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Recently, there has been much interest in investigating outstanding problems of cosmology with modified theories of gravity. The
Brans-Dicke theory of gravity is one such theory developed by Brans and Dicke absorbing Mach’s principle into the General Theory of
Relativity. In Brans-Dicke theory, gravity couples with a time-dependent scalar field ¢ through a coupling parameter w. This theory
reduces to the General Theory of Relativity if the scalar field ¢ is constant and the coupling parameter w — co. In this paper, we consider
a flat Friedmann-Lemaitre-Robertson-Walker (FLRW) universe with a time-dependent cosmological constant in Brans-Dicke theory of
gravity. Exact solutions of the field equations are obtained by using a power law relation between the scale factor and the Brans-Dicke
scalar field ¢ and by taking the Hubble parameter H to be a hyperbolic function of the cosmic time 7. We study the cosmological
dynamics of our model by graphically representing some important cosmological parameters such as the deceleration parameter, energy
density parameter, equation of state parameter, jerk parameter, snap parameter, lerk parameter etc. The statefinder diagnostic pair of the
model is also obtained and the validity of the four energy conditions, viz. the Strong energy condition (SEC), Weak energy condition
(WEC), Dominant energy condition (DEC) and Null energy condition (NEC), is examined. We find that the universe corresponding
to our model is expanding throughout its evolution and exhibits late time cosmic acceleration, which is in agreement with the current
observational data.
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1. INTRODUCTION

Recent cosmological and astrophysical observations such as SNIa, CMB (Cosmic Microwave Background), LSS
(Large Scale Structure), WMAP (Wilkinson Microwave Anisotropy Probe), SDSS (Sloan Digital Sky Survey) etc. [1]-
[10] strongly suggest that our universe is currently undergoing a phase of accelerated expansion. Within the framework of
General Relativity, an exotic component with large negative pressure, dubbed dark energy, is considered to be responsible
for this expansion. There is also no dearth of candidate for dark energy, the cosmological constant A being the simplest
and the most natural one which fits the observations well. Another possibility in explaining the observed cosmic accel-
eration is that at large scales the gravity model of General Relativity breaks down and an action more general than the
Einstein-Hilbert action describes the gravitational field.

In recent years, a number of modified gravity theories are considered in literature, and one such theory is the
Brans-Dicke theory [11] in which gravity couples with a time-dependent scalar field ¢ through a dimensionless coupling
constant w. The scalar field ¢ plays the role of the inverse of Newton’s gravitational constant G, and for a constant ¢, the
Brans-Dicke theory reduces to the General Theory of Relativity where G plays the role of coupling between the gravity of
space-time and matter in it. The Brans-Dicke theory has passed solar system experimental tests [12], CMB data [13] and
Planck data [14]. Many cosmological models are also constructed by several authors by utilizing this theory in different
contexts. Very recently, Song et al. [15] have studied alternative dynamics in loop quantum Brans-Dicke cosmology,
Tripathy et al. [16] have studied a bouncing scenario in the framework of generalised Brans-Dicke theory, Sharif and
Majid [17] constructed anisotropic spherical solutions from some known isotropic solutions in the background of self-
interacting Brans-Dicke theory and Hatkar et al. [18] have explored viscous holographic dark energy in the context of
Brans-Dicke theory. Yadav [19] has investigated power-law variation of the scalar field ¢ with the scale factor a of FRW
universe filled with dark matter and Tsallis type holographic dark energy. Yadav et al. [20] have investigated a Bianchi
type-I transitioning universe with hybrid scalar field, Mishra and Dua [21] have examined the dynamics of flat FLRW
model of universe with time varying cosmological constant A(¢z) and Santhi et al. [22] have analyzed some Bianchi
type viscous holographic dark energy models in Brans-Dicke theory of gravity. Various authors have also constructed
hyperbolic cosmological models in different contexts.
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Chand ef al., [23] investigated the flat, open and closed Friedmann-Robertson-Walker model within the framework
of the Brans-Dicke theory of gravity. The authors have constructed cosmological models for a hyperbolic scale factor and
a hybrid scale factor. They have obatined the negative pressure throughout the cosmic evolution for a closed universe in
case of the hyperbolic scale factor model whereas in case of hybrid scale factor model, pressure is negative throughout
the evolution for both flat and closed universe. Also a negative A is obtained throughout the cosmic evolution for an
open universe in the hyperbolic scale factor model, and in case of the hybrid scale factor model negative A is obtained
in the early phases of evolution for open, flat and closed universe. Also their model initially starts from Chaplygin gas
region and approaches to ACDM model at late times. Esmaeili [24] has constructed two cosmological models in f(R,T)
theory using the scale factor a in a hyperbolic form, and a power law form as a fraction of exponential function. Esmaeili
and Mishra [25] have constructed a Bianchi type VI; cosmological model in the framework of f(R,T) theory, using a
hyperbolic scale factor. Mishra et al. [26] have presented a few cosmological models in the f(R,T) theory. They have
also studied two cosmological models: (i) a hyperbolic scale factor model and (ii) a model with specific form of the Hubble
parameter. Mishra et al. [27] have also presented and analyzed a Bianchi type I cosmological model in the f (R, T) gravity
theory with an anisotropic variable parameter in the form of hyperbolic function. Esmaeili [24], Esmaeili and Mishra [25]
and Mishra et al. [27] have found the SEC to violate throughout the cosmic evolution.

