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The interaction between a spherical particle of radius 10−5 − 10−3 m and atmospheric pressure currentless argon plasma was studied
numerically within the hydrodynamic approach. The nonlinear problem was solved taking into account the temperature dependencies
of transport and kinetic coefficients. A two-temperature model, which considers plasma thermal and ionization non-equilibrium near
the particle, was used. The boundary condition for electron heat flux on the outer boundary of the space charge sheath is discussed in
detail. The spatial distributions of plasma characteristics, such as temperature and number density, near the particle were determined
and analyzed. The heat flux from plasma to the particle was calculated over a wide temperature range of singly ionized argon plasma.
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1. INTRODUCTION
The interaction between fine condensed matter particles and plasma has been of interest in plasma physics for many

years. Low-pressure plasma containing fine particles is commonly referred to as dusty or complex plasma [1, 2, 3].
The study of dusty plasma often focuses on particle charge, potential, and interactions between particles [4, 5, 6, 7], as
well as the propagation of various types of waves and solitons [8, 9, 10, 11].

Atmospheric-pressure thermal plasma [12, 13] containing fine metal particles occurs in many technical plasma
processes, such as plasma spraying, plasma transferred arc (PTA) surfacing [14, 15, 16], spheroidization of metal pow-
ders [17, 18], and gas metal arc welding (GMAW) [19]. For the research and development of these processes, it is important
to understand both the thermal effect of plasma on the particles and the influence of particles on plasma characteristics.

In the present study, we consider currentless plasma, which corresponds to the conditions of plasma spraying [14, 15],
where thermal plasma is used to heat and melt dispersed material before depositing it on a surface. However, the obtained
results may also be useful for current-carrying plasma, which is used, for example in PTA surfacing. Our recent study
showed that for particles with a radius of up to ∼ 10−3 m, the thermal effect of plasma on the particle does not significantly
depend on the plasma current but rather on its temperature, which is determined by the current.

In Refs. [20, 21], the heat flux from atmospheric-pressure plasma to a particle was studied, taking into account
the thermal and ionization nonequilibrium of the plasma, the violation of quasineutrality near the particle surface, and
rarefaction effects over a wide range of Knudsen numbers. However, the inverse effect of the particle on the characteristics of
the surrounding plasma was not considered in these studies. Such effects were examined in our previous works [22, 23, 24].

In the present study, we used a modified boundary condition for the electron heat flux and accounted for an additional
mechanism of ion heat transfer to the particle. Additionally, particles with a radius of 𝑎 = 10−3 m were considered,
corresponding to the droplet size of electrode metal in GMA welding. The influence of particles of this size on plasma
characteristics is expected to be more pronounced.

2. MODEL AND BASIC EQUATIONS
Atmospheric-pressure currentless argon plasma with a temperature 𝑇0 = 6−18 kK is considered. In this temperature

range, the density of multiply charged argon ions is much lower than that of singly charged ions. We study the interaction
of such a plasma with a single stationary spherical particle (either metal or dielectric) of radius 𝑎 = 10−5 − 10−3 m placed
in it. The particle surface adsorbs electrons (𝑒) and ions (𝑖) from plasma, which then recombine on the surface and desorb
as argon atoms (𝑎). It means that there are electron, ion and atom fluxes J𝛼 = 𝑛𝑎v𝑎 near the particle (𝑛𝛼 is the number
density and v𝛼 is the velocity). Since the mobility of electrons is much higher than that of ions, the initially neutral particle
gains a negative electric charge, which increases until the electron and ion fluxes become equal J𝑖 = J𝑒 in the stationary
state. Also, we consider plasma at rest relative to the particle, i.e. the mass-average plasma velocity is zero 𝑚𝑒J𝑒 +𝑚𝑖J𝑖 +
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𝑚𝑎J𝑎 = 0 that gives J𝑎 = −J𝑖 . Thus, only one flux density is independent, and we will consider the ion flux density,
which satisfies the following continuity equation

∇J𝑖 = 𝜔𝑖 = 𝑘𝑖𝑛𝑒𝑛𝑎 − 𝑘𝑟𝑛
2
𝑒𝑛𝑖 . (1)

Here 𝜔𝑖 is the production rate of ions due to ionization-recombination reactions, obviously 𝜔𝑖 = 𝜔𝑒 = −𝜔𝑎; 𝑘𝑖 and 𝑘𝑟 are
the ionization and recombination rate constants, respectively.

