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The paper studies the dynamic description of non-equilibrium processes in single-sublattice and multisublattice magnets with the spin
s=1. In case of magnets with the spin s=1 and SU(3) symmetry of the exchange interaction, there are eight magnetic integrals of
motion: the spin and the quadrupole matrix. If there are multiple sublattices, the number of additional magnetic quantities
characterizing the state increases to sixteen. The presence of the Casimir invariants makes it possible to reduce the number of
independent degrees of freedom. Exchange energy models are presented in terms of Casimir invariants corresponding to SO(3) or
SU(3) symmetry groups for all four types of magnetic degrees of freedom. For the homogeneous part of the exchange energy, we
have found conditions for the existence of local minima, which correspond to equilibrium values of the magnet. Along with the
known waves (quadrupole and Goldstone — for the spin nematic), spectra of collective excitations that take into account ferro-
quadrupole excitation, quadro-nematic, quadro- antiferromagnetic, and antiferro-nematic waves excitation, are also obtained. In the
case of many-sublattice magnetic systems, we have shown that the selected form of the homogeneous energy model allows us to find
possible magnetic orderings and to investigate them for stability.
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MOJEJII TAMUJIBTOHUAHA 1 HU3bKOYACTOTHI CIEKTPU KOJIEKTUBHUX 3BY/I’)KEHb
Y MATHETHUKAX 31 CIIMHOM S =1
A.B. I'nymenko, M.IO. KoBaneBcbkuii
Hayionanenuii naykosuii yenmp «Xapxiscokutl (isuxo-mexHiuHuil iHcmumym»
8yn. Akaoemiuna, 1, m Xapxis, 61108, Yxpaina

B poGoTi po3risgHyTI NMUTAaHHA OUHAMIYHOTO OIMCY HEPIBHOBOKHUX MPOLECIB B OIHOMIATPATKOBOMY Ta OaraTOMiArpaTKOBHX
MarHeTHKax 3i crmiHoM s = 1. Y pasi marseTukiB 3i criiHoM s = 1 1 SU (3) cumetpii 0OMiHHOI B3a€MOJii MarHiTHUX iHTETPANiB PyXy
BICIM: IIe CIIiH 1 KBaJpynoJbHA MAaTpHUIl. 3a HasBHOCTI KUIPKOX MiArPaTOK, YHCJIO MAarHITHUX BEJIHWYHH, IO XapaKTepHU3yIOTh CTaH
piBHOBaru, 30UIBIIyeThCS MO HIicTHAMIATH. HasBHicTh iHBapianTiB Kasummupa 103BoJIsIe 3MEHIINTH YHCIIO HE3aISKHHX CTYIICHIB
cBoOOaM. Moneni 0OMiHHOI eHeprii mpencTaBieHi B TepMiHax iHBapianTiB Kasumupa, mo Biamosizarote rpymam SO(3) ado SU(3)
CHUMETpIi, UI1 BCiX YOTHPHOX THIIB MAarHITHUX CTyMEHiB cBoOOMH. JIsi OMHOPIAHOT YacTHHM OOMIHHOI €HEpril 3HaiaeHI YMOBH
ICHyBaHHsI JIOKQJIBbHMX MIiHIMyMiB, sKi BiANOBiZalOTh PIBHOB&)XHHM 3HAYEHHAM MarHeTwka. I[lopsag 3 BIIOMHMH XBHISIMH
(KBaZpyMONBHIMHU 1 TOJNICTOYHIBCBKMMH ISl CIIHOBOIO HEMaTHKa), TaKOXXK OTPHMAaHi I1HIIOIO BHAY CHEKTPH KOJEKTUBHHX
30yKeHb, SKi OMHUCYIOTH (hepo-KBagpymoabHe 30YMKECHHS, a TaKOX KBaJApO-HEMAaTH4HI, KBaJIpo-aHTH(EpOMarHiTHI i aHTigeppo-
HeMaTW4Hi XBwii. Hamu mokasaHo, 1o y pa3si 0araTomiarpaTKOBUX MarHIiTHHX CHCTEM BHJ OJHOPITHOI MOZIETi eHeprii T03BOIIsIe
3HANUTH MOXKITMBI MarHITHI BIOPSIIKYBAaHHS 1 JOCIIIXKYBATH iX Ha CTIHKICTB.
KJIIOYOBI CJIOBA: SU(3) cumeTpist, MarHeTHK, CIliH, OOMiHHa B3aeMoIis, iHBapianT Kasumupa, ciektpu

