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In this paper, the magnetohydrodynamic (MHD) flow of a ternary hybrid ferrofluid over a stretching/shrinking porous sheet in the
presence of radiation and mass transpiration is studied. The ternary hybrid ferrofluid is formed by suspending three types of
nanoparticles for enhancing heat transfer. The nanoparticles of copper (Cu) , iron oxide ( Fe;0, ), and cobalt ferrite ( CoFe,0, ) are

suspended in water in this study, producing in the combination Cu — Fe,0, — CoFe,0, — H,O . Brownian motion and thermophoresis

are integrated into the ternary hybrid ferrofluid model. Similarity transformations convert the governing partial differential equations
into ordinary differential equations. The boundary value problem (bvp) is used in the Maple computer software to solve transformed
equations numerically. The computed results for relevant parameters such as velocity profile, temperature profile, skin friction
coefficient, local Nusselt and Sherwood numbers are visually shown and explained in detail.

Keywords: ternary hybrid ferrofluid; stretching/shrinking; heat and mass transfer; mass transpiration; magnetic field

PACS: 44.10.+i, 44.30.+v, 44.05.+¢

1. INTRODUCTION

For several decades, interest in studying the flow and heat transfer of the boundary layer on a stretching/shrinking
sheet has not waned due to a wide range of technical applications such as medical, industrial, and mechanical
engineering applications. Maxwell [1] was the first to try to improve the heat transfer rate of ordinary fluids by
suspending micro-sized particles, but his experiment failed due to sedimentation and blocking of the flow patterns.
Choi [2], Sakiadis [3]-[4], and Crane [5] initially researched nanofluids and stretching sheets. Following this, many
researchers were interested in the topic and performed significant research in it. Nanofluids have a greater thermal
conductivity than regular fluids, which is needed for the efficient transfer of thermal energy. According to studies, the
thermal conductivity coefficient of nanofluids rises dramatically when compared to ordinary base fluids, even at
extremely low nanoparticle concentrations [2]. Existing refrigerants in several industries, including energy, electronics,
transportation, and manufacturing, can be replaced by nanofluids. In relation to this, researchers have been very
interested in the applications of nanofluid since the discovery of this innovative idea.

Recently, a new type of nanofluid known as hybrid nanofluid has been created, which is formed by the suspension
of several nanoparticles in the base fluid. MHD flow of hybrid nanofluid and heat transfer over a stretching/shrinking
sheet was introduced by Aly and Pop [6]. Khan et al. [7] and Jamaludin et al. [8] examined hybrid nanofluids in
different flow scenarios. Mahabaleshwar et al. [9] developed a hybrid nanofluid algebraically decaying approach.
Mahabaleshwar et al. recently researched couple stress hybrid nanofluid [10], MHD flow micro polar fluid [11], and an
MHD nanofluid through a penetrable and also stretching/shrinking surface, a horizontal surface with a radiated effect,
and mass transpiration [12]. Heat transmission is enhanced by increasing the volume fraction of nanoparticles,
according to the researchers.

Among the various hybrid nanofluids, we focus on hybrid ferrofluids. The study of ferrofluids is of great interest
due to its wide application in biomedicine and technology, namely for drug delivery, real-time chemical monitoring of
human brain activity, destruction of tumors, etc. Ferrofluids are colloidal liquids made of magnetic nanoparticles like
cobalt ferrite CoFe,O,, hematite Fe,O, , magnetite Fe,O, , and many other nanometersized particles containing iron in
the base fluid [13].

Chu et al. [14] investigated the thermal performance and flow properties of a hybridized nanofluid ( MWCNT -
Fe,O, -water) in a cavity. Kumar et al. [15] studied the flow characteristics of hybrid ferrofluids ( Fe,O, - CoFe,O,)
using water-ethylene glycol combination (50 % -50 % ) as a basis fluid in thin film flow and found that hybrid ferrofluid
enhances rate of heat transfer than ferrofluid. Tlili et al. [16] studied the stream and energy transport in
magnetohydrodynamic dissipative ferro and hybrid ferrofluids by considering an uneven heat rise/fall and radiation

7 Cite as: M.1. Kopp, V.V. Yanovsky, T. Anusha, and U.S. Mahabaleshwar, East Eur. J. Phys. 1, 7 (2023), https://doi.org/10.26565/2312-4334-2023-1-01
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effects. They found that the magnetic oxide and cobalt iron oxide suspended in H,O-EG (ethylene glycol)

(50 % -50 % ) mixture effectively reduces the heat transfer rate under specific conditions. Anuar et al. [17] investigated
MHD hybrid ferrofluid flow on exponentially stretching/shrinking surfaces with heat source/sink effects under
stagnation point region. They found that hybrid ferrofluid increases the rate of heat transfer compared to ferrofluid and
for a stronger heat source, heat absorption is more likely to occur in the sheet. The effects of MHD and viscous
dissipation have been studied by Lund et al, [18] considering (Cu—Fe,O, —H,0O) hybrid nanofluid in a porous

medium.

In recent years, a new class of nanofluids has emerged, consisting of three solid nanoparticles distributed in an
ordinary liquid. The term ternary hybrid nanofluid is commonly used to describe these liquids [19]. Khan and
Mahmood [20] presented a study of MHD ternary hybrid nanofluid flow into a stretching/shrinking cylinder with mass
suction and either Joule heating. The combination of copper nanoparticles (Cu ), iron oxide ( Fe,0,), and silicon

dioxide (Si0,) with polymer as the base fluid has been chosen as an example of a ternary hybrid nanofluid. They

showed that the heat transfer rate could be increased. Ramesh et al. [21] studied the increase of heat transfer in ternary
nanofluid flows caused by stretched convergent or divergent channels. Temperature was reduced when the solid
volume-fraction of both stretched and shrunk channels increased. It has also been found that ternary nanofluids have a
stronger influence than hybrid and mono-nanofluids. Animasaun et al. [22] investigated the dynamics of stagnant
ternary-hybrid nanofluid (i. e. water conveying spherical silver nanoparticles, cylindrical aluminum oxide nanoparticles,
and platelet aluminum nanoparticles) when induced magnetic field and convective heating surface are significant. In
[22], it was concluded that the increase in convective heating of the wall is a factor that can accelerate temperature
dispersion in both the case of a heat source and a heat sink. It was shown that the growing effects of an inclined
magnetic field can cause the distance between the shear stress turning points and the gradient of magnetic flux density
to be placed near the domain's centre. Manjunatha et al. [23] presented a new theoretical ternary nanofluid model for
enhancing heat transfer. The ternary hybrid nanofluid was formed by suspending the nanoparticles 7i0,, A/,0,, and

Si0, in water thus forming the combination 7iO, —SiO, — Al,0, — H,O . They showed that the ternary nanofluid

flowing past a stretching sheet has better thermal conductivity than the hybrid nanofluid.
In the current study, we propose a new kind of ternary hybrid ferrofluid formed by suspending metallic
nanoparticles of copper (Cu) , iron oxide ( Fe;0, ), and cobalt ferrite (CoFe,O, ) in water ( H,0 ). Copper nanoparticles

have rather high values of thermal and electrical conductivity coefficients; therefore, their use in ternary hybrid
ferrofluids will enhance heat transfer, which is very important for solving some medical problems.

The purpose of the present investigation is to study the boundary layer flow and heat transfer past a
stretching/shrinking sheet in a porous medium saturated by a ternary hybrid ferrofluid. The governing partial
differential equations are transformed into a set of ordinary differential equations using a similarity transformation,
before being solved numerically by the bvp method. The results obtained are presented graphically and discussed. This
theoretical study will be useful to engineers conducting experiments with ternary hybrid ferrofluid.

2. STATEMENT OF THE PROBLEM AND MATHEMATICAL MODEL
We consider the two-dimensional steady flow and heat transfer of MHD ternary hybrid ferrofluid past a permeable
stretching/shrinking sheet of a porous medium. The X -axis is chosen to run parallel to the horizontal surface, whereas

the y -axis is chosen to run perpendicular to it. The surface velocity is assumed to be u, (x), and the mass flux velocity
is v,, with v, <0 for suction and v, >0 for fluid injection. The applied magnetic field B, is determined along the

sheet's normal. It is also assumed that the constant temperature and constant nanofluid volume fraction of the sheet's
surface are 7, and C,, respectively, whereas the ambient fluid's are 7, and C_ . This physical model is shown in

Fig.1.

T @ . € o
;i B0 B, = ® Fe.O,
® CoFe,
Ternary Hybrid Ferrofluid

~4——————— Shrinking sheer, 11, < 0 U, = 0. swetching sheet———

Figure 1. Coordinate system and physical model: stretching and shrinking shee.
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The investigating physical model's basic equations can be written as

6_u+@20 1)
ox oy

0 0 Hyy 07 yz (o
u—u+v—u=—”/ gu__"w u——1 B(fu 2)

oT oT kth/ 62_T

U—+v—=—-——17+ 3)
Oox oy (pCp )th/ oy
2
D o
+0 DB a_Ca_T+_T[a_TJ _;i
o oy I, % (PC, )y O
2 D 2
J2C,,2C_py 0C D OT @
Ox oy oy T, oy
The following are the boundary conditions for the investigated model:
u=u,=U XA, v=v,, T=T,C=C, ,at y=0 ®)
u—>0,T=7T ,C=C, ,at y > (6)

Here K is the permeability of a porous medium, 7 denotes the temperature of the ternary hybrid nanofluid, C
the concentration of nanoparticles, D, the Brownian diffusion coefficient, D, the thermophoretic diffusion coefficient,
and 6 =(pC,),/(pC,), the ratio of nanoparticle heat capacity to base fluid heat capacity. Further, g, is the
dynamic viscosity of the ternary hybrid nanofluids, p,, is the density of the ternary hybrid nanofluids, and £, is the
ternary hybrid nanofluid's thermal conductivity, o,
nanofluid's heat capacity, A is the constant stretching/shrinking parameter, with 4 >0 for a stretching sheet, 4 <0 for
a shrinking sheet, and 4 =0 for a static sheet. Furthermore, we assume that U (x)=ax, where a is a positive

the electrical conductivity, (oC,),, is the ternary hybrid

constant.
In this study, the physical quantities of interest are the local skin friction coefficient C

£
Nu_, and the local Sherwood number Sh_, which are defined as follows [24]:

Hy, 0
Cp= Ié/ 2 [_uj ’
prax \ ),

the local Nusselt number

Nu = _Xk—””(a_TJ 7
T o
o - _L[aﬁj _
' DB (Cw - Cw) ay y=0

Let the ternary hybrid ferrofluid be composed of three sorts of nanoparticles, denoted by indices 1,2, and 3. The
nanofluid is formed by first adding copper nanoparticles (Cu) to water-based base fluid. Then a hybrid nanofluid is

prepared by adding iron oxide (Fe,0,) nanoparticles to the nanofluid. Finally, a ternary hybrid nanofluid is formed by
adding cobalt iron oxide (CoFe,O,) nanoparticles to the hybrid nanofluid. The overall volume fraction is the
summation of the volume concentration of two dissimilar kinds of nanoparticles: ¢ =¢, +¢, + ¢, .

The thermophysical properties of the Cu— H,O nanofluid have been studied in many works. For example, Raza
et al. [25] obtained several solutions for the rheology of the Cu— H,O nanofluid in a porous heat transfer channel.
Lund et al. [18] identified the thermophysical properties of hybrid ferrofluid (Fe,O, —CoFe,O, — H,O) . Takabi and
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Salehi [26], Gorla et al. [27], and Anuar et al. [17] describe the thermophysical properties of hybrid ferrofluid
(Fe,0, —CoFe,0, — H,0) . The thermophysical properties of Cu—Fe,0O, —CoFe,O, —H,O ternary hybrid nanofluid
are
* Density
Puor = (l_¢3){(1_¢2)[(1_¢1 )pf +¢1psl]+¢2ps2}+¢3p33 (8)

* Thermal conductivity
kt/;f‘ _ ks} + 2/%/ - 2¢3 (khnf‘ - k.s'3)

— , where )
Ky kg + 2k, +@i(k,, — k)

T kSZ +2knf _2¢2 (knf _kx2) an
k“ ks2 +2k;1/‘ +¢2 (k;z/ _ksz) ’

k, _ ky +2k, =2¢,(k, — k)
k, ko 2k (K, k)
* Heat capacity
(PC,, )thf = (1 - ¢3 ) {(1 - ¢2 )[(1 - ¢1 )(PC,, )f + ¢1 (PCP )51 ] + ¢2 (PCp )sz } + ¢3 (PCP )53 (10)
* Dynamic viscosity
Huy 1
- (11)
Ho (1=¢)7(1=¢)"(1-¢)"
* Electrical conductivity
o 1+2¢,)o., +(1-2¢,)0
ﬂ: ( ¢3) s3 ( ¢3) hnf , where (12)

O (1-¢)o, +(1+¢3)O-hnf

Oy _ (1+ 2¢2 )O-sZ +(1- 2¢2 )Un/'
nf (I1-¢,)o, +(1+¢)o,,

o

oy _(+24)0, +(1-24)0,

o, (1-¢)o, +(1+4)o;

Here, p, is the density of the base fluid, o,k is the electrical and thermal conductivity of the base fluid. (pC,), is
the heat capacity of the base fluid, and C, is the heat capacity at the constant pressure of the base fluid. The subscripts
sl,s2, and s3 denote the characteristics of nanoparticles Cu, Fe,O,, and CoFe,O,, respectively. Table 1 shows the
thermophysical constants for nanoparticles and base fluid.

Tablel. Thermophysical properties of the nanoparticles and base fluid [18],[27]

plkg - m™] ClJ- kg?' - K7 | AW - mT - KT o[S- m™]

H,0 997.1 4179 0.613 0.05
Cu 8933 385 401 5.96- 107
Fe,0, 5180 670 9.7 74 10°
CoFe,0, 4907 700 3.7 1.1- 107

3. SIMILARITY TRANSFORMATION AND PHYSICAL QUANTITIES
The partial differential equations (1)-(4) are transformed into ordinary differential equations through similarity
transformation (see, for example, [28]):

XV, o) Yy y r-T, o
= ,V=— ,n==,0(n)= , = , 13
u o T S Gn)n ==, 001) T T (1) C_c. (13)
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where v, is the kinematic viscosity of the base fluid, f,6,¢ are the dimensionless functions. L is a reference length

that will be found further below. Furthermore, the radiant heat flow ¢, is given by using the Rosseland approximation
for radiation (see [29]):

| dg, _ 16xT) T

— : (14)
(pcp )l;f oy 3(pCp )hf k oy

where o' ,k" is the Stefan-Boltzmann constant and the mean absorption coefficient, respectively. It is interesting to
note that, according to the definitions of # and v, equation (1) is automatically satisfied. Equations (2)-(4), as well as
the boundary conditions (5)-(6), are transformed into the ordinary (similarity) differential equations shown below:

Af + 0 - =(4,+4,-M)f =0 (15)
4,0 +N,90 +N,0>+ £60 =0 (16)

! ! NT o
0 +Lef o +N—Be =0 (17)
f(0)=s,/(0)=2,000)=1,00)=1,at n=0 (18)
£ ()= 0,0(m)—>0,0(17) >0, at n —>o0 (19)

Primes denote differentiation with regard to 7 in this context. Using the boundary conditions (18)-(19), we find

\F ~Jav,s (20)

The following ratios are used in Equations (15)-(16):

expressions for L and v,

lu, v, o, /o,
A _ Hw TH A, =4 -1, 4, = 7 1)
Py | Py ak Pug 1 Py
1 kg Tk, (PC,), Nr
4 = + - —_—

Pr (pC,), /(pC,),  (C,), Pr

Where M, Pr,Nr,Le, N, and N, denote the magnetic parameter, Prandtl number, radiation parameter, Lewis number,
Brownian motion parameter and thermophoresis parameter, respectively, where

Bjo v, (pC 165°T? v

y =20 PGy 10T (22)
ap, k, 3k, k D,

oD, (C, -C oD, (T, -T
NB: B( w w)’NT: T(w w)
Vv, v, T,
Using the similarity variables (13), one can easily obtain the expressions for physical quantities (7):
C,\[Re el f "(0), Nu_(\[Re, )" = ’hf e 0), (23)

Sh,(\J[Re, )" = -'(0),

where Re, =U, x/v, is the local Reynolds number.

4. MODIFIED SYSTEM OF EQUATIONS
The exact analytical solution to the equation for the dimensionless stream function is represented as (see, for
example, [5])

S () =, +a, exp(=pn) 24
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Applying boundary conditions (18) to the solution (24), we find expressions for the constants ¢, and «, . As a result,

solution (24) takes the following form

£ =s +%<1 —exp(—fn))

Clearly, f may be found by substituting the relation (25) in Eq. (15):

6
M=0.1,08,1.5

S

dual
solution 4

no
solution

no
solution 2

(25)

Figure 2. Regions of solutions of s as a function of A for stretching/shrinking sheet when ¢ =0.1, ¢, =0.01 and ¢, =0.02.

S

2 4 6
M=0.1,0.8,1.5

dual
solution

no no
solution _g solution

Figure 3. Regions of solutions of A as a function of s for stretching/shrinking sheet when ¢ =0.1, ¢, =0.01 and ¢, =0.02.

,Z_AI_

s . 52 +A2+A3-M+ﬂ
4A12 4

(26)

It's obvious that physical solution correspond to a positive value of 4, when 4> 0 (stretched sheet) for any value
of s . Fig. 2 depicts the influence of the external magnetic field on the region of no, unique and dual solutions s
depending on A for a stretching/shrinking sheet. With an increase in the magnetic field, the curve of critical values s
shifts towards negative parameters A . Similarly, in Fig. 3, curves are plotted for the critical A depending on the
magnitude of the magnetic field. We see that as the magnetic field increases, the regions of no, unique, and dual

solutions shift towards negative 4.

After calculating £, we find an analytical solution for f(77) (25). Then the skin friction coefficient (Sr) is given

by:

By substituting this solution into equations (16)-(17), we obtain the modified system of equations shown below:

A,0"+ N,p'0'+ NT9‘2+[S+%(1—exp(—ﬂn)))6‘ =0

M
Sr=C\[Re, =ﬂ’—"/1ﬁ
,

27

(28)
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N,
(p"+Le(s+£(1—exp(—ﬁn))](p'+—rt9”=0 29)
B Ny

Equations (28)-(29) are supplemented by boundary conditions (18)-(19).

5. RESULTS AND DISCUSSIONS
The bvp method in Maple computer software is used to solve dimensionless ordinary differential equations (28)-(29)
with boundary conditions (18)-(19). The results for the velocity profile are found analytically from expression (25), and as
can be seen from expression (26), two analytical solutions are possible corresponding to the values of £ . Similarity

solutions exist when the mass suction parameter s > 0 and the parameter A <0 (shrinking sheet) (see Figs. 2 and 3).

a
o ) 0 L)
0.5 $,=0.01.005. 0.1
0.5
-1 M= 0.1,08,15 .
~_~ =
G S
z._‘-IS G 03
2 15 o4
-2.5 05
i 08 1o 12 14 16 18 20
2
0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
n n

Figure 4. a) Effect of magnetic field on velocity profiles for ¢, = 0.13 ; b) effect of volume fraction on velocity profiles for M =0.8.

a b
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S S~
D 05 == 05
0.4 0.4
03 03
0.21 0.21
0.1 0.1
0 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
n n

Figure 5. a) Effect of magnetic field on temperature for ¢, = 0.13 ; b) effect of magnetic field on concentration profile for ¢, =0.13.

Figs. 4a and 4b show the influence of a magnetic field and a volume fraction on the velocity profile of a ternary
hybrid nanofluid for shrinking case A =-2 when the suction is presented as s =2 . Due to the very small difference
between the solutions of the upper and lower branches for the velocity profile, Figs. 4a and 4b show graphs for the
upper branch solutions. It can be seen from these figures that the boundary conditions at 7 — o0 (19) are achieved

asymptotically. The calculations are performed out with an accuracy of 10~ by setting 7, =10 for the far field

boundary conditions. The presence of a magnetic field produces a force known as the Lorentz force, which resists fluid
flow. This force's magnitude is directly proportional to M value. As a result, increasing M increases the Lorentz
force. As seen in Fig. 4a, the thickness of the boundary layer grows as M increases. From Fig. 4b, we observe that the
fluid flow rate increases with an increase in the volume fraction of Cu -nanoparticles (¢, ).

The decrease in flow rate due to the increase in the magnetic field M allows the nanoparticles to conduct more
heat, and hence an increase in temperature is observed as shown in Fig. 5a. Due to the effect of thermophoresis, an
increase in the temperature profile also causes an increase in the concentration profile, as seen in Fig. 5b.

Figs. 6a and 6b show the effect of volume fraction on temperature and concentration profiles. As a result, with an
increase in the volume fraction of Cu nanoparticles, new possibilities for increasing thermal conductivity appear, as
shown in Fig. 6a. In addition, with an increase in the volume fraction of Cu nanoparticles, the concentration profile of
the nanofluid increases (see Fig. 6b). This effect has applications in medicine when it is necessary to heat up soft tissues
with the help of hybrid ferrofluids in the treatment of cancer. The results shown in Figs. 4-6 are in good agreement with
the conclusions of the paper [23].
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Figure 6. a) Effect of volume fraction ¢, on temperature profile for M = 0.8 ; b) effect of volume fraction ¢ on concentration
profile for M =0.8.

Fig. 7a and Fig. 7b show the temperature and concentration profiles for various N, values. As shown in Fig. 7a,
any small increase in the thermophoresis force (N,) effectively increases the temperature profile. Due to the

dependency of the concentration on the temperature field, we observe that higher thermophoresis parameters increase
the concentration profile sharply (see Fig. 7b).

Adding more nanoparticles to the base fluid changed the behavior of the temperature and concentration profiles, as
shown in Figs. 8a and 8b. The Brownian motion of nanoparticles plays a significant role in the distribution of heat,
which is noticeable in the graph in Fig. 8a, where we observe an increase in the temperature profile with N, . The

concentration profile decreases as the Brownian motion parameter N, increases, as shown in Fig. 8b.

a b
1.0 ) 2.5 )
0.9
0.8 2.0
0.7
e 0.6 — 1.5 NT=0.1,0.4,0.7
— =
D os N, =0.1,04,07 =
0504, =
0.44 1.0
0.3
0.2 0.59
0.1
0 0
0 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10
n n

Figure 7. a) Temperature profiles for different values of N, ; b) concentration profiles for different values of N, .
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0.4 0.4
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Figure 8. a) Temperature profiles for different values of N, ; b) concentration profiles for different values of N, .

Figs. 9a and 9b show that both temperature and concentration profiles decrease with increasing Le. For analysis,
we chose small values of Le, which correspond to the slightly viscous base fluid. The results shown in Figs. 7-9 are in
good agreement with the conclusions of the paper [30].
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Figure 9. a) Effect of Le number on temperature distribution; b) effect of Le number on concentration distribution.

Fig. 10a depicts the variation of the skin friction coefficient Sr with the stretching/shrinking parameter A for
several values of the suction parameter s . When the shrinking parameter is changed from -2.046 to -6.090, the value of
the suction parameter increases from s =2 to s =4. The double solution regions also expand with an increase in the
suction parameter s at fixed values parameters of magnetic field M = 0.8 and volume fraction ¢, =0.13. Increasing
the magnetic field parameter increases the coefficient of skin friction Sr, as shown in Fig. 10b. However, with an
increase in ¢, the coefficient of surface friction Sr decreases because thermal conductivity increases at a higher

concentration of nanoparticles. Due to the fact that thermal conductivity is enhanced by increasing the concentration of
copper particles, the Nusselt number (heat transfer rate) decreases (see Fig. 11a). As the magnetic field M increases,
the rate of heat transfer and concentration decreases, but the rate of concentration increases with increasing ¢, as

shown in Fig. 11b.
a) b)

20

lower solution branch
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M=0385,0.9,0.95

'
(¥}
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-30 -5
-6 -4 -2 0 2 4 0 0.02 0.04 0.06 0.08 0.1

A b,
Figure 10. a) Variation of Sr as a function of A for several values of s (s=2,4,=-2.046,5s=3,4,=-3.731,

s=4,2,=-6.090) for ¢, =0.13;b) effect of magnetic field and volume fraction on skin friction coefficient Sr .
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Figure 11. a) The influence of the magnetic field and volume fraction ¢ on the local Nusselt number; b) the influence of the

magnetic field and volume fraction ¢ on the local Sherwood number.
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Fig. 12a displayed the impact of Prandtl number Pr on the rate of heat transfer. An increase in the Prandtl number
is associated with a decrease in the thermal conductivity of the base fluid k,, which leads to an increase in heat
transfer. Figure 12b depicts the influences of Nu_ as a function of M for various Nr . This graphic shows that Nu_
decreases as the examined two parameters (M and Nr ) increase.

