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This study introduces a new first- to fourth-order exponential equation of state (EOS) to enhance accuracy across varying compression
levels. The proposed exponential EOS is compared to the widely used fourth-order Birch-Murnaghan EOS, and it not only matches but
surpasses precision, especially at high compression. This comparison serves as a clear benchmark for the readers to understand the
superiority of the new model. The findings of this study are crucial, as they reveal that the fourth-order exponential EOS provides an
unmatched accuracy level at higher compression, notably for materials like HCP-iron and sodium halides. The Birch-Murnaghan EOS,
though effective at low compression, deviates from experimental values at higher levels. Additionally, the study examines the Shanker
EOS, in which M. Kumar et al. [Physica B: Condensed Matter, 239(3-4), 337-344 (1997)] suggest the requirement to improve at high
compression and improve by fitting parameters that vary from material to material. This limitation is removed by developing the fourth-
order exponential EOS, which is more versatile, offering reliable results across both low- and high-compression scenarios in high-
pressure physics.

Keywords: Equation of state; Compression; Fourth-order exponential equation of state; Birch-Murnaghan fourth-order equation
of state

PACS: 64.10.+h,62.20.de

1. Introduction

Equations of state (EOS) play a crucial role in understanding how materials respond to changes in pressure and
volume, particularly within materials science, condensed matter physics, geophysics, and planetary science. Our study
aims to develop and compare different EOS models to better understand their effectiveness in high-pressure scenarios.
These relationships are essential for delving into high-pressure physics, technological materials, and planetary interiors,
as they allow scientists to predict and model how materials might behave under extreme conditions, such as compression,
expansion, or phase changes [1-3].

Traditionally, the Birch-Murnaghan equation of state (BM-EOS) has been the go-to formula for characterizing the
compressional behavior of solids. However, as experimental techniques have advanced and allowed for a broader range of
pressure exploration, it has become evident that traditional EOS models like the BM-EOS have significant limitations.
Calculated values deviate from experimental results at high pressures, particularly under exceptionally high compression [4-6].

A novel approach has been proposed to address the limitations of traditional EOS models: the fourth-order
exponential equation of state. This innovative formulation, incorporating higher-order adjustments and an exponential
element, aims to significantly enhance the accuracy and applicability of EOS under extreme conditions. It offers a more
precise and versatile depiction of the pressure-volume relationship, marking a significant advancement in the field and
providing researchers with a powerful tool for their studies [7-10].

Our upcoming study aims to develop exponential equations of state (EOS) from first to fourth order and assess their
efficacy in calculating pressure under high compression. Our primary goal is to compare the effectiveness of the novel
fourth-order exponential EOS with the widely used Birch-Murnaghan EOS and available experimental data. We seek to
identify their respective advantages and limitations by comprehensively analyzing each model's mathematical framework,
accuracy, parameter sensitivity, and applicability in high-pressure scenarios [11-12].

Our research is poised to have a significant impact, with potential applications in fields like shockwave physics and
planetary science, as well as studying materials under ultrahigh pressure. By delving into the theoretical foundations of
the fourth-order exponential EOS and the Birch-Murnaghan EOS, we aim to evaluate their performance across various
materials and pressure ranges. Our findings could significantly enhance the precision of high-pressure material modelling
and open up new avenues for exploration, thereby underlining the importance of our research in these fields [13-15]. This
potential impact should make you feel the significance of our study in these fields.

Furthermore, we will explore the work of Kumar et al. [16], who proposed modifying the Shanker EOS [17] by
introducing fitting parameters, as well as the efforts of Srivastava-Pandey [20], who increased accuracy by considering
third-order compression and the anharmonic effect of solids. However, limitations in accuracy were identified at high
compression. In our study, we have derived first-to-fourth-order exponential equations of state, observing an improvement
in accuracy by increasing the order of compression in the equation of state. For the validity of the work, we have taken
the sample e-Fe, NaF, NaCl, NaBr, and Nal and tested up to the pressure range of 3595 kbar.
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2. THEORY AND METHODOLOGY
The general equation by which we can derive the equation of state by the Gruneisen model is expressed as [17]:

] s,

" Vs,
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The equation (1) is the fundamental equation for deriving an EOS [17]. This formulation applies to all EOS for
various types of solids and different potential functions. Shanker et al. [17] demonstrated that equation (1) produces the
Born-Mie EOS [18] and the Brenan-Stacey EOS [19].