MOJIEJIH TAMAJIbTOHUAHA 1 HI3KOYACTOTHBIE CHEKTPHI KOJUIEKTUBHBIX BO3BYKJIEHUI B
MATHETHUKAX CO CITMHOM S=1
A.B. I'nymienko, M.IO. KoBaneBckmii
Hayuonanvnulii nayunvlii yenmp «Xapoko8ckutl pu3uKo-mexHuyecKuil UHCIumym»
ya. Axademuueckas, 1, . Xapvkos, 61108, Ykpauna

B paboTe paccMOTpeHBI BONPOCH JHHAMUYECKOTO ONMCAHHS HEPABHOBECHBIX IPOLECCOB B  OJHONOJPCIICTOYHOM U
MHOTOIOAPENIETOYHOM MarHeTHkax co chnuHoM s=1. B cmywae marmernkoB co cnmaoMm s=1 m SU(3) cuMmmerpun oOMEHHOTO
B3aUMOJICHCTBUSI MAarHUTHBIX MHTETPAJIOB JBIDKEHHS BOCEMb: 3TO CIIMH M KBAJpyNojbHas MaTpuua. Ecim MMeeTcss HECKOJIBKO
MOJPENIETOK, TO YHWCIO MAarHUTHBIX BEJIMYMH, XapaKTepPH3YIOUIMX COCTOSHHE, yBEIMYMBAETCsA 10 IuecTHaauatu. Hammune
uHBapuaHToB Kaszumupa I103BOJSIET YMEHBILINTh YMCIO HE3aBUCHMBIX cTerneHed cBoOoxbl. Mogenu 0OMEHHOW 3Hepruu
IpecTaBleHbl B TepMUHax nHBapuanToB Kasumupa, orsevaronmx rpynmnam SO(3) nwiu SU(3) cuMMeTpuu, A7t BCeX YeThIPEX THUIIOB
MarHUTHBIX CTeneHed cBoOoapl. /s omHOpoaHOW yacTH OOMEHHOH >HEPrHMM HAIEHBI YCIOBHS CYIIECTBOBAHUS JIOKAJIBHBIX
MHHUMYMOB, KOTOpBIE OTBEYAIOT PABHOBECHBIM 3HAYEHWSAM MarHernka. Hapsimy ¢ n3BeCTHBIMH BONHAMHU (KBaApyIONbHAS MU
TOJIACTOYHOBCKAsl JUISl CIHMHOBOTO HEMAaTHKa), TAKKe MONTYydYeHbl MHOTO BHJA CIEKTPHI KOJUIEKTHBHBIX BO30YXKICHHUI, KOTOpHIE
OIUCHIBAIOT (heppo-KBaJAPYHOIBLHOE BO3OYKIEHHE, a TakKe KBaJpo-HeMaTHUeCKue, KBaJpo-aHTH(EpPOMAarHUTHBIE W aHTH(EPPO-
HeMaTH4eckue BOJHEL HaMu mokasaHo, 4TO B CIyd4ae MHOTOIOJPEIIETOYHBIX MArHUTHBIX CHUCTEM BBIOPAHHBIN BHJ OJHOPOIHOM
MOJIEJIH SHEPTHH MT03BOJISIET HAHTH BO3MOYKHBIE MATHUTHBIE YIOPSIOYCHYS ¥ UCCIIE0BAaTh UX HA YCTOHYMBOCTb.
KJIFOYEBBIE CJIOBA: SU(3) cumMmeTpus, MArHETHK, CIIMH, 0OOMEHHOE B3aUMOJICHCTBUE, HHBapHaHT KasuMupa, CieKTpbl

The description of collective properties of magnets with the spin of the structural element of the medium s>1/2 is
of great physical interest due to the emergence of new magnetic states and their expected practical application. The
© GlushchenkoA.V., KovalevskyM.Y., 2017
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experimental observation of the quadrupole phase [1-3] and spin nematic phase [4] gave a new impetus to the interest in
this area of magnetism. Theoretical studies of such multiparticle objects use different concepts and approaches. In the
description of the basic magnetic state, a bilinear-biquadratic Hamiltonian [5-8], which is the functional of site
sublattice spins, is widely used. In the description of magnets with the spin s=1 and SU(3) symmetry, another approach
is possible, in which the quantity in terms of which the Hamilton operator is possible, is the site generator of this
symmetry, represented in the Weyl or Racah basis [9,10]. The derivation of dynamic equations of magnets with the spin
s=1 for the single-sublattice case in the Racah basis and its relation to the bilinear-biquadratic Hamiltonian are traced in
[8,11]. In [12], dynamic equations were obtained in the Weyl basis, both for the single-sublattice and multisublattice
magnets with the spin s=1. The relationship between both bases and corresponding equations is considered in [13].

