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An approximate analytical solution to the problem of radiation (diffraction) of electromagnetic waves by dipole (monopole) with 
variable radius along antenna length is presented. The solution was carried out using generalized method of induced electromotive 
forces (EMF). An influence of the change of monopole radius upon input characteristics is numerically studied. Theoretical results are 
compared with the experimental data. 
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An additional parameter for obtaining the given electrodynamic characteristics of cylindrical dipole (monopole) 
antennas can be the change of the radius of the cross-section of the dipole along its length. Such radiators can be located 
in free space (dipole), half-space (monopole), rectangular waveguide, resonator, on sphere etc. Suppose the radius of the 
dipole increases from the center of the antenna to its ends according to a linear law (biconical dipole, conical monopole). 
In that case, such an antenna resonates at a shorter geometric length and is more broadband than a dipole of constant 
radius. Starting from the classic publications of Schelkunoff [1], Tai [2], Woodward & Brown [3], Bevensee [4], antennas 
of this type have attracted the attention of many researchers. These can be symmetrical radiators excited by a point source 
[5], [6], [7], [8], [9], [10]; dipoles with asymmetrical arms [11], [12], antennas with asymmetrical arms and excitation 
[13], [14], [15], [16]; modified radiators with minor design changes compared to traditional designs [17], [18], [19], [20]; 
as well as passive scattering antenna elements [21], [22], [23], [24], [25]. However, all of them are devoted to calculating 
the characteristics of a radiating (scattering) dipole (monopole) with a linear law of the change of antenna radius. 

In this paper, an approximate analytical solution to the problem of radiation (scattering) of electromagnetic waves 
by a dipole (monopole) with other laws of change of radius along antenna length (piecewise linear (diamond-shaped), 
Vivaldi type, combined trigonometric, circle, piecewise constant) is presented. The solution was carried out using the 
generalized method of induced electromotive forces (EMF) in accordance with the concept of “thin-wire approximation”. 
The input characteristics of the antennas under consideration are analyzed in detail. 

PROBLEM FORMULATION AND INTEGRAL EQUATION SOLUTION 
Let the monopole of the L  length and the variable radius ( )r s , located in half-space, be excited by the electric field 

extraneous source 0 ( )sE s  (Fig. 1). The monochromatic fields and currents depend on time t  as i te ω  ( 2 fω = π  is the 
circular frequency, f  is the frequency, measured in Hz). The monopole is electrically thin, if the following inequalities 
are performed: 

( )kr s <<1, ( )r s << 2L , (1)

where 2 /k = π λ , λ  is the wavelength in free space. 
The integral equation in the current ( )J s  for the impedance boundary condition on the dipole surface acquires the 

form [6], [24]: 
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Here 2 2( , ) ( ) ( )R s s s s r s′ ′= − + , s  and s′  are the local coordinates related to the dipole axis and surface, iz  is the 
distributed internal linear impedance, ( ) 0J L± = , L−  is the coordinate of the mirror image of the dipole relative to the 
infinite ideally conducting plane (for monopole). So, for example, for metal cylinders ( σ  is the metal conductivity, OΔ  

is the skin layer thickness) under the condition r >> OΔ , is determined by the relation O
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for real metals the values iz  are quite small, it is necessary to take this term into account. In this case, equation (2) is the 
Fredholm equation of the 2-nd kind and has a unique solution. Note also that at 0( )r s const r= = , equation (2) transforms 
into the equation in the current along an impedance dipole of constant radius with a quasi-one-dimensional core 

2 2
0( , ) ( , ) ( )R s s R s s s s r′ ′ ′= = − + . 

The approximate analytical solution of the equation (2) can be obtained by the generalized method of induced 
EMF [13], [14]. Note that in [24] equation (2) for a symmetric biconical dipole is solved by means of the averaging 
method [26]. Using this method the approximating current distribution functions in expressions (3) were also found. 
 

