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Among modern ultrasound technologies for medical diagnostics, a special place is held by the technology of compounding plane
waves with different propagation directions, which form synthesized images. In this work, based on the previously developed theory
of Doppler response formation, the resolution of a system that uses plane wave compounding is investigated. In this case, small
nonlinear components in the angle of inclination of the wave vectors of different plane waves were taken into account for the phase
of the synthesized response and for the envelope of the radiation pulses. As a result of the study, it was found that the dimensions of
the measuring volume in the longitudinal and transverse directions do not change. Taking into account small components leads to a
slight change in the shape of the measuring volume, which ceases to be exactly spherical. This is explained by the fact that the
resolution is determined not only by the interference of plane waves, but also by the area of their intersection at a certain point in
space. The results obtained indicate that neglecting small inclination angles in the envelope is fully justified and allows simplifying
the process of obtaining Doppler signal spectra in plane wave compounding technology.
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INTRODUCTION

Due to the advancement of technology and the significant increase in the capabilities of computer systems,
methods of ultrasound diagnostics requiring extensive computations are actively evolving. To achieve high-resolution
imaging in every point of the entire analyzed area, synthetic aperture (SA) methods using ultrasound waves with
various spatial configurations are increasingly employed compared to traditional imaging methods [1,2]. A distinctive
feature of this method is that ultrasound echo signals from each spatial point are coherently accumulated for different
wavefront propagation angles. Since the SA method enables focusing in each spatial point and constructing high-frame-
rate images, it has found applications in various medical areas, including Doppler imaging [3-6,9], elastography [8], and
more. Enhancing and analyzing the quality of the obtained images and integrating these methods into existing
ultrasound diagnostic systems are important challenges [9-12].

Technologies based on this method are advancing rapidly, particularly ultrasound probing using plane
ultrasonic waves [13,14,9] with various propagation directions [15,16,9]. For example, through the technology of
plane-wave compounding (PWC), improvements in Doppler evaluations, especially for slow blood flows, have
been achieved compared to conventional methods [4,19-21]. Additionally, experimental studies using this
technology have investigated velocity vector estimation [17,18], visualized vessel walls, implemented color and
3D ultrafast Doppler imaging, brain functional imaging, and elasticity visualization using shear
waves [22-24,4,5,9].

Each emission of single ultrasonic plane waves produces only low-quality images. However, coherent
accumulation of echo signals from waves propagating at different angles yields high-quality images with frame rates of
several kilohertz, increasingly utilized in medicine today [25,26]. PWC simultaneously provides high-quality B-mode
images [27-30] and a continuous data stream for Doppler analysis methods [31-34,22].

Various approaches to improving PWC resolution are actively being developed, including novel adaptive
compounding techniques [35], the use of artificial intelligence [36,37], beamforming strategies [38,39], motion
correction schemes based on multi-angle vector Doppler velocity estimates [40], employing multiple transducer arrays
for plane-wave compounding [41], multiperspective imaging with curved arrays [42], and methods for increasing frame
rates [43], among others.

Improving the quality of ultrasound and Doppler diagnostics using coherent plane-wave compounding technology
remains a pressing issue. Based on the original developed theory of Doppler response formation [44-46], theoretical
resolution estimates for systems applying PWC were previously obtained [47]. These studies considered only linear
phase components of plane waves with small deviations in wave vectors. The aim of this work is to investigate the
resolution of ultrasound systems utilizing PWC, accounting for nonlinear components in both the response signal phase
and the envelopes of transmitted plane-wave pulses.
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THEORETICAL MODEL
Previously [46-48], in theoretical studies of the spectral characteristics of ultrasound Doppler response signals in
systems utilizing PWC, the complex amplitude of the transmitted field G,(7,t) and the complex sensitivity function of
the receiver to scattered waves G,(7,t) were used. Physically, these functions describe the ultrasound fields of

transmission and receiving, taking into account their deviation from a plane wave with a constant wave vector E,
aligned with the x" axis of the ultrasonic fields shown in Fig. 1.

This approach is particularly convenient when describing traditional ultrasound diagnostic systems [44,45], as they
utilize stationary ultrasound fields. The time dependence of these functions arises specifically with PWC, where the
probing direction changes over time according to a defined wave vector E(t). In this case, it is more convenient to use
an approach based on the direct wave fields of transmission P,(7,t) and receiving P, (7, t), represented as plane waves

with the wave vector E(t). Here, the vector k represents the time-averaged wave vector directed along the x” axis.