In this work we study the cosmological dynamics of a flat FLRW universe filled with a perfect fluid in Brans-Dicke
theory of gravity with a time dependent cosmological constant by considering the Hubble parameter H to be a hyperbolic
function of cosmic time ¢. This paper is organised as follows: In section 2, we derive the Brans-Dicke field equations
with time-dependent cosmological cosntant A corresponding to a flat Friedmann-Lemaitre-Robertson-Walker metric. In
section 3, we obtain cosmological solutions of Brans-Dicke field equations by assuming the Hubble parameter to be a
hyperbolic function of the cosmic time t, and by using a power law relation between the Brans-Dicke scalar field ¢ and
the scale factor a. In section 4, we study the physical and kinematical properties of the model by graphically representing
some parameters of cosmological importance. In section 5, we study the evolution of some cosmographic parameters. In
section 6, the statefinder diagnostic pair is obtained. In section 7, we examine the validity of the energy conditions. We
conclude the paper in section 8 with a brief discussion.

2. METRIC AND THE FIELD EQUATIONS
‘We consider the Brans-Dicke action in the form

S= /[(R -2N)¢ + 167L + %¢,i¢’i]\/§d4x 0

where R is the Ricci scalar, A is the time-dependent cosmological constant, ¢ is a scalar field, £ is the matter-Lagrangian
density, w is the dimensionless Brans-Dicke coupling constant, g is the determinant of the metric tensor g;; and coma (, )
represents the ordinary derivative.

Taking variations of the action (1) with respect to g’/ and ¢, the Brans-Dicke field equations are obtained as

R 8nT;; 1 1
R;ij - 78+ Agij = —TJ - %(ﬁf’,ﬂﬁ,]‘ - Egij¢,k¢’k) - 5(%‘;;‘ - gij0¢) )
and 87T +2A¢
7T +
= G+ 3)

where R;; is the Ricci tensor, 7;; is the energy-momentum tensor, O is the D’Alembert operator, T = gif T;; is the trace of
the energy-momentum tensor and semicolon (;) represents the covariant derivative.
We consider the universe to be filled with a perfect fluid of density p and pressure p. The energy-momentum tensor T;;
for a perfect cosmic fluid is given by

Tij = (p + p)uiuj — pgij 4

where u; is the four velocity.
The line-element for a flat Friedmann-Lemaitre-Robertson-Walker (FLRW) universe is given by

ds* = dt* — a®(dr? + r*d6* + r’sin*0d¢?) (5)

where a = a(t) is the scale factor.
For the line element (5), the Brans-Dicke field equations (2) and (3) give

i & w¢ ad ¢ 87p
25+;+5?+235+¢ A= 7 (6)
) i2 .o
[ _wd Ladd  8mp )
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where d is the derivative of the scale factor a with respect to cosmic time 7.

3. COSMOLOGICAL SOLUTIONS OF THE BRANS-DICKE FIELD EQUATIONS

We have three field equations with five unknowns a, ¢, A, p and p. In order to determine an exact solution of the
field equations, we need two more equations relating the unknowns.
We consider a power law relation between the scalar field ¢ and the scale factor a as

¢ = ¢poa™ €))

where ¢ is the proportionality constant and m is an arbitrary constant.
Also, we consider the Hubble parameter H to be a hyperbolic function of cosmic time ¢ and take

H(t) = aBcoth(2at) (10)

where @ > 0, B > 0 are constants. The Hubble parameter H is defined as H = % Therefore, from (10), we obtain the
scale factor a as

a(t) = ap {sinh(2a1)} (11)

where a is the present value of the scale factor a.
Using relations (9) and (11) in (6)-(8), we obtain

A(1) =2a”B(mw - 3) {cosech(2a1)}> + o* B> (6 - ’”TZ“’ - 3mw) {coth(2at)}? (12)
(1) _¢° 0" tsinh(2a1)} "% [202B(m + mew - 1) {cosech(2a1)}?]