Let a potential function be given by
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2.1. First-order exponential equation of state:
For first order equation of state equation (3) can be written as:

P=B, (VKJ j;(l +y)e™dy . 4

0 0

On the integration of equation (4), we get the expression for pressure as a function of compression:

2
0 o

Equation (5) represents first-order which is newly derived.
AtV =V, then P = 0. Hence, equation (4) satisfies the condition of the equation of state and is valid according to

the Stacey criterion [19].
The bulk modulus of the solid is given by:
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Using equations (5) and (6), we can find bulk modulus corresponding to equation (5) as:
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The first-order pressure derivative of bulk modulus (dP j Corresponding to equation (6) is given by:
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The value of a is determined to form By, , the zero-pressure value of

at V = V,. Using equation (8), we get:
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2.2. Second-order exponential equation of state
For second order equation of state equation (3) can be written as:

43,
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On integration equation (10), give Shanker equation of state [17]:
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Where o = . AtV =V, then P = 0. Hence, equation (11) satisfies the condition of the equation of state and is

valid according to the Stacey criterion. Equation (11) represents a second-order exponential equation of state (Shanker
EOS) [17].

2.3. Third-order exponential equation of state
For third order equation of state equation (3) can be written as:

—4/3
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On integration equation (12), we can find Srivastava-Pandey EOS as [20]:
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Where o = . AtV =V, then P = 0. Hence, equation (13) satisfies the condition of the equation of state and is

valid according to the Stacey criterion. Equation (13) represents a third-order exponential equation of state (Srivastava-
Pandey EOS) [20].

2.4. Fourth-order exponential equation of state
Due to complex integration, Shanker and Srivastava refused to solve the fourth-order equation of state, but due to
including fourth-order compression, we include translators and vibrational, rotational and anharmonicity properties of
solids; therefore, its accuracy increases than others. Now, further expand the equation (3) up to the fourth order to develop
a new fourth-order equation of state. Thus, equation (3) can be written as:
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On integration equation (10), we can find EOS as follows:
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Where o =

. AtV =V, then P = 0. Hence, equation (15) satisfies the condition of the equation of state and is

valid according to the Stacey criterion. Equation (15) represents the fourth-order exponential equation of state.

2.5. Birch-Murnaghan fourth order equation of state
The fourth-order Birch-Murnaghan equation of state extends the original model to include higher-order pressure-
volume terms, improving accuracy for describing material behaviour under extreme compression. The fourth order Birch-
Murnaghan EOS can be expressed as [21]:
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Equations (5), (11), (13), (15), and (16) calculate the pressure of solids at different compressions.

In a past study, obtaining a fourth-order equation was described as impossible because it does not follow the general
condition of the equation of state, and researchers derive the third-order compression-dependent equation. This statement
was wrong. In this study, a fourth-order compression-dependent equation is derived, following the condition of the
equation of state. By including fourth-order compression, the accuracy of the equation of state increases [22].

Table 1. Input parameters used in the present work.

Solids | K, (kbar) | K}

e-Fe 1750 [23] 53[23]
NaF 465 [24] 5.28 [24]
NaCl 240 [24] 5.39 [24]
NaBr 199 [24] 5.46 [24]
Nal 151[24] 5.59 [24]

Table 2. Calculated values of pressure P(kbar) for (A) first-order exponential EOS, (B) second-order exponential EOS (Shanker EOS),
(C) third-order exponential EOS (Srivastava-Pandey EOS), (D) fourth-order exponential EOS (present study) (E) fourth order Birch-
Murnaghan EOS (B-M EOS) and with experimental data for €-Fe.