Desorbed atoms have a temperature equal to the temperature of the particle surface 𝑇𝑠 ≪ 𝑇0. Due to efficient
energy transfer between ions and atoms (heavy particles ℎ) they share the same temperature, 𝑇ℎ. Since energy transfer
between heavy particles and electrons is slow, 𝑇ℎ differs from the electron temperature 𝑇𝑒 i.e., the plasma is not in thermal
equilibrium nor, consequently, in ionization equilibrium near the particle. A spatial distribution of plasma particle density
and temperature is established around the spherical particle.

The momentum equations for plasma particles have the form [25]:

−∇𝑝𝛼 − 𝑛𝛼𝑍𝛼𝑒∇𝜑 +
∑︁
𝛽

𝜈𝛼𝛽𝜇𝛼𝛽𝑛𝛼𝑛𝛽 (v𝛽 − v𝛼) − 𝐶
(𝑒)
𝛼 𝑛𝛼𝑘∇𝑇𝑒 = 0. (2)

Here 𝛼, 𝛽 = 𝑒, 𝑖, 𝑎; 𝑝𝛼 = 𝑛𝛼𝑘𝑇𝛼 is the partial pressure of 𝛼 plasma component, where 𝑘 is the Boltzmann constant; 𝑇𝛼
is the temperature; 𝑍𝛼 is the particle charge number (𝑍𝑒 = −1, 𝑍𝑖 = 1, and 𝑍𝑎 = 0); 𝑒 is the elementary charge; 𝜑 is the
distribution of electric potential in plasma; 𝜈𝛼𝛽 , 𝜇𝛼𝛽 = 𝑚𝛼𝑚𝛽/(𝑚𝛼 + 𝑚𝛽) are the momentum transfer collision rate and
the reduced mass of particle species 𝛼 and 𝛽, respectively, where 𝑚𝛼 is the mass of a particle of species 𝛼. The last term
in (2) is thermal diffusion force due to electron temperature gradient, where 𝐶

(𝑒)
𝛼 are the thermal diffusion coefficients.

The thermal diffusion force due to heavy particle temperature gradient can be neglected [26].
The space charge layer (sheath) is formed around the charged particle in plasma. The thickness of the sheath 𝑙𝑠ℎ is

of the order of Debye length that is 𝑟𝐷 ∼ 10−7 m for the considered plasma parameters [22]. The considered particle radii
are much greater than the sheath thickness 𝑎 ≫ 𝑙𝑠ℎ. Thus, we study plasma outside the sheath, where it is quasineutral
𝑛𝑒 = 𝑛𝑖 .

The sum of partial pressures of all particle species is constant and equal to atmospheric pressure 𝑝0, i.e. 𝑛𝑒𝑘𝑇𝑒 +
𝑛𝑖𝑘𝑇ℎ + 𝑛𝑎𝑘𝑇ℎ = 𝑐𝑜𝑛𝑠𝑡 = 𝑝0. Taking into account that 𝑛𝑒 = 𝑛𝑖 , we obtain the expression for atom number density

𝑛𝑎 =
𝑝0
𝑘𝑇ℎ

− 𝑛𝑖

(
1 + 𝑇𝑒

𝑇ℎ

)
. (3)

Equations (2) for electrons and ions (𝛼 = 𝑒, 𝑖), taking into account that J𝑒 = J𝑖 , can be rewritten as

−𝑘∇(𝑛𝑖𝑇𝛼) − 𝑛𝑖𝑍𝛼𝑒∇𝜑 − 𝛾𝛼J𝑖 − 𝐶
(𝑒)
𝛼 𝑛𝑖𝑘∇𝑇𝑒 = 0, (4)

where 𝛾𝑒 = 𝜈𝑒𝑎𝜇𝑒𝑎 (𝑛𝑖 + 𝑛𝑎) and 𝛾𝑖 = 𝜈𝑖𝑎𝜇𝑖𝑎 (𝑛𝑖 + 𝑛𝑎).
By adding equations (4) we eliminate the term with ∇𝜑 and obtain the expression for ion flux

