TY - JOUR AU - Samuel, Shaka O. AU - Frank, M. Lagbegha-ebi AU - Ogherohwo, E.P. AU - Ekpekpo, Arthur AU - Zhimwang, J.T. AU - Ikhioya, Imosobomeh L. PY - 2023/03/02 Y2 - 2024/03/28 TI - Influence of Deposition Voltage on Strontium Sulphide Doped Silver for Optoelectronic Application JF - East European Journal of Physics JA - East Eur. J. Phys. VL - IS - 1 SE - Original Papers DO - 10.26565/2312-4334-2023-1-25 UR - https://periodicals.karazin.ua/eejp/article/view/21094 SP - 189-196 AB - In the research electrochemical deposition technique was use in deposition of undoped SrS and doped SrS with silver were 0.01 mol of thioacetamide (C2H5NS), 0.1 mol of strontium chloride hexahydrate (SrCl2.6H2O), and 0.01 mol of silver nitrate (AgNO3) were utilized as the cationic, anionic, and dopant concentrations. The XRD spectra of the SrS and SrS doped silver showed prominent crystalline peaks at angles of 26.69°, 37.97°, 51.39°, and 65.56° for SrS and 26.42°, 33.42°, 37.98°, and 51.32° for SrS/Ag, respectively, with corresponding diffraction planes (111), (112), (200), and (211). However, the diffraction pattern shows that the peak intensity increases as the deposition voltage increases. The undoped SrS material morphology has a clove-like substance with precipitate; the large nano grain on the substrate's surface exhibits photon absorption but shows no traces of pinholes. When doped SrS is deposited at various precursor voltages, it forms uniform surfaces devoid of pinholes. The cell also penetrates the substrate being used for the deposition, as seen by the elemental makeup of the films. It was observed that SrS/Ag at 10V and 12V had little precipitate on the surfaces; this is because a carbon electrode was utilized, which tends to react with electrolyte at low voltages but does not do so at 14V. The films show that when the deposition voltage increased, the electrical resistivity decreased from 1.42 x 109 to 1.37 x 109 Ω.m and the thickness decreased from 125.02 to 123.025nm. This further led to an increase in conductivity from 7.04 x 108 to 7.29 x 108 S/m. It was discovered that the absorbance decreases as the electromagnetic radiation's wavelength grows and the deposition voltage rises. According to research done on the deposited material, its energy bandgap lies between 1.55 and 2.51 eV.  ER -