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It is shown that the currents for the interactions of the higher spin fermions must obey the theorem on currents and fields as well as
the theorem on continuity of current derivatives. In consequence of the theorem on continuity of current derivatives the current

components must decrease at | p, |— 00, where p is the momentum of the higher spin fermion. The decrease of the currents is

ensured by the form factors. The form factor in the vertex function of the interaction of the higher spin fermion with the 0 - and 1/2 -
spin particles is derived in agreement with the theorem on continuity of current derivatives. The proposed model of the currents is

used for the calculations of the contributions of the higher spin nucleon resonances N : (J ) (J 1is the spin of higher spin fermion) to
the s - channel amplitudes of the elastic 7 N -scattering. It is shown that these contributions to the amplitudes decrease at least as

s~% atthe square of the energy s — 00 .
KEY WORDS: Higher-spin fermions, differential equations, convergence of integrals, form factors, nucleon resonances, 7N -
scattering

HECYNIEPEUJIMBA MOJIEJIb B3AEMO/IIi BACOKOCIITHOBAX ®EPMIOHIB 3 YACTUHKAMUA
I3 CHIIHOM 01 1/2 TA 7 N -PO3CIIOBAHHSA
O.B. Pu6auyk
Vxpaincoruii deporcagnuii ynisepcumem 3ani3HUMHO20 MPAHCNOpmy
VYxpaina, Xapxis, m. @ecpbaxa, 7
IMokazaHo, 11O CTPyMM B3a€MOJIii BHCOKOCIIHOBHMX ()EpPMiOHIB NOBHHHI 3a[0BOJBHATH TEOPEMI IPO CTPYMH Ta IOJISA a TaKOXK
TeopeMi PO HENEepPEepBHICTb MOXIAHUX CTPYyMiB. BHaciminok TepeMu Hpo HENepepBHICTh MOXIJHUX CTPYMiB KOMIIOHEHTH CTPYMiB
IOBHMHHI CIajaTd OpH | p, [ = 00, ne p - iMmyisc BrcokocminoBoro ¢epmiona. CramaHms cTpyMiB 3afesrmedyerbes Gopm-
¢daxropamu. Onepkano GpopM-hakTop y BepIMHHIN (HyHKIIT B3aeMozii BUCOKOCIIHOBOTO (epMioHa 3 YacTHHKaMu 3i cmiHoM 0 Ta
1/2, siKi y3roIDKYIOTBCS 3 TEOPEMOIO PO HENEPEPBHICTH MOXIIHUX CTPYMiB. 3alIPONOHOBAHA MOJEIIb JUIS CTPYMiB BUKOPHCTaHa JUIs

. . . * . . . .
O0YHUCIICHHST BHECKIB BHCOKOCIIIHOBUX HYKJIOHHUX PE30OHAHCIB N (J ) (J - cniH BHCOKOCIIHOBOrO (hepMmioHa) B S - KaHaJIbHI

ammitym npyxkuoro 77N -poscitosanms. TTokasaHo, 110 1i BHECKH B aMILTITY/IU CIIAJAI0Th TI0 MEHIIiH Mipi 1K st IIpH KBaJIpari
€HEeprii B C.ILM. § — 00 .

KJIFOYOBI CJIOBA: BucokocniHoBi (epmioHH, qudepeHuianbHi piBHAHHS, 301KHICTB iHTErpais, GopM (aKTopH, HYKJIOHI
pe3oHaHcu, 77N - po3citoBaHHS.

HENPOTHUBOPEYHBAS MOJEJIb B3AUMOIEACTBUS BICOKOCIIMHOBBIX ®EPMHOHOB C YACTHIIAMMA
CO ClTIMHOM 01 2" 7 N -PACCESAHUE
E.B. Pui6auyk
Yxpaunckuii 2ocyoapcmeennuiil ynugepcumem jHcenesnHo00poNCHO20 MpaHchopma
Yxpauna, Xapvros, nn. @eiiepbaxa, 7
IMoxa3zaHo, YTO TOKM B3aMMOJCHCTBHI BBICOKOCIIMHOBBIX ()EPMHOHOB JIOJDKHBI YHOBJIETBOPSTH TEOPEME O MOJNAX M TOKAX a TaKKe
TEopeMe O HEeNpPEPHIBHOCTH IPOM3BOHBIX TOKOB. BeileicTBe TeopeMbl 0 HENPEPbIBHOCTH POM3BOAHBIX TOKOB KOMIIOHEHTHI TOKOB
JOJDKHBI YOBIBATh TIPU | p,, |— 0O, Ile p - HMIYIbC BBICOKOCIIHHOBOrO (pepMHOHA. YObIBaHHE TOKOB ObecriednBacTcst (popm-
¢daxropamu. Ilomyden ¢opm-pakrop B BEpIIMHHOW (DYHKIMHM B3aHMMOJCHCTBUS BBICOKOCIIMHOBOIO (DepMHOHA C 4YacTHLAMHU
obnanarommmu crimHoM 0 u 1/2, B coriacuu ¢ T€OpeMOi O HENPepbIBHOCTH HPOM3BOAHBIX TOKOB. IIpessioxkeHHast MOJeb TOKOB

