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The flow and heat transfer of a Williamson fluid subjected to a magnetic field are analyzed and investigated through the spectral quasi-
linearization method (SQLM). The equations concerned with momentum and energy are obtained from the Navier-Stokes equations,
accounting for non-Newtonian effects, viscous dissipation, magnetic forces, and the Lorentz force. The electrically conductive fluid’s
interaction with the magnetic field produces the Lorentz force, which strongly modifies flow behaviour by exerting a resistive force
against the fluid’s velocity. The method efficiently linearises the non-linear equations, enabling accurate solutions through the spectral
method. Numerical results highlight the influence of Williamson fluid parameters, magnetic field intensity, and heat sources on velocity
and temperature fields, offering insights into the fluid’s behaviour in industrial applications involving non-Newtonian fluids and magnetic
fields.
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NOMENCLATURE

S Cauchy stress tensor
𝑏 Specific body force vector
𝐶 𝑓 Skin friction coefficient
𝐻 Magnetic field
𝐻𝑎 Hartmann number
𝐾 Pyromagnetic coefficient
𝑘 Thermal conductivity
𝑀 Magnetization
𝑁𝑢 Nusselt number
𝑃𝑟 Prandtl number
𝑄𝑠 Heat source parameter
𝑊𝑒 Weissenberg number
𝑎 Distance of magnetic dipole
𝐶𝑝 Specific heat
𝑇 Temperature
𝑇𝑐 Curie temperature
𝑇𝑤 Temperature at surface

𝑢 velocity component of fluid in 𝑥 direction
𝑣 velocity component of fluid in 𝑦 direction
Greek Symbols
𝛼 Magnetic field strength
𝛽 Ferromagnetic interaction parameter
𝜖 Dimensionless temperature parameter
𝜂 Similarity variable
Λ Thermal relaxiation parameter
𝜆 Dissipation factor,
𝜇 Dynamic viscosity
𝜇0 Magnetic permeability
𝜙 Magnetic scalar potential
𝜌 fluid density
𝜎 Stefan-Boltzmann constant
𝜃 Dimensionless temperature
𝜗 Kinematic viscosity

1. INTRODUCTION
The study of non-Newtonian fluid dynamics over-stretching sheets has become increasingly significant in recent years, owing to its

relevance in numerous industrial and engineering applications, such as plastic films, paper, and glass fibres. The continuous deforming
boundary condition that a stretching sheet produces influences the fluid’s motion and heat transfer properties. Understanding this
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phenomenon is essential to optimising cooling and stretching processes in materials. A constitutive model explaining the connection
between shear stress and shear rate was put forth by Williamson [1] in 1929, and it has subsequently been used to tackle a number
of flow-related issues. The fluid model is better suited to describe complex fluids found in extrusion and spinning processes, as well
as polymeric solutions, because it takes into account a decreasing viscosity with increasing shear rate. Numerous investigations have
focused on the flow of non-Newtonian fluids across stretching sheets, such as Williamson’s fluid [2]-[7]. The analysis of flow and heat
transfer of ferrofluids across a stretched sheet under the influence of a dipole magnet has significant technical and industrial applications.
The unique properties of ferrofluids in a carrier fluid may be controlled by applying external magnetic fields [8, 9, 10]. E.E. Tzirtzilakis
developed a model for analysing mathematically the flow of blood, which is induced by magnetic fields [11]. Magnetic forces are
incorporated into the Navier-Stokes equations and solved through numerical methods. Magnetic fields substantially influence blood
circulation, potentially facilitating targeted magnetic therapy. Daneshvar Garmroodi et al. [12] conducted numerical simulations of free
convection in non-Newtonian ferrofluids in a cavity that is porous and elliptical with a non-uniform magnetic field. The presence of a
magnetic field markedly enhanced the transfer of heat, particularly when the wire was positioned at the centre of the elliptical walls.
Shear-thinning fluids further augmented the average Nusselt number. AbuHamdeh et al. [13] examined the dynamics of magnetic
nanoparticles in the context of a magnetic field within non-Newtonian blood vessels. Their research illustrated the significance of
considering non-Newtonian fluid characteristics to enhance drug delivery precision. Srinu and Sreerama [14] investigated the influence
of thermal slips and velocity on Williamson’s fluid flow across a stretching sheet in the presence of a magnetic field that was inclined
and radiation. Abbas et al. [15] investigated flow and heat transmission of magnetohydrodynamic Williamson nanofluid across a
stretching sheet (non-linear) that was contained in a porous medium. It was found that with a rise in the Williamson fluid parameter,
the concentration profile rises and the velocity declines. It was concluded that rising mass concentration and temperature are caused by
increasing Eckert number 𝐸𝑐. As 𝑄, the heat-generating parameter rises, the temperature profile rises, and a reduction in concentration
is noticed. The results showed that the profiles of both temperature and concentration trended upward with an increase in the magnetic
field parameter 𝑀 , while the velocity field trended downward. Rashid et al. [16] looked at how a generated magnetic force affected
Williamson fluid’s flow within a curved channel. It was noticed that compared to a viscous fluid, for a Williamson fluid, the rise in
pressure is higher, and the generated magnetic field’s magnitude is smaller. Further, the velocity was observed to be small in comparison
with a Newtonian fluid. M.V. Krishna and B.V. Swarnalathamma, in their work [17], studied the flow of a MHD Williamson’s fluid,
which was electrically conducting and heat transfer in the planar symmetrical channel. Obalalu et al. [18] in their work addressed the
Hall effect on the flow of Williamson’s fluid across a channel that was considered inclined and stretching. In addition, their model took
into consideration the impacts of solar radiation, chemical reactions, heat generation or absorption, and activation energy. The graphical
results indicated that the heat sink exhibits a thermal efficiency ranging from 4.4% to 5.0%, which was lower compared to that of the
heat source. The flow of Williamson fluid diminishes in the magnetic field’s presence because of Lorentz force acting opposite to flow
direction, which can be considered an application in wired technology. Kashif et al. [19] examined the transport of mass and heat of a
MHD Williamson’s fluid across a stretched permeable layered plate. The study’s findings demonstrate that augmenting the parameter
for Brownian motion (𝑁𝑏) and Thermophoresis (𝑁𝑡) results in elevated local Nusselt number, signifying enhanced heat transfer rates.