From this point forward, we assume that both the acquisition of ultrasound Doppler response signals and the
emission with plane wavefronts occur at the same angle @, as illustrated in Fig. 1. Thus, the resulting transmission-
receiving field can be expressed as follows

PG,6) = G, )G, (7, D2 b (T, = 2=) g(2) = PG 0BG )b (T, - 2=) () =
0 0
PR O (T, = 22) g(2) = Poe?®O7p (T, - 22) g (2). (1)
Co Co

H

Where P, and P. are, respectively, the real amplitudes of the transmitted and received plane waves; b (T1 — 2:—) is the
0

envelope of the ultrasonic transmitted pulses; and g(z) represents the field distribution along the z axis.

The pulse envelope describes their spatial length in the direction x” = x"'(x',y"), i.e., in the direction of the
emission and receiving of plane waves for a given wave vector k(t) and corresponding angle ®. As shown in Fig. 1, the
distance [ to a given target point, i.e., the probing depth, is determined by the strobing time delay T;.
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Figure 1. Coordinate system (x',y") associated with the ultrasonic transducer and coordinate system (x",y'"), where the x" axis is
directed along the propagation direction of the plane wavefront

According to the continuous model of ultrasound wave scattering on density inhomogeneities p(#,t) and
compressibility B (7, t) the ultrasound Doppler response signal can now be expressed in a simplified form as:

eq(t) = k? [ By, O){B(# 1) — p(7, 1)} dF. )

The power spectral density of the response signal is determined through the temporal and spatial Fourier transform
of the autocorrelation function of the response signal (2):

R() = Kk f f PG, EP (o ) C (7, — T, 7) diydl,
R

The overline indicates averaging over the initial moment of time t,, and C (?1 - 770,‘[) is the correlation function

of fluctuations of density and compressibility inhomogeneities, whichdepends only on the difference in coordinates and
the time difference T = t; — t, for any type of scatterer motion after averaging over the statistical ensemble [48].

The Doppler spectrum is derived in full analogy with the method in [48] and, in the absence of signal
accumulation from different directions, can be represented as:

k* N R 2
() = e .| 44C(.ap = 0PI
wj
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where C (c?, wp — w]-) and P(ﬁ, w]-) are the Fourier transforms of the fluctuation correlator and the transmission-
receiving field, respectively. When compounding responses from different plane waves, which is a widely accepted
algorithm in all variations of the synthetic aperture method, the Doppler response takes the form:

$(0) = gygs | 44C(G0,)IP@ O ©

Here, w, = Z?Hp is the discrete frequency of the Fourier transform of the function P(#t), which is periodically

extended with a period T. The value T represents the data acquisition period of response signals required for wave
compounding.

RESULTS
Directly from expression (3), it follows that in the case of compounding plane waves, the quantity P(%,0) serves
as the transmission-receiving field. Furthermore, following [48], the envelope of the emitted pulses will be chosen in
the form of a Gaussian function. In this approximation, the transmission-receiving field (1) can be written as:

2
2((lg—x")cos®+y'sin®)

P@#t) = Poe—2ik((lo—x’)cosd>+y'sind>)e 2 9(2), (4)

where 2a is the spatial length of the pulses along the x"'axis at the e~ level. In formula (4), the relationship between
the coordinate system (x’,y") and the coordinate systems (x"',y’") and (x,y) is taken into account. Assuming the angles
®(t) = Qt are small for all plane waves, in the expansion of the transmission-receiving field in terms of &, we will
retain small terms, including quadratic ones. To estimate the Fourier transforms in this approximation, we will apply a
Gaussian weighting window in time, which allows extending the integration limits to infinity:

Z(y'zﬂztz +2(lo-x")y' at— (lo—x’)zﬂzt2>

—02¢2
Ll (x’—lo)+ﬂty')+ico-t
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P(F.0p) = PigT e [ et |

2(y’2£12t2+2(lo—x’)y’nt— (lo—x’)znztz) 2

2 e Twdt, (5)
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where the parameter Ty, ~T in practice describes the effective length of the response signal obtained when applying
signal compounding from plane wave responses.
The asymptotic estimate of the integral in (5) can be obtained using the saddle point method, which gives:
( 0 x1)2

- — i ,_
P(#,wj) = Pog(2)T e 2ik(x'~lo) 5
<2ik.0y'—iw i+ 74(10_)6,)3/’“)2
y T e4<—lkﬂ,2(x —lp)+ 2}’ 92 2(lo ;‘2’) 02 T%y) (6)
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The small parameter in formulas (5) and (6) is represented by the value QTyw~® .« K 1, where @, is the
maximum angle of inclination of the wave vector k(t) from its mean value k. It is easy to see that for w; = 0, the

numerator of the exponent in the second exponential term in (6) is of the second order of smallness. Therefore, in the
denominator of this exponent the small terms can be neglected:
2(lg—x1)?

