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Among modern ultrasound technologies for medical diagnostics, a special place is held by the technology of compounding plane 
waves with different propagation directions, which form synthesized images. In this work, based on the previously developed theory 
of Doppler response formation, the resolution of a system that uses plane wave compounding is investigated. In this case, small 
nonlinear components in the angle of inclination of the wave vectors of different plane waves were taken into account for the phase 
of the synthesized response and for the envelope of the radiation pulses. As a result of the study, it was found that the dimensions of 
the measuring volume in the longitudinal and transverse directions do not change. Taking into account small components leads to a 
slight change in the shape of the measuring volume, which ceases to be exactly spherical. This is explained by the fact that the 
resolution is determined not only by the interference of plane waves, but also by the area of their intersection at a certain point in 
space. The results obtained indicate that neglecting small inclination angles in the envelope is fully justified and allows simplifying 
the process of obtaining Doppler signal spectra in plane wave compounding technology. 
Keywords: Ultrasound; Doppler spectrum; Plane wave compounding; Sensitivity function; Spatial resolution; Envelope 
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INTRODUCTION 
Due to the advancement of technology and the significant increase in the capabilities of computer systems, 

methods of ultrasound diagnostics requiring extensive computations are actively evolving. To achieve high-resolution 
imaging in every point of the entire analyzed area, synthetic aperture (SA) methods using ultrasound waves with 
various spatial configurations are increasingly employed compared to traditional imaging methods [1,2]. A distinctive 
feature of this method is that ultrasound echo signals from each spatial point are coherently accumulated for different 
wavefront propagation angles. Since the SA method enables focusing in each spatial point and constructing high-frame-
rate images, it has found applications in various medical areas, including Doppler imaging [3-6,9], elastography [8], and 
more. Enhancing and analyzing the quality of the obtained images and integrating these methods into existing 
ultrasound diagnostic systems are important challenges [9-12]. 

Technologies based on this method are advancing rapidly, particularly ultrasound probing using plane 
ultrasonic waves [13,14,9] with various propagation directions [15,16,9]. For example, through the technology of 
plane-wave compounding (PWC), improvements in Doppler evaluations, especially for slow blood flows, have 
been achieved compared to conventional methods [4,19-21]. Additionally, experimental studies using this 
technology have investigated velocity vector estimation [17,18], visualized vessel walls, implemented color and 
3D ultrafast Doppler imaging, brain functional imaging, and elasticity visualization using shear 
waves [22-24,4,5,9]. 

Each emission of single ultrasonic plane waves produces only low-quality images. However, coherent 
accumulation of echo signals from waves propagating at different angles yields high-quality images with frame rates of 
several kilohertz, increasingly utilized in medicine today [25,26]. PWC simultaneously provides high-quality B-mode 
images [27-30] and a continuous data stream for Doppler analysis methods [31-34,22]. 

Various approaches to improving PWC resolution are actively being developed, including novel adaptive 
compounding techniques [35], the use of artificial intelligence [36,37], beamforming strategies [38,39], motion 
correction schemes based on multi-angle vector Doppler velocity estimates [40], employing multiple transducer arrays 
for plane-wave compounding [41], multiperspective imaging with curved arrays [42], and methods for increasing frame 
rates [43], among others. 

Improving the quality of ultrasound and Doppler diagnostics using coherent plane-wave compounding technology 
remains a pressing issue. Based on the original developed theory of Doppler response formation [44-46], theoretical 
resolution estimates for systems applying PWC were previously obtained [47]. These studies considered only linear 
phase components of plane waves with small deviations in wave vectors. The aim of this work is to investigate the 
resolution of ultrasound systems utilizing PWC, accounting for nonlinear components in both the response signal phase 
and the envelopes of transmitted plane-wave pulses. 
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THEORETICAL MODEL 
Previously [46-48], in theoretical studies of the spectral characteristics of ultrasound Doppler response signals in 

systems utilizing PWC, the complex amplitude of the transmitted field 𝐺௧ሺ𝑟, 𝑡ሻ and the complex sensitivity function of 
the receiver to scattered waves 𝐺௥ሺ𝑟, 𝑡ሻ were used. Physically, these functions describe the ultrasound fields of 
transmission and receiving, taking into account their deviation from a plane wave with a constant wave vector 𝑘ሬ⃗ , 
aligned with the 𝑥′ axis of the ultrasonic fields shown in Fig. 1. 