V/Vo Itorder EOS | 2" order EOS | 3'order EOS | 4™ order EOS 4™ Order B-M EOS | Experimental [25]
1.000 0.0 0.0 0.0 0.0 0.0 0.0
0.877 322.4 324.1 324.2 3243 3254 299.6
0.862 381.0 3834 383.7 383.7 385.4 355.6
0.847 445.0 448.6 449.0 449.0 451.5 417.5
0.832 515.2 520.1 520.7 520.8 524.4 486.2
0.817 592.0 598.7 599.7 599.8 604.9 562.2
0.802 676.0 685.1 686.4 686.7 693.7 646.4
0.788 761.7 773.4 775.3 775.6 785.0 739.9
0.773 861.9 877.1 879.7 880.2 892.9 843.8
0.758 971.7 991.1 994.7 995.5 1012.3 959.2
0.743 1092.0 1116.6 1121.5 1122.5 1144.6 1087.6
0.728 1223.8 1254.7 1261.3 1262.7 1291.5 1230.5
0.713 1368.3 1406.9 1415.5 1417.5 1454.8 1390.0
0.698 1526.9 1574.5 1585.7 1590.5 1636.4 1568.0
0.684 1688.7 1746.5 1760.7 1792.4 1824.6 1767.1
0.669 1878.6 1949.1 1967.3 1998.2 2048.8 1989.9
0.654 2087.2 2172.8 2195.9 2229.5 2299.4 2239.8
0.639 2316.6 2419.9 2449.2 2496.8 2580.1 2520.6
0.624 2568.9 2693.3 27299 2798.3 2894.9 2836.5
0.609 2846.8 2995.8 3041.5 3168.3 3248.8 3192.6
0.594 3153.0 3330.9 3387.7 3496.8 3647.5 3595.0

Table 3. Calculated values of pressure P(kbar) for (A) first-order exponential EOS, (B) second-order exponential EOS (Shanker EOS),
(C) third-order exponential EOS (Srivastava-Pandey EOS), (D) fourth-order exponential EOS (present study) (E) fourth order Birch-
Murnaghan EOS (B-M EOS) and with experimental data for NaF.

V/Vo | 1%torder EOS | 2" order EOS | 39order EOS | 4% order EOS | 4% Order B-M EOS E"‘E;g‘;%mal
1.000 0.0 0.0 0.0 0.0 0.0 0.0
0.980 9.7 9.8 9.8 9.8 9.8 10.0
0.962 19.8 19.8 19.8 19.8 19.8 20.0
0.946 29.7 29.7 29.7 29.7 29.8 30.0
0.932 39.4 39.5 39.5 39.5 39.5 40.0
0.868 94.7 95.3 95.3 95.3 95.7 94.0
0.832 136.6 137.9 138.1 138.1 139.1 140.0
0.804 176.1 178.5 178.8 178.9 180.7 180.0
0.782 2122 215.7 21622 216.3 219.2 210.0
0.778 219.3 223.0 223.6 223.8 226.8 224.0
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Table 4. Calculated values of pressure P(kbar) for (A) first-order exponential EOS, (B) second-order exponential EOS (Shanker EOS),
(C) third-order exponential EOS (Srivastava-Pandey EOS), (D) fourth- order exponential EOS (present study) (E) fourth order Birch-

Murnaghan EOS (B-M EOS) and with experimental data for NaCl.

V/Vo | 1%order EOS | 2™ order EOS | 3" order EOS 4 order EOS 4% Order B-M EOS EX‘E;Z‘?%“&‘I
1.000 0.0 0.0 0.0 0.0 0.0 0.0
0.963 10.1 10.1 10.1 10.1 10.1 10.0
0.933 202 202 202 202 202 20.0
0.907 30.5 30.6 30.6 30.6 30.6 30.0
0.883 415 417 418 418 41.9 40.0
0.760 132.8 135.4 135.9 136.0 138.1 135.0
0.702 206.6 212.9 214.4 214.8 220.6 200.0
0.697 214.3 221.1 2227 223.1 229.5 220.0
0.675 251.3 260.4 262.7 263.3 272.5 250.0
0.658 283.5 294.9 298.0 298.9 310.9 290.0

Table 5. Calculated values of pressure P(kbar) for (A) first-order exponential EOS, (B) second-order exponential EOS (Shanker EOS),
(C) third-order exponential EOS (Srivastava-Pandey EOS), (D) fourth- order exponential EOS (present study) (E) fourth order Birch-
Murnaghan EOS (B-M EOS) and with experimental data for NaBr.