In the study of low-frequency phenomena in magnets, the idea of a spontaneous breaking of a symmetry of the
statistical equilibrium state is quite seminal [14]. Using an analogy between magnetic systems of the “easy plane” type
and superfluid liquids, an approach was proposed in [15] that made it possible to formulate equations of motion for
uniaxial magnets with spontaneous symmetry breaking with respect to spin rotations around the anisotropy axis. In the
case of multisublattice magnets with the spin s=1/2, the idea of spontaneous symmetry breaking in the
phenomenological approach was used in [16-18]. From the point of view of the symmetry phenomenological approach,
any magnetic structure of magnets with the spin s=1/2 can be characterized by no more than six degrees of freedom.
Three of them can be conveniently chosen in the form of the spin density, and the remaining three quantities have the
physical meaning of the order parameter. We note that only those degrees of freedom of the magnet, which slowly vary
in space, are essential in the dynamic description of the low-frequency case. Therefore, the use of the Landau-Lifshitz
equation in the low-frequency case for multisublattice magnets is poorly justified, since spins of sublattices are not
approximate integrals of motion due to a strong inter lattice exchange interaction. The number of macroscopic magnetic
degrees of freedom in this approach is not directly related to the number of sublattices. An essential role belongs to
symmetry considerations of the exchange interaction, the equilibrium state, and the residual symmetry of the
equilibrium state in the sense of the concept of quasi-averages. In case of magnets with the spin s=1 and SU (3)
symmetry of the exchange interaction, there are eight magnetic integrals of motion: the spin and the quadrupole matrix.
If there are multiple sublattices, the number of additional magnetic quantities characterizing the state increases. In case
of a complete symmetry breaking of the equilibrium state, their number does not exceed eight parameters. Therefore,
the total number of magnetic degrees of freedom does not exceed sixteen. Due to the complexity of the magnetic object
studied, we use the continuum approximation, in which there are no site spins.

Purpose of this paper is to describe the basic state of the magnet with spin s = 1 in the case of one or more
sublattices, as well as to study the explicit form of the exchange energy model constructed from Casimir invariants for
the Poisson bracket algebra of magnetic degrees of freedom corresponding to the SU(3) and SO(3) symmetry of the
interaction and to find the spectra of collective excitations, near the ferro-quadrupole state, quad-nematic,
antiferromagnetic and antiferro-nematic states.

DEGREES OF FREEDOM IN MAGNETS WITH THE SPIN S=1
In accordance with the approach [12], in order to construct the Hamiltonian mechanics of magnets with the spin

s=1, we introduce Hermitian 3x3 matrices b, and a, - (4= a' b= 5*) , which are canonically conjugate quantities.
This means that the following Poisson brackets are valid:

b0, ()=0, s, (=0, upl)a,(x)=—8u8y,30x-x). @

We connect these matrices with physical variables, which are required for constructing the dynamics of magnets with
the spin s=1. To this end, we introduce the Hermitian and traceless matrix

6(x)=1jp(x).400)]. @

This quantity has the physical meaning of the SU(3) symmetry generator density. Using the definition (2) and formula
(1), we find the Poisson brackets for this matrix:

i{gaﬁ(x)’ Yy (X')}: (ng (X)Sap - gap(X)SYB )5()( - X') @)
Formulas (1),(2) allow us to obtain Poisson brackets for matrices 4(x) and §(x).
i{aa[}(x)’ gyp (X,)}: (aVB (X)aocp - aup(X)SVB )6()( - X,) (4)

It is easily seen that Poisson brackets (1),(3),(4) are compatible with the Hermitian requirements of matrices é(x),
Q(x)and satisfy the Jacobi identities. We note that due to (4), the equality {Spé(x),gyp(X')}zms valid. Therefore,
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without loss of generality, in view of the linearity of the right-hand side of (4), we can assume that Spé(x) =0. Matrices
d(x) and &(x) represent the complete set of magnetic degrees of freedom of magnets with the spin s=1. We introduce

real magnetic degrees of freedom. They are the spin vector S(X) and the quadrupole matrix G(x)related to the matrix
§(x) by the relations

o =i€ayp(0yp ~ Uy ), Gup = (Oup + Opo )/ 2= Aleny ~8,/3)+ A f ~30/3). ©)
Here, q and q' are the modules of the quadrupole matrix, the vectors d, e, , f, =(dxe), form an orthonormal frame.

