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The interaction between a spherical particle of radius 10~ — 10> m and atmospheric pressure currentless argon plasma was studied
numerically within the hydrodynamic approach. The nonlinear problem was solved taking into account the temperature dependencies
of transport and kinetic coefficients. A two-temperature model, which considers plasma thermal and ionization non-equilibrium near
the particle, was used. The boundary condition for electron heat flux on the outer boundary of the space charge sheath is discussed in
detail. The spatial distributions of plasma characteristics, such as temperature and number density, near the particle were determined
and analyzed. The heat flux from plasma to the particle was calculated over a wide temperature range of singly ionized argon plasma.

Keywords: Atmospheric pressure argon plasma; Currentless argon plasma; Plasma numerical modeling; Spherical particle in plasma;
Plasma-particle interaction
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1. INTRODUCTION

The interaction between fine condensed matter particles and plasma has been of interest in plasma physics for many
years. Low-pressure plasma containing fine particles is commonly referred to as dusty or complex plasma [1, 2, 3].
The study of dusty plasma often focuses on particle charge, potential, and interactions between particles [4, 5, 6, 7], as
well as the propagation of various types of waves and solitons [8, 9, 10, 11].

Atmospheric-pressure thermal plasma [12, 13] containing fine metal particles occurs in many technical plasma
processes, such as plasma spraying, plasma transferred arc (PTA) surfacing [14, 15, 16], spheroidization of metal pow-
ders [17, 18], and gas metal arc welding (GMAW) [19]. For the research and development of these processes, it is important
to understand both the thermal effect of plasma on the particles and the influence of particles on plasma characteristics.

In the present study, we consider currentless plasma, which corresponds to the conditions of plasma spraying [14, 15],
where thermal plasma is used to heat and melt dispersed material before depositing it on a surface. However, the obtained
results may also be useful for current-carrying plasma, which is used, for example in PTA surfacing. Our recent study
showed that for particles with a radius of up to ~ 10~ m, the thermal effect of plasma on the particle does not significantly
depend on the plasma current but rather on its temperature, which is determined by the current.

In Refs. [20, 21], the heat flux from atmospheric-pressure plasma to a particle was studied, taking into account
the thermal and ionization nonequilibrium of the plasma, the violation of quasineutrality near the particle surface, and
rarefaction effects over a wide range of Knudsen numbers. However, the inverse effect of the particle on the characteristics of
the surrounding plasma was not considered in these studies. Such effects were examined in our previous works [22, 23, 24].

In the present study, we used a modified boundary condition for the electron heat flux and accounted for an additional
mechanism of ion heat transfer to the particle. Additionally, particles with a radius of @ = 1073 m were considered,
corresponding to the droplet size of electrode metal in GMA welding. The influence of particles of this size on plasma
characteristics is expected to be more pronounced.

2. MODEL AND BASIC EQUATIONS

Atmospheric-pressure currentless argon plasma with a temperature Ty = 6 — 18 kK is considered. In this temperature
range, the density of multiply charged argon ions is much lower than that of singly charged ions. We study the interaction
of such a plasma with a single stationary spherical particle (either metal or dielectric) of radius @ = 107> — 103 m placed
in it. The particle surface adsorbs electrons (e) and ions (i) from plasma, which then recombine on the surface and desorb
as argon atoms (a). It means that there are electron, ion and atom fluxes J, = n,v, near the particle (n, is the number
density and v, is the velocity). Since the mobility of electrons is much higher than that of ions, the initially neutral particle
gains a negative electric charge, which increases until the electron and ion fluxes become equal J; = J. in the stationary
state. Also, we consider plasma at rest relative to the particle, i.e. the mass-average plasma velocity is zero m.J. + m;J; +
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myJ, = 0 that gives J, = —J;. Thus, only one flux density is independent, and we will consider the ion flux density,
which satisfies the following continuity equation

Vi = w; = kineng — krnfzfni' M)

Here w; is the production rate of ions due to ionization-recombination reactions, obviously w; = w, = —w,; k; and k, are
the ionization and recombination rate constants, respectively.