This approach is particularly convenient when describing traditional ultrasound diagnostic systems [44,45], as they 
utilize stationary ultrasound fields. The time dependence of these functions arises specifically with PWC, where the 
probing direction changes over time according to a defined wave vector 𝑘ሬ⃗ ሺ𝑡ሻ. In this case, it is more convenient to use 
an approach based on the direct wave fields of transmission 𝑃௧′ሺ𝑟, 𝑡ሻ and receiving 𝑃௥′ሺ𝑟, 𝑡ሻ, represented as plane waves 
with the wave vector 𝑘ሬ⃗ ሺ𝑡ሻ. Here, the vector 𝑘ሬ⃗  represents the time-averaged wave vector directed along the 𝑥′ axis.  

From this point forward, we assume that both the acquisition of ultrasound Doppler response signals and the 
emission with plane wavefronts occur at the same angle Φ, as illustrated in Fig. 1. Thus, the resulting transmission-
receiving field can be expressed as follows 𝑃ሺ𝑟, 𝑡ሻ ൌ 𝐺௧ሺ𝑟, 𝑡ሻ𝐺௥ሺ𝑟, 𝑡ሻ𝑒ଶ௜௞ሬ⃗ ௥⃗𝑏 ቀ𝑇ଵ − ଶ௫ᇲᇲ௖బ ቁ 𝑔ሺ𝑧ሻ ൌ 𝑃௧ሺ𝑟, 𝑡ሻ𝑃௥ሺ𝑟, 𝑡ሻ𝑏 ቀ𝑇ଵ − ଶ௫ᇲᇲ௖బ ቁ 𝑔ሺ𝑧ሻ ൌ𝑃௧𝑃௥𝑒ଶ௜௞ሬ⃗ ሺ௧ሻ௥⃗𝑏 ቀ𝑇ଵ − ଶ௫ᇲᇲ௖బ ቁ 𝑔ሺ𝑧ሻ ≡ 𝑃଴𝑒ଶ௜௞ሬ⃗ ሺ௧ሻ௥⃗𝑏 ቀ𝑇ଵ − ଶ௫ᇲᇲ௖బ ቁ 𝑔ሺ𝑧ሻ. (1) 

Where 𝑃௧ and 𝑃௥ are, respectively, the real amplitudes of the transmitted and received plane waves; 𝑏 ቀ𝑇ଵ − ଶ௫ᇲᇲ௖బ ቁ is the 
envelope of the ultrasonic transmitted pulses; and 𝑔ሺ𝑧ሻ represents the field distribution along the 𝑧 axis.  

The pulse envelope describes their spatial length in the direction 𝑥ᇱᇱ ൌ 𝑥ᇱᇱሺ𝑥′,𝑦′ሻ, i.e., in the direction of the 
emission and receiving of plane waves for a given wave vector 𝑘ሬ⃗ ሺ𝑡ሻ and corresponding angle Φ. As shown in Fig. 1, the 
distance 𝑙଴ᇱᇱ  to a given target point, i.e., the probing depth, is determined by the strobing time delay 𝑇ଵ. 

 
Figure 1. Coordinate system ሺ𝑥′,𝑦′ሻ associated with the ultrasonic transducer and coordinate system ሺ𝑥′′,𝑦′′ሻ,  where the 𝑥ᇱᇱaxis is 

directed along the propagation direction of the plane wavefront 

According to the continuous model of ultrasound wave scattering on density inhomogeneities 𝜌ሺ𝑟, 𝑡ሻ and 
compressibility 𝛽෨ሺ𝑟, 𝑡ሻ the ultrasound Doppler response signal can now be expressed in a simplified form as: 

 𝑒ௗሺ𝑡ሻ  ൌ 𝑘ଶ ׬ 𝑃௣ᇱሺ𝑟, 𝑡ሻ൛𝛽෨ሺ𝑟, 𝑡ሻ − 𝜌ሺ𝑟, 𝑡ሻൟோ 𝑑𝑟. (2) 