The change in the local heat and concentration transfer rates depending on the parameter N, is shown in Figs. 13

and 14.

20 2) - b)

0.8

Pr=10,15,20 Q

0.2

0 0
0.80 0.82 0.84 0.86 088  0.90 0.80 0.82 0.84 0.86 0.88  0.90

M M

Figure 12. a) Effect of Prandtl number Pr and magnetic field on the local Nusselt number; b) effect of the radiation parameter Nr
and magnetic field on the local Nusselt number.
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Figure 13. a) Effects of N, and Pr numbers are seen on heat transfer rates; b) effects of N, and Pr numbers are seen on

dimensionless concentration rates.
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Figure 14. a) Effects of Le and Pr numbers are seen on heat transfer rates; b) effects of Le and Pr numbers are seen on
dimensionless concentration rates.

Graphs in Fig. 13 show the effect of the /N, parameters and Pr Prandtl number on the local heat and

concentration transfer rate for a fixed Le number. As can be seen from Fig. 13, the dimensionless heat transfer rate
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decreases with increasing parameters N, and N, but increases with increasing Pr . The local Sherwood number S#_,
on the other hand, increases as the Brownian motion parameter N, increases but decreases as the Prandtl number

increases. However, with an increase in the Le number, a decrease in the local heat transfer rates was observed. As
shown in Fig. 14a, the change in local heat transfer rates increases with an increase in the Prandtl number. In contrast,
the local Sherwood number increases with the Lewis parameter Le, but decreases with the Pr number, as shown in
Fig. 14b. These results are in good agreement with the conclusions of the papers[24],[30].

6. CONCLUSIONS
An analysis was made of the diffusion characteristics of heat and nanoparticles in a ternary hybrid ferrofluid flow
over a linearly stretching/shrinking porous sheet under conditions of mass transpiration and radiation heating. Using the
similarity transformation, a system of nonlinearly coupled ODEs was obtained, which was numerically solved in the
Maple software application using the bvp technique. Numerical results are interpreted using graphs. We have found the
boundaries of the existence of unique and double solutions depending on the magnitude of the magnetic field for the
shrinking case (A4 < 0). The main research results are:

* An increase in the magnetic field resists the flow of the trihybrid ferrofluid, while an increase in the volume
fraction of nanoparticles increases the momentum of the flow.

* The skin friction coefficient increases with an increase in the suction rate s > 0 and the magnitude of the
Lorentz force.

* The rates of heat and mass transfer decrease as the Lorentz force increases.

» The local Nusselt number (rate of heat transfer) decreases when the values of the parameters Pr, Le, N,,

Nr and N, are increased.

* The local Sherwood number (rate of mass transfer) increases as the Brownian motion parameter increases
and decreases as the thermophoresis parameter increases.
The results obtained can be generalized to other types of ternary hybrid nanofluids that are used in various
practical problems.
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MIJI TEYIS I TEIVIONEPEJAYA OTPIAHOI INEPUIHOI ®EPOPIJIMHA HAJI TIOPUCTHUM JIMCTOM,
1[0 PO3TAT'YETbhCSI/CTUCKAETHCS, 3 EPEKTAMM BPOYHIBCHKOI IM®Y3Ii TA TEPMO®OPE3Y
Muxaiino M. Konn®, Bonogumup B. STnoBcbkuii*?, Tinceami Anyma®, Yaasari C. Maxa6anemsap®
“ucmumym monoxkpucmanie, Hayionanvna Axademin Hayx Yxpainu
np. Hayxu 60, 61001 Xapxis, Yxpaina
bXapxiscoruii nayionanvnuil ynisepcumem imeni B.H. Kapasina
matioan Ceoboou, 4, 61022, Xapxie, Yrpaina
c@arxynomem mamemamuxu, Illisacancompi, Ynisepcumem Jlasanzcepe, /lasanecepe, Inois 577 007

B nawiit poborti mocnimxyerbes Maraitoriapoannamiuna (MI'J]) Teuist motpiitnoi ribpuaHoi GpepopiauHu HaJ HOPUCTHM JIUCTOM, LIO
PO3TSTYETHCSI/CTUCKYETHCS, B IPUCYTHOCTI BUITPOMIHIOBaHHS i MacoBoi Tpancmipauii. [ToTpiiina ribpuaHa HaHOPiAHHA YTBOPIOETHCS
LIUIIXOM CYCIICHAYBaHHS TPHOX THUIIB HAaHOYACTHHOK JUIS MOKpAlleHHs Terutonepenaui. Hanouactunku mini (Cu), oxcupy 3aniza
(Fe,0,) ta depury kobanery (CoFe,O,) cycneHnoBaHi y BOmi Ta yTBOpIOTh KoMOiHauito Cu— Fe,O,—CoFe,0,—H,0.
BpoyHniBchkuii pyx Ta TepMmodope3 IHTErpoBaHI B MOZENb MOTpiHOI TiOpumnHoi Qepopimuau. I[lepeTBopeHHs MOMIOHOCTI
KOHBEPTYIOTh OCHOBHI JAu(epeHLianbHi piBHSAHHSA B MPHUBATHUX MOXITHUX Yy 3BHYAiHI IudepeHmianpHi piBHSHHSA. Meron
PO3B'si3aHHS KpaloBOi 3a7a4i BUKOPHCTOBYETHCS B IpOrpaMHOMY 3abe3rnedeHHi Maple urst 4iCeNIbHOTO PO3B'sI3aHHS IepPEeTBOPEHUX
piBHSHB. Pe3ynbTaT 00UMCIeHb U1 BiITOBIHNX ITapaMeTpiB, TaKUX K Npo(UIs MBHUIKOCTI, TEMIIepaTypHUH Npodik, KoedirieHT
HOBEPXHEBOTO TepTsl, JIoKaybHi uncia Hyccenbra ta lllepByna, HaouHO Moka3aHi i JOKJIAJHO MOSCHEH.

KurouoBi ciioBa: nompiiina 2ibpuona ¢epopiouna,; po3smseHeHHs/CmucK, menio- ma mMacoooMin, Macoea mMpancnipayis, MacHimue
nozne
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This paper presents our theoretical investigations on the structural variations of dust acoustic solitary waves (DASWs) in
inhomogeneous unmagnetized plasmas. To study the structural variations of DASWs, we have considered collisionless, hot isothermal,
and Boltzmannean distribution for electrons-ions with negatively charged dust grains in weakly inhomogeneous plasmas. We have
used the reductive perturbation technique (RPT) in the governing equations of plasmas, derived the modified Korteweg-de-Vries
(m-KdV) equation, and obtained the solitary wave solution. We have considered the appropriate stretched coordinates for space and
time variables for the inhomogeneous plasma. This paper investigates the effects of dust particles on ion-acoustic solitary waves'
propagation in the inhomogeneous plasma model. We have also included the effect of inhomogeneity parameters on the soliton
structures.
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I. INTRODUCTION

Plasma and charged dusts or dust grains are the two fundamental ubiquities of the universe. Dusty plasma is a
relatively new branch of the research area in plasma physics. In dusty plasmas, the interaction of dust grains and plasma
particles are studied. Plasma particles consist of hot and electrically conductive electrons and ions, but the dusty plasma
particles consist of both plasma particles and dust grains, i.e., dusty plasma particles are comprised of three fundamental
ingredients ions, electrons, and charged dust particles or dust charged grains. The dust particles show more complex
behaviours when added to the plasma particles. So, the dusty plasmas are also known as complex plasmas or multi-
component plasmas. Investigations on these complex or multi-component plasmas are abundant throughout the universe.
The majority of extant solid matter is thought to be made up of dust grains that are frequently contained by plasma
particles. Planetary magnetospheres, cometary environments, nebulas, etc. [1], are some examples of dusty plasmas. These
complex plasmas are enormous important to understand the theories of geophysics better, complete some space missions,
advancements of knowledge in astrophysical environments like the formation of stars, galaxies, and nebulae, and
manufacture some new materials the in the semiconductor industries, etc. Dusty plasmas are one of the significant fields
for working in Controlled Thermonuclear Research (CTR). In 1982, Voyager spacecraft [2] discovered the radial spokes
of the Saturn’s B ring. Apart from the wide range of applications of dusty plasmas in the astrophysical problems,
researchers have observed the wide use of dusty plasmas and their related issues during the use of dusty plasmas in the
manufacturing of new materials in the semiconductor industries [3]. Later, a number of authors have worked in the both
theoretical and experimental works on the dusty plasmas. In the early eighties of last century, the concept of dusty plasma
could not be developed convincingly. However, to understand the fundamental properties of dusty plasmas, some devices
are introduced in dusty plasma laboratories like the rotating drum system [4] and dust shaker systems [5]. Subsequently,
in the review literature of Goertz [6] and Northrop [7], we have some details of works carried out in dusty plasma for
astrophysical cases. Basically, for unmagnetized plasmas, dusty plasma waves are characterized by three different modes
such as dust-acoustic waves [9] (DAW), dust ion-acoustic waves [8] (DIAW), and dust lattice waves [10] (DLW). Several
theoretical [8-10] and experimental [11,12] studies have been done to achieve more understanding on the complex
behaviours of DAWs, DIAWs, and DLWs. Apart from the above, large number of literatures could be found on the various
nonlinear wave phenomena and instabilities for homogeneous dusty plasmas, inhomogeneous dusty plasmas [13-20] and
nonlinear wave excitation in nonequilibrium plasmas. For studying the linear wave theories in plasmas, the nonlinearities
for small amplitude waves are not considered, but in the case of large amplitude waves, the nonlinearities cannot be
neglected. Due to the existence of nonlinearities in the plasma waves, the various physical parameters and their effects
can be studied. The nonlinearities are also indicated in the experimental and theoretical behaviours of some nonlinear
plasma wave structures such as solitons or solitary waves, supersolitons, rouge waves, shock waves, etc. In
inhomogeneous plasmas, few more researchers have done their works on the properties and effects of dust ion-acoustic
(DIA) solitary waves [21,22], dust acoustic (DA) solitary waves [8,27,28,32], shock waves [23-26], and dust lattice (DL)
solitary waves [10,29], etc. Apart from the broad applications of complex or dusty plasmas in astrophysical systems and
space science, the wide applications of dusty plasmas have also been seen in the fusion sciences and laboratory
environments [30,31]. Gogoi and Deka also studied the propagation of dust acoustic (DA) solitary wave propagations in
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inhomogeneous plasmas [32]. Some more basic properties and the effects on dust-acoustic waves (DAWSs) have been
studied theoretically in the presence of both positively and negatively dust particles with negatively charged ion fluids
and k-distributed superthermal electrons [33]. Dusty plasmas are basically studied in inhomogeneous plasma systems to
understand the advanced use of plasmas in astrophysical environments and in laboratory discharges [34]. The
modulational instability and dust-cyclotron wave for DAWs in three-component plasmas have been explored in the
presence of ions, electrons, and dust particles under the influence of a magnetic field [35]. In the presence of pair-ion
fullerene plasma, magneto-acoustic wave propagation was also studied in both the linear and nonlinear plasma
environments [36]. Pakzad and Nobahar [39] studied the properties of dust ion-acoustic (DIA) solitary waves in
inhomogeneous unmagnetized plasmas in the presence of stationary dust grains, super thermal electrons, and inertial ions.
They have also studied the behaviours of DIAWs propagating in the various astrophysical environments like Solar winds,
Venus’s ionosphere, and the Earth's atmosphere. Dehingia and Deka [41] have recently studied ion-acoustic solitons'
variations in an inhomogeneous plasma. They have observed how the ion-acoustic solitary wave bends in some critical
points due to the inhomogeneity present in the plasma system. Though many investigations on the effect of dust particles
on plasma properties have been done till date, there are still many scopes to study the role of dust particles in affecting
the nonlinear structures of plasmas, in particular for the case of inhomogeneous plasmas. In this paper, we will extend the
investigations of Gogoi and Deka [32], to understand the structural variations of dust-acoustic solitary waves in
inhomogeneous plasma under the following considered physical situations.

Here, we present our investigations on the structural variations of dust acoustic solitary waves in inhomogeneous
plasma in the presence of hot isothermal electrons with Boltzmannean electron-ion distribution. This model consists of
unmagnetized, collisionless, hot isothermal electrons and weakly inhomogeneous plasmas in the presence of negatively
charged dust grains. Using the governing equations of plasmas and the reductive perturbation method or technique (RPT),
we have derived the modified Korteweg-de-Vries (mKdV) equation with the help of appropriate stretched coordinates for
space and time variables for the inhomogeneous plasmas. The solution of the above mKdV equation also indicates the
various nonlinear effects of dust grains propagating in inhomogeneous, unmagnetized plasmas in the presence of
negatively charged dust particles. We have also presented our results and investigated the effect of dust particles on ion-
acoustic solitary waves' propagation due to the inhomogeneity parameters in the inhomogeneous above-considered plasma
model.

II. GOVERNING EQUATIONS
We have considered an unmagnetized, collisionless, hot isothermal, Boltzmannean distributed electrons and ions, in
the presence negatively charged dust particles in weakly inhomogeneous plasma. With the variable density gradient and
along the x-direction only, the system is considered to be inhomogeneous. The set of dimensionless and nonlinear
governing fluid equations for slowly moving dust acoustic waves along the x- direction is taken as follows:
Continuity equation:

ong , 9 _
ot + ox (ndvd) =0. (1)
Momentum equation:
a |, () 4 o (%) =
at+vd(ax)+q(ax)_0‘ 2
Poisson equation :
8%¢
ﬁ—ne—qnd+ni=0. 3)
Boltzmannean distribution of electrons:
Ne = Ngoe*?. “4)
Boltzmannean distribution of ions:
n; =ne ?. (5)

In the above equations, n, represents the number density of dust grains which is normalized by ng,, at an
equilibrium condition. Here, v, represents the fluid velocity of dust grains which is normalized by dust acoustic

Y
speed (DAS) Cys = (Zdo :l—;) ? where ion temperature is T; and mass of the charged dust particles is m, . Here, we

assume ¢ as the electrostatic potential with the charge neutrality at equilibrium state n;y = n,g + Zgonge- The
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quantities ng, vy, ¢, n,, n; are reduced to the dimensionless form with the help of Debye length 1, = e
io

C4s and thermal electrostatic potential ¢ = % where T, is the electron temperature and e is the electron charge. For
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charged dust grains ¢ = Z;e, the balanced current equation is given by [6] q; + v4q, = I, + I; where q; and g, are dust
currents, I; and I, are the ion and electron currents respectively.

Due to slow motion of the dust fluid its velocity v, is small at equilibrium state, the dust current is balanced by
both the ion and electron currents together. Then we have the balanced current equation is given by [10] I, + I; = 0 where

I, and I; are respectively given by [40]
Y, x
¢

1= e (24) "y (1-22) |

where r denotes the radius of charged dust grains and k = Ti/T .
e

I, =—
nr e( ©

I1II. DERIVATION OF MODIFIED K-dV (m-KdV) EQUATION
To study the structural variations of dust acoustic (DA) solitary wave propagations in inhomogeneous plasmas, we
use the reductive perturbation technique (RPT). To apply the RPT for some small amplitude wave, we use an appropriate
one-dimensional space-time stretched coordinate which is given by [37]

1rx
f = EE _—— t
G- o
T=€2x
where € is a smallness parameter, M is the phase velocity of the DA soliton, normalized by C.

Now, using Eq. (7) in Egs. (1) — (5) we get the following set of equations are as follows:

1
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Expanding the dependent variables n;, vy, Z; and ¢ about the equilibrium parts in terms of power series of € as
follows:
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Using the Eq. (11) in Eq. (8), (9) and (10) respectively we get the following set of equations as follows:
(Neglecting the higher terms having powers of € more than g)
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Now we compare the coefficients of € from lower to the highest powers in the Eq. (12) — (14), we get

1
At €z, we get,
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where M determines the phase velocity of DAW.
At the highest order coefficients of € we get,
a Z a
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Now, differentiating Eq. (26) w.r.t. & we get,
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Now, eliminating all the 2™ order quantities from Eqgs. from (24), (25) and (27) and adding all of them we get a
nonlinear PDE with variable coefficient is of the form:
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The above Eq. (28) is in the new form of the KdV equation known as mKdV equation, as there is an additional term
due to the plasma inhomogeneity of number density. The solution of the above modified K-dV (mKdV) equation i.e.,
Eq. (28) represents the structural variations of nonlinear dust acoustic (DA) solitary waves propagating in inhomogeneous
plasma. The nonlinear constant coefficient A and the dispersion coefficient B depend on the inhomogeneous number
density. The extra term in the above considered inhomogeneous plasma model appears with the coefficient C due to the
inhomogeneous number density gradient.

IV. SOLUTION OF MODIFIED K-dV (mKdV) EQUATION
We have considered the transformation®® ¢p; = pe ™™o to get the solitary wave solution of the Eq. (28) for the KdV
equation is of the form
Oy p iy 00 _
oc T PHoe Q55 =0, (29)
where P = Ae ‘™0 and Q = B.
The above nonlinear coefficients P and Q functionally depends on the environment of the chosen plasma system. To
reduce the complexities of the calculations, the variations are considered relatively small compared to the locally constants
parameters. Now, we have considered a new frame of reference U = & — VT w.r.t. velocity V to solve the Eq. (29). After

using this new frame of reference and the Kodama - Taniuti method [38], we have obtained the solution of Eq. (29) is as
follows:

]
u=A, [sech2 (W)] (30)
where W = \/% and A, = % are the width and amplitude of the DA solitary wave respectively.

V. RESULTS AND DISCUSSION

In this paper, we have studied the nonlinear DA solitary waves to understand the structural variations of DA solitary
wave while propagating in inhomogeneous, unmagnetized plasmas consisting of negatively charged dust grains. We have
used the RPT method to derive an mKdV equation with the variable coefficients. We have considered appropriate
stretched coordinates for both space and time to employ the RPT method. Then the Kodama-Taniuti method [38] is
applied to get the DA solitary wave solution, and the numerical results for DA solitary wave propagation are obtained
in Eq. (30). We have focused on the issues of structural variations of DA solitary waves in the above-considered plasma
environment.

It is clear from the Eq.(23), the phase velocity M depends on the various choices of n.g, g, Z 40, and k.
Figures 1 to 4 shows the dependency of the phase velocity M with the inhomogeneous number density ny, and with the
various choices of parameters n.g, Z40, k, and n;. Here, we have introduced the various figures of phase velocity
depending on the various choices of parameters n., Z 4, k, and n;o respectively. From Fig. 1, we have seen that the phase
velocity of the DA solitary wave i.e., M increases with the increase in the number density n,q, with the less significance
of n,y. But in Fig. 2, the phase velocity M increases uniformly with the increasing values of Z;, and ny,. Similarly,
Figs. 3 and 4 show the expanding rate of M w.r.t. ng4o, where the phase velocity M decreases with the increase in k. Also
Figs. 3 and 4 also indicates the rapid decrease of the phase velocity with the increasing values of n;,.

2500 _ - ——-m— " o

L _ _ _ L _ _ _ 4 ___4___

Figure 1. Dependency of phase velocity M with ngo and ngq Figure 2. Dependency of phase velocity M at n,q = 2,
and Zyy at nyg = 0.75,Z49 = 2,and k = 0.1 n;o = 0.008and k = 1.5
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Figure 3. Dependency of phase velocity M with ngq Figure 4. Dependency of phase velocity M with
and k atn;y = 0.008,n,y = 0.003,and Z44 = 2 k=1n, =0.03,and Z;y = 2

We have observed the coefficients A and P in the above Egs. (28) and (29), which indicates the dependency of the
amplitude A, of the DA solitary waves on the parameters n.q, 19, Ng0, Z 40, and k. Depending on the various choices of
the values of n.g, nig, Mg, Z40, and k, the structural variations in the amplitude of the DA solitary wave 4,, w.r.t. the
density gradient n;, will be seen in Figs. 5, 6 and 7. Here, the Figs. 6 and 7 shows the variations in the amplitude of DA
solitary wave A, w.r.t. ngo, which is increasing with the increasing values of k and n.q, respectively.
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Figure 5. Structural variations of soliton amplitude 4,, w.rtngy  Figure 6. Structural variations of soliton amplitude A4,, w.r.t ng
for various choices of n;y = 1,2 and 3 with nyg = 2, Zzo = 1.0 for various choices of k = 1,2 and 3
and k = 0.2 with ngg = 0.1,Z4, = 1.0 and n;p = 0.001

Based on the above results, it can be observed that with the increasing/decreasing of values of k and n,, the shape
variations of the soliton amplitude will also be seen. With the increasing/decreasing of values of k and n, the solitary
wave amplitude will be increased/decreased, while on the other hand, in Fig. 5, the amplitude of the solitary wave will be
decreased/increased with the increasing/decreasing values of n;, simultaneously.
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Figure 7. Structural variations of soliton amplitude 4,,, w.r.t Figure 8. Structural variations of soliton width W w.r.t ng, for
ngo for various choices of n,y = 1,2 and 3 various choices of n;y = 1,2 and 3
withn;y = 0.01, Z;o =1.0and k = 1.5 with ng,y = 0.01, Zy = 1.0and k = 1.5
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We have also observed the coefficients B = Q in the above Egs. (28) and (29), which indicates the dependency of
the DA soliton width W on the parameters 1.y, 19, Ngo, Zq0, and k. Figs. 8,9, and 10 shows the shape variations of DA
solitons and their width with inhomogeneous density gradient ny, for the various choices of the parameters n;, (Fig. 8),
Ngo (Fig. 9) and k (Fig. 10) respectively. So, from Figs. 9 and 10, it can be observed that the width of the solitary wave
W increases with the increasing values of n,, and k, respectively, while the fig. 8 indicates the decreasing of soliton
width with the increase of n;,. Thus, based on the above results and discussions, it can be observed that phase velocity M
of the DA solitary wave depends on the various choices of the parameters n,g, njy, Z 40, and k. Figures 1 to 4 show the
dependency of the phase velocity M with the inhomogeneous number density n;, and the other parameters n.g, Z g0, k,
and n;y. It can be ensured from figures 1 to 4 that due to the increase in the dust number density nyq, the phase velocity
of the solitary wave becomes larger during the propagation of the solitary waves in the plasma.

w w

1.0+ 10
k=05
k=1.0
s | s | — k=15
10 20 30 "o 10 20 30 "
Figure 9. Structural variations of soliton width W w.r.t ng, for Figure 10. Structural variations of soliton width W w.r.t ng, for
various choices of n,y = 5,10 and 15 various choices of k = 0.5,1.0 and 1.5
with k = 0.5, and n;y = 2 withngy = 0.01,and n;y = 0.1

Also, the solitary waves experience more deformation due to the faster compression and vibrations of intermolecular
interactions in ions, electrons, and dust particles in the plasma system. So, the DA solitary waves produce variations in
the soliton structures while propagating in an inhomogeneous plasma. The variations of structures in the amplitude 4,,
and width W of the DA solitary waves also occur with the increasing/decreasing of number density n4,. While the DA
soliton propagates in inhomogeneous plasma, it gets deflected due to plasma of inhomogeneity i.e., the number
density ng4o. From the above figures (Fig. 5), it can be observed that with the increase in number density and ion density
profile, the smaller the soliton amplitude. Also, the higher the number density, electron density, and ratio of temperature
difference, the higher the soliton amplitude which is shown in Fig (6, 7). Similarly, when the number density and ion
density increase, the width of the solitary wave decreases (Fig. 8) Also, when the number density and electron density
increase, the width of the solitary wave is increased Fig (9, 10). Thus, it can be ensured that the structure of the solitary
waves varies with the variations of amplitude and width of the DA solitary waves. From the above observations, it is
observed that the amplitude with the width of the solitary waves slightly deforms during the propagations in
inhomogeneous plasma. So, it ensures the shape conservation of solitary structures as the first principle of K-dV soliton.