Desorbed atoms have a temperature equal to the temperature of the particle surface Ty < Typ. Due to efficient
energy transfer between ions and atoms (heavy particles /) they share the same temperature, Tj,. Since energy transfer
between heavy particles and electrons is slow, 7}, differs from the electron temperature 7, i.e., the plasma is not in thermal
equilibrium nor, consequently, in ionization equilibrium near the particle. A spatial distribution of plasma particle density
and temperature is established around the spherical particle.

The momentum equations for plasma particles have the form [25]:

=Vpo—noZyeVyo + Z VapgHaphalp(Vg — Vo) — C&e)nakVTe =0. 2)
B

Here o, = e,i,a; pq = nqokT, is the partial pressure of o plasma component, where k is the Boltzmann constant; T,
is the temperature; Z,, is the particle charge number (Z, = —1, Z; = 1, and Z, = 0); e is the elementary charge; ¢ is the
distribution of electric potential in plasma; vog, liag = Mamg/(mq + mg) are the momentum transfer collision rate and
the reduced mass of particle species @ and S, respectively, where m,, is the mass of a particle of species a. The last term
in (2) is thermal diffusion force due to electron temperature gradient, where C ,(f) are the thermal diffusion coefficients.
The thermal diffusion force due to heavy particle temperature gradient can be neglected [26].

The space charge layer (sheath) is formed around the charged particle in plasma. The thickness of the sheath g, is
of the order of Debye length that is rp ~ 10~7 m for the considered plasma parameters [22]. The considered particle radii
are much greater than the sheath thickness a > [g;,. Thus, we study plasma outside the sheath, where it is quasineutral
Ne = N;.

The sum of partial pressures of all particle species is constant and equal to atmospheric pressure pg, i.e. n.k7T, +
nikTy + ngkTy = const = pg. Taking into account that n, = n;, we obtain the expression for atom number density

T
na=%—ni(l+T—2). 3)

Equations (2) for electrons and ions (@ = e, ), taking into account that J, = J;, can be rewritten as
~kV (1 Ta) = 0iZaeV g = Yadi = CnikVT, =0, )

where Ye = Veaftea(ni + na) and y; = viaplia (ni + na).
By adding equations (4) we eliminate the term with V¢ and obtain the expression for ion flux

k ~(e
Ji=- ((Te + Ti) Vi + VT, + C! )niVTe) , (5)
Ye T Vi

where C‘i(e) =1+ Cée) + Cl.(e). Substitution of Eq (5) and n, = n; into continuity equation for ion flux density (1) gives
the second order differential equation.
Substituting equation (5) into one of the equations (4) allows us to obtain the potential gradient distribution in the
plasma near the particle.
Vo= —F [ yTy = yuT) Vi = yomeVT, CL — y.C ) VT, 6
¢ = (viTe = ¥eTn) Vni = yeniVTy + | y; + viCe Yel; " |NiVie]. (6)
e (76 + yi) n;

The heavy particle temperature gradient in plasma leads to the appearance of heat flux q;, = —1, VT},, which satisfies
the following continuity equation [25]

Vq, = -eJiVo + Kennik(Te = Tp), @)
where A, is the thermal conductivity coefficient of heavy particles; ., is the energy exchange frequency.

The heat flux for electrons [26] contains additional terms that describe energy transfer between electrons and heavy
particles due to their relative drift.

Qe = —A VT, + kTone |A) (Ve = vi) + AL (Ve = Vo) | = = VT + kT AL 3 (1 + ni/na), (8)

where Agf) are the kinetic coefficients. It was taken into account in (8) that J, = -J;, J. = J; and n, = n;.