¢° o” P90 tsinh(200)} T [02B2(3 - 2m - 3maw — m? — m*w){coth(2a1)}?] (13)
p(1) —"’0 0" (sinh2an)} F [20%B(3 - mew) {cosech(2a1))?]

¢0 o” ———{sinh(2at)} 2 = [3a/ B*(m + mw — 1){coth(2a/t)}2] (14)

From (9), we obtain the expression for the scalar field ¢ as
. mp
¢ = ¢o [ao{sinh(2a1)}] (15)

4. PHYSICAL AND KINEMATICAL PROPERTIES OF THE MODEL
The spatial volume parameter V(¢) of the model is obtained as

V(1) = {a(n)} = ao’ {sinh(2ar)} > (16)

The deceleration parameter q, Wthh indicates whether the cosmic expansion is uniform, decelerating or accelerating, is

defined by ¢(t) = Wﬁ =-1-4
For our model,

2
q(t) = E{sech(Zat)}z -1 (17)
The expansion scalar 6(¢), defined by 6 = 3H, is obtained as

0(t) = 3aBcoth(2at) (18)

p()

Using the relations (13) and (14), we obtain the equation of state (EoS) parameter n(t) = o)

as

2a2B(m + mw — 1){cosech(2at)}? + a*B*(3 — 2m — 3mw — m* — m*w){coth(2at)}?

n(t) = 2a2B(3 — mw){cosech(2at)}? + 3a2B%(m + mw — 1){coth(2at)}?

19)
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Now, in order to study the physical and kinematical properties of the constructed model, we represent the evolution
of various parameters graphically by using the expressions obtained above in figure 1 to figure 10, which enables us to
have a better understaning about the evolving universe corresponding to our model.

We plot the scale factor a, spatial volume V and scalar field ¢ against the cosmic time ¢ for @ = 0.107, g = 0.603 in
figures 1, 2 and 3 respectively. These figures show that the scale factor a, spatial volume V and scalar field ¢ relates to the
cosmic time ¢ with direct proportionality, thereby showing the increasing behaviour throughout the universe’s evolution,
hinting about the evolution of the observable universe at an accelerated rate at late times.
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Figure 1. Evolution of the scale factor a vs cosmic time
tfora =0.107, 8 =0.603,a9 =1

Figure 2. Evolution of the spatial volume V vs cosmic
time ¢ for @ = 0.107, 8 = 0.603, ap = 1
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Figure 3. Evolution of the scalar field ¢ vs cosmic time
t for @ = 0.107, 8 = 0.603, ag = ¢pp = 1, m = 0.001

Figure 4. Evolution of the Hubble parameter H vs cosmic
time ¢ for @ = 0.107, 8 = 0.603

Figure 4 displays the variation of Hubble parameter H against the cosmic time ¢ and figure 5 displays the expansion
scalar plots against the cosmic time 7. The Hubble parameter H and expansion scalar #, which provides information
regarding the expansion rate of the evolving universe, relates to the cosmic time ¢ with an inverse proportionality like rela-
tion, which in turn results in the continuous decreasing nature and fading away of the Hubble parameter H and expansion
scalar 6, signifying the late time phases of accelerated cosmic expansion.

Evolution of the deceleration parameter g against the cosmic time ¢ is displayed in the figure 6. It undergoes a
transition from an early phase with positive values to attain negative ones at a later phase (¢ ~ 5.64) of cosmic evolution.
The transition is an evident hint of the decelerating phase of evolution of the universe turning into an accelerating one at
a later phase. At late times, g tends to —1, which indicates that the evolving universe undergoes the phase of accelerated
expansion at late times.

Figure 7 displays the graphical representation of the cosmological constant A against the cosmic time 7. It is seen
that, A is negative in the early phases of cosmic evolution, which later attains the positive values.

