEA 

 VEA= E (Fen
-) – E (Fen). (6) 

Chemical hardness η 

 η = VIP – VEA. (7) 

Where E is the total energy of the given system. 
 

3. RESULTS AND DISCUSSION 
3.1. Structural Properties 

We found a large number of isomers and determined the ground state structure of all Fen clusters (n = 2–10) using 
the above calculation scheme. The most stable structures were selected for each size among the lower energy isomers, as 
shown in Figure 1. 

         
Figure 1. The lowest energy structures of Fen (n = 2–10) clusters 

In the Table we calculated bond length for Fe-Fe dimer is 1.98 Å and its binding energy per atom of 1.40 eV. In 
Figure 1 shows the most stable structures in this study, using SIESTA program based on DFT. Actually, this result is 
close to theoretical results of B.V. Reddy et al. and S. Dhar et al. and J.L. Chen et al. [17-19] and experimental results of 
the average bond length in the work of P.A. Montano et al. and H. Purdum et al. [20,21]. 
Table 1. Bond lengths of dimer Fe2(Å). 

This work Other calculations Experimental 
 

1.98 
2.02 [17] 
1.96 [18] 
1.98 [19] 

1.87 [20] 
2.02 [21] 
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Various values of the average bond length of clusters Fen where (n= 2–10) are shown in Figure 2. For the clusters 
of Fen where (n=2–6), they are either linear or closed Chains in the plane, with an average bond length estimated as 
1.98 Å, 2.11 Å, 2.28 Å, 2.37 Å, 2.53 Å, respectively. Generally, it is observed that the average bond length increases with 
the cluster size. 

 
Figure 2. Average bond lengths for Fen(n=2–10) clusters 

Based on the results shown in Figure 2, we conclude that the values of the average bond length increase in parallel 
with the increase in the cluster size. This is due to the fact that the ratio of atoms on the surface of the cluster is greater 
than the ratio of atoms in the core of it. In fact, because they are less compact, they cause the increase in the bond length. 

 
3.2. Relative Stability 

One of the most important physical factors that must be studied in the physics of materials and clusters is: 
 

Binding Energy (cohesion) 
It shows the stability of clusters obtained by comparing the result of their binding energy to other previous results 

for the same metal clusters. We report the calculated binding energies of Fen (n = 2 –10) clusters their growth with cluster 
size is plotted for the lowest-energy of each cluster in Figure 3. Through the general form, we notice a direct relationship, 
as the increase in the binding energy corresponds to the increase in the mass size. This behavior means that the clusters 
can obtain energy continuously during the growth process. 

 
Figure 3. Binding energies per atom for the Fen (n = 2–10) clusters 

 
Fragmentation energy 

The fragmentation energy can also be considered as an indicator for forecasting the relative stability of the clusters. 
In Figure 4 we feature the growth of Ef as a function of the size clusters n. Overall through the general shape, fluctuating 
behavior in the values was detected. The results obtained indicate that the Fe7, Fe8 and Fe9 clusters have bigger values 
compared to the rest of the neighboring clusters and therefore, so the clusters are relatively more powerful in terms of 
thermodynamic stability. 
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Second-order energy difference 
In addition to both the fragmentation energy and the binding energy, we can use another amount that has a great 

indication of the stability of the clusters, which is second-order energy difference. In Figure 5, we show the growth of 
Δ2E in terms of changing cluster size. Through the positive values reached at the following clusters for (n = 3,7 and 9) 
clusters, indicating that these clusters may have special stability compared to the rest of the clusters. 

Figure 4. Fragmentation energy per atom 
for the Fen (n = 2-10) clusters 

Figure 5. The Second energy difference 
for the Fen (n = 2-10) clusters 

3.3. Electronic Properties 
HOMO–LUMO energy 

When the value of the energy gap HOMO–LUMO (ΔE) is small, the chemical reactivity is high, whereas a 
considerable value is ascribed to an even higher chemical stability, for this reason, the HOMO-LUMO energy gap is 
considered as a milestone and an important criterion for the chemical stability of small clusters. The ΔE change in terms 
of the cluster size variation, for the most suitable structures, is shown in Figure 6. 

Figure 6. HOMO–LUMO energy for the Fen (n = 2–10) clusters 

An oscillatory behavior has been recorded in the growth of ΔE values when the volume of clusters is increased. 
Generally, we note that ΔE of Fen (n = 2,3) clusters are smaller than the rest of the existing iron clusters. This means that 
these clusters come with a greater stability and a low reactivity compared to their neighbors and could be suitable to be 
utilized as an essential element in developing new materials. 

Vertical ionization potential (VIP) and vertical electronic affinity (VEA) 
We calculate the vertical electronic affinity and vertical ionization potential for the Fen (n = 2–10) ground state, they 

are plotted in Figures 7 and 8 as a function of the cluster size. 
The vertical ionization potential (VIP) is used to determine the chemical stability of small clusters as the proportion 

between the size of the cluster and its stability is inverse, meaning that the greater the size of the cluster, the less its 
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chemical activity, and thus its stability. Through Figure 6, we observe a non-monotonic oscillating behavior in the 
evolution of VIP values of Fen clusters. We found the highest values for Fe6 worth an estimated 5.82 eV, followed by the 
same value recorded for the Fe2 and Fe7 clusters with values of 5.73 eV. The results obtained are close to the theoretical 
works of Keitel Cervantes-Salguero et al. and Gong and Zheng et al. [22,23]. 

  
Figure 7. Vertical ionization potential (VIP) for the Fen 

(n = 2-10) clusters 
Figure 8. Vertical Electron Affinity for the Fen 

(n = 2-10) clusters 

Also, what is recorded for vertical electronic affinity (VEA) values, where a non-monotonic increase with cluster 
size is observed, this is what the Figure 8 shows. Also, VEA in mass physics shows how stable and coherent a structure 
is; it is seen that the small clusters approach the metallic state, the VEA values increase with the size of the cluster. Where 
the following clusters recorded the smallest values of Fe2 and Fe9, with values estimated at 0.11 eV and 0.99 eV, 
respectively. Our results are very close to what has been reached in the theoretical work of Keitel Cervantes-Salguero 
et al., Chrétien and Salahub, and Castro and Salahub [22,24,25]. 

 
Chemical hardness η 

Pearson [26] proposed the principle of maximum hardness (PMH) in order to distinguish between the relative 
stability of the clusters; In general, if the clusters have less interaction, is more stability, the value of their chemical 
hardness is greater. In Figure 9, we report the growth of η for the lowest-energy structures as a function of the cluster 
size. The chemical hardness of the Fe2 and Fe7 clusters seems to be the largest values recorded compared to all other 
clusters, this makes these two clusters very inert and they can be considered as good candidates for the fabrication of 
cluster materials applicable to nanotechnologies and nanoelectronics. 

 
Figure 9. Chemical hardness η for the Fen (n = 2–10) clusters 

 
3.3. Magnetic Characteristics 

Magnetic behavior can also be considered an important marker for small clusters. In fact, we can find small clusters 
with specific magnetic moments that qualify them to be used in many important applications in nanotechnology. It is 
clear from the obtained results that the magnetic torque value of the Fe10 cluster takes the largest value and is estimated 
at 3.38 μB which makes it available for use in designing new Nanocatalytic systems, while the rest of the clusters recorded 
a value of magnetic moment ranging between 3.00 μB and 3.354 μB values. Our results regarding magnetic moment are 
close to those reported in the works [27-29]. The magnetic moment results are shown in Figure 10. 
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Figure 10. Magnetic moments for the Fen (n = 2–10) clusters 

4. CONCLUSION
The equilibrium geometries, energetic, electronic and magnetic characteristics of Fen (n = 2–10) clusters have been 

performed by using DFT calculations, with the use of generalized gradient approximation GGA. The geometric structures 
of the clusters are in good agreement with previous computational studies; the reported binding energy for the dimer is 
closest to the experimental and theoretical value available. Furthermore, we find that the decay behavior of the binding 
energy curve indicates that the obtained cluster structures are the ground states. 

The calculated fragmentation energy, second-order energy difference, and HOMO-LUMO energy gap revealed that 
the Fe7, Fe8 and Fe9 clusters are more stable than other cluster sizes. 

Compared to experimental and theoretical data, all of our VIP and VEA results are sometimes underestimated and 
sometimes overstated. The Fe2 cluster corresponds to the most stable structure in the chemical hardness analysis. 

The calculated magnetic properties of the lowest energy Fen clusters exhibited a total magnetic torque of 
(3.00 - 3.354) μB, except for the Fe10 cluster, which takes the value 3.385 μB. To our knowledge, the physicochemical 
properties of iron groups have not yet been calculated with the SIESTA code. Therefore, the results obtained from this 
fundamental work will be useful to guide future experiments, particularly in the fabrication of new nanocatalysts. 
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ФІЗИКО-ХІМІЧНІ ХАРАКТЕРИСТИКИ КЛАСТЕРА Fen (n = 2–10) ЗА ТЕОРІЄЮ ФУНКЦІОНАЛУ ГУСТИНИ 
Яміна Бенкрімаa, Джамель Белфеннашеb, Радхіа Єклефb, Мохаммед Ельбар Суданіc, 

Абделькадер Сугатa, Ях’я Акурd,e 
aВища нормальна школа Уаргла, 30000 Уаргла, Алжир 

bНауково-дослідний центр промислових технологій, Черага, 16014, Алжир 
cЛабораторія з розробки нових і відновлюваних джерел енергії в посушливих зонах і зонах Сахари, 

Факультет математики та матеріалознавства, Університет Касді Мерба Уаргла, Уаргла 30000, Алжир 
dЛабораторія фізики матеріалів, Університет Амара Теліджі, Лагуат, Алжир 

eВища нормальна школа Лагуата, Лагуат, Алжир 
У цій роботі ми представляємо теоретичне дослідження геометрії рівноваги та енергетичних, електронних і магнітних 
властивостей Fen (n = 2–10) на основі теорії функціоналу густини (DFT). Результати отримані з використанням обох 
узагальнених градієнтних наближень відповідно до схеми, описаної Perdew-Burke-Ernzerhof (GGA-PBE). Більш стабільні 
отримані структури порівняно з іншими ізомерами раніше не були знайдені. Результати, розраховані як розрахована енергія 
фрагментації та різниця енергій другого порядку, показують, що кластери Fen(n = 7,8,9) більш стабільні, ніж кластери інших 
розмірів. Крім того, розраховані магнітні властивості найбільш стабільних кластерів демонструють різний магнітний момент 
між значеннями 3,00 мкБ і 3,35 мкБ, за винятком кластера Fe10, який приймає верхнє значення 3,38 мкБ. Ці результати важливі 
для експертів-експериментаторів, які активно розробляють нові системи нанокаталізу у фізичній та хімічній областях. 
Ключові слова: кластери заліза; відносна стабільність; теорія функціоналу густини; енергія зв'язку; магнітні властивості 
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This study used the casting method to prepared PMMA/Si3N4/TaC nanocomposites with variant content (0,2,4,6,8) % wt of Si3N4 /TaC 
nanoparticles. The structural and electrical properties have been investigated. Scanning electron microscope (SEM) indicates the 
homogenous, smooth and dispersed of Si3N4 and TaC NPs inside the PMMA matrix due to strong covalent interaction between the Si3N4 
and TaC NPs in the PMMA matrix, which means a good method for prepared films. Optical microscope images explained that increasing 
nanoparticle content forms network paths inside the polymeric matrix that act as charge carriers. FTIR spectra indicate a physical 
interference between the polymer matrix and nanoparticles. The AC electrical properties of nanocomposites obtained that the dielectric 
constant and dielectric loss rise with rising content of nanoparticles and decrease with increasing frequency of applied electric field. While 
the A.C. electrical conductivity rises with the rising frequency and weight content of Si3N4/TaC nanoparticles. These results indicated that 
the PMMA/Si3N4/TaC nanostructures could be considered promising materials for electronics and electrical nanodevices. 
Keywords: Nanocomposites; PMMA; Si3N4; TaC; AC electrical properties 
PACS: 68.37.Hk,77.22.Gm,77.84.Lf  

1. INTRODUCTION
Polymers hold the potential to revolutionize industrial thought by replacing the majority of materials with plastic 

ones and enabling a wide range of applications. Additionally, it entered all sectors of the economy, including the medical 
sector, and a variety of optical, electronic, and applications, including photovoltaic cells and optoelectronics [1]. Last 
year, there was a lot of interest in innovative materials called nanocomposites polymers, composed of organic and 
inorganic polymers and nanoparticles in a nanoscale region. These composite materials differ from pure polymers 
regarding their chemical and physical characteristics. Impurity polymers' effects on the properties of polymers provide 
them with more significant advantages and enable them to improve desirable features. In many different types of 
applications, that might be highly significant and helpful [2,3]. 