     
(a)                                                    (b)                                                (c) 

       
(d)                                                 (e)                                                 (f) 

Figure 1. The problem geometry and corresponding notations: (a) - constant radius; (b) - (f) - variable radius 

The dipole currents can be presented as product of the unknown complex amplitudes nJ  and distribution functions 
( )nf s  ( 0,1n = ) as 

 0 0 1 1( ) ( ) ( ); ( ) 0nJ s J f s J f s f L= + ± = . (3) 

Then the approximate solution to equation (2) can be obtained in the form ( , 0,1m n = ) 
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Let the dipole be excited in the point 0s =  by the voltage generator with amplitude 0V : 0 0( ) ( 0)sE s V s= δ − , 
where δ  is the Dirac delta function. Let us choose the functions 0,1( )f s  according to [26] in the following form: 

 0 1( ) sin ( | |), ( ) cos cosf s k L s f s ks kL= − = −   , (6) 

where 0[3 / 2 / (2 )]
120cos ln(2 / )
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−
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 , 0r  and mr  are the radii of the dipole in points 0s =  and ms L=  (Fig. 1). Note that 

the approximation of functions (6) adequately represents the real physical process if the dipole electrical lengths are small 
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(2 / ) 1.4L λ ≤  [26]. Other approximating function [26] 2 ( ) cos( / 2) cos( / 2)sf s ks kL= −  is valid in the range 
1.4 (2 / ) 2.5L< λ ≤ . 

The coefficients mnZ Σ  in the formulas (4) can be obtained from expressions (5), (6): 
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The input impedance for monopole in in inZ R iX= +  and admittance in in inY G iB= +  can be presented as  
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Then, the module of reflection coefficient in the antenna feeder with the wave impedance W  is equal to 

 11
W| |

+ W
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−
= , (8) 

and the voltage standing wave ratio is determined by the formula ( ) ( )11 11VSWR 1 | | 1 | |S S= + − . 
Note that for printed antennas of the type under consideration (piecewise linear (diamond-shaped), Vivaldi type, 

combined trigonometric, circle, piecewise constant), the solution to equation (2) is also valid, but it is necessary to make 
the replacement ( ) ( ) / 4r s d s=  [26], where ( )d s  is the antenna width. 

 
NUMERICAL AND MEASURED RESULTS 

Next we will consider radiators with the following geometric parameters [27]: 0r =1.522 mm, cr =3.5 mm, L
=50.065 mm, kρ → ∞ . Then the characteristic impedance of the feeder line is 0W 60ln( / )cr r= =50 Ohm. Fig. 2 shows 
the dependences of the real and imaginary parts of the input impedance of the regular and conical monopoles ( mL L= ) 
on its electrical length at different angles ψ . 

      
(a)                                                                                                (b) 

Figure 2. The dependences of the calculated (7) and measured [27] monopole input impedance on its electrical length at different 
angles ψ : (a) – real part inR , (b) – imaginary part inX  
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As can be seen, the agreement between the calculated and measured values ( )inZ kL  at O0.0ψ =  (regular monopole) 
is quite satisfactory, and with the increase of the angle ψ  the impedance change trends to coincide with those measured 
in [3]. To satisfy inequalities (1), we will limit ourselves to the value O7.5ψ =  ( 8.038mr =  mm, / 2 0.08mr L = ). 

 
1. Numerical results for piecewise linear law of ( )r s  

Fig. 3a shows the laws of change of radius along the monopole (Fig. 1b) determined by the following formula 

 0

0

tan , at ,
( )

[ / (1 )]( ) tan ,at ,
r s s L

r s
r L s s L

+ ψ ≤ κ
=  + κ − κ − ψ ≥ κ

 (9) 

where /ms Lκ = , and Fig. 3b shows the dependences of the reflection coefficient modulus 11| |S  in the feeder line 
corresponding to these laws. Fig. 3a also shows that curve 0.75κ =  has the longest path length on the surface of those 
presented there. Accordingly, this curve describes the resonance at the lowest frequency in Fig. 3b. However, the effect 
of this phenomenon on the resonance frequency is not always proportional to the increase in the path length. As for the 
minimum value of reflection observed for curve 0.25κ = , this can be explained by a relatively smooth bend at point .mL
It is also interesting that the shift of the resonant frequency in this case is proportional to the increase in the wave path 
along the dipole surface. 

