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It is shown that the currents for the interactions of the higher spin fermions must obey the theorem on currents and fields as well as 
the theorem on continuity of current derivatives. In consequence of the theorem on continuity of current derivatives the current 
components must decrease at | p |  , where p is the momentum of the higher spin fermion. The decrease of the currents is 
ensured by the form factors. The form factor in the vertex function of the interaction of the higher spin fermion with the 0 - and 1/2 - 
spin particles is derived in agreement with the theorem on continuity of current derivatives. The proposed model of the currents is 
used for the calculations of the contributions of the higher spin nucleon resonances  *N J  ( J  is the spin of higher spin fermion) to 
the s - channel amplitudes of the elastic N -scattering. It is shown that these contributions to the amplitudes decrease at least as 

8s  at the square of the energy s  . 
KEY WORDS: Higher-spin fermions, differential equations, convergence of integrals, form factors, nucleon resonances, N -
scattering 
 

НЕСУПЕРЕЧЛИВА МОДЕЛЬ ВЗАЄМОДІЇ ВИСОКОСПІНОВИХ ФЕРМІОНІВ З ЧАСТИНКАМИ 
ІЗ СПІНОМ 0 І 1/2 ТА N -РОЗСІЮВАННЯ 

O.В. Рибачук 
Український державний університет залізничного транспорту 

Україна, Харків, м. Феєрбаха, 7 
Показано, що струми взаємодій високоспінових ферміонів повинні задовольняти теоремі про струми та поля а також 
теоремі про неперервність похідних струмів. Внаслідок тереми про неперервність похідних струмів компоненти струмів 
повинні спадати при | p |  , де p  - імпульс високоспінового ферміона. Спадання струмів забезпечується форм-
факторами. Одержано форм-фактор у вершинній функції взаємодії високоспінового ферміона з частинками зі спіном 0 та  
1/2, які узгоджуються з теоремою про неперервність похідних струмів. Запропонована модель для струмів використана для 
обчислення внесків високоспінових нуклонних резонансів  *N J  ( J  - спін високоспінового ферміона) в s  - канальні 

амплітуди пружного N -розсіювання. Показано, що ці внески в амплітуди спадають по меншій мірі як 8s  при квадраті 
енергії в с.ц.м. s  . 
КЛЮЧОВІ СЛОВА: високоспінові ферміони, диференціальні рівняння, збіжність інтегралів, форм фактори, нуклоні 
резонанси, N - розсіювання. 
 
НЕПРОТИВОРЕЧИВАЯ МОДЕЛЬ ВЗАИМОДЕЙСТВИЯ ВЫСОКОСПИНОВЫХ ФЕРМИОНОВ С ЧАСТИЦАМИ 

СО СПИНОМ 0 И ½ И N -РАССЕЯНИЕ 
Е.В. Рыбачук 

Украинский государственный университет железнодорожного транспорта 
Украина, Харьков, пл. Фейербаха, 7 

Показано, что токи взаимодействий высокоспиновых фермионов должны удовлетворять теореме о полях и токах а также 
теореме о  непрерывности производных токов. Вследствие теоремы о непрерывности производных токов компоненты токов 
должны убывать при | p |  , где p  - импульс высокоспинового фермиона. Убывание токов обеспечивается форм-
факторами. Получен форм-фактор в вершинной функции взаимодействия высокоспинового фермиона с частицами 
обладающими спином 0 и 1/2, в согласии с теоремой о непрерывности производных токов. Предложенная модель токов 
использована для вычисления вкладов высокоспиновых нуклонных резонансов  *N J  ( J -спин высокоспинового 
фермиона) в s -канальные амплитуды упругого N -рассеяния. Показано, что эти вклады в амплитуды убывают, по 

меньшей мере как 8s  при квадрате энергии в с.ц.м. s  . 
КЛЮЧЕВЫЕ СЛОВА: высокоспиновые фермионы, дифференциальные уравнения, сходимость интегралов, форм-
факторы, нуклонные резонансы, N - рассеяние. 
 