A good thermoplastic polymer known as poly (methyl methacrylate, or PMMA) has papers describing how it can 
be used as a gate insulator in organic transistors with thin films (OTFTs). PMMA is a great choice as a dielectric layer in 
organic electronics due to its excellent mechanical and thermal durability, excellent electrical resistivity (>21015.cm), 
appropriate dielectric characteristics, and thin film processability on vast regions by spin coating. We explore the optical, 
electrical, and microgravimetric properties of PMMA thin sheets to assess their chemical sensing potential. This 
tactility-dependent thermoplastic material is made of volatile organic compounds with high stiffness, transparency, 
outstanding insulating qualities, excellent planarity, and thermal stability [4,5]. 

Polymers' chemical and physical composition and structure influence the size of their dielectric. The unique 
characteristics of the molecular mobility of polymers, and consequently their chemical and physical structure, affect the 
parameters that describe the dielectric loss and losing tangential. Due to their low conductivity, most polymers are 
insulators in general. The inclusion of the proper dopants as well as thermally and electrically produced carriers affect the 
conductivity [6,7]. Due to its excellent oxidation resistance and strong thermal conductivity, silicon nitride (Si3N4) is a 
possible alternative to silica supports that are more frequently utilized in reactions where efficient heat transmission is 
required. Because it still contains NH2 and NH groups, amorphous silicon nitride made from sol-gel is especially 
intriguing for solid base catalysis [8,9]. Silicon nitride is a good contender for use in material science, the microelectronics 
industry, solar technology, and other fields due to its physical features. Due to the silicon nitride film's exceptionally high 
transparent in the spectral range of 300-1200 nm, it is employed in solar cell technology as an antireflective coating and 
to passivate silicon surfaces [10,11]. 

Tantalum Carbide (TaC), which is also a very promising ultra-high temperature material, has been found to be 
wear-resistant as well as to have biocompatible qualities that make it suitable for biomedical applications [12,13]. TaC has 
drawn investigation, but thorough comprehension has eluded researchers because, like other transition-metal carbides, it 
appears in a broad variety of compositions, and as a result, its physical characteristics vary. Additionally, impurities can 
affect characteristics, and well-characterized TaC materials, particularly single crystals, are typically hard to come by. TaC's 
lattice dynamics and band structure, as well as its mechanical, thermal, and electrical characteristics, have all been 
studied [14,15]. This paper aims to preparation of the PMMA/Si3N4/TaC nanocomposite and study the structural and AC 
electrical properties. 
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2. MATERIALS AND METHOD
The casting method was used to create films of poly methyl methacrylate (PMMA) doped with silicon nitride 

nanoparticles (Si3N4 NPs) and tantalum carbide nanoparticles (TaC NPs). PMMA pure film was created by dissolving 
1.5 gm of this polymer in 30 ml of chloroform at room temperature with magnetic stirrer for half an hour. The 
nanocomposites films were created by adding Si3N4 and TaC NPs to a PMMA solution with concentrations of (2, 4, 6, 
and 8) % wt. The structural characteristics of (PS/SiC/Sb2O3) nanocomposites examined by the scanning electron 
microscopic (SEM) using a Hitachi SU6600  variable, Optical microscope (OM) provided by Olympus (Top View, type 
Nikon-73346) and the Fourier Transformation Infrared Spectroscopy (FTIR) (Bruker company type vertex-70, German 
origin) with variety wavenumber (500-4000) cm-1. The dielectric characteristics were studied at range (f=100 Hz to 
5×106 Hz) by LCR meter (HIOKI 3532-50 LCR HI TESTER). 
The dielectric constant (έ) is given by [16,17] 

έ = ஼೛஼೚, (1)

where, Cp is capacitance and Co is a vacuum capacitance 
Dielectric loss (𝜀˝)  is calculated by [18,19]:  𝜀˝ = έ𝐷. (2)

Where, D: is displacement 
The A.C. electrical conductivity is determined by [20,21] 

𝜎஺஼ = 𝜔έ 𝜀ₒ, (3) 

where w angular frequency 

3. RESULTS AND DISCUSSION
The scanning electron microscope (SEM) is used to study the morphological of PMMA/Si3N4/TaC nanocomposites. 

The SEM images of pure PMMA and PMMA/Si3N4/TaC nanocomposites are revealed in Fig. (1) with various concentration 
0, 2, 4, 6 and 8 wt.% of Si3N4 and TaC NPs with a magnification 50 KX and scale 200 nm. From this figure in image A, it is 
observed that the pure PMMA was homogenous and smooth this indicates a good method for prepared films. Also, it is 
observed that in images (B, C, D and E) the homogeneous dispersed of Si3N4 and TaC NPs inside the PMMA matrix 
respectively primarily due to strong covalent interaction between the Si3N4 and TaC NPs in the PMMA matrix [22,23]. 

Figure 1. SEM images of (PMMA/Si3N4/TaC) nanocomposites, (A) for (PMMA), (B) 2 wt.% Si3N4 / TaC NPs, 
(C) 4 wt.% Si3N4 / TaC NPs, (D) 6 wt.% Si3N4 / TaC NPs, (E) 8 wt.% Si3N4 / TaC NPs

A B C 

D E 
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The optical microscope gives the change of surface morphology of PMMA/Si3N4/TaC nanocomposites. Figure (2) 
displays the PMMA/Si3N4/TaC nanocomposites optical microscope (OM) at magnification power (10x) for all specimens. 
The polymer blend film surface image(A) shows an uniform phase without phase separation; in the other hand, it has a 
finer morphology and smooth surface, demonstrating at this successful polymer ratio of PMMA. While image (B-E), it 
can be seen, that Si3N4/TaC NPs are well dispersed on the surface of the PMMA polymer films and this apparent more 
evident with the increase in the wt.% of Si3N4/TaC. The nanocomposite shows nearly elliptical structure of particles of 
uniform shape. This is because the NPs have a large surface area while the polymeric solution containing different polar 
groups has a high affinity for Si3N4/TaC which leads to the orientation of the nanoparticles within the polymer chain and 
thus the Si3N4/TaC structure becomes more compact and thus the consistency of the material increases. This provided a 
suitable preparation method for preparing nanocomposite films [24-26]. 

   
A B C 

  
D E 

Figure 2. OM images (10×) for (PMMA/Si3N4/TaC) nanocomposites A. pure polymer, B. 2 wt.% of Si3N4/TaC NPs, C. 4 wt.% of 
Si3N4/TaC NPs, D. 6 wt.% of Si3N4/TaC NPs and E. 8 wt.% of Si3N4/TaC NPs 

FTIR spectra provide information on the vibration and rotation of molecular groups in a material. Figure (3) displays 
the FTIR spectra of (PMMA/Si3N4/TaC) nanocomposites in the range wave number (500–4000) cm-1. In the image (A), 
FTIR spectra of (PMMA) polymer reveal an absorption band at 2950.45 cm-1 corresponding to the CH3 bending vibration 
and the band 1723.22 cm-1 attributed to the C=O stretching vibration. CH3 stretching vibration indicate to the band 
1434.60 cm-1. The absorption band at 1142.95 attribute to the symmetric stretching vibration of C-O. The bands 
985.57 cm-1, 698.13 cm-1 and 750.29 cm-1 corresponding to the C−C bending and stretching vibration respectively. The 
spectra of PMMA with variant concentration of Si3N4 and TaC NPs in images B, C, D and E respectively. In image B 
where the additive 2 wt.% Si3N4 and TaC NPs  caused change shift in some bands and intensities at low wavenumber 
(1434.63, 1142.83) cm-1 and high wave number at bands (1723.30, 995.01, 750.01) cm-1but bands 2950.45 cm-1 and 
698.13 cm1 there is not affected on this band while, the image C which additive concentration of 4 wt.% from Si3N4 and 
TaC NPs, affected change shift in some bands and intensities at low wavenumber (995.34, 750.45) cm-1 and high wave 
number at bands (1723.45, 1434, 1143) cm-1but bands 2950.45 cm-1 and 698.13 cm1 there is not affected on this band. the 
image D which additive concentration of 6 wt.% from Si3N4 and TaC NPs, shifted and changed several bands' intensity 
at low wavenumber (995.42, 750.02) cm-1 and high wave number at bands (1723.54, 1434.64, 1143) cm-1but bands 
2950.45 cm-1 and 698.13 cm1 has not been impacted and added concentration of 8 wt.% from Si3N4 and TaC NPs in image 
E, caused shifts in certain bands and intensities at low wavenumber (994.90, 749.93) cm-1 and high wave number at bands 
(1724.04, 1434.68, 1143) cm-1but bands 2950.45 cm-1 and 698.13 cm1 has not been impacted. The FTIR studies show 
that adding different concentration of Si3N4/TaC in images B, C,D and E leads to the displacement of some of the bonds 
and not emergence of new peaks therefore, there is no chemical interaction between Si3N4/TaC nanoparticle and the 
PMMA polymer matrix [27-29]. 
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Equation (1) was used to calculate the dielectric constant (ε') of (PMMA/Si3N4/TaC) nanocomposites. Figure (4) 
explain the dielectric constant of (PMMA/Si3N4/TaC) nanocomposites with frequency. It is note that dielectric constant 
decrease with rising of frequency for all the sample prepare which, as a result of the capabilities of dipoles in 
nano-composites samples to transform in the direction of the applying electric current and the reduction of space charge 
polarization [30-32]. Figure (5) explain the dielectric constant of (PMMA/Si3N4/TaC) nanocomposite with the content of 
nanoparticle at 100 Hz. It is observed that dielectric constant rise with rising of concentration nanoparticle for all 
illustrations of nano-composites. Interfacial polarization in the nanocomposites' internal alternating electric field and an 
increase in the charge carriers are responsible for these processes of (PMMA/Si3N4/TaC) nanocomposite [33-35]. 