Analyzing the influence of nanofluid properties and magnetic fields can deepen the understanding of heat and mass transport
characteristics. Such insights can potentially enhance the performance of ferrofluid-based devices across diverse applications. Recent
developments have primarily concentrated on creating efficient numerical techniques for resolving complex, nonlinear differential
equations that control fluid flow dynamics [20],[21]. The Spectral Quasi-Linearization Method (SQLM) [22] integrates spectral
methods with the quasilinearization technique to achieve high accuracy in linearisation and solving nonlinear terms. Numerous fluid
flow applications have benefited from the successful application of this technique, such as the study of boundary layer flows in non-
Darcy porous media across sheets that are stretching or shrinking (see, [23]-[27]). Tzirtzilakis and Tanoudis [28] have investigated heat
transfer and flow of biomagnetic fluid in magnetic fields using the Chebyshev pseudospectral method (CPSM). CPSM is more accurate
and efficient than finite difference methods. The study shows that flow characteristics are significantly influenced by the biomagnetic
interaction parameter and that CPSM performs well in this application. Some related literatures are cited in references ([29]-[33]).

The ferrofluid flow and heat transfer of a couple of stress fluids are analysed in the present study. The Spectral Quasi-Linearization
Method (SQLM) is utilised to solve flow-governing equations numerically, incorporating the effects of couple stresses and magnetic
forces. The equations are converted using similarity variables. We systematically examine effects on the profiles of velocity and
temperature of important parameters like the couple stress parameter, ferromagnetic interaction parameter, Prandtl number, heat source
parameter, and Hartmann number. The findings show how these parameters impact the flow and thermal properties of ferrofluids and
offer comprehensive insights into the intricate interactions between them.

2. FLUID MODEL
A problem of fluid flow across a flat, stretchable sheet stretched in x-direction with velocity 𝑢 = 𝑐𝑥 is the primary focus of this

analysis, where c is a stretching constant as shown in Fig.(1). At a distance ′𝑎′ from the centre of sheet, a magnetic dipole is located.
In Fig.(1), the symbols 𝑆 and 𝑁 denote the South and North Poles of the dipole, respectively. Deformation of fluid in 𝑦-direction is a
result of the flow being magnetised and saturated. The equations for an incompressible Williamson fluid flow given as:

∇.𝑉 = 0 (1)

𝜌
𝑑𝑉

𝑑𝑡
= ∇S + 𝜌𝑏 (2)

The following is an expression of the Williamson fluid model’s basic equations:

S = −𝑝𝐼 + 𝜏 (3)

where
𝜏 = 𝜇∞ +

( 𝜇0 − 𝜇∞
1 − Γ ¤𝛾

)
𝐴 (4)



124
EEJP. 1 (2025) Kairavadi Suresh Babu, et al.

a
𝑢 = 𝑐𝑥 𝑇 = 𝑇𝑤 

𝑇 >𝑇𝑤 

𝑋 

𝑌 

𝑂 

 C
 

B₀

N S

Figure 1. Illustration of physical problem

𝑝 stands for pressure, 𝐼 for identity vector, 𝜏 for extra stress tensor, 𝜇0 and 𝜇∞ for limiting viscosities at zero and infinite shear rates,
respectively, Γ > 0 for time constant, 𝐴 for first Rivlin-Erickson tensor. Here ¤𝛾 is defined as follows:

¤𝛾 =

√︂
1
2
𝜋 (5)

𝑤ℎ𝑒𝑟𝑒 𝜋 = Trace(𝐴2), 𝐴 = ∇𝑞 + ∇𝑞𝑇𝑟

∇𝑞 =

[
𝜕𝑢
𝜕𝑥

𝜕𝑢
𝜕𝑦
, 𝜕𝑣

𝜕𝑥
𝜕𝑣
𝜕𝑦

]
,

by substituting in (5), we get:

¤𝛾 =

[
2
[( 𝜕𝑢
𝜕𝑥

)2
+

( 𝜕𝑣
𝜕𝑦

)2]
+

( 𝜕𝑢
𝜕𝑦

+ 𝜕𝑣

𝜕𝑥

)2] 1
2 (6)

for 𝜇∞ = 0 and Γ ¤𝛾 < 1 and hence, the extra stress tensor takes the form:

𝜏 =

( 𝜇0
1 − Γ ¤𝛾

)
𝐴 (7)

by using binomial expansion, we get:
𝜏 = 𝜇0

(
1 + Γ ¤𝛾

)
𝐴 (8)

When the boundary layer approximations are applied, the continuity, momentum, and energy equations governing the flow take the
following form:

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣

𝜕𝑦
= 0 (9)

𝜌

[
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦

]
= 𝜇

(
𝜕2𝑢

𝜕𝑦2

)
+ 2𝜇Γ

𝜕𝑢

𝜕𝑦

𝜕2𝑢

𝜕𝑦2 + 𝜇0𝑀
𝜕𝐻

𝜕𝑥
− 𝜎𝐵2

0𝑢 (10)

(𝜌𝐶𝑝)
[
𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣 𝜕𝑇

𝜕𝑦

]
+ 𝜇0𝑇

𝜕𝑀

𝜕𝑇

[
𝑢
𝜕𝐻

𝜕𝑥
+ 𝑣 𝜕𝐻

𝜕𝑦

]
+ 𝜆

[(
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦

) 𝜕𝑇
𝜕𝑥

+
(
𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣 𝜕𝑣

𝜕𝑦

) 𝜕𝑇
𝜕𝑦

+ 𝑢2 𝜕
2𝑇

𝜕𝑥2 + 𝑣2 𝜕
2𝑇

𝜕𝑦2 + 2𝑢𝑣
𝜕2𝑇

𝜕𝑥𝜕𝑦

]
= 𝑘

[
𝜕2𝑇

𝜕𝑥2 + 𝜕2𝑇

𝜕𝑦2

]
+𝑄(𝑇𝑐 − 𝑇) + 𝜎𝐵2

0𝑢

(11)

The assumed boundary conditions for resolving the aforementioned equations are as follows:

𝑢(𝑥, 0) = 𝑐𝑥, 𝑣(𝑥, 0) = 0, 𝑇 = 𝑇𝑤 at 𝑦 = 0,
𝑢(𝑥,∞) → 0, 𝑇 (𝑥,∞) → 𝑇𝑐 at 𝑦 → ∞.

(12)
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The potential of magnetic dipole can be found by 𝜙(𝑥, 𝑦) = 𝛼
2𝜋

[
𝑥

𝑥2+(𝑦+𝑎)2

]
. We arrive at the conclusion 𝐻 = [𝐻2

𝑥 +𝐻2
𝑦]

1
2 by employing

a linear correlation between magnetic body force and the gradient of 𝐻. 𝑀 = 𝐾 (𝑇𝑐 − 𝑇) is a linear equation that approximates the
relationship between magnetization 𝑀 and temperature 𝑇 .
The equations considered for transformation are

(𝜉, 𝜂) = (𝑥, 𝑦)√︂
𝜈

𝑐

, 𝑢 = 𝑐𝑥 𝑓 ′ (𝜂), 𝑣 = −
√
𝑐𝜈 𝑓 (𝜂) 𝑎𝑛𝑑 𝜃 (𝜉, 𝜂) = 𝑇𝑐 − 𝑇

𝑇𝑐 − 𝑇𝜔
= 𝜃1 (𝜂) + 𝜉2𝜃2 (𝜂) (13)

𝑢, 𝑣 the components of velocity satisfy the continuity equation (9). By substituting equations (10) and (11) in (13) and equating the
coefficients of 𝜉0, 𝜉 and 𝜉2, the following equations are obtained:

