
79
EAST EUROPEAN JOURNAL OF PHYSICS. 1. 79-90 (2025)

DOI:10.26565/2312-4334-2025-1-07 ISSN 2312-4334

EIGEN RADIO FREQUENCY SIGNALS LOCALIZED AT ALFVEN RESONANCES 
IN A TOKAMAK SCRAPE-OFF LAYER 

I. Girkaa*, O. Trusha, W. Tierensb
aV.N. Karazin Kharkiv National University, Kharkiv, Ukraine 

bOak Ridge National Laboratory, Oak Ridge, USA 
*Corresponding Author e-mail: igor.girka@ipp.mpg.de

Received December 12, 2024; revised January 3, 2025; accepted February 1, 2025 

Eigen electromagnetic waves with small toroidal wave indices and positive poloidal wave indices are considered in the Ion Cyclotron 
Range of Frequencies (ICRF) in a tokamak Scrape-Off Layer (SOL). The waves are shown theoretically to exist in the form of the 
signals localized at the local Alfven Resonances (ARs). The evanescent regions in the direction of lower plasma density are provided 
by the presence of the wave nonzero poloidal wave indices. The narrow evanescent regions in the direction of higher plasma density 
are caused by strong plasma variation. The latter regions separate ARs from the high-density SOL and plasma core which are 
propagating regions for ICRF waves. The dispersion relation of ICRF signals is derived analytically and solved numerically. Possible 
relevance of the obtained results to experimental measurements is discussed. An exhaustive definition of the signals’ excitation sources 
is out of scope of the present study. 
Keywords: Eigen waves; Ion cyclotron range of frequencies; Alfven resonance; Tokamak scrape-off layer; Asymptotic methods; 
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INTRODUCTION 
Alfven Waves (AWs) were predicted by Hannes Alfven more than eighty years ago [1]. Soon they were 

experimentally observed by Allen with co-authors [2]. Since then, AWs are extensively studied due to multiple practical 
applications, in particular, in fusion plasmas and astrophysics.  

Plasma non-uniformity both in a laboratory and nature forms preconditions for the propagation of various AW types. 
For instance, elliptical shape of the fusion device cross-section was shown in [3] to give rise to eigen ellipticity induced 
Alfven waves (EAEs). AWs with zero toroidal mode number were observed, e.g., in the ellipticity-induced frequency 
range in JET [4]. Toroidal periodic non-uniformity of fusion plasmas gives rise to toroidal Alfvén eigenmodes (TAEs). 
An enlarged spectrum of ideal TAEs was demonstrated to exist within a toroidicity-induced Alfvén gap in [5]. Following 
the experimental observations of TAEs in a counter-current Neutral Beam Injection (NBI) scenario developed in TCV, 
an in-depth analysis of the impact of such modes on the global confinement and performance was carried out in [6]. 

The presence of the so-called non-axisymmetric resonances of wave-particle interaction in stellarators which are 
associated with the lack of axial symmetry of the magnetic configuration were found in [7] to have a strong stabilizing 
influence through Landau mechanism on TAEs destabilized by the energetic ions. Thermal ions were also reported in [7] 
to interact with high frequency Alfvén gap modes (helicity-induced Alfvén Eigenmodes and mirror-induced Alfvén 
Eigenmodes), leading to a considerable damping of these modes at the high pressure attributed to, e.g., a Helias reactor.  

Physics of the transverse energy transfer by Alfvén waves in toroidal plasmas was elucidated in [8]. In contrast to 
the classical Alfvén waves in infinite plasmas, the Alfvén waves in toroidal systems were found to produce plasma 
compression due to coupling with fast magnetoacoustic waves with providing the energy transfer. The radial group 
velocities of the traveling waves constituting the Global Alfvén Eigenmodes and TAEs were calculated. The obtained 
results were applied to explain how Alfvén eigenmodes could provide the spatial energy channeling - the transfer of the 
energy by these modes from the unstable plasma region to the region where the mode damping dominated. 

Non-linear dynamics of multiple infernal Alfvén eigenmodes—a subset of global Alfvén eigenmodes in tokamak 
plasmas with extended low-shear central core was studied in [9]. The analysis was carried out for a mode triplet with 
toroidal mode-numbers n = 1, 2, 3. The temporal evolution of the amplitudes and the phase (responsible for the frequency 
chirping) of the modes was found to exhibit Hopf bifurcations to stable limit cycles. This conclusion was applied for 
explanation of a synchronous cyclic destabilization of multiple modes in Alfvén avalanches (sudden growth of amplitudes 
of the mode cluster with different n and approximately equal frequency spacing) in NSTX and bursting modes in MAST. 

Comprehensive overview of studying AWs at Institute of Plasma Physics in Kharkiv including the research carried 
out in collaboration with the research centers of Sweden, Belgium, United Kingdom and Germany was presented in [10]. 
In particular, various types of Alfvén eigenmodes (AEs) were reported in [11] to be destabilized by fast ions over a broad 
frequency range in a series of JET experiments in mixed D–3He plasmas. The radial localization of AEs was identified 
using an X-mode reflectometer, a multiline interferometer and soft x-ray diagnostics. Two different types of Alfvén 
cascade (AC) eigenmodes were observed originating from the presence of a local minimum of the safety factor. In addition 
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to ACs with frequencies below the frequency of TAEs, ACs with frequencies above the TAE frequency were destabilized 
by energetic ions. Both ACs were localized in the central regions of the plasma.  

The deuterium ions accelerated to MeV range in three-ion radio frequency scenario of NBI were shown in [12,13] 
to produce fusion-born alpha-particles from the D-3He reaction. These alpha-particles were reported to excite EAEs with 
toroidal mode indices n = −1 and n = 0. The fusion-born alpha-particles rather than accelerated D-ions were shown to 
interact with EAEs with negative toroidal mode indices. The n = 0 EAEs were found to be excited only if a fast-ion 
population energy distribution had so-called ‘bump-on-tail distribution (where 𝜕𝑓/𝜕𝐸 > 0).  

The identification of TAEs at different radial locations in counter-current NBI scenarios in TCV was presented in 
[14]. These modes were reported to be significantly different from the ones observed previously in scenarios with co-
current off-axis NBI and electron cyclotron heating.  

Fourier analyses of the fast-ion loss detector revealed coherent fast-ion losses in the range of the 1...2 MHz in MAST-
U [15]. The losses were found to correlate with modes identified as Compressional and Global Alfvén Eigenmodes by 
the Mirnov coils. 

Local Alfven resonance (AR) as a method of plasma heating was first studied in [16]. Comprehensive overview of 
theoretical research of plasma Alfven heating was presented in [17]. ARs were effectively applied for plasma production 
and heating in various fusion devices (see, e.g., [18,19]). However, position of ARs is well-known to move to the plasma 
edge with increase in plasma density which reduces the efficiency of Alfven method of plasma heating and its application 
for these purposes in modern experiments. Comprehensive overview of the recent studies of AWs and plasma Alfven 
heating was given e.g. in [20]. 