For vectors S, (X) due to (3), (5), the following Poisson bracket is valid:

180 (0), 8 (x)j = 8(x = x 8, (%), ©)

Similarly, we find the relations
1005(¢), G, (6 = (¢ — X5, (X e 0B + €40t + ExpBa + EreSpy )/ 4. @)

The physical state of magnets with one sublattice is characterized only by the matrix Q(x). In case of an arbitrary
number of magnetic sublattices, the physical state is described by both matrices Q(X) and é(x). We connect the matrix
é(x) with real quantities by the relation aaB(X)E maB(X)—isaBan(X)/ 2. The vector n here has the physical meaning
of the order parameter of the antiferromagnetism vector. The matrix m(x) is symmetric and traceless. This quantity is
the order parameter of the spin nematic, which we parametrize by the relation M = m(kakﬁ —8aﬁl3)+ m’(lalﬁ _Saﬁ/3)'
Here m and m’ are modules of the matrix m, vectorso,,k,,l, =(oxk), form an orthonormal frame. For order

oo

parameters, we have obtained Poisson brackets with a quadrupole matrix and a spin vector:
18 001 ()= 8(x =X e, (x), ©®)
1 00) g, (<)) = 8(x =X Neaupo My (%) + 6o (), ©)
15 (x) Mg, ()=3(x—x ')(Saypmﬁp(x) +eagpMyp (), (10)

{maB(x), Oy (x)} = 3(x —x ')ny (x)(gavyéiﬁ“ + &80y + EpuyOap + Eapdpy )/ 4. (11)

The complete set of magnetic degrees of freedom of magnets with the spin s=1 contains quantities of two types
that differ in transformational properties with respect to the time reversal operation. In transformations of the reflection
of time T, the antiferromagnet and spin vectors change signs: Tn=-n, Ts=-s. The quadrupole matrix and the order
parameter of the spin nematic do not change during at time reflection operation: Tm=rh, T§=q.

Formulas (6)-(11) allow us to identify subalgebras of Poisson brackets and establish the dynamics of magnets with
the spin s=1 for various cases of magnetic ordering. Case 1: the minimal subalgebra contains only the spin vector. The
use of the Hamiltonian formalism and Poisson brackets (6) leads to the dynamic Landau-Lifshitz theory [19] for the
spin s=1/2. Case 2: Poisson brackets (6),(7) allow us to describe the dynamics of normal states of multisublattice
magnets and states of single-sublattice magnets with the SU(3) symmetric exchange Hamiltonian. Case 3: the set of
magnetic dynamical quantities consists of the spin density s(x)and the antiferromagnet vector n(x). Poisson brackets
(6),(8) form a closed subalgebra of Poisson brackets and describe the dynamics of an antiferromagnet or ferrimagnet
[20]. Case 4: the spin vector s(x) and the tensor order parameter rﬁ(x) form a closed subalgebra of Poisson brackets
(6),(10). In this case, the Hamiltonian has the exchange SO(3) symmetry. The T-even spontaneous symmetry breaking
of the equilibrium state describes spin nematic states. Magnets with the spin s=1/2 do not possess such magnetic
ordering. The dynamics for such magnets has been studied in detail in [21]. Case 5: the set of magnetic dynamical
quantities consists of matrices Q(x) and é(x). This general case corresponds to the complete spontaneous breaking of

the SU(3) symmetry of the equilibrium state.
Casimir invariants of the Poisson bracket algebra (3) satisfy the relations {gn (X), 9.5 (X')} =0, g,= Sp@z,
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O; = Sp@3. The presence of such invariants reduces the number of independent magnetic degrees of freedom to six in

case of normal multisublattice and degenerate single-sublattice magnets with the spin s=1.
Multisublattice magnets are generally described by sixteen magnetic degrees of freedom. The Poisson bracket

algebra (6)-(11) contains Casimir invariants: a, = SpA®, a3 = Spa°®, Spda, Spga?. Therefore, the number of magnetic

independent degrees of freedom decreases to twelve. We note that quantities g, = Sp(j2 and g5 = Sp(j3 are Casimir
invariants for the Poisson bracket algebra (3). However, for the extended algebra (6)-(11), these quantities are not
invariants of this kind due to the relation {gn(x), aaB(x')};t 0. In accordance with the definition of [22], for the Poisson

bracket algebra (6)-(11), the quantities g, and g5 are called semi-Casimirs.