J𝑖 = − 𝑘

𝛾𝑒 + 𝛾𝑖

(
(𝑇𝑒 + 𝑇ℎ)∇𝑛𝑖 + 𝑛𝑖∇𝑇ℎ + 𝐶̃

(𝑒)
𝑖

𝑛𝑖∇𝑇𝑒
)
, (5)

where 𝐶̃
(𝑒)
𝑖

= 1 + 𝐶
(𝑒)
𝑒 + 𝐶

(𝑒)
𝑖

. Substitution of Eq (5) and 𝑛𝑒 = 𝑛𝑖 into continuity equation for ion flux density (1) gives
the second order differential equation.

Substituting equation (5) into one of the equations (4) allows us to obtain the potential gradient distribution in the
plasma near the particle.

∇𝜑 =
𝑘

𝑒 (𝛾𝑒 + 𝛾𝑖) 𝑛𝑖

[
(𝛾𝑖𝑇𝑒 − 𝛾𝑒𝑇ℎ) ∇𝑛𝑖 − 𝛾𝑒𝑛𝑖∇𝑇ℎ +

(
𝛾𝑖 + 𝛾𝑖𝐶

(𝑒)
𝑒 − 𝛾𝑒𝐶

(𝑒)
𝑖

)
𝑛𝑖∇𝑇𝑒

]
. (6)

The heavy particle temperature gradient in plasma leads to the appearance of heat flux qℎ = −𝜆ℎ∇𝑇ℎ, which satisfies
the following continuity equation [25]

∇qℎ = −𝑒J𝑖∇𝜑 + 𝜅𝑒ℎ𝑛𝑖𝑘 (𝑇𝑒 − 𝑇ℎ), (7)

where 𝜆ℎ is the thermal conductivity coefficient of heavy particles; 𝜅𝑒ℎ is the energy exchange frequency.
The heat flux for electrons [26] contains additional terms that describe energy transfer between electrons and heavy

particles due to their relative drift.

q𝑒 = −𝜆𝑒∇𝑇𝑒 + 𝑘𝑇𝑒𝑛𝑒

[
𝐴
(𝑒)
𝑖

(v𝑒 − v𝑖) + 𝐴
(𝑒)
𝑎 (v𝑒 − v𝑎)

]
= −𝜆𝑒∇𝑇𝑒 + 𝑘𝑇𝑒𝐴

(𝑒)
𝑎 J𝑖 (1 + 𝑛𝑖/𝑛𝑎), (8)

where 𝐴
(𝑒)
𝛼 are the kinetic coefficients. It was taken into account in (8) that J𝑎 = −J𝑖 , J𝑒 = J𝑖 and 𝑛𝑒 = 𝑛𝑖 .
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The continuity equation for electron heat flux is [25]

∇
(
q𝑒 +

5
2
𝑘𝑇𝑒J𝑖

)
= 𝑒J𝑖∇𝜑 − 𝜅𝑒ℎ𝑛𝑖𝑘 (𝑇𝑒 − 𝑇ℎ) −𝑈𝑖𝜔𝑒 . (9)

The first terms on the right-hand sides of Eqs. (7) and (9) describe the heat transfer between plasma particles and
electric field, the second terms describe the energy exchange between electrons and heavy particles. The last term describes
the power released in ionization-recombination processes (𝑈𝑖 = 15.75 eV is the argon ionization potential.)

The considered problem has a spherical symmetry, so it is one-dimensional in the spherical coordinate system placed
in the center of the particle. All vector functions have only radial nonzero components that depend on single variable 𝑟 .
For instance, the electron flux takes the form J𝑖 = (𝐽𝑖𝑟 (𝑟), 0, 0), where 𝐽𝑖 = 𝐽𝑖𝑟 . We have three unknown functions of
single variable 𝑛𝑖 (𝑟), 𝑇ℎ (𝑟), and 𝑇𝑒 (𝑟) along with three differential equations (1), (7) and (9). The system of equations
should be supplemented with proper boundary conditions, which are discussed in the next section.