Excitation of surface waves with |𝑘௭| < 𝑘଴ and 𝜔 > 𝜔௖௜ within Alfven resonance regions by ICRF antenna was 
numerically demonstrated in [21] with focusing on the cases of DEMO and ITER (here 𝑘௭ is toroidal wavenumber, 𝑘଴ is 
vacuum wavenumber, 𝑘଴ = 𝜔/𝑐, 𝜔 is the wave angular frequency, 𝜔௖௜ is ion cyclotron frequency, and 𝑐 is the speed of 
light in vacuum). The fast wave field spatial distribution was obtained by the semi-analytic code ANTITER II in plane 
geometry by summation of Fourier series over the toroidal and poloidal wave indices. A few well radially separated 
standing (in toroidal direction) wave patterns in edge plasma were clearly demonstrated. This is different from what was 
is discussed in the present paper. The difference is explained by the fact that the present paper studies the problem of 
eigen functions and eigen values rather than that of forced oscillations as it was in [21].  

In the present paper, the possibility for eigen ICRF signal to be localized in the vicinity of the local AR 

 𝑆 ≡ 1 − ఠ೛೔మఠమିன೎೔మ = 𝑁௭ଶ, (1) 

is shown. In (1), 𝑆 is the component of cold plasma permittivity tensor in Stix notations [22], 𝑁௭ = 𝑘௭/𝑘଴ is toroidal 
refractive index, and 𝜔௣௜ is ion plasma frequency. The wave field spatial distribution is found analytically in the vicinity 
of the resonance. The distribution corresponds to the localized ICRF signal: the fields decay exponentially with distance 
from AR (1), both towards the low-density and the high-density plasma. The dispersion relation is analyzed numerically 
by means of the standard package “Wolfram Mathematica”, version 13.1 [23]. Relevance of the numerical results to 
possible experimental observations is discussed. 

The novelty of the present paper is associated with three issues. First, previous analytical studies of AR fine structure 
were carried out in the framework of models with linear plasma density variation. This assumption was proved by small 
scale of kinetic and inertial Alfven waves into which large scale magnetohydrodynamic waves converted within ARs. 
However, plasma density profile in a tokamak SOL can be modelled as exponential decay with the distance from the 
plasma core. Sufficiently small decay length makes the search of the wave field spatial distribution out of ARs analytically 
tractable which is realized in the present paper.  

Second, no evanescent layer exists between ARs and high-density plasma in the case of smooth plasma density 
variation and moderate poloidal wave indices. Existence of the layer is the necessary precondition for the ICRF signal 
localized spatial distribution. Strong exponential variation of the plasma density in a tokamak SOL causes the existence 
of the layer. 

Third, previous studies (analytical and also many of numerical) were carried out with neglecting the toroidal (parallel 
to external static magnetic field) wave electric field 𝐸௭. This is correct due to sufficiently large absolute value of the 
plasma permittivity component 𝜀௭௭ (𝑃 in Stix notations applied below) in ICRF. This issue made it possible to significantly 
simplify the analysis by reducing Maxwell’s system of equations within ARs to the second order ordinary uniform 
differential equation. Presence of the evanescent layer for 𝐸௭ between an antenna and ARs causes decay of forced 𝐸௭ 
falling on ARs from the antenna side. However, in the case of eigen waves, the same evanescent layer causes decay of 𝐸௭ 
with the distance in opposite direction: from ARs to the metal wall. This results in the necessity to consider coupled 
electromagnetic waves within ARs described by two coupled second order ordinary nonuniform differential equations. 
These two coupled equations are solved in the present paper to determine the wave field spatial distribution within ARs. 

The paper is arranged as follows. The theoretical model is reported in section II with the emphasis on the SOL 
separation into four regions within which different asymptotic solutions can be applied. Wave field spatial distribution is 
presented in section III. The dispersion relation is given in section IV. The results of the numerical study of the dispersion 
properties are presented in section V. The main conclusions and discussions are found in section VI. 
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II. MODEL DESCRIPTION 
The SOL is considered in slab geometry with 𝑥 axis being perpendicular to the SOL and directed from the low-

density to the high-density plasma (opposite to the radial direction). External static uniform magnetic field 𝐵ሬ⃗ ଴ is parallel 
to the SOL and directed along 𝑧 axis, 𝐵ሬ⃗ ଴||𝑧. SOL is assumed to be uniform along 𝑦 axis which is chosen such that 𝑥,𝑦  
and 𝑧 axes form the right triple of vectors (Fig. 1). Plasma electrodynamic properties are described in terms of cold 
collisionless plasma dielectric permittivity tensor (in Stix notations [22]): 

 𝜀̂(𝑥) = ൭ 𝑆 −𝑖𝐷 0𝑖𝐷 𝑆 00 0 𝑃൱. (2) 

Within the ion cyclotron frequency range, 𝜔௖௜ < 𝜔 ≪ |𝜔௖௘|, the tensor components read  

 𝑆 = 1 − ఠ೛೔మఠమିன೎೔మ , 𝐷 = ఠ೛೔మ ఠఠ೎೔൫ఠమିன೎೔మ ൯, 𝑃 = 1 − ఠ೛೐మఠమ .   (3) 

Hereinafter, 𝜔௖௘ is electron cyclotron frequency, and 𝜔௣௘ is electron plasma frequency. 
The wave field spatial distribution is to be found in the form of Fourier harmonic, e.g., the wave toroidal magnetic 

field  

 𝐻௭~(𝑟, 𝑡) = 𝐻௭(𝑥)exp [𝑖൫𝑘௭𝑧 + 𝑘௬𝑦 − 𝜔𝑡൯)].  (4) 

In (4), 𝑘௬ is poloidal wavenumber. Then the wave amplitudes 𝐸௭(𝑥) and 𝐻௭(𝑥) spatial distribution is governed by two 
coupled second order ordinary linear differential equations: 

ଵ௞బమ ௗమா೥ௗ௫మ + ே೥మ௞బమ ௗௗ௫ ቀ ଵே఼మ ௗா೥ௗ௫ ቁ + ே೥మே೤௞బ 𝐸௭ ௗௗ௫ ቀ ఓே఼మቁ + 𝐸௭ ቂ𝑃 − 𝑁௬ଶ − ே೥మே೤మே఼మ ቃ = − ௜ே೥௞బమ ௗௗ௫ ቀ ఓே఼మ ௗு೥ௗ௫ ቁ − ௜ே೥ே೤௞బ 𝐻௭ ௗௗ௫ ቀ ଵே఼మቁ + ௜ே೥ே೤మఓே఼మ 𝐻௭, (5) 