Higher – spin hadrons are investigated theoretically and experimentally more than fifty years. It is known they 
consist of the quarks and the antiquarks similarly to the nucleons and the pions. Unfortunately the soft reactions 
involving hadrons cannot be described fairly well in QCD. Therefore, models for amplitudes of hadron reactions are of 
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importance. As it is known reactions with the   - mesons and (or) the nucleons at low and intermediate energies can be 
described with reasonable accuracy in frameworks of such approaches as isobar models and dispersion relations. These 
approaches are based on the quantum field theory. The   - mesons and the nucleons are considered in these 
approaches as elementary particles. Therefore, the consideration of higher spin hadrons ( 1J  ) similarly to elementary 
particles can be assumed also. Investigations of the higher spin particles show their qualitative distinctions from low-
spin particles (i.e., the 0 – spin and the 1/2 – spin particles). For example, it can be seen from the papers [1-7] and the 
reviews [8, 9]. Calculations of cross-section for the production of higher spin hadrons (instead of low-spin particles) 
give a theoretical power energy growth of the cross-sections for higher spin particles production in comparison with a 
non-increase of the cross-sections for the low-spin particles only. In particular, if the vertexes of the higher spin hadrons 
include constants (without form factors) then HSF – resonance contributions to the s  - channel amplitudes of elastic 
reactions give power energy growth of corresponding cross sections (which are parts of total cross sections for the same 
initial states). But it is known [10] that according to experimental data the total cross-sections at high energies approach 
to some constants or increase as lns , where s  is a square of a total energy in CMS. It is a contradiction, as the part 
cannot be greater than the whole one. As a rule, a power of s  in amplitudes for the HSF contributions increases with 
J . To eliminate the energy growth of the amplitudes the interactions in initial and final states are considered [11] or the 
form factors in interaction vertexes are introduced (as a generalization of coupling constants). The form factors of 
monopole and dipole types are often used. But these form factors give diverging integrals for the contributions of HSF 
to the amplitudes corresponding to the loop diagrams. Thus, the form factors with other analytical dependences are 
needed. Besides, a strong distinction between theoretical predictions and experimental data on the cross-sections for a 
production of the higher spin fermions (HSF) exists. For example, the rule has been formulated on the basis of these 
data: the higher spin nucleon resonances are formed but not produced. It means that the higher-spin nucleon resonances 

 *N J  are well observed at their excitation in N  - and N  - interactions. But the cross-sections of the  *N J  (with 
an exception for 1232( ) ) production together with another particle are fairly small. These characteristic distinctions 
between the theoretical results for the low-spin particle interactions indicate on the necessity of a modification of the 
existing approaches to description of the higher-spin particle interactions. It may be expected that the general properties 
for the interactions of higher-spin particles of any mass must exist in the addition to the properties of the low-spin 
particle interactions. 

The contributions of the higher spin hadrons are considered at relatively high energies in the Regge pole model 
[12, 13]. It is known that particles of different spin with the same values of the electric charge, the isospin, the 
strangeness, and parities are on the trajectories, which are approximately straight on the plot of a square of a mass and 
an angular momentum. It allows predict the masses of the higher spin hadrons. The Regge pole model describes well 
the differential cross-sections of binary reactions at relatively high energies and small modules of momentum transfer. 

In consequence of the relativistic invariance the vertex functions (related to the interaction lagrangian) for higher-
spin particle interactions are the scalar product of the field tensor for the higher-spin boson (or spin-tensor for HSF) and 
corresponding current tensor (on spin-tensor). 

We use the Rarita-Schwinger formalism (e.g. see Ref. [12]). For HSF such vertex functions give the non-
homogeneous Dirac equation 

   
1 1l l

^

... ...i M U x x   
       

,         (1) 

where    
1 l

l
...U x U x    is the field spin-tensor of HSF, M  is the HSF mass,    

1 l

l
...x x     is the current 

spin-tensor, 1
2

J l  . As it is known the Klein-Gordon equation and the Dirac equation are not used immediately in 

the calculations of the amplitudes for the particles of the 0-spin and the ½-spin, respectively. In such calculations vertex 
functions and propagators are used. The propagators are the causal Green functions of these equations. Similarly to this, 
the HSF propagators in the calculations of the amplitudes correspond to the causal Green functions of the Eq. (1). 

Besides, an action of the 
^

i M
      

-operator on the homogeneous Dirac equation in (1) leads to the homogeneous 

Klein-Gordon equation, which corresponds the relativistic relation between the energy, 3-momentum, and the M mass 
of the free HSF. 

It is known that the field spin-tensor must obey next auxiliary conditions: (i) the four-dimension divergences and 
traces vanish; (ii) their convolution with   - matrices vanishes too. Usually for the current spin-tensors it is assumed 
that they obey the symmetry condition only. We name the approaches with such current as usual ones. In Refs.[14, 15] 
it is shown that the usual approaches have some shortcomings: (i) the algebraic inconsistencies of the equation systems; 
(ii) the power divergences of the loop amplitudes; (iii) the ambiguities of the vertex functions for virtual HSF; (iv) the 
contradictions to the experimental data in wide energy regions. As these shortcomings are in usual approaches to the 
interactions of any spin and mass HSF, we assume that the interaction currents must have got some general properties in 
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addition to the symmetry condition. In Refs.[16, 17] for the higher – spin bosons and in Ref. [18] for HSF have been 
shown that the interaction currents must obey two theorem: (i) theorem on currents and fields: (ii) theorem on 
continuity of current derivatives. We denote the current spin – tensors, which obey these theorems, as 