VI. CONCLUSION

In this work, theoretically, we have studied variations in the structures of DA solitary wave propagations in
inhomogeneous unmagnetized dusty plasma. We have considered collisionless, hot isothermal and Boltzmannean
distributed ions and electrons, with negatively charged dust grains in weakly inhomogeneous plasmas. In our problem,
the basic governing fluid equations are considered and the reductive perturbation technique (RPT) is employed to solve
the modified KdV (mKdV) equation. We have used an appropriate set of stretched variable to use the RPT in the governing
fluid equations of plasmas. Due to inhomogeneity in the plasma system, an extra term arises in the modified KdV (m-
KdV) equation associated with charged dust particles and the inhomogeneous density gradient. During the investigations,
we have also studied the structural variations of amplitude and width of the DA solitary waves depending on the various
choices of the parameters i.e., number density of the dust grains (n4,), electron number density (n,,), temperature ratio
of ion to electron (k), and the ion number density (n;,).

In this paper, primarily, we have studied the variations in soliton structures of DA solitary wave propagation in
inhomogeneous plasmas. But during the investigations, we have also observed and established a relation between
amplitude 4,, and width W of the dust acoustic (DA) solitons shown in the eq. (30). The Eq. (30) implies that if the
plasma inhomogeneity is neglected, the soliton amplitude 4,, will increase with the decrease in soliton width W. But
based on the various choices of the parameters n,y and n;, the relation between the amplitude A,,, and width W, shown
in the eq. (30), has been changed captiously. Also, from the above results, it is clear that A, and W increase with the
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increase in 1, (Figs. 7 and 9). Similarly, 4,, and W decrease with the increase in n4y (Figs. 5 and 8 ). Thus, from all the
results and discussion, it can be concluded that the variations in the soliton structures are modified proportionately due to
the presence of plasma inhomogeneity. Features like reflection, refraction, transmission, etc., i.e., variations in soliton
structure, are also vital and relevant features in the inhomogeneous plasma systems.
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CTPYKTYPHI BAPIAILII MAJIOBUX AKYCTUYHHUX COJIITOHHHAX XBIJIb (ITACX),
SAKI HOMIUPIOIOTHCA B HEOTHOPLIHIM ITJIA3MI
Xipak J:xuoti Jexinris, I1.H. Jexa
Daxynemem mamemamuru, Ynisepcumem [Jiopyeapx, Accam, Inoia

Llst cTaTTs mpencTaBisi€e HAIll TEOPETHYHI TOCTIHKEHHS CTPYKTYPHHUX Bapialliil MHJIOBUX aKyCTUYHUX COMITOHHUX XBWIb (DASW) y
HEONHOPIAHIN HeHamarHideHid mrasmi. [lns BUBYEHHS CTPYKTypHHX Bapiamii DASW mu posrisHynH Oe33iTKHIBHUH, rapsdmit
130TepMiYHUH 1 OOJBIIMAHIBCHKHN PO3MOALT €NEKTPOHIB-I0HIB 3 HETATUBHO 3apsHKEHHMH IOPOMIMHKAMH B C1a00 HEOXHOPIAHIH
wia3mi. My BUKOpHUCTalIM METOJ| PelyKTHBHUX 30ypeHb (RPT) y KepyrouHux pIBHSHHSX IUIa3MH, BUBEIM MOJU(IKOBAHE PiBHSIHHSI
Koprepera-ne-®piza (m-KdV) i orpriManu po3s’s30K i3 CAMOTHBOIO XBHJICI. MU pO3TIISIHYJIH BiIMTOBIHI PO3TATHYTI KOOPAMHATH IS
MIPOCTOPOBHUX 1 YACOBUX 3MIHHHX Ul HEOAHOPIAHOT Iu1a3Mu. Y Wil CTaTTi JOCIIHKEHO BIUIMB YaCTHHOK MMy Ha MOLIMPEHHS 10HHO-
AKyCTHYHHMX COJITOHHHMX XBHJIb y MOJENi HEOJHOPIAHOI IasMu. MM TakoX BKJIIOYWIM BIUIMB MAapaMeTpiB HEOTHOPIAHOCTI Ha
COJIITOHHI CTPYKTYPH.

KurouoBi ciioBa: nunosa niasma, memoo pedykmusnux 30ypens (RPT); izomepmiuni enekmpoHu, HeoOHOpIOHa naasma
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In this work, we obtain solutions of the deformed Schrodinger equation (DSE) with improved internal energy potential at a finite
temperature model in a 3-dimensional nonrelativistic noncommutative phase-space (3D-NRNCPS) symmetries framework, using the
generalized Bopp’s shift method in the case of perturbed nonrelativistic quantum chromodynamics (pNRQCD). The modified bound
state energy spectra are obtained for the heavy quarkonium system such as charmonium cc and bottomonium bb at finite temperature.
It is found that the perturbative solutions of the discrete spectrum are sensible to the discreet atomic quantum numbers (j, [, s, m) of
the QQ (Q = c, b) state, the parameters of internal energy potential (T, as(T), mp(T), B, c), which are the Debye screening mass
mp(T), the running coupling constant ag(T), the critical temperature 8, the free parameter ¢ in addition to noncommutativity
parameters (@,5). The new Hamiltonian operator in 3D-NRNCPS symmetries is composed of the corresponding operator in
commutative phase-space and three additive parts for spin-orbit interaction, the new magnetic interaction, and the rotational Fermi-
term. The obtained energy eigenvalues are applied to obtain the mass spectra of heavy quarkonium systems (cc and bb). The total
complete degeneracy of the new energy levels of the improved internal energy potential changed to become equal to the new value
3n? in 3D-NRNCPS symmetries instead of the value n? in the symmetries of 3D-NRQM. Our non-relativistic results obtained from
DSE will possibly be compared with the Dirac equation in high-energy physics.

Keywords: Schrodinger equation; noncommutative phase-space; internal energy potential at finite temperature; Bopp shift method;

heavy quarkonium systems
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1. INTRODUCTION

It is well known that the ordinary Schrodinger equation (SE) describes the dynamics of quantum systems at low
energy without considering the temperature effect. Recently, the finite temperature SE allows us to study quantum systems
such as superconductivity mechanisms and Bose-Einstein condensates at an arbitrary temperature, and when the
temperature is equal to zero, it becomes identical to the SE [1]. Very recently, many authors have studied the finite-
temperature SE for hot quark-gluon plasma, heavy quarkonia in quark-gluon plasma, (electron and proton systems), and
so on [2-5]. The problem of calculating the energy spectra of the SE with various types of potentials such as the internal
energy potential and the Cornell potential at finite temperature has been attracting interest in recent years [2-8]. Abu-
Shady has studied heavy-quarkonium mesons (HLM) using an internal energy potential and obtained wave function and
energy spectra by solving SE using AEIM when the finite temperature is included [7]. The main objective is to develop
the research article [7] and expand it to the large symmetry known by nonrelativistic noncommutative phase-space
(NRNCPS) to achieve a more accurate physical vision so that this study becomes valid in the field of nanotechnology.
Noncommutative quantum mechanics is an old idea that has been extensively discussed in the literature. It should be
noted that noncommutativity (NC) was first introduced by Heisenberg in 1930 [9] and then by Snyder in 1947 [10]. It has
appeared since the beginning of ordinary quantum mechanics. There has been a growing interest in this field since the
discovery of string theory and the modified uncertainty principle. In addition, the NC idea is suggested as a result of the
production of quantum gravity. It would provide a natural background for finding a suitable solution for a possible
regularization of QFT [11-23]. During the past three decades, the NC theory has been the focus of extensive investigation
and has produced a very interesting new class of quantum field theories with intriguing and occasionally unexpected
properties [24]. Thus, the topographical properties of the NC space-space and phase-phase have a clear effect on the
various physical properties of quantum systems and this has been a very interesting field in many fields of physics. The
idea of noncommutativity has been studied in many articles, such as [24-36]. On the other hand, we explore the possibility
of creating new applications and more profound interpretations in the sub-atomics and nanoscales using a new version of
the improved internal energy potential, which has the following form:

0F;(r,T)

o A D
Vip(r) = F(rT) = TEEEE o V() = Vi () + (52 = 72+ 2

22 22y 29 oxp(—mp(T)r) LO (1)
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We refer to this term L@ and the parameters (Al, A,A,A, D3, my, (T)) in the materials and methods section. The
new structure of 3D-NRNCPS is based on new canonical commutation relations in both Schrodinger SP and Heisenberg
HP, respectively, as follows (Throughout this paper, the natural units ¢ = # = 1 will be used) [36-46]:

P o A . o A effOuv
[xupy] = i6h > [£,55,] =[O Py (D)] = i8herr = |AR,4P,| = hf%, Q.1
and
] =0 [2,%] = [2,0:2,0)] =6, = [42,4%,] = 2|, (2.2)
and
] =0 [pip] = [0.0:5, (0] = B = |4p4p,] = [P, 23)

the indices u,v = 1.3, hesy equal (1 + %) denote the effective Planck constant. This means that the principle of
uncertainty of Heisenberg is generalized to include another two new uncertainties related to the positions ()?M, fv) and the
momenta (ﬁ#, ﬁv), in addition to the ordinary uncertainty (J?#,ﬁv). The non-commutativity of the phase-space is based
on the deformed Heisenberg-Weyl algebra, which is represented by the above commutation relations. here 6,,,, and EHV
are invertible antisymmetric real constant (3 % 3) matrices which satisfied 8,,, = &, 0 and Euv = ewg, with £, = —¢g,
and g,,, = 0, here (6,5) are interpreted as being new constants in the quantum theory. The very small two parameters

(6*Y and EW) (compared to the energy) are elements of two antisymmetric real matrixes, parameters of non-
commutativity, and (*) denote the Weyl Moyal star product, which is generalized between two arbitrary functions
(f,9) (x,p) to the new form f(%,9)G(X,p) = (f * g)(x, p) in the 3D-NRNCPS symmetries as follows [47-55]:

(f9) .p) = (f * p) = (fg — 560335 g — 50" 0L folg) Cxp). 3)

The second and third terms in the above equation are the present effects of (space-space) and (phase-phase)
noncommutativity properties. However, the new operators ¢(t) = (J?# vﬁ#)(t) in HP are depending on the
corresponding new operators & = X, V P, in SP from the following projection relations:

x(©) = exp (At = ) xexp (3 Ayt — 1)) = x(t)—exp< lAG to)>*;2*exp <_$Ari£(t—to)>, )

ax(e

Here y = x, V p, andy(t) = (x# V p,)(t). The dynamics of the new systems = = " ) are described by the following motion

equations in 3D-NRNCPS symmetries:

d)((t) [ (t) lp]+af(t) d){(t) [E(t) ]+0)((t)' (5)

The two operators (H,2and ﬁip) are present as the quantum Hamiltonian operators for the internal energy potential and
the improved internal energy potential in the 3D-NRNCPS symmetries and their extension. This paper consists of five
sections and the organization scheme is given as follows: In the next section, the theory part, we briefly review the SE
with internal energy potential at finite temperature based on refs. [7-8]. Section 3 is devoted to studying the DSE by
applying the generalized Bopp's shift method and obtaining the improved internal energy potential and the modified spin-
orbit operator at finite temperature. Then, we applied the standard perturbation theory to find the quantum spectrum of
the ground state, the first excited state, and the (n, [, m)"excited state produced by the effects of modified spin-orbit and
newly modified Zeeman interactions. In the fourth section, a discussion of the main results is presented in addition to
determining the new formula for determining the mass spectra of the quarkonium system in the 3D-NRNCPS symmetries
framework. Finally, in the last section, a summary and conclusions are presented.

2. THEORY
2.1. Overview of the eigenfunctions and energy eigenvalues for the internal energy potential at finite temperature
in the 3D-NRNCPS symmetries framework
As already mentioned, our objective was to obtain the spectrum of the improved internal energy potential at finite
temperatures. To achieve this goal, it is useful to summarize the time-independent Schrédinger equation for the internal
energy potential at a finite temperature [7-8]:

Vip(r) = Fy(r,T) - T 222D, (6)

where F, (r, T) is determined from:

Fi(r,T) = (er = 3250) exp(—mp (T)7),
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and my, (T) is the Debye screening mass, ¢ is a free parameter, the running coupling constant

—_ a0
Ag (T) = 11-2/3ng In(T/BTc)’

Here ng, T, and f are the number of quark flavors, the critical temperature, and (0,104 % 0.009), respectively, the

relative spatial coordinate between the two quarks is r. By substituting F; (r, T) into Eq. (6), we obtain the internal
energy potential that satisfies the following equation at a finite temperature [7-8]:

Vip(r) = (Dz + % + D,r + Dsrz) exp(—mp(T)7r), @)
where
d; = _Z#Dz = BuT as(T) de(T),
16#“(11 2/3nf)
= —2uD
ds HYs = aS( ) 3[11-2/3n; In(1/BTO]>
d,=—-2uD, = —2,uc R
and
ds = —2uDs = 2ucT 20,
If we insert this potential into the Schrédinger equation, the radial part functlon Uy () = M is given as:
d?Up(r) | 2dUp(r) D l(l+1)

Sol) 4 28000 4 2 {E = (D; + 2+ Dyr + Dgr?) exp(—=mp (1) = =2} U, (r) = 0, ®)

and

a? Rn D 1(1+1
l(r) +2u [E (D2 +24Dyr+ Dsrz) exp(—mp(T)r) — %] Ru(r)=0. (9

The reduced mass p for the quarkomum particle for example (ccandbb) equal mmq:nmﬁ

Wi (1,6, @) = 2 ¥™(9, ¢) is given by [7]:

—. The complete wave function
q

Prim (1,6, $) = Ny ITZ; (r — a) r®~ exp(=1/2ar® — r) " (6, ). (10)
Also, the energy E,,; of the potential in Eq. (7) is determined from the following equation:
En = 5-[a(1+2(8 +n) = B2 = dy + mp(T)d3)], (1

where N,; is a normalizing constant, n is a natural number accounting for the radial excitation, while [ is a non-negative
integer number that represents the orbital angular momentum,

d
az\]d4mD_d5_72mD2

d,mp —d, — dym?
B= 21D 4 3d D >
2\/d4mD_d5_72mD2

1
B =§(1iJ1 Y4l +1/2)2 — 1/4)

3. MATERIALS AND METHODS
3.1. DSE solution for an improved new internal energy potential at finite temperature in pNRQCD
In this subsection, we shall give an overview of a brief preliminary investigation of the improved internal energy
potential in 3D-NRNCPS symmetries. To perform this task, the physical form of DSE, it is necessary to replace the

-~ Ed
ordinary three-dimensional Hamiltonian operators H, (xw pﬂ), the complex wave function ¥ (r), and energy E,; with

. - .
the new three Hamiltonian operatorsH,”. (J?W ﬁﬂ), the new complex wave function¥? (f”), and new valuesE,", respectively.

In addition to replacing the ordinary product with the Weyl-Moyal star product, which allows us to construct the DSE in
the 3D-NRNCPS symmetries framework as [55-60]:

a2 Rnl(r) L(1+1)

D
+2u [Enl (Dz + 73 + D,r + Dsrz) exp(—mp(T)r) — e

]*Rnl(r) =0. (12)

Bopp’s shift method [70-72] has been successfully applied to relativistic and nonrelativistic noncommutative
quantum mechanical problems using the modified Dirac equation (MDE) [73-81], the modified Klein-Gordon equation
(MKGE) [36-38, 48-61] and DSE [46, 64-69]. This method has produced very promising results for several situations of
physical and chemical interest. The method reduces MDE, MKGE, and DSE to the Dirac equation, Klein-Gordon
equation, and Schrédinger equation, respectively, under two simultaneous translations in space and phase. It is based on
the following new commutators [46, 64-72]:
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[f#(t), ﬁv(t)] = ia;wheff
[2,%,] = [£,(0), %,(®)] = i6,, . (13)
[ﬁ;u ﬁv] = [ﬁu(t)’ ﬁv(t)] = lg;w

The new generalized positions and momentum coordinates (3?#,;31,) in 3D-NRNCPS are defined in terms of the
commutative counterparts (xw pv) in ordinary quantum mechanics via, respectively [46, 55-60]:

(x,w pv) = (k\w ﬁv) = < pv: Put __xv) (14

The above equation allows us to obtain the two operators (#2,p2) in the 3D-NRNCPS symmetries framework [28-31]:
(r%,p?) = (7%4,p%) = <r2 - LO,p? +16 ) (15)

The two couplings L® and L@ are (Lx012 +L,0,3 + L2913) and (L,ﬁlz + Ly§23 + L2513), respectively, and (L,,
Ly andL,) are the three components of the angular momentum operatorz while 6, equal 8,,/2. Thus, the reduced
Schrédinger equation (without star product) can be written as:

d?Rp (1) A
et 2 (E -V () Ru(r) = 0. (16)

The new operator of HamiltonianH,if; (x#, pv) can be expressed as:

. 52
Ho (%, B) = 5+ Vip (), (17

6 gura . . . . N
here # equal \/ (x” - %pv) (x/‘ - Tp“)' The effectively improved internal energy potential Vi;f f () can be
expressed in 3D-NRNCPS symmetries:

1(1+1)
2uf2’

v () = (D2 +22 4 D, + Dsfz) exp(—mp(T)7) + (18)

Again, apply Eq. (15) to find the three terms (%,DJ’, Ds#?andexp(—mp(T)#)), which will be used to determine the

effective improved internal energy potential Vi;f f (), as follows:

%a%=—+—L@+0(02) (19.1)
Dyr = Dy = Dyr — —L('r) +0(0?), (19.2)
DST‘Z - D5f‘2 = DST‘Z - D5L@ + 0(92), (19.3)
1 1 1 1
(D) 1D 1 L 11 g 1 0(62), (19.4)
and
R ™72
exp(=mp(T)7) = exp(=mp(1)F) = exp(=my (1)) = "2 L6 exp(~mp (T)1). (19.5)
Thus, we have the following.
D D X D Dy 72 7
fexp(—mb (Tr) - fexp(—mD (MH#) = (73 + 2—33L@) (1 - mg—rLO) exp(—mp(T)7T), (20.1)

D,rexp(—mp(T)r) - D,7 exp(—mp(T)F) = (D4r -= L@) (1 - mg—ing)) exp(—mp(T)r), (20.2)

D12 exp(—mp(T)r) — Ds#? exp(—mp (T)F) = (Dsrz - DSLQ) (1 - mg—iT)L(r)) exp(—mp(T)1), (20.3)
and

D, exp(—my(T)r) = Dy exp(—mp(T)?) = D, exp(—mp(T)r) — D, 22D exz(r_mD(T)r) LO. (20.4)

which gives immediately at the first order of the infinitesimal vector parameter @ as follows:

%exp(—mD(T)f) = %exp(—mD(T)r) (mD(T)D3 exp(—mp(T)r) + w) LO +0(6?%), (1.1

D exp(=my (T)F) = Dyr exp(=mp(T)r) — (P22 exp(—my (T)r) - 222D [+ 0(67), (21.2)
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D,# exp(—my(T)?) = Dyr exp(—mp(T)r) — (w exp(—mp(T)r) — M) L@ +0(6%), (213)

and

Dy exp(—mp(T)7) = Dy exp(—mp(T)r) — D, "2DEEERD 1 4 0(62), 21.4)

Substituting, Eq. (21) in Eq. (18), gives the new improved internal energy potential, we obtain the effective improved
internal energy potential V;;f T (#) in 3D-NRNCPS symmetries as follows:

¢ 10
Vil () = V() + 2 + (B2 - 22+ 22— 27 = 22 exp(=my (D)) + 5 “UlLe +0(0?).  (22)
with
Ay = mp(T)Ds — Dymp(T) — Dy,
A, = mp(T)Ds,
A3 = mD(T)DALﬁ
A4_ = mD(T)DS )

By making the above substitution equation in Eq. (17), we find the global our working new modified Hamiltonian
operator H,” (#) in 3D-NRNCPS symmetries:

HE () = Hyy (%, 1) + Hpo (1,0, 6), (23)

hereH;, (x,u Pv) is just the ordinary Hamiltonian operator with internal energy potential in 3D-NR quantum mechanics
symmetries:

_r Ds 2
Hip(x,,py) = t (Dz +—+ Dyr + D7 ) exp(—mp(T)r), (24)

while the rest part H, ert(r 0,0), which we called the perturbative Hamiltonian operator, is proportional to two

-
-

infinitesimals couplings LO and L(-)

-

’““)] Lo + 25)

pert(r 9 9) - [f(T' AL'D3) +
here f(r, A;, D) is determined by:

Ay | D3 A

f(r,A;,D;) = (ﬂ -2 =S /42—3) exp(—mp (T)r).

2r  2rz = 2r3 2

Thus, we can consider Hp’:m () it as a perturbation term compared with the principal Hamiltonian operator H;, (xu, P u)

in 3D-NRPS symmetries.

3.2. The exact modified spin-orbit operator for heavy-quarkonium systems with improved
internal energy potential in the pNRQCD system:
In this subsection, we apply the same strategy that we have seen exclusively in some of our published scientific

4o

works [46, 55-60, 73-76]. Under such a partlcular choice, one can easily reproduce both couplings (LO and LB) to the
new physical forms (gS@LS and gSHLS) respectively. Thus, the perturbative Hamiltonian operator H., ert(r 0,0) for

the heavy quarkonium systems will be transformed into a modified spin-orbit operator HSO (r,0,0), under the improved
internal energy potential at a finite temperature as follows:

1(1+1)

HE (r,0,0) = g, {f(r,Ai,Dg)@ + 0+ %} LS, (26)

— -2 — 2 = 2
here @ and 6 are equals \/9122 + 0,3% + 0,3% and \/912 + 60,3 + 0,3 , respectively, andg; is a new constant, which

plays the role of strong coupling in quantum chromodynamics or QCD theory, we have chosen two vectors (E) and 6)

parallel to the spin-s of the heavy quarkonium system. Furthermore, the above perturbative terms H,, ert(r) can be

rewritten to the following new form:

1(1+1)
4

HX(r,0,0) = % [f(r,Ai,D3)0 + 0+ %] G2, @7

where G2 = J% — L2 — §? while J and S are the defined operators of the total angular momentum and spin of quarkonium

systems. The operator H'%(r, @, §) traduces the coupling between spin-orbit interaction LS. The set (H(r, 0, 8), J2, L2,
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S%and J,) forms a complete set of conserved physics quantities. For spin-1, the eigenvalues of the spin-orbit coupling
operator are

k(l)E%(j(/’+1)—l(l+1)—2)

corresponding j = [ + 1 (spin great), j = | (spin middle), and j = | — 1 (spin little), respectively, then, one can form a
diagonal (3 x 3) matrix for the improved internal energy potential in 3D-NRNCPS symmetries, with diagonal
elements(Hj lp)ll (HE ,, and (HE 5 are given by:

i 1(1+1) 0) ...
(H2),, = gekr (D {f(r,Al-, D)0 + g +Z} it =141, (28.1)
i 1(1+1) 0] ...
(Hsp),, = gsk2 (D) {f (r, A, D3)0 + =226 +Z} ifj =1, (28.2)
and ~
(Hgp),, = gsks() {f (r, 4, D)0 + g 4 %} ifj=1-1. (28.3)

Here (kl D), k, (D), ks (l)) are equals %(l —2,—21 — 2), respectively, and j is the total quantum number. The non-null

diagonal elements ((H S"f,’)n, (Hsig)zzand (H m)33) for the modified Hamiltonian operator H - (7) will change the energy
values E,,;by creating three new values:

EP = (#(r,0,¢) |(HD), | ¥(.0.9)). (29.1)

EP = (W (r,0,0)|(HD),,| ¥(r.6,0)). (29.2)
and _ _

EP = W(r,0,9) |(HD),,|¥(.0,4)). (29.3)

We will see them in detail in the next subsection. After profound calculation, one can show that the new radial
functionR,,; (r)satisfies the following differential equation for the improved internal energy potential:

d?Ry,
oDt 2| By = Vi (r) —

dr?2

z(z+1)

_ (+1) 72 Le
_[f(r, Ay, Dy) + 1L+ 1)r4]LO — D L6 — 22| R () = 0.30)

Through our observation of the expression of H i (r,8,0), which appears in equation (25), we see it as

pert
proportionate to the two infinitesimals parameters (@ andd), thus, in what follows, we proceed to solve the modified
radial part of the DSE that is, equation (30) by applying standard perturbation theory to find an acceptable solution at the
first order of two parameters @ and 8. The proposed solutions for DSE under improved internal energy potential include
energy corrections, which are produced automatically from two principal physical phonemes’, the first one is the effect
of modified spin-orbit interaction and the second is the modified Zeeman effect while the stark effect can appear in the
linear part of improved internal energy potential at finite temperature model.