 ଵ௞బమ ௗௗ௫ ቀ ଵே఼మ ௗு೥ௗ௫ ቁ + 𝐻௭ ቂ1 − ே೤మே఼మ + ே೤௞బ ௗௗ௫ ቀ ఓே఼మቁቃ = ௜௞బమ ௗௗ௫ ቀఓே೥ே఼మ ௗா೥ௗ௫ ቁ − ௜ே೤మே఼మ 𝜇𝑁௭𝐸௭ + ௜ே೥ே೤௞బ 𝐸௭ ௗௗ௫ ቀ ଵே఼మቁ. (6) 

In (5), and (6), 𝑁௬ = 𝑘௬/𝑘଴  is poloidal refractive index, 𝜇 = −𝐷/(𝑆 − 𝑁௭ଶ), 𝑁ଶୄ = (𝑅 − 𝑁௭ଶ)(𝐿 − 𝑁௭ଶ)/(𝑆 − 𝑁௭ଶ), 𝑅 =𝑆 + 𝐷, and 𝐿 = 𝑆 − 𝐷.  
To derive the dispersion relation, one needs also the expressions for 𝑦-components of electrical and magnetic wave 

fields: 

 𝐸௬ = ିଵே఼మ { ௜௞బ ௗு೥ௗ௫ + 𝑁௭𝑁௬𝐸௭ + 𝜇[𝑖𝑁௬𝐻௭ + ே೥௞బ ௗா೥ௗ௫ ]}, (7) 

 𝐻௬ = ିே೥ே఼మ ቄ𝑁௬𝐻௭ − ௜ே೥௞బ ௗா೥ௗ௫ + 𝜇 ቂ−𝑖𝑁௬𝑁௭𝐸௭ + ଵ௞బ ௗு೥ௗ௫ ቃቅ + ௜௞బ ௗா೥ௗ௫ .  (8) 

These tangential components should be continuous at the interfaces between the regions specified below. 
Plasma particle density is assumed to increase exponentially within the SOL [24],  

 
Figure 1. Schematic of the problem 
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Figure 2. Spatial variation of 𝑆(𝑥) (solid curve) and within the low-density SOL. Numbers 1-4 in grey circles indicate the four 
regions, into which the SOL is separated to make the Maxwell’s equations analytically solvable. Dash-dotted vertical lines 
separate the regions. 𝑛 = 3, 𝜔/𝜔௖௜ = 5.308, 𝑅 = 2.12 𝑚,  𝜆 = 0.018 𝑚, 𝐵଴ = 2.0 𝑇, 𝑛(0) = 8.287 ൈ 10ଵ଺ 𝑚ିଷ) 

 
Figure 3. Spatial variation of 𝑁ଶୄ(𝑥) (dashed curve), and 𝑃ଵ(𝑥) (solid curve) within the first region. Dotted line corresponds to 
vacuum value of 𝑃ଵ. The wave and plasma parameters are the same as in Fig. 2 

 𝑛(𝑥) = 𝑛଴exp (𝑥/𝜆).  (9) 

In (9), 𝜆 is the decay length, and 𝑛଴ is plasma density at 𝑥 = 0 which is considered hereinafter as the position of the 
local resonance (1). It is the smallness of 𝜆 as compared with the tokamak plasma minor radius 𝑎 which justifies the 
application of the slab geometry in the present paper, since the studied ICRF signal is shown hereinafter to be localized 
within the layer with the width of the order of 𝜆. 

The components 𝑆,𝐷,𝑃 (3) of the plasma permittivity tensor, as well as coefficients in Maxwell’s equations (5)-(8) 
vary significantly in low-density SOL. Separation of the SOL into four regions (Fig. 2) according to correlation between 
the components 𝑆,𝐷, and 𝑃 is explained below. Analytical asymptotic solutions of Eqs. (5)-(6) within these four regions 
are derived in the next section. The following wave and plasma parameters are applied while calculating the curves in 
Figs. 2-6: Deuterium single charged ions, toroidal wave index 𝑛 = 3, ratio of the wave frequency to ion cyclotron 
frequency 𝜔/𝜔௖௜ = 5.308, major plasma radius 𝑅 = 2.12 𝑚, minor plasma radius 𝑎 = 0.5 𝑚, density decay length 𝜆 =0.018 𝑚, the external static uniform magnetic field 𝐵଴ = 2.0 𝑇, the plasma density 𝑛(0) = 8.287 ൈ 10ଵ଺ 𝑚ିଷ, and the 
ion temperature of 𝑇௜ = 10.0 𝑒𝑉. The electron-ion collision frequency can be estimated for these plasma parameters as 𝜈௘పതതതത = 114.0 𝑘𝐻𝑧 which is much smaller than ion cyclotron frequency 𝑓௖௜ ≈ 14.6 𝑀𝐻𝑧. This fact confirms the validity of 
the collisionless plasma approximation applied in the present paper. 

The first region (Fig. 3) is determined by the condition that the plasma density is sufficiently small there to provide 
so-called vacuum conditions: 

 |𝑆 − 1| ≪ 1, |𝐷| ≪ 1, |𝑃 − 1| ≪ 1. (10) 

In this region, the wave field spatial distribution can be determined precisely. The wave amplitude is assumed to 
decay exponentially with the distance from AR (1), 𝑥 → −∞. The right boundary 𝑥ଵ of the first region is determined as  
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Figure 4. Spatial variation of 𝑁ଶୄ(𝑥) (dashed curve), and 𝑃ଵ(𝑥) (solid curve) within the second region. Thin dotted curve 
demonstrates the asymptotic  𝑃(𝑥) − 1 of 𝑃ଵ(𝑥). Thin vertical dash-dotted line indicates the position of 𝑁ଶୄ(𝑥) = 0. The wave 
and plasma parameters are the same as in Fig. 2 

follows. The factor 𝑃ଵ ≡ 𝑃 − 𝑁௬ଶ − 𝑁௭ଶ𝑁௬ଶ/𝑁ଶୄ placed in square brackets in eq. (5) transfers in the vicinity of 𝑥ଵ from the 
value 1 −𝑁௬ଶ − 𝑁௭ଶ𝑁௬ଶ/(1 − 𝑁௭ଶ), which is inherent for the vacuum, to 𝑃 − 1, which is the asymptotic for the larger 
plasma density, |𝑃 − 1| ≫ (𝑁௬ଶ + 𝑁௭ଶ − 1)/(1 −𝑁௭ଶ): 

 𝑥ଵ = 𝜆 ln ൬௠೐௠೔ ఠమఠ೎೔మ ଵேಲమ(଴)൰. (11) 

The factor 𝑃ଵ is shown in Fig. 3 by solid curve. Its maximum deviation from the value 1 −𝑁௬ଶ − ே೥మே೤మଵିே೥మ ≈ −4.237 
given in Fig. 3 by dotted line is observed at 𝑥 = 𝑥ଵ: 𝑃ଵ(𝑥ଵ) ≈ −5.241. 𝑁ଶୄ(𝑥) is shown in Fig. 3 by dashed curve. It 
weakly deviates from its vacuum value 𝑁ଶୄ(𝑥 → −∞) = 1 −𝑁௭ଶ ≈ 0.276. Even at the right boundary of the first region, 
the deviation is smaller than 10ିସ.  