The power spectral density of the response signal is determined through the temporal and spatial Fourier transform 
of the autocorrelation function of the response signal (2): 

𝑅ሺ𝜏ሻ ൌ 𝑘ସඵ𝑃ሺ𝑟ଵ, 𝑡ଵሻ𝑃∗ሺ𝑟଴, 𝑡଴ሻതതതതതതതതതതതതതതതതതതതതതതோ 𝐶 ቀ𝑟ଵ − 𝑟଴ሬሬሬ⃗ , 𝜏ቁ𝑑𝑟଴𝑑𝑟ଵ,  

The overline indicates averaging over the initial moment of time 𝑡଴, and 𝐶 ቀ𝑟ଵ − 𝑟଴ሬሬሬ⃗ , 𝜏ቁ is the correlation function 
of fluctuations of density and compressibility inhomogeneities, whichdepends only on the difference in coordinates and 
the time difference 𝜏 ൌ 𝑡ଵ − 𝑡଴ for any type of scatterer motion after averaging over the statistical ensemble [48]. 

The Doppler spectrum is derived in full analogy with the method in [48] and, in the absence of signal 
accumulation from different directions, can be represented as: 𝑆൫𝜔௣൯ ൌ 𝑘ସሺ2𝜋ሻଷ෍න𝑑𝑞⃗𝐶൫𝑞⃗,𝜔௣ − 𝜔௝൯ห𝑃൫𝑞⃗,𝜔௝൯หଶఠೕ . 
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where 𝐶൫𝑞⃗,𝜔௣ − 𝜔௝൯ and 𝑃൫𝑞⃗,𝜔௝൯ are the Fourier transforms of the fluctuation correlator and the transmission-
receiving field, respectively. When compounding responses from different plane waves, which is a widely accepted 
algorithm in all variations of the synthetic aperture method, the Doppler response takes the form: 

𝑆൫𝜔௣൯ = 𝑘ସሺ2𝜋ሻଷ න𝑑𝑞⃗𝐶൫𝑞⃗,𝜔௣൯|𝑃ሺ𝑞⃗, 0ሻ|ଶ. ሺ3ሻ 
Here, 𝜔௣ = ଶగ் 𝑝 is the discrete frequency of the Fourier transform of the function 𝑃ሺ𝑟, 𝑡ሻ, which is periodically 
extended with a period 𝑇. The value 𝑇 represents the data acquisition period of response signals required for wave 
compounding. 
 

RESULTS 
Directly from expression (3), it follows that in the case of compounding plane waves, the quantity 𝑃ሺ𝑟, 0ሻ serves 

as the transmission-receiving field. Furthermore, following [48], the envelope of the emitted pulses will be chosen in 
the form of a Gaussian function. In this approximation, the transmission-receiving field (1) can be written as: 

𝑃ሺ𝑟, 𝑡ሻ = 𝑃଴𝑒ିଶ௜௞൫(௟బି௫ᇲ)௖௢௦஍ା௬ᇲ௦௜௡஍൯𝑒ିమ൫(೗బషೣᇲ)೎೚ೞಅశ೤ᇲೞ೔೙ಅ൯మೌమ 𝑔(𝑧), (4) 

where 2𝑎 is the spatial length of the pulses along the 𝑥ᇱᇱaxis at the 𝑒ିଵ level. In formula (4), the relationship between 
the coordinate system (𝑥ᇱ,𝑦ᇱ) and the coordinate systems (𝑥ᇱᇱ,𝑦ᇱᇱ) and (𝑥,𝑦) is taken into account. Assuming the angles Φ(𝑡) = Ωt are small for all plane waves, in the expansion of the transmission-receiving field in terms of Φ, we will 
retain small terms, including quadratic ones. To estimate the Fourier transforms in this approximation, we will apply a 
Gaussian weighting window in time, which allows extending the integration limits to infinity: 

