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In this paper, a new type of instability is identified, leading to the generation of vortex motions and magnetic fields in a plasma layer with
a constant temperature gradient, subjected to uniform gravity and a vertical magnetic field. The analysis in this study is conducted within
the framework of electron magnetohydrodynamics (EMHD), taking into account thermomagnetic effects. A new large-scale instability
of the 𝛼-effect type is identified, which facilitates the generation of large-scale vortex and magnetic fields. This instability arises due to
the combined action of an external uniform magnetic field, oriented perpendicular to the plasma layer, and a small-scale helical force.
The external force is modeled as a source of small-scale oscillations in the electron velocity field, characterized by a low Reynolds
number (𝑅 ≪ 1). The presence of a small parameter in the system allows for the application of the method of multiscale asymptotic
expansions, leading to the derivation of nonlinear equations governing the evolution of large-scale vortex and magnetic perturbations.
These equations are obtained at third order in the Reynolds number. A new effect associated with the influence of thermal forces (the
Nernst effect) on large-scale instability is also discussed. It is shown that an increase in the Nernst parameter reduces the 𝛼-coefficient
and thereby suppresses the development of the large-scale instability. Using numerical analysis, stationary solutions of the vortex and
magnetic dynamo equations are obtained in the form of localized helical-type structures.
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1. INTRODUCTION
The investigation of magneto-vortex structures in plasma is of significant importance for addressing challenges in

controlled thermonuclear fusion as well as for understanding the formation of ordered structures in astrophysical plasmas.
Magneto-vortex structures represent spatially localized configurations in which magnetic fields are strongly coupled with
vortical plasma flows (velocity vortices). Such structures frequently emerge in turbulent plasma environments, where
instabilities and nonlinear interactions between electric currents, magnetic fields, and hydrodynamic perturbations play
a crucial role. A notable example of these interactions is the generation of magnetic fields by small-scale turbulent
plasma motions with non-zero helicity v𝑇 rotv𝑇 ≠ 0 – this process constitutes a dynamo mechanism that is fundamental
to explaining the origin of magnetic fields in astrophysical objects such as planets, stars, and galaxies [1]-[6]. Helical
turbulence, in this context, typically refers to turbulent states with broken parity symmetry [4]. From a physical standpoint,
helical turbulence arises in systems where mirror symmetry is broken, which can occur due to various factors – most
notably, the presence of external fields with pseudovector characteristics, such as magnetic fields (Lorentz force) or the
Coriolis force.

Despite considerable progress in the theory of magnetic dynamos [5]-[6], several important issues remain insuffi-
ciently addressed. One such problem is the lack of a clear connection between the generation of seed magnetic fields and
the turbulent dynamo process, since both problems are considered separately. A potential mechanism for the spontaneous
generation of seed magnetic fields in plasmas with non-uniform temperature distributions is the Nernst effect [7]. This
phenomenon is associated with the formation of a vortex-like electric field disturbance, E′

𝑁
∼ [B′ × ∇𝑇0], which is

oriented orthogonally to both the background temperature gradient ∇𝑇0 and the magnetic field perturbation B′. Under
non-dissipative conditions, Maxwell’s equations can be employed to estimate the resulting magnetic field fluctuations
induced by this effect as

𝜕B′

𝜕𝑡
= −𝑐 rot E

′
𝑁 ⇒ 𝜕B′

𝜕𝑡
∼ rot[∇𝑇0 × B

′ ] .

Laser-produced plasmas provide a representative example where the Nernst effect plays a significant role. In such systems,
intense laser irradiation ionizes and heats the target material, giving rise to a plasma with pronounced temperature gradients.
These gradients create favorable conditions for the onset of the Nernst effect. A similar mechanism of magnetic field
generation is also expected to operate in astrophysical environments, particularly in the outer layers of hot, massive stars,
where strong temperature inhomogeneities are present [8].
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Ref. [9] investigates the spontaneous generation of magnetic fields driven by Rayleigh-Benard convection in a thin
plasma layer subjected to a uniform gravitational field. The seed magnetic fields are generated via a mechanism analogous
to the Biermann battery effect [10]. However, unlike the classical Biermann mechanism, magnetic field excitation here
occurs when temperature perturbations,𝑇 ′, act along a direction misaligned with the background gravitational stratification
g. This misalignment gives rise to an eddy-induced electromotive force (EMF):

E(𝑖) = −𝑚
𝑒

𝑇
′

𝑇0
g,

which contributes to magnetic field generation according to

𝜕B′

𝜕𝑡
≈ rotE(𝑖) =

𝑚𝑐

𝑒

[
∇𝑇 ′

𝑇0
× g

]
, ⇒ 𝐵

′
𝑦 �

𝑚𝑐

𝑒

𝑇
′

𝑇0

𝑔

𝜆
𝑡𝐵,

where 𝜆 is the characteristic scale of temperature perturbations, 𝑡𝐵 is the characteristic time of magnetic fields generation.
Then this initial seed magnetic field acts to induce convective motion of charged particles (electrons and ions) in the
stratified plasma. Thus the emergence of positive feedback between the magnetic field and temperature perturbations in
the evolution equations is a key condition for the onset of thermomagnetic instability and, as a result, the generation of
magnetic field. In a complementary study, Ref. [11] explores magnetic field generation in a fully ionized plasma, both in
the presence and absence of an external magnetic field. The analysis incorporates the effects of convective heat transport
and thermomagnetic phenomena and establishes criteria for the onset of instabilities that facilitate spontaneous magnetic
field growth.

Another unresolved issue is the absence of a fully self-consistent nonlinear theory of the magnetic dynamo. As the
magnetic field grows in strength, it begins to influence the plasma flows, thereby limiting the applicability of the kinematic
dynamo theory. However, the magnetic fields observed in real astrophysical systems typically exist in a nonlinear regime,
highlighting the necessity of developing and studying a nonlinear dynamo theory. The nonlinear theory is commonly
formulated as an extension of the mean-field dynamo approach, incorporating nonlinear feedback mechanisms. In the
review [6], a phenomenological model of the nonlinear dynamo – referred to as ”catastrophic quenching” – is discussed.
This model is grounded in energy balance arguments and posits that the Lorentz force significantly alters the velocity field
only when the magnetic energy becomes comparable to the kinetic energy of the turbulent flow. Accordingly, the model
introduces a simplified phenomenological framework that includes a nonlinear dependence of the turbulent transport
coefficients:

𝛼 =
𝛼0

1 + 𝐵2
0/B2

, 𝜂𝑇 =
𝜂0

1 + 𝐵2
0/B2

,

where 𝛼0 and 𝜂0 are the values of the transfer coefficients obtained in the kinematic approximation; 𝜂𝑇 – coefficient
of turbulent magnetic viscosity, 𝐵2

0 = B · B – mean field energy, B2 - kinetic energy of the flow. Reference [5]
provides an in-depth analysis of numerical simulation results related to geodynamo and solar dynamo processes. It also
introduces a magneto-rotational dynamo mechanism, where turbulence arises as a consequence of magnetohydrodynamic
(MHD) instabilities. Furthermore, the review addresses emerging challenges in the theory of magnetic field generation in
weakly collisional plasmas, highlighting current gaps and directions for future research. Nevertheless, Ref. [5] does not
address regimes where high-frequency, small-scale electron oscillations – such as helicon waves – induce magnetic field
restructuring in both space and laboratory plasmas. These rapid, localized processes involve only the electron component,
evolving against a quasi-static background of ions. The monograph [3] describes several examples of magnetic field
generation driven by Langmuir and ion-acoustic plasma oscillations. In turn, Ref. [12] explores the generation of mean
magnetic fields by small-scale turbulence within the framework of electron magnetohydrodynamics (EMHD) with a two
and one-half dimensional (2 1

2 D) model. In this approach, while the magnetic field retains all three spatial components, its
variation is constrained to two dimensions due to the presence of a strong background field. It is demonstrated that the
emergence of large-scale magnetic fields is intimately connected to the statistical properties of turbulence: the breaking
of reflectional symmetry gives rise to the 𝛼-effect, whereas turbulence anisotropy facilitates mechanisms akin to negative
dissipation, including negative resistivity and viscosity.

One of the drawbacks of magnetic dynamo theory is that it depends on a simplified approach called the two-scale
approximation of mean-field theory, making it harder to create a consistent nonlinear dynamo theory. An alternative
approach, based on multiscale asymptotic expansions, was proposed in [13] to describe the generation of large-scale
vortex structures (LSVSs) in non-mirror-symmetric turbulence. It was shown that small-scale parity violation due to
external forcing leads to a large-scale instability known as the anisotropic kinetic alpha (AKA) effect. Further studies [14]
explored the reverse energy cascade and nonlinear saturation of this instability. The effect is interpreted as a parametric
instability arising from external periodic forcing F0, which induces small-scale velocity fluctuations v0. Their nonlinear
interaction with large-scale flow W modifies the Reynolds stresses, allowing 𝛿𝑇𝑖 𝑗 to be expressed as a Taylor series in
gradients of W [15]:

𝛿𝑇𝑖 𝑗 = −𝛼𝑖 𝑗𝑙𝑊𝑙 − 𝜈𝑖 𝑗𝑙𝑚∇𝑙𝑊𝑚 +𝑂 (∇2W) + . . .
This expansion is valid under the condition of weak large-scale gradients, i.e., for small ∇W. To ensure the dominance of
the first term in the series, one can estimate the tensors 𝛼𝑖 𝑗𝑙 and 𝜈𝑖 𝑗𝑙𝑚 using characteristic parameters of the small-scale
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turbulence. This yields the condition that the gradient scale of the large-scale field, defined as 𝐿𝑔 = (𝑊−1 |∇W|)−1, must
be much larger than the turbulence scale 𝑙0: 𝐿𝑔 ≫ 𝑙0. The leading term in this expansion corresponds to the anisotropic
kinetic 𝛼-effect (AKA-effect), as described in [13], which accounts for the emergence of large-scale vortex structures
(LSVS). Thus, an external force breaking parity at small scales can induce significant modifications in the large-scale
flow. In contrast, Ref. [15] analyzed the case where the small-scale forcing is parity-invariant, leading to the suppression
of the AKA-effect. In this regime, the interaction between small- and large-scale motions is governed primarily by eddy
viscosity.

Using the method of multiscale asymptotic expansions, nonlinear theories of vortex dynamos have been developed
for a range of hydrodynamic media, as outlined in Ref. [16]. In particular, Ref. [17] identified a large-scale instability
in an electrically conducting, temperature-stratified medium driven by the helicity of small-scale velocity and magnetic
fields. This instability gives rise to the simultaneous generation of large-scale vortex and magnetic fields. Building upon
these results, Ref. [18] formulated a fully nonlinear, self-consistent theory of the magneto-vortex dynamo for a convective,
electrically conducting medium with helical small-scale turbulence. Remarkably, this study demonstrated for the first
time the possibility of stationary chaotic large-scale structures forming in both vortex and magnetic fields. The analysis
revealed the emergence of stationary magnetic structures, which can be categorized into three distinct types: nonlinear
waves, solitons, and kink-type solutions. Furthermore, qualitative estimates of the linear instability stage allowed for a
comparison of the characteristic scales and times of the resulting hydrodynamic structures with those observed under solar
conditions, as reported in Ref. [19], showing good agreement.

In this work, unlike [20], we investigate the generation of large-scale vortex and magnetic structures driven by
small-scale helical forcing (turbulence) in a fully ionized, temperature-stratified plasma subjected to an external vertical
magnetic field. The theoretical framework is based on the Braginskii equations for the electron component, with thermo-
magnetic effects explicitly taken into account. Plasma thermal convection is modeled using the Boussinesq approximation,
incorporating an external helical force F0. Unlike the classical anisotropic kinetic 𝛼-effect (AKA-effect), our analysis
reveals a novel plasma 𝛼-effect arising in a magnetized plasma with a constant temperature gradient and gravitational field,
induced by external helical forcing.