Figure 8 shows the variation of the pressure of the cosmic fluid with the increasing cosmic time 7. A decreasing
behaviour of p(7) is seen transitioning from positive values at early phases to negative values at a later phase of the cosmic
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Figure 5. Evolution of the expansion scalar 6 vs cosmic
time ¢ for @ = 0.107, 8 = 0.603
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Figure 7. Evolution of the cosmological constant A vs
cosmic time ¢ for @ = 0.107, 8 = 0.603, m = 0.001, w =
1628

g . . | . . .
20F Ko :
b
- — @=0.107, 8=0.603
T 15f i .
5 E
E 10F \, b
E 05F i ]
2 3
5 N\
g o E
—_0s5F i 5 ]
S
—1.0L ; i i A s darerrere|
0 2 4 6 8 10 12 14

Time(t)

Figure 6. Evolution of the deceleration parameter g vs
cosmic time ¢ for @ = 0.107, 8 = 0.603
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Figure 8. Evolution of the pressure p vs cosmic time ¢
fora =0.107, B8 = 0.603, ap = 9o = 1, m = 0.001, w =
1628

evolution. Thus the graph of p(#) versus cosmic time 7 is indicating the early era of radiation domination transitioning
to the era of dark energy domination at future phases of cosmic evolution, passing through the era of matter domination
(p = 0atr ~ 1.49). The negative pressure indicates the presence of some exotic component in the universe, dubbed dark
energy, which could possibly be responsible for the late time cosmic acceleration.

In figure 9, it is seen that the energy density p is inversely proportional to the cosmic time ¢. p(¢) decreases gradually
but remain positive throughout the evolution of the universe which eventually tends to zero at late times, hinting that the
universe will keep expanding forever.

Figure 10 illustrates the evolution of the EoS parameter  which decreases as the universe evolves. It is positive in
the early universe, signifying the radiation dominating era of the early universe, which later crosses the fixed point n = 0
at t ~ 1.49 signifying the matter dominating era, and attains the negative values signifying the dark energy dominating
era. Upto a certain period of time, our model lies in the region of quintessence phase (-1 < 7 < —%), within ¢t ~ 5.22 —
t ~ 24.55 , later nj(¢) attains the value —1 at ¢ ~ 22.8 till the future phases of evolution indicating the ACDM behaviour of
the model at future phases of cosmic evolution. At the current epoch,  ~ —0.96 for @ = 0.107, 8 = 0.603.

5. EVOLUTION OF THE COSMOGRAPHIC PARAMETERS

The cosmographic parameters enable us in exploring the phenomena of cosmic evolution in a model independent
manner. Hence we study the evolution of the cosmographic parameters viz., the jerk parameter j(¢), snap parameter s(t)
and lerk parameter /(¢) which are defined as [28]

; 1 d° 1 d* 1 d°
J(0) = Zpas s = g gs and (1) = 5 s

These parameters obtained from the Taylor series expansion of the scale factor a(t) containing the third, fourth and
fifth order cosmic time derivative of the scale factor a(z) are dimensionless and are useful in understanding the cosmic
evolution in a better way.



56
EEJP. 4 (2024)

Anindita Basumatary, et al.

|
II
L 1
o0 \ a=0.107, 8=0.603 00—
| —
.
- . :
= | !
2 0.006} = -02 K
z \ = ™
a \ 5 N
z 0.004 Z -04 .\
5 \ E AN
H o h
z 06 8
0.002f " = \
T _0s @=0.107, f=0.603 L
0.000 L, 5 g i g e
2 2 F e
0 2 4 6 8 10 12 14 e . . . . . ]
Time(t) 2 4 6 8 10 12 14
Time(t)

Figure 9. Evolution of the energy density p vs cosmic
time ¢ for @ = 0.107, 8 = 0.603, ag = ¢9 = 1, m = 0.001,
w = 1628

For our model, these parameters are obtained as

Figure 10. Evolution of the Eos parameter n vs cosmic
time ¢ for @ = 0.107, 8 = 0.603, m = 0.001, w = 1628
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Figure 11. Evolution of the jerk (), snap (s) and lerk (/) parameters vs cosmic time ¢ for @ = 0.107, 8 = 0.603

From the graphical representation of the cosmographic parameters in figure 11, we observe that the universe corre-
sponding to our model is expanding throughout its evolution and it exhibits the late time cosmic acceleration. The jerk,
snap and lerk parameters tend to 1 at late times, agreeing with the current observational data.