Within the second region (Fig. 4), one can neglect plasma particle density, 𝜔௣௜ଶ → 0, in the expressions for 𝑆 and 𝐷; and must take the difference between 𝑃 and a unit into account, |𝑃| ് 1. Neglecting the existence of this region would 
block searching for the solution to the dispersion relation. Comparison of 𝑃ଵ(𝑥) (solid curve in Fig. 4) with its asymptotic 𝑃(𝑥) − 1 presented by thin dotted curve justifies approach to solving eq. (5) presented below. Vertical dash-dotted line 
indicates the coordinate where 𝑁ଶୄ(𝑥) turns to zero and hence, 𝑃ଵ(𝑥) diverges. This divergence is not shown in Fig. 4. 
Wave fields are known to vary weakly in the vicinity of this coordinate. 

The ICRF signal is expected to be localized in the third region, where 𝑆 ≈ 𝑁௭ଶ (Fig. 5). Its boundaries can to be 
determined as follows: 

 −𝜆 < 𝑥 < +𝜆. (12) 

At the left boundary of the third region, the plasma particle density is sufficiently small to provide the following strong 
inequalities: 

 |𝑆(−𝜆) − 1| ≪ 1, |𝐷(−𝜆)| ≪ 1. (13) 

However, the absolute value of 𝑃 is already large there, |𝑃(−𝜆)| ≫ 1. In the particular case, presented in Fig. 5, these 
quantities are equal: 𝑆(−𝜆) − 1 ≈ −0.102, 𝐷(−𝜆) ≈ −0.539, and 𝑃(−𝜆) ≈ −358.543. 
 

At the right boundary of the third region, the plasma density is sufficiently high, so that 𝜇 is almost uniform, 𝜇(𝜆) ≈𝜔/𝜔௖௜, and 𝑁ଶୄ behaves almost as Alfven refractive index squared, 𝑁ଶୄ(𝜆) ≈ 𝑁஺ଶ(𝜆) with 𝑁஺ ≡ 𝜔௣௜/𝜔௖௜. In the particular 
case, presented in Fig. 5, 𝜇(𝜆) ≈ 8.397, 𝜔/𝜔௖௜ ≈ 5.308, 𝑁ଶୄ(𝜆) ≈ 32.978, and 𝑁஺ଶ(𝜆) ≈ 20.395. 

The fourth region (Fig. 6) lies to the right of the third region, 

 𝑥 > +𝜆. (14) 

In this region, the wave is assumed to decay with the distance from the resonance (1), 𝑥 → +∞. The latter boundary 
condition along with that for 𝑥 → −∞ mentioned above provides the localized nature of the ICRF signal under the 
consideration. Physical essence of the mathematical condition 𝑥 → +∞ is that the wave field amplitude decays  
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Figure 5. Spatial variation of  𝜇(𝑥) (solid curve) and −𝑁ଶୄ(𝑥) (dashed curve) within the third region. The wave and plasma 
parameters are the same as in Fig. 2. 

 
Figure 6. Spatial variation of  𝜇(𝑥) (solid curve), 𝑁ଶୄ(𝑥) (dashed curve), and  𝑁஺ଶ(𝑥) (dotted curve) within the fourth region. 
The wave and plasma parameters are the same as in Fig. 2 

sufficiently before the fast wave reaches the region of its propagation in the high-density plasma. It should be underlined 
that the 𝑁ଶୄ variation in the fourth region approximately follows that of the plasma particle density (9),  

 𝑁ଶୄ ≈ 𝑁஺ଶ(0)exp (𝑥/𝜆).  (15) 

The latter circumstance significantly simplifies searching the analytical (though approximate) solution to the 
Maxwell’s equations in this region. Note also that 𝜇 weakly varies in this region, 𝜇 ≈ 𝜔/𝜔௖௜. Weak difference between 𝑁ଶୄ and 𝑁஺ଶ within the fourth region is clearly seen in Fig. 6 where these quantities are shown by dashed and dotted curves 
respectively. The solid curve in Fig. 6 confirms negligible variation of 𝜇 within the fourth region. 

 
III. WAVE FIELD SPATIAL DISTRIBUTION 

Within the first region, −∞ < 𝑥 < 𝑥ଵ, both wave field amplitudes 𝐸௭(𝑥) and 𝐻௭(𝑥) are governed by the same second 
order uniform differential equations 

 ௗమு೥ௗ௫మ + ൫𝑘଴ଶ − 𝑘௬ଶ − 𝑘௭ଶ൯𝐻௭ = 0. (16) 

Their solutions, which satisfy the boundary condition of the wave field vanishing at 𝑥 → −∞, read: 

 𝐻௭ = 𝐴ଵexp (𝑘ଵ𝑥), 𝐸௭ = 𝐵ଵexp (𝑘ଵ𝑥). (17) 

In (17), 𝐴ଵ and 𝐵ଵ are the constants of integration, 𝑘ଵ = ට𝑘௬ଶ + 𝑘௭ଶ − 𝑘଴ଶ is assumed to be real observable which physical 

sense is as follows. The value 𝑘ଵି ଵ is the spatial scale at which the wave field amplitude decreases by the factor of 𝑒. The 
dependences 𝐸௭(𝑥) and 𝐻௭(𝑥) within the first region are demonstrated in Fig. 7 by dashed and solid curves respectively 
to the left of 𝑥ଵ ≈ −6.885𝜆. For the plasma parameters applied in calculations for Fig. 7, 𝑘ଵ ≈ 1.799 𝑚ିଵ is rather small, 
however, for the wave with 𝑚 = 5, 𝑘ଵ ≈ 6.0 𝑚ିଵ. 
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Figure 7. Wave field radial distribution: 𝐻௭(𝑥) – solid curves, 𝐸௭(𝑥) – dashed curves, 𝑛 = 3, 𝑚 = 1, other data is given in 
Section V. Vertical dash-dotted lines indicate the boundaries between the regions 1÷4 

Within the second region, 𝑥ଵ < 𝑥 < −𝜆, the wave toroidal magnetic field spatial distribution is governed by the same 
equation (16) as in the first region unlike that of the wave toroidal electric field which is governed by the following 
truncated equation: 

 ଵ௞బమ ௗమா೥ௗ௫మ + (𝑃 − 1)(1 − 𝑁௭ଶ)𝐸௭ = 0.  (18) 