3.3. The exact modified spin-orbit spectrum for a heavy-quarkonium system under improved internal energy
potential in pNRQCD
The purpose here is to give a complete prescription for determining the energy levels of the ground state, the first excited
state, and (n, [, m)™* the excited state, of heavy quarkonium systems. We first find the corrections (EZ? (k (1), ], 1, n),
mm (k,(D),j,l,n) and Eslf,p(k3 (D), j,1,n)) for heavy quarkonium systems such as (charmonium and bottomonium)
mesons that have the quark and antiquark flavor under a new improved internal energy potential at finite temperature,
which have three polarities up and down j = [ + 1 (spin great), j = [ (spin middle) and j = [ — 1 (spin little), respectively,
at the first order of two parameters (@ and 8). Moreover, by applying the perturbative theory, in the case of perturbed
non-relativistic quantum chromodynamics pNRQCD framework, we obtained the following results:

ESP = goNZky (D [T — a) 1) exp(—ar? — 287) (£ (r, 4, D5)0 + 2

0+ )Zdr, (1.1

1(1+1)

EM™P = g N2k, (1) fM{]_[ L (r—a)ré 1} exp(—ar? — 2pr) (f(r A;,D3)0 + 0+ ) 2dr, (31.2)

l(l+1)

E = giN2ks () fy {TTy(r — @) v5-1Y exp(—ar? — 257) (£ (r, A, D)6 +

We have used the standard identity:

0 + )zdr. (31.3)

f Y0, p)Y (8, $) sin(8) dOdd = 8y Cpmm
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Now, we can rewrite the above equations to a simplified new form:

B Ueryjom 1) = goNzks (D) (0 iy T +10), (32.1)
By (ko jim, ) = gsNZko () (0 B, T + 572, (322)
and
le k 2 n oy o
P (ks jyn D = 9Nk ) (0S8, T + 2 (323)
Moreover, the expressions of the 6-factorsT~"(l = 1,6) are given by:
Th =4 f+w(l'[ L, (r—a) s 1) exp(—ar? — (28 + mp(T))r) rdr, (33.1)
™ = Az f+°o(]_[ L, (r—a)ré 1) exp(—ar? — (28 + mp(T))r) dr, (33.2)
Th =2 f+°°(]_[ L, r—a) 1) exp(—ar? — (28 + mp(T))r) r~dr, (33.3)
] = A4 fﬂo(]—[ L, (r—a)rd" 1) exp(—ar? — (28 + mp(T))r) ridr, (33.4)
Th=-22 +OO(]_[ L, (r—a)rd- 1) exp(—ar? — (28 + mp(T))r) ridr, (33.5)
and
T2 = J (T (= a) 1) exp(—ar? — 2pr) Elr2ar. (33.6)
For the ground state n = 0, the expressions of the 6—fact0rsTl-0(i = E) will be simplified to the following form:
T = %f;wrzs‘l exp(—ar? —er) dr, (34.1)
T = —%Zfomrz‘s‘l‘l exp(—ar? —er) dr, (34.2)
T = %f;mrw‘z‘l exp(—ar? — er) dr, (34.3)
T = — “2—4f0+°°r25+2‘1 exp(—ar? — er) rdr, (34.4)
T = —Az—3f0+°0r25+1‘1 exp(—ar? — er) dr, (34.5)
TO =1(1+1) f0+°0r25‘3‘1 exp(—ar? — 2pr) dr, (34.6)
wheree = 28 + mp(T). It is convenient to apply the following special integral [82]:
0 v 2
v-l. ) 2 _ dx = 21’5 7_ D _7 s 35
.[)xl exp( x )/x)x (22) 2T (v)exp 1) 2\ I 35)
where D_, (\/%_/1) and I'(v)denote the parabolic cylinder functions and the Gamma function. After straightforward
calculations, we can obtain the explicit results:
=4 (Za) 2r2s) exp( )D 25 (v—) (36.1)
—(Za T (26 — 1) exp( )D 251 (= r) (36.2)
r(zs 2) exp( )D 252 (= «—) (36.3)
(Za) z r(zs +2)exp (5) D-csvar (752 (36.4)
T;J =-2 (26 + 1) exp (5) D_zs4e1) (ﬁ) (36.5)
and
— 10+ D)) T (26 — 3) exp( )D (25-3) ( jﬁ) (36.6)

Let us second to obtain the exact modifications (EZ™(ky(1),j,L,n =0), E™P(k,(),j,l,n=0) and
EXP(ky(1),j,1,n = 0)) of the ground state as:
28+1

gip . _ _ 2a) 2z exp(-p?/2a) A
ELP U (D, Ln = 0) = g 2Pl b (1) (070 + 57). (37.1)
28+1

mlp _ _ (2a) z exp(—B?/2a) A
Uea,j,ln = 0) = go =P Jz/_a)kz(l)(QT00+2#), (37.2)

and
26+1

llp _ (2a) 2 exp(-p?/2a) A
$ (D)), Ln = 0) = go o CE A ke (0 (6700 + 57). (37.3)
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with Tyo = X8, TP, For the first excited state n =1, we replace ([T, (r —a;) r5_1)2 by (%% —a,?r?%-2 —

20,7297, with a; = %M the expressions of the 6-factorsT}* (i = R) will be simplified to the following form:

Tl = %f;w(r””‘l — a, 2?7t — 2,121 exp(—ar? — er) dr, (38.1)
T} = =22 [¥7p2641-1 _ g 2p28-1-1 _ 0 4261 oxp(—qr? — er) dr, (38.2)
T = %f;w(rz‘s‘l — a,2r?87271 = 20,7271V exp(—ar? — er) dr, (38.3)
Tl = _%f0+0°(r25+4—1 — a, 2?8+t _ 2q 243 exp(—ar? — er) dr, (38.4)
T = —ﬁf+°°(r25+3‘1 — o, 2?8t — 2q, 72842 ) exp(—ar? — er) dr, (38.5)
and
T¢=11+1) f0+°o(r25_1_1 — a,?r?87371 — 20,7272 V) exp(—ar? — 2Br) dr. (38.6)

Evaluating the integral in Eq. (38) and applying the special integration, which is given by Eq. (33), we obtain the
following results:

T} = {(Za)‘Tr(m +1) exp( )D (25+1) (r) + a2 Q)T T(26 — 1)

exp (%)D_m » (=) 20, 20)" 2r2s) exp (S )D o) (f_)} (39.1)
T} = {(Za)‘Tr(m +1) exp( )D (25+1) (r) + a2 Q)T T (26 — 1)

exp (%) D5 (=) —2a,(2a)"2T(25) exp (S )D o5 (= j_)} (39.2)

T} {(Za)‘Tr(w ~1) exp( )D @5-1) (F) +a2Qa) " Tr(26 - 2)

exp( )D 25-2) (r) —2a,(20)" (26 — 1) exp( )D 25- 1)( )} (39.3)

T} = {(Za)‘Tr(w +4) exp( )D @5+4) ( ) + e, 22a) T (26 +2)
exp (5) D-sen) (1) - T+ e (£)D s (= )}, (39.4)

T = {(Za)‘Tr(w +3) exp( )D @5+3) (é_a) 0 2(2a) "3 726 + 1)
exp (£) Doy (7) ~201 (2a)™ 2 @26 + 2) exp () D_zsea) (%_a)} (39.5)

and
T: = I+ DQa) "2 T(26 — 1) exp (%) Doy (2£) — 10 + Daty T —3)

exp( )D (26-3) (\/_) F(26 2) exp( )D (26-2) (ji) (39.6)

Allow us to obtain the exact modifications (EZ” (k, (1), j, I, n = 1), E™™ (ky (1), j,,n = 1) and EXP (k5 (1), j, l,n =
1)) of the first excited state as follows.

i , ka(l 0
EgP(ey(D,j,bn=1) = %(QTH + 5)’ (40.1)
sk2(D) 6
Egy” (e (D), L = 1) = 2t G Z)’ (40.2)
and
“P _ gsks(l) ﬂ
s, ln=1) = =20 (0T, + 1), (40.3)

with
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_ T(26+3)D_(z543)(By/2/a)
L7 @a)®+3/2) exp(-p2/2a)
I = r(26+1)D_(z541)(By/2/a)
27 @a) 1D exp(-p2/2a) (°

I = r(26+3)D_(z543)(By/2/a)
37 26+3
(2a) 2 exp(-B2/2a)

and Ty, = _, TL. In addition, in the same way, we find the exact modifications (ES® (ky (1), j, 1, n),EM? (k4 (1), j, 1, n)

and EXP (ks (l), j,1,n)) for the excited states (n, [, m)*" of the heavy quarkonium system under the new improved
internal energy potential in the global quantum group symmetry 3D-NRQM:

&Y U (D) Ln = 1) = gsks (DN (0T 1 + 17), (41.1)
ERP (D) Ln = 1) = yk2(ONZ (6T, +5-), (412)

and
ESP Ues (D), Ln = 1) = yks (DNG (0T +12), (41.3)

with Ty, = X8, Tk

3.4. The exact modified magnetic spectrum for heavy quarkonium systems under improved internal energy
potential in pNRQCD
In addition to the important results obtained previously, now we consider another important physically meaningful
phenomenon produced by the effect of the improved internal energy potential at finite temperature on the perturbative

NRQCD related to the influence of an external uniform magnetic field B. To avoid repetition in the theoretical
calculations, it is sufficient to apply the following replacements:

®—- oBand 6 > GB. (42)

Allows us to replace the physical quantities f(r,4;, D;)L0O, 1 and %with corresponding new physical

-

(+1) 72
4

. S —LB . — . Lo .
quantities of (r)LB, o LBando B respectively, here(cando) are two infinitesimal real proportional constants, and

we choose the arbitrary uniform external magnetic field B parallel to the (Oz) axis, which allows us to introduce the new
modified magnetic Hamiltonian H,l,’: (r,0,0) in 3D-NRNCPS symmetries as:

i — 1 z+1) g
Hy (r,28) = = (f(r, Ay D)x + =52 = Z){BY = &, }, (43)
here X, = —SB denote to Zeeman effect in commutative quantum mechanics, while (8%, = BJ — X,) is the new
Zeeman effect. To obtain the exact NC magnetic modiﬁcations of energy for the ground state, the first excited state, and
(n [, m)t" excited states of the heavy quarkonium system E g(m =0,l=0,n=0), Emag(m =—-L+Ll,n= 1) and

mag (m =—1+11, n) we just replace k, () and @(6) in the Egs. (37), (40), and (41) with the following parameters m
and 0 (o), respectively:

28+1
(2a)" 2z exp(—B?/2a) g
9s T zs+1p_ s+ (By2/@) B (GTOO + zu) m, (44.1)

Epag(m ==L ¥LLn = 1) = 22— (oT;, + Z)m, (44.2)

I1=2aq1+a,213

mag(m—Ol—On—O)

and

EP (m="T+Ln) = g,N4B (JTM + i) m. (44.3)
We have—l < m < +I, which allows us to fix (2] 4+ 1) values for discreet numbers m. It should be noted that the
results obtained in Eq. (44) we could find by direct calculation:

By = (P, 0,0)|HE (r,0,D|¥(r,0,0)
that takes the following explicit relation:

oo 1
Emag = N%mB f+ (M, r—a)ré- 1) exp(—ar? — 2pr) {f(r A;,D3)o + (+1)

o+ i} ridr.
2u

(45)
Eq. (45) can be rewritten as follows:
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Emag = 9sN4B (UZ T/ i) m. (46)

The 6-factors Ti“(i = R) are given by Eq. (33). Then we find the magnetic specters of energy produced by the
operator H,” (r, x, @) for the ground state and first excited states repeating the same calculations in the previous subsection.
Having completed the first and second-induced perturbed both spin-orbit interaction and self-magnetic phenomena,
now, for our purposes, we are interested in finding a new third automatically important symmetry for improved internal
energy potential at zero temperature in RNCQM symmetries. This physical phenomenon is induced automatically by the
influence of the perturbative Hamiltonian operator Hpir: °‘(r, x, %), which we can obtain from the initial perturbed

Hamiltonian operator in Eq. (25). We discover these important physical phenomena when our studied system the

quarkonium particle such as (cc andbE) undergoing rotation with angular velocity (2 if we make the following two
transformations to ensure that previous calculations are not repeated:

0 - xQ and 6 - XQ. 47)
Here (y,x) are just two infinitesimal real proportional constants. We can express the perturbative Hamiltonian operator
HY ! °t(r, x, %) which induced the rotational movements of the quarkonium particle as follows:

l(l+1)

Iz’;;rtmt(r 0X) =[f(r,A,D3) x + x+ %] LQ. (48)

To simplify the calculations without compromising physical content, we choose the rotational velocity 2 = f2e,.
Then we transform the spin-orbit coupling to the new physical phenomena as follows:

£ A D)y +

To obtain the exact NC modifications of energy for the ground state, the first excited state, and (n, [, m)*™" excited
states of the heavy quarkonium system Eb,(m=0,l=0,n=0), EX,(m=~+,Ln=1), and EX,(m=

rot
=1, +l, l,n) we just replacek, (1) and @(5) in Egs. (37), (40), and (41) with the following parameters m andy (),
respectively:

l(l+1) l(l+1)

X+ ] LO - £, 4, Dy + 55y + 21] aL,. (49)

26+1
_ _ (2a)" 2 exp(-p?/2a) X
EP,(m=0,1=0,n=0) =g, oS (MH)(MZ/_a)n( *Too + 2#) m, (50.1)
_ gsi2 z
EP (m="l+LLn=1)= ey (;(Tn + 2#) m, (50.2)

and
mt(m =—1,+11, n) gsN40 ()(Tln #) m. (50.3)

It is important to note that in Ref. [83], rotating isotropic and anisotropic harmonically confined ultra-cold Fermi
gases were studied in two and three dimensions at absolute zero, but in that study, the rotational term had to be manually
added to the Hamiltonian operator. In contrast, in our study, the rotation operator appears automatically because of the
phase-space deformation caused by the improved internal energy potential models in the 3D-NRNCPS symmetries. It is

—2
crucial to note that perturbation theory cannot be utilized to find corrections of the second order (©%and 6 ) because we
have only employed corrections of the first order of infinitesimal noncommutative parameters (6 and 8).

4. MAIN RESULTS
In the previous subsections, we obtained the solution of the modified Schrodinger equation for new improved
internal energy potential, which is given in Eq. (25) by using the generalized Bopp’s shift method and standard

perturbation theory in pNRQCD by the feature of 3D-NRNCPS symmetries. The modified eigenenergies (Eg" E" E" )

(T,c,n=0,m=0,1l), (Ef(’_”,E;c"f”, n’f_’)(T, cjn=1(m= —l,+l),l) and (E;fclp, E,’:le,E“p) (T,c,j,n, (m=—l, +l) 1)

with spin-1 for heavy quarkonium systems QQ (Q = c, b) with improved internal energy potential at finite temperature are
obtained in this paper based on our original results presented in Egs. (37), (40), (41), (44), and (50) in addition to the
ordinary energy E,; for the improved internal energy potential at a finite temperature which is presented in Eq. (11):

»  For the ground state:

2641 @k, (1) + Bom + Qym)T,
ESP(T,con = 0,m = 0,1) = Egy + go 20 2 ep(CB/20) (27007 0 00 T 00 L s
S r(286+1)D_(z541)(BY2/a) | + ” (k. (DO + Bom + Qym)
2641 (@k,(1) + Bom + Qym)T,
EM™MP(T,con = 0,m = 0,1) = Eg + go 22 2 ep(CB/2a) |P7 287 F 250 7 A0 L (51.)
S r(26+1)D_(541)(BV2/a) |+ ” (k,()B + Bom + Qym)
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Ex2(T, 0,m =0,0) = Eq + 0+ exp(cpryze) (O D)+ Bom + 2ym)Tag 51.3
cn=0ms= 0 95 T @500 (B2 |+ o (ks (DO + BTm + OFm) | (1.3)
» For the first excited state:
(@k,(l) + Bom + Qx)Ty,
glp —
(Toejm=1,(m=-1 +l) D) =By + I1— 2a112+a1213 {+—(k1(l)9 + Bom + Q)(m)} (2.1)
(@k2 () + Bom + Qx)Ty,
mlp _ gsB
(T ¢jn=1, (m L +l) l) By + 11—2a112+a1213{ —(kz(l)ﬁ + Bom + .Q)(m)} (52.2)
(0k3 () + Bom + Qym)Ty,
le _ 9gsB _
End(Tocjim =1, (m = =L +1),1) = By + 2o {+$(k3(l)6 + Bom + nym)}’ (523)

> Forany (n,[,m)"" excited state:
ESP(T,c,j,n, (m = =1, +1),1) = Ey, + gsN2, {(le(l) + Bom + Qym)Ty, + i(kl(l)é + Bom + Qym)},

(53.1)
E™P(T,c,j,n, (m = =1, +1),1) = E, + gsN3 {(ka(l) + Bom + Qym)T,, + i(kz(l)é + Bom + Qym)},
(53.2)

EX(T,c,jn,(m = =, +1),1) = Eyy + g;N% {(Gkg(l) + Bom + Qx)mTy, + i(kg(l)é +Bom + nzm)},
(53.3)

where Ej; and E;; are the energy of the ground state and the first excited state of heavy quarkonium systems in the
symmetries of quantum mechanics under internal energy potential at finite temperature:
Ey = a(1+26—ﬁ2;i2+mD(T)d3)’ (54.1)

and
5+1)-B2-
Ey, = a(1+2(6+1) ﬁzﬂ d2+mD(T)d3). (54.2)
This is one of the main objectives of our research and by noting that the obtained eigenvalues of energy are real’s
and then the NC diagonal Hamiltonian H,? (xwpu) is Hermitian. Furthermore, it’s possible to write the three elements

(H )11 (H ,, and (H,E i , as follows:

lp(xl,up[,t) - an(x#’p#) dlatg ((H )11 (H )22 ( ) (55)
where
Hut),, = + HEY
HE),, = = S H
HY). . = —A— + HpY
n

cJ33 2# int

. o A
In the symmetries of 3D-NRNCPS, the new kinetic term ZL#C can be expressed as:

o

Anc _A- LO Lo — LY
2u 2u
The three modified interaction elements (H gllf ,H :Zép, H ll;f;) are given by the following expressions:
HEP = (D, + 2+ Dyr + Dsr? ) exp(—=mp(T)r) (ks (DO +0K2,) (r, Ay, Dy) ), (56.1)
Hi",z;p = (D2 + % + Dyr + D1 )exp( mp(T)r) s(k, (DO +0o¥Z N (1, Ay, D3)), (56.2)
and
' D
H® = (Dz +=2+ Dy + Dsr )exp( mp(T)r) (kz3(DO +aR;Z N (1, A;, D3)). (56.3)

Thus, the ordinary kinetic term for the internal energy potential (— 2—) and ordinary interaction
D,

(Dz +—=+D,r +D5r2] exp(—myp (T)r) are replaced by a new modified form of the kinetic term ( ) and new modified
r

interactions modified to the new form (Hgllf , H:Z;p, Hllfﬁ) in 3D-NRNCPS symmetries. On the other hand, it is evident
consider the quantum number m takes (21 + 1) values and we have also three values for(j = [ + 1, 1), thus every state in

the usually three-dimensional space of energy for a heavy quarkonium system under improved internal energy potential
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will be 3(21 + 1)sub-states. To obtain the complete total degeneracy of the energy level of the improved internal energy
potential in 3D-NRNCPS symmetries, we need to sum all allowed values . Total degeneracy is thus,

Yl +1) =n? - 3T+ 1)) = 3n2. (57)
3D-NRQM 3D-NRNCPS

Note that the obtained new energy eigenvalues (E;‘Zcip, E,ﬁip,E,llif)(T, c,j,n, (m = -l +l), l) now depend on new
discrete atomic quantum numbers (n, j, [, s) andm in addition to the parameters of the internal energy potential. It is
pertinent to note that when the atoms have spin-0, the total operator can be obtained from the interval |l —s| <j <

[l +s], which allows us to obtain the eigenvalues of the operator G?as k(j,1,s) = 0 and then the nonrelativistic energy
spectrum (EZ.7, Ene?, E,lff)(T,j, n, (m = —1,+1),1) reads [68, 69]:

o

(ESe? Ene® EnT)(T, c.jom, (m = LHD), 1) = Ent + 9N {0Tin + £

}Bm. (58)

It is important to apply the present results (53) and (58) to quarkonium mesons. One of the most important
applications in the extended model of pNRQCD is to calculate the modified mass spectra of the heavy quarkonium
systems (the mass of the quarkonium bound state), such as charmonium and bottomonium mesons, which have the quark
and antiquark flavor in the symmetries of NCQM under improved internal energy potential at finite temperature. To
achieve this goal, we generalize the traditional formula [84-91],

M =2m, + Ey,

which defines the total mass of the different quarkonium states (resonance masses), to the new form:
M = 2mg + Eny > Myl = 2mg + (B2 + Ene? + Egl)(T,c.jon, (m = =L +1),1). (59)
Here my is the bare mass of quarkonium or twice the reduced mass of the system. Moreover, %(Efj” +E" +E )

(T, ¢ jn, (m = -], +l), l) is the non-polarized energies, which can determine from Eqgs. (49) and (54). Thus, at finite
temperature, the modified mass of the quarkonium system M,?. obtain:

8(1+4)

1+4 m — —
{(aBm +xim ———06 +) Tin + Z(Ba + 0x) Ty

i ) } for spin-1
My =M — gsNp (60)

{(O'B + x)T,,m+ % (Ba + .Q)_()m} for spin-0

HereMis the heavy quarkonium system at a finite temperature with improved internal energy potential in
commutative quantum mechanics, which is defined in ref. [7]. If we consider(0, g, y) — (0,0,0), we recover the results
of the commutative space of ref. [7] for the improved internal energy potential, which means that our calculations are
correct. The novelty in this work is that the generalized Bopp shift method is successfully applied to find the solution of
the 3-radial DSE at finite temperature in the symmetries of the 3D-NRNCPS framework. The automatic appearance of
the spin in the term of improved energy as a quantum number clearly shows that the deformed Schrédinger equation
under the influence of the improved energy potential model at finite temperature rises to the descriptor of the Dirac
equation, meaning that this system can be valid in the field of high energies.

5. CONCLUSION
In the present work, the 3-dimensional deformed Schrodinger equation is analytically solved using the generalized
Bopp’s shift method and standard perturbation theory by the feature of 3D-NRNCPS symmetries. The improved internal
energy potential at finite temperature is extended to include the effect of the non-commutativity space phase based on
ref. [7]; we resume the main results:
> The ordinary Hamiltonian operator at finite temperature Hy, (xu, p#) in 3D-NRNCPSsymmetries was replaced

by a new modified operator H,%(x,, p, ) which equals diag ((H,if;)ll, (H,il’é)zz, (H® 33) in the 3D-NRNCPS symmetries

framework for the heavy quarkonium system such as Q0 (Q =c¢,b),

> The ordinary kinetic term —2‘;” in 3D-NRNCPSsymmetries is modified to the new form Az_u which is

52 5o 5o

A-LO-Lo-Lx
2u
finite-temperature model.