 

             
(a)                                                                                                       (b) 

Figure 3. The laws of change of radius along the monopole (a), the dependences of the reflection coefficient modulus 11| |S  in the 
feeder line from the electrical length of the monopole (b) at different positions of the maximum values of the radius and O7.5ψ =  

  
(a) (b) 

Figure 4. The dependences of the reflection coefficient modulus 11| |S  on the coordinate of the point with the maximum radius 
along the length of the monopole (a), the dependences of the values of resonant “shortening” ( / )resL λ  on the coordinate of the 
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Figs. 4 show the dependences of the reflection coefficient modulus 11| |S  and values of resonant “shortening” (the 
resonance condition is the fulfillment of equality 0inX =  when the sign inX  changes from negative to positive) ( / )resL λ  
(compared to a tuned monopole, where ( / ) 0.25resL λ = ) on the coordinate of the point with the maximum radius along 
the length of the monopole. In Figs. 4 the dotted line indicates the value 0.618κ =  that is associated with the quantity 

1 /κ = Φ , where 1.618Φ =  is the so-called “golden ratio” [28]. As you can see, the value 0.618κ ≈  is a “inflection point” 
on both graphs. This can be explained by the fact that at this point the additional capacitance formed by the last segment 
of the monopole operates in an optimal way, which creates this shortening. Approximation of the function in Fig. 4a and 
the study of its derivatives indeed allow us to conclude that at 0.618κ ≈  there is an inflection point. 

Placing the maximum values of the monopole radius at this point for different angles ψ  (Fig. 5a) leads to an even 
better matching of the monopole with the feeder line (Fig. 5b). 

  
(a) (b) 

Figure 5. The laws of change of radius along the monopole at 0.618κ =  (a), the dependences of the reflection coefficient 
modulus 11| |S  in the feeder line from the electrical length of the monopole (b) for different ψ  

 
2. Numerical results for Vivaldi type law of ( )r s  

Fig. 6a shows the laws of change in radius along the monopole, determined by the following formula (Vivaldi type 
antenna [29], Fig. 1c). 
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Figure 6. The laws of change of radius along the monopole at O7.5ψ =  and β = π  (a), the dependences of the reflection 
coefficient modulus 11| |S  in the feeder line from the electrical length of the monopole (b) for different κ  
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Fig. 6b shows the dependences of the reflection coefficient modulus  in the feeder line corresponding to these 
laws. As can be seen, the best matching is observed at  (conical monopole) with a practically unchanged resonant 
frequency compared to regular monopole ( , ). In other cases, there is the decrease of the resonant 
frequency in comparison with a regular monopole. In Figs. 6 the red line indicates the value 0.618κ = . Fig. 7a shows the 
laws of change of radius along the monopole, determined by the formula (10) and 0.618κ =  for various β . Fig. 7b shows 
the dependences of the reflection coefficient modulus 11| |S  in the feeder line corresponding to these laws. As can be 
seen, the best matching is observed at 4β = π  and for all laws of change of radius the decrease is observed in the resonant 
frequency in comparison with a regular monopole. 