*
HCIIOJIb30BaHa [UISI BBIYMCIICHUS BKIIAJO0B BBICOKOCIIMHOBBIX HYKJIOHHBIX PE30HAHCOB N (J) (.]-CHI/IH BBICOKOCITMHOBOI'O

(depMuoHa) B S -KaHaJbHBIE aMIUIUTYbl ynpyroro 7N -paccesHus. IToka3aHo, 4TO 3TH BKJIaJbl B aMIUIMTYIbl YOBIBAIOT, IO

o -8
MEHbIIEH MepE KaK § ~ IPH KBaJpaTe SHEPIUH B C.ILM. § — OO .
KJIIOYEBBIE CJIOBA: BbICOKOCIMHOBBIE (EepMHOHBI, MU PepeHIalbHble YPABHEHHS, CXOIMMOCTb WHTErpasioB, (opm-
(bakTOpBI, HyKJIOHHbIE PE30HAHCHI, 77 N - paccesHue.

Higher — spin hadrons are investigated theoretically and experimentally more than fifty years. It is known they
consist of the quarks and the antiquarks similarly to the nucleons and the pions. Unfortunately the soft reactions
involving hadrons cannot be described fairly well in QCD. Therefore, models for amplitudes of hadron reactions are of
©Rybachuk E.V.,2016
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importance. As it is known reactions with the 77 - mesons and (or) the nucleons at low and intermediate energies can be
described with reasonable accuracy in frameworks of such approaches as isobar models and dispersion relations. These
approaches are based on the quantum field theory. The 77 - mesons and the nucleons are considered in these
approaches as elementary particles. Therefore, the consideration of higher spin hadrons (J > 1) similarly to elementary
particles can be assumed also. Investigations of the higher spin particles show their qualitative distinctions from low-
spin particles (i.e., the 0 — spin and the 1/2 — spin particles). For example, it can be seen from the papers [1-7] and the
reviews [8, 9]. Calculations of cross-section for the production of higher spin hadrons (instead of low-spin particles)
give a theoretical power energy growth of the cross-sections for higher spin particles production in comparison with a
non-increase of the cross-sections for the low-spin particles only. In particular, if the vertexes of the higher spin hadrons
include constants (without form factors) then HSF — resonance contributions to the § - channel amplitudes of elastic
reactions give power energy growth of corresponding cross sections (which are parts of total cross sections for the same
initial states). But it is known [10] that according to experimental data the total cross-sections at high energies approach
to some constants or increase as Ins , where § is a square of a total energy in CMS. It is a contradiction, as the part
cannot be greater than the whole one. As a rule, a power of § in amplitudes for the HSF contributions increases with

J . To eliminate the energy growth of the amplitudes the interactions in initial and final states are considered [11] or the
form factors in interaction vertexes are introduced (as a generalization of coupling constants). The form factors of
monopole and dipole types are often used. But these form factors give diverging integrals for the contributions of HSF
to the amplitudes corresponding to the loop diagrams. Thus, the form factors with other analytical dependences are
needed. Besides, a strong distinction between theoretical predictions and experimental data on the cross-sections for a
production of the higher spin fermions (HSF) exists. For example, the rule has been formulated on the basis of these
data: the higher spin nucleon resonances are formed but not produced. It means that the higher-spin nucleon resonances

N (J) are well observed at their excitation in 7N -and yN - interactions. But the cross-sections of the N (J) (with

an exception for A(1232)) production together with another particle are fairly small. These characteristic distinctions

between the theoretical results for the low-spin particle interactions indicate on the necessity of a modification of the
existing approaches to description of the higher-spin particle interactions. It may be expected that the general properties
for the interactions of higher-spin particles of any mass must exist in the addition to the properties of the low-spin
particle interactions.

The contributions of the higher spin hadrons are considered at relatively high energies in the Regge pole model
[12, 13]. Tt is known that particles of different spin with the same values of the electric charge, the isospin, the
strangeness, and parities are on the trajectories, which are approximately straight on the plot of a square of a mass and
an angular momentum. It allows predict the masses of the higher spin hadrons. The Regge pole model describes well
the differential cross-sections of binary reactions at relatively high energies and small modules of momentum transfer.

In consequence of the relativistic invariance the vertex functions (related to the interaction lagrangian) for higher-
spin particle interactions are the scalar product of the field tensor for the higher-spin boson (or spin-tensor for HSF) and
corresponding current tensor (on spin-tensor).