3. BOUNDARY CONDITIONS
As it was mentioned above, we consider quasineutral plasma, i.e. outside the sheath. The boundary conditions are

set on the sheath outer boundary, which is denoted with letter 𝑆 on the figure 1. The values of functions on this surface
are denoted with subscript 𝑠, for instance 𝑛𝑖

��
𝑆
= 𝑛𝑖 (𝑎 + 𝑙𝑠ℎ) = 𝑛𝑖𝑠.

particle

𝜑 = 0 𝜑𝑠

q𝑒 + 5
2 𝑘𝑇𝑒J𝑒q𝑒𝑠

sheath plasma

𝑆

𝑙𝑠ℎ
0 𝑎 𝑟

Figure 1. Scheme of the problem

The normal component of ion flux on surface 𝑆 is

𝐽𝑖 (𝑎 + 𝑙𝑠ℎ) = 𝐽𝑖𝑠 = −𝑛𝑖𝑠𝑣𝐵, (10)

where 𝑣𝐵 =
√︁
𝑘 (𝑇𝑒𝑠 + 𝑇ℎ𝑠)/𝑚𝑖 is the Bohm velocity. It has a negative sign because it is directed opposite to the 𝑟-axis.

Neglecting ion collisions with atoms within the sheath and taking into account that 𝑙𝑠ℎ ≪ 𝑎, we can write 𝐽𝑖 (𝑎 + 𝑙𝑠ℎ) =
𝐽𝑖 (𝑎).

The boundary condition for the electron flux can be derived from the electron velocity distribution function. At the
sheath outer boundary, it takes the form

𝑓𝑠 (v) = 𝑓𝑠𝑛 (𝑣𝑛) 𝑓𝑠𝑡 (v𝑡 ), (11)

where 𝑣𝑛 is the component of velocity along the e𝑟 (normal to surface), v𝑡 is the component perpendicular to e𝑟 (tangential
to surface) and

𝑓𝑠𝑡 (v𝑡 ) =
𝑚𝑒

2𝜋𝑘𝑇𝑒𝑠
exp

(
−
𝑚𝑒𝑣

2
𝑡

2𝑘𝑇𝑒𝑠

)
, (12)

𝑓𝑠𝑛 (𝑣𝑛) =
{

0, 𝑣𝑛 > 𝑣𝑛0,√︃
𝑚𝑒

2𝜋𝑘𝑇𝑒𝑠 exp
(
− 𝑚𝑒𝑣

2
𝑛

2𝑘𝑇𝑒𝑠

)
, 𝑣𝑛 < 𝑣𝑛0.

(13)

where 𝑣𝑛0 =
√︁

2𝑒𝜑𝑠/𝑚𝑒 and 𝜑𝑠 = 𝜑(𝑎 + 𝑙𝑠ℎ). The potential of the particle surface is considered to be zero.
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The electron flux density on sheath outer boundary is

𝐽𝑒 (𝑎 + 𝑙𝑠ℎ) = 𝐽𝑒𝑠 = 𝑛𝑒𝑠

∫
𝑑v 𝑣𝑛 𝑓𝑠 (v) = 𝑛𝑒𝑠

𝑣𝑛0∫
−∞

𝑑𝑣𝑛𝑣𝑛 𝑓𝑠𝑛 (𝑣𝑛)
∫

𝑑v𝑡 𝑓𝑠𝑡 (v𝑡 ) = −𝑛𝑒𝑠 𝑣̄𝑒𝑠

4
exp

(
− 𝑒𝜑𝑠

𝑘𝑇𝑒𝑠

)
, (14)

where 𝑣̄𝑒𝑠 =
√︁

8𝑘𝑇𝑒𝑠/𝜋𝑚 is the mean thermal velocity of electrons.
Equating the currents 𝐽𝑒𝑠 = 𝐽𝑖𝑠 we obtain from Eqs. (14) and (10) expression for the sheath potential