The structure of this paper is as follows. In Section 2, we formulate the problem and derive the governing equations
in dimensionless form. Section 3 presents the derivation of the averaged equations for large-scale velocity and magnetic
fields in a magnetized, stratified plasma using the method of multiscale asymptotic expansions. The detailed procedure
for constructing the asymptotic expansion is provided in Appendix A. The correlation functions appearing in the averaged
equations are expressed through the small-scale fields obtained in the zeroth-order approximation with respect to the
Reynolds number 𝑅. The corresponding solutions for the small-scale fields are given in Appendix B. Based on these, the
closed-form nonlinear equations describing the vortex and magnetic dynamo are derived in Appendix C. In Section 4, we
present the final system of equations governing large-scale velocity and magnetic field perturbations, which describe the
hydrodynamic 𝛼-effect instability. The conditions for the onset of this instability are analyzed as functions of the external
magnetic field strength 𝐷, the Rayleigh number 𝑅𝑎, and the Nernst effect parameter. Section 5 provides a numerical
investigation of the steady-state nonlinear magneto-vortex dynamo equations, demonstrating the formation of vortex and
magnetic structures in the form of helical kink-type solutions.

2. PROBLEM STATEMENT AND BASIC EQUATIONS
We consider a fully ionized plasma layer placed in constant gravitational and uniform magnetic fields, denoted by g

and B, respectively. The plasma is assumed to possess a steady-state temperature gradient ∇𝑇 . In the undisturbed state, no
fluid motion is present. The development of perturbations is assumed to occur on timescales short enough that ions can be
regarded as stationary and thermally inactive. The behavior of the perturbed electron component is analyzed within the
framework of the Braginskii equations [21]:

𝜕V
𝜕𝑡

+ (V∇) V = − 𝑒
𝑚

(
E + 1

𝑐
[V × B]

)
− 1
𝑚𝑁

∇𝑃 + 1
𝑚𝑁

(R𝑣 + R𝑇 ) +
F𝜂

𝑚𝑁
+

F𝑔

𝑚𝑁
, (1)

𝜕𝑇

𝜕𝑡
+ (V∇)𝑇 = −2

3
divq
𝑁

, 𝑃 = 𝑁𝑇, (2)

divV = 0. (3)

Here 𝑃, 𝑁,𝑇,V denote the pressure, average density, temperature, and velocities of electrons. In the electron momentum
equation (1), several physical effects are taken into account: electron collisions, described by the friction force R𝑣;
momentum exchange due to the temperature gradient, represented by the thermal force R𝑇 ; viscous effects in the electron
fluid, captured by the force F𝜂 ; and the gravitational contribution F𝑔. Importantly, the corresponding transport coefficients
in the presence of a magnetic field depend on the magnetization parameter 𝜔𝐵𝑒𝜏, where 𝜔𝐵𝑒 = 𝑒𝐵/𝑚𝑐 is the electron
gyrofrequency. In the strongly magnetized limit (𝜔𝐵𝑒𝜏 ≫ 1), the friction and thermal forces, R𝑣 and R𝑇 , respectively, are
expressed in specific forms:

R𝑣

𝑚𝑁
= −0.51𝜈V∥ − 𝜈V⊥ (4)
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Figure 1. The diagram shows a thin layer of plasma with a vertical equilibrium temperature gradient: 𝑇𝑑 > 𝑇𝑢 (signaling
heating from below). The induction vector B of a uniform magnetic field has direction along the 𝑧-axis, and the external
force F0 is situated in the plane (𝑥, 𝑦).

R𝑇

𝑚𝑁
= −0.71

∇∥𝑇

𝑚
− 3

2
𝑒𝜈

𝑚2𝑐𝜔2
𝐵𝑒

[B × ∇𝑇] (5)

The symbols ∥ and ⊥ denote the directional orientation along and across the magnetic field, respectively. The thermal
electron flow is similarly composed of two components, denoted as q = q𝑣 + q𝑇 :

q𝑣 = 0.71𝑁𝑇V∥ +
3𝑒

2𝑚𝑐
𝜈𝑁𝑇

𝜔2
𝐵𝑒

[B × V] (6)

q𝑇 = −3.16
𝑁𝑇𝜏

𝑚
∇∥𝑇 − 4.66

𝑁𝑇𝜈

𝑚𝜔2
𝐵𝑒

∇⊥𝑇 − 5
2

𝑒𝑁𝑇

𝑐𝑚2𝜔2
𝐵𝑒

[B × ∇𝑇] (7)

In expressions (4)-(7), the parameter 𝜈 ≈ 𝜏−1 denotes the electron collision frequency. In a fully ionized plasma, the
relative velocities involved in electron-electron and electron-ion collisions are of the same order. As a result, the frequency
of electron-electron collisions (𝜈𝑒𝑒 ≈ 𝜏−1

𝑒 or 𝜈 ≈ 𝜏−1) is comparable to the electron-ion collision frequency (𝜈𝑒𝑖 ≈ 𝜏−1
𝑒𝑖

).
Next, we supplement the equations (1)-(3) with Faraday’s law

rotE = −1
𝑐

𝜕B
𝜕𝑡
, (8)

Ampere’s law

rotB = −4𝜋𝑒𝑁
𝑐

V, (9)

and magnetic field solenoidality equation
divB = 0. (10)

We now formulate the problem, the geometry of which is illustrated in Fig. 1. To describe the dynamics of the electron
fluid, we adopt a Cartesian coordinate system with the 𝑍-axis oriented vertically upward. The system under consideration
is a horizontally extended plasma layer of finite thickness ℎ, bounded above and below by free surfaces at 𝑧 = ℎ and 𝑧 =
0, respectively. The lower boundary at 𝑧 = 0 is maintained at temperature 𝑇𝑑 , while the upper boundary at 𝑧 = ℎ is kept
at a lower temperature 𝑇𝑢, such that 𝑇𝑑 > 𝑇𝑢, implying that the layer is heated from below. The equilibrium temperature
distribution 𝑇 (𝑧) is assumed to vary linearly along the vertical direction:

𝑇 (𝑧) = 𝑇𝑑 − (𝑇𝑑 − 𝑇𝑢)
ℎ

𝑧.

Consequently, the equilibrium temperature gradient is constant and directed downward: ∇𝑇 = const = −e(𝑑𝑇/𝑑𝑧) =

−e 𝐴, where e is a unit vector along the 𝑍-axis pointing upward, and the gravitational acceleration is given by g = −𝑔e.
Initially, the plasma layer is assumed to be at rest. Convection is triggered by introducing small perturbations to the
equilibrium state. All relevant physical quantities appearing in Eqs. (1)-(3) are thus represented as the sum of a stationary
background and a small disturbance:

V = V
′
, E = E

′
, B = B + B

′
, 𝑇 = 𝑇 + 𝑇 ′

, 𝑃 = 𝑃 + 𝑃′
.
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The equilibrium electron density is assumed to be uniform throughout the layer, 𝑁 = const, and perturbations in the
density, 𝑁 ′, are related to temperature perturbations 𝑇 ′ via the Boussinesq approximation [22]: 𝑁 ′/𝑁 ≈ −𝑇 ′/𝑇 . Under
this approximation, the gravitational force term in Eq. (1) reduces to a contribution that depends linearly on the temperature
perturbation:

F𝑔

𝑚𝑁
=
𝑁

′

𝑁
g = −𝑇

′

𝑇
g. (11)

The viscous force F𝜂 in equation (1) can be written as [21]

𝜂𝑒

𝑚𝑁
∇2V

′
= 0.73

𝑇𝜏

𝑚
∇2V

′
= 𝜈∇2V

′
,

where 𝜈 is the coefficient of kinematic viscosity of the electronic fluid. Below in the text, for convenience, we omit the
”prime” sign above the perturbed values V, 𝑇, 𝑃,E, and B. In the equilibrium (unperturbed) state, the plasma satisfies the
condition of hydrostatic balance:

1
𝑚

𝑑𝑇

𝑑𝑧
= 𝑔 − 0.71

𝑚

𝑑𝑇

𝑑𝑧
,

and no background electric field is present, i.e., E = 0. The magnetic field is assumed to be uniform and directed
vertically upward, perpendicular to the (𝑥, 𝑦) plane: B = e𝐵. To model turbulent processes in the plasma, we introduce
an external force F0 into Eq. (1). This force acts as a driver of small-scale, high-frequency oscillations in the electron
velocity field, denoted by ṽ0, and operates in a regime characterized by a low Reynolds number, 𝑅 = 𝑣̃0𝑡0/𝜆0 ≪ 1. An
analogous dimensionless parameter, the Strouhal number 𝑆 = 𝑢𝜏𝑐/𝜆𝑐 – where 𝑢 is the turbulent velocity, and 𝜏𝑐 and 𝜆𝑐
are characteristic temporal and spatial correlation scales is commonly used in magnetic dynamo theory [2] to justify the
second-order correlation approximation. A relevant physical system in which the condition 𝑅 ≪ 1 (or equivalently 𝑆 ≪
1) holds is the solar convective zone. Using observational data on small-scale turbulence in solar granules [2], one obtains:

𝑣̃0 ≈ 3 · 102𝑚/𝑠, 𝑡0 ≈ 3 · 102𝑠, 𝜆0 ≈ 106𝑚,

yielding an estimate of the Reynolds number 𝑅 ≈ 10−1 ≪ 1. Let us consider an external helical force F0 with the following
properties:
1. The vector field F0 is solenoidal, i.e., it is divergence-free: divF0 = 0.
2. The vector field F0 possesses vorticity: rotF0 ≠ 0.
3. The helicity of F0 is nonzero, indicating a helical property: F0rotF0 ≠ 0.
We define the functional form of the external force as

F0 = 𝑓0F0

(
𝑥

𝜆0
;
𝑡

𝑡0

)
,

where 𝜆0 is the characteristic spatial scale, 𝑡0 is the characteristic temporal scale, and 𝑓0 denotes the typical amplitude of the
force. The external force F0 induces small-scale oscillations in the velocity field, denoted by ṽ0, which are characterized
by

ṽ0 = 𝑣̃0ṽ0

(
x
𝜆0
,
𝑡

𝑡0

)
,

where 𝑣̃0 is the characteristic velocity. Assuming that the external force F0 satisfies the properties listed in (4), it can be
explicitly prescribed in the following deterministic form:

𝐹𝑧
0 = 0, F0⊥ = 𝑓0

(
e𝑥 cos 𝜙2 + e𝑦 cos 𝜙1

)
, (12)

where the phases 𝜙1 and 𝜙2 are defined as

𝜙1 = k1x − 𝜔0𝑡, 𝜙2 = k2x − 𝜔0𝑡, k1 = 𝑘0 (1, 0, 1) , k2 = 𝑘0 (0, 1, 1) .

The dynamo mechanism operates through the process of energy transfer from small-scale turbulent motions to large-scale
flows. The role of the external small-scale force F0 incorporated into the electron motion equations is to maintain the
necessary level of turbulence as a driving source. This force can be specified statistically by defining its correlator:

𝐹0𝑖𝐹0𝑚 = 𝐴𝛿𝑖𝑚 + 𝐵𝑟𝑖𝑟𝑚 + 𝐻𝜖𝑖𝑚𝑛𝑟𝑛.