P(7,0) = Pug()Tte™ @ 07
o T QTwy"? (LR+M>
e .
_ 2 _ 2y’ 92 2(lo—x’)29.2 1
ikQ2(x" — 1) + — + )

Furthermore, the primary dependence of P(#,0) on the coordinates is evidently described by exponential factors,
which allows us to neglect small quadratic terms in the denominator of the fraction under the square root. As a result,

we obtain:
P(#0) =P, T 1 ’ 2 ko ) —2ik(x' - QT <k 2(%— x')
( , ) 0 T[ZWg(Z)e a2 ik(x' lo) @Twy")?| ik+ > .
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Finally, for the modulus of this quantity, we have:

N2
_z(lo—x’)2 —(QTWy’)2<k2—4(l°_4x ) )
|P(7,0)| = Pog(z)e” o Tt /nTI},e a 7

The parameters in synthetic aperture technologies should be chosen such that the resolution along the y'axis is no

worse than in other directions. Therefore, we will assume that the equality Ty, Q = v/2(ka) 'holds. Taking this into
account, formula (7) takes its final form:

/2 "2
R e d
|P(7,0)| = P, T™* |nTje a2 e g(2). (8)

DISCUSSION
The size and shape of the measuring volume are directly described by formula (8), from which, in particular, the
equation for the boundary of the measuring volume at the e~ level follows:

2(l, —x)?  2y'* 8(l, — x")?y'*
(o x)+y _ (lo —x")%y -1, 9)

From this, we find:

(10)

This function has zeros at y' = + a/v/2, which describe the boundaries of the measuring volume along the y'axis at

x' = l,.It is easy to see that for y’ = 0, equation (10) gives the same boundary values for the x'axis: x’ = I, + a/V?2.
The obtained solution is valid in the case where the inequality holds:

a?  a*k?

2 4’

(11D

in which the denominator of the fraction under the square root remains positive as the numerator approaches zero.
Formally, equation (10) has additional real solutions in the region where both the numerator and the denominator
become negative. However, such solutions are physically invalid, as the measuring volume would acquire additional
infinite boundaries, as illustrated in Fig. 2.

S
SR

oy
SIS,
‘::
o]
B
=

,
%
]
—
=i
:

a’k
2

Figure 2. The measuring volume at the center (horizontally shaded) and its boundaries, which are symmetric with respect to x’
and y’, along with additional non-physical solutions—branches (vertically shaded) and their asymptotes.

The zeros of the denominator in (10) define the asymptotes of these non-physical regions. Without accounting for
the dependence of the pulse envelope on small terms, i.e., without the third term on the left-hand side of equation (9),
the measuring volume in the (x',y’) plane represents a circle with a radius of a/v/2, shown in Fig. 2 as a horizontal
dashed line. This shape is determined by the chosen value of Q. Considering the dependence of the pulse envelope on
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small linear and quadratic terms results in the resolution along the y" and x" axes remaining unchanged, but the shape of
the measuring volume changes along with an increase in its area, as shown in Fig. 2 by the horizontal dashed line. This
phenomenon is related to the fact that resolution is determined not only by the interference of responses from plane
waves but also by the shape of the region of their intersection around the point [,. When the inverse inequality to (11) is

. . . 2 . . .
satisfied, an increase in the value of y = causes the denominator of the fraction in (10) to first reach zero. Such a
solution is also non-physical because, in this case, the measuring volume has no boundaries, as illustrated in Fig. 3.
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Figure 3. Non-physical infinite measurement volume and its symmetric asymptotes in the case of the inverse of inequality (11) being
satisfied

The inequality (11) can be rewritten as a > 1/v/2m, which holds well for real ultrasound systems. Specifically, for a
frequency of 3.5 MHz, the wavelength is 0.42 mm and the characteristic value of a is 1 mm. This condition becomes even
more intuitive from a physical perspective when expressed in terms of the maximum angle of inclination @4, = Ty, Q < 1.
In fact, this is the condition for the smallness of the maximum angle of inclination, for which the obtained solutions are
still valid. In the considered approximation, when @,,,, = T}, Q1 = 1, the measurement volume in the (x',y")plane
becomes a square.