   
1 l

l
...j x j x    and name them as physical currents. Accordingly to the theorem on currents and fields the physical 

current spin-tensors must obey the same conditions as the field spin-tensors: 

   
1 1

0 0
k kl l... ...j x , p j p

       , (2) 

   
1 1

0 0
i k i kl l... ...g j x , g j p

        , (3) 

   
1 1

0 0
k kl l... ...j x , j p

       , (4) 

          coordinate representation              momentum representation  

where 1 2i,k , ,...,l . Note that, as the consequence of Esq. (2) (the current conservation), the contributions of the HSF 
propagator terms including the HSF momentum 

i
p  or 

k
p  to the products of the HSF propagator and the physical 

currents vanish. Thus, the current conservation (2) allows to avoid (Refs. [14-20]) one source of the power divergences 
which exists in usual approach. In Refs [21, 22] the model for the interaction of the higher – spin boson with two 
spinless particles, which obeys the theorem on currents and fields as well as the theorem on continuity of current 
derivatives has been proposed. Using this model in Ref. [15] it is shown that the contribution of the virtual higher – spin 
boson and spinless particle to self – energy operator for spinless particle gives finite result in one – loop approximation, 
whereas usual approaches give for this operator the power divergences. Note that, as it is known, the 3  - theory 
gives the logarithmic divergence for the self – energy operator in one-loop approximation. 

In paper [14] the model for HSF interaction with the 0 – and 1
2

 - spin particles is proposed. This model obeys the 

theorem on currents and fields. The consequences of this theorem can be tested in N  - scattering. The model [14] and 
usual approaches give different sets of the partial amplitudes corresponding to the off – mass- shell 1232( ) . In the 
model [14] the off – mass- shell 1232( )  contributes to the 33P  - and 33D  amplitudes only, whereas in usual 
approaches 1232( )  contributes to 31 31 33S , P , P ,   and 33D - amplitudes. In the usual approach the off – mass-shell 

1232( )  gives the most contribution to the 31S  - amplitude.  
According to the partial wave analyses the energy dependence of the 31S  - amplitude agrees better with the zero 

contribution of 1232( ) . Thus, we may conclude that theorem on currents and fields is valid. 
The present paper is devoted to modification of existing approaches (usual approaches) to eliminate their 

shortcomings. We try to achieve a mathematical correctness and do not use any experimental data. In Refs [14, 15, 21] 
it is shown that the divergences in usual approaches related to the higher spin particle propagators can be avoided by 
means of the theorem on currents and fields. The divergences in usual approaches related to the vertex functions 
possibly can be avoided by means of the theorem on continuity of current derivatives. In present paper the model for 
simplest interactions of HSF is proposed. We study the validity of the theorem on continuity of current derivatives [18] 
and apply the derived currents to investigate the contributions of the HSF resonances  *N J  to the s -channel 
amplitudes of N -scattering at high energies. This paper is the continuation of [14]. 

 
THEOREM ON CONTINUITY OF CURRENT DERIVATIVES 

The physical current in the momentum representation    
1 l

l
...j x j x     has been derived in Ref. [18] by means 

of the projection operator    
1 1l l

l
... , ... ,p p       . We use the modification of the projection operator from Refs. 

[23, 24] proposed in Refs. [18, 19] 

       2 ll l l
,j p p p p    .       (5) 

The currents  lj x   are the Fourier transformations of  lj p  . We consider the HSF moving along the z - axis, 

 0 30 0p p , , , p . Then the current is given by 

     0 0 3 3
0 3 0 3 0 3

l li p x p xj x ,x dp dp e j p , p 

 


 

   .    (6) 
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The integrals (6) are the improper integrals depending on parameters 0x , 3x . These integrals must converge at 

arbitrary 0x , 3x . However, the current spin-tensors  0 3
lj x ,x   have the partial derivatives of some degree (e. g. in the 

differential equations for the HSF interactions). In this case the integrals with the integrands including the products of 

 lj p   and some number of the p- components have to converge in addition also. If we shall demand that  lj x   and 

their partial derivatives are continuous functions in the space-time then the convergence of these integrals must be 

uniform. Thus, the existence of the  lj x   and their partial derivatives leads to the asymptotic decreasing of 

 
1 m

lj p p ...p   with 0p , 3p . Using the Weierstrass test for uniform convergence of integrals for  lJ x   and their 

partial derivatives we conclude that the next integrals have to converge: 

  30
0 3 0 3 0 3

l m mdp dp j p , p p p

 

 

  ,       (7) 

where 0m  and 3m  are non-negative integer numbers,  0 3m m m j  . The integer number  m j  is determined by the 
maximal degree of the partial derivatives. 