We use the Rarita-Schwinger formalism (e.g. see Ref. [12]). For HSF such vertex functions give the non-
homogeneous Dirac equation

ot st

where U (x) = U(x)il is the field spin-tensor of HSF, M is the HSF mass, y(x) = ;((x)il is the current

oyl oyl

spin-tensor, J =1 +5 . As it is known the Klein-Gordon equation and the Dirac equation are not used immediately in

the calculations of the amplitudes for the particles of the 0-spin and the Y%-spin, respectively. In such calculations vertex
functions and propagators are used. The propagators are the causal Green functions of these equations. Similarly to this,
the HSF propagators in the calculations of the amplitudes correspond to the causal Green functions of the Eq. (1).

A

Besides, an action of the [i8+ M ] -operator on the homogeneous Dirac equation in (1) leads to the homogeneous

Klein-Gordon equation, which corresponds the relativistic relation between the energy, 3-momentum, and the M mass
of the free HSF.

It is known that the field spin-tensor must obey next auxiliary conditions: (i) the four-dimension divergences and
traces vanish; (ii) their convolution with y - matrices vanishes too. Usually for the current spin-tensors it is assumed

that they obey the symmetry condition only. We name the approaches with such current as usual ones. In Refs.[14, 15]
it is shown that the usual approaches have some shortcomings: (i) the algebraic inconsistencies of the equation systems;
(i1) the power divergences of the loop amplitudes; (iii) the ambiguities of the vertex functions for virtual HSF; (iv) the
contradictions to the experimental data in wide energy regions. As these shortcomings are in usual approaches to the
interactions of any spin and mass HSF, we assume that the interaction currents must have got some general properties in
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addition to the symmetry condition. In Refs.[16, 17] for the higher — spin bosons and in Ref. [18] for HSF have been
shown that the interaction currents must obey two theorem: (i) theorem on currents and fields: (ii) theorem on
continuity of current derivatives. We denote the current spin — tensors, which obey these theorems, as

j (x)ﬂ y = j (x)fu and name them as physical currents. Accordingly to the theorem on currents and fields the physical
bty

current spin-tensors must obey the same conditions as the field spin-tensors:

. _ ; — 2
a”k](x)m---m 0, P, ](119)/4 M 0, @
gﬂi#k j(x)yl...m =0, g;:,-;:k ](119)/4, el =0, (3)
yﬂkj(x)yl...yl =0, y;,kj(lp),q ol =0, (4)
coordinate representation momentum representation

where i,k =1,2,...,] . Note that, as the consequence of Esq. (2) (the current conservation), the contributions of the HSF
propagator terms including the HSF momentum Py, Or p, to the products of the HSF propagator and the physical
currents vanish. Thus, the current conservation (2) allows to avoid (Refs. [14-20]) one source of the power divergences
which exists in usual approach. In Refs [21, 22] the model for the interaction of the higher — spin boson with two
spinless particles, which obeys the theorem on currents and fields as well as the theorem on continuity of current

derivatives has been proposed. Using this model in Ref. [15] it is shown that the contribution of the virtual higher — spin
boson and spinless particle to self — energy operator for spinless particle gives finite result in one — loop approximation,

whereas usual approaches give for this operator the power divergences. Note that, as it is known, the 1 ¢°> - theory
gives the logarithmic divergence for the self — energy operator in one-loop approximation.

In paper [14] the model for HSF interaction with the 0 — and % - spin particles is proposed. This model obeys the

theorem on currents and fields. The consequences of this theorem can be tested in 7N - scattering. The model [14] and
usual approaches give different sets of the partial amplitudes corresponding to the off — mass- shell A(1232). In the
model [14] the off — mass- shell A(1232) contributes to the A; - and D;; amplitudes only, whereas in usual
approaches A(1232) contributes to S;;,— B;,— B3, and Dj; - amplitudes. In the usual approach the off — mass-shell
A(1232) gives the most contribution to the S5, - amplitude.

According to the partial wave analyses the energy dependence of the S5, - amplitude agrees better with the zero
contribution of A(1232). Thus, we may conclude that theorem on currents and fields is valid.

The present paper is devoted to modification of existing approaches (usual approaches) to eliminate their
shortcomings. We try to achieve a mathematical correctness and do not use any experimental data. In Refs [14, 15, 21]
it is shown that the divergences in usual approaches related to the higher spin particle propagators can be avoided by
means of the theorem on currents and fields. The divergences in usual approaches related to the vertex functions
possibly can be avoided by means of the theorem on continuity of current derivatives. In present paper the model for
simplest interactions of HSF is proposed. We study the validity of the theorem on continuity of current derivatives [18]

and apply the derived currents to investigate the contributions of the HSF resonances N (J ) to the s -channel

amplitudes of 7z N -scattering at high energies. This paper is the continuation of [ 14].

THEOREM ON CONTINUITY OF CURRENT DERIVATIVES

The physical current in the momentum representation j(x) = (x)fu has been derived in Ref. [18] by means

Hy--Hy

of the projection operator 1 ( p) =TI ( p)fu , - We use the modification of the projection operator from Refs.