V/Vo 1%t order EOS 2" order EOS | 3" order EOS | 4% order EOS 4t Order B-M EOS EXIE;EII;;] tal
1.000 0.0 0.0 0.0 0.0 0.0 0.0
0.956 10.1 10.1 10.1 10.1 10.1 10.0
0.921 20.6 20.6 20.6 20.6 20.6 20.0
0.891 31.1 31.3 31.3 31.3 31.4 30.0
0.866 41.8 42.1 42.1 42.1 42.3 40.0
0.746 124.2 127.0 127.5 127.6 129.7 130.0
0.725 146.0 149.8 150.6 150.8 153.9 160.0
0.663 230.1 239.2 241.6 242.2 251.1 240.0
0.633 284.5 297.8 301.6 302.8 317.0 290.0
0.616 320.4 336.7 341.7 343.2 361.7 340.0

Table 6. Calculated values of pressure P(kbar) for (A) first-order exponential EOS, (B) second-order exponential EOS (Shanker EOS),
(C) third-order exponential EOS (Srivastava-Pandey EOS), (D) fourth-order exponential EOS (present study) (E) fourth order Birch-

Murnaghan EOS (B-M EOS) and with experimental data for Nal.

V/Vo | 1%torder EOS | 2™ order EOS | 3" order EOS | 4% order EOS | 4" Order B-M EOS Experimental [26,27]
1.000 0.0 0.0 0.0 0.0 0.0 0.0
0.942 10.6 10.6 10.6 10.6 10.6 10.0
0.899 21.5 21.6 21.6 21.6 21.6 20.0
0.865 324 32.6 32.7 32.7 32.8 30.0
0.836 43.7 44.1 44.2 44.2 44.4 40.0
0.694 142.9 147.6 148.7 149.0 152.6 150.0
0.648 199.7 208.4 210.7 211.4 219.2 210.0
0.641 210.0 219.4 222.1 222.9 231.5 230.0
0.609 263.3 2774 281.7 283.1 297.6 280.0
0.599 282.5 298.4 303.4 305.1 322.0 310.0
3. RESULT AND DISCUSSION

In the past, researchers have noted that the accuracy of the equation of state improves with an increase in the order
of compression. Birch-Murnaghan's fourth-order equation of state was a significant development in this regard. However,
our study proposes a novel approach—a first—to the fourth-order exponential equation of state. This new equation
promises to provide more precise insight into the results as we compare it with Birch-Murnaghan's equation and the
available experimental values [24-26].

Our research is built on a foundation of thorough calculations. We have utilised equations (5), (11), (13), (15), and
(16) to calculate the pressure at different compressions, which are listed in Tables 2-6, along with the associated
experimental values and references. The input values employed in the calculation can also be found in Table 1, with
corresponding references. To enhance clarity, we have plotted a graph showing the relationship between pressure at
different compressions, as illustrated in Fig 1-5.

The HCP-iron is known for its exceptional strength and high binding energy per nucleon, indicated by its remarkably
high bulk modulus at zero pressure. Regarding low compression, various equations of state (EOS) and the Birch-
Murnaghan fourth-order equation tend to produce results that exceed experimental values. However, at higher
compression, the fourth-order exponential EOS yields results that closely match experimental values, while the Birch-
Murnaghan equation produces results that surpass experimental data. Essentially, the accuracy of the fourth-order
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exponential equation of state is improved at high compression, while the accuracy of the Birch-Murnaghan equation
decreases. At low compression, all EOS produce similar results.

4000 250

—®— First-order EOS (Present Sudy) —m— First-order EOS (Present Sudy)
3500 |k ¢ —@— Second-order EOS (Shanker EOS) —&— Second-order EOS (Shanker EOS)

(—a#— Third-Order EOS (Srivastava-Pandey EOS) 5 = Third-Order EOS (Srivastava-Pandey EOS)
s556:1 —w— Fourth-order EOS (Present Study) 200 - \ —w— Fourth-order EOS (Present Study)

—&— Fourth-Order Birch-Murnaghan EOS ., |[—®— Fourth-Order Birch-Murnaghan EOS

Experimental \ Experimental
2500 \
150 - .