Figure 3. FTIR spectra of PMMA/Si3N4/TaC nanocomposites A. pure polymer, B. 2 wt.% of Si3N4/TaC NPs, C. 4 wt.% 
of Si3N4/TaC NPs, D. 6 wt.% of Si3N4/TaC NPs and E. 8 wt.% of Si3N4/TaC NPs 

Figure 4. Variation of dielectric constant with frequency 
of PMMA/Si3N4/TaC nanocomposite 

Figure 5. Effect of Si3N4/TaC nanoparticles concentrations on 
dielectric constant for PMMA/ Si3N4/TaC nanocomposite at 100 Hz 

2

2,5

3

3,5

4

4,5

5

5,5

6

0 1 2 3 4 5 6 7 8

Di
el

ec
tr

ic 
Co

ns
ta

nt

Con. of Si3N4/TaC nanoparticles wt.%

A 

D 

B 

C 

E 



161
Effect of SI3N4/TaC Nanomaterials on the Structural and Electrical Characteristics...     EEJP. 2 (2023)

Equation (2) was used to calculate the dielectric loss (ε˝) of the nanocompsites. Figure (6) shows the relation between 
dielectric loss of PMMA/Si3N4/TaC nanocomposites and frequency. The dielectric losses for nanocomposites reduce as 
the frequency increases for all samples. This phenomenon was linked to a reduction in the contributions of polarization 
of space charges. According to the data, nanocomposites have a substantial dielectric loss at low frequencies. Due to the 
reduced time available for the dipoles to align at high frequencies, the dielectric loss decreases [36-38]. The dielectric 
loss of PMMA/Si3N4/TaC nanocomposites as a function of Si3N4/TaC NPs are shown in Figure (7). From this figure, it 
is note that the dielectric loss rises with rising content of the Si3N4/TaC nanoparticle. This result attributed to increased 
charge on the dipole [39-41].  

  
Figure 6. Variation of dielectric loss with frequency 

of PMMA/Si3N4/TaC nanocomposite 
Figure 7. Influence of Si3N4/TaC NPs concentrations on dielectric 

loss for (PMMA/ Si3N4/TaC) nanocomposite at 100 Hz 

Equation (3) was used to calculate the A.C electrical conductivity. Figure (8) shows the relationship between A.C. 
electrical conductivity of PMMA/Si3N4/TaC nanocomposites and frequency. The mobility of charge carriers and the 
hopping of ions from the cluster cause the A.C electrical conductivity of all specimens to increase as the frequency of the 
electric field increases. At low frequencies, the amount of mobile ions and electrical conductivity decreased due to 
increased charge accumulation at the electrode and electrolyte interface [42-44]. Because charge carriers moved more 
easily at high frequencies, the electrical conductivity of PMMA/Si3N4/TaC nanocomposites increases with frequency 
[45-47]. Figure (9) reveals that the electrical conductivity of nanocomposites rises with the rising of Si3N4/TaC 
nanoparticle content due to rise in the ionic charge carriers and the formation of a continuous network of Si3N4/TaC 
nanoparticles inside polymer matrix [48-50]. The results of the ε', ε˝, and A.C. conductivity are shown in Table (1). 

  
Figure 8. Variation of AC electrical conductivity with 

frequency of PMMA/Si3N4/TaC nanocomposite 
Figure 9. Effect of Si3N4/TaC NPs content on AC electrical 
conductivity for PMMA/Si3N4/TaC nanocomposite at 100Hz 

Table 1. The values of the Dielectric constant, Dielectric loss and AC electrical conductivity at 100 Hz of (PMMA/Si3N4TaC) 
nanocomposites 

Concentration 
of Si3N4/TaC (wt.%) 

Dielectric 
constant Dielectric loss A.C. 

Conductivity (S/cm) 
0 2.86 0.46 2.54E-11 
2 3.61 0.76 4.21E-11 
4 4.19 0.88 4.89E-11 
6 4.71 2.35 1.31E-10 
8 5.37 3.38 1.88E-10 

 
4. CONCLUSION 

This work summaries that the scanning electron microscope (SEM) indicate that the homogenous, smooth and 
dispersed of Si3N4 and TaC NPs inside the PMMA matrix due to strong covalent interaction between the Si3N4 and TaC 
NPs in the PMMA matrix which mean a good method for prepared films. Optical microscope (OM) images explained 
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that when increasing in content of nanoparticles that forming network paths inside the polymeric matrix that act as charge 
carriers. FTIR exhibited that when combined, the polymer and the nanoparticles exist in a physical superposition. at the 
concentrations of Si3N4 and TaC nanoparticles rise, the (PMMA/Si3N4/TaC) nanocomposites ε', ε˝, and A.C conductivity 
also rise. When the frequency is raised, the A.C. electrical conductivity raised while the ε' and ε˝ of nanocomposites 
decreased. This behavior make it may be considered as excellent electronics materials for electrical applications. 

ORCID IDs 
Majeed Ali Habeeb, https://orcid.org/0000-0001-5064-2835 

REFERENCE 
[1] S.S. Al-Abbas, R.A. Ghazi, A.K. Al-shammari, N.R. Aldulaimi, A.R. Abdulridha, S.H. Al-Nesrawy, and E. Al-Bermany,

“Influence of the polymer molecular weights on the electrical properties of Poly (vinyl alcohol)–Poly(ethylene glycols)/Graphene
oxide nanocomposites,” Materials Today: Proceedings, 42, 2469-2474 (2021). https://doi.org/10.1016/j.matpr.2020.12.565

[2] D.R. Paul, and L.M. Robeso, “Polymer nanotechnology: nanocomposites,” Polymer, 49(15), 3187-3204 (2008).
https://doi.org/10.1016/j.polymer.2008.04.017

[3] M.A. Habeeb, “Effect of rate of deposition on the optical parameters of GaAs films,” European Journal of Scientific Research,
57 (3), 478-484 (2011)

[4] [4] G. Aras, E.L. Orhan, I.F. Selçuk, S.B. Ocak, and M. Ertuğrul, “Dielectric Properties of Al/Poly (methylmethacrylate)
(PMMA)/p-Si Structures at Temperatures Below 300 K”, Procedia-Social and Behavioral Sciences, 95, 1740-1745 (2015).
https://doi.org/10.1016/j.sbspro.2015.06.295

[5] M.A. Habeeb, and W.K. Kadhim, “Study the optical properties of (PVA-PVAC-Ti) nanocomposites,” Journal of Engineering
and Applied Sciences, 9(4), 109-113 (2014). https://doi.org/10.36478/jeasci.2014.109.113

[6] K. Sardar, R. Bounds, M. Carravetta, G. Cutts, J.S. Hargreaves, A.L. Hector, and F. Wilson, “Sol–gel preparation of low oxygen
content, high surface area silicon nitride and imidonitride materials,” Dalton Transactions, 45(13), 5765-5774 (2016).
https://doi.org/10.1039/C5DT04961J

[7] S.M. Mahdi, M.A. Habeeb, “Synthesis and augmented optical characteristics of PEO–PVA–SrTiO3–NiO hybrid nanocomposites 
for optoelectronics and antibacterial applications,” Optical and Quantum Electronics, 54(12), 854 (2022).
https://doi.org/10.1007/s11082-022-04267-6

[8] N. Manavizadeh, A. Khodayari, and E. Asl-Soleimani, “An Investigation of the Properties of Silicon Nitride (SiNx) Thin Films
Prepared by RF Sputtering for Application in Solar Cell Technology,” edited by D.Y. Goswami, and Y. Zhao, in: Proceedings of
ISES World Congress 2007, (Vol. I - Vol. V), (Springer, Berlin, Heidelberg, 2008). pp. 1120-1122. https://doi.org/10.1007/978-
3-540-75997-3_220

[9] S.M. Mahdi, and M.A. Habeeb, “Low-cost piezoelectric sensors and gamma ray attenuation fabricated from novel polymeric
nanocomposites,” AIMS Materials Science, 10(2), 288-300 (2023). https://doi.org/10.3934/matersci.2023015

[10] A.R. Farhadizadeh, and H. Ghomi, “Mechanical, structural, and thermodynamic properties of TaC-ZrC ultra-high temperature
ceramics using first principle methods,” Materials Research Express, 7(3), 036502 (2020). https://doi.org/10.1088/2053-1591/ab79d2

[11] M.A. Habeeb, and W.H. Rahdi, “Titanium carbide nanoparticles filled PVA‑PAAm nanocomposites, structural and electrical
characteristics for application in energy storage,” Optical and Quantum Electronics, 55(4), 334 (2023).
https://doi.org/10.1007/s11082-023-04639-6

[12] F.A. Modine, R.W. Major, T.W. Haywood, G.R. Gruzalski, and D.Y. Smith, “Optical properties of tantalum carbide from the
infrared to the near ultraviolet,” Physical Review B, 29(2), 836 (1984). https://doi.org/10.1103/PhysRevB.29.836

[13] M.H. Dwech, M.A. Habeeb, and A.H. Mohammed, “Fabrication and Evaluation of Optical Characteristics of (PVA-MnO2–ZrO2)
Nanocomposites for Nanodevices in Optics and Photonics,” Ukr. J. Phys. 67, (10), 757-762 (2022).
https://doi.org/10.15407/ujpe67.10.757

[14] O.E. Gouda, S.F. Mahmoud, A.A. El-Gendy, and A.S. Haiba, “Improving the Dielectric Properties of High Density Polyethylene
by Incorporating Clay-Nano Filler,” Indonesian Journal of Electrical Engineering, 12(12), 7987-7995 (2014).
https://ijeecs.iaescore.com/index.php/IJEECS/article/download/3909/2449

[15] A.H. Hadi, and M.A. Habeeb, “Effect of CdS nanoparticles on the optical properties of (PVA-PVP) blends,” Journal of
Mechanical Engineering Research and Developments,” 44(3), 265-274 (2021).

[16] H. Shivashankar, A.M. Kevin, P.R. Sondar, M.H. Shrishail, and S.M. Kulkarni, “Study on low-frequency dielectric behavior of
the carbon black/polymer nanocomposite”, J. Mater. Sci.: Mater Electron, 32, 28674–28686 (2021).
https://doi.org/10.1007/s10854-021-07242-1

[17] N. Hayder, M.A. Habeeb, and A. Hashim, “Structural, optical and dielectric properties of (PS-In2O3/ZnCoFe2O4)
nanocomposites,” Egyptian Journal of Chemistry, 63, 577-592 (2020). https://doi.org/10.21608/ejchem.2019.14646.1887

[18] T.S. Praveenkumar, T. Sankarappa, J.S. Ashwajeet, and R. Ramanna, “Dielectric and AC Conductivity Studies in PPy-Ag
Nanocomposites” Journal of Polymers, 2015, 893148 (2015). https://doi.org/10.1155/2015/893148

[19] Q.M. Jebur, A. Hashim, and M.A. Habeeb, “Structural, A.C electrical and optical properties of (polyvinyl alcohol-polyethylene
oxide-aluminum oxide) nanocomposites for piezoelectric devices,” Egyptian Journal of Chemistry, 63, 719-734 (2020).
https://dx.doi.org/10.21608/ejchem.2019.14847.1900

[20] M. Rezvanpour, M. Hasanzadeh, D. Azizi, A. Rezvanpour, and M. Alizadeh, “Synthesis and characterization of
micronanoencapsulated n-eicosane with PMMA shell as novel phase change materials for thermal energy storage,” Mater. Chem.
Phys. 215, 299-304 (2018). https://doi.org/10.1016/j.matchemphys.2018.05.044

[21] M.A. Habeeb, A. Hashim, and N. Hayder, “Fabrication of (PS-Cr2O3/ZnCoFe2O4) nanocomposites and studying their dielectric
and fluorescence properties for IR sensors,” Egyptian Journal of Chemistry, 63, 709-717 (2020).
https://dx.doi.org/10.21608/ejchem.2019.13333.1832

[22] J.B. Ramesh, and K.K. Vijaya, “Studies on structural and electrical properties of NaHCO3 doped PVA films for electrochemical
cell applications”, Chemtech, 7, 171–180 (2014). https://sphinxsai.com/2015/ch_vol7_no1/2/(171-180)%20014.pdf