Myl ViV

[23, 24] proposed in Refs. [18, 19]

i(p), =(p*) 11(p),, n(p).. (s)

7 v
The currents j (x)fu are the Fourier transformations of j( p)i‘ . We consider the HSF moving along the z - axis,

P =(p,.0,0, p3) . Then the current is given by

sty [ f ),
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The integrals (6) are the improper integrals depending on parameters x,, x;. These integrals must converge at

arbitrary x,, x;. However, the current spin-tensors j (xo,x3 )L have the partial derivatives of some degree (e. g. in the
differential equations for the HSF interactions). In this case the integrals with the integrands including the products of
j ( p)il and some number of the p- components have to converge in addition also. If we shall demand that ; (x)fu and
their partial derivatives are continuous functions in the space-time then the convergence of these integrals must be

uniform. Thus, the existence of the (x)fu and their partial derivatives leads to the asymptotic decreasing of

J( p)il Py, Py, With py, ps. Using the Weierstrass test for uniform convergence of integrals for ./ (x)fu and their

partial derivatives we conclude that the next integrals have to converge:
o0 o0
. 1
fdpofdps ‘] (Po’Ps),,"|Po|m° |P3|m3 ) (7N
—00 —00

where my and m; are non-negative integer numbers, m, + my =m(j). The integer number m () is determined by the
maximal degree of the partial derivatives.
In Ref. [18] m( j) has been derived from the differential equations for the HSF interactions. Indeed to derive the

consistent equations system including the physical currents j (x)fu we act on the equation in system (1) by the operator

(—D)l I (x)iw . Then using (5) and the properties of the projection operator we derive

(—o) [ié_ MJu(x); (), ®)

From the theory for the system of the linear differential equations it is known that we can derive the set of the non-
homogeneous linear differential equations with the same left sides for each unknown function. But the maximal degree
of the derivatives in each such equation is more than the degree in the system. In particular for the system of the
ordinary differential equations the degree of each equation in the set for each unknown function equals to the sum of the
degrees of all the differential equations in the system. But for the system of partial differential equations such results is
not valid [25]. It can be seen on the example for the system of the Dirac equations, where the equations in the system
have first degree, but the equations in the set (the non-homogeneous Klein-Gordon equations) have second degree. As

second example we consider the telegraph equations, (equations for the current strength / (x,t) and the voltage U (x,t) ).
These differential equations can be writed as the system

U ri4 12—,

Ox ot )
ol oU

—+GU+C—=0,

Ox + + ot

where R,L,G,C are constants. This is the system of homogeneous partial differential linear equations of the first
degree. But from (9) the set of two differential equations can be derived:

2 2

OU [R,GOU R G, _1 0U (10)
9> \L Cc)Joatr L C LC 9x°

2 2

o1 (R GlOL RG, 1 01 (11)
9rr \L Clot L C LC 9x*

We see that the Esq. (10), (11) have the same form. But these equations have got the second degree, i.e. the degree
of the equation for each unknown functions increases in comparison with the degree of equations in the system (9). To
derive the set of equations for each 2J +1 unknown functions (the analog of the set (10), (11)) the action of the -

[i o+M ] operator on the system (8) has been considered in Ref. [18]:

(—0) (o2 )U (x)), = —[i8+M]j(x)L. (12)
It is the set of the differential equations for the HSF interactions and it is similar to the non-homogeneous Klein-

Gordon equation for the %-spin particles. The set (12) includes the first derivatives of j (x)fu . The set of the differential
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equations for 2J +1 independent components of U (x)fu (the analog of set (10), (11)) cannot be derived as components

of Jj( p)i‘ obey the conditions (2)-(4). In consequence of these conditions (and the similar conditions for U (x)fu ) the

physical independent functions are implicit functions for J > 1. For the components corresponding to |/l| =J we have
more than one equation. (e. g. at J =1, A =0 we have different equations for U, (x), U;(x)). These differential
equations for the state with J =1, A =0 can be reduced to one equation if we shall differentiate these equations with
respect to different variables (for J =1, A =0 the equation for U, (x) we must differentiate with respect to x; and

equation for U, (x) with respect to x,). Thus, we must differentiate to derive the 2J 41 independent functions (the

states with definite J, A ). In consequence of this differentiation, the largest degree of the continuous derivatives for
J (x)fu has to equal two [18]. Therefore, in Ref.[5] it is derived m(j)=2.

Now we take into account the difference between the requirements for the functions of one and two variables
which can be expanded in the Fourier series or the Fourier transformation. It is known that the functions of one variable
with the finite number of the ordinary discontinuities on any finite interval (e.g. if the function obey the Dirichlet
conditions) can be expanded in the Fourier series. Note that the function for the Fourier integral must be absolutely
integrated in addition. For such function the Fourier series and integral converges to the magnitudes of this function in
the points of its continuity. But the double Fourier series converges to the magnitude of the function of two variables in
the point if this function is continuous and have continuous derivatives of the first degree and the mixed derivative of
the second degree [26]. We assume that such absolutely integrable functions can be expanded in the Fourier integral.