2000

Pressure P(kbar)

1500 | \\\. 100 -

i
\\ N\
1000 f- N

s 50 N
500 | b“‘\o e

0 1 1 1 1 Pl _—N 0 L L 1 ' o~ A
0.6 0.7 0.8 0.9 1.0 0.75 0.80 0.85 0.90 0.95 1.00
Compression V/V,

Pressure P(kbar)

Compression V/V,,

Figure 1. Variation of pressure with increasing compression Figure 2. Variation of pressure with growing compression
of e-Fe of NaF
350 400
—m— First-order EOS (Present Sudy) -
—e— Second-order EOS (Shanker EOS) g"s“’gdefos(;spressﬁm E ”dégs)
300 |- —#&— Third-Order EOS (Srivastava-Pandey EOS) 350 | e(.:on i ( . AR
(—#— Third-Order EOS (Srivastava-Pandey EOS)
—w— Fourth-order EOS (Present Study)
. —w— Fourth-order EOS (Present Study)
250 | =& Fourth-Order Birch-Murnaghan EOS 300 |- Fourth-:Order Bifch-NMiimishan BOS
= Experimental = Experimental ¢
= S50
= 200 | =
& =4
o o 200 |
2 150 | 2
2 2
= Esop
100 |-
100 | N
s0 b sl \
I i
' L 1 ' 1 1 1 - —i 0 ' ' L L 1 ' ' . = <L
0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00 1.05 0.60 0.65 0.70 0.75 0.80 0.85 090 0095 1.00 1.05
Compression V/V, Compression V/V,
Figure 3. Variation of pressure with increasing compression Figure 4. Variation of pressure with increasing compression
of NaCl of NaBr

350

|—#— First-order EOS (Present Sudy)

300 | ¥ ~—&— Second-order EOS (Shanker EOS)

(~—#&— Third-Order EOS (Srivastava-Pandey EOS)

= Fourth-order EOS (Present Study)

=& Fourth-Order Birch-Murnaghan EOS
Experimental

N

93

=)
T

%)

=3

S}
T

150 |

Pressure P(kbar)

5
3
T

50 F

0.6 0.7 0.8 0.9 1.0
Compression V/V,,

Figure 5. Variation of pressure with increasing compression of Nal

In the case of sodium halides, all EOS and Birch-Murnaghan EOS provide similar results. Still, when compression
increases, deviation in Birch-Murnaghan EOS increases, whereas the fourth-order exponential equation of state goes
towards better accuracy, as seen in Table 3-6 and Figure 2-5. From the above discussion, we conclude that first- and
second-order exponential equations can be used to calculate compression-dependent pressure at low compression. Still,
at high compression, the fourth-order exponential equation of state is better than other orders and Birch-Murnaghan EOS.

The Birch-Murnaghan equation of state (EOS) is suitable only for HCP-iron. However, at higher compression, it
starts to deviate from experimental data. On the other hand, the fourth-order exponential EOS closely matches
experimental results at higher compression, indicating its superior accuracy compared to other EOS models. It performs
similarly at low compression but shows increased accuracy at high compression. Therefore, the fourth-order exponential
equation of state can be utilised effectively at both low and high compression, highlighting its significance in high-
pressure solid-state physics.

The second-order exponential equation of state is also known as the Shanker EOS. In a study by M.
Kumar et al. [16], it was suggested that the accuracy of the Shanker EOS at high compression be enhanced by introducing
a fitting parameter. The value of the fitting parameter varies for different solids. The Srivastava-Pandey EOS [20]



338
EEJP. 1 (2025) Abhay P. Srivastava, et al.

overcomes this limitation by incorporating higher-order compression and anharmonic vibrations of solids. However,
accuracy is significantly improved by including fourth-order compression. The fourth-order EOS includes symmetric and
asymmetric vibrations at high compressions, significantly increasing accuracy.