However, the statistical approach is considerably more cumbersome, as it requires specifying the functions 𝐴, 𝐵, and 𝐻,
and computing rather complex integrals. When the external force is specified dynamically (as in Eq. 12), averaging over
rapid oscillations becomes straightforward, which significantly reduces the computational complexity of the problem.
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Let us transform equations (1)-(3) and (9)-(11) into a dimensionless form by introducing the following dimensionless
variables

x → x
𝜆0
, 𝑡 → 𝑡

𝑡0
, V → V

𝑣̃0
, F0 → F0

𝑓0
, B → B1

𝑏0
, 𝑇 → 𝑇1

𝜆0𝐴
, 𝑃 → 𝑃1

𝑝0
. (13)

Here, 𝑣̃0, 𝑏0, and 𝑝0 are the characteristic values of small-scale fluctuations of velocity, magnetic field, and pressure,
respectively. When transitioning to the dimensionless form of equations (1)-(3) and (8)-(10), it is helpful to introduce a
set of relations that connect the turbulent parameters 𝑡0 and 𝜆0 of the medium:

𝑡0 =
𝜆2

0
𝜈
, 𝑓0 =

𝑣̃0𝜈

𝜆2
0
, 𝑝0 = 𝑚𝑁

𝑣̃0𝜈

𝜆0
,

𝑓0𝑡0
𝑣̃0

=
𝑐𝐸0𝑡0
𝜆0𝑏0

= 1,

𝜆2
0𝑚

0.73𝑇𝜏2
= 1,

𝑒𝐸0𝑡0
𝑚𝑣̃0

=
𝑒𝑏0𝜆0
𝑚𝑐𝑣̃0

=
𝜆0𝑣̃0𝑚𝜔

2
𝑝𝑒

𝑒𝑏0𝑐
= 𝑅2,

𝜆2
0

𝑟2
𝑑

= 𝑅4, (14)

where 𝑟𝑑 = 𝑐/𝜔𝑝𝑒 is the Debye radius, and 𝜔𝑝𝑒 =
√︁

4𝜋𝑒2𝑁0/𝑚 is the electron plasma (Langmuir) frequency. These
relations significantly simplify the resulting dimensionless equations, facilitating further mathematical treatment. The
first group of relations in (2) is derived from the Navier-Stokes equation (1). The remaining expressions are obtained by
applying scaling and dimensional analysis for convenience. The final set of relations is chosen such that a self-consistent
system of equations for large-scale perturbations emerges in the leading order of the asymptotic expansion. Upon applying
the transformations (13) and (2) to equations (1)-(3), (8)-(10), and introducing a rescaled temperature 𝑇 → 𝑇/𝑅, we arrive
at the desired system of dimensionless equations:

𝜕V
𝜕𝑡

+ 𝑅 (V∇) V = −∇𝑃 − 𝑅2E − 𝐷 [V × e] − 𝑅3 [V × B] + e𝑅𝑎𝑇 − V−

−𝑅𝑎
(
𝑉2
𝑇𝑒

𝑔𝜆0

) (
0.71∇𝑇 + 3

2
𝜉𝐷 [e × ∇𝑇]

)
+ 𝜈∇2V + F0, (15)

𝜕𝑇

𝜕𝑡
+ 𝑅(V∇)𝑇 −

(
1 + 5

3
𝑃𝑟−1𝜉𝑅

)
eV = 2.1𝑃𝑟−1∇2𝑇 + 5

3
𝑃𝑟−1𝜉 (∇𝑇rotB), (16)

divV = 0, divB = 0, (17)
𝜕B
𝜕𝑡

= −rotE, rotB = −𝑅2V. (18)

The equations (2)-(16) have the following notation: 𝜉 = (𝜔𝐵𝑒𝜏)−1 represents the reciprocal of the Hall parameter; D =

𝐷e, 𝐷 = (𝑒𝐵𝑡0)/𝑚𝑐 = (𝜔𝐵𝑒𝜆0
2)/𝜈 is the electron rotation parameter on the scale 𝜆0; 𝑅𝑎 = 𝑅𝑎

𝑃𝑟
, 𝑅𝑎 =

𝑔𝐴𝜆4
0

𝑇𝜈𝜒
is the Rayleigh

number on the scale 𝜆0; 𝜒 is the thermal diffusivity coefficient of electrons; 𝑉𝑇𝑒 is the thermal velocity of electrons, 𝑃𝑟 =
𝜈/𝜒 is the Prandtl number; 𝜉 = 𝜈/(𝜔2

𝐵𝑒
𝜆2

0𝜏) is a parameter characterizing the influence of the Nernst effect. As follows,
we call 𝜉 the Nernst parameter.

In this study, we treat the Reynolds number 𝑅 =
𝑣0𝑡0
𝜆0

as a small expansion parameter, assuming 𝑅 ≪ 1. The
parameters 𝐷, 𝑅𝑎, and 𝑃𝑟 are considered to be of arbitrary magnitude. The smallness of 𝑅 justifies the application of the
method of multiscale asymptotic expansions, as described in [4, 13]. This technique differs from the traditional mean-field
approach in that it allows for a consistent description of how perturbations evolve across various spatial and temporal scales
at each order of the expansion. At the zeroth order of 𝑅, small-scale rapidly varying velocity fluctuations v0 arise due
to the action of the external force F0 on a stationary background. The behavior of these fluctuations is shaped by factors
such as vertical stratification and the ambient magnetic field. Although the time-averaged values of these fluctuations are
zero, nonlinear effects in higher orders can generate contributions that remain finite upon averaging, thereby influencing
the dynamics of the system on larger scales.

The following section outlines the procedure for deriving solvability conditions in the framework of multiscale
expansions, which ultimately yield the governing equations for large-scale perturbations.

3. EQUATIONS FOR LARGE-SCALE VORTEX AND MAGNETIC FIELDS
To derive the multiscale asymptotic equations, we introduce a set of fast (small-scale) variables 𝑥0 = (x0, 𝑡0),

alongside slow (large-scale) variables 𝑋 = (X, 𝑇). For convenience, we denote derivatives with respect to the fast spatial
and temporal variables as 𝜕𝑖 = 𝜕

𝜕𝑥𝑖0
and 𝜕𝑡 = 𝜕

𝜕𝑡0
, respectively. Correspondingly, the derivatives with respect to the slow

(large-scale) spatial and temporal coordinates are written as:

𝜕

𝜕𝑋𝑖
≡ ∇𝑖 ,

𝜕

𝜕𝑇
≡ 𝜕𝑇 .
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The scaling of slow variables relative to the fast ones is chosen as follows:

X = 𝑅2x0, 𝑇 = 𝑅4𝑡0,

where 𝑅 ≪ 1 is the small expansion parameter introduced earlier. Using these variable transformations, the differential
operators in the governing equations (2)–(18) can be rewritten in a form suitable for asymptotic expansion:

𝜕

𝜕𝑥𝑖
→ 𝜕𝑖 + 𝑅2∇𝑖 ,

𝜕

𝜕𝑡
→ 𝜕𝑡 + 𝑅4𝜕𝑇 (19)

The physical quantities V,E,B, 𝑃, and 𝑇 are expressed as asymptotic expansions in powers of the small parameter 𝑅:

V (x, 𝑡) = 1
𝑅

W−1 (𝑋) + v0 + 𝑅v1 + 𝑅2v2 + 𝑅3v3 + · · ·

E (x, 𝑡) = 1
𝑅

E−1 (𝑋) + E0 + 𝑅E1 + 𝑅2E2 + 𝑅3E3 + · · ·

B (x, 𝑡) = 1
𝑅

B−1 (𝑋) + B0 + 𝑅B1 + 𝑅2B2 + 𝑅3B3 + · · · (20)

𝑇 (x, 𝑡) = 1
𝑅
𝑇−1 (𝑋) + 𝑇0 (𝑥0) + 𝑅𝑇1 + 𝑅2𝑇2 + 𝑅3𝑇3 + · · ·

𝑃(x, 𝑡) = 1
𝑅3 𝑃−3 +

1
𝑅2 𝑃−2 +

1
𝑅
𝑃−1 + 𝑃0 (𝑥0) + 𝑅(𝑃1 + 𝑃1 (𝑋))+

+𝑅2𝑃2 + 𝑅3𝑃3 + · · ·
In the asymptotic expansions (20), the large-scale components depend solely on the slow variables 𝑋 , whereas the
remaining terms involve both the fast variables 𝑥0 and the slow variables 𝑋 . We now substitute the expansions (19) and
(20) into the system of equations (2)–(18), and collect terms up to and including order 𝑅3. The resulting set of equations
is rather lengthy and is therefore presented in Appendix A. The main secular equations (solvability conditions), which
ensure the consistency of the multiscale asymptotic expansion for the system (2)–(18), are given by:

𝜕𝑇𝑊
𝑖
−1 + ∇𝑘

(
𝑣𝑘0𝑣

𝑖
0

)
= −∇𝑖𝑃1 − 𝐸

𝑖

1 + ∇2
𝑘𝑊

𝑖
−1, (21)

𝜕𝑇𝑇−1 − 2.1𝑃𝑚−1∇2𝑇−1 = −1.47∇𝑘

(
𝑣𝑘0𝑇0

)
, (22)

𝜕𝑇𝐵
𝑖
−1 = −𝜀𝑖 𝑗𝑘∇ 𝑗𝐸

𝑘

1 . (23)

Equations (21)–(23) are supplemented by the secular equations derived in Appendix A:

−∇𝑖𝑃−3 − 𝐷𝜀𝑖 𝑗𝑘𝑊 𝑗𝑒𝑘 + 𝑒𝑖𝑅𝑎𝑇−1 −𝑊 𝑖
−1 = 0, (24)

𝑊 𝑧
−1 = 0, ∇𝑖𝑊

𝑖
−1 = 0, ∇𝑖𝐵

𝑖
−1 = 0, (∇ × B−1)𝑧 = 0 (25)

𝑊 𝑘
−1∇𝑘𝑊

𝑖
−1 = −∇𝑖𝑃−1 − 𝐸 𝑖

−1 − 𝜀𝑖 𝑗𝑘𝑊
𝑗

−1𝐵
𝑘
−1−

−𝑅𝑎1

(
0.71∇𝑖𝑇−1 +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗∇𝑘𝑇−1

)
, (26)

𝑊 𝑘
−1∇𝑘𝑇−1 = 0, 𝜀𝑖 𝑗𝑘∇ 𝑗𝐸

𝑘
−1 = 0, 𝜀𝑖 𝑗𝑘∇ 𝑗𝐵

𝑘
−1 = −𝑊 𝑖

−1. (27)

The primary secular equations that dictate the development of large-scale vortex and magnetic perturbations are represented
by Eqs. (21)-(23). In these equations, the overbar signifies averaging over the rapid variables. The extensive temperature
𝑇−1 does not influence the dynamics of the extensive velocity field W−1 or the magnetic field B−1. Consequently, our
analysis will concentrate on equations (21) and (23). In this paper, we focus on large-scale structures characterized by
horizontal dimensions 𝐿𝑋, 𝐿𝑌 that are much greater than the vertical dimension 𝐿𝑍 :

𝐿𝑋, 𝐿𝑌 ≫ 𝐿𝑍 ≫ 𝜆0, or 𝜀 �

(
𝐿𝑍

𝐿𝑋

,
𝐿𝑍

𝐿𝑌

)
≪ 1,

𝜆0
𝐿𝑍

≪ 1, (28)

where 𝜀 denotes the scale anisotropy parameter. This scaling relationship clearly indicates that derivatives with respect to
𝑍 dominate over those with respect to the horizontal coordinates:

∇𝑍 ≡ 𝜕

𝜕𝑍
≫ 𝜕

𝜕𝑋
,
𝜕

𝜕𝑌
.
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Given that the two equations in (25) imply that the large-scale velocity field is two-dimensional and incompressible, and
taking into account the scale relations in (28), we assume that all large-scale perturbations depend solely on the vertical
coordinate 𝑍 . Thus, the velocity and magnetic fields are represented as

W−1 =
(
𝑊 𝑥

−1 (𝑍), 𝑊
𝑦

−1 (𝑍), 0
)
, B−1 =

(
𝐵𝑥
−1 (𝑍), 𝐵

𝑦

−1 (𝑍), 0
)
. (29)

Then, taking into account the expressions (29), the equations for the large-scale fields (21)-(23) take the following form:

𝜕𝑇𝑊1 + ∇𝑍

(
𝑣𝑧0𝑣

𝑥
0

)
= −𝐸 𝑥

1 + ∇2
𝑍𝑊1, 𝑊 𝑥

−1 ≡ 𝑊1, (30)

𝜕𝑇𝑊2 + ∇𝑍

(
𝑣𝑧0𝑣

𝑦

0

)
= −𝐸 𝑦

1 + ∇2
𝑍𝑊2, 𝑊

𝑦

−1 ≡ 𝑊2, (31)

𝜕𝑇𝐵1 = ∇𝑍𝐸
𝑦

1 , 𝐵𝑥
−1 ≡ 𝐵1, (32)

𝜕𝑇𝐵2 = −∇𝑍𝐸
𝑥

1 , 𝐵
𝑦

−1 ≡ 𝐵2, (33)

∇𝑍𝐵2 = 𝑊1, ∇𝑍𝐵1 = −𝑊2. (34)

The derivation of the closed form of equations (30)-(31) requires the computation of the Reynolds stress terms 𝑇31 =

𝑣𝑧0𝑣
𝑥
0 and 𝑇32 = 𝑣𝑧0𝑣

𝑦

0 . This, in turn, involves determining the small-scale velocity field v0, as outlined in Appendix B. By
substituting equations (32)-(34) into equations (30)-(31), the mean electric field 𝐸 𝑥,𝑦