163
Effect of SI3N4/TaC Nanomaterials on the Structural and Electrical Characteristics...     EEJP. 2 (2023)

[23] S.M. Mahdi, and M.A. Habeeb, “Evaluation of the influence of SrTiO3 and CoO nanofillers on the structural and electrical 
polymer blend characteristics for electronic devices,” Digest Journal of Nanomaterials and Biostructures, 17(3), 941-948 (2022). 
https://doi.org/10.15251/DJNB.2022.173.941 

[24] A. Paydayesh, A.A. Azar, and A.J. Arani, “Investigation the effect of Graphene on The Morphology, Mechanical and Thermal 
properties of PLA/PMMA Blends,” Ciência e Natura, 37, 15-22 (2015). https://doi.org/10.5902/2179460X20823 

[25] A.A. Mohammed, M.A. Habeeb, “Modification and Development of the Structural, Optical and Antibacterial Characteristics of 
PMMA/Si3N4/TaC Nanostructures,” Silicon, (2023). https://doi.org/10.1007/s12633-023-02426-2 

[26] S. Ahmad, and S.A. Agnihotry, “Synthesis and characterization of in situ prepared poly (methyl methacrylate) nanocomposites,” 
Bull. Mater. Sci. 30(1), 31-35 (2007). https://doi.org/10.1007/s12034-007-0006-9 

[27] N.K. Al‑Sharifi, and M.A. Habeeb, Synthesis and Exploring Structural and Optical Properties of Ternary PS/SiC/Sb2O3 
Nanocomposites for Optoelectronic and Antimicrobial Applications, Silicon, (2023). https://doi.org/10.1007/s12633-023-02418-2 

[28] S. Ramesh, and L.C. Wen, “Investigation on the effects of addition of SiO2 nanoparticles on ionic conductivity, FTIR, and thermal 
properties of nanocomposite PMMA–LiCF3SO3–SiO2,” Ionics (Kiel), 16, 255-262 (2010). https://doi.org/10.1007/s11581-009-0388-3 

[29] A. Hashim, M.A. Habeeb, and Q.M. Jebur, “Structural, dielectric and optical properties for (Polyvinyl alcohol-polyethylene oxide 
manganese oxide) nanocomposites,” Egyptian Journal of Chemistry, 63, 735-749 (2020). 
https://dx.doi.org/10.21608/ejchem.2019.14849.1901 

[30] M. Haghighi-Yazdi, and P. Lee-Sullivan, “FTIR analysis of a polycarbonate blend after hygrothermal aging,” Journal of Applied 
Polymer Science, 132(3), (2015). https://doi.org/10.1002/app.41316 

[31] Q.M. Jebur, A. Hashim, and M.A. Habeeb, “Fabrication, structural and optical properties for (Polyvinyl alcohol-polyethylene 
oxide iron oxide) nanocomposites,” Egyptian Jour of Chemistry, 63(2), 611-623 (2020). 
https://dx.doi.org/10.21608/ejchem.2019.10197.1669 

[32] A. Goswami, A.K. Bajpai, and B.K. Sinha, “Designing vanadium pentoxide-carboxymethyl cellulose/polyvinyl alcohol-based 
bionanocomposite films and study of their structure, topography, mechanical, electrical and optical behavior,” Polym. Bull. 75(2), 
781-807 (2018). https://doi.org/10.1007/s00289-017-2067-2 

[33] M.A. Habeeb, and W.S. Mahdi, “Characterization of (CMC-PVP-Fe2O3) nanocomposites for gamma shielding application,” 
International Journal of Emerging Trends in Engineering Research, 7(9), 247-255 (2019). 
https://doi.org/10.30534/ijeter/2019/06792019 

[34] K. Rajesh, V. Crasta, K.N.B. Rithin, G. Shetty, and P.D. Rekha, “Structural, optical, mechanical and dielectric properties of titanium 
dioxide doped PVA/PVP nanocomposite,” J. Polym. Res. 26(4), 1-10 (2019). https://doi.org/10.1007/s10965-019-1762-0 

[35] M.A. Habeeb, R.S.A. Hamza, "Synthesis of (polymer blend –MgO) nanocomposites and studying electrical properties for 
piezoelectric application", Indonesian Journal of Electrical Engineering and Informatics, 6 (4), 428-435 (2018). 
https://doi.org/10.11591/ijeei.v6i1.511 

[36] G. Chakraborty, K. Gupta, D. Rana, and A.M. Kumar, “Dielectric relaxation in polyvinyl alcohol–polypyrrole–multiwall carbon 
nanotube composites below room temperature,” Advances in Natural Sciences, 4, 1-4 (2014). 

[37] M.A. Habeeb, R.S. Abdul Hamza, “Novel of (biopolymer blend-MgO) nanocomposites: Fabrication and characterization for 
humidity sensors,” Journal of Bionanoscience, 12 (3), 328-335 (2018). https://doi.org/10.1166/jbns.2018.1535 

[38] S. Ju, M. Chen, H. Zhang, and Z. Zhang, “Dielectric properties of nanosilica/low-density polyethylene composites: The surface 
chemistry of nanoparticles and deep traps induced nanoparticles,” Journal of express Polymer Letters, 8(9), 682-691 (2014). 
https://doi.org/10.3144/expresspolymlett.2014.71 

[39] M.A. Habeeb, A. Hashim, and N. Hayder, "Structural and optical properties of novel (PS-Cr2O3/ZnCoFe2O4) nanocomposites 
for UV and microwave shielding,” Egyptian Journal of Chemistry, 63, 697-708 (2020). 
https://dx.doi.org/10.21608/ejchem.2019.12439.1774 

[40] O. Abdullah, G.M. Jamal, D.A. Tahir, and S.R. Saeed, “Electrical Characterization of Polyester Reinforced by Carbon Black 
Particles,” International Journal of Applied Physics and Mathematics, 1(2), 101-105 (2011). 
https://doi.org/10.7763/IJAPM.2011.V1.20 

[41] M.A. Habeeb, “Dielectric and optical properties of (PVAc-PEG-Ber) biocomposites,” Journal of Engineering and Applied 
Sciences, 9(4), 102-108 (2014). https://doi.org/10.36478/jeasci.2014.102.108 

[42] R.N. Bhagat, and V.S. Sangawar, “Synthesis and Structural Properties of Polystyrene Complexed with Cadmium Sulfide,” Int. J. 
Sci. Res. 6, 361-365 (2017). https://www.ijsr.net/get_abstract.php?paper_id=ART20177794 

[43] A.H. Hadi, M.A. Habeeb, “The dielectric properties of (PVA-PVP-CdS) nanocomposites for gamma shielding applications,” 
Journal of Physics: Conference Series, 1973(1), 012063 (2021). https://doi.org/10.1088/1742-6596/1973/1/012063 

[44] L. Kungumadevi, R. Sathyamoorthy, and A. Subbarayan, “AC conductivity and dielectric properties of thermally evaporated 
PbTe thin films,” Solid. State. Electron. 54(1), 58-62 (2010). https://doi.org/10.1016/j.sse.2009.09.023 

[45] M.A. Habeeb, and Z.S. Jaber, “Enhancement of Structural and Optical Properties of CMC/PAA Blend by Addition of Zirconium 
Carbide Nanoparticles for Optics and Photonics Applications,” East European Journal of Physics, 4, 176-182 (2022). 
https://doi.org/10.26565/2312-4334-2022-4-18 

[46] R. Dalven, and R. Gill, “Electrical properties of β-Ag2Te and β-Ag 2Se from 4.2°k to 300°K,” J. Appl. Phys. 38(2), 753-756 
(1967). https://doi.org/10.1063/1.1709406 

[47] S.M. Mahdi, and M.A. Habeeb, “Fabrication and Tailored Structural and Dielectric characteristics of (SrTiO3/NiO) Nanostructure 
Doped (PEO/PVA) polymeric Blend for Electronics Fields,” Physics and Chemistry of Solid State, 23(4), 785-792 (2022). 
https://doi.org/10.15330/pcss.23.4.785-792  

[48] Y. Li, H. Porwal, Z. Huang, H. Zhang, E. Bilotti, and T. Peijs, “Enhanced Thermal and Electrical Properties of Polystyrene-
Graphene Nanofibers via Electrospinning,” J. Nanomater. 2016, 4624976 (2016). https://doi.org/10.1155/2016/4624976 

[49] S.M. Mahdi, and M.A. Habeeb, “Tailoring the structural and optical features of (PEO–PVA)/(SrTiO3–CoO) polymeric 
nanocomposites for optical and biological applications,” Polymer Bulletin, (2023). https://doi.org/10.1007/s00289-023-04676-x 

[50] C.M. Mathew, K. Kesavan, and S. Rajendran, “Structural and Electrochemical Analysis of PMMA Based Gel Electrolyte 
Membranes,” Int. J. Electrochem. 2015, 1-7 (2015). https://doi.org/10.1155/2015/494308 



164
EEJP. 2 (2023) Alaa Abass Mohammed, Majeed Ali Habeeb

ВПЛИВ НАНОМАТЕРІАЛІВ Si3N4/TaC НА СТРУКТУРНІ ТА ЕЛЕКТРИЧНІ ХАРАКТЕРИСТИКИ 
ПОЛІМЕТИЛМЕТАКРИЛАТУ ДЛЯ ЕЛЕКТРОТЕХНІКИ ТА ЕЛЕКТРОНІКИ 

Алаа Абас Мохаммед, Маджід Алі Хабіб 
Вавилонський університет, Освітній коледж чистих наук, Фізичний факультет, Ірак 

У цьому дослідженні використовувався метод лиття для отримання нанокомпозитів PMMA/ Si3N4/TaC з різним вмістом 
(0,2,4,6,8) % мас. наночастинок (НЧ) Si3N4/TaC. Досліджено структурні та електричні властивості. Дослідження на 
скануючому електронному мікроскопі (SEM) вказують на однорідність, гладкість і дисперсію НЧ Si3N4 і TaC всередині 
матриці ПММА через сильну ковалентну взаємодію між НЧ Si3N4 і TaC в матриці ПММА, що означає хороший метод для 
підготовлених плівок. Зображення з оптичного мікроскопа пояснюють, що збільшення вмісту наночастинок утворює 
мережеві шляхи всередині полімерної матриці, які діють як носії заряду. Спектри FTIR вказують на фізичну інтерференцію 
між полімерною матрицею та наночастинками. Електричні властивості змінного струму нанокомпозитів показали, що 
діелектрична проникність і діелектричні втрати зростають зі збільшенням вмісту наночастинок і зменшуються зі збільшенням 
частоти прикладеного електричного поля. Тоді як електропровідність змінного струму зростає зі збільшенням частоти та ваги 
наночастинок Si3N4/TaC. Ці результати показали, що наноструктури PMMA/Si3N4/TaC можна вважати перспективними 
матеріалами для електроніки та електричних нанопристроїв. 
Ключові слова: нанокомпозити; ПММА; Si3N4; TaC; електричні властивості змінного струму 
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In this research, we computed transition probabilities, line strength, and oscillator strengths of more than 5000 transitions in C IV. Very 
few values of these spectroscopic characteristics were previously known and reported. The calculation method, based on a combination 
of the weakest bound electron model and numerical approximation, shows reliable values because the correlation between known and 
calculated values is high. The transition probabilities calculated in this work are compared with known values of the NIST database 
and those found in literature, and a reasonably good agreement has been observed. The lifetime of Rydberg levels ns, np, nd, nf, ng has 
been reported up to n = 25. A general sixth-degree polynomial was developed, generating C IV lifetimes with reasonable accuracy. 
Most of the results presented are new. 
Keywords: carbon atom; transition probability; oscillator strength; Rydberg atom; quantum defects 
PACS: 31.10, +z, 31.15.−p, 31.15.Ct, 31.90.+s 