390
EEJP. 1 (2025) Shiyi Gao, et al.

The continuity equation for electron heat flux is [25]
5
Vi{qe + szeJi =eJiVo — kennik(Te = Tp) — Ui, 9

The first terms on the right-hand sides of Eqs. (7) and (9) describe the heat transfer between plasma particles and
electric field, the second terms describe the energy exchange between electrons and heavy particles. The last term describes
the power released in ionization-recombination processes (U; = 15.75 eV is the argon ionization potential.)

The considered problem has a spherical symmetry, so it is one-dimensional in the spherical coordinate system placed
in the center of the particle. All vector functions have only radial nonzero components that depend on single variable r.
For instance, the electron flux takes the form J; = (J;-(r),0,0), where J; = J;». We have three unknown functions of
single variable n;(r), T,(r), and T, (r) along with three differential equations (1), (7) and (9). The system of equations
should be supplemented with proper boundary conditions, which are discussed in the next section.

3. BOUNDARY CONDITIONS

As it was mentioned above, we consider quasineutral plasma, i.e. outside the sheath. The boundary conditions are
set on the sheath outer boundary, which is denoted with letter S on the figure 1. The values of functions on this surface
are denoted with subscript s, for instance ni| s = ni(a + lgp) = ngs.

sheath plasma

particle
l sh

Figure 1. Scheme of the problem

The normal component of ion flux on surface § is
Ji(a + lgp) = Jis = —nisvp, (10)

where vg = \k(T,s + Tps)/m; is the Bohm velocity. It has a negative sign because it is directed opposite to the r-axis.
Neglecting ion collisions with atoms within the sheath and taking into account that /), < a, we can write J;(a + ls;) =
J, i (Cl)

The boundary condition for the electron flux can be derived from the electron velocity distribution function. At the
sheath outer boundary, it takes the form

FsV) = fsnn) fs: (Ve), (11)

where v, is the component of velocity along the e, (normal to surface), v; is the component perpendicular to e, (tangential
to surface) and

2
me meVy
AN - ’ 12
S0 = s, P ( szes) (12)
( ) O Vn > Vno,
f- v = o mgvyzl (13)
o 27rnl:Te_\. p (_szes) s, Vn < Vo

where v,,0 = v2e@s/m. and o5 = ¢(a + ls,). The potential of the particle surface is considered to be zero.
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The electron flux density on sheath outer boundary is

Vno

Je (a + lsh) = JeS = Nes / dv an\'(v) = Nes / dvnvnfs‘n(vn) / dvtfvt (Vt) = _nes4ves exXp (_ :;3 )’ (14)
es

—00

where V.5 = \/8kT,s/nm is the mean thermal velocity of electrons.
Equating the currents J.; = J;s we obtain from Egs. (14) and (10) expression for the sheath potential

KT, (4
gy = —22es ln( _VB) . (15)
e Ves

Since vp < V.4 the value of ¢ is positive in order to decrease the electron flux n.sv.s/4 to the value of ion flux.
Temperature of heavy particles is equal to the temperature of the particle surface

Th(a+lsh) ZTS. (16)

There is an energy flux from plasma to the particle, thus, in general, T is a function of time. Since the characteristic
time for plasma parameter establishment is much shorter than the time for a temperature change of the particle surface
[22], we can consider the temperature of the particle surface as constant and study the stationary distribution of plasma
characteristics near the particle.