  

(a) (b) 

Figure 7. The laws of change of radius along the monopole at O7.5ψ =  and 0.618κ =  (a), the dependences of the reflection 
coefficient modulus 11| |S  in the feeder line from the electrical length of the monopole (b) for different β  

 
3. Numerical results for combined trigonometric law of ( )r s  

Let us further consider another law of change of radius along the monopole length, which is a combination of 
trigonometric functions [30] (Fig. 1d): 
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As can be seen, the best matching is observed at O2.5ψ =  (similar to Fig. 5b) and for all laws of change of radius a 
decrease is observed in the resonant frequency in comparison with a regular monopole. 
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Figure 8. The laws of change of radius along the monopole at 0.618κ =  (a), the dependences of the reflection coefficient 
modulus 11| |S  in the feeder line from the electrical length of the monopole (b) for different ψ  
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4. Numerical results for circle law of ( )r s  
Fig. 9a shows the laws of change of radius along the monopole, determined by the following formula (circle type, 

sr  is the radius of circle, see Fig. 1e) 

 0
2 2

0

, at & ,
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[ ( ) ] / ,at & ,
s s

s s s s

r s L r s L r
r s

r r s L r s L r s L r
≤ κ − ≥ κ += 

+ − − κ ≥ κ − ≤ κ +
 (12) 

and Fig. 9b shows the dependences of the reflection coefficient modulus 11| |S  in the feeder line corresponding to these 
laws. As can be seen, the best matching is observed at 0.618κ =  and for the first time at 1.0κ = , an increase of the 
resonant frequency resf  is observed in comparison with a regular monopole ( 0.0, ( )r s constκ = = ), in contrast to all 
previously considered laws of change in radius along the monopole. 
 

  
(a) (b) 

Figure 9. The laws of change of radius along the monopole at 6.516sr =  mm (a), the dependences of the reflection coefficient 
modulus 11| |S  in the feeder line from the electrical length of the monopole (b) for different κ  

 
5. Numerical results for piecewise constant law of ( )r s  

Fig. 10a shows the laws of change of radius along the monopole, determined by the following formula (piecewise 
constant, 2h  is the insert disc thickness, see Fig. 1f) 
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and Fig. 10b shows the dependences of the reflection coefficient modulus 11| |S  in the feeder line corresponding to these 
laws. As can be seen, the best matching is observed at 0.75κ =  and at 1.0κ =  also increase in the resonant frequency 

resf  is observed in comparison with a regular monopole. 
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Figure 10. The laws of change of radius along the monopole at 6.516sh r= =  mm (a), the dependences of the reflection 
coefficient modulus 11| |S  in the feeder line from the electrical length of the monopole (b) for different κ  
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Figure 11. The dependences of the reflection coefficient modulus 11| |S  in the feeder line from the electrical length of the double-

disk monopole structure for different κ  at 6.0nh =  mm ( 1 6n = ÷ ) 
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of the monopole, a double-disk structure is obtained. Obviously, instead of disks there can be any other structures (as well 
as their combinations) discussed above. Fig. 11 shows the dependences of the reflection coefficient modulus 11| |S  in the 
feeder line when the center of the first disk is located at point 1 / 0.125ms Lκ = = , and additional disks at 

0.25; 0.5; 0.618; 0.75;1.0κ = . The thicknesses of all disks are equal 2h =12.0 mm. As follows from the graphs, the best 
matching for this structure is observed (as before in Fig. 6) at 1.0κ = , and the greatest “shortening” of the monopole 
compared to that tuned monopole at 0.618κ =  (as before in Fig. 7). 

 
TESTING OF THE ADEQUACY OF THE PROPOSED MATHEMATICAL MODEL 

TO A REAL PHYSICAL PROCESS 
For testing of the adequacy of the proposed mathematical model to a real physical process, we briefly present 

numerical and experimental results for regular and conical dipoles located in a rectangular waveguide [24]. Let a dipole 
with a radius 0( ) | | tanr s r s= + ψ  varying along the length (Fig. 12a) or a similar monopole (Fig.12b) be located in a 
rectangular waveguide with a cross-section { }a b× . 

a 
Figure 12. The geometries of the dipole (a) and monopole (b) 

Then, when a fundamental type wave 10TE  propagates in the waveguide, the reflection coefficient 11S  from the 
monopole will be equal to  

 
2 2

0
11

4 (sin cos )sin .
( ) tg ( ) ( )W W

z

xi k kL kL kLS
abk ak Z kL Z kL Z kLψ ψ

ππ − = −  γ + ψ + 

  
      (14) 

The solution is carried out by the generalized method of induced EMF with current approximation
0( ) (cos cos )J s J ks kL= −  ). Expressions for the coefficients in formula (14) are presented in the Appendix I. 
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Fig. 13 shows the photographs of experimental samples of monopoles, which are located in the rectangular 
waveguide of size { }a b× =58x25 mm2. The axes of the monopoles are parallel to the narrow walls of the waveguide. 