1 is eliminated. As a result, equations
(30)-(31) are transformed into a system resembling a nonlinear vortex dynamo:

𝜕𝑇 (∇2
𝑍𝑊1 −𝑊1) + ∇3

𝑍𝑇
31 = ∇4

𝑍𝑊1,

𝜕𝑇 (∇2
𝑍𝑊2 −𝑊2) + ∇3

𝑍𝑇
32 = ∇4

𝑍𝑊2. (35)

According to Ampere’s law (34), large-scale perturbations of the magnetic field are driven by large-scale vortical motions
of electrons. Consequently, the nonlinear evolution of large-scale magnetic fields is governed by the following set of
nonlinear equations:

𝜕𝑇 (∇2
𝑍𝐵1 − 𝐵1) − ∇2

𝑍𝑇
32 = ∇4

𝑍𝐵1,

𝜕𝑇 (∇2
𝑍𝐵2 − 𝐵2) + ∇2

𝑍𝑇
31 = ∇4

𝑍𝐵2. (36)

Appendix C presents the calculation of the Reynolds stresses (6), which enables the closure of system (3), and, consequently,
(3). The nonlinear magnetic-vortex dynamo is described by the following set of equations:

𝜕𝑇 (∇2
𝑍𝑊1 −𝑊1) − ∇4

𝑍𝑊1 =

=
𝑓 2
0
8
∇3
𝑍


𝐷2

36(1 −𝑊1)2 +
[
𝐷2

2 + 9 − (1 −𝑊1)2
]2

+ Ξ
(1)
1 − 𝜉Ξ(2)

1 + 𝜉Ξ(3)
1

 +
+
𝑓 2
0
2
∇3
𝑍


𝐷

(
3
2 − 1.05𝑅𝑎

17.64+𝑃𝑟2 (1−1.47𝑊2 )2

)
36(1 −𝑊2)2 +

[
𝐷2

2 + 9 − (1 −𝑊2)2
]2

+ Ξ
(1)
2 − 𝜉Ξ(2)

2 + 𝜉Ξ(3)
2

 , (37)

𝜕𝑇 (∇2
𝑍𝑊2 −𝑊2) − ∇4

𝑍𝑊2 =

=
𝑓 2
0
8
∇3
𝑍


𝐷2

36(1 −𝑊2)2 +
[
𝐷2

2 + 9 − (1 −𝑊2)2
]2

+ Ξ
(1)
2 − 𝜉Ξ(2)

2 + 𝜉Ξ(3)
2

 −
−
𝑓 2
0
2
∇3
𝑍


𝐷

(
3
2 − 1.05𝑅𝑎

17.64+𝑃𝑟2 (1−1.47𝑊1 )2

)
36(1 −𝑊1)2 +

[
𝐷2

2 + 9 − (1 −𝑊1)2
]2

+ Ξ
(1)
1 − 𝜉Ξ(2)

1 + 𝜉Ξ(3)
1

 , (38)

where

Ξ
(1)
1,2 = 𝑅𝑎(9 + (1 −𝑊1,2)2) ·

𝑃𝑟𝑊1,2
˜̃
𝑊1,2 − 12.6 + 𝑅𝑎

4

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

, 𝑊1,2 = 1 −𝑊1,2,
˜̃
𝑊1,2 = 1 − 1.47𝑊1,2,
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Figure 2. The 𝛼-effect’s dependence versus a) magnetic parameter 𝐷, b) stratification parameter 𝑅𝑎, and c) Nernst
parameter 𝜉.

Ξ
(2)
1,2 =

3
2
𝐷2𝑅𝑎1 ·

25.2𝑊1,2 + 𝑃𝑟 (9 −𝑊2
1,2)

˜̃
𝑊1,2

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

, Ξ
(3)
1,2 =

𝐷4

4
· 𝑅𝑎1

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

(
9
4
𝜉𝑅𝑎1 − 3𝑃𝑟 ˜̃𝑊1,2

)
.

As seen from equations (3)-(3), the vortex dynamo effect in a stratified plasma can emerge under the combined influence
of an external small-scale helical force and a magnetic field. In the absence of an external magnetic field, even in the
presence of turbulence, large-scale perturbations of the electron velocity undergo ordinary viscous damping.

We first address the linear stability of small field perturbations, followed by an analysis of potential stationary
structures.

4. LARGE-SCALE INSTABILITY
In this section, we address the stability of small-scale perturbations in both the velocity and magnetic fields. By

applying expressions (6) to equations (3), we obtain the following set of linear equations describing the vortex dynamo:

𝜕𝑇 (∇2
𝑍𝑊1 −𝑊1) − ∇4

𝑍𝑊1 = 𝛼1∇3
𝑍𝑊1 + 𝛼2∇3

𝑍𝑊2,

𝜕𝑇 (∇2
𝑍𝑊2 −𝑊2) − ∇4

𝑍𝑊2 = 𝛼1∇3
𝑍𝑊2 − 𝛼2∇3

𝑍𝑊1, (39)

here,

𝛼1 =
𝑓 2
0
8
𝐷2𝛼, 𝛼2 =

𝑓 2
0
2
𝐷 (𝛼𝜎0 − 𝛼0𝜎1),

𝛼0 =
4

(𝐷2 + 16)2 + 144 + 40𝑎0𝑅𝑎 + 4𝜉 (𝑚0 − 𝑐0)
,

𝛼 =
32(20 − 𝐷2 + 𝑅𝑎(𝑎0 − 5𝑏0) + 𝜉

2 (𝑑0 − 𝑛0))[
(𝐷2 + 16)2 + 144 + 40𝑎0𝑅𝑎 + 4𝜉 (𝑚0 − 𝑐0)

]2 .

The explicit form of the coefficients 𝜎0, 𝜎1, 𝑎0, 𝑏0, 𝑐0, 𝑑0, 𝑚0, 𝑛0 can be found in Appendix C. We seek a solution to the
linear system of equations (4) in the form of plane waves with a wave vector 𝐾 aligned along the 𝑍-axis, i.e.,

𝑊1,2 = 𝐴𝑊1,2 exp (−𝑖𝜔𝑇 + 𝑖𝐾𝑍) (40)

Substituting expression (40) into the system of equations (4), we obtain the corresponding dispersion relation:(
𝑖𝜔(1 + 𝐾2) − 𝐾4 + 𝑖𝛼1𝐾

3
)2

− 𝛼2
2𝐾

6 = 0 (41)

By representing 𝜔 = 𝜔0 + 𝑖Γ in equation (41), we get:

𝜔0 = − 𝛼1𝐾
3

1 + 𝐾2 , Γ1,2 =
∓𝛼2𝐾

3 − 𝐾4

1 + 𝐾2 . (42)

The solutions given by (42) indicate the presence of unstable oscillatory modes associated with large-scale vortex distur-
bances. It is important to emphasize that, within the framework of linear theory, the coefficients 𝛼1 and 𝛼2 are independent
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Figure 3. Left: instability region in the (𝐷, 𝑅𝑎) plane (gray: 𝛼2 > 0, white: 𝛼2 < 0). Right: growth rate Γ(𝐾) for 𝜉 =

0.00015 and 𝜉 = 15 at 𝐷 = 2, 𝑅𝑎 = 10.

Figure 4. Phase portrait of the dynamical system defined by Eqs. (5)-(5) for 𝐶5 = −0.005 and 𝐶6 = 0.005.

of the velocity field amplitudes; instead, they depend solely on the magnetic rotation parameter 𝐷, the Rayleigh number
𝑅𝑎, the Nernst parameter 𝜉, and the amplitude of the external forcing 𝑓0. Thus, magnetorotational and thermomagnetic
effects may play an important role in the development of large-scale instabilities and the emergence of self-organized
structures in stratified magnetized plasma.

We consider the effect of an external magnetic field (characterized by the parameter 𝐷) on the gain 𝛼2, which
determines the generation of large-scale vortex disturbances. For this analysis, the other parameters are fixed as follows:
𝑓0 = 10, 𝑅𝑎 = 5, 𝑃𝑟 = 1, 𝑅𝑎1 = 0.15, and 𝜉 = 0.15. Fig. 2a shows that 𝛼2 attains a maximum at a certain value of 𝐷. As
𝐷 increases further, 𝛼2 decreases monotonically, indicating suppression of the 𝛼-effect by the magnetic field. Interestingly,
the 𝛼2 (𝐷) curve also demonstrates that vortex generation can be completely inhibited at specific nonzero values of 𝐷,
where 𝛼2 vanishes.

Let us now examine how the value of 𝛼2 varies with the plasma heating parameter 𝑅𝑎, while keeping the other
parameters fixed: 𝐷 = 2, 𝑃𝑟 = 1, 𝑅𝑎1 = 0.15, 𝜉 = 0.15, and the amplitude of the external force 𝑓0 = 10. The functional
dependence 𝛼2 (𝑅𝑎) is presented in Fig. 2b. For 𝑅𝑎 = 0, the coefficient 𝛼2 = 0.258 corresponds to a plasma without
a temperature gradient (i.e., no heating). In this regime, the generation of large-scale vortex structures is driven solely
by the external helical small-scale forcing and the Lorentz force. As can be seen from Fig. 2b, the presence of thermal
stratification (𝑅𝑎 ≠ 0) can enhance the value of 𝛼2, thereby accelerating the formation of large-scale vortex disturbances
compared to the non-stratified case. However, beyond a certain critical value of the stratification parameter 𝑅𝑎𝑐, the
generation process is suppressed, as indicated by 𝛼2 = 0. For 𝑅𝑎 > 𝑅𝑎𝑐, the sign of the gain coefficient 𝛼2 reverses. As a
result, the previously growing mode becomes damped, and vice versa.

In a similar manner, we can examine the influence of the Nernst parameter 𝜉 on the gain 𝛼2. Fig. 2c clearly shows
that the gain coefficient 𝛼2 decreases with increasing 𝜉, starting from 𝛼2 ≈ 0.43 at 𝜉 = 0. This reduction can be attributed
to the Nernst effect, wherein part of the thermal force is directed perpendicular to both the magnetic field vector B and the
temperature gradient 𝜕𝑖𝑇0. This transverse component of the thermal force impedes the motion of the electron component
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of the plasma, thereby leading to a suppression of the 𝛼-effect and a consequent decrease in 𝛼2.
The left part of Fig. 3 shows the combined effect of the external magnetic field and thermal stratification in the

(𝐷, 𝑅𝑎) plane. The instability region (𝛼2 > 0) is marked in gray. The right part of Fig. 3 shows the dependence of the
growth rate Γ on the wave number 𝐾 as given by Eq. (42). As the Nernst parameter increases, the instability increment
decreases, reflecting the reduction of 𝛼2 with increasing 𝜉 (see Fig. 2c).

As equations (4) demonstrate, helicity of the small-scale field alone is insufficient for dynamo operation. Efficient
generation of large-scale magnetic fields requires some critical parameters to fall within specific ranges, including the
external magnetic field parameter 𝐷 and the thermal driving characterized by the Rayleigh number 𝑅𝑎. Additionally, the
geometric configuration plays a crucial role, particularly the vertical upward orientation of the external magnetic field
vector B.