In Ref. [18]  m j  has been derived from the differential equations for the HSF interactions. Indeed to derive the 

consistent equations system including the physical currents  lj x   we act on the equation in system (1) by the operator 

   l l
,x   . Then using (5) and the properties of the projection operator we derive 

     
^l l li M U x j x 

       
.        (8) 

From the theory for the system of the linear differential equations it is known that we can derive the set of the non-
homogeneous linear differential equations with the same left sides for each unknown function. But the maximal degree 
of the derivatives in each such equation is more than the degree in the system. In particular for the system of the 
ordinary differential equations the degree of each equation in the set for each unknown function equals to the sum of the 
degrees of all the differential equations in the system. But for the system of partial differential equations such results is 
not valid [25]. It can be seen on the example for the system of the Dirac equations, where the equations in the system 
have first degree, but the equations in the set (the non-homogeneous Klein-Gordon equations) have second degree. As 
second example we consider the telegraph equations, (equations for the current strength  I x,t  and the voltage  U x,t ). 
These differential equations can be writed as the system 

0

0

U URI L ,
x t
I UGU C ,
x t

 
  

 
 

  
 

          (9) 

where R,L,G,C  are constants. This is the system of homogeneous partial differential linear equations of the first 
degree. But from (9) the set of two differential equations can be derived: 

2 2

2 2
1U R G U R G UU

L C t L C LCt x
             

,       (10) 

2 2

2 2
1I R G I R G II

L C t L C LCt x
             

.       (11) 

We see that the Esq. (10), (11) have the same form. But these equations have got the second degree, i.e. the degree 
of the equation for each unknown functions increases in comparison with the degree of equations in the system (9). To 
derive the set of equations for each 2 1J   unknown functions (the analog of the set (10), (11)) the action of the - 

^
i M
      

 operator on the system (8) has been considered in Ref. [18]: 

       2
^l l lM U x i M j x  

        
.       (12) 

It is the set of the differential equations for the HSF interactions and it is similar to the non-homogeneous Klein-

Gordon equation for the 1
2

-spin particles. The set (12) includes the first derivatives of  lj x  . The set of the differential 
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equations for 2 1J   independent components of  lU x   (the analog of set (10), (11)) cannot be derived as components 

of  lj p   obey the conditions (2)-(4). In consequence of these conditions (and the similar conditions for  lU x  ) the 

physical independent functions are implicit functions for 1J  . For the components corresponding to J   we have 

more than one equation. (e. g. at 1 0J ,    we have different equations for  0U x ,  3U x ). These differential 
equations for the state with 1 0J ,    can be reduced to one equation if we shall differentiate these equations with 
respect to different variables (for 1 0J ,    the equation for  0U x  we must differentiate with respect to 3x  and 

equation for  3U x  with respect to 0x ). Thus, we must differentiate to derive the 2 1J   independent functions (the 
states with definite J ,  ). In consequence of this differentiation, the largest degree of the continuous derivatives for 

 lJ x   has to equal two [18]. Therefore, in Ref.[5] it is derived   2m j  . 

Now we take into account the difference between the requirements for the functions of one and two variables 
which can be expanded in the Fourier series or the Fourier transformation. It is known that the functions of one variable 
with the finite number of the ordinary discontinuities on any finite interval (e.g. if the function obey the Dirichlet 
conditions) can be expanded in the Fourier series. Note that the function for the Fourier integral must be absolutely 
integrated in addition. For such function the Fourier series and integral converges to the magnitudes of this function in 
the points of its continuity. But the double Fourier series converges to the magnitude of the function of two variables in 
the point if this function is continuous and have continuous derivatives of the first degree and the mixed derivative of 
the second degree [26]. We assume that such absolutely integrable functions can be expanded in the Fourier integral. 
The magnitude of  m j  must be increased to 4. 

The currents (5) include bispinors with the 10 Np m - or 20 Np m - factor. These factors behave as 2op /  

at 0p  . Therefore, to take into account these factors we put   5m j  . 

For the common currents  lp   we can write the Fourier integral similarly to Eq.(6). In the same way we can 

write the condition for the common spin-tensor  lp   (similar to Eq. (7)). The integrals  

  0 3
0 3 0 3

m mldp dp p p p
 

 
  ,        (13) 

where     0 32m m j l m m     , must converge.  

Thus, we conclude that the numbers  m j  and  m   depend on the degree of the continuous partial derivatives 
for the HSF currents and fields.  

As result we formulate the theorem on continuity of current derivatives (which can be named as theorem on 
current asymptotics): 

If the  lj x   physical current has the continuous partial derivatives of the  m j  degree then their Fourier – 

components  lj p   must decrease at p   to provide the convergence of the integrals (7) in all the kinematic 

regions. 

In consequence of the theorem on continuity of current derivatives the Fourier– components of the  lj p   

physical currents and the  lp   usual currents which are the rational fractions must decrease as     3w jlj p p
   

and     2 3w j llp p     at p  , respectively. 