> We have obtained the perturbative corrections ((Egi” E™ E" )(T, c.j,m (m= —l,+l),l),(Eg’” E™ E" )

equal ( ) to a heavy quarkonium system under the influence of the improved internal energy potential at the

nc > ~nc >nc nc > “nc °nc

(T, ¢jn=1, (m = -], +l), l) and (Eg',"’ E™ E’"’,’) (T, c,j,mn, (m = -], +l), l) for the ground state, the first excited state,

nc >"“nc > nc
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and the (n, [, m)™ excited state with (spin-1 and spin-0) for the heavy quarkonium system under the influence of the
improved internal energy potential model at finite temperature are obtained.

>  We have obtained, at finite temperature, the modified mass of the quarkonium system M,% which equals the
sum of the corresponding values M in the 3D-NRNCPSsymmetries, and two perturbative terms proportional with two
parameters (0 and 6).

> Since the main quantum number, spin, appears clearly and automatically in the expression of the global
Hamiltonian and its eigenvalues, this is an indication that our results are valid in the field of high energies where the Dirac
equation is applied.

Through high-value results, which we have achieved in the present work, we hope to extend our recent work for

further investigations of particle physics and other characteristics of quarkonium at finite temperatures.
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BILTUB TE®OPMAII ®A30BOI'0 MIPOCTOPY HA CHEKTPH BAYKKOT'O KBAPKOHIIO B TIOKPAIIEHOMY
EHEPTETAYHOMY IMOTEHIIIAJII 3A CKIHUEHHOI TEMITIEPATYPHOI MOJIEJII PIBHSHHS IIPEJTHTEPA
YEPE3 METO/ Y3ATI'AJIBHEHOI'O 3CYBY BOIIIIA TA CTAHJAPTHY TEOPIIO 35YPEHb
Abpensmamxua Maiipeme
Daxynemem izuxu, Yuisepcumem Mcina, Jlabopamopis PMC, Yuisepcumem Mcina, Ansicup
V wiit poboTi Mu oTpuMy€eMO po3B’s3aHHs nedopmoBanoro piBusHHs Llpexninrepa (DSE) 3 nokpaiieHnM BHYTPILIHIM €HEPreTHIHUM
MIOTEHI[IaJIOM TIpH KiHIEBill TeMrepaTypHii Mozeli B 3-BUMIpHil HepesTUBICTCHKIN HEKOMYTaIiHHINH cucTeMi cuMeTpii (azoBoro
npoctopy (3D-NRNCPS), BUKOPHCTOBYIOUH y3araibHEHHH MeTo[ 3CyBy borma y Bumanky 30ypeHOi HepessTHBICTCHKOI KBAHTOBOT
xpomozauHamiku (pPNRQCD). Orpumano MoaudikoBaHi eHEpreTHdHi CIIEKTPH 3B S3aHOT0 CTAHy JUIS Ba)KKOI KBapPKOHIEBOI CHCTEMH,
TaKoi sIK YapMOHiii cC i GOTTOHOHI bb IIpH KiHIEBiH TeMnepaTypi. BcranosieHo, 1o nepTypOaTuBHI pO3B’I3KH IUCKPETHOTO CIICKTPY
9yTIHBI 1O AMCKPETHHX aTOMHHX KBaHTOBHX umcen (j,ls,m) crany QQ (Q = c,b), mapaMerpis moTeHIaTy BHYTPIMIHEOI eHEprii
(T, as(T), mp(T), B, c), ki € ekpanyiodoro Macoro Jlebast my (T), MOTOIHOIO KOHCTAHTOO 3B 513Ky s (T), KPUTHIHOO TEMIIEPATYPOIO
f, BUIBHHM mapaMeTpoM ¢ Ha I0JAaTOK IO mapaMmerpiB mekoMyrarueaocti (6,0). Hosuii omeparop [aminsrona B cumerpisx 3D-
NRNCPS cxiramaerses 3 BIAIOBITHOTO OIepaTopa B KOMYyTaTHBHOMY (a30BOMY IIPOCTOpI Ta TPHOX aJUTUBHHUX YACTHUH JUIS CIIiH-
opOiTaipHOi B3aemopii, HOBOi MarHiTHOI B3aemoaii Ta oOepraipHoro tepma ®epmi. OTpumaHi BiacHi SHEPreTHYHI 3HAYCHHS
BHUKOPHUCTOBYIOTCS JJIsI OTPUMAaHHSI Mac-CIIEKTPIB BXXKHUX KBapKOHieBUX cucteM (cc and bE). 3aranbHa IOBHA BUPOKEHICTH HOBHX
EHEpreTHYHHX PiBHIB MOKPAIIEHOTO TIOTEHITiaTy BHYTPIIIHEOI eHeprii 3MiHMIACA i CTalla PiBHOIO HOBOMY 3HAYEHHIO 312 y CHMeTpifx
3D-NRNCPS 3amicts 3Hauenns n? y cumerpisx 3D-NRQM. Hami mepensaTuBicTchKi pesynsTatu, oTpumaHi i3 DSE, , 6yayTs 3a

MOXJIMBOCTI 3icTaBieHi 3 piBHsHHAM [lipaka y (i3uili BUCOKHX €Hepriii.
KunrouoBi cioBa: pisuanna Illpedincepa; nexomymamusnuii azoeuii npocmip; nomenyian Hympiwneoi enepeii npu Kinyesii
memnepamypi; memoo 3cygy bonna, 6axicki K6apKoHiegi cucmemu
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In recent years, modified theories of gravity have been extensively studied because of the discovery and confirmation of the current
phase of accelerated expansion of the universe. The f (R, T) theory of gravity is one such theory, proposed by Harko ef a/. in 2011, in
which R is the Ricci scalar and T is the trace of the stress-energy tensor. In this paper, we study Bianchi type V universe in f (R, T)
theory of gravity with time varying cosmological constant and a quadratic equation of state p = ap? — p, where a # 0 is a constant.
We obtain exact solutions of the field equations for two cases: one with a volumetric expansion law and the other with an exponential
expansion law. The physical features of the two models are discussed by examining the behavior of some important cosmological
parameters such as the Hubble parameter, the deceleration parameter etc. We find that the models have initial singularity and the
physical parameters diverge at the initial epoch. The model 1, corresponding to the volumetric expansion law does not resemble
ACDM model while the model 2, corresponding to the exponential expansion law, resembles ACDM model. The energy conditions
of the models are also examined and found to be consistent with recent cosmological observations.

Keywords: Bianchi type V universe, f(R,T) theory of gravity, Equation of state; ACDM model

PACS: 98.80.jk, 04.20.jb

1. INTRODUCTION

Various astrophysical and cosmological observations like type Ia supernovae [1-3], Cosmic Microwave
Background (CMB) [4, 5], Large Scale Structure (LSS) [6, 7] and other improved measurements of supernovae
conforms the discovery of the late-time cosmic acceleration although it is yet to be ascertained what led to the start of
this acceleration. According to the recent Planck collaboration results [8], it is found that about 95% of the total
constituent of the universe is mysterious. Within the framework of General Relativity, the observed cosmic acceleration
can be attributed to an exotic component of the universe with large negative pressure which contributes nearly 68% of
the total energy content of the universe. This unknown energy fluid, supposed to be responsible for the late-time cosmic
acceleration, is given the name dark energy. In literature, several dark energy candidates like quintessence [9,10],
k-essence [11], tachyon [12], phantom [13], Chaplygin gas [14], Holographic dark energy [15] etc. have been proposed
and studied in various cosmological background. It is seen that even though the hypothetical dark energy can smoothly
explain the accelerated expansion of the universe, many dark energy models encounter with problems when tested by
some old red-shift objects [16, 17]. Therefore, the other way considered to explain the cosmic acceleration is
modifications of Einstein’s theory of gravitation. Some of the most studied modifications of Einstein’s General theory
of Relativity are the f(R) theory of gravity [18, 19], f(T) gravity [20], f(R, T) theory of gravity [21], f(G) gravity
[22] etc. In the f(R, T) theory of gravity, the gravitational Lagrangian in the Einstein-Hilbert action is modified by
replacing the Ricci scalar R by an arbitrary function f(R,T) of R and the trace T of the stress-energy tensor.
Harko et al. [21] have derived the gravitational field equations of this theory in the metric formalism, as well as the
equations of motion for test particles, which follow from the covariant divergence of the stress-energy tensor. They
have also presented the field equations corresponding to the homogeneous and isotropic FRW metric and provided a
number of specific cosmological models that correspond to some explicit forms of the function f(R,T) such as
fR,T)=R+2f(T), fRT) =fAR)+ f,(T),f(R,T) = f,(R) + f,(R)f3(T). Since then many researchers have
studied various isotropic and anisotropic cosmological models in different contexts within this framework of modified
theory of gravity.

In literature, various homogeneous and anisotropic cosmological models such as the Bianchi type models are
studied in the context of dark energy as well as in alternative or modified theories of gravity. Homogeneous and
anisotropic models of the universe are becoming more and more popular because of the anomalies found in the
observations like Cosmic Microwave Background (CMB) and Large-Scale Structure [23, 24]. Also, models that are
spatially homogeneous and anisotropic are helpful in describing the evolution of the early stages of the universe.
Bianchi type V models are significant because they include the space of constant negative curvature as a special case.

In this paper, we study a spatially homogeneous and anisotropic Bianchi type V universe with a time dependent
cosmological constant A and a quadratic equation of state p = ap? — p [25], where @ # 0 is a constant within the
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framework of f (R, T) theory of gravity. In Sect.2, we provide basic field equations of the f (R, T) theory of gravity for
the functional form f(R,T) = R + 2f(T). In Sect. 3, we obtain explicit field equations corresponding to Bianchi type
V metric forf(R,T) = R + 2f(T) = R + 2AT, where 1 is a constant. The expressions for the directional scale factors
A, B, C in terms of the average scale factor a are also obtained. In Sect. 4, we find exact solutions of the field equations
for two cases: one with a volumetric expansion law and the other with an exponential expansion law. Evolutions of
some relevant cosmological parameters are investigated in Sect. 5, and physical and geometrical properties of the
models are discussed. We conclude the paper in Sect. 6.

2. BASIC FIELD EQUATIONS OF THE f(R,T)THEORY OF GRAVITY
The gravitational Lagrangian in f(R, T)theory of gravity, proposed by Harko et al. [21], is given by an arbitrary
function f(R,T) of the Ricci scalar R and of the trace T of the stress- energy tensor T;;. The field equations of this
theory are derived by varying the action

S = —[f(R,T)\=gd* + [ Ly J=gd*x, (1)

with respect to the metric tensor g¥/, where L,,is the matter Lagrangian density.
The stress-energy tensor of matter is defined as

— 2 8(/=gLlm)

L= a0 2)
Assuming the matter Lagrangian density L,, to depend only on the metric tensor components g;;, and not on its
derivatives, T;jcan be obtained as
dLm

Tij = gULm - Zagij.

(©)

Hence, the variation of (1) with respect to the metric tensor g¥/ provides the field equations of the f(R, T) theory of
gravity as

1
frR,TIR;; —> f(R, T)gy; + (9ijVkV* = V,V;)fo(R,T) = 8aT;; — fr(R, T)T;; — fr(R, T)O;, 4)
where fz(R,T) = of ;’;'T), fr(R,T) = of ;};'T) ,V; is the covariant derivative with respect to the symmetric connection I’

associated to the metric g and

9%Lm,
agijaglk'

Since there is no unique definition of the matter Lagrangian density L,,, therefore, by assuming the stress-energy tensor
of matter to be given by the stress-energy tensor of a perfect fluid of density p and pressure p in the form

T;j = (p + P)uwy; — pgij, (6)

where the four velocity u; satisfies the conditions uiVjui = 0 and u'u; = 1, the matter Lagrangian density can be taken
as L,, = —p. Then from Eq. (§), we obtain

0;; = —2T;; — pgy;- @)
And for the functional form
f(R,T) =R+ 2f(T), (3

where f(T) is an arbitrary function of the trace T of the stress-energy tensor of matter, the gravitational field equations,
from Eq (4) are obtained as

Rij — %Rgij =8nT;; — 2f ' ()T;; — 2f (10 + f(T) gy, ©)

where the prime denotes differentiation with respect to the argument.
In view of Eq. (6), the Eq. (9) becomes

R — %Rgij = 8nT;; + 2f (T)T;; + [2pf (T) + f(T)]g;;- (10

3. METRIC AND FIELD EQUATIONS
We consider a spatially homogeneous and anisotropic Bianchi type V metric in the form

ds? = dt? — A%dx? — e?*(B?dy? + C?dz?), (11)

where A, B, C are functions of the cosmic time t only.
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Using comoving coordinates the field equations (10) for the metric (11) with a time dependent cosmological

constant A and the functional,
f(R,T)=R+2f(T) =R+ 2AT

where A is a constant, are obtained as
; 1
too—z=—@r+3Dp+ip—A

+é£—i=—(8n+31)p+lp—A
éé—i——(87r+3/1)p+/1p—A

AB A2

22 EE.+£é—i—(81r+3/1)p—/lp—A

AB  BC CA A2
A, B  C
—2=-+-+-=0
A B C

where an overhead dot indicates differentiation with respect to the cosmic time ¢t.

For the Bianchi type V metric given in Eq. (11), the various parameters of cosmological importance are:

The spatial volume,
V = ABC
The average scale factor,
a = Vi = (ABC):

The mean Hubble parameter,

The deceleration parameter,
The expansion scalar,

The shear scalar,
1
0% =~ (T, H? —3H?)
The anisotropy parameter,

A =1y (Hi—H)z
m T g &i=1 H

where H; ==,H, =—,H3 = %are the directional Hubble parameters.

.
w | @

4. SOLUTIONS OF THE FIELD EQUATIONS
From equation (16), on integration, we get

A% = BC
From (12), (13) and (14), we obtain

d

A = liaexp (my [ a—;)
dt

B = lyaexp (m, f;)
d

C = lzaexp (m; fa—i)

where the constants satisfy the relations my + m, + m3 = 0 and [y 1,15 = 1.
Using (25), (26), (27) in Eq. (24), we get

dat
L = exp (—m, [ %

(12)
(13)
(14)
(15)
(16)

an

(18)

(19)

(20)

@n

(22)

(23)

24

(25)
(26)

27



47
Bianchi Type V Universe with Time Varying Cosmological Constant and Quadratic... EEJP. 1 (2023)

Now, since l; is a constant, so we may assume that m; = 0 so that [; = 1 and consequently l,l; = 1 and m, + m3 = 0.
Without loss of generality, we take

-1
lz ::l3 =0 and m, = —MmM3 = Cy

where c; and ¢, are non-zero constants.
Then from (25)-(27), we obtain the directional scale factors as

A=a (28)
B = c,aexp (cz f%) (29)
= ia exp (—c2 f%) (30)

Now, to find exact solution of the ficld equations, we need one extra condition for which we consider a volumetric
expansion law. We also find another exact solution by using the exponential expansion law.
For volumetric expansion law, we consider

V = Vyt3n 31

where V = ABC = a3, and V,, and n are non-zero constants.
Then from (28), (29) and (30), we get

1
A =Vy3th (32)
1 —3n+1
_ =n _ Czt
B = ¢, V3t exp[ V0(3n_1)] (33)
_1,t, cot 3+
C = ZVoit" exp 2o (34)
For exponential expansion law, we consider
V = VOeSnt
where V = ABC = a?, and V, and n are non-zero constants.
Then from (28), (29) and (30), we get
1
A =Vyze™ (35)
1 -3nt
— 3pnt —C28
B = ¢,Vy3e exp{ — } (36)
_ 1y ont cae 3
C —aVo3e exp{ v } 37

5. PHYSICAL AND GEOMETRICAL PROPERTIES OF THE MODELS
Model 1
The average Hubble parameter H, the expansion scalar 8, the deceleration parameter q and the shear scalar o and
the anisotropy parameter A,, for the model corresponding to the volumetric expansion law are obtained as

n
=z (38)
6=3H=2" (39)
__@ed_ 4,1

q=-——=-1+- (40)

2 GF
ot = (41)

2
Ap =22 42)

T 3Vy2n2t6n-2

From equation (40), we see that the cosmic expansion accelerates for n > 1.
Now, adding equations (14) and (15) and using quadratic equation of state
p = ap? — p, where a # 0 constant, we get
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2_ 1 nor 1
P = Grina [tz Vo2t6n Vogtzn] (43)
1 n cp? 1 1 n c2 1
= - - — - — - 44
p (4m+2) [tz Vo2ton Vothn] (am+)a [tz Vo2 ton Voéth (44
Using p and p in (12), we obtain

_ (B3| p? n 1 n + 421+ 2) 1 nor 1 —£+2—n— cp? n 1 (45)

T (am+d) |vpleen Voétzn t2 (n+a |t2 Vp2ten Voétm t2 2 ypleen VoétZ"

Figure 2.The plot of pressure p vs. cosmic time ¢t graph with

Figure 1. The plot of energy density p vs. cosmic time t graph
a=01c¢=01V,=1,n=151=1

witha =01, ¢, =01,V =1,n=151=1

Figure 4. The plot of anisotropy parameter A,,vs. cosmic time

Figure 3.The plot of the cosmological constant A vs. cosmic
t graph withc, = 0.1,V =1,n = 1.5

time t graph witha = 0.1, ¢, = 0.1,V =1,n=151=1

From the graphs we observe that the energy densityp is a decreasing function of cosmic time, pressurep is
negative throughout the evolution of the universe and the cosmological constant A decreases rapidly and tend to zero.
The figure 4 shows that the universe is highly anisotropic at its early stage and the anisotropy dies out in the course of

evolution.
The Cosmic Jerk Parameter.
The cosmic jerk parameter is defined as
() = L
j@®) === (46)

The equation (46) can be written in terms of the deceleration and the Hubble parameter as

. q

Jj® =q+2q*— (47)

From equations (38) and (40), using (47), we get the cosmic jerk parameter for this model as
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. (n-1)(n-2)
(o) = S (48)

. .. . . . 2
At late times, the value of the cosmic jerk parameter is 1 for ACDM model. For this model, j(t) = 1 forn = 3 But we
have a restriction n > 1. Hence, this model does not resemble with ACDM model.

Energy Conditions
Weak Energy Condition (WEC), Null Energy Condition (NEC), Dominant Energy Condition (DEC) and Strong Energy
Condition (SEC) are given by

WEC:p=>0
NEC:p+p=0
DEC:p—p =0
SEC:p+3p =0

For this model, we have

e 1 n c,? 1
PTP=ln+ ) |0 Vo?ton V0§t2n
5 1 n c,2 1 1 n ;2 1
p=p (4 + Da [t2  V,2ten V0§t2n 4+ ) |t2 V,2eon Vogtzn
L3y 3 n c? 1 ) 1 n 2 1
PEP=lan s |2 vy2con AT U+ Daler Vo*tn  ySiom
E.C.

Figure 5. The plot of left hand sides of energy conditions vs. cosmic time t graph witha = 0.1,¢; = 0.1,V =1,n=151=1

From figure 1 and figure 5, we see that the WEC and DEC are satisfied. NEC is satisfied only at late times while the
SEC is violated for this model.

Model 2
The average Hubble parameter H, the expansion scalar 6, the deceleration parameter q and the shear scalar o and
the anisotropy parameter A,, for the model corresponding to the exponential expansion are obtained as

H=n (49)

0 =3n (50)

g=-3=-1 (51)
c 2

% = V02:6nf (52)

Ap = 22 (53)

T 3n2y2ednt
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From the expression for the deceleration parameter g, we see that the expansion of the universe is decelerating
throughout the evolution and does not depend on n.

Now, adding (12) and (15) and using quadratic equation of state
p = ap? — p, where @ # 0 is a constant, we get

S . (54)
P = a(4m+d) \ Vp2ebnt Vogeznf
-1 cy? 1 _ -1 c? 1
P=ima (Voze""t + Voéeznt> a(4m+d) (Vozeént * V0§82nt> (55)
Using p and p in (12), we obtain
_ 2w+ cp? (3n:+/1) 1 4 -1 cy2 1
A=2 (4n+l) Vo2ebnt +4 ATT+A Vogeznf 3n® +4(2m + 1) a(am+i) \ Vp2ebnt + Voéeznf (56)
t
0 5 10 15 20
-0.5
1
p 1
0.5 p
-1.5
1] 5 10 15 t 20 25 30 2.

Figure 6. The plot of energy density p vs. cosmic time t graph Figure 7. The plot of pressure p vs. cosmic time t graph with
witha =-0.1,¢, =01V, =1,n=01,1=1 a=-01,c,=01V=1,n=011=1

Figure 8. The plot of cosmological constant A vs. cosmic time  Figure 9. The plot of anisotropy parameter A,, vs. cosmic time
t graph witha = —0.1,¢, = 0.1,V;=1,n=01,1=1 t graph withc, =0.1,n =0.1,V, =1

From the figures 6, 7, 8 and 9, we see that the behavior of the energy density, pressure, cosmological constant and
anisotropy parameter satisfies the present cosmological observations. However, in this case, the constant a should
assume negative values

The Cosmic Jerk Parameter:
From equations (49) and (51), using (47), we obtain the cosmic jerk parameter for this model as

j@®) =1
This shows that this model resembles ACDM for any value of n.
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Energy Conditions
For this model, the energy conditions are obtained as

e 1 ;2 N 1
prP= 4+ A V0266nt VogeZnt

_ 2 _1 C22 + 1 + 1 sz + 1
pP—p= a(4m + 1) \ V,2esnt V0§82nt 41 + A\ V,2ebnt Vogezm

+ 3 _ 3 C2 + 1 2 _1 C22 + 1
PTP =" Vy2etnt V0§e2nt a(4m + 1) \ V,2ednt Voéeznt

Figure 10. The plot of left-hand side of energy conditions vs. cosmic time t graph witha = —0.1,¢, = 0.1,V =1,n=0.1,1=1
From figures 6 and 10, we see that for this model, the WEC and DEC are satisfied and NEC and SEC are violated.