Exchange energy model for the normal and degenerate states
In magnets with the spin s=1, there are several possibilities for dynamic behavior with a different set of
abbreviated description parameters. The set of these parameters essentially depends on the Hamiltonian and equilibrium
state symmetries, which generally may not coincide. While choosing exchange energy models, for simplicity we

consider only cases of a uniaxial quadrupole matrix (j:q(eaeﬁ —SGBIB) and uniaxial order parameter of the spin
nematic m = m(fot fg —SQB/?}). Let us consider a single-sublattice magnet. In this case, the Hamiltonian is a density

functional of the SU(3) symmetry generator H(Q). The expression of the homogeneous part of the exchange energy
density may be presented as follows:

2 .1 2, 1,Y A, C
g, =—J,| =q°+=8° |[+B| =q*+=5° | +=s*+—s". 14
0 °(3q 2 j (30' 2 j 2 4 (14)

Here, 9, :2q2 /3+s%/2. In the energy density, the Casimir invariant g, is not sufficient to find equilibrium values

of spin modules and the quadrupole matrix. Therefore, we added half-Casimirs s? and s, which have a lower SO(3)
symmetry, to the expression (14). We believe that these terms are small, so that SU(3) symmetry properties of the
homogeneous part of the exchange energy are approximately conserved. In case of the SO(3) symmetric exchange
interaction, the energy expression transforms to the known form of the exchange energy of a magnet with the spin
s=1/2. The explicit form of the homogeneous part of the exchange energy (14) makes it possible to find equilibrium
values of magnetic parameters and regions of existence of magnetic phases.

In case of the degenerate multisublattice magnet, when choosing a homogeneous part of the exchange energy, we

confine ourselves to its dependence on the Casimir invariant a, of the extended algebra (3), (4), and also half-Casimirs:
g, of the Poisson bracket subalgebra (3); n?of the Poisson bracket subalgebra (6), (8); s? of the Poisson bracket
subalgebra (6). Thus, the homogeneous exchange energy can be represented as follows: e, =e{’(g,,a,)+e{? (sz,nz).
We assume the additional term of the e(()z) (52, nz) form to be small, so that it does not affect dynamic equations, but it
affects the stability of equilibrium states. The term e(()l) (gz,az) is SU(3) symmetric, and in case of the presence of only
the SU(3) symmetric Hamiltonian, the quantity ae(,/agz|0 =0 is in equilibrium. The inclusion of SO(3) symmetric

terms in the energy model representation makes it possible to obtain equilibrium values at e, /agz|0 # 0, which leads
to new branches of magnetic excitation the spectra.

DYNAMIC EQUATIONS AND SPECTRA OF COLLECTIVE EXCITATIONS
Relations (1),(3),(4) allow us to obtain dynamic equations and find spectra of collective excitations of degenerate
magnets with the spin s=1. To construct dynamic equations, the inhomogeneous part of the exchange energy be chosen
in the following form, according to [23]

e, =JISp(V, 4)° /2, e, = 35p(V, 6 12+ 3Sp(V, &) /2. (15)

Here, J,J are constants of the inhomogeneous exchange interaction. The first formula in (15) corresponds to a single-
sublattice magnet, and the second one corresponds to a multisublattice magnet. From here, we obtain dynamic equations
of single-sublattice magnets with the SU(3) symmetry:

9(x)=-i3[6(x). AG(x)] (16)
Stable equilibrium values of the quantities q, s are local minimum points of the function eo(q,s) (14). From the

conditions ce,/0s=0, dey/og=0 we find minimum energy point qio,sio. Then we linearize the equation (16) near
these equilibrium states and write out the spectra:
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1. The solution s, =q, =0 corresponds to a stable paramagnetic state if exchange interaction constants satisfy the

inequalities J, <0 and A—J; > 0. The spectra in this case are degenerate.
-A
+C
satisfy the inequalities: J,—A>0, B+C >0, J,C+BA<0. The spectra of collective excitations have the following

2. The solution s? = B‘O , 0, = 0 describes the ferromagnetic equilibrium state. For its stability, it is necessary to

form: o= Jk?s,, m=%Jk250 :

3J
3. The solution s, =0, qé = 4_8? characterizes the quadrupole magnetic state, the stability of which is ensured by
inequalities J, >0, A>0, B>0. We obtained the spectrum of magnetic excitations: = szq0 .
. 2 A 2 3 ‘]OC +BA . . . . .
4. The solution sy = ' qo = ZT determines the ferro-quadrupole ordering of the magnetic medium. This

solution is stable if: J,C+BA>0, A<0, B>0, C>0. The spectra of magnetic excitations are given by: §, ||&,:

Jk?,and S, L€,: m:\/q02+soz\]k2, m:%(,lq02+soz J_rqonkz.