INTRODUCTION 
The star’s atmosphere or other astronomical objects like interstellar nebula have various chemical elements. The 

chemical composition varies from object to object; astronomers can identify it by recording and measuring the relative 
amount of electromagnetic radiation emitted by each. Understanding stellar evolution requires precise abundances of various 
elements, including carbon. The chemical abundance is also vital to understand the complex picture of stars. The study of 
Excited states of atoms is the foundation of quantum mechanics and has grabbed the focus of scientists for many decades. 
Many research papers and articles have been published with the application of the transition state of carbon atoms in 
molecular physics, nanochemistry, medicinal chemistry, environmental chemistry, and material science [1-7]. In 1970, 
Martinson measured the Mean lives of 16 excited levels in C II - C V with the beam-foil technique and found good agreement 
for the C III 2s3d3D - 2s4f3F0 (1923 Å) transition and the C IV 2s2S - 2p2p0 (1548 Å) transition [8]. In 1971, Poulizac also 
used the beam-foil excitation method to study the carbon spectra between 1100 Å and 7000 Å for C I, C II, C III, C IV, and 
C V energy ranging from 0.18 to 2.0 MeV [9]. In 1979, Ganas used a semiempirical approach with Optical oscillator strengths 
for excitations from the valence subshell of C (IV) and N (V) and obtained good agreement with experimental data [10]. In 
1989, Baudinet-Robinet et al. applied the beam-foil-laser method to determine the lifetimes of two levels in multiply ionized 
carbon atoms and found the results for C Ill 2s3d1 D, 0.15±0.01 ns and C IV 3s2 S, 0.21±0.02 ns. These values are in good 
agreement with the theoretical predictions. They also determined these lifetimes using the classical (nonselective) beam-foil 
method and reported ≈ 20% longer than the beam-foil-laser values. These factors limit the accuracy of the lifetime 
determinations by the beam-foil-laser method [11]. In 1996, Gou used the multichannel saddle-point and saddle-point 
complex-rotation methods for Seven triply excited states of lithium-like beryllium and carbon, using first-order perturbation 
theory [12]. In 1997, Cheng improved the energy levels in neutral carbon using high-resolution infrared solar spectra. The 
main source is the ATMOS spectrum measured by the Fourier transform spectroscopy technique from 600 to 4800 cm-1, 
supplemented by the MARK IV balloon data, covering 4700 to 5700 cm-1 [13]. P. Quinet, in 1998, by using the Ritz and the 
polarization methods, calculated the term energies up to 𝑛 =  30 and 𝑙 ≥  3 in C II, C III, and C IV. His article also reported 
the predicted wavelengths for these lines of high-nl term energies and the related oscillator strengths [14]. 
Nengwu Zheng et al., in 2001, by employing the WBEPM, computed transition probabilities of C I, C II, C III, and C IV. 
They calculated the required parameters for the calculation of transition probabilities through a proposed coupled equation 
which relates the energy and radial expectation value 〈𝑟〉௡௟ of the Weakest Bound Electron [15]. In 2004, Agarwal 
investigated Energy levels and radiative rates for transitions among the lowest 24 fine structure levels belonging to the 1s2 nl 
(n ≤ 5) configurations of C IV using the fully relativistic GRASP code. Additionally, collision strengths for transitions among 
these levels have been computed over a wide energy range below 28 Ry using the Dirac Atomic R-matrix Code [16]. In 
2002, Nengwu Zheng and Tao Wang computed the radiative lifetimes, transition probabilities, and oscillator strengths for 
individual lines of different transitions for atomic carbon and oxygen. In their article, WBEPM theory has been employed 
for calculations [17]. Zheng et al., in 2004, developed a unified WBEPM theory in which they presented the relativistic form 
of the theory and combined it with the non-relativistic form they proposed earlier. They have employed the newly proposed 
theory for calculating transition probabilities and F II oscillator strength, carbon atom energy levels, and Ionization potential 
for oxygen-like ions [18]. In 2018, Lischka introduced the progress in time-resolved spectroscopy to explain the 
characteristic features of excited states accurately. At the same time, the stable molecule's electronic ground state problems 
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can efficiently solve with the implementation of quantum chemical methodology [19]. In 2020, Li et al. worked with the 
multiconfiguration Dirac-Hartree-Fock and Relativistic Configuration Interaction methods for the General-purpose 
Relativistic Atomic Structure Package GRASP2K to compute the Landé g-factors for states in C I−IV and other atoms. 
Further, they compared the accuracy of the wave functions for the states and the resulting Landé g-factors' accuracy with the 
computed excitation energies and energy separations with the National Institute of Standards and Technology (NIST) 
recommended data [20]. In 2022, Whang et al. employed a neural network machine learning method to simulate interatomic 
potentials for the structural properties of several carbon structures. First-principles Density Functional Theory (DFT) 
calculations are used to train the potential with a database of crystalline and liquid structures. The excellent accuracy and 
transferability of the NNP provide a promising tool for accurate atomistic simulations of various carbon materials with faster 
speed and much lower cost [21]. 

THEORY 
Due to its complex nature, the Schrodinger equation for atoms and ions having many electrons is difficult to solve. 

However, an approximate solution for the hydrogen atom exists, with only one electron in its outermost shell. Like the 
hydrogen atom, some atoms have only one electron in the outermost shells; thus, the interaction terms are no longer 
required in the equation for the hydrogen-like atom. Hence Schrodinger equation for hydrogen atoms can be used for such 
atoms and ions with the approximation that all other electrons in the inner shells together with the nucleus form the core, 
like the hydrogen atom, e.g., hydrogen-like atoms and ions are Li I, Be II, B III, C IV, N V, and O VI. The theory used 
in this work is the same as in [22]. The Schrodinger equation for hydrogen-like atoms and ions is given by, ቀ ௗమௗ௥మ − 2𝑉ሺ𝑟ሻ − ௟∗ሺ௟∗ାଵሻ௥మ + 2𝐸ቁ𝑃ሺ𝑟ሻ = 𝑜, (1)

Here 𝑃ሺ𝑟ሻ = 𝑟𝑅(𝑟), and 𝑅(𝑟) is the radial wavefunction, ௟∗(௟∗ାଵ)௥మ + 𝑉(𝑟) = ௟(௟ାଵ)௥మ + ஻௥మ + ஺௥ (2)

The first term on the right side ቀ௟(௟ାଵ)௥మ ቁ is the same as for hydrogen atom, the second term ቀ஻௥మ + ஺௥ቁ is the total 
potential felt by the weakest bound electron. The energy of hydrogen-like atoms and ions is given by, 𝐸 = ௓∗మଶ௡∗మ (3)𝑛∗ = 𝑛 − 𝛿௡ and 𝑙∗ = 𝑙 − 𝛿௟ are effective principal and orbital quantum numbers for hydrogen-like atoms and ions. 𝛿 is 
a quantum defect in principal and orbital quantum numbers (𝑛, 𝑙). The quantum defect can be expressed as a polynomial 
in 𝑥, where 𝑥 is 1/(𝑛 − 𝛿௢), the 𝛿௢ is the lowest value of quantum defect. The radial function can be defined as 𝑅(𝑟) = ௉(௥)௥ , 
and can be expressed in terms of associated Laguerre polynomials.  

The transition probability 𝐴௙௜ of a transition for spontaneous emission between levels ൫𝑛௙, 𝑙௙൯ & (𝑛௜, 𝑙௜) is given as, 𝐴௙௜ = 2.0261 × 10ି଺ ൫ா೑ିா೔൯యଶ௟೔ାଵ 𝑆 (4)𝐸௙ > 𝐸௜ and are energies of upper and lower levels, S is the electric dipole line strength; it is proportional to the dipole 
matrix element 𝑃௟೔௟೑(ଵ) which is given as,𝑃௟೔௟೑(ଵ) = 𝑙வ < 𝑛௜ , 𝑙௜|𝑟|𝑛௙, 𝑙௙ > = 𝑙வ ׬ 𝑟ଷஶ଴ 𝑅௡೔௟೔𝑅௡೑௟೑𝑑𝑟 (5)

The lifetime (𝜏) of Rydberg levels can be found by the following equation; 𝜏௜ = ଵ∑ ஺೑೔೑ (6)

RESULT AND DISCUSSION 
The Martin formula was used to calculate energies and quantum defects of the Rydberg lithium levels like C IV. These 

results calculated transition probabilities, oscillator strength, and line strength of five thousand two hundred and fifty 
transitions. The transition probability mainly depends on the energy difference of the levels involved in the transition and 
the line strength of the transition. Due to the unavailability of the wavefunction for the atoms and ions, it isn't easy to calculate 
line strength which depends on the dipole matrix element. However, the Weakest Bound Electron Potential Model (WBEPM) 
suggests hydrogen-like wavefunction for lithium-like atoms and ions. This wavefunction for C IV was used, and dipole 
integral was evaluated using the wavefunction of WBEPM; consequently, line strength was evaluated, which was further 
used in calculating transition probability. The energy levels of ns, np, nd, nf, and ng up to 𝑛 =  30 have been calculated; 
using selection rules, more than 5250 transitions in C IV were studied. In Table I, the first column gives the configuration of 
the upper and lower levels of the transition (nlj). The first letter represents the principal quantum number, the second is the 
sub-orbital corresponding to the orbital quantum number, and the term in the bracket is the total angular momentum of the 
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level. The second column gives the transition probabilities determined in this work, NIST values, and Zheng's work. The 
third and fourth columns give oscillator strengths & line strengths determined in this work and NIST values.  

Out of these 5250, only 225 transition probabilities are given on the NIST site, the comparison of these transition 
probabilities with those calculated in this work has a percentage error of less than 1% in most cases, and in a few cases, 
it is up to 7%. Similar is the case upon comparing the transition probabilities of Zheng's work and this study. However, 
there is one transition in each comparison with NIST data and Zheng's work, where a large deviation is seen from this 
work, as mentioned below. 
 

The Transition 1s28s – 1s22p 
The transition probabilities for the transitions 1s28s3/2 – 1s22p1/2 and 1s28s1/2 – 1s22p3/2 determined in this work are 

5.75×107 and 1.15×108, the corresponding values in the NIST data are 1.66×109, and 3.22×109, respectively. 
A difference of 99% between them can be seen. NIST data classifies these transitions in accuracy code B, which means 
it has 10% or fewer errors. As mentioned below, Zheng did not measure this transition where a large deviation is seen 
from this work. 
 

The Transition 1s23d-1s22p 
The transition probabilities for the transitions 1s23d3/2 – 1s22p1/2 determined in this work are 1.52×1010, and the 

corresponding value in Zheng's work is 1.47×106. A big difference is observed between the two, whereas the reported 
value in the NIST database is close to the value determined in this work (1.46×1010). NIST data classifies it in accuracy 
code B, which means it has a 10% or less error. The maximum probability is found for the transition 1s23d – 1s22p. 

Fig. 1 compares transition probabilities calculated in this work and listed in the NIST database. An approximate 
straight-line graph among transition probabilities between this work and NIST values indicates a good agreement between 
both. The correlation coefficient between these probabilities is 0.999. 

Since many transition probabilities are known, all possible transition probabilities from each level are known; hence 
equation (6) can be used to find the lifetime of the levels. The lifetimes of Rydberg levels 1s2 ns, 1s2 np, 1s2 nd, 1s2 nf, 
and 1s2 ng up to n = 25 have also been determined. Table II gives the values of the lifetime of the corresponding level. 
Table I. List of transition calculated transition probabilities, oscillator strengths, and line strength compared with corresponding values 
in the NIST database. 