The solution of eq. (18) can be written in terms of modified Bessel function 𝐼଴(𝑞) and McDonald function 𝐾଴(𝑞) of the 
zeroth order:  

 𝐸௭ = 𝐵ଶଵ𝐼଴൫2𝑘଴𝜆ඥ(𝑃 − 1)(𝑁௭ଶ − 1)൯ + 𝐵ଶଶ𝐾଴൫2𝑘଴𝜆ඥ(𝑃 − 1)(𝑁௭ଶ − 1) ൯. (19) 

For the plasma parameters applied in calculations for Fig. 7, the Bessel function arguments in eq. (19) read 0.984exp (0.5𝑥/𝜆). 
Within the third region, −𝜆 < 𝑥 < +𝜆, one applies the method of narrow layer [16,25] which is generalized in the 

present report for solving the set of two coupled second order differential equations. Summarizing in brief, the method of 
narrow layer is appropriate to be applied in the cases opposite to those when the WKB method is applicable one. The 
wave field spatial distribution within the third region reads 

𝐻௭ = 𝐴ଷଵ ቊ1 −න [(𝑥 + 𝜆)𝑘ଶୄ]𝑑𝑥௫
ିఒ + 𝑁௬ଶ න ቈ𝑘ଶୄ න 𝑑𝑥𝑁ଶୄ௫

ିఒ ቉ 𝑑𝑥௫
ିఒ − 𝑘௬ න 𝜇𝑑𝑥௫

ିఒ ቋ − 𝐴ଷଶ 11 − 𝑁௭ଶ න 𝑁ଶୄ𝑑𝑥௫
ିఒ  

+𝑖𝐵ଷଵ ቄ𝑘௭𝑁௬(𝑥 + 𝜆) −𝑁௬ଶ𝑁௭ ׬ ቂ𝑘ଶୄ ׬ ఓௗ௫ே఼మ௫ିఒ ቃ 𝑑𝑥 − ே೥௞೤ଵିே೥మ௫ିఒ ׬ 𝑁ଶୄ𝑑𝑥௫ିఒ ቅ + 𝑖𝐵ଷଶ𝑁௭ ׬ 𝜇𝑑𝑥௫ିఒ ,  (20) 

𝐸௭ = 𝑖𝐴ଷଵ ቊ𝑁௭𝑘௬ଶ න ቈ1𝑄න 𝜇𝑑𝑥𝑁ଶୄ௫
ିఒ ቉ 𝑑𝑥௫

ିఒ − 𝑘௭𝑁௬ න 𝑑𝑥𝑄𝑁ଶୄ௫
ିఒ + 𝑘௭𝑁௬1 −𝑁௭ଶ න 𝑑𝑥𝑄௫

ିఒ ቋ − 𝑖𝐴ଷଶ𝑁௭ න 𝜇𝑑𝑥𝑄𝑁ଶୄ௫
ିఒ  

+𝐵ଷଵ ቄ1 − 𝑁௭ଶ𝑘௬ ׬ ఓௗ௫ொே఼మ௫ିఒ − 𝑘଴ଶ ׬ ቂଵொ ׬ ቀ𝑃 − 𝑁௬ଶ − ே೥మே೤మே఼మ ቁ 𝑑𝑥௫ିఒ ቃ 𝑑𝑥௫ିఒ ቅ + 𝐵ଷଶ ଵଵିே೥మ ׬ ௗ௫ொ௫ିఒ . (21) 

In (20), and (21), the constants of integration 𝐴ଷଵ, 𝐴ଷଶ, 𝐵ଷଵ and 𝐵ଷଶ have clear physical essence. They represent the 
wave field amplitudes and their derivatives at the left boundary of the region, 𝑥 = −𝜆:  

 𝐴ଷଵ = 𝐻௭(−𝜆), 𝐴ଷଶ = ௗு೥ௗ௫ |௫ୀିఒ  , 𝐵ଷଵ = 𝐸௭(−𝜆), 𝐵ଷଶ = ௗா೥ௗ௫ |௫ୀିఒ.  (22) 

In (20), and (21), the following notation is applied 

 𝑄 = ஽మିௌ(ௌିே೥మ)஽మି൫ௌିே೥మ൯మ.  (23) 

The most important benefit from application of Eqs. (20) and (21) is that they connect the values of the wave fields 
at the opposite sides of the resonance (1).  
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The problem of electromagnetic energy absorption in the vicinity of the resonance (1) is out of scope of the present 
paper. Consequently, the wave field distribution shown in Fig. 7 within the third region is discontinuous: no data is 
presented for −0.147𝜆 < 𝑥 < 0.147𝜆. The figure 0.147 corresponds to the characteristic local resonance width, ∆𝑥~(𝜌௅௜ଶ 𝜆)భయ ≈ 5.3 × 10ିଷ 𝑚 [16,26,27] (here 𝜌௅௜ is ion Larmor radius). Exclusion of this interval of coordinates from 
the consideration results in absence of evident resonant behavior of the wave electric field 𝐸௭ unlike the wave magnetic 
field 𝐻௭ which demonstrates resonant growth with approaching to the coordinate 𝑥 = 0. The absence of 𝐸௭ resonant 
behavior in Fig. 7 can be explained by different type of the wave field singularity in the cold plasma approximation, in 
which 𝐻௭ ∝ ln|𝑆 − 𝑁௭ଶ| and 𝐸௭ ∝ (𝑆 − 𝑁௭ଶ)ିଶ which means that the resonance of 𝐸௭ is narrower than that of 𝐻௭.  

One can note different nature of 𝐻௭(𝑥) dependence on opposite sides of the resonant point 𝑥 = 0 presented in Fig. 
7. The wave field 𝐻௭(𝑥) decays with distance from 𝑥 = 0 to the left (𝑥 < 0) unlike it crosses the 𝑥-axis to the right of the 
resonant coordinate (at 𝑥 ≈ 0.44𝜆). This circumstance agrees with the behavior of 𝑁ଶୄ presented in Fig. 5. Since 𝑁ଶୄ →+∞ for 𝑥 → +0, the fast wave has a narrow propagation region to the right of the resonant point. It is this region which 
(in combination with the evanescent region in the fourth region) gives rise to the possibility of the localized ICRF signal 
studied in the present paper to exist. For 𝑥 < 0, the wave field amplitude 𝐻௭(𝑥) decays with the distance from the 
resonance point but never turns to zero. Within the propagation region, 𝐻௭(𝑥) should spatially oscillate which means 
periodic turning to zero. Since the propagation region is narrow then one observes only one period of such oscillations. 