Note that the theorem on continuity of current derivatives is the consequence of the relation between the 
convergence of the integrals depending on the parameters ( 0x  and 3x ) and the continuity of this integrals as well as 
their derivatives with respect to these parameters. In Ref. [21] the example of such relation is considered for the 

   4 4x cos px dp / p a




   function. 

The important sense of the theorem on continuity of current derivatives is related to the convergence of the 
integrals (7), (13) at infinite 0p , 3p .(improper integrals of the first kind) as well as at finite 0p , 3p  (improper integrals 
of the second kind). 
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FORM FACTORS FOR INTERACTION OF HSF WITH 0-AND 1/2-SPIN PARTICLES 

Let us consider the physical current of      2 2
1
2

J p p o q   - transition of Ref. [14] 

    
1

2
l

l
l l...j p,q g F p,q p   .        (14) 

     
11 1

2 2
5

1
ll l... , ...q u p p q ...q ,

i     


        
 

where 2 2q q p  . The usual current corresponding to Eq. (14) may be written as 

       
11

2 2
5

1
ll

l l...p,q g F p,q q u p q ...q
i    


         
.     (15) 

In Refs [21, 22] the form factor for the interaction of the higher – spin boson with two spinless particles has been 
derived 

   
 

2

1 1 2

122
12 4 42

22

n
'

n n n
'

pq
f p,q pq a p b

q




                      

,    (16) 

where a  and b  are some positive constants, 1n  and 2n  are some natural numbers (integer positive). 
The function (16) permits one to satisfy the theorem on continuity of current derivatives for the interaction of the 

higher spin boson with two spinless particles. However, the application of this function to the  *N J N  - 
transitions leads to the contradiction with the results of the partial wave analyses. This contradiction is due to vanishing 
of  f p,q  (16) at 2 0q  , which corresponds to 0 1341W MeV .  2 2 2

0 2 NW m m  , where Nm  and m  is the 

nucleon and the pion mass, respectively. Therefore, the real and the imaginary parts of the partial amplitudes 
corresponding to the  *N J  contributions with the vertex functions including  f p,q  (16) must vanish. But it is well 

known that the partial resonance amplitudes, in particular for  1232  - excitation, in N  - scattering, do not equal 
zero at 0W W . It is possible that this contradiction can be eliminated by means of some modification of the function 

(16). We can consider for  F p,q  in Eqs. (14), (15) the product  f p,q  (16) and the    2 3 3
2 4 42 n n nq cq c

     
 

factor, where c  is the positive constant, 3n  is the natural number. But this  f p,q  form factor gives fairly complicated 
s  - dependence of the resonance excitation amplitudes in the N  - scattering. Therefore, it is of interest to derive 
another form factor with more simple 2p  - dependence. 

Let us consider the non-negative continuous function  lf p,q  for which the integrals 

  0 3

0 3 0 3 0 3
m m

m m lJ dp dp f p,q p p
 

 

          (17) 

converge  0 3 0 1 2 2 5m m , , ,..., l   . Then the physical currents (14) with any form factor  lF p,q  for which 

 
 2 2

0 3

0l

p p l

F p,q
lim C, C

f p,q 
   ,        (18) 

obey the theorem on currents and fields as well as the theorem on continuity of current derivatives. Therefore, in further 
we shall consider the  lf p,q  function. 

To study the convergence of the integrals (17) we use the method of Refs. [21, 22]. The scalar function  lf p,q
 

depends on the invariant variables  2 2p , p,q ,q . We put the 2 2q q p   fixed. Then  lf p,q  depends on two 

invariant variables: 2p  and  p,q . We shall use next statements. 

Statement 1. If for the non-negative continuous function  g p,q  and the  lf p,q  function 

 
 2 2

0 3

1
p p l

g p,q
lim

f p,q 
 ,         (19) 

and the integrals 
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  0 3
0 3 0 3 0 3

m m
m ,mJ dp dp g p,q p p

 

 

        (20) 

converge, then the integrals 
0 3m mJ  (17) converge too. 

Statement 2. If the integral 
0 31m ,mJ   or 

0 3 1m ,mJ   converges then the integral 
0 3m mJ  converges too. 

As the integrand in (17) includes the modulus of 0p  and 3p , 
0 3m mJ  is not relativistic covariant at arbitrary 

numbers 0m  and 3m  [21]. However, these integrals can be expressed in terms of relativistic covariants at even 0m , 3m  

and they depend on 2q . We denote the minimal even number, which equal or is bigger than 5, as 1m  (i.e., 

1 2 6m l  ). 
Let us consider the function  

       21 3 32

1 122 2 442 nn n nn
lf p,q pq p a pq b

            
,      (21) 

where a  and b  are positive constants, 1 2n ,n ,  and 3n  the natural numbers. 