6. STATEFINDER DIAGONSTIC

The dimensionless geometric pair {r, s}, known as the statefinder pair [29], are defined as r(z) = # % and s(¢) =
2(1-r)

3(1=2q)" These are useful in distinguishing various dark energy models including quintessence, Chaplygin gas, braneworld
and other interacting models of dark energy successfully in a model independent manner. The pair helps in characterizing
the dark energy properties. In particular, the ACDM and SCDM model behaviours of convergence or divergence can
be found out with the help of the fixed position of the pair {r,s}. The fixed point {r = 1, s = 0} resembles the ACDM
behaviour of the model and the fixed point {r = 1, s = 1} resembles the SCDM behaviour of the model, while the regions
{r < 1,5 > 0} and {r > 1,s < O} respectively represents the phase of quintessence and Chaplygin gas like behaviour of
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the model.

As our model indicates the presence of some exotic component in the universe with negative pressure, so it will be
interesting to study the behaviour of this unknown component and its resemblance with various dark energy candidates
proposed in the literature.

For the present model, the pair {r, s} is obtained in terms of cosmic time ¢ as

r(f) = (%) {sech(2at)}? + 1 (23)

4 38— 4
3 382{cosh(2at)}? - 4p

s(1) = (24)
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Figure 12. Plot of the statefinder pair {r, s} vs cosmic time ¢ for @ = 0.107, 8 = 0.603

Figure 12 shows the statefinder pair {r, s} plot in the evolving universe. It shows that our model begins with Chaplygin
gas behaviour {r > 1, s < 0} and ends up with ACDM behaviour {r = 1, s = 0}.

7. ENERGY CONDITIONS:

The four energy conditions viz, the Strong Energy Condition (SEC), Weak Energy Condition (WEC), Dominant En-
ergy Condition (DEC) and Null Energy Condition (NEC) are simply some constraints on some of the linear combinations
of the energy density p and the pressure p. These four conditions are satisfied by all the normal matter in the universe,
because of the postive energy density and the positive pressure of the normal matter. For that reason, violation of any of
the energy conditions implies the presence of some non-normal matter in the universe [30]. The validity of SEC is the
implication of decelerating universe, independent of whether the universe is open, flat, or closed. The validity of WEC is
the implication of the ever positive and non-increasing nature of the energy density. The DEC provides an upper bound
on the energy density and the rate of cosmic expansion. The validity of NEC is the implication of a weak upper bound on
the Hubble parameter and inverse proportionality of the energy density and the size of the universe.

These energy conditions are given by:

SEC:p+3p=>20,p+p =0
WEC:p+p=>0,p>0
DEC:p+p20,p—-p=20,p20
NEC:p+p =0
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For our model,
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Figure 13. Evolution of the energy conditions vs cosmic time ¢ for @« = 0.107, 8 = 0.603, ag = ¢g = 1, m = 0.001, w =
1628

Figure 13 illustrates the validity of the energy conditions. We observe that for @ = 0.107, 8 = 0.603, all of the four
energy conditions are satisfied in the early universe. But in the long run (¢ ~ 5.22), SEC is violated. Violation of the SEC
indicates the accelerating expansion of the universe.

8. CONCLUDING REMARKS

In this paper, we investigate a flat FLRW universe filled with a perfect fluid within the framework of Brans-Dicke
theory of gravity with a time dependent cosmological constant. For the purpose of obtaining an exact solution of the field
equations, so as to construct a cosmological model, the extra conditions taken into consideration are: (i) the scale factor
a has a power law relation with the scalar field ¢ and (ii) the Hubble parameter H is a hyperbolic function of the cosmic
time ¢. We examine the physical and kinematical properties of the constructed model by studying the evolution of some
important parameters such as the scale factor a, scalar field ¢, spatial volume parameter V, Hubble parameter H, expansion
scalar 6, deceleration parameter g, cosmological constant A, pressure p, energy density p, EoS parameter 7, jerk parameter
J» snap parameter s, lerk parameter /, and by examining the statefinder pair {r, s} and validity of the four energy conditions.