The magnitude of m(j) must be increased to 4.

The currents (5) include bispinors with the \/ Do +my -or \/ Do +my - factor. These factors behave as /p, /2

at p, — oo . Therefore, to take into account these factors we put m ( j ) =5.

For the common currents 7 ( p)i‘ we can write the Fourier integral similarly to Eq.(6). In the same way we can

write the condition for the common spin-tensor 7, ( p)i‘ (similar to Eq. (7)). The integrals

f dp, f dp, ‘n(p)i,‘lpolm" |ps|™ (13)

where m(n)=m(j)+ 2l = my + my, must converge.
Thus, we conclude that the numbers m( j) and m(n) depend on the degree of the continuous partial derivatives

for the HSF currents and fields.
As result we formulate the theorem on continuity of current derivatives (which can be named as theorem on
current asymptotics):

If the j (x)fu physical current has the continuous partial derivatives of the m(;) degree then their Fourier —

components j( p)fu must decrease at | pv| — 0o to provide the convergence of the integrals (7) in all the kinematic
regions.
In consequence of the theorem on continuity of current derivatives the Fourier— components of the j( p)i‘

physical currents and the 7, ( p)i‘ usual currents which are the rational fractions must decrease as ‘ j( p)il ‘ < | pv|—w(j)—3

|—w(j)—21—3

and ‘TI (P)il‘ S|pv at |pv — 00, respectively.

Note that the theorem on continuity of current derivatives is the consequence of the relation between the
convergence of the integrals depending on the parameters (x, and x;) and the continuity of this integrals as well as

their derivatives with respect to these parameters. In Ref. [21] the example of such relation is considered for the
[o.¢]

o(x)= f cos pxdp / (p4 + a4) function.
—00
The important sense of the theorem on continuity of current derivatives is related to the convergence of the
integrals (7), (13) at infinite p,, p;.(improper integrals of the first kind) as well as at finite p,, p; (improper integrals
of the second kind).
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FORM FACTORS FOR INTERACTION OF HSF WITH 0-AND 1/2-SPIN PARTICLES
Let us consider the physical current of J(p) — %( P>)+0(q,) - transition of Ref. [14]

i(p.a), , =&k (p,q)(pz)l- (14)

- 1
o @lale), [10), s

where ¢ = g, — p, . The usual current corresponding to Eq. (14) may be written as

_ N
n(p.q), . =&ki(p.ae (qz)u(pz){l.y }qvl---qvl : (15)
5

In Refs [21, 22] the form factor for the interaction of the higher — spin boson with two spinless particles has been
derived

2n, -

N2
f(p,q)z[(pq)zn‘+a4”'}_] 2(121612) -p*| +b*| (16)

where a and b are some positive constants, 7, and n, are some natural numbers (integer positive).

The function (16) permits one to satisfy the theorem on continuity of current derivatives for the interaction of the
higher spin boson with two spinless particles. However, the application of this function to the N (J )<—> Nr -
transitions leads to the contradiction with the results of the partial wave analyses. This contradiction is due to vanishing
of f(p.q) (16) at ¢*> =0, which corresponds to W, =1341MeV . Wy :2(m,2v+m§), where m, and m, is the
nucleon and the pion mass, respectively. Therefore, the real and the imaginary parts of the partial amplitudes
corresponding to the N” (/) contributions with the vertex functions including f(p.q) (16) must vanish. But it is well
known that the partial resonance amplitudes, in particular for A(1232) - excitation, in 7N - scattering, do not equal

zero at W =W, . It is possible that this contradiction can be eliminated by means of some modification of the function
. . 2\ 212 4ny 4ny
(16). We can consider for F(p,q) in Egs. (14), (15) the product f(p,q) (16) and the (q ) -[cq +c }

factor, where c is the positive constant, #; is the natural number. But this f ( p,q) form factor gives fairly complicated
s - dependence of the resonance excitation amplitudes in the 7N - scattering. Therefore, it is of interest to derive
another form factor with more simple p” - dependence.

Let us consider the non-negative continuous function f; ( D, q) for which the integrals

o0 o0
m m
Jm0m3:fdp0fdp3f,(p,q)|po ' P3 ' (17)
—00 -0
converge (my +my =0,1,2,...,2/ +5) . Then the physical currents (14) with any form factor F; (p,q) for which
Fi(p,
MSC, 0<C<oo, (18)

im

plipi—oo f1(Pq)
obey the theorem on currents and fields as well as the theorem on continuity of current derivatives. Therefore, in further
we shall consider the f (p,q) function.

To study the convergence of the integrals (17) we use the method of Refs. [21, 22]. The scalar function f; ( p,q)
depends on the invariant variables p°,(p,q),q>. We put the ¢=gq, — p, fixed. Then f,(p,q) depends on two
invariant variables: p* and ( p,q) . We shall use next statements.