CONCLUSIONS

In this work, based on the continuum model of ultrasound wave scattering on inhomogeneities in the medium, the
resolution of the PWC system is analyzed. The consideration is carried out taking into account the linear and quadratic
terms in the expansion of the small deviations of the wave vector of the current viewpoint from the wave vector of a
plane wave without inclination. The condition of smallness of the inclination angles of the plane waves ensures the
physicality and correctness of the obtained solutions. The results show that accounting for linear and quadratic angle @
deviations in the directions of wave transmission and receiving only leads to changes in the shape and volume of the
measured volume, which, without accounting for small components, has a spherical shape. At the same time, the
dimensions of the measurement volume in the longitudinal and transverse directions do not change.

The noted change in the shape of the measurement volume for realistic values of the maximum inclination angle
D,qx 1S not significant. As is known, the size of the measured volume only affects the time of flight of scatterers
through it, which also does not change significantly. This means that the contribution to the Doppler spectrum width,
determined by the flight time, cannot change significantly either. Therefore, it can be concluded that when evaluating
the spectral characteristics of the ultrasound Doppler response signals, it is quite justified to neglect the dependence of
the envelope of the plane wave pulses on the inclination angles if they are small. This circumstance opens the
possibility for simplifying spectral Doppler estimates.
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PO3ILJIBHA 3JATHICTH YJIbTPA3BYKOBOI JOILIEPIBCHbKOI CHCTEMH 3 BAKOPUCTAHHSIM
TEXHOJIOI'Ti KOTEPEHTHOT'O KOMIIAYHJIMHTY IVIOCKIX XBUJIb
€sren O. bapannuk, Muxaiisio O. I'punenkxo
Kageopa meouunoi ¢hizuxu ma biomeouunux nanomexmonoziu, Xapkiecokuil Hayionanvhuil ynieepcumem im. B.H. Kapaszina,
61022, nn. Ceoboou, 4, m. Xapxis, Ykpaina
Cepen cydacHHX YJIBTPa3BYKOBHX TEXHOJOTI MEAMYHOI JiarHOCTHKK OCOOIMBE MicCIle TOCITA€ TEXHOJOTIS KOMIAYAWHTY TUIACKUX
XBWJIb 3 PI3HUMH HaNpsMKaMH MOMIUPEHHS, SIKi (JOPMYIOTh CHHTE30BaHi 300pakeHHs. B poboTi Ha 6a3i po3BHHYTOI paHime Teopil
(opMyBaHHS JOIIIIEPIBCEKOTO BIATYKY JOCIHIIKEHa PO3ALIbHA 3aTHICTh CUCTEMH, B SKilf BAKOPHCTOBYETHCS KOMIAY IUHT IUTACKHX
xBwib. [Ipy mpomy 11t a3y CHMHTE30BaHOTO BIATYKY i OrMHAIOYOi iMITyJIbCIB BHUIIPOMIHIOBaHHS BPaXOBYBAINCh Maii HENiHIHHI
CKJIQJIOBI IO KYTy BiJXHMJICHHS XBHJIBOBHUX BEKTOPIB PI3HHMX IUIACKMX XBHJIb. B pe3yibrari ZOCITIPKEHHS BHHAWAEHO, IO PO3MipH
BUMIPIOBAJILHOTO 00’€My Yy IO3JIOBXKHBOMY Ta IIONEPEYHOMY HANpPsIMKaXx HE 3MIHIOIOThCS. YPaxyBaHHS MaluX CKJIaJ0BHX
MIPUBOJIMTH JI0 HE3HAYHOT 3MiHM OPMH BUMIPIOBAILHOTO 00'eMy, KUl nepecTae OyTH To4HO chepuuHuM. Lle NosCHIOETbCS THM, 110
pO3IiNbHA 3AAaTHICTE BU3HAYAETHCS HE TUTBKU IHTEPPEPEHIIEI0 MIACKUX XBUIIb, alle i 00JacTIO iX MepeTHHY y BHU3HAYCHIH TOYIi
npocropy. OTpuMaHi pe3ynbTaTH CBIAYUTH MPO T€, IO HEXTYBaHHSI MAJMMH KyTaMH BIIXWJICHHS y OTHHAIOYIH € TOBHICTIO
BUIIPABIAHHM i JIO3BOJISIE CIIPOCTUTHU HPOIEC OTPUMAHHS CHEKTPIB JOMIUIEPIBCHKUX CUTHAJIB B TEXHOJOTI] KOMIAyHANHTA IIACKUX
XBHIIb.
KumouoBi ciioBa: yivmpassyk, Oonnnepiecbkuil cnexmp, KOMNAYHOY6AHHA NIOCKUX X6UTb, NPOCMOPOBA pPO30ilbHA 30aMHICIb;
02UHAIOYA IMNYIbCI8