5. STATIONARY NONLINEAR STRUCTURES
As the large-scale instability develops, the exponential growth of small perturbations𝑊1,2 renders the linear approx-

imation invalid. With increasing disturbance amplitude, nonlinear effects become dominant. This leads to a suppression
of the nonlinear 𝛼-effect coefficients and a transition to a saturated, steady-state regime. In this regime, stable nonlinear
vortex and magnetic structures emerge. To identify such stationary structures, we set 𝜕𝑇 = 0 in Eqs. (3)-(3), and perform
integration with respect to 𝑍 . This procedure yields the following set of nonlinear equations:

𝑑𝑊1
𝑑𝑍

= −
𝑓 2
0
8

· 𝐷2

36(1 −𝑊1)2 +
[
𝐷2

2 + 9 − (1 −𝑊1)2
]2

+ Ξ
(1)
1 − 𝜉Ξ(2)

1 + 𝜉Ξ(3)
1

−

−
𝑓 2
0
2

·
𝐷

(
3
2 − 1.05𝑅𝑎

17.64+𝑃𝑟2 (1−1.47𝑊2 )2

)
36(1 −𝑊2)2 +

[
𝐷2

2 + 9 − (1 −𝑊2)2
]2

+ Ξ
(1)
2 − 𝜉Ξ(2)

2 + 𝜉Ξ(3)
2

+ 𝐶1
𝑍2

2
+ 𝐶3𝑍 + 𝐶5, (43)

𝑑𝑊2
𝑑𝑍

= −
𝑓 2
0
8

· 𝐷2

36(1 −𝑊2)2 +
[
𝐷2

2 + 9 − (1 −𝑊2)2
]2

+ Ξ
(1)
2 − 𝜉Ξ(2)

2 + 𝜉Ξ(3)
2

+

+
𝑓 2
0
2

·
𝐷

(
3
2 − 1.05𝑅𝑎

17.64+𝑃𝑟2 (1−1.47𝑊1 )2

)
36(1 −𝑊1)2 +

[
𝐷2

2 + 9 − (1 −𝑊1)2
]2

+ Ξ
(1)
1 − 𝜉Ξ(2)

1 + 𝜉Ξ(3)
1

+ 𝐶2
𝑍2

2
+ 𝐶4𝑍 + 𝐶6. (44)

Here, the integration constants 𝐶1, 𝐶2, 𝐶3, 𝐶4, 𝐶5, and 𝐶6 are arbitrary. For the purpose of qualitative analysis of Eqs.
(5)-(5), the physical parameters are fixed as follows: 𝑓0 = 1, 𝑅𝑎 = 5, 𝐷 = 2, 𝑃𝑟 = 1, and 𝜉 = 𝑅𝑎1 = 0.15. To simplify the
analysis, we set 𝐶1 = 𝐶2 = 𝐶3 = 𝐶4 = 0 and consider the stationary case by equating the left-hand sides of Eqs. (5)-(5) to
zero. Under these conditions, the coordinates of the four fixed points 𝐸 (1,2,3,4) can be determined numerically:

𝐸1 (−1.363, 4.68), 𝐸2 (3.345,−2.635), 𝐸3 (3.345, 4.646), 𝐸4 (−1.358,−2.669). (45)

By linearizing the right-hand sides of Eqs. (5)-(5) in the vicinity of the stationary points, we can determine their nature
and construct the corresponding phase portrait. This analysis reveals that the system possesses two hyperbolic (saddle)
points (𝐸1, 𝐸2), one stable focus (𝐸3), and one unstable focus (𝐸4). The phase portrait of the resulting dynamical system,
obtained for the constants𝐶5 = −0.005 and𝐶6 = 0.005, is shown in Fig. 4. The trajectories in the phase space demonstrate
characteristic behavior near these points: solutions are repelled from the unstable focus and attracted toward the stable one,
while the saddle points form separatrices that partition the phase space into distinct dynamical regions. Physically, these
fixed points correspond to stationary nonlinear vortex structures, whose stability or instability determines the long-term
evolution of the flow.

The most physically relevant localized solutions correspond to trajectories in the phase portrait that connect stationary
points on the phase plane. In particular, the separatrix linking a hyperbolic point to a stable focus represents a solution
describing a localized vortex structure, such as a kink with rotational features. An example of such a solution is shown
on the left side of Fig. 5, obtained by numerically integrating Eqs. (5)-(5) with the initial conditions 𝑊1 (0) = 3.345 and
𝑊2 (0) = −2.625.

Another type of helical kink corresponds to a solution in which the separatrix on the phase plane connects the unstable
and stable foci. This solution, shown in the right side of Fig. 5, was obtained by numerically integrating Eqs. (5)-(5)
with initial conditions 𝑊1 (0) = 3.345 and 𝑊2 (0) = 4.63. All of these solutions – representing large-scale, localized,
kink-type vortex structures with rotational features – are generated as a result of the instability mechanisms in the stratified,
magnetized plasma with helical force analyzed in this study.

We now turn to the analysis of solutions corresponding to localized magnetic structures. To facilitate this, it is
convenient to reformulate the stationary equations for the magnetic field components, Eq. (3), in terms of the current
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Figure 5. Left: kink-type solution corresponding to a separatrix connecting a hyperbolic point to a stable focus. Right:
kink connecting an unstable focus to a stable focus, exhibiting an internal helical structure.

components. This can be done using the relation between the current density and the large-scale electron velocity, J =

−W, together with Ampere’s law written as:

𝑑𝐵2
𝑑𝑍

= −𝐽1,
𝑑𝐵1
𝑑𝑍

= 𝐽2.

Substituting these expressions into the stationary equations (3) yields the following system for the current components 𝐽1
and 𝐽2:

𝑑𝐽1
𝑑𝑍

=
𝑓 2
0
8

· 𝐷2

36(1 + 𝐽1)2 +
[
𝐷2

2 + 9 − (1 + 𝐽1)2
]2

+ Ξ̃
(1)
1 − 𝜉Ξ̃(2)

1 + 𝜉Ξ̃(3)
1

+

+
𝑓 2
0
2

·
𝐷

(
3
2 − 1.05𝑅𝑎

17.64+𝑃𝑟2 (1+1.47𝐽2 )2

)
36(1 + 𝐽2)2 +

[
𝐷2

2 + 9 − (1 + 𝐽2)2
]2

+ Ξ̃
(1)
2 − 𝜉Ξ(2)

2 + 𝜉Ξ̃(3)
2

+ 𝐶1𝑍 + 𝐶3, (46)

𝑑𝐽2
𝑑𝑍

=
𝑓 2
0
8

· 𝐷2

36(1 + 𝐽2)2 +
[
𝐷2

2 + 9 − (1 + 𝐽2)2
]2

+ Ξ̃
(1)
2 − 𝜉Ξ̃(2)

2 + 𝜉Ξ̃(3)
2

−

−
𝑓 2
0
2

·
𝐷

(
3
2 − 1.05𝑅𝑎

17.64+𝑃𝑟2 (1+1.47𝐽1 )2

)
36(1 + 𝐽1)2 +

[
𝐷2

2 + 9 − (1 + 𝐽1)2
]2

+ Ξ̃
(1)
1 − 𝜉Ξ̃(2)

1 + 𝜉Ξ̃(3)
1

+ 𝐶2𝑍 + 𝐶4, (47)

where

Ξ̃
(1)
1,2 = 𝑅𝑎(9 + (1 + 𝐽1,2)2) ·

𝑃𝑟𝐽1,2
˜̃
𝐽1,2 − 12.6 + 𝑅𝑎

4

17.64 + 𝑃𝑟2˜̃𝐽2
1,2

, 𝐽1,2 = 1 + 𝐽1,2,
˜̃
𝐽1,2 = 1 + 1.47𝐽1,2,

Ξ̃
(2)
1,2 =

3
2
𝐷2𝑅𝑎1 ·

25.2𝐽1,2 + 𝑃𝑟 (9 − 𝐽2
1,2)

˜̃
𝐽1,2

17.64 + 𝑃𝑟2˜̃𝐽2
1,2

, Ξ̃
(3)
1,2 =

𝐷4

4
· 𝑅𝑎1

17.64 + 𝑃𝑟2˜̃𝐽2
1,2

(
9
4
𝜉𝑅𝑎1 − 3𝑃𝑟˜̃𝐽1,2

)
.

Equations (5)-(5) contain arbitrary integration constants 𝐶1, 𝐶2, 𝐶3, and 𝐶4. To simplify the qualitative analysis, we set
𝐶1 = 𝐶2 = 0. Under this assumption, we analyze the system by setting the left-hand sides of Eqs. (5)-(5) to zero, which
allows us to numerically identify the fixed points and determine their locations in phase space:

𝐸1 (−3.34, 2.635), 𝐸2 (1.363,−4.68), 𝐸3 (1.358, 2.669), 𝐸4 (−3.345,−4.646). (48)

As in the case of vortex structures, the system exhibits four stationary points: two hyperbolic points (𝐸1, 𝐸2), a stable focus
(𝐸3), and an unstable focus (𝐸4). The corresponding phase portrait of the dynamical system governed by Eqs. (5)-(5),
with constants 𝐶3 = −0.005 and 𝐶4 = −0.005, is presented in Fig. 6. Localized magnetic structures naturally correspond
to phase trajectories in Fig. 6 that connect equilibrium points in the phase space. The left side of Fig. 7 illustrates such a
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Figure 6. The phase plane of the dynamical system equations (5)-(5) with 𝐶3 = −0.005 and 𝐶4 = −0.005.

Figure 7. Localized magnetic kink structures analogous to vortex kinks in Fig. 6.

structure in the form of a magnetic kink, obtained through numerical integration of Eqs. (5)-(5) with the initial conditions
𝐽1 (0) = 1.363 and 𝐽2 (0) = −4.68. This kink represents a separatrix connecting the hyperbolic point 𝐸2 to the stable focus
𝐸3.

Another type of localized magnetic structure – a spiral kink – is obtained by numerically integrating the system of
Eqs.(5)-(5) with initial conditions 𝐽1 (0) = −3.345 and 𝐽2 (0) = −4.65. This solution corresponds to a separatrix trajectory
on the phase plane that connects the unstable focus 𝐸4 to the stable focus 𝐸3, as shown in the right side of Fig. 7.

As a result of numerically solving the stationary equations (5)-(5) and (5)-(5), we identified localized helical structures
of both vortex and magnetic nature.

6. CONCLUSIONS
In this study, a nonlinear dynamo theory has been developed for a fully ionized, temperature-stratified plasma

subjected to an external vertical magnetic field and a uniform gravitational field. The plasma dynamics are considered
within the framework of electron magnetohydrodynamics (EMHD), assuming immobile and cold ions. The proposed
dynamo mechanism incorporates thermomagnetic effects and is based on the 𝛼-effect, which arises due to the joint action
of a small-scale external helical force and the Lorentz force. The external forcing sustains weak velocity fluctuations in
the electron component, forming a low-Reynolds-number turbulence regime (𝑅 ≪ 1). Applying an asymptotic expansion
in terms of this small parameter, we derived closed-form equations describing the evolution of large-scale vortex and
magnetic perturbations. The linear stage of large-scale instability development was thoroughly analyzed. The regions of
instability on the parameter plane (𝐷, 𝑅𝑎), defined by the Lorentz and Rayleigh numbers respectively, were determined.
It is shown that the extent and structure of the instability domain are sensitive to the intensity of the small-scale forcing.
A key result of this work is the identification of the suppressing role of the Nernst effect on large-scale instability. As
the Nernst parameter increases, the growth rate of the instability decreases, owing to the thermomagnetic part of the
electron force counteracting the generation process. Conversely, stronger thermal stratification (larger Rayleigh number)
enhances the instability until it transitions to convective instability at high values of 𝑅𝑎. In the nonlinear regime, as
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the amplitude of perturbations grows, saturation occurs and the system reaches a stationary state. Numerical integration
of the nonlinear equations reveals the formation of localized vortex and magnetic structures in the form of spiral kinks.
These coherent structures represent the final stage of nonlinear evolution driven by the large-scale dynamo instability in a
stratified magnetized plasma.

APPENDIX A. ALGEBRAIC STRUCTURE OF THE ASYMPTOTIC EXPANSIONS
Let us present the algebraic structure of the asymptotic expansion for equations (2)-(18) at different orders in 𝑅,

starting with the smallest.
At the 𝑅−3 order, we have just one equation:

𝜕𝑖𝑃−3 = 0 ⇒ 𝑃−3 = 𝑃−3 (𝑋) (49)

In order 𝑅−2 we get the equation:
𝜕𝑖𝑃−2 = 0 ⇒ 𝑃−2 = 𝑃−2 (𝑋) (50)

Equations (49) and (50) are automatically fulfilled as 𝑃−3 and 𝑃−2 solely depend on slow variables.
In order 𝑅−1 we obtain the system of equations:

𝜕𝑡𝑊
𝑖
−1 +𝑊

𝑘
−1𝜕𝑘𝑊

𝑖
−1 = −𝜕𝑖𝑃−1 − ∇𝑖𝑃−3 + 𝜕2

𝑘𝑊
𝑖
−1 − 𝐷𝜀𝑖 𝑗𝑘𝑊 𝑗𝑒𝑘 + 𝑒𝑖𝑅𝑎𝑇−1 −𝑊 𝑖

−1 + 𝜕
2
𝑘𝑊

𝑖
−1,

𝜕𝑡𝑇−1 − 2.1𝑃𝑟−1𝜕2
𝑘𝑇−1 = −1.47𝑊 𝑘

−1𝜕𝑘𝑇−1 +𝑊 𝑧
−1 −

5
3
𝑃𝑟−1𝜉𝑒𝑖𝜀𝑖 𝑗𝑘𝜕𝑖𝐵

𝑘
0 , (51)

𝜕𝑖𝑊
𝑖
−1 = 0, 𝜕𝑖𝐵

𝑖
−1 = 0.