At 2 0q   we can choose the system with 0 0q   and
2 22

3q q q 


. Then we have for even 0m  and 3m  

 
 

 
1 3

1

0 3 03 3

2
2 3 3

0 33 2 4
3 3

0 2
n m

n
m m mn n

p dp
J q q I p

p q b

 



  
 ,     (22) 

where 

 
 

0

0 2
2

00
3 2 42 2

0 0 3

m

m n n

p dp
I p

p p a




 

 .        (23) 

Similarly to the Statement 2 we conclude that integral  
0 3mI p  converges if the integral  

0 1 3mI p  converges. We 
have  

 
 

   
0 00

0 2 2 2 2 22 2
3

2 22 222 3 300
1 3 2 2 4 2 442 2

0 0 3

1 1 1
2 2 2

m mm

m n n n n nn
p

x p dx x p dxp dp
I p ,

x a x ap p a

  





 
  

  
      (24) 

where 2 2 2
0 3x p p p   . For last integral we derive 

 
   

 
 

   

0 0

0

2 2 2 2

0

0

2

2 2 2 03 2 2
32 4 2 4

0 0

22 0
3

2 122 0

3

1 1 1 2
2

11 12 14
2

m m
m kkk

n n n n
k

m
m k

k
n k

k

mx p x dxdx p
x a x ak

m p
kn ak sin
n




 






 


                  

              

 


,    (25) 

as 
 2 12 2 2 1

0

1
12

2

m

n n n m
z dz

mz a na sin
n






  
 ,         (26) 

where m  and n  are natural numbers  2 2m n  . The integrals (25) converge for 

1 1
2 22 2 1

2 4max max
m mk , n k , n     . Thus, we have 

2

2

5
2

3
2

ln for odd l

ln for even l




 
         (27) 

After substitution of the integral (25) in double integral (22) we derive 
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   
 

   

0 02
1 3

1
0 3 3 3

2 12 202 23 32
1 0 3 2 42 0 3 3

2

0 1 12
4 1

2

m mn k n m k
k n

m ,m n n
k

m a p dp
J q q .

n p q bsin kk
n




      


 

                  
    (28) 

In last integral with respect to 3p   the most increasing integrand at 3p   corresponds to 0k   and the maximal 
value of the natural number 3 0 2 6m m l   . Therefore, if the integrals (28) converge for 0k   and 3 1m m  then 
all the integrals  

0 3 0 0m mJ q   (22) converge at 3 0q   and at 0 3 10 m , m m  . To consider the case of 0 3 0q q   

(i.e., for   2
1 20 0 0q ,q ,q , , q  ) we introduce new variable of integration in (28) 3 3y p q p q   . Then the integrals 

in (28) for 0k   and 3 1m m  may be written as 

 

1 1 1 1
1 1

3 3 33

2 2
2 3 1

3 33 2 2 44
3 3 0

2
n m n m

n m
n n nn

p yq dp q dy
y bp q b

  
 




   .    (29) 

This integrals do not exist for 3 0q  . But for natural 1n  the function  lf p,q  (22) equals to zero. Thus, we can put 

 
0 3 0 3 0 0m mJ q q    at 1 1n  . In the case 1 1n   we have the restriction for 3n  from the convergence of the 

integrals in (28) 

3 5n l           (30) 

Using the statement 2 we conclude that the integrals 
0 3m mJ  converge for any allowed 0m  and 3m   0 3 10 m , m m   at 

2 0q  . 

Now we consider the integrals 
0 3m mJ  at 2 2 2 2

0 1 3 0q q q q    . We can choice the frame with 3 0q   at even 

numbers 0m  and 3m . Then the integrals (17) are given by 

 
   

1 0 3
1

0 3 3 23 2

2
2 0 3 32

3 0 2 24 42 2
0 0 3 0

0 0
n m m

n
m m n nn n

p p dp
J q ,q q

p q b p p a

 

 

   
  

  .   (31) 

If we change 0 3 0 3p p ,m m   then the integrals (31) become equal to the integrals (22), (23). For 2 0q   we can 

consider the limit of (31) at 2 2 2
0 1 2q q q  . Thus, the (14) with    l lF p,q f p,q  (21) obey the theorem on 

continuity of current derivatives at 1 1n   and the requirements (27), (30) for natural numbers 2 3n ,n . 
 