𝑃൫𝑟,𝜔௝൯ = 𝑃଴𝑔(𝑧)𝑇ିଵ𝑒ିమ(೗బషೣᇲ)మೌమ න 𝑒௘షమ೔ೖቆషಈమ౪మమ ൫ೣᇲష೗బ൯శಈ౪೤ᇲቇశ೔ഘೕ೟௘షమ൬೤ᇲమಈమ౪మశమ൫೗బషೣᇲ൯೤ᇲಈ౪ష ൫೗బషೣᇲ൯మಈమ౪మ൰ೌమ 𝑑𝑡೅మି೅మ ≅ 

≅ 𝑃଴𝑔(𝑧)𝑇ିଵ𝑒ିమ൫೗బషೣᇲ൯మೌమ න 𝑒ିଶ௜௞൬షಈమ౪మమ ൫௫ᇲି௟బ൯ାஐ୲௬ᇲ൰ା௜ఠೕ௧𝑒ିమ൬೤ᇲమಈమ౪మశమ൫೗బషೣᇲ൯೤ᇲಈ౪ష ൫೗బషೣᇲ൯మಈమ౪మ൰ೌమ 𝑒ି ೟మ೅ೈమ 𝑑𝑡ାஶ
ିஶ , (5) 

where the parameter 𝑇ௐ~𝑇 in practice describes the effective length of the response signal obtained when applying 
signal compounding from plane wave responses. 

The asymptotic estimate of the integral in (5) can be obtained using the saddle point method, which gives: 𝑃൫𝑟,𝜔௝൯ = 𝑃଴𝑔(𝑧)𝑇ିଵ𝑒ିమ(೗బషೣᇲ)మೌమ ିଶ௜௞൫௫ᇲି௟బ൯ × 

× ඩ 𝜋−𝑖𝑘Ωଶ(𝑥ᇱ − 𝑙଴) + ଶ௬ᇲమஐమ௔మ − ଶ(௟బି௫ᇲ)మஐమ௔మ + ଵ்ೈమ
𝑒

ቆమ೔ೖಈ೤ᇲష೔ഘೕశ ర൫೗బషೣᇲ൯೤ᇲಈೌమ ቇమ
రቌష೔ೖಈమ൫ೣᇲష೗బ൯శమ೤ᇲమಈమೌమ షమ൫೗బషೣᇲ൯మಈమೌమ శ భ೅ೈమ ቍ (6) 

The small parameter in formulas (5) and (6) is represented by the value Ω𝑇୛~Φ୫ୟ୶ ≪ 1, where Φ୫ୟ୶ is the 
maximum angle of inclination of the wave vector 𝑘ሬ⃗ (𝑡) from its mean value 𝑘ሬ⃗ . It is easy to see that for 𝜔௝ = 0, the 
numerator of the exponent in the second exponential term in (6) is of the second order of smallness. Therefore, in the 
denominator of this exponent the small terms can be neglected: 𝑃(𝑟, 0) = 𝑃଴𝑔(𝑧)𝑇ିଵ𝑒ିమ(೗బషೣᇲ)మೌమ ିଶ௜௞൫௫ᇲି௟బ൯ × 

× ඩ 𝜋−𝑖𝑘Ωଶ(𝑥ᇱ − 𝑙଴) + ଶ௬ᇲమஐమ௔మ − ଶ(௟బି௫ᇲ)మஐమ௔మ + ଵ்ೈమ
𝑒(ஐ்ೈ௬ᇲ)మቆ௜௞ାమ൫೗బషೣᇲ൯ೌమ ቇమ .  

Furthermore, the primary dependence of 𝑃(𝑟, 0) on the coordinates is evidently described by exponential factors, 
which allows us to neglect small quadratic terms in the denominator of the fraction under the square root. As a result, 
we obtain: 𝑃(𝑟, 0) = 𝑃଴𝑇ିଵට𝜋𝑇ௐଶ𝑔(𝑧)𝑒ିమ൫೗బషೣᇲ൯మೌమ ିଶ௜௞൫௫ᇲି௟బ൯𝑒(ஐ்ೈ௬ᇲ)మቆ௜௞ାమ൫೗బషೣᇲ൯ೌమ ቇమ .  
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Finally, for the modulus of this quantity, we have: 

|𝑃(𝑟, 0)| = 𝑃଴𝑔(𝑧)𝑒ିమ൫೗బషೣᇲ൯మೌమ 𝑇ିଵට𝜋𝑇ௐଶ𝑒ି(ஐ்ೈ௬ᇲ)మ൭௞మିర൫೗బషೣᇲ൯మೌర ൱ (7) 