As can be seen, the value of the resonant wavelength resλ  for the conical dipole increases, correspondingly resonant 
frequency resf  is decreases, (curve 3) in comparison with the conductors of the constant radius (the curves 1, 2). 
Moreover, the radiuses of the latter equal to a smaller (curve 1) and a larger (curves 2) radiuses of the conical dipole, 
correspondingly. To our minds, this interesting fact is explained by the definite redistribution of energy of the near reactive 
fields between the E - and H -modes of the waveguide connected with the occurrence of some angle ψ  between the 
axis {0 }y  of the waveguide and {0 }s  on the surface of the monopole. For the monopoles above the plane that we studied 
earlier, the same redistribution of reactive near fields obviously takes place. 

 

     
Figure 13. The experimental layouts of monopoles 

Fig. 14 represents the dependences of the 11| |S  value on the wavelength for the cooper monopoles at L =15.0 mm, 

0 / 8x a= , 0 0y = . 

 
Figure 14. The dependences of the calculated and measured monopole reflection modulus 11| |S  in the waveguide at the constant 
and variable radiuses of their cross section: 1, 2, 3–calculation by the formula (12), 4–calculation by means of the package “ANSYS 
HFSS”, 5–experimental data 

 
CONCLUSION 

Based on the obtained approximate analytical solution of the problem of current distribution along a radiating dipole 
with a variable cross-section radius, the input characteristics of a monopole over an infinite ideally conducting plane are 
investigated. It is shown that the use of different laws of radius variation along the monopole allows one to significantly 
improve the matching of the monopole with a feeder line with a standard characteristic impedance, and to change the 
resonant frequency of the monopole with its constant length. Thus, for successful matching of a monopole with a feeder 
line of a standard characteristic impedance, there is no need to change this impedance, but it is sufficient to change the 
antenna cross-section according to a certain law. This law can be chosen taking into account the requirements for changing 
or maintaining the resonant frequency of the radiator in comparison with the resonant frequency of a regular monopole. 

It should be especially emphasized that, unlike the currently widely used commercial packages, in the presented 
solution it is sufficient to make the required changes to the analytical formulas, rather than drawing new structures each time. 
Moreover, the calculation time (using a computer based on Intel® Core™ i5-7200 processor) of input characteristics at one 
structure geometry using the proposed approach is about 0.5-1.0 seconds. The total time of calculation using a commercial 
ANSYS HFSS package, taking into account the finding of intermediate parameters, was approximately 2-3 minutes. 
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APPENDIX I 
Coefficients in the formula (14): 
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ВХІДНІ ХАРАКТЕРИСТИКИ ЕЛЕКТРИЧНО ТОНКОГО ДИПОЛЯ ЗІ ЗМІННИМ РАДІУСОМ ВЗДОВЖ АНТЕНИ 

М. В. Нестеренко, О. М. Думин, Ю. В. Аркуша 
Харківський національний університет імені В.Н. Каразіна, майдан Свободи, 4, Харків, Україна, 61022 

Представлено наближене аналітичне розв'язання задачі випромінювання (дифракції) електромагнітних хвиль диполем 
(монополем) зі змінним радіусом вздовж довжини антени. Розв'язання виконано з використанням узагальненого методу 
індукованих електрорушійних сил (ЕРС). Чисельно досліджено вплив зміни радіуса монополя на вхідні характеристики. 
Теоретичні результати порівнюються з експериментальними даними. 
Ключові слова: диполь; монополь; змінний радіус; вхідні характеристики; узагальнений метод наведених ЕРС 