CONSEQUENCES OF THEOREM ON CONTINUITY OF CURRENT DERIVANIVES FOR  *N J  
CONTRIBUTION TO N  - SCATTERING AT HIGH ENERGY 

Let us at first study the energy dependence of  lf p,q  for  *N J N  - transitions when the nucleon and the 
pion are on its mass shells. This form factor can be used in the s and u channel amplitudes of the N  - scattering. 
For the s channel 2 2

1 1 2 2p p q p q , p s W ,       2 2q q p ,  2 2
Np q m m   , where  1 2p p  and 

 1 2q q  are the 4- momentum of the initial (final) nucleon and the pion, respectively. For the form factor  
l

f p,q  (21) 
we can write in this case 

   2 22 4n n
lf p,q A / s d .          (32) 

The A  constant is equal to  1 1n   

 
  3

3

22 2

2 42 2

N
n n

N

m m
A

m m b








 
.        (33) 

For u  channel we have 2
1 2 2 1p p q p q , p u,      2 1q p q ,   2 2

Nq.p m m   and 
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   2 22 4
l

n nf p,q A / u a  ,         (34) 

where A  is given by Eq. (33). 
In particular for the  1232 N    transition we have from (32) 

   12 12
l

f p,q A / p a  .       (35) 

In the c.m.s. for N  - scattering is s  channel the HSF momentum  0 0 0p W , , ,  and 

 2 2 2 2 22N Np q m m ,q m m s       . Then the integral (17) is proportional to 

   0 3
0 3 3 0 3 3

m m
m m lJ ~ dp dp f p,q p p p

 

 
  .     (36) 

The integral (36) vanishes at 3 0m  . Therefore, we put 3 0m  , 0 0 1 2m , ,..., l m( j )  . As consequence of the 
Statement 2 the integrals (36) converge at 0 1m m  if the integrals (36) converge at 0 1 2 5m m l   . Thus, the 
convergence 

1 0mJ  in (36) is related to the convergence of the integrals: 

1 2 2

3 6

0 4 4
0

l

m n n
W dWJ ~ A

W a

 

 ,         (37) 

as 2q W /


 at W  . This integral converges at 24 3 8n l ,   i.e.: 

2
3 2
4

n l .            (38) 

Let compare the restrictions (27) and (38) for some l . From (27) next minimal magnitudes of 2n  can be derived 

2 3 4 5 5 5n , , , ,  for 1 2 3 4 5l , , , , ,  respectively. Similar magnitudes derived from (38) are; 2 3 4 5 5 6n , , , ,  for 
1 2 3 4 5l , , , , ,  respectively. We see that the restrictions (27) and (38) give the same minimal magnitudes for 

1 2 3 4l , , , , i.e., for the 3 5 7 9
2 2 2 2

J , , , , respectively. For 5l   the restriction (38) gives bigger magnitude. Thus, the 

restriction (38) can provide the convergence of the integrals (17) in the kinematics with fixed q as well as the 
kinematics of HSF-resonance at the rest. Therefore, the restriction (38) ought to be used in the form factor (21). 

Now we consider the contributions of the HSF –resonances  *N J  to the s  channel amplitudes of the N  - 

scattering in our approach. According to Eqs. (23), (24), (31) of Ref. [14] the product of the  *N J  propagator and two 
physical currents may be written as 

      

     


   

222 2
2

2 1 2 12 2

l*
l

'

T N N J N g f p,q p

p M
q q u p p,q ,q u p ,

p M iM

 

  




     



 

     (39) 

where lg  is the  *NN J  coupling constant,  'p,q ,q  is the contracted projection operator. The product 

 


     2 1 2 12 2
p M

u p u p q q
p M iM

 




 
 approaches to some constant at s  . Accordingly to Eq. (15) of 

Ref. [14] the contracted projection operator in the rest frame of  *N J  is given by  

   
   

2 2 1
11 2

1

4
2 1

l l' ' '
l l

q ql !p,q ,q q P z P z ,
l !! q

 
 

 
   
    

      (40) 

where z cos , and   is the scattering angle,  1 22 2
'

lq q q q ; P z    is the Legendre polynomial. The 
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contracted projection operator behaves as   2
1 4

l' l lp,q ,q ~ q s /   at s  . Therefore, we obtain 

     2 2* l
lT N N J N ~ f p,q s       . Using the energy dependences (32) of the function  lf p,q  we derive  

  
2

3

4

l
*

n
sT N N J N ~

s
   ,        (41) 

where integer number 2n  obey the restriction (38). Then the energy dependence of the  *N J  - contributions to the 
N  - scattering amplitudes is given by 

   1
8

* С
T N N J N

s
    ,        (42) 

where 1C  is constant. Thus, in consequence of the theorem on continuity of current derivatives the contributions of 

 *N J  to the N  - scattering amplitudes in s - channel for arbitrary 1
2

J   decrease at least as 81 / s  at s  . 

Compare the restrictions (42) with the result of the quark counting rule [29, 30]. According to this rule the amplitude of 
the elastic pion-nucleon scattering has to behave as 81 / s . Two distinctions are between the restrictions (42) and the 
result of the quark counting rule. The quark counting rules correspond to a lot of different contributions and are valid 
for hard processes (i.e., for great s  and 2

1 2, ( )t t p p  ). The restrictions (42) correspond to the contribution of one 

 *N J -resonance and valid for arbitrary scattering angle. Thus the restrictions (42) do not contradict to the results of 
quark counting rules. 
 