In the fourth region, 𝑥 > 𝜆, the coupling between the fast and slow modes can be neglected. To determine the spatial 
distribution of the wave toroidal magnetic field one can apply eq. (6) which truncated form reads: 

 ଵ௞బమ ௗௗ௫ ቀ ଵே఼మ ௗு೥ௗ௫ ቁ + ே೤௞బ ௗௗ௫ ቀ ఓே఼మቁ𝐻௭ = 0.  (24) 

The term “𝐻௭ ே೤௞బ ௗௗ௫ ቀ ఓே఼మቁ” in the l.h.s. of eq. (6) appears to be larger by the order of magnitude than “𝐻௭” and “−𝑁௬ଶ𝐻௭/𝑁ଶୄ 
due to strong change of the plasma density (9). This was also confirmed by numerical calculations. Solution of eq. (24) 
which satisfies the boundary condition of vanishing with going inside the plasma reads 

 𝐻௭ = 𝐴ସexp(−𝑘ସ𝑥).  (25) 

In (25), 𝑘ସ = ൬ටଵାସఒ௞೤ఠ/ఠ೎೔ିଵ൰ଶఒ ≈ ௞೤ఠఠ೎೔ > 0 with 𝑘ସି ଵ being the spatial scale at which the wave amplitude decreases by 𝑒𝑥𝑝. For the plasma parameters applied in calculations for Fig. 7, 𝑘ସ ≈ 9.17 𝑚ିଵ. It is even larger for the waves with 𝑚 = 5: 𝑘ସ ≈ 34.03 𝑚ିଵ, which means that the wave amplitude decreases by 𝑒𝑥𝑝 at the distance of 0.024 𝑚. 
The spatial distribution of the wave toroidal electric field can be found from eq. (5) which can be simplified in the 

fourth region as follows: 

 ଵ௞బమ ௗమா೥ௗ௫మ + 𝑃𝐸௭ = 0.  (26) 

The solution of eq. (26) which satisfies the boundary condition of vanishing with going inside the plasma reads 

 𝐸௭ = 𝐵ସ𝐾଴൫2𝜆𝜔௣௘/𝑐൯.  (27) 

For the plasma parameters applied in calculations for Fig. 7, the McDonald function argument in eq. (27) reads 1.872exp (0.5𝑥/𝜆). 
 

IV. DISPERSION RELATION 
In Section III, the wave field spatial distribution is derived with ten constants of integration. This means that 

application of the boundary conditions can result in the dispersion relation in the form of the ten-order determinant equal 
to zero. Such approach does not cause any numerical problems. However, on one hand, the ten-order determinant contains 
a lot of zero components. And on the other hand, the constants of integration 𝐴ଷଵ, 𝐴ଷଶ, 𝐵ଷଵ and 𝐵ଷଶ can be easily expressed 
in terms of 𝐴ଵ, 𝐵ଵ, 𝐵ଶଵ, and 𝐵ଶଶ which makes it possible to reduce the dispersion relation to the form with the six-order 
determinant equal to zero, ห𝑎௜௝ห = 0. This conversion does not cause any technical (mathematical) problems. Moreover, 
even this six-order determinant contains fourteen zero components. The components of the six-order determinant 
representing the dispersion relation are presented in Annex 1. 

 
V. RESULTS OF NUMERICAL ANALYSIS OF THE DISPERSION RELATION 

The dispersion relation is analyzed numerically by means of the standard package “Wolfram Mathematica”, 
version 13.1 [23]. Some results are presented in Table 1. The code input includes the wave toroidal and poloidal indices,  
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Table 1. Eigen frequencies, Alfven refractive index squared in the resonance (1), 𝑁஺ଶ(0), coefficient of proportionality between 𝑁஺ଶ(0) 
and (𝜔/𝜔௖௜)ଶ 

Toroidal wave index Eigen angular frequency,  𝜔/𝜔௖௜ Eigen frequency,  𝜔/(2𝜋), MHz 
𝜔௣௜ଶ (0)𝜔௖௜ଶ  

𝑁஺ଶ(0)(𝜔/𝜔௖௜)ଶ 

1 1.855 27.063 0.83 0.241 
2 3.562 51.959 3.34 0.263 
3 5.308 77.437 7.50 0.266 
4 7.062 103.026 13.34 0.267 
5 8.819 128.653 20.84 0.268 
6 10.577 154.301 30.02 0.268 

plasma minor and major radii, and the plasma density decay length. ICRF normalized frequency 𝜔/𝜔௖௜ is the code output. 
Numerical solution of the dispersion relation is practically insensitive to the poloidal wave index value. The data for 𝑛 = 5,6 is displayed in Table 1. However, the precision of the solutions (20)-(21) is unsatisfactory (44%) for 𝑛 = 5, and 

it is even worse (76%) for 𝑛 = 6. Assumption of existence of the sufficiently large evanescent region (fourth region) to 
the right of the resonance (1), where the fast wave decays with the distance from the resonance to the high-density plasma, 
fails for larger toroidal wave indices. 

 
VI. CONCLUSIONS AND DISCUSSIONS 

The following conclusions can be made from the presented analysis. First, the eigen frequencies are approximately 
proportional to the toroidal wave index, 𝜔 ∝ |𝑛|. This feature is also known for Alfven waves. Consequently, the 
frequencies are almost equidistant. The eigen frequencies in Table 1 increase by about ∆𝜔 ≈ 1.76 𝜔௖௜ with enhancing 
the toroidal wave index by a unit.  

Second, the following question naturally arises when one scrutinizes the figures in Table 1: why the Table does not 
contain any data concerning the higher toroidal wave indices 𝑛 > 6. The answer is that, first, for larger values of 𝑛 (higher 
frequencies) the conditions of applicability of the applied approach worsen. Indeed, the change in the argument of 
exponential function in eq. (24), 𝑘ସ∆𝑥, within the evanescent region should be large. The local resonance (1) shifts to the 
denser plasma with increase of 𝑛, and the change 𝑘ସ∆𝑥 decreases. In particular, for chosen plasma parameters, this shift 
from the resonance position related to 𝑛 = 6 to that related to 𝑛 = 3 is 2.47 𝑐𝑚, while the distance between the 𝐻௭ cut-
off [28] position and the resonance position shortens from 7.48 𝑐𝑚 in the case of 𝑛 = 3 to 2.71 𝑐𝑚 in the case of 𝑛 = 6. 
And the second, the third term in the l.h.s. of eq. (6) should prevail over the first one to provide applicability of truncated 
eq. (24) in the fourth region. The following restriction can be derived from the latter condition: 

 𝜔ଷ ≪ 𝑐ଶ𝜔௖௜/(𝑎𝜆).  (28) 

In (28), it is taken into account that 1 −𝑁௭ଶ ≈ 0.27 according to the data in Table 1 for all presented values of the toroidal 
wave indices. For the chosen plasma parameters, the r.h.s. of eq. (28) can be estimated as 𝜔ଷ ≪ 𝑐ଶ𝜔௖௜/(𝑎𝜆) ≈1.7 × 10ଷ𝜔௖௜ଷ  or 𝜔 ≪ 12.0𝜔௖௜.  