Upon averaging equations (51) over the ”fast” variables, we obtain the secular equations:

−∇𝑖𝑃−3 − 𝐷𝜀𝑖 𝑗𝑘𝑊 𝑗𝑒𝑘 + 𝑒𝑖𝑅𝑎𝑇−1 −𝑊 𝑖
−1 = 0, 𝑊 𝑧

−1 = 0, (52)

At zero order 𝑅0, we have:

𝜕𝑡𝑣
𝑖
0 +𝑊

𝑘
−1𝜕𝑘𝑣

𝑖
0 = −𝜕𝑖𝑃0 − ∇𝑖𝑃−2 − 𝐷𝜀𝑖 𝑗𝑘𝑣 𝑗0𝑒𝑘 + 𝑒𝑖𝑅𝑎𝑇0−

−𝑅𝑎1

(
0.71𝜕𝑖𝑇0 +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗𝜕𝑘𝑇0

)
− 𝑣𝑖0 + 𝜕

2
𝑘𝑣

𝑖
0 + 𝐹

𝑖
0,

where 𝑅𝑎1 = 𝑅𝑎

(
𝑉𝑇𝑒

𝑔𝜆0

)
is the modified Rayleigh number,

𝜕𝑡𝑇0 − 2.1𝑃𝑟−1𝜕2
𝑘𝑇0 = −1.47𝑊 𝑘

−1𝜕𝑘𝑇0 + 𝑣𝑧0+

+5
3
𝑃𝑟−1𝜉𝜕𝑖𝑇0𝜀𝑖 𝑗𝑘𝜕 𝑗𝐵

𝑘
0 − 5

3
𝑃𝑟−1𝜉𝑒𝑖𝜀𝑖 𝑗𝑘 (𝜕 𝑗𝐵𝑘

1 + ∇ 𝑗𝐵
𝑘
−1), (53)

𝜕𝑡𝐵
𝑖
0 = −𝜀𝑖 𝑗𝑘𝜕 𝑗𝐸 𝑘

0 , 𝜀𝑖 𝑗𝑘𝜕 𝑗𝐵
𝑘
0 = 0, 𝜕𝑖𝑣𝑖0 = 0, 𝜕𝑖𝐵𝑖

0 = 0.

These equations give secular terms:

∇𝑃−2 = 0 ⇒ 𝑃−2 = const, (∇ × B−1)𝑧 = 0.

Let us look at the first-order approximation 𝑅1:

𝜕𝑡𝑣
𝑖
1 +𝑊

𝑘
−1𝜕𝑘𝑣

𝑖
1 + 𝑣

𝑘
0𝜕𝑘𝑣

𝑖
0 +𝑊

𝑘
−1∇𝑘𝑊

𝑖
−1 = −∇𝑖𝑃−1−

−𝜕𝑖
(
𝑃1 + 𝑃1

)
− 𝐸 𝑖

−1 − 𝐷𝜀𝑖 𝑗𝑘𝑣
𝑗

1𝑒𝑘 − 𝜀𝑖 𝑗𝑘𝑊
𝑗

−1𝐵
𝑘
−1 + 𝑒𝑖𝑅𝑎𝑇1−

−𝑅𝑎1

(
0.71(𝜕𝑖𝑇1 + ∇𝑖𝑇−1) +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗 (𝜕𝑘𝑇1 + ∇𝑘𝑇−1)

)
− 𝑣𝑖1 + 𝜕

2
𝑘𝑣

𝑖
1 + 2𝜕𝑘∇𝑘𝑊

𝑖
−1,

𝜕𝑡𝑇1 − 2.1𝑃𝑟−1𝜕2
𝑘𝑇1 − 4.2𝑃𝑟−1𝜕𝑘∇𝑘𝑇−1 = −1.47(𝑊 𝑘

−1𝜕𝑘𝑇1 +𝑊 𝑘
−1∇𝑘𝑇−1 + 𝑣𝑘0𝜕𝑘𝑇0) + 𝑣𝑧+

+5
3
𝑃𝑟−1𝜉𝜀𝑖 𝑗𝑘 (𝜕𝑖𝑇0 (𝜕 𝑗𝐵𝑘

1 + ∇ 𝑗𝐵
𝑘
−1) + 𝜕𝑖𝑇1𝜕 𝑗𝐵

𝑘
0 ) −

5
3
𝑃𝑟−1𝜉𝑒𝑖𝜀𝑖 𝑗𝑘𝜕 𝑗𝐵

𝑘
2 , (54)

𝜕𝑡𝐵
𝑖
1 = −𝜀𝑖 𝑗𝑘 (𝜕 𝑗𝐸 𝑘

1 + ∇ 𝑗𝐸
𝑘
−1), 𝜀𝑖 𝑗𝑘 (𝜕 𝑗𝐵

𝑘
1 + ∇ 𝑗𝐵

𝑘
−1) = −𝑊 𝑖

−1,

𝜕𝑖𝑣
𝑖
1 + ∇𝑖𝑊

𝑖
−1 = 0, 𝜕𝑖𝐵

𝑖
1 + ∇𝑖𝐵

𝑖
−1 = 0.
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From this system of equations, secular equations are derived in the form

𝑊 𝑘
−1∇𝑘𝑊

𝑖
−1 = −∇𝑖𝑃−1 − 𝐸 𝑖

−1 − 𝜀𝑖 𝑗𝑘𝑊
𝑗

−1𝐵
𝑘
−1 − 𝑅𝑎1

(
0.71∇𝑖𝑇−1 +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗∇𝑘𝑇−1

)
, (55)

𝜀𝑖 𝑗𝑘∇ 𝑗𝐸
𝑘
−1 = 0, 𝜀𝑖 𝑗𝑘∇ 𝑗𝐵

𝑘
−1 = −𝑊 𝑖

−1, (56)

𝑊 𝑘
−1∇𝑘𝑇−1 = 0, ∇𝑖𝑊

𝑖
−1 = 0, ∇𝑖𝐵

𝑖
−1 = 0. (57)

At second order 𝑅2, we get

𝜕𝑡𝑣
𝑖
2 +𝑊

𝑘
−1𝜕𝑘𝑣

𝑖
2 + 𝑣

𝑘
0𝜕𝑘𝑣

𝑖
1 +𝑊

𝑘
−1∇𝑘𝑣

𝑖
0 + 𝑣

𝑘
0∇𝑘𝑊

𝑖
−1 + 𝑣

𝑘
1𝜕𝑘𝑣

𝑖
0 =

= −𝜕𝑖𝑃2 − ∇𝑖𝑃0 − 𝐸 𝑖
0 − 𝐷𝜀𝑖 𝑗𝑘𝑣

𝑗

2𝑒𝑘 − 𝜀𝑖 𝑗𝑘𝑣
𝑗

0𝐵
𝑘
−1 + 𝑒𝑖𝑅𝑎𝑇2−

−𝑅𝑎1

(
0.71𝜕𝑖𝑇2 +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗𝜕𝑘𝑇2

)
− 𝑣𝑖2 + 𝜕

2
𝑘𝑣

𝑖
2 + 2𝜕𝑘∇𝑘𝑣

𝑖
0,

𝜕𝑡𝑇2 − 2.1𝑃𝑟−1𝜕2
𝑘𝑇2 − 4.2𝑃𝑟−1𝜕𝑘∇𝑘𝑇0 = −1.47(𝑊 𝑘

−1𝜕𝑘𝑇2+

+𝑊 𝑘
−1∇𝑘𝑇0 + 𝑣𝑘0𝜕𝑘𝑇1 + 𝑣𝑘0∇𝑘𝑇−1 + 𝑣𝑘1𝜕𝑘𝑇0) + 𝑣𝑧2 +

5
3
𝑃𝑟−1𝜉𝜀𝑖 𝑗𝑘×

×(𝜕𝑖𝑇0𝜕 𝑗𝐵
𝑘
2 + 𝜕𝑖𝑇1 (𝜕 𝑗𝐵𝑘

1 + ∇ 𝑗𝐵
𝑘
−1) + 𝜕𝑖𝑇2𝜕 𝑗𝐵

𝑘
0 )−

−5
3
𝑃𝑟−1𝜉𝑒𝑖𝜀𝑖 𝑗𝑘 (𝜕 𝑗𝐵𝑘

3 + ∇ 𝑗𝐵
𝑘
1 ), (58)

𝜕𝑡𝐵
𝑖
2 = −𝜀𝑖 𝑗𝑘𝜕 𝑗𝐸 𝑘

2 , 𝜀𝑖 𝑗𝑘𝜕 𝑗𝐵
𝑘
2 = −𝑣𝑖0,

𝜕𝑖𝑣
𝑖
2 + ∇𝑖𝑣

𝑖
0 = 0, 𝜕𝑖𝐵

𝑖
2 + ∇𝑖𝐵

𝑖
0 = 0.

The system (6) is averaged over the fast variables, and no secular terms of order 𝑅2 are found. Finally, the order 𝑅3 is
reached, where the equations are

𝜕𝑡𝑣
𝑖
3 + 𝜕𝑇𝑊

𝑖
−1 +𝑊

𝑘
−1𝜕𝑘𝑣

𝑖
3 + 𝑣

𝑘
0𝜕𝑘𝑣

𝑖
2 +𝑊

𝑘
−1∇𝑘𝑣

𝑖
1 + 𝑣

𝑘
0∇𝑘𝑣

𝑖
0+

+𝑣𝑘1𝜕𝑘𝑣
𝑖
1 + 𝑣

𝑘
1∇𝑘𝑊

𝑖
−1 + 𝑣

𝑘
2𝜕𝑘𝑣

𝑖
0 = −𝜕𝑖𝑃3 − ∇𝑖

(
𝑃1 + 𝑃1

)
−

−
(
𝐸 𝑖

1 + 𝐸
𝑖

1

)
− 𝐷𝜀𝑖 𝑗𝑘𝑣 𝑗3𝑒𝑘 − 𝜀𝑖 𝑗𝑘𝑊

𝑗

−1𝐵
𝑘
1 − 𝜀𝑖 𝑗𝑘𝑣 𝑗1𝐵

𝑘
−1 + 𝑒𝑖𝑅𝑎𝑇3−

−𝑅𝑎1

(
0.71(𝜕𝑖𝑇3 + ∇𝑖𝑇1) +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗 (𝜕𝑘𝑇3 + ∇𝑘𝑇1)

)
− 𝑣𝑖3 + 𝜕

2
𝑘𝑣

𝑖
3 + 2𝜕𝑘∇𝑘𝑣

𝑖
1 + ∇2

𝑘𝑊
𝑖
−1,

𝜕𝑡𝑇3 + 𝜕𝑇𝑇−1 − 2.1𝑃𝑟−1 (𝜕2
𝑘𝑇3 + 2𝜕𝑘∇𝑘𝑇1 + ∇2𝑇−1) =

= −1.47(𝑊 𝑘
−1𝜕𝑘𝑇3 +𝑊 𝑘

−1∇𝑘𝑇1 + 𝑣𝑘0𝜕𝑘𝑇2 + 𝑣𝑘0∇𝑘𝑇0 + 𝑣𝑘1∇𝑘𝑇1+

+𝑣𝑘1∇𝑘𝑇−1 + 𝑣𝑘2𝜕𝑘𝑇0) + 𝑣𝑧3 +
5
3
𝑃𝑟−1𝜉𝜀𝑖 𝑗𝑘 (𝜕𝑖𝑇0 (𝜕 𝑗𝐵𝑘

3 + ∇ 𝑗𝐵
𝑘
1 )+

+𝜕𝑖𝑇1𝜕 𝑗𝐵
𝑘
2 + 𝜕𝑖𝑇2 (𝜕 𝑗𝐵𝑘

1 + ∇ 𝑗𝐵
𝑘
−1) + 𝜕𝑖𝑇3𝜕 𝑗𝐵

𝑘
0 ) −

5
3
𝑃𝑟−1𝜉𝑒𝑖𝜀𝑖 𝑗𝑘∇ 𝑗𝐵

𝑘
2 , (59)

𝜕𝑡𝐵
𝑖
3 + 𝜕𝑇𝐵

𝑖
−1 = −𝜀𝑖 𝑗𝑘 (𝜕 𝑗𝐸 𝑘

3 + ∇ 𝑗𝐸
𝑘
1 ),

𝜀𝑖 𝑗𝑘 (𝜕 𝑗𝐵𝑘
3 + ∇ 𝑗𝐵

𝑘
1 ) = −𝑣𝑖1,

𝜕𝑖𝑣
𝑖
3 + ∇𝑖𝑣

𝑖
1 = 0, 𝜕𝑖𝐵

𝑖
3 + ∇𝑖𝐵

𝑖
1 = 0.