CONCLUSION 
From Ref.[14] we see that the HSF interaction models which contradict to the theorem on currents and fields are 

not consistent. It is due to the inconsistency of the linear algebraic equation system for the Fourier components of the 
field spin-tensors. Note that the theorem on currents and fields allows simultaneously to derive the scale dimension of 
the HSF propagator equal to -1 for any half-integer spin value HJF and to eliminate the ambiguities in the vertex 
functions of HSF interactions. In addition to this condition of the consistency the continuity of the current components 
and their partial derivatives in the space-time up to some degree may be considered as the condition of the consistency. 
Indeed if the current components or their partial derivatives have discontinuities (points or lines) we must indicate a 
fashion or a direction of an approaching to this discontinuity in the space-time. The model with discontinuities of the 
current components is inconsistent without such information on the fashion of approaching to these discontinuities. 

It is known that amplitudes and cross-sections of reactions are expressed in terms of the interaction current 
components. As the current components in the space-time are the Fourier-transformations (i.e., the integrals depending 
on parameters) their discontinuities are related to weak decrease of the current components in the momentum 
representation at p   (i.e., Fourier-components of currents can be diverging intergrals). But from the 
experimental data we can see that the cross-sections of the reactions involving the higher spin particles are 
approximately equal to (or less than) the cross-sections of the reactions involving the particles of the lower spin (0 and 
1/2) only at high energies. Thus, we may conclude that the current components and their partial derivatives must be 
continuous in the space-time, i.e., the theorem on continuity of current derivatives is valid. 

The calculations of the contributions of the higher spin nucleon resonances  *N J  to the amplitudes of the elastic 

N -scattering in the framework of the model for the  *NN J  vertex (which obeys the theorem on currents and 
fields as well as the theorem on continuity of current derivatives) show that these contributions must decrease at least as 

8s   at s  . We see that the theorems on continuity of current derivatives guarantee the small contributions of 
 *N J  to the amplitudes of the elastic N  -scattering at high energy, but formally these contributions are non-zero. 

Such behavior of the  *N J -contributions to amplitudes agrees with the experimental data. 

There are two different predictions for the contributions of  *N J -resonances to the partial amplitudes of the 

N -scattering at high energies: 1) usual isobar models give the power energy growth; 2) The approach of present 
paper gives the energy decrease. According to the partial wave analyses of the N -scattering [27, 28] the partial 
amplitudes behave approximately as some constants at W   2 GeV. These amplitudes correspond to sums of different 
contributions, in particular to some  *N J -resonances. Therefore it can be concluded that the contributions of the 
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resonances 33 (1232)P  ( (1232) ), the 13 (1520)D , the 15 (1680)F , and the 33 (1700)D  to the corresponding partial 
amplitudes decrease at high energies in reality. It can be considered as confirmation of the predictions of present model. 

The interactions like to   1 0
2

*N J N J
      

 are simplest, as they are determined by one partial amplitude. 

But the transitions with several partial amplitudes exist also (such as 

      01 11 2
2 2

* * *N J N ,N J N J ,N J Nf J , 
                  

   3 0
2

*N J J
      

 with two higher-

spin particles and     3 1
2

* *N J ,N J J 
       

 with three higher-spin particles). In these transitions the 

theorem on currents and fields as well as the theorem on continuity of current derivatives must be valid for each partial 
amplitude and for each higher spin particle. The validity of the theorem on continuity of current derivatives can be 
provided by the products of the form factors for each higher spin particles. As example, we can consider the form 
factors like to (16) for the higher spin bosons and the form factors like to (21) for HSF with own parameters (such as 

1 2 3, , , ,a b n n n ). We can expect that the high-energy decrease of the amplitudes for the higher spin particle interactions 
enlarges with the number of the higher spin particles involved in the transition and the reaction. Possibly this rule 
explains the experimental fact formulated as: the higher spin resonances are formed but are not produced in the N  -
interaction. 

In relations with this rule and the restrictions (42) it is of interest to compare them with the dual models [12]. In 
dual models it is stated that the reaction amplitude at arbitrary energy can be presented as the sums of infinity quantity 
of resonances or Regge poles. In dual models the presentation of the amplitude by the sum of resonances in 
intermediate energies and Regge poles at higher energies is considered as wrong. The restrictions similar to (42) show 
that contributions of the HSF-resonances at higher energies are small but they do not equal zero. From quark models 
with constituent quarks and Regge pole model the increase of a resonance quantity with energy can be expected. 
Therefore it can be assumed that in reality the total contribution of all the resonances to amplitude has got non-zero 
value at higher energies. 
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