Third, it is assumed in the present paper that the RF signal is centered in the resonance (1), where 

 𝑁஺ଶ(0) = (1 −𝑁௭ଶ)(𝜔ଶ/𝜔௖௜ଶ − 1). (29) 

With taking into account that 𝜔 ∝ |𝑛| and hence 𝑁௭ଶ ≈ 𝐶𝑜𝑛𝑠𝑡 = 0.72 as well as 𝜔ଶ ≫ 𝜔௖௜ଶ  one concludes from eq. 
(29) that the plasma particle density at the coordinate, where the RF signal is centered, should be almost proportional to 
the frequency squared, 𝑛(0) ∝ 𝜔ଶ (see the right column in Table 1). On one side, in this respect, numerical results agree 
with theoretical foresight. On the other side, this means that the coordinate, where the RF signal is predicted to be centered, 
varies with toroidal wave index 𝑛. If this variation is larger than the characteristic local resonance width, ∆𝑥~(𝜌௅௜ଶ 𝜆)భయ ≈5.3 × 10ିଷ 𝑚 [16,26,27], one should expect series of ICRF signals in a tokamak SOL, like it was reported in [21]. In the 
opposite case, ICRF signals spatially overlap and several frequencies should be registered in approximately one position 
with a nonzero width.  

Fourth, the waves with negative poloidal wave indices, 𝑚 < 0, do not contribute to the studied phenomenon. This 
is explained by the fact that the plasma is propagative for the fast magnetosonic waves with negative poloidal wave 
indices, 𝑚 < 0, in the fourth region. From mathematical point of view, this conclusion results from the fact that both 
terms in eq. (24) are of the same sign in this case. This sign coincidence provides propagative character of the solution of 
eq. (24) which contradicts the initial assumption of the localized nature of the studied RF signal.  

The numerical results were explained in [21] based on Fig. 3 in [21] as follows. Surface waves were suggested to 
arise in the evanescent region bordered by two propagative regions. Such structure is well-known from Quantum 
Mechanics (see e.g., [29]). The structure is called in Quantum Mechanics as “one-dimensional square potential barrier”. 
The wave function is well-known to fall from the left propagative region, reflect from the barrier and exponentially decay 
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within the evanescent region, and then the wave function propagates further into the right propagative region. To get 
localized increase of the wave amplitude (which is clearly seen in Fig. 13 in [21]), one needs the opposite structure: 
propagative region should be bordered by two evanescent regions. And just this structure was considered in [21]. The fast 
wave field spatial distribution was obtained there by the summation of the wave harmonics over 𝑘௭ and 𝑘௬ terms. For the 
wave harmonics with 𝑘௬ଶ + 𝑘௭ଶ > 𝑘଴ଶ, the left region (vacuum) is the evanescent region. Then a small propagative region 
takes place near Alfven resonance. And further there is an evanescent region to the right of Alfven resonance before the 
plasma density becomes sufficiently high and the plasma becomes propagative in the plasma core.  

Mechanisms of RF signals’ excitation are not discussed in the present paper. The problem of eigen values and eigen 
functions is considered only. Such signals can be excited either by ICRF antenna, by parametric decay or by energetic 
ion tails. At the same time, the suggested localized RF signal can still be considered as one of the mechanisms responsible 
for undesirable ICRF power absorption in the SOL. 
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Annex 1. 

The components of the determinant 𝑎௜௝ which form the dispersion relation of the studied waves read: 𝑎ଵଵ = 𝑎ଵଶ = 0, 𝑎ଵଷ = 𝑁ସ ≡ 𝑘ସ/𝑘଴, 𝑎ଵସ = 1.0, 𝑎ଵହ = 𝑁௭𝜔/𝜔௖௜, 𝑎ଵ଺ = −𝜔௣௘(0)𝑁௭𝑞𝐾ଵ(𝑞)/𝜔௖௜, 𝑞 = 2𝜆ඥ𝑒(1 −𝑁௭ଶ)(𝜔ଶ − 𝜔௖௜ଶ )/𝑐,  (30) 𝑎ଶଵ = 𝑎ଶଶ = 0, 𝑎ଶଷ = 𝑁ସ𝑁௭𝜔/𝜔௖௜, 𝑎ଶସ = 𝑎ଵହ, 𝑎ଶହ = 𝑁஺ଶ(0)𝑒, 𝑎ଶ଺ = −𝜔௣௘(0)𝑎ଶହ𝑞𝐾ଵ(𝑞)/𝜔, (31) 𝑎ଷଵ = ே೥ே೤ଵିே೥మ − 𝑘଴𝜆𝑁௬ଶ𝑁௭𝐼ଵ, 𝑎ଷଶ = ఙభே೥మିଵ + ே೥మே೤௔మఱ ఠఠ೎೔ 𝜎ଶ + 𝑘଴𝜆𝜎ଶ𝐼ଶ, 𝑎ଷଷ = 0, 𝑎ଷସ = − ே೥௔మఱ ఠఠ೎೔, 𝑎ଷହ = −1.0,  𝑎ଷ଺ = 0, (32) 𝑎ସଵ = −𝑘଴ଶ𝜆ଶ𝑁௭𝐼ଷ + ௞೥ఒே೤ଵିே೥మ 𝐼ସ + 𝑘଴𝜆𝑁௬𝑁௭𝐼ହ + 𝑘ଵ𝜆𝑁௭𝐼଺,  𝑎ସଶ = ௞బఒఙభே೥మିଵ 𝐼ସ − 𝜎ଶ − 𝑁௭ଶ𝑁௬𝜎ଶ𝑘଴𝜆𝐼଺ + 𝑘଴ଶ𝜆ଶ𝜎ଶ𝐼଻, 𝑎ସଷ = 𝑎ସସ = 𝑎ସହ = 0, 𝑎ସ଺ = 𝐾଴(𝑞), (33) 𝑎ହଵ = 2𝑘଴𝜆 + 𝑘଴𝜆𝑁௬ଶ𝐼 + ேభே೥మିଵ, 𝑎ହଶ = ே೥ே೤ఙమଵିே೥మ − 𝑁௬ଶ𝑁௭𝜎ଶ𝑘଴𝜆𝐼ଵ, 𝑎ହଷ = 𝑎ହହ = 0, 𝑎ହସ = 1/𝑎ଶହ, 𝑎ହ଺ = 𝜔௣௘(0)𝑁௭𝐾ଵ(𝑞)√𝑒/(𝜔௖௜𝑎ଶହ) (34) 𝑎଺ଵ = 1 + 𝑘଴ଶ𝜆ଶ𝐼ଽ + 𝑘଴ଶ𝜆ଶ𝑁௬ଶ𝐼ଵଵ − 𝑘௬𝜆𝐼ଵଶ + ௞భఒே೥మିଵ 𝐼ଵଷ, 𝑎଺ଶ = 2𝑁௬𝜎ଶ𝑘௭𝜆 + 𝑁௭𝜎ଵ𝑘଴𝜆𝐼ଵଶ +ே೥௞೤ఒఙమଵିே೥మ 𝐼ଵଷ − 𝑁௬ଶ𝑁௭𝜎ଶ𝑘଴ଶ𝜆ଶ𝐼ଵସ, 𝑎଺ସ = 𝑎଺ହ = 𝑎଺଺ = 0, 𝑎଺ଷ = −1. (35) 
The expressions for 𝑎ଷଶ, 𝑎ସଶ, 𝑎ହଶ, 𝑎଺ଶ contain the notations 𝜎ଵ,ଶ:  𝜎ଵ = కమ௞బఒ ൜0.5𝜉ଵ[𝐼ଵ(𝜉ଶ)𝐾ଵ(𝜉ଵ) − 𝐼ଵ(𝜉ଵ)𝐾ଵ(𝜉ଶ)]+𝑘ଵ𝜆[𝐼ଵ(𝜉ଶ)𝐾଴(𝜉ଵ) + 𝐼଴(𝜉ଵ)𝐾ଵ(𝜉ଶ)]ൠ, (36) 𝜎ଶ = 𝜉ଵ[𝐼ଵ(𝜉ଵ)𝐾଴(𝜉ଶ) + 𝐼଴(𝜉ଶ)𝐾ଵ(𝜉ଵ)] + 2𝑘ଵ𝜆[𝐼଴(𝜉ଶ)𝐾଴(𝜉ଵ) − 𝐼଴(𝜉ଵ)𝐾଴(𝜉ଶ)], (37) 