𝜑𝑠 = − 𝑘𝑇𝑒𝑠

𝑒
ln

(
4𝑣𝐵
𝑣̄𝑒𝑠

)
. (15)

Since 𝑣𝐵 ≪ 𝑣̄𝑒𝑠 the value of 𝜑𝑠 is positive in order to decrease the electron flux 𝑛𝑒𝑠 𝑣̄𝑒𝑠/4 to the value of ion flux.
Temperature of heavy particles is equal to the temperature of the particle surface

𝑇ℎ (𝑎 + 𝑙𝑠ℎ) = 𝑇𝑠 . (16)

There is an energy flux from plasma to the particle, thus, in general, 𝑇𝑠 is a function of time. Since the characteristic
time for plasma parameter establishment is much shorter than the time for a temperature change of the particle surface
[22], we can consider the temperature of the particle surface as constant and study the stationary distribution of plasma
characteristics near the particle.

The boundary condition for the electron temperature is determined by the electron heat flux. The electron heat flux
from the sheath outer boundary to the particle is

𝑞𝑒𝑠 = 𝑛𝑒𝑠

∫
𝑑v 𝑣𝑛

𝑚𝑒𝑣
2

2
𝑓𝑠 (v) = 𝑛𝑒𝑠

𝑣𝑛0∫
−∞

𝑑𝑣𝑛

∫
𝑑v𝑡𝑣𝑛

𝑚𝑒

2
(𝑣2

𝑛 + 𝑣2
𝑡 ) 𝑓𝑠𝑛 (𝑣𝑛) 𝑓𝑠𝑡 (v𝑡 ) =

𝑛𝑒𝑠

𝑣𝑛0∫
−∞

𝑑𝑣𝑛 𝑓𝑠𝑛 (𝑣𝑛)𝑣𝑛
(
𝑚𝑒𝑣

2
𝑛

2
+ 𝑘𝑇𝑒𝑠

)
= 𝐽𝑒𝑠 (𝑒𝜑𝑠 + 2𝑘𝑇𝑒𝑠). (17)

It should be equal to the electron heat flux from plasma to 𝑆, that gives the boundary condition(
𝑞𝑒 +

5
2
𝐽𝑒𝑘𝑇𝑒

)
𝑟=𝑎+𝑙𝑠ℎ

= 𝐽𝑒𝑠 (𝑒𝜑𝑠 + 2𝑘𝑇𝑒𝑠). (18)

Thus, we have three conditions on the sheath outer boundary: (10), (16), and (18). Another set of conditions is
determined far away from the particle where plasma is unperturbed, i.e. it is in thermal equilibrium 𝑇ℎ

��
𝑟=∞ = 𝑇𝑒

��
𝑟=∞ = 𝑇0

and ionization equilibrium. The ratio between ion 𝑛𝑖0 and atom 𝑛𝑎0 number densities in the state of ionization equilibrium
for quasineutral plasma (𝑛𝑖0 = 𝑛𝑒0) is defined by the Saha equation

𝑛2
𝑖0/𝑛𝑎0 = 𝑆(𝑇0) = 12

(
2𝜋𝑚𝑒𝑘𝑇0

ℎ2

)3/2
exp

(
− 𝑈𝑖

𝑘𝑇0

)
, (19)

which together with expression (3) for atom number density gives

𝑛𝑖0 = 𝑆(𝑇0)
(√︂

1 + 𝑝0
𝑆(𝑇0)𝑘𝑇0

− 1
)
. (20)

For numerous practical applications, it is important to know the heat flux from plasma to the particle. The heat flux
density on the particle surface 𝑞𝑝 consists of the several components. The electron component can be determined from
the following reasoning.