The boundary condition for the electron temperature is determined by the electron heat flux. The electron heat flux
from the sheath outer boundary to the particle is

) Vno
meVv m
Ges = Nes / dv VneTfs(V) = Nes / an/ thVnTe(V%z + sz)fsn(vn)fst(vt) =

Vno

2
meVv
nes/ dvnfsn(vn)vn( 62 =+ kTes) = Jes(e‘Ps +2kTes). (A7)

It should be equal to the electron heat flux from plasma to S, that gives the boundary condition

(qe + %JekTe) = Jes(eps + 2kT,y). (18)
r=a+lsp
Thus, we have three conditions on the sheath outer boundary: (10), (16), and (18). Another set of conditions is
determined far away from the particle where plasma is unperturbed, i.e. it is in thermal equilibrium 7| _ = Te|r=m =T
and ionization equilibrium. The ratio between ion n;9 and atom n,9 number densities in the state of ionization equilibrium
for quasineutral plasma (n;90 = no) is defined by the Saha equation

2rmokTy\ > U;
2 P\ )

n2 nao = S(T) = 12 ( 19)

which together with expression (3) for atom number density gives

_ [14 _Po_ _
nio = S(T()) ( 1+ S(T())kTO 1) . (20)

For numerous practical applications, it is important to know the heat flux from plasma to the particle. The heat flux
density on the particle surface g, consists of the several components. The electron component can be determined from
the following reasoning.

The electron velocity distribution function on the particle surface (r = a) is

fa(v) = fan(vn)fat(vt)s (21)
where )
Mg MV

Jar(Ve) = ko exp (— 2kTm) , (22)

0, v, >0,
fan(vn) = me p( mev?2 (23)

InkTeq _2kTm) > Vn <0
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The electron heat flux on the particle surface is

mev?
dea = Nea dv Vana (V) = 2JeqkTeq. 24)

Since the sheath is collisionless, then J., = Jos = Ji5 and T, = T,s. Thus electron component of the heat flux on
the particle surface is given by
Gpe = —2JiskTes. (25)

Since J;; is negative (see Eq. (10)), the minus sign was added to ensure that g, is positive.

The difference between energy fluxes (18) and (24) equals to J.seqs it is due to electrons energy loss in the sheath
electric field. On the other hand, ions gain additional energy —J;;ep, from electric field in the sheath. Also, on the sheath
outer boundary ions have directed velocity v and corresponding kinetic energy miv%/ 2. Thus, the heat flux component
due to the kinetic energy of heavy particles is

m;v
qpn = ApVTy, rea+ly Jis (egos + 3 B) . (26)

When an ion reaches the particle surface, it recombines and releases energy equal to the ionization potential U;. The
corresponding heat flux component is
qpi = —JisU;. 27

Finally, the total heat flux on the particle surface consists of the three components
dp = 4pe T 4ph t qpi. (28)

4. RESULTS AND DISCUSSION

For spatial distributions of ion number density n; (r) and temperatures 7y, (r) and T, (r), the system of three differential
equations (1), (7), and (9) was solved numerically on the segment [a, b]. Since Iy, < a, the left boundary of the
computation segment was taken equal a. The right boundary b > a is where plasma unperturbed, i.e. n;(b) = n;o and
T,(b) = T,(b) = Ty. Numerical calculations were performed using the FlexPDE program (ver.7.22) in which the finite
element method is realized. The transport and kinetic coefficients used in the equations can be found in the appendix of
[22]. Note that there is a misprint in equation (A19) of [22] for the energy exchange frequency; the correct formula is given
in equation (19) of [27]. The dependence of these coefficients on T,, T, and n; was taken into account in the calculations,
meaning that a fully nonlinear problem was solved.

The temperature distribution in plasma with Ty = 1.4 kK near the particle with T = 1 kK is presented in figure 2a).
According to boundary condition (16) the temperature of heavy particles (dashed line) is equal T for » = a. Due to heat
transfer between heavy particles and electrons, their temperature also decreases. The electron temperature on the sheath
outer boundary 7, is considerably less then Tp, namely T, = 13070, 11465 and 9212 K for a = 1073, 107%, and 1073 m,

25 _
14000 4 10 -.
12000 - f -~ .
100004 / T
/ J" o« 23
; ; : N 1024
A4 8000 i i = K/J
N ; ; i 3
&6 6000 .'I = 1022 4
4000 |
“ 102" 5
2000 |
“ r, m r,m
0+ T T 1 1020| T LR | T LA LR | T T T
105 10 103 102 1E-5 1E-4 0.001 0.01

a)