Statement 1. If for the non-negative continuous function g(p,q) and the f;(p,¢) function

g(p.q)

I >, (19)
ptpi— f1(p.q)

and the integrals
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oo o0

Inm = [ v [ dpsg (gl (20)
—00 —00

converge, then the integrals V- (17) converge too.

or Jmo,m3+

Statement 2. If the integral J,

g +1,my | converges then the integral J,

my m, CONVETgeEs too.

As the integrand in (17) includes the modulus of p, and p;, J is not relativistic covariant at arbitrary

mo sy
numbers m, and m; [21]. However, these integrals can be expressed in terms of relativistic covariants at even m,, m;
and they depend on ¢”>. We denote the minimal even number, which equal or is bigger than 5, as m; (i.e.,
m =214+6).

Let us consider the function

fi(p.a)=(pa)™ [(pz) : [( pa)™ +b*" r : 1)

where a and b are positive constants, n;,n,, and n; the natural numbers.

2n,

+ a4n2

-2
At g% <0 we can choose the system with go =0 and q2 =—q, — q32 . Then we have for even m, and m;
) 2ny+my
2n |P3| dp,

T (a0 =0)= 5" [ o (). 22)

(psgs) "+

where
o0 My
_ Po " dpy

m (pS) _f 2\2m . (23)

0 (Pg —Ps) +a'™

Similarly to the Statement 2 we conclude that integral 7, (p;) converges if the integral 7, ,;(p;) converges. We

have
Mo my
p&@o 1] (rrpd)z e g (vred)? de
mo'H p3 f 2n :_f 2n 4n <_f 2n 4n, ’ (24)
2 AL 2J x™ 4a™ 2 X7t +a?
—D3 —o0
where x = Po — p3 = p*. For last 1ntegra1 we derive
Mo
(x+p3)2 2 Mo Mok
2f o=+ 2 () [ e
+a* o k 0 ¥ +a
0 , (25)
7 mo ( my—2k
- k 3)
=1 2 [H‘(_l) } 2my—k—1
any | (az) e sin;z(k+1)
2ny
T "d 1
as f =L N i : , (26)
2n+a2n 2na2n2—ml—] ] ﬂ(m—l—l)
0 sin——~+

2n
where m and n  are natural numbers (m§2n—2). The integrals (25) converge for

max

k :%,2;12 > kppar + 2, 115 2%4—1 . Thus, we have

ny ZH_TS for odd |

; 27
7, 25—|—3 for even 1

After substitution of the integral (25) in double integral (22) we derive



EEJP Vol.3 No.12016 E.V. Rybachuk

" —2ny+k+1 m
2 | Mo a’ ? 0 2y +my - —k d
v —_— p 2 p
I (0 =0) <301 2 |1+ (- | ),z g [l (%)
2 k=0| k sinz—(k—l—l) T (Ps%) +b7
ny

In last integral with respect to p; the most increasing integrand at p; — oo corresponds to £ =0 and the maximal
value of the natural number m; 4 m, =2/ + 6 . Therefore, if the integrals (28) converge for k=0 and my; = m; then

all the integrals J,, (g0 =0) (22) converge at g5 =0 and at 0 <m,, my <m,. To consider the case of g, = g5 =0

(i.e., for g = (0, q,,qz,O), g* <0) we introduce new variable of integration in (28) y = p-q = D345 - Then the integrals

in (28) for k=0 and my; = m; may be written as

5 R |p3|2"1 +my ] R y2nl +m

m — —l=m

q f dpy =243 - (29)
3 J (p3q3)2n3 +b4n3 ) y2n3 +b4n3

This integrals do not exist for g; = 0. But for natural », the function f ( p,q) (22) equals to zero. Thus, we can put
- (¢9=¢3=0)=0 at n, >1. In the case m =1 we have the restriction for ny from the convergence of the

integrals in (28)
ny>1+5 (30)

Using the statement 2 we conclude that the integrals J,, ,, -~ converge for any allowed m, and m; (0<my, my <my) at
q2 <0.

Now we consider the integrals J at ¢° = qg — q]2 — q32 > 0. We can choice the frame with ¢; =0 at even

L]

numbers m, and m;. Then the integrals (17) are given by

o0

o0 s
d,
J —0.4%>0)= 2n1f |Po f |P3| D3 ‘ 31
o 120472 0) =5 (pogo)™ +6% 2 (p}— i)™ o

|2n1 +my

—00

If we change p, 22 p;,m, 22 m; then the integrals (31) become equal to the integrals (22), (23). For g> =0 we can
consider the limit of (31) at g; — ¢ +¢; . Thus, the (14) with F (p,q)=f;(p.q) (21) obey the theorem on

continuity of current derivatives at n; =1 and the requirements (27), (30) for natural numbers 7,,n, .