The electron velocity distribution function on the particle surface (𝑟 = 𝑎) is

𝑓𝑎 (v) = 𝑓𝑎𝑛 (𝑣𝑛) 𝑓𝑎𝑡 (v𝑡 ), (21)

where

𝑓𝑎𝑡 (v𝑡 ) =
𝑚𝑒

2𝜋𝑘𝑇𝑒𝑎
exp

(
−
𝑚𝑒𝑣

2
𝑡

2𝑘𝑇𝑒𝑎

)
, (22)

𝑓𝑎𝑛 (𝑣𝑛) =
{

0, 𝑣𝑛 > 0,√︃
𝑚𝑒

2𝜋𝑘𝑇𝑒𝑎 exp
(
− 𝑚𝑒𝑣

2
𝑛

2𝑘𝑇𝑒𝑎

)
, 𝑣𝑛 < 0.

(23)
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The electron heat flux on the particle surface is

𝑞𝑒𝑎 = 𝑛𝑒𝑎

∫
𝑑v 𝑣𝑛

𝑚𝑒𝑣
2

2
𝑓𝑎 (v) = 2𝐽𝑒𝑎𝑘𝑇𝑒𝑎 . (24)

Since the sheath is collisionless, then 𝐽𝑒𝑎 = 𝐽𝑒𝑠 = 𝐽𝑖𝑠 and 𝑇𝑒𝑎 = 𝑇𝑒𝑠 . Thus electron component of the heat flux on
the particle surface is given by

𝑞𝑝𝑒 = −2𝐽𝑖𝑠𝑘𝑇𝑒𝑠 . (25)

Since 𝐽𝑖𝑠 is negative (see Eq. (10)), the minus sign was added to ensure that 𝑞𝑝𝑒 is positive.
The difference between energy fluxes (18) and (24) equals to 𝐽𝑒𝑠𝑒𝜑𝑠 it is due to electrons energy loss in the sheath

electric field. On the other hand, ions gain additional energy −𝐽𝑖𝑠𝑒𝜑𝑠 from electric field in the sheath. Also, on the sheath
outer boundary ions have directed velocity 𝑣𝐵 and corresponding kinetic energy 𝑚𝑖𝑣

2
𝐵
/2. Thus, the heat flux component

due to the kinetic energy of heavy particles is

𝑞𝑝ℎ = 𝜆ℎ∇𝑇ℎ
��
𝑟=𝑎+𝑙𝑠ℎ − 𝐽𝑖𝑠

(
𝑒𝜑𝑠 +

𝑚𝑖𝑣
2
𝐵

2

)
. (26)

When an ion reaches the particle surface, it recombines and releases energy equal to the ionization potential 𝑈𝑖 . The
corresponding heat flux component is

𝑞𝑝𝑖 = −𝐽𝑖𝑠𝑈𝑖 . (27)

Finally, the total heat flux on the particle surface consists of the three components

𝑞𝑝 = 𝑞𝑝𝑒 + 𝑞𝑝ℎ + 𝑞𝑝𝑖 . (28)

4. RESULTS AND DISCUSSION
For spatial distributions of ion number density 𝑛𝑖 (𝑟) and temperatures𝑇ℎ (𝑟) and𝑇𝑒 (𝑟), the system of three differential

equations (1), (7), and (9) was solved numerically on the segment [𝑎, 𝑏]. Since 𝑙𝑠ℎ ≪ 𝑎, the left boundary of the
computation segment was taken equal 𝑎. The right boundary 𝑏 ≫ 𝑎 is where plasma unperturbed, i.e. 𝑛𝑖 (𝑏) = 𝑛𝑖0 and
𝑇ℎ (𝑏) = 𝑇𝑒 (𝑏) = 𝑇0. Numerical calculations were performed using the FlexPDE program (ver.7.22) in which the finite
element method is realized. The transport and kinetic coefficients used in the equations can be found in the appendix of
[22]. Note that there is a misprint in equation (A19) of [22] for the energy exchange frequency; the correct formula is given
in equation (19) of [27]. The dependence of these coefficients on 𝑇𝑒, 𝑇ℎ, and 𝑛𝑖 was taken into account in the calculations,
meaning that a fully nonlinear problem was solved.