6. CONCLUSION
In this paper, we study a spatially homogeneous and anisotropic Bianchi type V universe with time varying
cosmological constant and a quadratic equation of state in f(R, T) theory of gravity for the functional form (R,T) =
R + 2AT, where A is a constant. We construct two cosmological models corresponding to a volumetric power law
expansion (Model 1) and an exponential expansion (Model 2). We find that
= Both the models have initial singularity as the metric coefficients 4, B and C vanish at the initial moment.
» The physical parameters H,6,c?for both the models diverge at the initial epoch and for large t, these
parameters tend to 0. Also, the volume of the universe is zero at t = 0 and increases exponentially with time t.
Hence, both the models start with the big bang singularity at ¢ = 0 and then expand throughout the evolution.
= The energy density of the model 1 increases at the beginning but it decreases in the course of evolution and
tends to 0 at late time. The energy density of the model 2 decreases from the evolution of the universe and
tends to 0 as time goes on.
=  For both the models, the cosmological constant is a decreasing function of the cosmic time and tends to 0 at
late time.
= The model 1 exhibits accelerated expansion for n > 1, while for model 2, it happens for any values of n.
=  The model 1 never approaches ACDM model while the model 2 resembles ACDM model for any values of n.
= The model 1 satisfies present cosmological observations for positive values of @ while the model 2 satisfies the
same for negative values of a.
=  For both the models, the energy conditions WEC and DEC are satisfied and NEC and SEC are violated. The
violation of SEC shows that the universe has anti-gravitating effect which results accelerating expansion of the
universe.
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"(DaKyﬂbmem Mmamemamuxku, koneoxc BBK, bBapnema, Inoia
B ocranni poku MmoaudikoBaHi Teopil rpaBiTamii IIMPOKO BUBYAIKCS UYEpe3 BIAKPUTTA Ta MIATBEPIKEHHS NHOTOYHOI (asu
prucKopeHoro posmmpenHs: BeecBity. Teopist rpasitamii f(R,7) € omHi€I0 3 TaKUX TEOpiid, IO 3ampomoHOBaHa XapKo Ta iH. Y
2011 poui, ne R € ckamsipoM Piudi, a T € ciinoMm TeH3opa eHepril Hanpyru. Y il crarti Mu BuBYaeMo BceecBit tumy B’suHui V B
Teopii rpasitanii f{R,T) i3 3MiHHOIO B Yaci KOCMOJIOTIYHO KOHCTAHTOIO Ta KBAJPATHUM PiBHAHHAM CTaHY p = ap? —p, nea # 0 €
KOHCTaHTOr. OTpUMaHO TOYHI PO3B’S3KU PIBHAHB MOJIS AJs ABOX BHUMAKIB: OAWH 3 3aKOHOM 00’€MHOTO PO3IMIMPEHHS, a 1HIIHN — 3
EKCTIOHCHITIaTbHAM 3aKOHOM po3IIipeHHs. Di3nyHi XapaKTepHUCTUKH ABOX MOJEJe 0OrOBOPIOIOTHCS MIISIXOM BUBYCHHS ITOBEIIHKH
JeSKIX BaXXJIMBAX KOCMOJIOTIYHUX IapaMeTpiB, TAKKX SIK mapaMeTp Xabia, mapaMeTp YHOBUIBHEHHS TOIIO0. MU BHSBIIIM, IO MOJIEN1
MaroTh IIOYaTKOBY CHHTYIIPHICTH, a ()i3UUYHI IapaMeTpH PO3XOIAThCS B MOYATKOBY emoxy. Mozenb 1, Mo BiINOBigae 3aKoHY
00’eMHOr0 po3IIKPeHHs, He Haraaye Moaens ACDM, a Mozensb 2, sika BiNOBiIa€ 3aKOHY CKCITOHCHIIATBHOTO PO3IIUPEHHS, HAraye
monenb ACDM. EnepretnuHi yMOBH MojeNieldl TakoX IOCHI/UKYIOTBCS Ta BUSIBISIIOTHCS Y3TO/DKCHHMH 3 HEI[OAaBHIMHU
KOCMOJIOTIYHUMH CIIOCTEPEKEHHAMU.
Kurouosi cinoBa: Beecsim muny b sinui V; meopis epasimayii f(R,T), pieusnns cmany, mooens ACDM
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The energy eigenvalues with the Extended Cornell potential were obtained by analytically solving the radial Schrédinger equation
using the Exact Quantization Rule technique. It was then used for computing the mass spectra of the heavy mesons like charmonium
(cc ) and bottomonium (bI; ) as well as heavy-light mesons such as bottom-charm (bc) and charm-Strange (cs) for various
quantum states. Two exceptional cases such as the Coulomb and Cornell potentials, were taken into consideration when some of
the potential parameters were set to zero. The current potential offers good outcomes when compared to experimental data and the
work of other researchers with a maximum error of 0.0065 Gel .
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1. INTRODUCTION

The development of the radial Schrodinger equation (SE) in quantum mechanics and its solutions plays a
fundamental role in many fields of modern physics. The study of the behavior of quite a lot of physical problems in
physics requires the solving of the SE. The solutions can be well-known only if we know the confining potential for a
particular physical system [1-4]. The theory of quantum chromodynamics (QCD) which is described by the meson system
is mediated by strong interactions [5]. The heavy mesons are the constituents of quark and antiquark such as charmonium
and bottomonium that are considered as the non-relativistic system described by the SE [6]. In recent times, researchers
have obtained the solutions of the SE and Klein-Gordon equation (KGE) with the quarkonium interaction potential model
such as the Cornell or the Killingbeck potentials [7-9]. The Cornell potential is the sum of the Coulomb plus linear
potentials. The Cornell potential and its extended form have been solved with SE with different analytical methods
[10,11]. The exact solutions of the SE with some potentials are solvable for/ = 0, but insolvable for any arbitrary angular
momentum quantum number/ # 0. In this case, several approximate techniques are employed in obtaining the solutions.
Example of such techniques include, the asymptotic iteration method (AIM) [12], the Nikiforov-Uvarov functional
analysis (NUFA) method [13-17] the Laplace transformation method [18], the Nikiforov-Uvarov (NU) method [19-24],
the series expansion method (SEM) [25-27], analytical exact iterative method (AEIM) [28], WKB approximation method
[29-31] and others [32,33].

Recently, the mass spectrum of the quarkonium system has been studied by researchers [34,35]. For instance, Vega
and Flores [36] obtained the solution of the SE with the Cornell potential via the variational method and super symmetric
quantum mechanics (SUSYQM). Ciftci and Kisoglu [37] addressed non-relativistic arbitrary / -states of quark-antiquark
through the Asymptotic Iteration Method (AIM). An analytic solution of the N-dimensional radial SE with the mixture
of vector and scalar potentials via the Laplace transformation method (LTM) was studied by [18]. Their results were
employed to analyze the different properties of the heavy-light mesons. Also, Al-Jamel and Widyan [38] studied heavy
quarkonium mass spectra in a Coulomb field plus quadratic potential by employing the Nikiforov-Uvarov (NU) method.
In their work, the spin-averaged mass spectra of heavy quarkonia in a Coulomb plus quadratic potential is analyzed within
the non-relativistic SE. In addition, Al-Oun et al. [39] examined heavy quarkonia characteristics in the general framework
of a non-relativistic potential model consisting of a Coulomb plus quadratic potential. Furthermore, Omugbe et al. [29]
solved the SE with Killingbeck potential plus an inversely quadratic potential model via the WKB method. They obtained
the energy eigenvalues and the mass spectra of the heavy and heavy-light meson systems. In addition, Inyang et al. [40]
obtained the KGE solutions for the Yukawa potential via the NU method. They obtained energy eigenvalues both in the
relativistic and non-relativistic regimes, and the results were then applied to calculate heavy-meson masses of

charmonium ¢ and bottomonium bb . Ibekwe et al. [41] solved the radial SE with an exponential, generalized, harmonic
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Cornell potential via the series expansion method. They applied the bound state eigenvalues to study the energy spectra
for CO, NO, CH and N, diatomic molecules and the mass spectra of heavy quarkonium systems.
Therefore, in this present work, we aim at studying the SE with the extended Cornell potential via the Exact

quantization rule (EQR) to obtain the mass spectra of heavy mesons such as charmonium (cc) , bottomonium (bI; ) and
the heavy—light mesons such as the charm-Strange (cs)and bottom-charm (bc).The extended Cornell potential (ECP)
takes the form [29].

M, 7
V()= + =4 (M
r r
where 7,, 1,, 1, and 7, are potential strength parameters. The second term in Eq. (1) is a linear term for confinement

feature and the third term is the Coulomb potential that describes the short distance between quarks. While the first and
the last terms are quadratic and the inverse quadratic potentials.
It is important to note that if we set 77, =7, =71, =0, the (ECP) reduces to the Coulomb potential also, if we set

17, =1, =0 the (ECP) reduces to the standard Cornell potential. The paper is organized as follows: in section 2, the brief

EQR formalism is presented. Section 3, the analytical solution of the bound states of the SE is solved via the EQR. In
section 4, we present the results of the mass spectrum of the mesons. Finally, in section 5, the study is concluded.

2. EXACT QUANTIZATION RULE FORMALISM
In this section, we give a brief review of exact quantization rule. The details can be found in [42.43]. It is a well
known fact that, in one dimension, the SE is given as:

dy») 2#

— BV @]y (0=0 )

Equation (2) can be written in the following form:

§ (0)+p(0) +k(x) =0 3
with

k(x) = [E —V(x)] (4)
where ¢(x) = (//’ (x)/w(x) is the logarithmic derivative of the wave function, z is the reduced mass of the quarkonium
particles, k(x) is the momentum, and ¥ (x) is a piecewise continuous real potential function of x. The phase angle of

the SE is the logarithmic derivative ¢(x) . From Eq. (3), as x increases across a node of wave function y(x), ¢(x)

decreases to —co , jumps to +oo, and then decreases again. We can generalize EQR to the three — dimensional radial SE
with spherically symmetric potential by simply making the replacement x — and V'(x) =¥, (r) [42,43].

[ ke =N+ [ o0 ){ dk(”“%} 5)

k) =\/i—“[ E,~V, )] ©)

where 7, and 1, are two turning points determined by E =V, (r). N =n+1 is the number of the nodes of ¢(r) in the

region E,, =V, (r) and is larger by 1 than the n of the nodes of the wave function y/(#). The first term Nz is the

Vey
contribution from the nodes of the logarithmic derivatives of the wave function, and the second one is called the quantum
correction. It was found that for all well-known exactly solvable quantum systems, this quantum correction is independent
of the number of nodes of the wave function. This means that it is enough to consider the ground state in calculating the
quantum correction (Q,), i.e.

0 I K (r)ﬁdr ™

To determine the energy eigenvalues, we equate Egs. (5) and (7).
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3. APPROXIMATE SOLUTIONS OF THE SCHRODINGER EQUATION
WITH EXTENDED CORNELL POTENTIAL

The SE for two particles interacting via potential V' (r) is given by [44].

[(1+1)R
2ur’

dR(r) 2u B, —V(r)-
dr’ h

} R(r)=0, ®

where [, 1,7 and % are the angular momentum quantum number, the reduced mass for the quarkonium particle, inter-

particle distance and reduced plank constant respectively.
We substitute Eq. (1) into Eq. (8) and obtain

d’R(r) . 2/1[

S B, 1, ()| R =0, ©)

where

2
:

V() =y +mr =12 . (10)

2ur
We transform the coordinate of Eq. (9) by setting

w1, (11
r

Upon substituting Eq. (11) into Eq. (10) we have

o Il +DR*x’
Vg )=+ LD (12)
by 2u
To deal with the first and second terms of Eq. (12), we propose the following approximation scheme. We assume
that there is a characteristic radius 7, of the meson. Then the scheme is based on the expansion of A and 77—(2) in a power
X X

series around7, ; i.e. around o = —, up to the second order. This is similar to Pekeris approximation, which helps to
To

deform the centrifugal term such that the modified potential can be solved by NU method [45].
Setting y =x—3J and around y =0 it can be expanded into a series of powers as:

mom o _m ol ) (13)
X y+o sl14? o 5) °
1)
which yields
n 3 3x X
mo_ 22X X 14
. 771(5 575 (14)
Similarly,
7, 6 8x 3x°
73:’70(??*? | as)

We then substitute Eqs. (14) and (15) into Eq. (12) and obtain

eff(x) §1+§2x+§3 > (16)

where
617, 377 37, 8
fl 52 — 52 - 521 _E
11 +Dn* +l)h2 3770 A
Ty sy

-1,
(17)

The non-linear Riccati equation for ground state is written in terms of the new variable x as,
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—C4 ()44 () = k(). (18)
where
2
k(x) = Jh_é‘[ EX*+Ex+E —EJ . (19)

We now apply the quantization rule to study the potential. To this end we first calculate the turning points x, and x, ,
which is determined by solving the content of the square bracket of Eq. (19), these yields:

_égz " ‘522 _4533(631 _E)

X =

’ 2¢;
(20)
Y, = _égz +'\/§22 _453(51 _E)
' 26,
From Eq. (20) we have
§1 )
X, X,
S Q@
X, +x, = _e
S
Also, from Eq. (19) we have
k(x)= \/i—’g@ [xz +§—jx+§1§;3EJ (22)
Substituting Eq.(21) into Eq.(22) we obtain
k(x):\/%(x—xa)(x—xb) (23)

where k(x)is the momentum between the two turning points x,and x, .
From Eq.(18), since the logarithmic derivative ¢,(x) for the ground state has one zero and no pole, therefore we
assume the trial solution for the ground states

@(x)=A+Bx (24)

Substituting Eq. (24) into Eq. (18) and then solving the non-linear Riccati equation, we obtain the ground state
energy as

nA
Eo = 51 - (25)
2u
Also, we obtain 4 and B as follows
_ U,
BHi*
3 (26)
B :l n 1 ﬂzé
2 4 h

Here we choose the positive sign in front of the square root for B .This is as a result of the logarithmic derivatives
@,(x) which decreases exponentially, which is required. We now calculate the quantum correction and obtain

[oof [ 0], g eosio,

dr dr X ¢<;(x)

From Eq. (27) we have
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A x,+ xb A ( X+ % J
2
J ”53 j B2 dx (27a)
h x\/x x,)(x—x,) xz\/(x—xa)(x—xb)

We utilized the integrals given by Appendix A, and obtain

A x,+x, A(xa+xbj[ X, X, _1]
2 e B\ 2 0 2(x, +x
o ;tzé B__2 (x, +x,) @)

+
\/1+(xa +xb)+xaxb \/‘xa‘xb

We substitute Eq. (21) into Eq.(27b) and obtain

A g A§2 hz A+ §3
& | B 2g 2BE (\2ué, " 24
7| _
hZ

(27¢)
/s n
(4+B) 4
2u¢, 2ug;
Inserting Eq. (27¢) into Eq. (5) we obtain
. ( o A+;§]
7
7| me| B 26 T i 2+ Nx (27d)
h n n
\/ 5 (4+B) \/ 5 A
HS,s HSs
Furthermore, the integral of Eq.(7) is obtain as
[ k(rydr=—[ %dx 28)

From Eq. (28) we have

- 2“253 (r= )dx (282)
7
21“53 (xa +xb)_ xaxb
- b
n’ |: 24x,x, } (250)

We substitute Eq. (21) into Eq. (28b) and obtain

Using Eq. (29), Eq. (28a) becomes

_é_ )
_ 2ug, 53 53 (28¢)
\ 7 ) &-E
&

In order to obtain the integral of Eq.(28a), we used maple software to obtain the following useful integral, which is not

available in integral table
/ b x a+b f br
,r (29)
2J_

By equating Eqs.(27d) and (28c) ,and substituting Eqs.(17) and (26) ,setting 7i=1 we obtain the energy equation for
extended Cornell potential as

2
3
3, 6 2”[(;721+577;)+77]
E =2 O (30)

nl 2
s 9 8un 1)° 1 24un
M H1ly
2n+1)+ 1+ +4| | I+=| ——| -8umn, +
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3.1. Special case
In this subsection, we present some special cases of the energy eigenvalues of the ECP.
1. When we set 7, =77, =717, =0 we obtain energy eigenvalues expression for Coulomb potential

2
_ /’”72 (31)

Enl - 2
2(n+1+1)

2. When we set 77, =77, =0 we obtain energy eigenvalues expression for Cornell potential

3 ?
2/1[ —t 772}
_3m g (32)

Enl
d 8 1" 1
(2n+1)+ |1+ ,u3771+4 I+—| ——
o 2 4

The result of Eq. (32) is consistent with the result obtained in Eq. (30) in Ref. [9]

4. RESULTS
Using the relation in Ref. [46], we calculate the mass spectra of the heavy quarkonia such as charmonium and
bottomonium, and heavy-light mesons.

M=2m+E, 33)

where m is quarkonium bare mass and E, is energy eigenvalues.
By substituting Eq. (30) into Eq. (33) we obtain the mass spectra for extended Cornell potential for heavy quarkonia as,

2
2ﬂ(37]l+8’70+772J

M=am 2y T - 2 2 (34)
(2n+1)+\/1+ 8213771 +4[[1+;J _iJ ~8un, + 24;770
We also obtain the mass spectra of the special case of Eq. (32) for heavy-light mesons by substituting into Eq.(33)
3, 24 ( 35%1 ' '72j 2
M=m +m, +——— . (35)

d 8 1" 1
(2n+1)+ 1+@+4 I+~ ——
1) 2 4

We test the accuracy of the predicted results, by using the Chi square function defined by [47]

B | ( M[Exp, _ M[Thea.)
e G6)

i

wheren rtuns over selected samples of mesons, M,"" is the experimental mass of mesons, while M/™ is the
corresponding theoretical prediction. The A, quantity is experimental uncertainty of the masses. Intuitively, A, should

be one. The tendency of overestimating Chi square value is that, it reflects some mean error.
We calculate mass spectra of charmonium and bottomonium for states from 1S to 1F, as presented in Tables 1 and 2.
Also calculated the mass spectra of heavy-light mesons for states from 1S to 1D as presented in Tables 3 and 4. The free
parameters of Eq. (34) were obtained by solving two algebraic equations of mass spectra in Eq. (34) for charmonium.
We followed the same procedure for bottomonium and obtained the free parameters of mass spectra. Equation (35)
was fitted with experimental data of mass spectra of 1S, 2S to obtain the free parameters for bottom-charm (bc) and

charm-strange (cs) heavy-light mesons.

For bottomonium bb , charmonium c¢ and strange systems we adopt the numerical values of m, = 4.823 Gel’,
m, = 1209 GeV and m_ =0.419 GeV , and the corresponding reduced mass are p, = 2.4115GeV , u. =0.6045 GelV
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and u =0.2095 GeV , respectively [48-50]. We note that the theoretical prediction of the mass spectra of charmonium

and bottomonium are in excellent agreement with experimental data and the work of other researchers like;
Refs.[28,9,18,37,41] as shown in Tables 1 and 2. Also , the results for charm-strange meson presented in Table 4 , are in
excellent agreement with the work of other authors in Refs.[28,37] Furthermore, in Table 3 ,the mass spectra of the
bottom-charm meson are very close to the ones obtained in Refs[28,18,37] with other methods and experimental data
indicating an improvement compared to the other methods. The maximum error in comparison with experimental data is
0.0065 GeV .

Table 1. Mass spectra of charmonium in (GeV) (m, =1.209 GeV, u = 0.6045 GeV, 7, =0.001 GeV , 1, =14.94 GeV ,n, =0.02 GeV,

n,=—-15.04 GeV ,5=1.7 GeV' )

State Present work  AEIM[28]  NUJ9] AIM[37] LTM[18] SEM[41] Experiment[48,49]
1S 3.096 3.0954 3.095 3.096 3.0963 3.095922 3.097

28 3.686 3.5673 3.685 3.686 3.5681 3.685893 3.686

1P 3.295 3.5677 3.258 3.214 3.5687 - 3.525

2P 3.802 4.0396 3.779 3.773 3.5687 3.756506 3.773

38 4.040 4.0392 4.040 4275 4.0400 4322881 4.040

48 4269 45110 4262 4.865 45119 4.989406 4263

1D 3.583 4.0396 3.510 3.412 4.0407 - 3.770

2D 3.976 - - - - - 4.159

IF 3.862 - - - - - -

Table 2. Mass spectra of bottomonium in (GeV) (m, =4.823 GeV, u =2.4115GeV 5, =0.798 GeV , 1, =5.051 GeV , 1, = 0.02 GeV,
1, =-3.854 GeV ,6 =1.5 GeV')

State Present work  AEIM[28] NU[9] AIM[37] LTM[18] SEM[41] Experiment[48,49]
1S 9.460 9.74473 9.460 9.460 9.745 9.515194 9.460

2S 10.023 10.02315 10.022 10.023 10.023 10.01801 10.023

1P 9.661 10.02406  9.609 9.492 10.025 - 9.899

2P 10.138 10.30248 10.109 10.038 10.303 10.09446 10.260

3S 10.355 10.30158 10.360 10.585 10.302 10.44142 10.355

4S 10.567 10.58000 10.580 11.148 10.580 10.85777 10.580

1D 9.943 10.30248  9.846 9.551 10.303 - 10.164

2D 10.306 - - - - - -

IF 10.209 - - - - - -

Table 3. Mass spectra of bottom-charm (bc) in (GeV) (m, = 4.823 GeV, m, =1.209 GeV , 1, =0.202 GeV ,n, =1.213 GeV',
5=0371GeV )

State Present work AEIM[28] LTM[18] AIM[37] Experiment[50]
1S 6.274 6.2774 6.2770 6.277 6.275

28 6.845 7.0376 7.0372 6.814 6.842

38 7.125 7.7978 7.7973 7.351 -

4S 7.283 7.0386 - 7.889 -

1P 6.519 7.7987 7.0381 6.340 -

2P 6.959 - 7.7983 6.851 -

1D 6.813 - - 6.452 -

Table 4. Mass spectra of charm-strange (cs) meson in (GeV) (m, =0.419 GeV , m, =1.209 GeV ,n, =0.202 GeV ,n, =2.046 GeV,
0=0.561 GeV)

State Present work AEIM [18] AIM [37] Experiment [48, 51]
1S 1.969 1.968 2.512 1.968[48]

28 2.709 2.709 2.709 2.709[51]

3S 2913 2.932 2.906 -

4S 2.998 - 3.102 -

1P 2.601 2.565 2.649 -

2P 2.877 - 2.860 -

1D 2.863 2.857 2.859 2.859[51]

5. CONCLUSION
In this study, we used the EQR technique to derive the approximate Schrodinger equation solutions for energy
eigenvalues with extended Cornell potential. Consideration was given to two particular instances that lead to Cornell and
Coulomb potentials. We use the current findings to determine the masses of heavy mesons like charmonium and
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bottomonium as well as the heavy-light mesons such as bottom-charm and charm-strange for various quantum states. We
noticed that the mass spectra of the meson systems reported in this current work are also consistent with those of other
researchers and are enhanced. This research could be expanded to study the thermodynamic properties of the mesons.

Appendix A: Some Useful Standard Integrals
J"’ ! dr=r (A1)

\/(r—ra)(rb -r)

i ! dr = dd (A2)

f (a-i—br)\/(r—ra)(rb—r) \/(a+brb)(a+bra)
[ =) =r)ar =20, +n) =, (A3)

r, I
h 1 T
dr = (A4)
T T (r—ra)(rb—r) .,
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TEOPETUYHE JOCJIIKEHHS CIHEKTPY ME3OHIB 3A METOJUKOIO ITPABUJIA TOYHOI'O KBAHTYBAHHS
Etino I1. Inbsinr?, ®ina O. @eiitnpaiiz, [Ixxo3ed Amamkama®, Exai C. Biabam®, Eddionr O. O6icynr, [xosed E. HTioiP
“@izuynuii paxyremem, Hayionanvnuil eiokpumuil ynisepcumem Hizepii, [ocabi, Abyoaca, Hicepis
bpyna meopemuunoi ¢izuxu, gizuunuii paxyrvmem, Yunieepcumem Kanabapa, P.M.B 1115, Karabap, Hizepis
“Dizuynuii paxynomem, Yuisepcumem Kanabapa, P.M.B 1115, Kanabap, Hicepis
[InsxoM aHaTITHIHOTO PO3B’sI3aHH pajiaigbHoro piBHAHH Llpeninrepa 3a 70moMororo TeXHiKM TOYHOTO IPAaBUJIa KBAHTYBaHHS OYIJIN
OTpHMaHI BJIACHI 3HaUCHHS eHepril 3 po3mmpeHnM noteHmianoM Kopaema. IToTiM #oro BUKOpUCTOBYBaNM JUIsi OOYMCICHHS Mac-

CIIEKTPIB BOKKMX ME3OHIB, TAaKUX SIK YapMOHii (cc ) 1 6oTToHIN (b ), a TAKOK BOXKKUX 1 JIETKUX ME30HIB, TAKKX K bottom-charm
(bc) i charm-strange (cs) Ans pi3HUX KBAaHTOBHX CTaHiB. Bynm B34Ti 10 yBaru, ABa BUHATKOBHX BHUIIAIKH, Taki SIK HOTEHI[aTH

Kynona ta KopHemna, ko fesiki 3 mapaMeTpiB MOTeHIIaTy OyJid BCTAHOBIIEHI Ha HyJb. [loTouHMi moTeHIian 3a0e3neuye Xopori
pe3ybTaTH B TOPIBHSHHI 3 EKCIEPUMCHTAJIBHUMH JAaHUMH Ta POOOTOI0 IHINMX JOCHIIHUKIB 3 MaKCHMAaJIbHOI MOXHOKOI Y
0.0065 GeV .

Kuarouosi cnoBa: nomenyian Kopuena; pienanus LLpedineepa; Ilpasuno mounoeo keanmyesanns, Mezonu
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The bound state energy eigenvalues and the corresponding eigenfunctions of the generalized Woods-Saxon potential reported in
[Phys. Rev. C, 72, 027001 (2005)] is extended to the fractional forms using the generalized fractional derivative and the fractional
Nikiforov-Uvarov (NU) technique. Analytical solutions of bound states of the Schrodinger equation for the present potential are
obtained in the terms of fractional Jacobi polynomials. It is demonstrated that the classical results are a special case of the present
results at & = f =1. Therefore, the present results play important role in molecular chemistry and nuclear physics.