CONSEQUENCES OF THEOREM ON CONTINUITY OF CURRENT DERIVANIVES FOR N' (/)
CONTRIBUTION TO 7N - SCATTERING AT HIGH ENERGY
Let us at first study the energy dependence of f(p,q) for N* (J) &2 Nz - transitions when the nucleon and the
pion are on its mass shells. This form factor can be used in the s — and u — channel amplitudes of the 7N - scattering.
For the s—channel p=p +q =p,+q, p°=s=W*, q=q,—p,, p-q=m> —my, where p, (p,) and
41 (g, ) are the 4- momentum of the initial (final) nucleon and the pion, respectively. For the form factor f (p.q) (21)

we can write in this case
filpg)<as(s™ +a'). (32)

The A constant is equal to (n, =1)

2
2 2
(my —m2)

A= (33)

2n :
2 2\ 4ny
(mN —m,,) +b

For u — channel we have p:p]—qzzpz—q],pzzu, q=p,+4q, q.p:m,zv—m,zz and
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£ (pg)<as(u +a*), (34)

where 4 is given by Eq. (33).
In particular for the A(1232)« Nx — transition we have from (32)

f(pa)<a/(p?+d"). (35)

In the cms. for 7N - scattering is s— channel the HSF momentum p=(#,0,0,0) and

p-q= m,Z, — m,z\,,q2 = 2(m,2, + m,zv) —s . Then the integral (17) is proportional to

Sy ™ f dp f dps f; (p.4)|po|™ |ps™ 6 (p3)- (36)

The integral (36) vanishes at mjy =0 . Therefore, we put m; =0, m, =0,1,...,2/ +m(j). As consequence of the
Statement 2 the integrals (36) converge at m, <m, if the integrals (36) converge at my =m; <2/+5. Thus, the

convergence J, o in (36) is related to the convergence of the integrals:

31+6
o~ 4 f T f;an (37)

as ‘Z]‘ — W /2 at W — oo . This integral converges at 4n, >3/ 48, ie.:

n, 2%1+2. (38)

Let compare the restrictions (27) and (38) for some /. From (27) next minimal magnitudes of n, can be derived
ny, =3,4,55"5 for 1=12,3,4,5, respectively. Similar magnitudes derived from (38) are; n, =3,4,556 for
1=1,2,3,4,5, respectively. We see that the restrictions (27) and (38) give the same minimal magnitudes for

1=1,2,3,4, i, for the J —% %% 2 , respectively. For / =35 the restriction (38) gives bigger magnitude. Thus, the

restriction (38) can provide the convergence of the integrals (17) in the kinematics with fixed ¢ as well as the
kinematics of HSF-resonance at the rest. Therefore, the restriction (38) ought to be used in the form factor (21).
Now we consider the contributions of the HSF —resonances N (J ) to the s — channel amplitudes of the 7N -

scattering in our approach. According to Egs. (23), (24), (31) of Ref. [14] the product of the N : (J ) propagator and two

physical currents may be written as
* 21
T(zN—N"(J)=aN)=gi [/ (p.a)] (r*) -
pEM
p>—M? +iMT

(39)

0" (a2)0(q)u(p:) M(p.q.q)u(p).

where g; is the ZNN" (J ) coupling constant, H( p,q,,q) is the contracted projection operator. The product

;(Pz)

Ref. [14] the contracted projection operator in the rest frame of N : (J ) is given by

P M

————5———u(p1)9" (42)¢(q1) approaches to some constant at s —oco. Accordingly to Eq. (15) of
P2 —M? +iMT

114

. 6q,-0q
WM B (2)-—25"F (2)| (40)

H(p,q',q)
o

where z=cos6, and @ is the scattering angle, |§|:|§| = 2|c_]]|= 2|§2|; B (z) is the Legendre polynomial. The
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. — 2
contracted projection operator behaves as H( p.q ,q) ~ |q]| =s'/4" at s—oo. Therefore, we obtain
T(er — N (J)— nN) ~ [f, (p,qﬂ2 s*' . Using the energy dependences (32) of the function f;(p,q) we derive

s31

T(xN— N (J)—7zN)~

, (41)

s4n2

where integer number 7, obey the restriction (38). Then the energy dependence of the N : (J ) - contributions to the

N - scattering amplitudes is given by

Q

] (42)

T@NHNWﬂHﬂMSEn

where C, is constant. Thus, in consequence of the theorem on continuity of current derivatives the contributions of

N’ (J ) tothe 7N - scattering amplitudes in s - channel for arbitrary J >% decrease at leastas 1/ 5% at s — co.

Compare the restrictions (42) with the result of the quark counting rule [29, 30]. According to this rule the amplitude of

the elastic pion-nucleon scattering has to behave as1/s®. Two distinctions are between the restrictions (42) and the
result of the quark counting rule. The quark counting rules correspond to a lot of different contributions and are valid

Jt=(p, - p2)2 ). The restrictions (42) correspond to the contribution of one

for hard processes (i.e., for great s and |t

N’ (J ) -resonance and valid for arbitrary scattering angle. Thus the restrictions (42) do not contradict to the results of
quark counting rules.