Figure 2. Spatial distributions of: a) electron temperature 7, (solid lines) and heavy particle temperature 7;, (dashed
lines), b) ion number density n; (solid lines) and atom number density 7, (dashed lines), for a = 107, 107*, and 1073 m,
To=14kKand Ty, = 1 kK
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respectively. At some distance from the particle, plasma becomes isothermal 7, = T}, however, the temperature is still
less than 7y. The decrease of electron temperature near the particle leads to the decrease of plasma ionization, i.e. to the
decrease of n;. This effect is more pronounced for larger particles (see solid lines in figure 2b). The ion number density on
the sheath outer boundary is equal to n;; = 3.35 x 10?2, 3.74 x 102! and 1.92 x 102 m™3 fora = 107>, 10™#, and 1073 m,
respectively. Since the plasma pressure is constant, the decrease of n; is compensated by the increase of atom number
density n,, see Eq. (3). The sheath potential is higher for smaller particles ¢, = 5.23, 4.58 and 3.67 V, respectively.

Table 1. Electron temperature 7., ion number density n;5, Bohm velocity v, ion flux J;, and potential ¢ on the sheath
outer boundary S, heat fluxes from plasma to the particle surface g, and heat power 4ra’q p for various unperturbed
plasma temperatures Ty = 6 — 18 kKK, @ = 10™* m, and T = 1 kK.

To (kK) | Toy (KK) | nig (m™3) | vp (/s) | Jis m™2s7) | @y (V) | qp (Wim?) | 4ma’q, (W)
6 5920 | 2.34x 10" 1200 | —2.81x10% | 2.35 | 5.04 x 10° 0.634
8 7.770 | 1.46 x 10" 1351 -1.98x 102 | 3.09 | 8.68x 10° 1.09
10 9.300 | 1.89 x 10% 1464 | —2.76 x10* | 3.71 | 1.55x 107 1.95
12 10.500 | 1.11 x 10*! 1547 -1.72x10%* | 4.19 | 3.16x 107 3.97
14 11.470 | 3.74 x 10*! 1611 -6.03x10%* | 458 | 6.40x 107 8.04
16 12.250 | 7.64 x 10?! 1660 | —1.27x10% | 490 | 1.05x 108 13.2
18 12980 | 1.12 x 10%? 1706 | -1.91x10% | 5.19 | 1.43x 108 18.0

The difference Ty — T, grows with temperature of unperturbed plasma T (see table 1). The ion number density on
the sheath outer boundary n; also grows with T as well as the Bohm velocity. According to boundary condition (10) J;5 =
—nisV s, one can directly verify that this condition is satisfied. The ion flux density increases by five orders of magnitude
as Tp rises from 6 kK to 18 kK, while the sheath potential increases from 2.35to 5.15 V.

The heat flux density and the heat power on the particle surface are presented in the last two columns in table 1 and in
figure 3. For Ty < 10 kK, the total heat flux is almost entirely provided by the kinetic energy of heavy particles g5, (26).
For Ty > 10 kK, the heat flux due to recombination of ion on the particle surface g,; becomes significant that is explained
by the substantial increase of J;5. The electron heat flux is minor in the considered temperature range.

1.4x108 4 5
W/m

1.2x108 4
1.0x108 4
8.0x107

6.0x107

4.0x107

2.0x107 . -
././ / /v/

0.0 + —

T T T T T T T T T T T T T
6000 8000 10000 12000 14000 16000 18000
T, K

Figure 3. The heat flux on the particle surface g,, and its components g, (26), gpi (27), and g p. (25)

5. CONCLUSIONS

The electron heat flux at the outer boundary of the sheath, which is formed near charged spherical particle, is given
by Jes (2kT,s + es), where J,. is the electron flux density, T, is the electron temperature, and ¢y is the sheath potential.
Electrons transfer part of their energy to the electric field in the sheath and their heat flux on the particle surface becomes
equal to 2J,,kT, (assuming that electron flux and temperature are constant within the sheath).