4. CONCLUSION

The study presents a first- to fourth-order exponential equation of state (EOS) to enhance the accuracy of pressure
calculations under varying compressions, comparing it with the Birch-Murnaghan equation. At low compression, all EOS,
including Birch-Murnaghan, produce similar results. However, the fourth-order exponential EOS shows better accuracy
at higher compression, while the Birch-Murnaghan EOS deviates from experimental values. The fourth-order exponential
EOS proves more reliable for HCP-iron and sodium halides, especially at high compressions. The study concludes that
the fourth-order exponential EOS is suitable for both low and high compressions, offering improvements over existing
models, such as Shanker and Srivastava-Pandey EOS, by incorporating higher-order compression and anharmonic
vibrations for greater accuracy in high-pressure physics.
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HOBE PIBHAHHSA CTAHY YETBEPTOI'O IOPAJKY, 3AJIE?KHOI'O BIJI CTUCHEHHA
Aoxaii I1. Illpisacrasa?®, Bpicm K. Manai?, Anox Kymap Cinrx, Pirem IlpiBacraBa®
“@akynemem @izuxu ma mamepianosnagcmea, Texnonoziunuil ynigepcumem Madana Moxana Maneia, Topaxxnyp (UP), Inoia
b Tenapmamenm 2ymanimapnux i npuxaaonux nayx, Ilxona menedocmenmy, Jaxxnay, (UP), Inois

“lenapmamenm pizuxu, Nandini Nagar P.G. Koneoxc, Hasabzanoorc, I'onoa, (UP), Inois
VY npoMy DOCIIKEHHI IPEACTABICHO HOBE eKCIIOHEHIIaNbHe PIBHIHHS CTaHy Mepioro-aerseproro nopsaxy (EOS) ms minBuimenHs
TOYHOCTI Ha Pi3HMUX PIBHIX CTHCHEHHs. 3alpONOHOBaHUH ekcrioHeHIianbHui EOS nopiBHIOEThCS 3 mMpoko BUKoprucToByBaHUM EOS
Bepua-MypHarana yeTBepTOro IOPSIJIKY, i BiH HE TUIBKH BiINOBiIa€, aJie it mepeBeplIye TOYHICTh, 0COOIHNBO IIPU BUCOKOMY CTHCHEHHI.
Le mOpiBHSAHHS CIIYy)KUTh YiTKUM OPIEHTHPOM JUIsl YHUTAUiB, 1100 3pO3yMITH MepeBary HOBOI Mojesti. BUHCHOBKH LIbOTO JOCIIKSHHS
MalOThb BHUpIilllaJIbHE 3HAYCHHS, OCKUIBKM BOHM II0OKa3yloTh, WO eKcrmoHeHuiansHuid EOS uerBeproro mnopsaky 3abesnedye
HeTepeBepLUICHHH PiBeHb TOYHOCTI MPH O1IbII BUCOKOMY CTHCHEHHI, 0COOIMBO [UTsl TaKUX Matepianis, sik HCP-3ami30 ta ramoreHinu
Hatpito. EOS Bepua-MypHaraHa, xo4a e()eKTHBHHUII IPH HU3BKOMY CTHCHEHHI, BiIXWIIAETHCS BiJl €KCIEPHUMEHTAIBHAX 3HAUYCHb Ha
BumuX piBHAX. Kpim Toro, nocmimkenns suyae Shanker EOS, B sskomy M. Kumar et al. [Physica B: Condensed Matter, 239(3-4),
337-344 (1997)] BucyBaroTh BUMOTY LIO/0 ITOKPAIIEHHS [IPY BUCOKOMY CTHCHEHHI Ta HOKPAIEHHS IIUISIXOM ITiJITOHKH ITapaMeTpiB, sKi
BIZIPI3HAIOTHCS Bif Marepially 1o Mmarepiamy. e oOMeXeHHs ycyBaeThCs 3aBASKM po3podOui excrioHeHIiaasHoro EOS uerBeproro
MIOPSKY, SIKMH € OLIBII YHIBepCaJbHUM, IPOIIOHYIOUM HaiifHI pe3yJbTaTH B CLEHAPIsSX SK HU3BKOIO, TaK i BUCOKOIO CTUCHEHHS y
(bi3HL BUCOKOTO THCKY.
KarouoBi cnoBa: pignannsa cmamny, cmuchenns, NOKA3HUKOSE DIGHAHHA CMAHY 4emeepmo2o NopaAoKy, pieuauus cmany bepua-
Mypnazana uemeepmozo nopsaoxy