The fundamental secular equations that describe the development of large-scale disturbances in a stratified plasma with a
vertical external magnetic field are obtained by averaging this system of equations over fast variables:

𝜕𝑇𝑊
𝑖
−1 + ∇𝑘

(
𝑣𝑘0𝑣

𝑖
0

)
= −∇𝑖𝑃1 − 𝐸

𝑖

1 + ∇2
𝑘𝑊

𝑖
−1, (60)

𝜕𝑇𝑇−1 − 2.1𝑃𝑟−1∇2𝑇−1 = −1.47∇𝑘

(
𝑣𝑘0𝑇0

)
, (61)

𝜕𝑇𝐵
𝑖
−1 = −𝜀𝑖 𝑗𝑘∇ 𝑗𝐸

𝑘

1 . (62)
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APPENDIX B. SMALL-SCALE FIELDS
Let us now examine the zero-order equations in 𝑅, presented in Appendix A (see Eq. (6)). By introducing the

differential operators
𝐷𝑊 = 𝜕𝑡 + 1 − 𝜕2 +𝑊 𝑘

−1𝜕𝑘 , 𝐷𝑇 = 𝜕𝑡 + 1.47𝑊 𝑘
−1𝜕𝑘 − 2.1𝑃𝑟−1𝜕2, (63)

the system (6) can be conveniently rewritten in the following form:

𝐷𝑊𝑣
𝑖
0 = −𝜕𝑖𝑃0 − 𝐷𝜀𝑖 𝑗𝑘𝑣 𝑗0𝑒𝑘 + 𝑒𝑖𝑅𝑎𝑇0 − 𝑅𝑎1

(
0.71𝜕𝑖𝑇0 +

3
2
𝜉𝐷𝜀𝑖 𝑗𝑘𝑒 𝑗𝜕𝑘𝑇0

)
+ 𝐹𝑖

0 (64)

𝐷𝑇𝑇0 = 𝑒𝑘𝑣
𝑘
0 (65)

𝜕𝑖𝑣
𝑖
0 = 𝜕𝑘𝐵

𝑘
0 = 𝜕𝑖𝐹

𝑖
0 = 0 (66)

By substituting Eq. (65) into Eq. (64) and applying the solenoidality condition for the fields (Eq. (66)), we obtain the
following expression for the pressure 𝑃0:

𝑃0 = 𝑃1𝑢0 + 𝑃2𝑣0 + 𝑃3𝑤0 (67)

where
𝑣𝑥0 = 𝑢0, 𝑣

𝑦

0 = 𝑣0, 𝑣
𝑧
0 = 𝑤0,

𝑃1 =
𝐷𝜕𝑦

𝜕2 , 𝑃2 = −𝐷𝜕𝑥
𝜕2 , 𝑃3 = 𝑅𝑎

𝜕𝑧

𝐷𝑇𝜕
2
− 0.71

𝑅𝑎1

𝐷𝑇

.

Utilizing the representation given in Eq. (67), the pressure term in Eqs. (64) can be eliminated, yielding the system of
equations that governs the velocity fields in the zeroth-order approximation:

(
𝐷𝑊 + 𝑝1𝑥

)
𝑢0 + (𝑝2𝑥 + 𝐷) 𝑣0 +

(
𝑝3𝑥 + 𝐷𝑅𝑥

)
𝑤0 = 𝐹𝑥

0 ,(
𝑝1𝑦 − 𝐷

)
𝑢0 +

(
𝐷𝑊 + 𝑝2𝑦

)
𝑣0 +

(
𝑝3𝑦 + 𝐷𝑅𝑦

)
𝑤0 = 𝐹

𝑦

0 ,

𝑝1𝑧𝑢0 + 𝑝2𝑧𝑣0 +
(
𝐷𝑊 + 𝑝3𝑧 −

𝑅𝑎

𝐷𝑇

+ 𝐷𝑅𝑧

)
𝑤0 = 0,

(68)

where

𝐷𝑅𝑥 =
𝑅𝑎1

𝐷𝑇

(
0.71𝜕𝑥 −

3
2
𝜉𝐷𝜕𝑦)

)
, 𝐷𝑅𝑦 =

𝑅𝑎1

𝐷𝑇

(
0.71𝜕𝑦 +

3
2
𝜉𝐷𝜕𝑥

)
, 𝐷𝑅𝑧 = 0.71𝑅𝑎1

𝜕𝑧

𝐷𝑇

,

𝑝1𝑥 = 𝜕𝑥𝑃1, 𝑝2𝑥 = 𝜕𝑥𝑃2, 𝑝3𝑥 = 𝜕𝑥𝑃3, 𝑝1𝑦 = 𝜕𝑦𝑃1, 𝑝2𝑦 = 𝜕𝑦𝑃2, 𝑝3𝑦 = 𝜕𝑦𝑃3,

𝑝1𝑧 = 𝜕𝑧𝑃1, 𝑝2𝑧 = 𝜕𝑧𝑃2, 𝑝3𝑧 = 𝜕𝑧𝑃3.

The solution of the system of equations (68) can be obtained by applying Cramer’s rule:

𝑢0 =
1
Δ

(
𝑑1 · 𝐹𝑥

0 + 𝑑2 · 𝐹𝑦

0

)
, 𝑣0 =

1
Δ

(
𝑑3 · 𝐹𝑥

0 + 𝑑4 · 𝐹𝑦

0

)
, 𝑤0 =

1
Δ

(
𝑑5 · 𝐹𝑥

0 + 𝑑6 · 𝐹𝑦

0

)
. (69)

where

𝑑1 =

(
𝐷𝑊 + 𝑝2𝑦

) (
𝐷𝑊 + 𝑝3𝑧 −

𝑅𝑎

𝐷𝑇

+ 𝐷𝑅𝑧

)
− 𝑝2𝑧

(
𝑝3𝑦 + 𝐷𝑅𝑦

)
,

𝑑2 =

(
𝑝3𝑥 + 𝐷𝑅𝑥

)
𝑝2𝑧 − (𝑝2𝑥 + 𝐷)

(
𝐷𝑊 + 𝑝3𝑧 −

𝑅𝑎

𝐷𝑇

+ 𝐷𝑅𝑧

)
,

𝑑3 =

(
𝑝3𝑦 + 𝐷𝑅𝑦

)
𝑝1𝑧 −

(
𝑝1𝑦 − 𝐷

) (
𝐷𝑊 + 𝑝3𝑧 −

𝑅𝑎

𝐷𝑇

+ 𝐷𝑅𝑧

)
,

𝑑4 =

(
𝐷𝑊 + 𝑝1𝑥

) (
𝐷𝑊 + 𝑝3𝑧 −

𝑅𝑎

𝐷𝑇

+ 𝐷𝑅𝑧

)
−

(
𝑝3𝑥 + 𝐷𝑅𝑥

)
𝑝1𝑧 ,

𝑑5 =
(
𝑝1𝑦 − 𝐷

)
𝑝2𝑧 −

(
𝐷𝑊 + 𝑝2𝑦

)
𝑝1𝑧 , 𝑑6 = (𝑝2𝑥 + 𝐷) 𝑝1𝑧 −

(
𝐷𝑊 + 𝑝1𝑥

)
𝑝2𝑧 .

Here, the symbol Δ denotes the determinant of the system of equations (68):

Δ =

(
𝐷𝑊 + 𝑝1𝑥

)
· 𝑑1 + (𝑝2𝑥 + 𝐷) · 𝑑3 +

(
𝑝3𝑥 + 𝐷𝑅𝑥

)
· 𝑑5. (70)
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All operators involved in (69)-(70) are mutually commutative, which simplifies the evaluation of these expressions. To
compute expressions (69)-(70), we rewrite the external force (12) in complex form:

F0 = i
𝑓0
2
𝑒𝑖𝜙2 + j

𝑓0
2
𝑒𝑖𝜙1 + 𝑐.𝑐. (71)

It follows from substituting (71) into (69)-(70) that the operators act on the exponential term from the left, such that
𝑝 exp(𝑖kx − 𝑖𝜔0𝑡) = exp(𝑖kx − 𝑖𝜔0𝑡)𝑝(k,−𝜔0). Therefore, we make use of the following properties of the eigenfunctions
𝑝(k,−𝜔0):

𝐷𝑊,𝑇𝑒
𝑖𝜙1 = 𝑒𝑖𝜙1𝐷𝑊,𝑇 (k1,−𝜔0) , 𝐷𝑊,𝑇𝑒

𝑖𝜙2 = 𝑒𝑖𝜙2𝐷𝑊,𝑇 (k2,−𝜔0) ,

Δ𝑒𝑖𝜙1 = 𝑒𝑖𝜙1Δ (k1,−𝜔0) , Δ𝑒𝑖𝜙2 = 𝑒𝑖𝜙2Δ (k2,−𝜔0) . (72)

To simplify the formulas, let us set 𝑘0 = 1 and 𝜔0 = 1, introducing new designations:

𝐷𝑊 (k1,−𝜔0) = 𝐷∗
𝑊1

= 3 − 𝑖 (1 −𝑊1) ,

𝐷𝑊 (k2,−𝜔0) = 𝐷∗
𝑊2

= 3 − 𝑖 (1 −𝑊2) ,

𝐷𝑇 (k1,−𝜔0) = 𝐷∗
𝑇1

= 4.2𝑃𝑟−1 − 𝑖 (1 − 1.47𝑊1) ,

𝐷𝑇 (k2,−𝜔0) = 𝐷∗
𝑇2

= 4.2𝑃𝑟−1 − 𝑖 (1 − 1.47𝑊2) . (73)

Δ (k1,−𝜔0) = Δ∗
1 = 𝐷∗

𝑊1

(
𝐷∗

𝑊1

(
𝐷∗

𝑊1
− 𝑅𝑎

2𝐷∗
𝑇1

)
+ 𝐷2

2

(
1 + 3

2
𝜉
𝑖𝑅𝑎1
𝐷∗

𝑇1

))
,

Δ (k2,−𝜔0) = Δ∗
2 = 𝐷∗

𝑊2

(
𝐷∗

𝑊2

(
𝐷∗

𝑊2
− 𝑅𝑎

2𝐷∗
𝑇2

)
+ 𝐷2

2

(
1 + 3

2
𝜉
𝑖𝑅𝑎1
𝐷∗

𝑇2

))
.