We observe that the universe corresponding to our model is expanding throughout its evolution and it exhibits the
late time cosmic acceleration.
The Hubble parameter, the expansion scalar and the energy density decrease as the universe evolves but remain positive
throughout the evolution of the universe.
The pressure is initially positive but attains negative values later in the evolving universe. The negative pressure indicates
the presence of some exotic component in the universe which could be responsible for the late time cosmic acceleration
and hence can be considered to be the so called dark energy.
The cosmological constant shows negative behaviour in the early universe which transits into positive one at a later phase
of the cosmic evolution.
The EoS parameter attains the value —1 at late times, hinting that our model behaves like ACDM model in the late phases
of the cosmic evolution.
Further, the jerk, snap and lerk parameters tend to 1 at late times which asserts the current observational data.
The statefinder pair {r, s} identifies the constructed model’s behaviour resembleing the ACDM at late times.
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Violation of the SEC indicates presence of some non-normal matter in the universe which could possibly be the reason
for the accelerating expansion of the universe at late times.
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IIVIOCKA KOCMOJIOTTYHA MOJEJIb ®PIIMAHA-JIEMETPA-POBEPTCOHA-YOKEPA
13 BAJIEZKHOIO BIJI YACY KOCMOJIOTTYHOIO KOHCTAHTOIO
B TEOPII TPABITAIIII FPAHCA-/IIKKE
Amninaira Bacymarapi, Yangpa Pekxa Maxanra
Dakyremem mamemamuxu, Yuisepcumem Iayxami, I'yeaxami -781014, Indis

OcTaHHIM 4acOM BHUHHK BEJMKHIl iHTEpecC /10 JOCIIJUKEHHS BUJATHUX MPOOJIeM KOCMOJIOTIT 3a HOMOMOrol MOAu(iKOBaHUX Teopii
rpasitauii. Teopis rpasitauii Bpanca-Jlikke € OfHi€I0 3 TaKUX Teopiii, po3pobiennx Bpancom i [likke, siki BBiOpanu npunimn Maxa B
3arasnbHy Teopilo BiqHOCHOCTI. Y Teopii Bpanca-Jlikke rpaBiTallisi OB’ i3aHa 3 3aJIeKHUM BiJ] 4acy CKaJISIPHUM I10JIEM ¢ yepe3 napameTp
3B’ 513Ky w. LIs1 Teopisi 3BOAUTHCS JIO 3arajibHOi Teopii BITHOCHOCTI, SIKIIO CKaJISIPHE MOJIE ¢ € MOCTIMHUM, a apaMeTp 3B’ 13Ky w — 0. Y
wiif crarTi Mu po3risaaeMo mockuii Beecsit ®pigmana-Jlemerpa-Pobeprcona-Yokepa (FLRW) i3 3ajexHoI0 Bij 4acy KOCMOJIOTiYHOIO
KOHCTAHTOIO B Teopii rpasiTaitii Bpanca-likke. TouHi po3B’ i3Ku piBHSHB [OJIs1 OTPUMaHi 32 JOMOMOT'OI0 CTEIIEHEBOTO CITiBBi THOIIICHHS
MiX MacmTaOHUM (hpaKTOpoM i ckaisipHuM nosieMm Bpanca-Jlikke ¢ i 3a gomomoromwo napameTpa Xa60m1a H sk rinep6omiuHol QyHKIT
KOCMIYHOTO 4acy ¢ . My BUBYa€MO KOCMOJIOTIYHY JUHAMIKy HAIIOi MOJENi IUISIXOM rpadiyHOro NpeacTaBiIeHHs AEsKNX BaXKJIMBUX
KOCMOJIOTiYHHX MapaMeTpiB, TAKUX SK IapaMeTp yNOBiJbHEHH:, apaMeTp LIIbHOCTI eHeprii, mapaMeTp piBHSIHHSA CTaHy, apameTp
pMBKa, MapaMeTp MUTTEBOIO NPUMMKaHHHA, napaMeTp lerk Tomo. Takok oTpyMMaHO OiarHOCTUYHY Mapy Mofeli BUMipioBaya CTaHy i
CIpaBeIMBICTh YOTUPHOX EHEPIreTUYHHUX YMOB, a came. JlociiKyeThess crutbHuiA eHepretuunuil crad (SEC), cabkuil eHepre TUIHMA
crad (WEC), nominytounii enepreruunuii crad (DEC) i nynboBuii enepreruunmii ctad (NEC). Mu BusiBuiu, 1o Beecsir, sikuii Bianosiae
Halliil MO, PO3MIMPIOETHCS MPOTSITOM CBOET €BOJIIOLIT Ta AEMOHCTPYE Ii3HE KOCMiYHE IPUCKOPEHHS, 1[0 y3TOMXKYETHCS 3 HOTOUHUMU
JaHUMH CIIOCTEPEKEHb.

Kuarouosi cioBa: meopis bpenca-/lixkke; Bceceim @piomana-Jlemempa-Pobepmcona-Yokepa; kocmonoziuna cmana; napamemp Xao-
6aa; napamemp ynoeinbHeHHs
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