where the arguments of the Bessel functions read 𝜉ଵ = 2𝑘଴𝜆ටଵିே೥మ௘ , 𝜉ଶ = ଶఒఠ೎೔௖ ට𝑁஺ଶ(0) ௠೔௠೐ ଵିே೥మ௘ . (38) 

In (32)-(35), the definite integrals 𝐼௜ read 𝐼ଵ = ׬− ఓே఼మ 𝑑 ቀ௫ఒቁఒିఒ , (39) 𝐼ଶ = ׬ ቀ𝑃 − 𝑁௬ଶ − ே೥మே೤మே఼మ ቁ 𝑑 ቀ௫ఒቁఒିఒ , (40) 𝐼ଷ = ׬− ቀଵொ ׬ ఓே఼మ 𝑑 ቀ௫ఒቁ௫ିఒ ቁ 𝑑 ቀ௫ఒቁఒିఒ , (41) 𝐼ସ = ׬ ଵொ 𝑑 ቀ௫ఒቁఒିఒ , (42) 
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𝐼ହ = ׬− ଵொே఼మ 𝑑 ቀ௫ఒቁఒିఒ , (43) 𝐼଺ = ׬− ఓொே఼మ 𝑑 ቀ௫ఒቁఒିఒ , (44) 𝐼଻ = ׬ ቀଵொ ׬ ቀ𝑃 − 𝑁௬ଶ − ே೥మே೤మே఼మ ቁ 𝑑 ቀ௫ఒቁ௫ିఒ ቁ 𝑑 ቀ௫ఒቁఒିఒ , (45) 𝐼 = ׬− ଵே఼మ 𝑑 ቀ௫ఒቁఒିఒ , (46) 𝐼ଽ = ׬− 𝑁ଶୄ(1 + ௫ఒ)𝑑 ቀ௫ఒቁఒିఒ , (47) 𝐼ଵଵ = ׬ (𝑁ଶୄ ׬ ଵே఼మ 𝑑 ቀ௫ఒቁ௫ିఒ )𝑑 ቀ௫ఒቁఒିఒ , (48) 𝐼ଵଶ = ׬ 𝜇𝑑 ቀ௫ఒቁఒିఒ , (49) 𝐼ଵଷ = ׬− 𝑁ଶୄ𝑑 ቀ௫ఒቁఒିఒ , (50) 𝐼ଵସ = ׬ (𝑁ଶୄ ׬ ఓே఼మ 𝑑 ቀ௫ఒቁ௫ିఒ )𝑑 ቀ௫ఒቁఒିఒ . (51) 

All these integrals are dimensionless values. Some of the integrands, like in (47)-(51), are singular. For these 
integrals, Cauchy principal values should be taken. Imaginary parts of these integrals refer to the wave absorption and 
damping which are out of scope of the present paper as it is already mentioned above.  

It is important to note the following significant difference between the case of exponential variation (9) of the plasma 
density used in the present paper and a linear one, 𝑛௟௜௡ = 𝑛଴(1 + 𝑥/𝜆). If the variations of the numerators of the integral 
functions along 𝑥 are neglected, the Cauchy principal value of integrals with linear variation of the resonant denominators 
within the symmetric limits is known to be equal to zero which is not the case for exponential variation of the resonant 
denominators. Indicated difference explains the absence of the wave field spatial distribution symmetry within the third 
region and consequently influences the dispersion relation.  
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ВЛАСНІ ВИСОКОЧАСТОТНІ СИГНАЛИ, ЛОКАЛІЗОВАНІ В ОКОЛІ АЛЬФВЕНОВИХ РЕЗОНАНСІВ ЗА 
ОСТАННЬОЮ МАГНІТНОЮ ПОВЕРХНЕЮ ТОКАМАКА 

I. Гіркаa, O. Трушa, В. Тіренсb 
аХарківський національний університет імені В.Н. Каразіна, Харків, Україна 

bОук-Риджська національна лабораторія, Оук-Ридж, США 
Розглянуто власні електромагнітні хвилі з малими тороїдними номерами моди та позитивними полоїдними номерами моди в 
іонному циклотронному діапазоні частот (ІЦДЧ). Теоретично показано, що існують хвилі у формі сигналів, локалізованих 
поблизу локальних Альфвенових резонансів (АР) за останньою замкненою магнітною поверхнею (ОЗМП) токамака. 
Просторове загасання в напрямку меншої густини плазми забезпечуються наявністю ненульових полоїдних номерів моди. 
Вузькі області просторового загасання в напрямку вищої густини плазми викликані сильною неоднорідністю плазми. Ці 
останні області відокремлюють АР від ОЗМП та центру плазми з високою густиною, який є областю поширення хвиль ІЦДЧ. 
Дисперсійне рівняння високочастотних сигналів виведено аналітично з застосуванням асимптотичних методів і розв’язано 
чисельно. Обговорено можливий зв’язок здобутих результатів з експериментальними вимірюваннями. Вичерпне визначення 
джерел збудження сигналів виходить за межі цього дослідження. 
Ключові слова: власні хвилі; іонний циклотронний діапазон частот; Альфвенів резонанс; остання замкнена магнітна 
поверхня токамака; асимптотичні методи; дисперсійне рівняння 
 