Keywords: generalized Fractional derivative; Schrodinger equation; Nikiforov-Uvarov method; Woods-Saxon potential
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1. INTRODUCTION

The fractional calculus (FC) has numerous applications in all connected fields of science and engineering [1].
However, the use of this extremely powerful tool in many studies is still in its infancy. Fractional calculus has recently
expanded its scope to include the dynamics of the complicated real world, and new concepts are now being put to the test
on actual data. Although FC has been around for a while and is used in numerous scientific and technical sectors, the FC
still has a crucial role to play in promoting applications. Many theoretical FC researchers are likewise unfamiliar with the
application-related aspects. Because FC is not universal and has specific applications, we should understand this and
provide examples of some significant FC applications that have been successful in the past to serve as a model for future
FC application research. The FC has grown throughout decades in numerous disciplines of mathematics, but until recently
they had little use in physics and other mathematically focused sciences.

There are now more and more physics study fields that use FC, which indicates that the situation is starting to
change [2,3]. Scholars in physics and its related fields have recently become interested in the applications of FC to the
Schrodinger equation (SE). For instance, Laskin [4] explored the fractional SE that contains the quantum Riesz
fractional operator and the Caputo fractional derivative (FD). In order to solve the local fractional SE for the harmonic
oscillator potential, the Hulthen potential (HP), and the Woods-Saxon potential (WSP), Karayer et al. [5] deduced the
conformable fractional form of the NU technique. By utilizing the fractional version of the NU technique, Karayer et
al. [6] have investigated the analytical solutions of the local Klein-Gordon problem for the generalized HP. The
applications of FC in complicated and nonlinear physics were also presented by Baleanu et al. [7]. Another
development was the study in [9-12] of the energy spectrum of heavy quarkonium in the context of fractional SE with
an extended Cornell potential model in different systems. To examine the fractional version of Newtonian mechanics,
conformable FD and integral have been used by Chung [13]. The fractional parameter (FP) O <a <1 is connected to
the space-roughness time's properties through the FC and its use in quantum physics. Additionally, the nature of wave
equation solutions for different values of the FP indicates the fundamental behavior of the quantum mechanical
systems [14].

Abu-Shady and Kaabar, recently introduced the generalized fractional derivative in [15,16] that gives advantageous
results more than the classical definitions. In addition, the definition gives good results in applying to different models
such as in Refs. [17-19].

The WSP is a short-range potential and is used to study the nuclear structure within the shell model [20]. This
potential has been presented in many forms to investigate the elastic and quasi-elastic scattering of nuclear particles.
The usual (q = 1) and the g-deformed WS potentials have been applied in nuclear calculations [21]. The helium model
and the nonlinear scalar theory of mesons both use it to explore the behavior of valence electrons in metallic
systems [22].

The WSP and its various modifications have been crucial in microscopic physics in determining the energy level
spacing, particle number dependence of energy quantities, and universal properties of electron distributions in atoms,
nuclei, and atomic clusters because they can be used to describe the interaction of a neutron with a single heavy-ion
nucleus as well as for the optical potential model [23]. We are motivated to consider the solutions of the fractional SE for
the generalized WSP using the generalized fractional (GF) NU method. This work is generalized to the work reported
in [24] in the fractional model.

7 Cite as: M. Abu-Shady, and E.P. Inyang, East Eur. J. Phys. 1, 63 (2023), https://doi.org/10.26565/2312-4334-2023-1-06
© M. Abu-Shady, E.P. Inyang, 2023


https://orcid.org/0000-0001-7077-7884
https://orcid.org/0000-0002-5031-3297
https://doi.org/10.26565/2312-4334-2023-1-06
https://periodicals.karazin.ua/eejp/index
https://portal.issn.org/resource/issn/2312-4334

64
EEJP. 1 (2023) Mohamed Abu-Shady, Etido P. Inyang

The following is how the paper is set up: The GF-NU approach is briefly presented in Section 2. In Section 3, the
GF-NU technique is applied on the fractional Schrodinger equation. The results are discussed in Section 4. The overview
and conclusion are offered in Section 5.

2. THE GENERALIZED FRACTIONAL NU METHOD
This section provides a brief explanation of the GF-NU technique for solving the generalized fractional differential
equation that has the following equation (see Refs. [6, 15] for more information).

D*| D¥(s)] L) DY (5)+ 5(s) ¥ (s)=0, (1)

a(s) o (s)

where o(s) and 6(s) are polynomials of maximum second degree of & and 2 « , respectively, and 7 (s) has a maximum

degree of «
where
D W (s)=Is""% (s), @)
D* [ D“\P(s)} =r { (1-a)s>¥’ (s)+s29 (s)J : 3
where
I= i , 4)
L(f-a+1)
where 0 < <1 and 0< S <1. Substituting by Egs. (2) and (3) into Eq. (1), we obtain
B 6)
¥ (s)+—LW (s)+—4 L (s) =0, Q)
a;(s) a7 (s)
where
7 (s)=(1=a)s o (s)+ 177 (s).0, (s) =5 o (s).6, (s) =175 (s)- (6)
If one works with the transformation, one may use the separation of variables to determine the specific solution of Eq. (5).
¥(s)=D(s) x(s), (7)
it is reduced to the following hypergeometric equation.
o ()7 (s)+7,(s)7 (5)+22(s)=0, (®)
where
@ (s)
o (s)=7r,(5)— , )
)=
7 (s)=7 (s)+27,(s); 7,(s)<0, (10)
and
, -1) ..
A=2, =-nt, (S)_n(nz )O'f (s),n=0,1,2,... (11)
x(s)=y,(s) It has the following form and is an n-degree polynomial that satisfies the hypergeometric equation.
B, d", .
7 (s)= "o (9)p(s). (12)
where B, is a normalization constant and p(s) is a weight function which satisfies the following equation
L o)=L (s): w(s) =0, (s)0(s) (13)
ds o (s) !

RRAUSACN J{ a}(s)—a(s)] 5, (5)+ Ko, (5] .
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and
A :K+7rf (s),

(15)

the 7 ,(s) is a first-degree polynomial. If the expressions beneath the square root are squares of expressions, it is feasible

to determine the values of K in Eq. (14). If its discriminate is zero.

3. THE GENERALIZED FRACTIONAL OF SCHRODINGER EQUATION

The generalized WSP takes the form [24]

V. ce
V — 0 —
(V) 1+q82ﬂ1r (1+qewl,_ )2

2pr

(16)

where 1 is the potential depth, ¢ is a real parameter, and ¢ is the surface thickness. This is often modified to reflect the

experimental ionization energy values.
By substituting by Eq.(14), we can write Schrodinger equation [24]

2 V 24
d_2 Z_é’ 2y — | | R(r)=0
dr- h 1+ge (1 +qe” )
281
By assuming x = —e l , Eq. (17) takes the following form
5 247
% % £ 1+V02ﬂ|r+ | |R()=0
r q¢ (1 +qe )
We introduce the following dimensional parameters:
where
HE mV, uC
E = -, = R =
2h2 l2 ﬁ 2h2 12 }/ 2h2ﬂ12

The following equation is obtained

2

1—gx
_2+
dx x(l—qx) dx §° (l—qs)

To transfer Eq. (20) to the fractional form as in Eq. (1)

1_ a
DD‘|:DQ’R()C):| +wq);xa)DaR(x)+
| R(x)zO.
—2(—5q2x2“ +(2eq—-Bg—y)x” +,B—5)

x2a (1 _ qxa )

Substituting by Egs. (2) and (3) into (21), we obtain

R (e g (x)+i§8R(x):o,

sz(s)=(1—0{)(1—q}c“)+1’2 (l—qxa),

where

o, (s) :x(l—qx“),

G,(s)=1" (—8q2x2“ +(2eq-pg-y)x* +ﬂ—g).

Using Eq. (14)

i+ 1 2(_gq2x2+(2gq—ﬂq—y)x+ﬁ_g) R(x)=0.

amn

(18)

(19)

(20)

@n

(22)

(23)

(24)

(25)
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(—2+I’2)qx”‘ +a-17 1

T, = > iz\/(A1—4qw)x2"’+4(A2+w)x"‘+A3 R (26)
where
A =(—2+1’2)q2 +417%q?, 27)
1 2 -2 -2
4, =5(—2+1’ Ja-17)q-17(2eq-Bq-7) (28)
A, =4(a-17)g+4(s-p) . (29)

The quantity w is selected so that the discriminant of the function under the square roots equals zero, giving the
function a double zero. Hence, In addition, k = wx“"" that defined in the following equation

-(84, +4A3q)i\/(8Az +44,9) ~16(4; —44,4,)
- 8

So, we can write Eq. (26) as follows

. (30)

mx“+2\/(g_ﬂ)+(a_l,z)z

J_r% : 31
(A4 —4gw_ )x* —2\/(5—ﬁ)+(a—1_2)

By using Eq. (8), we write and select a negative sign as in Ref. [24]

(—2+1’2)qx“ +a-1"
2

7Z'f=

rf(s)z(l—a)(l—qx“)+1'2(1—qx")+(—2+1'2)qx“ +a-1"

(32)
—{ ,/(Al —4qw_)x" —2\/(5—,6’)4-(0:—]2)2}
using Egs. 11 and 15, we can write
A, =n(l-a)agx”" +nlagx"" —n(—2+1’2)aqx‘H +any|( A4 —4qw_)x*"!
- (33)
+M(l+a)ochc”"1

o o .
A=wx 1+5(—2+12)0ch¢ 1—5[a1/(A1—4qwf)x 1} , (34)

by using the 4, = A, we obtain the energy eigenvalue in the fractional form

w. +%(—2+1’2)aq —%[ an( A4 —4qw. )x"’l}

(3%5)
-1
= n(l—a)aq+n[’2aq—n(—2+l’2)q+0m (4, —4qw_)+@(l+a)aq.

The special case at = f=1,=/ =1,

gnqzi{ /1+4—7+(1+2n):l + p 2+£ (36)
16 q [1/1+%+(1+2n)J 2

Eq. (36) is compatible with Ref. [24].
Let us now find the corresponding eigenfunctions as in Ref. [24]. It is necessary to identify the hypergeometric
function that solves the differential equation in order to determine the polynomial solutions of the hypergeometric function

p(x) satisfying the equation [ o, p] =17,0,. Thus, p(x) is calculated as
px) =————mr (37)

By using the following relation
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B}l d” n
v (x)=%y(af(x) p(x)) (38)
where B, is a normalization constant, we obtain
Bn a 7AI+;BH dn n+4y, o "7%
v, (x)=x7“(l—qx ) e [x 4 (l—qx ) J 39)
where
4, =2\/(g—,8)+(a—1'2)2 (40)
B, =2aq—1"q+(-2+17")q— /(4 —4qw) (41)
. @ (x) 7, (x) :
By using the relation = we can obtain
®(x) o (x)
D(x) =—— 42)
(1 —gx®)
where
1 _ \2
C=5(a—12)+\/(g—ﬂ)+(a—12) (43)
1 _ 1
D:E(—2+I 2)q—5 (4, —4qw) (44)
Thus, we can write final form the corresponding wave function R(x) =y, (x)®(x) as follows
(e _ A1g+B11+Cq+D dn W,M
R(.x) — Anx (C+4,) l_qxa aq _H(X’HA“ l_qxzz aq J
(1) L (1) -

A 1g+B11+Cq+D 4 AarBn

:Anx_(c””)(l—qx“) “@ P( e )(l—qx“)

n
. . . (An A )
where A, is the normalization constant and P, !

n

is the orthogonal Jacobi polynomials.

At = =1 and ¢ =1, we obtain the special of classical case with compatible with Ref. [24].

20

V(r)(MeV) -10- —— = 150MeV
=100 MeV
— = 50 Mev

-204

T T T T T
o 2 4 & 8 10
r(fm)

Figure 1. Variation of the generalized Woods-Saxon potential as a function of

In Fig. 1, the variation of the generalized WSP is plotted where the empirical values are taken from Perey et al. [25]
as ro = 1.285 fm and a = 0.65 fm. Moreover, the WSP parameter is investigated at /0 = 40.5 + 0.13 4 MeV. Here, 4 is
the atomic mass number of target nucleus. We note that the potential shifts to higher values by increasing parameter c.

4. SUMMARY AND CONCLUSION

We have adopted a generalized WSP to obtain the solutions of the fractional SE using the GF-NU method. Analytical
solutions are obtained for the eigenvalues and eigenfunctions in the fractional forms. The results of Ref. [24] are obtained

as a special case at o = ff =1. The present results are not considered in the recent works. Therefore, the present results

play an important role in molecular physics and nuclear physics. We hope to extend this work to hot and dense media,
mass spectra of heavy and heavy-light mesons, and/or the present of magnetic field as future works as in Refs. [26-40].
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JPOBOBE PIBHSIHHSI HIPEATHT'EPA 3 Y3ATAJIBHEHUM IOTEHIIAJIOM BYICA-CAKCOHA
Moxamen A0y-Ilany?, Etino I1. lusur®
“Kagpedopa mamemamuru ma iHpopmamuxu, axyivmem npupooHudux Hayk, Yuieepcumem Menygis, €eunem
b®izuunuii haxyremem, Hayionanonuii eioxpumuil ynicepcumem Hizepii, [oicabi, A6yooca, Hizepisn

BnacHi 3HaueHHsI eHeprii 3B'13aHOTO CTaHy Ta BIMNOBIAHI BiacHI (QyHKUIi y3arampHeHOrO MOTeHMiany Bynca-CakcoHa, HaBeJeHi B
[Phys. Rev. C, 72, 027001 (2005)] mommproeTsest Ha 1poOoBi GopMH 3 BUKOPHCTAHHSM y3araJbHEHOI IpoOOoBOi MoXiqHoI Ta 1po6oBoi
meroqukn Hikidoposa-YBaposa (NU). OtprmaHo aHamiTHYHI pO3B’sI3KM 3B’s3aHUX cTaHiB piBHSHHS lllpeninrepa uist HasiBHOTO
MOTEHIliaTy B TepMiHax ApoOoBHX noniHOMIB fJk06i. [IpogeMoHCTpOBaHO, 110 KITACHYHI PE3YJIBTATH € OKPEMUM BHUIAIKOM CYYaCHHX
pe3ynbTaTiB npu a=f=1, TOMy 1Ii pe3yJIbTaTH BiAirpaloTh BAXKJIMBY POJIb Y MOJCKYJLSIPHIN XiMii Ta saepHiil ¢izuii.
KurouoBi cnoBa: yzacarvhena 0pobosa noxiona; pisuanus Lllpedineepa; Memoo Hikigpoposa-Yeaposa; nomenyian Byoca-Cakcona
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Nuclear energy levels; Inelastic electron scattering C4 form factors for nucleons that were present outside closed core for the isobars “Ca
nuclei, which occupied low levels fp-LS shell (1f72,1f52, 2p312,2p112), within shell model calculations had been studied. The interaction has
been used to calculate the nuclear energy levels which is fpd6pn with fp shell model space. The results are compared with each other and
with available experimental data its agreement with some results is clear. All inscriptions are given in diagrammatic notation., the wave
vectors and analysis are modeled in the so-called diagrammatic notation. The potential of oscillator is utilized to construct single particle
vector, considering 39Cas, as a core. For the form factors the residual interaction M3Y has been adopted to include the inert core to the
calculations. The OXFORD BEUNES AIRES SHELL MODEL CODE is utilized to accomplish the results for all tested nuclei.
Keywords: Nuclear energy levels; Calcium isotope 44; Nuclear reaction; Diagrammatic notations FPD6pn; OXBASH

PACS: 21.10.-k, 21.60.Cs

1. INTRODUCTION

Many studies had been performed to understand the nuclear properties and the internal structure of nuclei. Due to
the complex nature of nuclei, there is no unified theory to describe the nuclear behaviors, properties and structures [1].
The shell theory has many benefits and properties such as the model independence of suggested, the applied physical N-N
potential, beside the traditional Hamiltonian related to different categories of eigenvectors, and for plenty of nuclei. The
shell theory stays valid to supplies the main theoretical methods for realizing all measurable of nuclei [1].

Excitation energies, binding energies, and spectroscopic factors were calculated in the LS shell (1f51,2p3p, 2pis2)
space so acquired effective N-N matrix elements [2]. Interactions between PN had been inspired to measure for the
presence of a orbits distance at N=32 in isotopes rich neutron localized in the nearby of magic nucleus “*Ca [3]. Filled pf-
LS shell model inspections of A=48 nuclei were executed [4], modified Kuo-Brown (KB) [10] to KB1 and KB3G. The
isobaric chains A=50, A=51 and A=52 studied [5] using KB3G and FPD6 and their released version KB3G [6].

The shell theory introduced an important method for such research. In this hypothesis, realistic potentials are founded
and the basis vectors are denoted by exact quantum numbers of angular momentum (J), isospin (T) and parity (w) [7].
A plenty of researches [8] were done to detect the distribution of eigen functions constructs the framework of the shell
model [9]. Independently by Maria Mayer, and by Jensen, Haxel, and Suess) in the 1950s, the nuclear shell theory has
regarded a major theory in the understanding of nuclear structure [10]. Extreme single-particle motion in spherical
symmetry, only the addition of strong spin-orbit term was invoked to permit redesign of a wide range of results for
isotopes near the nuclear magic numbers [11].

Calculations had been accomplished in model space of full fp- LS shell contains 1f72,1f52, 2p3/2, 2p1» subshell and
considering*’Ca as a core. The number of particles which can be excited to higher configurations is not restricted. Thus,
apart from testing the suitability of GXPF1A interaction in explaining the experimental data, a comparison of results with
that of him results would also throw light on the role of intruder go» orbital, appropriate choice of core, and the effect of
truncation on the particles to be excited [12]. Nuclear energy levels; total angular momenta and even-even parity for
nucleons that were present outside closed and no core for (**Ca, **Ca, Ca and**Ca), which occupied fp-shell
(1f72,1€5/2,2p32,2p112), within shell model calculations had been interested.

Four interactions had been assigned to calculate the nuclear energy spectrum of “*Ca, **Ca, “°Ca and*®Ca. The results
of the FPD6, GXPF1 and KB3G interactions are compared with each other and with available experimental data, its
agreement with some results is clear, the results are compared with GOGNY-P2 (fp, fpg and fpgd model space)
interaction. The technique of frozen orbitals and restricted occupations were adopted (applied) in the framework of full
space calculation, when GOGNY-P2 interaction had been used as an effective full space two body interaction [13]. Code
OXBASH had been utilized to generate model space wave vectors and in the same time receive the comparable model
space effective interaction that are selected for this study. The aim of this thesis is to reproduce the nuclear energy levels
of (**Ca) isotope, utilizing FPD6pn as a model space effective interaction to generate model space vectors, the calculations
is performed by using OXBASH code [14]. The calculated energy levels for the isotopes under study with different set
of effective interactions will be compared with the available experimental data.

2. THEORY
2.1. Interacting Particles in One and Two Active Orbits
The two particles wave function can be written as a product of a spin and an isospin dependent part as [15]:

7 Cite as: M K. Hassan, and F.Z. Majeed, East Eur. J. Phys. 1, 69 (2023), https://doi.org/10.26565/2312-4334-2023-1-07
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DQpmrrz (1,2) = in((D(2)Orro(H(1H(2)). (1)

where j +j=Jand ¢t +¢= Twith T=0 or I since t=1/2.
A diagrammatic notation for the spin part of Eq. (1) has been introduced and one can write as [15]:

@ (J(D)(2) = vajm'lmmjm(l)cb,-m,(@ = o

where @jn(1) and ®;(2) are the single-particle States for particles 1 and 2 with their angular momenta j has been coupled
to a total J. The coupling yields:

P @ (j(Dj(2) = (1@ (j(1)j(2) = = (=1 @ (/(1j(2)) €)
when Py,: interchanges operator. So, the isospin dependent part as [15]:

Orr, (t(1t(2)) = Z(ttztt'z|TTz)9ttz(1)9tt’z(2) = ) § )

tyt'y -
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Condensed the notation to include spin and isospin as, p = (j,t) andI' = (J, T). So, Eq. (1) can be rewritten as:

(Dr(ljz) _ m) ,/\)E W) , (5)

J T r

Anti-symmetry of a wave function is referred to by a circular arc and one obtains for two particles in two different

orbits p and A

T

For two particles in the same orbit the notation can be further formed as

of*(1,2) = T ()

One can be extended easily to wave functions of more than two particles in one Orbit p as

O¥(1,2,...,n) = (3)

2.2. Coefficients of Fractional Parentage
The n-particle function with all particles in one orbit p is given as [14]:

®r(1,2,...,n) = )

The group p™! is coupled to J,, Te, x. with x. denoting all further quantum numbers needed to specify the state
[p™" 1), uniquely. When the operator P; interchanges all coordinates of particles i and j, then one obtains for i, j< n-1 due

to the anti-symmetry:
SSRGS w
r r r

The result of the permutation P for i or j equal to n, however, cannot in general be represented by a simple expression
in terms of the original function as in Eq. (10).
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¥ (1,2,...,n) = (11)

The wave function of eq. (9) due to anti symmetrization. Also, one can write:

r = X{p"T}p" "€) (12)

r

where (p"I"| } p"~1€) represented “coefficients of fractional parentage” or c.f.p. The normalization and orthogonality lead
to the states |p™)r be denoted by x as:

Zryxr(pnrxl}pn—lrrx/)<pnrx/!|}pn—1r!xr> — 6xx”_ (13)
The simple reordering depending on equation (12), if the particle numbered £ is willing to decouple, then:
D35(1,2, .,k 0,n) = (1) FOR5(1, 2, ..., k). (14)

In the completely antisymmetric wave function leads to the expansion [15].

r = (D" Zelp"T}p" "e) ) (15)

r

It is beneficial to discuss in detail the derivation of c.f.p. for the relatively simple case of three identical particles
(maximum isospin) in one orbit with j < 7/2. It is only for j < 7/2 that three particles couple in an unique way to a given
total spin J. Thecouplingofthreesingle-particlewavefunctionstoanon-antisymmetrized function of total spin J can be
obtained by using the same diagrammatic representation as given in details in [15].

2.3. The Reduced Matrix Elements of the Longitudinal Operator (77 = Co)

The longitudinal form factor describes the spatial distribution of the charge (the transition charge densities), so the
longitudinal scattering might be considered as a result of the interactions of the incident electrons with the charge
distribution of the nucleus [18]. The longitudinal form factor operator is defined as [18]:

TS5 (q)=] di, (ar) Y (Q,)P(71.) (16)

where j, (gr) is the spherical Bessel basis, Y, (Q,) is the spherical harmonic and p =(7,z.) is the nucleon charge

density operator. From equations (2-29) and (2-30), one obtains:
T, (4) = (1) J, (ar) Y (Q,) a7
2.4. Core polarization effects

Microscopic theory will include the discarded space as a first order perturbation that is particle hole state (p-h), and
using mixing interaction in order to calculate these effects as a residual interaction, For Nuclei of A>40, Z, N> 20, the

fpLS shell model space is the suitable space [18], with a core of “Cais assumed. The electron scattering operator 7}

reduced matrix elements is formed by two parts, the former "Model space" matrix elements, and the latter is for the
"Core-polarization" matrix elements [18].

(r i)

r)={r |17

r,.> +<r |t

MS

r,.>'cp. (18)

3. RESULTS AND DISCUSSION
Microscopic models have been introduced to constitute nuclear energy states. The model with mixed multi-nucleon
conformations is one of the most important models. In the adopted method, the systems 40Ca and 32S are considered a
non-active core with extractive baryons (neutrons only) that are named the LS shell. Calculations of the shell model are
carried out within a model-space in which the nucleons are free to occupy a few orbits and are able to reproduce the
measured static moments and transition strengths [16,19].
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The shell theory is a major part of the nuclear theory and an essential theoretical topic for the micro scale calculations
of nucleus build-up. The essential assumption in the shell model is that every particle plays separately in a potential
average, including a dominant non-central spin-orbit part, and consists of the baryons themselves [19]. After this, the
baryons allied into classes, the "shells, “distant from each other. By this approach, the nucleus is divided into an inert core
made up of filled LS shells plus a certain number of valence nucleons called the valence bodies [16,20]. Energy level
values in this work are calculated by the shell model calculations that are performed via the computer code OXBASH [14].

The calcium elements that existed in the human’s bone structure are very important. It’s very important to study the
calcium isotopes. Some of the experimental properties of**Ca, **Ca, *°Ca and*®Caisotopes shown in Table.