The parameters in synthetic aperture technologies should be chosen such that the resolution along the 𝑦ᇱaxis is no 
worse than in other directions. Therefore, we will assume that the equality 𝑇ௐΩ = √2(𝑘𝑎)ିଵholds. Taking this into 
account, formula (7) takes its final form: 
 |𝑃(𝑟, 0)| = 𝑃଴𝑇ିଵට𝜋𝑇ௐଶ𝑒ିమ൫೗బషೣᇲ൯మషమ೥మೌమ 𝑒ିమ೤ᇲమೌమ ൭ଵି ర൫೗బషೣᇲ൯మೖమೌర ൱𝑔(𝑧). (8) 

 
DISCUSSION 

The size and shape of the measuring volume are directly described by formula (8), from which, in particular, the 
equation for the boundary of the measuring volume at the 𝑒ିଵ level follows: 2(𝑙଴ − 𝑥ᇱ)ଶ𝑎ଶ + 2𝑦ᇱଶ𝑎ଶ − 8(𝑙଴ − 𝑥ᇱ)ଶ𝑦ᇱଶ𝑎଺𝑘ଶ = 1 . (9) 

From this, we find: 

𝑙଴ − 𝑥ᇱ = േ𝑎ଶ𝑘2 ඩ ௔మଶ − 𝑦ᇱଶ௔ర௞మସ − 𝑦ᇱଶ . (10) 

This function has zeros at 𝑦ᇱ = േ𝑎 √2⁄ , which describe the boundaries of the measuring volume along the 𝑦ᇱaxis at 𝑥ᇱ = 𝑙଴.It is easy to see that for 𝑦ᇱ = 0, equation (10) gives the same boundary values for the 𝑥ᇱaxis: 𝑥ᇱ = 𝑙଴ േ 𝑎 √2⁄ . 
The obtained solution is valid in the case where the inequality holds: 𝑎ଶ2 ൏ 𝑎ସ𝑘ଶ4 , (11) 

in which the denominator of the fraction under the square root remains positive as the numerator approaches zero. 
Formally, equation (10) has additional real solutions in the region where both the numerator and the denominator 
become negative. However, such solutions are physically invalid, as the measuring volume would acquire additional 
infinite boundaries, as illustrated in Fig. 2. 

 

Figure 2. The measuring volume at the center (horizontally shaded) and its boundaries, which are symmetric with respect to 𝑥ᇱ 
and 𝑦ᇱ, along with additional non-physical solutions—branches (vertically shaded) and their asymptotes. 

The zeros of the denominator in (10) define the asymptotes of these non-physical regions. Without accounting for 
the dependence of the pulse envelope on small terms, i.e., without the third term on the left-hand side of equation (9), 
the measuring volume in the (𝑥ᇱ,𝑦ᇱ) plane represents a circle with a radius of 𝑎 √2⁄ , shown in Fig. 2 as a horizontal 
dashed line. This shape is determined by the chosen value of Ω. Considering the dependence of the pulse envelope on 
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small linear and quadratic terms results in the resolution along the 𝑦′ and 𝑥 ′ axes remaining unchanged, but the shape of 
the measuring volume changes along with an increase in its area, as shown in Fig. 2 by the horizontal dashed line. This 
phenomenon is related to the fact that resolution is determined not only by the interference of responses from plane 
waves but also by the shape of the region of their intersection around the point 𝑙଴. When the inverse inequality to (11) is 
satisfied, an increase in the value of 𝑦′ଶ causes the denominator of the fraction in (10) to first reach zero. Such a 
solution is also non-physical because, in this case, the measuring volume has no boundaries, as illustrated in Fig. 3. 