Here and throughout the text, the superscript ∗ denotes complex conjugation. Based on formulas (6), we can determine
the zeroth-order approximation of the velocity field:

𝑢0 = 𝑒𝑖𝜙2
𝑓0
2

𝐴∗
2

𝐷∗
𝑊2
𝐴∗

2 +
𝐷2

2 𝐵
∗
2

− 𝑒𝑖𝜙1
𝑓0
2

𝐷/2
𝐷∗

𝑊1
𝐴∗

1 +
𝐷2

2 𝐵
∗
1

+ 𝑐.𝑐. =

= 𝑢01𝑒
𝑖𝜙1 + 𝑢02𝑒

−𝑖𝜙1 + 𝑢03𝑒
𝑖𝜙2 + 𝑢04𝑒

−𝑖𝜙2 , (74)

𝑣0 = 𝑒𝑖𝜙2
𝑓0
2

𝐷/2
𝐷∗

𝑊2
𝐴∗

2 +
𝐷2

2 𝐵
∗
2

+ 𝑒𝑖𝜙1
𝑓0
2

𝐴∗
1

𝐷∗
𝑊1
𝐴∗

1 +
𝐷2

2 𝐵
∗
1

+ 𝑐.𝑐. =

= 𝑣01𝑒
𝑖𝜙1 + 𝑣02𝑒

−𝑖𝜙1 + 𝑣03𝑒
𝑖𝜙2 + 𝑣04𝑒

−𝑖𝜙2 , (75)

𝑤0 = 𝑒𝑖𝜙1
𝑓0
2

𝐷/2
𝐷∗

𝑊1
𝐴∗

1 +
𝐷2

2 𝐵
∗
1

− 𝑒𝑖𝜙2
𝑓0
2

𝐷/2
𝐷∗

𝑊2
𝐴∗

2 +
𝐷2

2 𝐵
∗
2

+ 𝑐.𝑐. =

= 𝑤01𝑒
𝑖𝜙1 + 𝑤02𝑒

−𝑖𝜙1 + 𝑤03𝑒
𝑖𝜙2 + 𝑤04𝑒

−𝑖𝜙2 , (76)

where

𝐴∗
1,2 = 𝐷∗

𝑊1,2
− 𝑅𝑎

2𝐷∗
𝑇1,2

, 𝐵∗
1,2 = 1 + 3

2
𝜉
𝑖𝑅𝑎1
𝐷∗

𝑇1,2

. (77)

The indices (1, 2) in the expressions for 𝐴, 𝐵 are written in accordance with the components 𝑊1 and 𝑊2. The following
relationships are satisfied between the velocity components:

𝑢02 = (𝑢01)∗ , 𝑢04 = (𝑢03)∗ , 𝑣02 = (𝑣01)∗ , 𝑣04 = (𝑣03)∗ , 𝑤02 = (𝑤01)∗ , 𝑤04 = (𝑤03)∗ .
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APPENDIX C. CALCULATIONS OF THE REYNOLDS STRESSES
In order to close the system of equations (30)-(31) governing the evolution of large-scale velocity fields W−1, it is

essential to compute correlators of the following form:

𝑇31 = 𝑤0𝑢0 = 𝑤01 (𝑢01)∗ + (𝑤01)∗ 𝑢01 + 𝑤03 (𝑢03)∗ + (𝑤03)∗ 𝑢03 (78)

𝑇32 = 𝑤0𝑣0 = 𝑤01 (𝑣01)∗ + (𝑤01)∗ 𝑣01 + 𝑤03 (𝑣03)∗ + (𝑤03)∗ 𝑣03 (79)

Substituting the expressions for the small-scale velocity fields (6)-(6) into the definitions (78)-(79) yields the following:

𝑇31 = −
𝑓 2
0
8

𝐷 (𝐴2 + 𝐴∗
2)���𝐷𝑊2𝐴2 + 𝐷2

2 𝐵2

���2 −
𝑓 2
0
8

𝐷2���𝐷𝑊1𝐴1 + 𝐷2

2 𝐵1

���2 , (80)

𝑇32 = −
𝑓 2
0
8

𝐷 (𝐴1 + 𝐴∗
1)���𝐷𝑊1𝐴1 + 𝐷2

2 𝐵1

���2 −
𝑓 2
0
8

𝐷2���𝐷𝑊2𝐴2 + 𝐷2

2 𝐵2

���2 . (81)

Using the expressions given in (77), we derive a set of useful relations for calculating 𝑇31 and 𝑇32 as follows:��𝐷𝑊1,2

��2 = 𝐷𝑊1,2𝐷
∗
𝑊1,2

= 9 + (1 −𝑊1,2)2 = 9 +𝑊2
1,2,

��𝐷𝑇1,2

��2 = 𝐷𝑇1,2𝐷
∗
𝑇1,2

=

= 17.64𝑃𝑟−2 + (1 − 1.47𝑊1,2)2 = 17.64𝑃𝑟−2 + ˜̃
𝑊

2
1,2,��𝐴1,2

��2 = 𝐴1,2𝐴
∗
1,2,

��𝐴1,2
��2 = 9 +𝑊2

1,2 +
𝑅𝑎

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

(
𝑃𝑟𝑊1,2

˜̃
𝑊1,2 − 12.6 + 𝑅𝑎

4

)
,

��𝐵1,2
��2 = 𝐵1,2𝐵

∗
1,2,

��𝐵1,2
��2 = 1 + 𝜉𝑅𝑎1

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

(
9
4
𝜉𝑅𝑎1 − 3𝑃𝑟 ˜̃𝑊1,2

)
,

𝐴1,2 + 𝐴∗
1,2 = 6 − 4.2𝑅𝑎

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

, Π1,2 =

����𝐷𝑊1,2𝐴1,2 +
𝐷2

2
𝐵1,2

����2 =

= 36(1 −𝑊1,2)2 +
[
𝐷2

2
+ 9 − (1 −𝑊1,2)2

]2

+ Ξ
(1)
1,2 − 𝜉Ξ(2)

1,2 + 𝜉Ξ(3)
1,2 ,

Ξ
(1)
1,2 = 𝑅𝑎(9 + (1 −𝑊1,2)2) ·

𝑃𝑟𝑊1,2
˜̃
𝑊1,2 − 12.6 + 𝑅𝑎

4

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

,

Ξ
(2)
1,2 =

3
2
𝐷2𝑅𝑎1 ·

25.2𝑊1,2 + 𝑃𝑟 (9 −𝑊2
1,2)

˜̃
𝑊1,2

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

, Ξ
(3)
1,2 =

𝐷4

4
· 𝑅𝑎1

17.64 + 𝑃𝑟2 ˜̃
𝑊

2
1,2

(
9
4
𝜉𝑅𝑎1 − 3𝑃𝑟 ˜̃𝑊1,2

)
.

Substituting the above relations into (80)-(81), we derive the general form of the Reynolds stress expressions:

𝑇31 = −
𝑓 2
0
8
𝐷2

Π1
−
𝑓 2
0
2
𝐷

Π2

(
3
2
− 1.05𝑅𝑎

17.64 + 𝑃𝑟2 (1 − 1.47𝑊2)2

)
,

𝑇32 = −
𝑓 2
0
8
𝐷2

Π2
+
𝑓 2
0
2
𝐷

Π1

(
3
2
− 1.05𝑅𝑎

17.64 + 𝑃𝑟2 (1 − 1.47𝑊1)2

)
. (82)

At small𝑊1,2, module Π1,2 can be expanded into a series in𝑊1,2:

Π−1
1,2 ≈ 𝛼0 + 𝛼𝑊1,2, 𝛼0 =

4
(𝐷2 + 16)2 + 144 + 40𝑎0𝑅𝑎 + 4𝜉 (𝑚0 − 𝑐0)

,

𝛼 =
32(20 − 𝐷2 + 𝑅𝑎(𝑎0 − 5𝑏0) + 𝜉

2 (𝑑0 − 𝑛0))[
(𝐷2 + 16)2 + 144 + 40𝑎0𝑅𝑎 + 4𝜉 (𝑚0 − 𝑐0)

]2 , (83)
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where
𝑎0 =

𝑃𝑟 − 12.6 + 𝑅𝑎/4
17.64 + 𝑃𝑟2 , 𝑏0 =

2.94𝑃𝑟2 (𝑃𝑟 − 12.6 + 𝑅𝑎/4)
(17.64 + 𝑃𝑟2)2 − 2.47𝑃𝑟

17.64 + 𝑃𝑟2 ,

𝑐0 =
3
2
𝐷2𝑅𝑎1 ·

25.2 + 8𝑃𝑟
17.64 + 𝑃𝑟2 , 𝑑0 =

3
2
𝐷2𝑅𝑎1 ·

[
2.94𝑃𝑟2 (25.2 + 8𝑃𝑟)

(17.64 + 𝑃𝑟2)2 − 25.2 + 9.76𝑃𝑟
17.64 + 𝑃𝑟2

]
,

𝑚0 =
𝐷4

4
𝑅𝑎1 ·

9
4𝜉𝑅𝑎1 − 3𝑃𝑟
17.64 + 𝑃𝑟2 , 𝑛0 =

𝐷4

4
𝑅𝑎1 ·


4.41𝑃𝑟

17.64 + 𝑃𝑟2 +
2.94𝑃𝑟2

(
9
4𝜉𝑅𝑎1 − 3𝑃𝑟

)
(17.64 + 𝑃𝑟2)2

 .
At small values of𝑊1.2, the Reynolds stresses given in (6) take the following form:

𝑇31 ≈ −
𝑓 2
0
8
𝐷2 (𝛼0 + 𝛼𝑊1) −

𝑓 2
0
2
𝐷 (𝛼0𝜎0 + (𝛼𝜎0 − 𝛼0𝜎1)𝑊2),

𝑇32 ≈ −
𝑓 2
0
8
𝐷2 (𝛼0 + 𝛼𝑊2) +

𝑓 2
0
2
𝐷 (𝛼0𝜎0 + (𝛼𝜎0 − 𝛼0𝜎1)𝑊1), (84)

𝜎0 =
3
2
− 1.05𝑅𝑎

17.64 + 𝑃𝑟2 , 𝜎1 =
3.087𝑅𝑎𝑃𝑟2

(17.64 + 𝑃𝑟2)2 .

Expression (6) for the coefficient of the 𝛼-effect shows great similarity to the previously obtained results for a rotating
viscous fluid [16], the key difference being that the parameter 𝐷 is due to the Lorentz force rather than the Coriolis force
as in Ref. [16].
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ВИНИКНЕННЯ ВЕЛИКОМАСШТАБНИХМАГНIТО-ВИХРОВИХ СТРУКТУР
ДРIБНОМАСШТАБНОЮ СПIРАЛЬНIСТЮ В СТРАТИФIКОВАНIЙ ЗАМАГНIЧЕНIЙ ПЛАЗМI

М.Й. Копп1, В.В. Яновський1,2
1Iнститут монокристаллов, Нацiональна Академiя Наук України, пр. Науки 60, 61072, Харкiв, Україна

2Харкiвський нацiональний унiверситет iм. В.Н. Каразiна, майдан Свободи, 4, 61022, Харкiв, Україна
В роботi виявлено новий тип нестiйкостi, що призводить до генерацiї вихрових рухiв та магнiтних полiв у плазмовому шарi з
постiйним градiєнтом температури пiд дiєю однорiдної сили тяжiння та вертикального магнiтного поля. Аналiз проводиться
у межах електронної магнитогидродинамики (ЕМГД) з урахуванням термомагнiтних ефектiв. Отримано нову великомасшта-
бну нестiйкiсть типу 𝛼-ефекту, що сприяє генерацiї великомасштабних вихрових i магнiтних полiв. Ця нестiйкiсть виникає
внаслiдок спiльної дiї зовнiшнього однорiдного магнiтного поля, орiєнтованого перпендикулярно до плазмового шару, i мало-
масштабної спiральної сили. Зовнiшня сила моделюється як джерело дрiбномасштабних коливань у полi швидкостi електронiв,
що характеризується малим числом Рейнольдса (𝑅 ≪ 1). Наявнiсть малого параметра у системi дозволяє застосувати метод
багатомасштабних асимптотичних розкладiв. У третьому порядку за кiлькiстю Рейнольдса отримано систему нелiнiйних рiв-
нянь, що описують еволюцiю великомасштабних вихрових та магнiтних збурень. Обговорюється також новий ефект, пов’язаний
iз впливом термосили (ефект Нернста) на великомасштабну нестiйкiсть. Показано, що збiльшення параметра Нернста змен-
шує коефiцiєнт 𝛼 i тим самим пригнiчує розвиток великомасштабної нестiйкостi. За допомогою чисельного аналiзу отримано
стацiонарнi рiшення рiвнянь вихрового та магнiтного динамо у виглядi локалiзованих структур спiрального типу.
Ключовi слова: електронна магнiтогiдродинамiка; багатомасштабнi асимптотичнi розкладання; дрiбномасштабна сила;
𝛼-ефект; локалiзованi структури

https://arxiv.org/abs/1612.08860v1
https://arxiv.org/abs/1612.08860v1
https://doi.org/10.1038/335238a0
https://doi.org/10.1063/5.0214000

	Introduction
	Problem statement and basic equations
	Equations for large-scale vortex and magnetic fields
	Large-scale instability
	Stationary nonlinear structures
	Conclusions