CONCLUSION

From Ref.[14] we see that the HSF interaction models which contradict to the theorem on currents and fields are
not consistent. It is due to the inconsistency of the linear algebraic equation system for the Fourier components of the
field spin-tensors. Note that the theorem on currents and fields allows simultaneously to derive the scale dimension of
the HSF propagator equal to -1 for any half-integer spin value HJF and to eliminate the ambiguities in the vertex
functions of HSF interactions. In addition to this condition of the consistency the continuity of the current components
and their partial derivatives in the space-time up to some degree may be considered as the condition of the consistency.
Indeed if the current components or their partial derivatives have discontinuities (points or lines) we must indicate a
fashion or a direction of an approaching to this discontinuity in the space-time. The model with discontinuities of the
current components is inconsistent without such information on the fashion of approaching to these discontinuities.

It is known that amplitudes and cross-sections of reactions are expressed in terms of the interaction current
components. As the current components in the space-time are the Fourier-transformations (i.e., the integrals depending
on parameters) their discontinuities are related to weak decrease of the current components in the momentum

— 00 (i.e., Fourier-components of currents can be diverging intergrals). But from the

representation at | D,

experimental data we can see that the cross-sections of the reactions involving the higher spin particles are
approximately equal to (or less than) the cross-sections of the reactions involving the particles of the lower spin (0 and
1/2) only at high energies. Thus, we may conclude that the current components and their partial derivatives must be
continuous in the space-time, i.e., the theorem on continuity of current derivatives is valid.

The calculations of the contributions of the higher spin nucleon resonances N : (J ) to the amplitudes of the elastic

7N -scattering in the framework of the model for the 7NN (J ) vertex (which obeys the theorem on currents and
fields as well as the theorem on continuity of current derivatives) show that these contributions must decrease at least as

s % at s — oo. We see that the theorems on continuity of current derivatives guarantee the small contributions of

N' (J ) to the amplitudes of the elastic 7N -scattering at high energy, but formally these contributions are non-zero.
Such behavior of the N (J ) -contributions to amplitudes agrees with the experimental data.
There are two different predictions for the contributions of N : (J ) -resonances to the partial amplitudes of the

7T N -scattering at high energies: 1) usual isobar models give the power energy growth; 2) The approach of present
paper gives the energy decrease. According to the partial wave analyses of the 7N -scattering [27, 28] the partial
amplitudes behave approximately as some constants at /W = 2 GeV. These amplitudes correspond to sums of different

contributions, in particular to some N (J ) -resonances. Therefore it can be concluded that the contributions of the
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resonances P;(1232) (A(1232)), the D,;(1520), the F;(1680), and the D,,(1700) to the corresponding partial
amplitudes decrease at high energies in reality. It can be considered as confirmation of the predictions of present model.

The interactions like to N (J ) — Nz [J — 5 + 0] are simplest, as they are determined by one partial amplitude.

But the transitions with several partial amplitudes exist also (such as

N*(J)— Np,N*(J)—>Nw[J—>%+l],N*(J)—>Nf°[J—>%+2], N*(J)—>A7Z[J—>%—|—0] with two higher-

spin particles and N (J) — Ap, N (J)— Aw[J — %4— 1] with three higher-spin particles). In these transitions the

theorem on currents and fields as well as the theorem on continuity of current derivatives must be valid for each partial
amplitude and for each higher spin particle. The validity of the theorem on continuity of current derivatives can be
provided by the products of the form factors for each higher spin particles. As example, we can consider the form
factors like to (16) for the higher spin bosons and the form factors like to (21) for HSF with own parameters (such as

a,b,n,,n, ,1; ). We can expect that the high-energy decrease of the amplitudes for the higher spin particle interactions

enlarges with the number of the higher spin particles involved in the transition and the reaction. Possibly this rule
explains the experimental fact formulated as: the higher spin resonances are formed but are not produced in the 7N -
interaction.

In relations with this rule and the restrictions (42) it is of interest to compare them with the dual models [12]. In
dual models it is stated that the reaction amplitude at arbitrary energy can be presented as the sums of infinity quantity
of resonances or Regge poles. In dual models the presentation of the amplitude by the sum of resonances in
intermediate energies and Regge poles at higher energies is considered as wrong. The restrictions similar to (42) show
that contributions of the HSF-resonances at higher energies are small but they do not equal zero. From quark models
with constituent quarks and Regge pole model the increase of a resonance quantity with energy can be expected.
Therefore it can be assumed that in reality the total contribution of all the resonances to amplitude has got non-zero
value at higher energies.

Acknowledgments. I thank the Y.V. Kulish and I.A. Anders, O.A. Osmaev, V.I. Khrabustovskij for interesting
discussions.
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