 
Figure 3. Non-physical infinite measurement volume and its symmetric asymptotes in the case of the inverse of inequality (11) being 

satisfied 

The inequality (11) can be rewritten as 𝑎 ൐ 𝜆/√2𝜋, which holds well for real ultrasound systems. Specifically, for a 
frequency of 3.5 MHz, the wavelength is 0.42 mm and the characteristic value of 𝑎 is 1 mm. This condition becomes even 
more intuitive from a physical perspective when expressed in terms of the maximum angle of inclination 𝛷௠௔௫ ≅ 𝑇ௐΩ ൏ 1. 
In fact, this is the condition for the smallness of the maximum angle of inclination, for which the obtained solutions are 
still valid. In the considered approximation, when 𝛷௠௔௫ ≅ 𝑇ௐΩ = 1, the measurement volume in the (𝑥′,𝑦′)plane 
becomes a square. 
 

CONCLUSIONS 
In this work, based on the continuum model of ultrasound wave scattering on inhomogeneities in the medium, the 

resolution of the PWC system is analyzed. The consideration is carried out taking into account the linear and quadratic 
terms in the expansion of the small deviations of the wave vector of the current viewpoint from the wave vector of a 
plane wave without inclination. The condition of smallness of the inclination angles of the plane waves ensures the 
physicality and correctness of the obtained solutions. The results show that accounting for linear and quadratic angle 𝛷 
deviations in the directions of wave transmission and receiving only leads to changes in the shape and volume of the 
measured volume, which, without accounting for small components, has a spherical shape. At the same time, the 
dimensions of the measurement volume in the longitudinal and transverse directions do not change. 

The noted change in the shape of the measurement volume for realistic values of the maximum inclination angle 𝛷௠௔௫ is not significant. As is known, the size of the measured volume only affects the time of flight of scatterers 
through it, which also does not change significantly. This means that the contribution to the Doppler spectrum width, 
determined by the flight time, cannot change significantly either. Therefore, it can be concluded that when evaluating 
the spectral characteristics of the ultrasound Doppler response signals, it is quite justified to neglect the dependence of 
the envelope of the plane wave pulses on the inclination angles if they are small. This circumstance opens the 
possibility for simplifying spectral Doppler estimates. 
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РОЗДІЛЬНА ЗДАТНІСТЬ УЛЬТРАЗВУКОВОЇ ДОПЛЕРІВСЬКОЇ СИСТЕМИ З ВИКОРИСТАННЯМ 

ТЕХНОЛОГІЇ КОГЕРЕНТНОГО КОМПАУНДИНГУ ПЛОСКІХ ХВИЛЬ 
Євген О. Баранник, Михайло О. Гриценко 

Кафедра медичної фізики та біомедичних нанотехнологій, Харківський національний університет ім. В.Н. Каразіна, 
61022, пл. Свободи, 4, м. Харків, Україна 

Серед сучасних ультразвукових технологій медичної діагностики особливе місце посідає технологія компаудингу пласких 
хвиль з різними напрямками поширення, які формують синтезовані зображення. В роботі на базі розвинутої раніше теорії 
формування допплерівського відгуку досліджена роздільна здатність системи, в якій використовується компаудинг пласких 
хвиль. При цьому для фази синтезованого відгуку і огинаючої імпульсів випромінювання враховувались малі нелінійні 
складові по куту відхилення хвильових векторів різних пласких хвиль. В результаті дослідження винайдено, що розміри 
вимірювального об’єму у поздовжньому та поперечному напрямках не змінюються. Урахування малих складових 
приводить до незначної зміни форми вимірювального об'єму, який перестає бути точно сферичним. Це пояснюється тим, що 
роздільна здатність визначається не тільки інтерференцією пласких хвиль, але й областю їх перетину у визначеній точці 
простору. Отримані результати свідчить про те, що нехтування малими  кутами відхилення у огинаючій є повністю 
виправданим і дозволяє спростити процес отримання спектрів допплерівських сигналів в технології компаундинга пласких 
хвиль. 
Ключові слова: ультразвук; допплерівський спектр; компаундування плоских хвиль; просторова роздільна здатність; 
огинаюча імпульсів 

 