Configurations Transition Probability Oscillator Strength Line Strength 
Lower level - Upper level This Work NIST Zheng (×108) This Work NIST NIST This Work 

2p1/2 → 3d3/2  1.516E+10 1.460E+10 0.0147 0.6690 0.6460 1.6913 1.6300 
3p1/2 → 3d3/2  4.872E+05 4.890E+05 0.0049 0.0625 0.0629 8.5221 8.5700 
2p3/2 → 3d3/2  3.030E+09 2.920E+09 29.3400 0.0669 0.0646 0.3385 0.3270 
3p3/2 → 3d3/2  9.553E+04 9.580E+04 0.0010 0.0062 0.0062 1.7043 1.7100 
2p1/2 → 4d3/2  5.045E+09 4.900E+09 49.7400 0.1262 0.1230 0.2402 0.2340 
3p1/2 → 4d3/2  1.508E+09 1.470E+09 14.5600 0.5537 0.5410 4.0374 3.9400 
4p1/2 → 4d3/2  1.527E+05 1.530E+05 0.0015 0.1115 0.1120 36.2447 36.4000 
2p3/2 → 4d3/2  1.008E+09 9.780E+08 9.9400 0.0126 0.0123 0.0480 0.0467 
3p3/2 → 4d3/2  3.016E+08 2.940E+08 2.9130 0.0554 0.0541 0.8084 0.7890 
4p3/2 → 4d3/2  2.995E+04 3.000E+04 0.0003 0.0111 0.0111 7.2487 7.2700 
2p1/2 → 5d3/2  2.340E+09 2.280E+09 23.2400 0.0471 0.0460 0.0805 0.0786 
3p1/2 → 5d3/2  7.614E+08 7.430E+08 7.4390 0.1352 0.1320 0.6854 0.6700 
4p1/2 → 5d3/2  3.026E+08 2.970E+08 2.9330 0.5239 0.5150 8.2970 8.1600 
5p1/2 → 5d3/2  5.523E+04 5.520E+04 0.0006 0.1551 0.1550 98.9188 99.0000 
2p3/2 → 5d3/2  4.676E+08 4.550E+08 4.6440 0.0047 0.0046 0.0161 0.0157 
3p3/2 → 5d3/2  1.522E+08 1.480E+08 1.4880 0.0135 0.0132 0.1371 0.1340 
4p3/2 → 5d3/2  6.054E+07 5.930E+07 0.5869 0.0524 0.0515 1.6616 1.6300 
5p3/2 → 5d3/2  1.082E+04 1.080E+04 0.0001 0.0154 0.0154 19.7832 19.8000 
2p1/2 → 6d3/2  1.287E+09 1.250E+09 12.8200 0.0233 0.0226 0.0376 0.0366 
3p1/2 → 6d3/2  4.293E+08 4.190E+08 4.2150 0.0561 0.0549 0.2441 0.2390 
4p1/2 → 6d3/2  1.842E+08 1.800E+08 1.8000 0.1386 0.1360 1.4475 1.4200 
5p1/2 → 6d3/2  8.861E+07 8.720E+07 0.8621 0.5232 0.5160 15.3016 15.1000 
6p1/2 → 6d3/2  2.325E+04 2.180E+04  0.1961 0.1840 216.7812 204.0000 
2p3/2 → 6d3/2  2.571E+08 2.500E+08 2.5630 0.0023 0.0023 0.0075 0.0073 
3p3/2 → 6d3/2  8.582E+07 8.380E+07 0.8428 0.0056 0.0055 0.0488 0.0478 
4p3/2 → 6d3/2  3.684E+07 3.600E+07 0.3601 0.0139 0.0136 0.2897 0.2840 
5p3/2 → 6d3/2  1.773E+07 1.740E+07  0.0524 0.0515 3.0652 3.0100 
6p3/2 → 6d3/2  4.550E+03 4.280E+03  0.0195 0.0183 43.3555 40.9000 
2p3/2 → 3d5/2  1.818E+10 1.750E+10 176.0300 0.6022 0.5810 3.0462 2.9400 
3p3/2 → 3d5/2 5.770E+05 5.790E+05 0.0058 0.0560 0.0563 15.3405 15.4000 
2p3/2 → 4d5/2 6.050E+09 5.870E+09  0.1136 0.1100 0.4324 0.4210 
3p3/2 → 4d5/2 1.809E+09 1.760E+09 17.4700 0.4986 0.4860 7.2736 7.0900 
4p3/2 → 4d5/2 1.808E+05 1.810E+05 0.0018 0.0999 0.1000 65.2427 65.4000 
2p3/2 → 5d5/2 2.806E+09 2.730E+09 27.8700 0.0424 0.0414 0.1449 0.1410 
3p3/2 → 5d5/2 9.135E+08 8.910E+08 8.9260 0.1217 0.1190 1.2343 1.2100 
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Configurations Transition Probability Oscillator Strength Line Strength 
Lower level - Upper level This Work NIST Zheng (×108) This Work NIST NIST This Work 

4p3/2 → 5d5/2 3.632E+08 3.560E+08 3.5210 0.4719 0.4630 14.9503 14.7000 
5p3/2 → 5d5/2 6.524E+04 6.520E+04 0.0007 0.1389 0.1390 178.0578 178.0000 
2p3/2 → 6d5/2 1.543E+09 1.500E+09 15.3800 0.0209 0.0204 0.0677 0.0660 
3p3/2 → 6d5/2 5.149E+08 5.030E+08 5.0570 0.0505 0.0494 0.4395 0.4300 
4p3/2 → 6d5/2 2.210E+08 2.160E+08 2.1600 0.1248 0.1220 2.6069 2.5500 
5p3/2 → 6d5/2 1.064E+08 1.050E+08 1.0350 0.4713 0.4660 27.5757 27.3000 
6p3/2 → 6d5/2 2.747E+04 2.580E+04 0.1756 0.1650 390.2184 367.0000 
2s1/2 → 2p1/2 2.726E+08 2.640E+08 2.6490 0.0981 0.0952 1.0017 0.9720 
2s1/2 → 3p1/2 4.598E+09 4.630E+09 43.5200 0.0671 0.0678 0.1381 0.1390 
3s1/2 → 3p1/2 3.186E+07 3.160E+07 0.3140 0.1612 0.1600 6.1694 6.1300 
3d3/2 → 4p1/2 1.238E+08 1.280E+08 0.0266 0.0138 0.2100 0.2180 
2s1/2 → 4p1/2 2.258E+09 2.270E+09 21.0900 0.0203 0.0204 0.0327 0.0329 
3s1/2 → 4p1/2 5.054E+08 5.030E+08 4.9210 0.0680 0.0678 0.4245 0.4230 
4s1/2 → 4p1/2 7.144E+06 7.110E+06 0.0709 0.2205 0.2200 20.8530 20.8000 
3d3/2 → 5p1/2 5.230E+07 5.470E+07 0.0051 0.0027 0.0270 0.0283 
4d3/2 → 5p1/2 6.511E+07 6.670E+07 0.0657 0.0337 1.1224 1.1500 
2s1/2 → 5p1/2 1.207E+09 1.210E+09 11.2100 0.0090 0.0090 0.0131 0.0132 
3s1/2 → 5p1/2 3.117E+08 3.110E+08 3.0070 0.0219 0.0219 0.0987 0.0986 
4s1/2 → 5p1/2 1.083E+08 1.080E+08 1.0650 0.0718 0.0717 0.9954 0.9940 
5s1/2 → 5p1/2 2.263E+06 2.260E+06 0.0225 0.2785 0.2790 52.5840 52.6000 
3d3/2 → 6p1/2 2.722E+07 2.860E+07 0.0019 0.0010 0.0086 0.0091 
4d3/2 → 6p1/2 3.191E+07 3.290E+07 0.0131 0.0068 0.1424 0.1470 
5d3/2 → 6p1/2 3.251E+07 3.310E+07 0.1115 0.0569 3.5159 3.5900 
2s1/2 → 6p1/2 7.113E+08 7.150E+08 0.0048 0.0048 0.0067 0.0068 
3s1/2 → 6p1/2 1.914E+08 1.910E+08 0.0102 0.0102 0.0398 0.0398 
4s1/2 → 6p1/2 7.601E+07 7.560E+07 0.0236 0.0235 0.2238 0.2230 
5s1/2 → 6p1/2 3.319E+07 3.300E+07 0.0770 0.0766 1.9943 1.9900 
6s1/2 → 6p1/2 8.893E+05 8.940E+05 0.3358 0.3380 111.0743 112.0000 
3d3/2 → 7p1/2 1.609E+07 1.700E+07 0.0010 0.0005 0.0039 0.0042 
4d3/2 → 7p1/2 1.817E+07 1.880E+07 0.0050 0.0026 0.0449 0.0465 
5d3/2 → 7p1/2 1.763E+07 1.810E+07 0.0227 0.0117 0.4396 0.4520 
6d3/2 → 7p1/2 1.707E+07 1.730E+07 0.1615 0.0820 8.4548 8.5800 
2s1/2 → 7p1/2 4.521E+08 4.550E+08 0.0029 0.0029 0.0039 0.0040 
3s1/2 → 7p1/2 1.239E+08 1.240E+08 0.0057 0.0057 0.0206 0.0206 
4s1/2 → 7p1/2 5.102E+07 5.080E+07 0.0112 0.0112 0.0892 0.0890 
5s1/2 → 7p1/2 2.529E+07 2.520E+07 0.0254 0.0254 0.4340 0.4330 
6s1/2 → 7p1/2 1.271E+07 1.260E+07 0.0827 0.0821 3.5929 3.5700 
7s1/2 → 7p1/2 4.049E+05 4.080E+05 0.3928 0.3960 208.2167 210.0000 
3d3/2 → 8p1/2 1.034E+07 1.100E+07 0.0006 0.0003 0.0022 0.0023 
4d3/2 → 8p1/2 1.142E+07 1.180E+07 0.0025 0.0013 0.0203 0.0210 
5d3/2 → 8p1/2 1.072E+07 1.100E+07 0.0088 0.0046 0.1367 0.1410 
6d3/2 → 8p1/2 9.956E+06 1.010E+07 0.0334 0.0170 1.0434 1.0600 
2s1/2 → 8p1/2 3.044E+08 3.070E+08 0.0019 0.0019 0.0025 0.0025 
3s1/2 → 8p1/2 8.427E+07 8.400E+07 0.0035 0.0035 0.0122 0.0122 
4s1/2 → 8p1/2 3.524E+07 3.510E+07 0.0063 0.0063 0.0459 0.0458 
5s1/2 → 8p1/2 1.805E+07 1.800E+07 0.0122 0.0122 0.1701 0.1700 
6s1/2 → 8p1/2 1.025E+07 1.020E+07 0.0273 0.0272 0.7597 0.7570 
7s1/2 → 8p1/2 5.673E+06 5.570E+06 0.0889 0.0875 5.9918 5.8900 
8s1/2 → 8p1/2 2.052E+05 2.070E+05 0.4495 0.4540 358.0851 361.0000 
3d3/2 → 9p1/2 7.064E+06 7.580E+06 0.0004 0.0002 0.0013 0.0014 
4d3/2 → 9p1/2 7.680E+06 7.780E+06 0.0015 0.0008 0.0111 0.0113 
5d3/2 → 9p1/2 7.060E+06 7.280E+06 0.0045 0.0023 0.0613 0.0633 
6d3/2 → 9p1/2 6.365E+06 6.650E+06 0.0131 0.0069 0.3207 0.3360 
2s1/2 → 9p1/2 2.145E+08 2.110E+08 0.0013 0.0013 0.0017 0.0017 
3s1/2 → 9p1/2 5.973E+07 5.940E+07 0.0023 0.0023 0.0079 0.0079 
4s1/2 → 9p1/2 2.518E+07 2.460E+07 0.0040 0.0039 0.0272 0.0266 
5s1/2 → 9p1/2 1.307E+07 1.290E+07 0.0070 0.0069 0.0868 0.0858 
6s1/2 → 9p1/2 7.656E+06 7.700E+06 0.0131 0.0132 0.2930 0.2950 
7s1/2 → 9p1/2 4.770E+06 4.700E+06 0.0293 0.0289 1.2363 1.2200 
8s1/2 → 9p1/2 2.828E+06 2.850E+06 0.0953 0.0962 9.4203 9.5100 
9s1/2 → 9p1/2 1.128E+05 1.130E+05 0.5061 0.5070 576.9346 578.0000 
2s1/2 → 2p3/2  2.741E+08 2.650E+08 2.6630 0.1966 0.1900 2.0040 1.9400 
2s1/2 → 3p3/2  4.593E+09 4.630E+09 43.4500 0.1341 0.1360 0.2758 0.2790 
3s1/2 → 3p3/2  3.205E+07 3.170E+07 0.3160 0.3230 0.3200 12.3406 12.2000 
3d3/2 → 4p3/2  1.235E+07 1.280E+07 0.0053 0.0028 0.0419 0.0435 
3d5/2 → 4p3/2  1.112E+08 1.150E+08 0.0319 0.0165 0.3774 0.3910 
2s1/2 → 4p3/2  2.256E+09 2.270E+09 21.0700 0.0405 0.0408 0.0653 0.0658 
3s1/2 → 4p3/2  5.047E+08 5.040E+08 4.9120 0.1358 0.1360 0.8474 0.8480 
4s1/2 → 4p3/2  7.185E+06 7.150E+06 0.0713 0.4419 0.4410 41.7094 41.6000 
3d3/2 → 5p3/2  5.220E+06 5.470E+06 0.0010 0.0005 0.0054 0.0057 
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Configurations Transition Probability Oscillator Strength Line Strength 
Lower level - Upper level This Work NIST Zheng (×108) This Work NIST NIST This Work 