The temperature distribution in plasma with 𝑇0 = 1.4 kK near the particle with 𝑇𝑠 = 1 kK is presented in figure 2a).
According to boundary condition (16) the temperature of heavy particles (dashed line) is equal 𝑇𝑠 for 𝑟 = 𝑎. Due to heat
transfer between heavy particles and electrons, their temperature also decreases. The electron temperature on the sheath
outer boundary 𝑇𝑒𝑠 is considerably less then 𝑇0, namely 𝑇𝑒𝑠 = 13070, 11465 and 9212 K for 𝑎 = 10−5, 10−4, and 10−3 m,
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Figure 2. Spatial distributions of: a) electron temperature 𝑇𝑒 (solid lines) and heavy particle temperature 𝑇ℎ (dashed
lines), b) ion number density 𝑛𝑖 (solid lines) and atom number density 𝑛𝑎 (dashed lines), for 𝑎 = 10−5, 10−4, and 10−3 m,
𝑇0 = 1.4 kK and 𝑇𝑠 = 1 kK
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respectively. At some distance from the particle, plasma becomes isothermal 𝑇𝑒 = 𝑇ℎ, however, the temperature is still
less than 𝑇0. The decrease of electron temperature near the particle leads to the decrease of plasma ionization, i.e. to the
decrease of 𝑛𝑖 . This effect is more pronounced for larger particles (see solid lines in figure 2b). The ion number density on
the sheath outer boundary is equal to 𝑛𝑖𝑠 = 3.35× 1022, 3.74× 1021 and 1.92× 1020 m−3 for 𝑎 = 10−5, 10−4, and 10−3 m,
respectively. Since the plasma pressure is constant, the decrease of 𝑛𝑖 is compensated by the increase of atom number
density 𝑛𝑎, see Eq. (3). The sheath potential is higher for smaller particles 𝜑𝑠 = 5.23, 4.58 and 3.67 V, respectively.

Table 1. Electron temperature 𝑇𝑒𝑠 , ion number density 𝑛𝑖𝑠 , Bohm velocity 𝑣𝐵, ion flux 𝐽𝑖𝑠 , and potential 𝜑𝑠 on the sheath
outer boundary 𝑆, heat fluxes from plasma to the particle surface 𝑞𝑝 and heat power 4𝜋𝑎2𝑞𝑝 for various unperturbed
plasma temperatures 𝑇0 = 6 – 18 kK, 𝑎 = 10−4 m, and 𝑇𝑠 = 1 kK.

𝑇0 (kK) 𝑇𝑒𝑠 (kK) 𝑛𝑖𝑠 (m−3) 𝑣𝐵 (m/s) 𝐽𝑖𝑠 (m−2s−1) 𝜑𝑠 (V) 𝑞𝑝 (W/m2) 4𝜋𝑎2𝑞𝑝 (W)
6 5.920 2.34 × 1017 1200 −2.81 × 1020 2.35 5.04 × 106 0.634
8 7.770 1.46 × 1019 1351 −1.98 × 1022 3.09 8.68 × 106 1.09

10 9.300 1.89 × 1020 1464 −2.76 × 1023 3.71 1.55 × 107 1.95
12 10.500 1.11 × 1021 1547 −1.72 × 1024 4.19 3.16 × 107 3.97
14 11.470 3.74 × 1021 1611 −6.03 × 1024 4.58 6.40 × 107 8.04
16 12.250 7.64 × 1021 1660 −1.27 × 1025 4.90 1.05 × 108 13.2
18 12.980 1.12 × 1022 1706 −1.91 × 1025 5.19 1.43 × 108 18.0

The difference 𝑇0 − 𝑇𝑒𝑠 grows with temperature of unperturbed plasma 𝑇0 (see table 1). The ion number density on
the sheath outer boundary 𝑛𝑖𝑠 also grows with 𝑇0 as well as the Bohm velocity. According to boundary condition (10) 𝐽𝑖𝑠 =
−𝑛𝑖𝑠𝑣𝐵𝑠 , one can directly verify that this condition is satisfied. The ion flux density increases by five orders of magnitude
as 𝑇0 rises from 6 kK to 18 kK, while the sheath potential increases from 2.35 to 5.15 V.