The electron temperature near the particle surface is lower than the temperature of unperturbed plasma. The difference
To — T, increases with T and it reaches ~ 5 kK for a = 10~* m and Ty = 18 kK. In contrast, for Ty = 6 kK T, ~ Tp.
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The heat flux from plasma to the particle surface depends non-linearly on 7'y. The increase of temperature from 6 KK
to 18 kK leads to the increase of g, almost in 30 times. The main contribution to the heat flux comes from the kinetic
energy of heavy particles, while the contribution from electron kinetic energy reaches a maximum of approximately 10%
at Tp=18 kK. The energy released by ions during their recombination on the particle surface becomes significant for Ty >
10 kK accounting for up to one-third of the total heat flux at 7p=18 kK.
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B3AEMOIIA CP®EPUYHOI YACTUHKH 3 BE3CTPYMOBOIO APTOHOBOIO ILJTABMOIO
ATMOC®EPHOI'O TUCKY
IMIii Tao®, Anapiii Momot®, Irop Kpisuyn®, lannio Auronis®®, Oxcana Momot®
“ Kumaiicoko-yKkpaincoKuil incmumym 36apo8amnis akademii Hayk npoginyii I'yanoyH,
eya. Yancin, 363, Tanvxe, I'yanuacoy, 510650, KHP
b ucmumym eaexmpossapiosanus in. €.0. Iamona HAH Yipainu, eya. Kasumupa Manesuua, 11, Kuis, 03150, Ypaina
¢ Kuigcokuii Hauionanvruii yrnieepcumem imeri Tapaca lllesuenka, éya. Bonooumupcexa, 64/13, Kuis, 01601, Yxpaina

YucenbHO BUBYATACSH B3a€MOJis chepuyHoi yacTMHKH pagiycoM 1075 — 1073 M 3 Ge3cTpyMOBOI0 aproHOBOIO TIa3MoI0 aTMochep-
HOTO THCKY B paMKax TigpoauHamiuHoro migxony. HesmiHiliHa 3amava po3B’s3yBajacs 3 ypaxyBaHHSIM TeMIIEpaTypHOI 3aJIeKHOCTI
TPAHCMOPTHUX 1 KiHETUYHUX KoedilieHTiB. BukopucroByBaiacs ABOTEMIIEpaTypHa MOJIEJb, KA BPaXOBYE TEIUIOBY Ta iOHi3alliitHy
HepiBHOBaXHICTh IUIA3MHU MTOOJIM3Y YaCTHHKH. [leTabHO 0OroBOPIOETHCS TPAHUYHA YMOBA ISl TEIUIOBOTO MOTOKY €JIEKTPOHIB Ha 30B-
HIIHIA Mexi Imapy mpocTopoBOro 3apsily. BuzHadueHO Ta MpoaHaTi30BaHO NMPOCTOPOBI PO3IMOAIIM XapaKTEPUCTHK IUIA3MU MOOIH3Y
YAaCTUHKH, TAaKUX K TEMIlepaTypa Ta KOHLEeHTpalis. Po3paxoBaHO TeIIOBHMil MOTIK Bif MIa3MM JO YaCTMHKU B IIMPOKOMY Aiarna3oHi
TeMIepaTyp OJHOKPATHO i0HI30BaHOI aprOHOBOI ILIA3MHU.

KurouoBi ciioBa: apeonosa nnazma ammocgeprozo mucky; 6e3cmpymosa ap2ono8a naazma; yuceavHe MoOeNo8aH s NAa3mu; cghe-
PUMHA YACMUHKA 8 NAA3MI; 63AEMO0is NAAZMA-YACTNUHKA
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