4d3/2 → 5p3/2  6.499E+06 6.680E+06  0.0131 0.0068 0.2240 0.2310 
3d5/2 → 5p3/2  4.700E+07 4.920E+07  0.0061 0.0032 0.0486 0.0510 
4d5/2 → 5p3/2  5.851E+07 6.010E+07  0.0787 0.0405 2.0170 2.0800 
2s1/2 → 5p3/2  1.206E+09 1.210E+09 11.2000 0.0179 0.0180 0.0263 0.0264 
3s1/2 → 5p3/2  3.114E+08 3.110E+08 3.0020 0.0437 0.0437 0.1971 0.1970 
4s1/2 → 5p3/2  1.081E+08 1.080E+08 1.0630 0.1433 0.1430 1.9863 1.9900 
5s1/2 → 5p3/2  2.277E+06 2.270E+06 0.0227 0.5582 0.5570 105.1729 105.0000 
3d3/2 → 6p3/2  2.717E+06 2.860E+06  0.0004 0.0002 0.0017 0.0018 
4d3/2 → 6p3/2  3.186E+06 3.290E+06  0.0026 0.0014 0.0284 0.0294 
5d3/2 → 6p3/2   3.245E+06 3.310E+06  0.0223 0.0114 0.7015 0.7170 
3d5/2 → 6p3/2  2.446E+07 2.580E+07  0.0023 0.0012 0.0155 0.0164 
4d5/2 → 6p3/2  2.868E+07 2.960E+07  0.0157 0.0081 0.2560 0.2650 
5d5/2 → 6p3/2  2.922E+07 2.980E+07  0.1336 0.0683 6.3171 6.4500 
2s1/2 → 6p3/2  7.108E+08 7.150E+08  0.0096 0.0097 0.0134 0.0135 
3s1/2 → 6p3/2  1.912E+08 1.910E+08  0.0203 0.0203 0.0796 0.0796 
4s1/2 → 6p3/2  7.589E+07 7.560E+07  0.0471 0.0470 0.4468 0.4460 
5s1/2 → 6p3/2  3.312E+07 3.300E+07  0.1535 0.1530 3.9781 3.9700 
6s1/2 → 6p3/2  8.951E+05 9.000E+05  0.6731 0.6780 222.1530 224.0000 
3d3/2 → 7p3/2  1.605E+06 1.700E+06  0.0002 0.0001 0.0008 0.0008 
4d3/2 → 7p3/2  1.814E+06 1.880E+06  0.0010 0.0005 0.0090 0.0093 
5d3/2 → 7p3/2  1.760E+06 1.810E+06  0.0045 0.0023 0.0877 0.0904 
6d3/2 → 7p3/2  1.704E+06 1.730E+06  0.0322 0.0164 1.6868 1.7200 
3d5/2 → 7p3/2  1.445E+07 1.530E+07  0.0011 0.0006 0.0071 0.0075 
4d5/2 → 7p3/2  1.633E+07 1.690E+07  0.0060 0.0031 0.0807 0.0836 
5d5/2 → 7p3/2  1.584E+07 1.620E+07  0.0272 0.0140 0.7901 0.8090 
6d5/2 → 7p3/2  1.534E+07 1.560E+07  0.1935 0.0985 15.1918 15.5000 
2s1/2 → 7p3/2  4.517E+08 4.550E+08  0.0058 0.0058 0.0078 0.0079 
3s1/2 → 7p3/2  1.238E+08 1.240E+08  0.0113 0.0113 0.0411 0.0412 
4s1/2 → 7p3/2  5.095E+07 5.080E+07  0.0223 0.0223 0.1781 0.1780 
5s1/2 → 7p3/2  2.524E+07 2.520E+07  0.0508 0.0508 0.8662 0.8660 
6s1/2 → 7p3/2  1.268E+07 1.260E+07  0.1650 0.1640 7.1649 7.1300 
7s1/2 → 7p3/2  4.077E+05 4.100E+05  0.7874 0.7930 416.4325 420.0000 
3d3/2 → 8p3/2  1.032E+06 1.100E+06  0.0001 0.0001 0.0004 0.0005 
4d3/2 → 8p3/2  1.140E+06 1.180E+06  0.0005 0.0003 0.0041 0.0042 
5d3/2 → 8p3/2  1.070E+06 1.100E+06  0.0018 0.0009 0.0273 0.0281 
6d3/2 → 8p3/2  9.939E+05 1.010E+06  0.0067 0.0034 0.2083 0.2120 
3d5/2 → 8p3/2  9.294E+06 9.870E+06  0.0007 0.0004 0.0039 0.0041 
4d5/2 → 8p3/2  1.026E+07 1.070E+07  0.0030 0.0016 0.0365 0.0381 
5d5/2 → 8p3/2  9.633E+06 9.910E+06  0.0106 0.0055 0.2457 0.2530 
6d5/2 → 8p3/2  8.948E+06 9.130E+06  0.0401 0.0205 1.8754 1.9200 
2s1/2 → 8p3/2  3.042E+08 3.070E+08  0.0038 0.0038 0.0050 0.0051 
3s1/2 → 8p3/2  8.418E+07 8.400E+07  0.0070 0.0070 0.0243 0.0243 
4s1/2 → 8p3/2  3.519E+07 3.510E+07  0.0127 0.0127 0.0916 0.0916 
5s1/2 → 8p3/2  1.802E+07 1.800E+07  0.0243 0.0243 0.3397 0.3400 
6s1/2 → 8p3/2  1.023E+07 1.020E+07  0.0546 0.0545 1.5162 1.5100 
7s1/2 → 8p3/2  5.658E+06 5.570E+06  0.1773 0.1750 11.9461 11.8000 
8s1/2 → 8p3/2  2.067E+05 2.080E+05  0.9012 0.9090 716.1562 722.0000 
3d3/2 → 9p3/2  7.049E+05 7.580E+05  0.0001 0.0000 0.0003 0.0003 
4d3/2 → 9p3/2  7.666E+05 7.780E+05  0.0003 0.0002 0.0022 0.0023 
5d3/2 → 9p3/2  7.048E+05 7.280E+05  0.0009 0.0005 0.0122 0.0127 
6d3/2 → 9p3/2  6.355E+05 6.650E+05  0.0026 0.0014 0.0640 0.0671 
3d5/2 → 9p3/2  6.347E+06 6.820E+06  0.0004 0.0002 0.0024 0.0026 
4d5/2 → 9p3/2  6.902E+06 7.010E+06  0.0018 0.0009 0.0200 0.0203 
5d5/2 → 9p3/2  6.345E+06 6.550E+06  0.0054 0.0028 0.1101 0.1140 
6d5/2 → 9p3/2  5.721E+06 5.980E+06  0.0157 0.0082 0.5765 0.6040 
2s1/2 → 9p3/2  2.144E+08 2.110E+08  0.0026 0.0026 0.0034 0.0034 
3s1/2 → 9p3/2  5.967E+07 5.940E+07  0.0047 0.0047 0.0157 0.0157 
4s1/2 → 9p3/2  2.515E+07 2.460E+07  0.0080 0.0078 0.0543 0.0533 
5s1/2 → 9p3/2  1.305E+07 1.290E+07  0.0139 0.0138 0.1733 0.1720 
6s1/2 → 9p3/2  7.642E+06 7.700E+06  0.0262 0.0265 0.5848 0.5900 
7s1/2 → 9p3/2  4.760E+06 4.700E+06  0.0585 0.0578 2.4668 2.4400 
8s1/2 → 9p3/2  2.821E+06 2.850E+06  0.1901 0.1920 18.7786 19.0000 
9s1/2 → 9p3/2  1.136E+05 1.130E+05  1.0146 1.0100 1153.8298 1150.0000 
2p1/2 → 3s1/2  1.415E+09 1.420E+09  0.0372 0.0375 0.1029 0.1030 
2p3/2 → 3s1/2 2.831E+09 2.850E+09  0.0373 0.0376 0.2061 0.2080 
2p1/2 → 4s1/2 5.260E+08 5.320E+08  0.0069 0.0070 0.0136 0.0137 
3p1/2 → 4s1/2 3.574E+08 3.590E+08  0.0809 0.0814 0.6554 0.6600 
2p3/2 → 4s1/2 1.052E+09 1.060E+09  0.0069 0.0070 0.0271 0.0274 
3p3/2 → 4s1/2 7.153E+08 7.180E+08  0.0810 0.0815 1.3131 1.3200 
2p1/2 → 5s1/2 2.535E+08 2.570E+08  0.0026 0.0027 0.0045 0.0046 
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Configurations Transition Probability Oscillator Strength Line Strength 
Lower level - Upper level This Work NIST Zheng (×108) This Work NIST NIST This Work 