The heat flux density and the heat power on the particle surface are presented in the last two columns in table 1 and in
figure 3. For 𝑇0 ≤ 10 kK, the total heat flux is almost entirely provided by the kinetic energy of heavy particles 𝑞𝑝ℎ (26).
For 𝑇0 > 10 kK, the heat flux due to recombination of ion on the particle surface 𝑞𝑝𝑖 becomes significant that is explained
by the substantial increase of 𝐽𝑖𝑠. The electron heat flux is minor in the considered temperature range.
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Figure 3. The heat flux on the particle surface 𝑞𝑝 and its components 𝑞𝑝ℎ (26), 𝑞𝑝𝑖 (27), and 𝑞𝑝𝑒 (25)

5. CONCLUSIONS
The electron heat flux at the outer boundary of the sheath, which is formed near charged spherical particle, is given

by 𝐽𝑒𝑠 (2𝑘𝑇𝑒𝑠 + 𝑒𝜑𝑠), where 𝐽𝑒𝑠 is the electron flux density, 𝑇𝑒𝑠 is the electron temperature, and 𝜑𝑠 is the sheath potential.
Electrons transfer part of their energy to the electric field in the sheath and their heat flux on the particle surface becomes
equal to 2𝐽𝑒𝑠𝑘𝑇𝑒𝑠 (assuming that electron flux and temperature are constant within the sheath).

The electron temperature near the particle surface is lower than the temperature of unperturbed plasma. The difference
𝑇0 − 𝑇𝑒𝑠 increases with 𝑇0 and it reaches ≈ 5 kK for 𝑎 = 10−4 m and 𝑇0 = 18 kK. In contrast, for 𝑇0 = 6 kK 𝑇𝑒𝑠 ≈ 𝑇0.
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The heat flux from plasma to the particle surface depends non-linearly on 𝑇0. The increase of temperature from 6 KK 
to 18 kK leads to the increase of 𝑞 𝑝 almost in 30 times. The main contribution to the heat flux comes from the kinetic 
energy of heavy particles, while the contribution from electron kinetic energy reaches a maximum of approximately 10%
at 𝑇0=18 kK. The energy released by ions during their recombination on the particle surface becomes significant for 𝑇 0 > 
10 kK accounting for up to one-third of the total heat flux at 𝑇0=18 kK.
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ВЗАЄМОДIЯ СФЕРИЧНОЇ ЧАСТИНКИ З БЕЗСТРУМОВОЮ АРГОНОВОЮ ПЛАЗМОЮ
АТМОСФЕРНОГО ТИСКУ

Шiї Гаоa, Андрiй Момотb,c, Iгор Крiвцунb, Данило Антонiвb,c, Оксана Момотс
𝑎Китайсько-український iнститут зварювання академiї наук провiнцiї Гуандун,

вул. Чансiн, 363, Тяньхе, Гуанчжоу, 510650, КНР
𝑏Iнститут електрозварювання iм. Є.О. Патона НАН України, вул. Казимира Малевича, 11, Київ, 03150, Україна
𝑐Київський нацiональний унiверситет iменi Тараса Шевченка, вул. Володимирська, 64/13, Київ, 01601, Україна

Чисельно вивчалася взаємодiя сферичної частинки радiусом 10−5 − 10−3 м з безструмовою аргоновою плазмою атмосфер-
ного тиску в рамках гiдродинамiчного пiдходу. Нелiнiйна задача розв’язувалася з урахуванням температурної залежностi
транспортних i кiнетичних коефiцiєнтiв. Використовувалася двотемпературна модель, яка враховує теплову та iонiзацiйну
нерiвноважнiсть плазми поблизу частинки. Детально обговорюється гранична умова для теплового потоку електронiв на зов-
нiшнiй межi шару просторового заряду. Визначено та проаналiзовано просторовi розподiли характеристик плазми поблизу
частинки, таких як температура та концентрацiя. Розраховано тепловий потiк вiд плазми до частинки в широкому дiапазонi
температур однократно iонiзованої аргонової плазми.
Ключовi слова: аргонова плазма атмосферного тиску; безструмова аргонова плазма; чисельне моделювання плазми; сфе-
рична частинка в плазмi; взаємодiя плазма-частинка
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