Table. Experimental properties of some Ca isotopes [17]

42Ca 44Ca 46Ca 48Ca
Jm 0" 0* 0* 0"

M (micro-u) 41958617.828 43955481.543 45953687.988 47952522.904
Mex (MeV) -38.547245 -41.468675 -43.139361 -44.224629
B/A (MeV) 8.616563 8.658175 8.668979 8.666686

Sp (MeV) 10.27667 12.18226 13.81269 15.80162
S2p (MeV) 18.08529 21.62394 25.04405 29.02964

Sh (MeV) 11.48067 11.13117 10.3985 9.95153
San (MeV) 19.84349 19.06406 17.81332 17.2279
Qu (MeV) -6.25734 -8.8537 -11.1416 -13.97629

Es MeV) -6.426092 -3.65269 -1.378143 0.279213
Qpn (MeV) -17.97615 -13.35189 -10.13878 -7.95935
Q23 (MeV) -13.44257 -3.92011 0.98844 4.26808
Qap (MeV) -45.277 -28.108 -13.66779 -1.40261

4. INELASTIC LONGITUDINAL FORM FACTOR IN “Ca FOR THE TRANSITION (02— 4%2)
AT Ex=1.561 MEV
Inelastic longitudinal (C4) form factors were calculated by using M3Y-P1. Fig. 1 represents the calculated form
factors using (M3Y-P1) as a residual interaction in the first peak the results overestimate the data at all ¢ > 1.2 till 2.2 fm'!
while the calculations underestimate the data at the second peak. The form factor for C4 transition in **Ca with an
excitation energy Ex=1.561 MeV is displayed in Fig. 1, where the total contributions are due to the core polarization
effect. The data are well explained for the first lobe, and also up to q =3 fin~'. Higher q values are estimated. The values

of |F (q)|2 are in between 10 and downward with the maximum at q=1.8 fin™".

1E-2 T T T T T T T T T T T T T T T T T T T

44
Ca

C4:charge form factor
* Exp
——Total C4"1'form factor using M3Y-P1

L

1E-3

1E-4

1E-5

IF(g)I2

1E-6

1E-7

1E-8

1E-9

1E-10 ! | |
0.00 1.00 2.00 3.00 4.00

q(fm™)

Figure 1. Inelastic longitudinal C4 form factors for the 4, (Ex=1.561 MeV) (The value of Ex is theoretical) state in *Ca using
M3Y-P1 as a residual interaction.
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5. CONCLUSIONS

From Figure 2 which represents the energy level scheme for “Ca, it is clear that there are clear differences between
the calculated and experimental results in general. The calculated results reveals that there are an energy gap between
JE =07 and JT = 43 by the value of AE = 3MeV but this state has a well defined value as compared with the
experimental one and the state /¥ = 27 has a fair agreement with the experiment but the higher the states the wider the
difference with the laboratory states. The function of energy levels density will be very useful to identify the energy
spectrum and study the distribution of states between 1 to 10 MeV besides the number of every state and their values,
nuclear shell theory is based on some dependable not sure realistic and a wide range of fitting parameters are not well
reproduced to generate the static and dynamic nuclear properties and they need to be readjusted to meet the experimental
results table 1 tabulates some nuclear properties for some even Ca isotopes.
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Figure 2. The energy levels scheme of ““Ca by using fpd6pn interactions with closed core ’Ca for (J§T), positive parity, ten orders
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PIBHI SIIEPHOI EHEPTIi ¥ “Ca 3A BAKOPUCTAHHSI FPD6PN B3A€MOIT
Maplam K. Xaccan, @ipac 3. Maocuo
bacoaocvruil ynisepcumem, Hayxosuii koneddc, ghaxynomem ¢hizuxu, bazoao, Ipax

VY paMkax po3paxyHKiB 0OONOHKM Mojeni OyiaW BHBUEHI DiBHI siepHOi eHeprii, ¢opmdpaktopu C4 HEnpy>KHOTO PO3CiIOBaHHS
€JIEKTPOHIB /IS HYKJIOHIB, sIKi OyJIM IIPUCYTHI 32 MEKaMK 3aKPUTOTO sapa Juist i306ap suep *4Ca, i siki 3aiiMany Hu3bKi piBHI 000IOHKH
fp-LS (1£7/2,115/2, 2p3/2,2p1/2). insa po3paxyHKy piBHIB siiepHOi eHepril Oyia BUKOpHCTaHa B3aeMogis, sika € fpd6pn 3 mpocTopom
MoJieni 000oHkH fp. Pe3ynbTaty MOPIiBHIOIOTHCS OMUH 3 OJHHM, i 3 HAABHUMHU CKCIICPUMEHTAILHUMHU JaHUMHU YiTKO 30iraeTbes 3
JEeSKUMH pe3yJibTaTaMH. XBUIbOBI BEKTOPH Ta aHaji3 MOJENIOIOTHECS y Tak 3BaHOMY JiarpaMHoMy 3amnwmci. J[ms moOynoBu onHO
YaCTKOBOTO BEKTOPA BUKOPHUCTOBYETHCS MOTEHI[a] OCIHIATOPA, PO3TIAfAIoun 39Caz, Y sxocti smpa. s dopm-¢paxTopis Gyio
MIPUIHATO 3IMIIKOBY B3aeMofiro M3Y, mo0 BKIIOYHTH 0 PO3paxyHKIB iHepTHe sapo. sl OoTpUMaHHS pe3yibTaTiB Ul yCix
NepeBipEeHHX siAep BUKOPUCTOBYETHCs ko1 Mozeri obononkn OXFORD BEUNES AIRES.

KurouoBi cnoBa: s0epni enepeemuuni pigui; izomon xanvyiro 44, adepua peaxyis, oiazpamuuii 3anuc FPD6pn; OXBASH
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The study of proton-rich nuclei's form factors, root-mean-square radius (rms), and nuclear density distributions is the focus of this
work for nuclei (33Al and ?’P), use two body charge density distributions (2BCDD's). With the effects of the strong tensor force and
short range, the nucleon distribution function of the two oscillating harmonic particles in a two-frequency shell model operates with
two different parameters: be for the inner (core) orbits and bv for the outer (halo) orbitals. This work demonstrated the existence of
proton halo nuclei for the nuclei (>3Al and ?’P) in the shell (2s12), and the computed proton, neutron, and matter density distributions
for these nuclei both displayed the long tail of the performance. Using the Borne approximation of the plane wave, the elastic form
factor of the electron scattering from the alien nucleus was calculated, this form factor is dependent on the difference in the proton
density distribution of the last proton in the nucleus. The Fortran 95 power station program was used to calculate the neutrons,
protons, matter density, elastic electron scattering form factor, and rms radii. The calculated outcomes for these exotic nuclei agree
well with the experimental data.

Keywords: Exotic nuclei; Form Factor, Proton-rich;, Root mean square (rms) radii

PACS: 21.10.Ft, 21.10.Gv, 21.45.Bc, 21.60.n, 21.65.f

1. INTRODUCTION

The nuclear halo is a threshold effect with low separation energy. There are two different kinds of exotic halo
nuclei: proton halo [1] and neutron halo [2,3]. Neutron halo nuclei have recently undergone extensive experimental and
theoretical study [4,5]. However, studies on proton halos are very rare. Although the proton separation energy in some
light nuclei such as *B and ''F is very low [4,6-7].

Emil Ryberg and others examined the impact of finite-range corrections for S-wave proton halo nuclei on the halo
effective field theory [8]. Dellagiacoma et al. [9] provided a straightforward phenomenological technique for creating
dynamical short-range and tensor correlations. Da Providencia and Shakin [10] developed a similar correlation operator
for explaining short-range correlation effects, as did Malecki and Picchi [11]. Luay F. Sultan [12] used the binary
cluster model within the single-particle wave functions of Gaussian and harmonic oscillator potentials to investigate the
ground state density distributions of proton-rich Al and ?’P halo nuclei. The radial wave functions of the calculated
Woods—Saxon potentials for ®B, '7F, 17Ne, 2*Al, and 2’P have been used before Rafah I. Noori [13].

Using a coherent density fluctuation model and 2pF to study one- and two-proton halo nuclei for 2Al, 2°P, and %8S
nuclei is presented by Maha Taha Yassin [14]. The two-frequency shell model and the binary cluster model are used to
investigate the ground state densities of unstable proton-rich °C, >N, and 23Al exotic nuclei [15].

In this study, we will use the two-body charge density distributions (2BCDD's) in the ground state for the proton-
rich nuclei for (**Al and ?’P) with full correlations (tensor force and short range) with we used two different oscillator
size parameters bc and bv and we calculated of rms radii, density distributions for (protons, neutrons, and matter) and
form factors for these exotic nuclei.

2. THEORY
The operator has been used to define the nucleon density of a point-like particle nucleus [16]:

PO ( 25(% J . 1)

This operator can be transformed into a two- body density form ( p" (T) =p? (t))as[17]:

() s el ) ()

Another relevant transformation is that of the coordinates of the two particles, which may be expressed, (T and 1))

=l

5
in terms -of- that relative r ; and center -of- mass Rjj coordinates [18]:
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S NS
fff(ri—rj)’ (3-2)
- 1 > o
Rijzﬁ(ri-f-rj) . (3—b)
Subtracting and adding (3-a) and (3-b) can be obtain:
r=—=(Ry +1,), (3-¢)

Using egs. (3-¢) and (3-d) in Eq (2), we obtain:

. 2(Al_ - Z{‘{ F-%(Eﬁ ‘1, )} + e{ ?—%(ﬁﬁ —ﬂj)] } 4)

- l -
Using the identity o (a r):m5 (1) (for three —dimension), where (a) is a constant. For closed shell nuclei with
a

N=Z, the two-body charge density operator can be deduced from Eq. (4) as:

PO =2 p ()

1.€.

e ()_L S| V2r—Ri -1, | +68| N2r=Ry +r, | 1. 5)
(A-1) 17 ! !
The operator from Equation (5) can be folded with the two-body correlation functions ]7[[ to yield an efficient two-
body charge density operator.

<2>(r)_L ”{5{\/5?—1&» -ZJ} 5[&?—1& +r”ﬁj, )

A-) 5

where the from J;U is given by [18]

F=f@)A+fa)| 1+ A B, A,. )

It is clear that eq. (7) contains two kinds of correlations:
e  The first term of equation (7)'s two-body short range correlations, which is expressed as f(r;;). Here A, With the

exception of 3S; and °D; states, is a projection operator onto the space of all two-body wave functions. Short-
range correlations should be observed as important functions of particle separation, which diminish the two-
body wave function at short distances where the repulsive core forces the particles apart and heal to unity at a
lengthy distance where the interactions are very weak. The two-body short-range correlation is given by [18]:

0 Jor 1y <7,
. )= l=exp{ —u(, =Y’} forr;>r.

where 7. ( fin) is the radius of a suitable hard core and, u =25 fin?[20] correlation parameter.

®)

e The strong tensor component in the nucleon-nucleon force induces the longer range two body tensor
correlations that are shown in the second term of equation (7).

f=rop{1+a(A)P}A,, ©)
into triplet S, — °D, channels, where

A, = | (¢8)gT)((£5)gT]. (10)

(SgT
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This projection operator only affects the *S; and 3D; states. The typical tensor operator, Py, is known as [18]:

B==(6,7)(6, 7,)-6.5,. (11)

While o (4) can be defined as the strength of tensor correlation and it is non-zero just in the *S; and 3D; channel.
Where the relative orbital angular momentum (ﬁ ) and total spin (S ) of two particles are coupled to the channel spin

(g) a projection operator onto triplet coupled states of °S, and D, . In Eq. (7) the radial part is easily included as it

only modifies the radial integrals involving 7, . Acting the operator of Eq. (6) into triplet S, state

7 3 3

5’8} = 1e{ 1+ a(a)B, }]s)A,, (12)
and acting the operator ]712 into triplet D, , we get

J;12|3D1>=f(’iz){ l+a(A)R, }| 3D1>A2 . (13)

It makes sense to parameterize the core and halo densities independently in the case of exotic nuclei.
Consequently, the following is how the halo nuclei's ground-state matter density distribution can be expressed [19]:

P, (r) = pre (r) + pte(r). (14)

The normalization condition of the above ground state densities is given by:
g:47rr p* (r)rzdr, 15)
0

here p*(r) represents one of the following densities: nucleon, charge, core, halo densities. The rms radii of
corresponding above densities are given by [20]:

2\ /2 iy g 4
r =— rytdr, 16
(), = P ) (16)
where g is (proton, neutron or matter).

The PWBA was used to study the elastic electron scattering form factors from emitted by the nuclei under study.
The charge form factor in PWBA is [21]:

4 .
F@ =7 p@SinGnr drF @) F, @), (17)
where the nucleon finite size correction F (g) is defined [22]:

Fy@)=e""", (18)

where the free nucleon form factor F (q) for protons and neutrons is consider to be the same. According to [23], the
center of mass correction Fe, (g) is as follows:

F, ()=, (19)

where b : The harmonic-oscillator size parameter and 4 : The nuclear mass number.

As a result, when the shell model wave function is, removes F., (g) eliminates the spurious state caused by the
center of mass's motion. The form factor F(g) comprising the impact of two-body correlation functions may now be
calculated by entering the ground state (») of equation (6) into equation (14).

3. RESULTS AND DISCUSSION
The density distributions for (protons, neutrons, and matter) of the ground state of (**Al and ?’P) nuclei and rms
radii with the form factors F(g) were studied by the two body charge density distributions ( 2BCDD's) with effect short-
range and tensor force by using the two body oscillator model (core +1p) shell model with used parameters (bc), (bv),
and by relying on equations 6, 7, and 11.
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Table 1, summarizes some of the characteristics of halo nuclei [24,25]. The average radius of neutrons and protons
was calculated based on equations 6, 7, and 16, where we got the results shown in Table 2, when the full correlation
(r~0.5 fim, a =0.1) and without correlation (=0, a=0). It is found that the proton rms radius is larger than the neutron

rms radius.

Table 1. Some properties of 2*Al and ?’P nuclei

Exotic nucleus JI T [25] Nuclei core  J7, T [25] Half life time (712) [24] Separation energy (Mev)[24]
BAl 1/2%,3/2 2Mg 0+, 1 470 ms 0.141
27p 1/2%,3/2 265 0+, 1 260 ms 0.870

Table 2. The calculated neutrons and protons 7ms radii for nuclei (2*Al and 2’P)
Exotic nuclei Al
Proton size parameter by=2 fin Neutron size parameter bi=1.75 fin
() . 3.195974 (r) 2.669840
r.=0.5,a=0.1 r,=05,a=0.1
o) 3.203143 &) 2.667579
() [25] 3.1+0.25 (r2)  [25] 2.634+0.23
exp exp
12
(&) -0.0071 (12)” -0.0022
Exotic nuclei P
Proton size parameter bp=2.05 fin Neutron size parameter bi=1.73fin
) 3.395257 () 2.744588
r,=05,2=0.1 £, =05,a=0.1
L) 3.405219 Gy 2745390
(), [25] 3.22+0.163 (1) [25] 2754 +0.14
exp exp
12 1/2
() -0.0099 (). -0.0008

Table 3, shows the calculated rms radii for core nuclei (**Mg and 2°Si) with oscillator size parameter (b, =2.85,
187) for Mg and %°Si respectively, and exotic nuclei (**Al and ?’P) with oscillator size parameter (b,, =1.87, 2.015)
for?*Al and ?’P respectively with effects of the short-range (r.= 0.5 fin) and the tensor force (a= 0.1).

Table 3. The calculated core, valance and matter radii 7ms with experimental data for 2Al and ?’P nuclei

Halo nuclei Core b
nuclei
BAl1 2Mg 1.85
27p 265 1.87

by

3.85
35

b rms matter radii for core rms matter radii for halo nuclei
m 1/2 /2
nuclei <r2 >C (fin) <r2>hl (fin)
Calculated Experimental Calculated Experimental Data
results Data results
1.87 2.872617 2.78 £ 0.26 [26] 2.911843 2.905 +0.25 [26]
1.912 3.025680 2.88 £0.06 [27] 3.028345 3.02 +£0.155 [27]

The calculated results are in good agreement with the indicated experimental data [26,27]. The correlation short

1/2
range force with root mean square radii <r > . We note an increase in 7ms values with an increase in short-range

force by relying on equations (7, 8), as we showed in Table 4. Table 5, show correlation tensor force with rms radii

<r2> " . It is found to decrease rms values with increased tensor force by relying on equations (7, 9), and 11.

Table 4. The calculated of the rms radii with different values for the short-range correlations for 2Al and 2P nuclei

re (fm)

/2
<r2> 1 for AL nuclei

<r2> " for 2P nuclei

0.3
0.35
0.4
0.45
0.5
0.55

2.898914
2.899032
2.900136
2.903780
2.911843
2.923239

3.01684
3.016960
3.017976
3.021325
3.028711
3.039108
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Table 5. The calculated of the 7ms radii with different values for the tensor force correlations for 2*Al and 2P nuclei

a <r2> " for BAL nuclei <r2> " for 7P nuclei
0.07 2916419 3.032756
0.075 2915664 3.032097
0.08 2.914908 3.031432
0.085 2914147 3.030761
0.09 2.913382 3.030083
0.095 2912615 3.029400

0.1 2911843 3.028711

Figure 1 shows the relation between the two-body nucleon density distributions (2BNDD's) (in fin™) of the ground
state and r (in fin) for Al and ?’P nuclei. The blue curve represents 2BNDD's for the core nuclei Mg and 2°Si (proton
+ neutron) with oscillator size parameter (bc =2.85, 187) respectively. The green curve represents 2BNDD's for valence
(one proton) for 2Al and 27P nuclei with oscillator size parameter (bv=3.85, 3.5) respectively, while the red solid curve
represents the total calculation for the core nucleons and the valence one proton, and the shaded curve represents the
experimental of nucleon densities of 2*Al and ?’P respectively [25,26]. Figure 1 shows that the computed matter density
distributions show a long tail for all of these nuclei and shows that the halo phenomenon and the long tail in 2*Al and
7P are connected to the outer one proton for nucleon densities but not to the core nucleons, which is consistent with the

experimental data.
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Figure 1. Core, halo and matter density distribution of (**Al and ?’P).

Figure 2 illustrates a comparison of the matter density distributions of halo (3*Al and ?’P) (red line) with the matter
density distributions of the stable nuclei (*’Al and 3'P) (yellow line) by using 2BCDD's with the effect of short-range
and tensor force, we shown along tail is clearly in the matter distribution of the halo nuclei.
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Figure 2. Comparison of matter density distribution of exotic nuclei (>*Al and ?’P) with that of stable nuclei (*’Al and 3'P).
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Figure 3: The neutron (blue curves), proton (brown curves), and matter (red curves) show densities of *Al and %P,
respectively. The proton diffuseness is also larger than the neutron diffuseness in these nuclei. There is a large density
difference between the proton and neutron in 23Al and 2’P. The usual performance of the halo nucleus (i.c., the long tail)
is apparent in the proton density distributions (brown curves), as indicated by these figures. For 2*Al and ?'P, the
difference between the rms radii of the proton and the neutron is (7, - , = 0.52613, 0.65066 fin). This difference is also
supported by the halo structure of these alien cores.

It is seen from the Figure 4 a plotted for the elastic form factor versus q (in fin™!) for 2Al and ?’P calculated with
PWBA. The blue solid curve represents the form factor for 2BCDD's with (F#0, Fen #0) and oscillator size parameter
(b =1.87 fin for Al and b,=1.912 fin for 2’P), the red curve represents the form factor for 2BCDD's with correlation
and oscillator size parameter (b,, =1.87 fin for Al and b,=1.912 fim for 'P), (Fs = 0, F.» = 0) i.e the finite nucleon size
and the center of mass corrections doesn't take into account. The filled circle represents the experimental elastic form
factors of Al and 3'P [28]. The form factor is determined by the detailed properties of a single proton halo as well as
the difference, which is determined by the mass number and the size parameter bm. We obtain good agreement at the
momentum for g<3.6, and we note that the behavior of the theoretical results for halo nuclei (**Al and ?’P) matches the
practical results for stable nuclei (Al and 3'P).
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Figure 3. Comparison of proton, neutron and matter densities for Al and 2’P halo
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Figure 4. The form factors for 2Al and ?’P nuclei with experimental data [28].

4. CONCLUSIONS
In this work, halo nuclei are known to have a valence of a proton, the halo of a proton occupies a 2s;,, orbital. The
measured material density of our halo nuclei showed a long-tailed behavior using the two-body nucleus density
distribution framework with two different oscillator size parameters b. and b, with tensor force effects (Increasing its
effect, the rms radii increases) and the short range (the increase its effect, the rms radii decreases), which are consistent
with the experimental data. The large variation in charge form factors between unstable nuclei (**Al and ?’P) and stable
isotopes (*’Al and 3'P) is due to the same charge distribution of the protons.
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TEOPETUYHE JOCIIA)KEHHS CTPYKTYPU ITPOTOHHOI'O I'AJIO TA ®OPM-®PAKTOPA ITPYKHOT'O
PO3CISIHHS EJIEKTPOHIB JIJIS SITEP Al TA ¥P 3A BAKOPUCTAHHS IOBHUX KOPEJALIMHUX ®YHKIII
(TEH30PHA CHJIA I KOPOTKOJIS)

AGip A.M. Xyceiin, l'elit H. ®aeii
@akynvmem ¢hizuxu, Hayrkosuti konedoic, bazoadcvruii ynisepcumem, baeoao, Ipax
Hocnipkenns popM-pakTopiB saep, 6araTux Ha MPOTOHH, CEpPeAHbOKBAPATUIHOTO pajiyca (CepeIHbOKBAAPATHIHOTO 3HAUCHHS) 1
PO3NOINY sIEpPHOT IIIBEHOCTI € HeHTpoM wLi€i pobotu mus saep (2Al i 27P), BUKOPHCTOBYEThCS [Ba PO3MOAIIM HILTLHOCTI 3apsmLy
(2BCDD). 3 edexramn cHIbHOI TEH30PHOI CHJIM Ta KOPOTKOAIT (yHKILSI pO3MOJiNy HYKIOHIB JABOX OCHHJIIOIOYHX TapMOHIHHHX
YaCTHHOK y JIBOYACTOTHIN MoJesi 000IOHKH MPALIOE 3 ABOMA Pi3HUMHU IapaMeTpamMu: be it BHYTPIlIHIX (sAepHUX) opOiT i bv mst
30BHILIHIX (raso) opbiraneid. Llg po6oTa MpojeMOHCTpyBaia iCHYBaHHS sIEP NPOTOHHOTO rano s saep (Al i 27P) B oGononui
(2s1/2), a obuucneHi poO3MOALIH TYCTHHU MPOTOHIB, HEUTPOHIB 1 PEYOBHHU [UIS LUX SAEP MOKA3AIM JOBIHU XBICT MPOAYKTHBHOCTI.
BukopuctoBytoun 60pHIBChKEe HAOMIKEHHS TUIOCKOT XBUIII, OyJIO PO3pax0OBaHO MPYKHUH (OpM-(PaKTOp PO3CIFOBaHHS €IEKTPOHA Bil
qy’>KOPIHOTO sinpa, el (GopM-(paKkTop 3aleXUTh BiJ PI3HUII B PO3MNOALTI T'YCTHHH HPOTOHIB OCTAHHBOTO NPOTOHA B siapi. Jlms
pO3paxyHKy HEHTpOHIB, TPOTOHIB, IIUIBHOCTI pEYOBMHH, (OpM-(paKTopa IpPYKHOTO PO3CIIOBAaHHS  EIEKTPOHIB 1
CepeHBOKBAIPATUYHUX PaJiyciB BHKOPUCTOBYBanacsi mporpama PowerStation Fortran 95. PospaxoBani pe3ynabTaTél Al IHX

eK30THYHUX sIJiep J00pe y3roUKYIOThCs 3 eKCIIEPUMEHTAIBHUMHU JTaHUMH.
KuarouoBi cioBa: exzomuuni siopa; popm-gpakmop,; 6azamonpomonni s0pa;, cepeonbokeadpamuyti paoiycu