3p1/2 → 5s1/2 1.623E+08 1.630E+08 0.0155 0.0156 0.0812 0.0818 
4p1/2 → 5s1/2 1.165E+08 1.170E+08 0.1270 0.1280 2.2562 2.2700 
2p3/2 → 5s1/2 5.072E+08 5.150E+08 0.0026 0.0027 0.0090 0.0092 
3p3/2 → 5s1/2 3.247E+08 3.260E+08 0.0155 0.0156 0.1626 0.1640 
4p3/2 → 5s1/2 2.332E+08 2.340E+08 0.1272 0.1280 4.5199 4.5400 
2p1/2 → 6s1/2 1.416E+08 1.430E+08 0.0013 0.0013 0.0021 0.0021 
3p1/2 → 6s1/2 8.824E+07 8.880E+07 0.0060 0.0060 0.0264 0.0266 
4p1/2 → 6s1/2 5.977E+07 6.000E+07 0.0245 0.0246 0.2663 0.2680 
5p1/2 → 6s1/2 4.621E+07 4.640E+07 0.1741 0.1750 5.7538 5.7900 
2p3/2 → 6s1/2 2.834E+08 2.850E+08 0.0013 0.0013 0.0042 0.0043 
3p3/2 → 6s1/2 1.765E+08 1.770E+08 0.0060 0.0060 0.0529 0.0531 
4p3/2 → 6s1/2 1.196E+08 1.200E+08 0.0245 0.0246 0.5332 0.5360 
5p3/2 → 6s1/2 9.249E+07 9.270E+07 0.1744 0.1750 11.5276 11.6000 
2p1/2 → 7s1/2 8.720E+07 8.660E+07 0.0007 0.0007 0.0012 0.0012 
3p1/2 → 7s1/2 5.351E+07 5.390E+07 0.0030 0.0031 0.0122 0.0124 
4p1/2 → 7s1/2 3.527E+07 3.540E+07 0.0095 0.0096 0.0844 0.0849 
5p1/2 → 7s1/2 2.575E+07 2.580E+07 0.0336 0.0338 0.6541 0.6570 
6p1/2 → 7s1/2 2.111E+07 2.120E+07 0.2219 0.2230 12.2465 12.3000 
2p3/2 → 7s1/2 1.745E+08 1.730E+08 0.0007 0.0007 0.0024 0.0023 
3p3/2 → 7s1/2 1.071E+08 1.080E+08 0.0030 0.0031 0.0245 0.0248 
4p3/2 → 7s1/2 7.057E+07 7.080E+07 0.0095 0.0096 0.1689 0.1700 
5p3/2 → 7s1/2 5.152E+07 5.170E+07 0.0337 0.0338 1.3098 1.3200 
6p3/2 → 7s1/2 4.224E+07 4.230E+07 0.2222 0.2230 24.5370 24.6000 
2p1/2 → 8s1/2 5.751E+07 1.610E+09 0.0005 0.0132 0.0007 0.0204 
3p1/2 → 8s1/2 3.497E+07 3.520E+07 0.0018 0.0018 0.0068 0.0069 
4p1/2 → 8s1/2 2.269E+07 2.280E+07 0.0049 0.0049 0.0386 0.0389 
5p1/2 → 8s1/2 1.612E+07 1.620E+07 0.0132 0.0133 0.2026 0.2040 
6p1/2 → 8s1/2 1.248E+07 1.250E+07 0.0429 0.0430 1.3523 1.3600 
7p1/2 → 8s1/2 1.070E+07 1.080E+07 0.2700 0.2730 23.0822 23.3000 
2p3/2 → 8s1/2 1.151E+08 3.220E+09 0.0005 0.0132 0.0015 0.0408 
3p3/2 → 8s1/2 6.996E+07 7.030E+07 0.0018 0.0018 0.0136 0.0137 
4p3/2 → 8s1/2 4.539E+07 4.550E+07 0.0049 0.0049 0.0773 0.0776 
5p3/2 → 8s1/2 3.225E+07 3.230E+07 0.0132 0.0132 0.4056 0.4070 
6p3/2 → 8s1/2 2.498E+07 2.500E+07 0.0429 0.0430 2.7077 2.7100 
7p3/2 → 8s1/2 2.142E+07 2.160E+07 0.2704 0.2730 46.2496 46.7000 
2p1/2 → 9s1/2 3.993E+07 3.900E+07 0.0003 0.0003 0.0005 0.0005 
3p1/2 → 9s1/2 2.413E+07 2.420E+07 0.0011 0.0012 0.0042 0.0043 
4p1/2 → 9s1/2 1.550E+07 1.520E+07 0.0029 0.0029 0.0214 0.0210 
5p1/2 → 9s1/2 1.084E+07 1.080E+07 0.0068 0.0068 0.0914 0.0913 
6p1/2 → 9s1/2 8.170E+06 8.230E+06 0.0168 0.0170 0.4108 0.4140 
7p1/2 → 9s1/2 6.625E+06 6.600E+06 0.0522 0.0520 2.4905 2.4900 
8p1/2 → 9s1/2 5.884E+06 5.930E+06 0.3184 0.3210 39.8587 40.2000 
2p3/2 → 9s1/2 7.989E+07 7.800E+07 0.0003 0.0003 0.0010 0.0009 
3p3/2 → 9s1/2 4.828E+07 4.840E+07 0.0011 0.0012 0.0085 0.0085 
4p3/2 → 9s1/2 3.101E+07 3.030E+07 0.0029 0.0028 0.0427 0.0418 
5p3/2 → 9s1/2 2.168E+07 2.170E+07 0.0068 0.0068 0.1830 0.1830 
6p3/2 → 9s1/2 1.635E+07 1.650E+07 0.0168 0.0170 0.8224 0.8310 
7p3/2 → 9s1/2 1.326E+07 1.320E+07 0.0522 0.0521 4.9868 4.9700 
8p3/2 → 9s1/2 1.178E+07 1.180E+07 0.3188 0.3200 79.8675 80.2000 

Figure 1. Plot of transition probabilities listed in the NIST database and corresponding calculated values 
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Table II. Lifetimes of Rydberg levels of C IV 

State Lifetime (ns) State Lifetime (ns) State Lifetime (ns) State Lifetime (ns) State Lifetime (ns) 
3s 0.236 2p 3.658 4d 0.127 4f 0.281 5g 0.918 
4s 0.377 3p 0.216 5d 0.244 5f 0.544 6g 1.571 
5s 0.626 4p 0.346 6d 0.416 6f 0.932 7g 2.479 
6s 0.992 5p 0.573 7d 0.655 7f 1.467 8g 3.681 
7s 1.495 6p 0.906 8d 0.971 8f 2.175 9g 5.216 
8s 2.157 7p 1.362 9d 1.374 9f 3.080 10g 7.126 
9s 3.000 8p 1.961 10d 1.877 10f 4.206 11g 9.452 
10s 4.046 9p 2.723 11d 2.489 11f 5.577 12g 12.235 
11s 5.317 10p 3.665 12d 3.222 12f 7.218 13g 15.516 
12s 6.837 11p 4.810 13d 4.086 13f 9.152 14g 19.337 
13s 8.627 12p 6.176 14d 5.093 14f 11.404 15g 23.739 
14s 10.711 13p 7.784 15d 6.253 15f 13.998 16g 28.763 
15s 13.111 14p 9.653 16d 7.577 16f 16.960 17g 34.450 
16s 15.849 15p 11.804 17d 9.077 17f 20.311 18g 40.841 
17s 18.948 16p 14.256 18d 10.763 18f 24.079 19g 47.978 
18s 22.432 17p 17.030 19d 12.646 19f 28.285 20g 55.902 
19s 26.322 18p 20.145 20d 14.737 20f 32.956 21g 64.654 
20s 30.641 19p 23.622 21d 17.046 21f 38.115 22g 74.275 
21s 35.412 20p 27.481 22d 19.586 22f 43.786 23g 84.807 
22s 40.658 21p 31.742 23d 22.366 23f 49.994 24g 96.292 
23s 46.401 22p 36.424 24d 25.398 24f 56.764 25g 108.769 
24s 52.665 23p 41.548 25d 28.692 25f 64.119 

 25s 59.471 24p 47.134     25p 53.202 

A locally developed python program was used to fit a polynomial for each of the known values of lifetimes of 
Rydberg series. The lifetime for the series ns, np, nd, nf, and ng can be given a function of principal quantum number (n) 
in the form of a sixth-degree polynomial; the coefficients for the respective series are given in Table III 𝜏௡ = 𝑎௢ + 𝑎ଵ𝑛 + 𝑎ଶ𝑛ଶ + 𝑎ଷ𝑛ଷ + 𝑎ସ𝑛ସ + 𝑎ହ𝑛ହ + 𝑎଺𝑛଺ 

Table III. Coefficients of the sixth-degree polynomial for calculation of lifetimes of C IV series 

Series a0 a1 a2 a3 a4 a5 a6 ‘n’ value 
ng -8.26E-04 -8.90E-03 5.07E-03 6.63E-03 9.77E-06 -2.11E-07 1.93E-09 5 ≤ n 
nf -7.74E-03 -2.88E-04 2.22E-03 3.97E-03 2.90E-06 -5.50E-08 4.56E-10 4 ≤ n  
nd -1.73E-03 3.33E-04 8.48E-04 1.77E-03 1.91E-06 -4.40E-08 4.28E-10 4 ≤ n  
np 2.15E-01 -7.53E-02 1.98E-02 1.49E-03 9.59E-05 -2.56E-06 2.75E-08 3 ≤ n  
ns 2.30E-01 -7.87E-02 2.05E-02 1.75E-03 1.05E-04 -2.79E-06 2.99E-08 3 ≤ n  

 
CONCLUSION 

An extended work has been carried out to determine the transition probabilities, oscillator strengths, and line strength 
for the transition in Rydberg levels of C IV. Total of 5250 transitions were studied. The calculated values were compared 
with the reported and NIST database values. The NIST database only contains 224 out of 5250 transitions (see Table I). 
That is, most of the values are reported for the first time. The maximum value of transition probabilities does not occur 
between the two lowest-lying levels, as is the case of the Li atom; instead, it occurs for the transition 1s23d3/2 – 1s22p1/2. 
Most transition probabilities are close to the reported values; a difference up to 7% has been observed in a few cases. A 
99.9% correlation is found between calculated and known values of Transition probabilities (see Fig. 1). The comparison 
of calculated values of oscillator strengths and lines strengths with those listed in NIST shows a good agreement. Only 
224 values of transition probabilities, oscillator strengths, and line strengths have been presented in this manuscript; a 
separate supplementary file contains all the 5250 values. The lifetimes of the first 25 levels of the Rydberg Series ns, np, 
nd, nf, and ng have also been calculated. A function of principal quantum number can calculate the lifetime; a sixth-
degree polynomial gives this function for each Rydberg series for C IV. 
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РОЗРАХУНОК ХАРАКТЕРИСТИК C IV ПЕРЕХОДІВ 
Мухаммад Саідa, Шафік Ур Рехманa, Махвіш Мобін Ханb, Захір Уддінa 

aДепартамент фізики, Університет Карачі, Пакистан 
bДепартамент прикладної хімії та хімічної технології Університету Карачі, Пакистан 

У цьому дослідженні ми обчислили ймовірності переходів, потужність лінії та потужність осцилятора понад 5000 переходів 
у C IV. Дуже небагато значень цих спектроскопічних характеристик були раніше відомі та повідомлені. На основі поєднання 
моделі найслабшого зв’язку електрона та чисельної апроксимації метод розрахунку показує надійні значення, оскільки 
кореляція між відомими та обчисленими значеннями висока. Імовірності переходу, розраховані в цій роботі, порівнюються з 
доступними значеннями бази даних NIST і тими, що містяться в літературі, і спостерігається досить хороша згода. Тривалість 
життя рівнів Рідберга ns, np, nd, nf, ng була повідомлена до n = 25. Було розроблено загальний поліном шостого ступеня, який 
генерує час життя C IV із достатньою точністю. Більшість представлених результатів є новими. 
Ключові слова: атом вуглецю; ймовірність переходу; сила осцилятора; атом Рідберга; квантові дефекти 