We consider degenerate states of a multi-sublattice magnet. Using the Poisson brackets (3),(4), we find dynamic

equations:
sy o |« 086.8)] o i 4 08(6.8) s 1 8H(g.8) S
4(x)= Vkl{g,—avkg} vk{a’—avka : ax) =i 500) Ja(x) | 17)

The SU(3) symmetry of the exchange interaction energy density is considered here b, e(x)}= 0. Taking into account
formulas (3),(4), we write out dynamic equations of a degenerate magnet with the spin s=1 in the multisublattice case,

using the homogeneous energy structure e, =e$’(g,,a, )+e? (sz,nz) and the explicit form of the inhomogeneous
energy part (15):

o=Jk?sy, o=

1
CIoJ—FESO

§——iag, AG]-iT[a Ad} A= i(%e[é, 6]-i3[a Ag) (18)
2
Next, we linearize equations (18) around possible equilibrium states.

1. Quadro-nematic G, =0, M, =0. Under condition € || fo , the spectra take the form:

o=+(R - k2o 12+[R, + I [k 2a2 +43k2mZ + Rya2)i 2,

=Ry~ K)o /2[Ry + K2 k202 +43k?m? + Ryg2) 2.

Here P, =g, /agz|0. Incase & L 1?0, there are additional solutions:

0=J00k?, 0=Pok?, o=1/I(P, + K2 k.

2. Quadro-antiferromagnet §, =0, fiy = 0. In this case, the spectra of collective excitations take the form at €; || :

o=+P, + k2 Pk, o=1[P, + k2Jk2q2 + Jk2nZ + Pya2) /2 (P — k2o /2,

Incase €, Lnj:
o=ITnk?/2, 0=1320% +4n2ITk?,
0= IK2 + Fyq2Tngk, m:[,/32q§+4n§u‘ quoijIZ,

where F, = 6%e, /ag§|0. In this case, along with the quadratic spectra, we obtain the Goldstone spectra for small values

of the wave vector Kk , which were previously predicted in work [25].
a) Antiferro-nematic §, =0, &, = 0. The spectra of collective excitations have the form at 1?0 || :

o=IPy +ITk2ngk,  @=|ng +2mg|y IRy + ITkZngk

when€ Ln:
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m:\/(ng +m§X;TP0 +J5k2)x , o= \/(ng +2m2 £2,/mg +mZn2 )(jPO + J5k2)< :

where quantity nZ +2mj —2,/mg +mgng >0 for any values of m, and n; .
3. Ferro-quadromagnet §, =0, &, =0. From here we get the expression at S ||&, :

at S, L&:

m:(,lq§+s§iqo)k2J/2, o =40 +5k?J, m:(,/q§+s§J_rqo)Polz,m=,lq§+s§P0.

The comparison with the previously found spectra of collective excitations of the normal case leads to the observation
that these spectra acquire an activation nature. It is easily seen that in case Ry =0, and when g, =0 or s, =0, the

spectra of magnetic excitations become the known results of [12].

CONCLUSIONS

We have considered single-sublattice and multisublattice degenerate states of magnets with the spin s=1. We have
obtained spectra of collective excitations and proposed an explicit form of the energy model presented in terms of
Casimir invariants. For the homogeneous part of the exchange energy, we have found conditions for the existence of
local minima, which correspond to equilibrium values of the magnet.

In this paper, we have investigated a number of new magnetic states. They include the ferro-quadrupole state,
quadro-nematic, quadro-antiferromagnetic, and antiferro-nematic state of the magnetic medium. In case of degenerate
magnetic systems, the form of the homogeneous energy model affects the stability of equilibrium states and spectra of
collective excitations. In contrast to Bogolyubov’s approach [14], where model representations of the energy are not
required, the issue of choosing the density of the homogeneous energy takes one of the key values in the phenological
approach. The presence of the set of Casimir invariants makes it possible to reduce the number of degrees of freedom
and expand possibilities of the model representation of the exchange energy. The issue of finding the complete set of
functionally independent Casimir invariants for degenerate magnetic media with the spin s>1/2 remains unsolved.
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