𝑓 ′′′ + 𝑓 𝑓 ′′ − ( 𝑓 ′)2 +𝑊𝑒 𝑓 ′′ 𝑓 ′′′ − 2𝛽𝜃1

(𝜂 + 𝑑)4
− 𝐻𝑎 𝑓 ′ = 0, (14)

𝜃′′1 + 𝑃𝑟 [ 𝑓 𝜃′1 −𝑄𝑠𝜃1] − 𝜆𝛽(𝜖 − 𝜃1)
[

2 𝑓
(𝜂 + 𝑑)3

]
− Λ

(
𝑓 𝑓 ′𝜃′1 + 𝑓 2𝜃′′1

)
+ 2𝜃2 = 0, (15)

𝜃′′2 + 𝑃𝑟 [ 𝑓 𝜃′2 − 2 𝑓 ′𝜃2 −𝑄𝑠𝜃2] + 𝜆𝛽(𝜖 − 𝜃1)
[

2 𝑓 ′

(𝜂 + 𝑑)4
+ 4 𝑓

(𝜂 + 𝑑)5

]
+ 2𝜆𝛽 𝑓 𝜃2

(𝜂 + 𝑑)3

+Λ
(
− 4 𝑓 ′2𝜃2 + 3 𝑓 𝑓 ′𝜃′2 − 𝑓 2𝜃′′2 + 2 𝑓 𝑓 ′′𝜃2

)
− 𝜆𝐻𝑎 𝑓 ′2 = 0.

(16)

The following are the transformed boundary conditions:

𝑓 (0) = 0, 𝑓 ′ (0) = 1, 𝜃1 (0) = 1, 𝜃2 (0) = 0
𝑓 ′ (∞) = 0, 𝜃1 (∞) = 0, 𝜃2 (∞) = 0

(17)

The remaining non-dimensional variables in the aforementioned converted equations are specified as :

Λ =
𝜆𝑐𝜈

𝑘
, 𝛽 =

𝛼𝜇0
2𝜋

𝜌𝐾 (𝑇𝑐 − 𝑇𝑤)
𝜇2 , 𝑃𝑟 =

(𝜌𝐶𝑝)𝜗
𝑘

, 𝑊𝑒 = 2Γ𝑥
√︂
𝑐3

𝜈

𝜆 =
𝜇2𝑐

𝜌𝑘 (𝑇𝑐 − 𝑇𝑤)
, 𝜖 =

𝑇𝑐

𝑇𝑐 − 𝑇𝑤
, 𝐻𝑎 =

𝜎𝐵2
0

𝜌𝑐
, 𝑄𝑠 =

𝑄

𝑐𝜌𝐶𝑝

.

3. SPECTRAL QUASI LINEARIZATION
The spectral quasi-linearization procedure has been applied to obtain the numerical solution of the nonlinear coupled equations

(14) to (16), in accordance with the boundary conditions (17). The quasi-linearization technique is applied to equations (14) to (17),
yielding the following equations:

𝑒1,𝑟 𝑓
′′′
𝑟+1 + 𝑒2,𝑟 𝑓

′′
𝑟+1 + 𝑒3,𝑟 𝑓

′
𝑟+1 + 𝑒4,𝑟 𝑓𝑟+1 + 𝑒5,𝑟 (𝜃1)𝑟+1 = 𝑆1, (18)

𝑒6,𝑟 𝑓
′
𝑟+1 + 𝑒7,𝑟 𝑓𝑟+1 + 𝑒8,𝑟 (𝜃1)′′𝑟+1 + 𝑒9,𝑟 (𝜃1)′𝑟+1 + 𝑒10,𝑟 (𝜃1)𝑟+1 + 𝑒11,𝑟 (𝜃2)𝑟+1 = 𝑆2, (19)

𝑒12,𝑟 𝑓
′′
𝑟+1 + 𝑒13,𝑟 𝑓

′
𝑟+1 + 𝑒14,𝑟 𝑓𝑟+1 + 𝑒15,𝑟 (𝜃1)𝑟+1 + 𝑒16,𝑟 (𝜃2)′′𝑟+1 + 𝑒17,𝑟 (𝜃2)′𝑟+1 + 𝑒18,𝑟 (𝜃2)𝑟+1 = 𝑆3, (20)

The boundary conditions are:
𝑓𝑟+1 = 0, 𝑓 ′𝑟+1 = 1, (𝜃1)𝑟+1 = 1, (𝜃2)𝑟+1 = 0 at 𝜂 = 0,
𝑓 ′𝑟+1 = 0, (𝜃1)𝑟+1 = 0, (𝜃2)𝑟+1 = 0 at 𝜂 → ∞.

(21)

The coefficients are obtained as

𝑒1,𝑟 = 𝑊𝑒 𝑓 ′′𝑟 + 1, 𝑒2,𝑟 = 𝑓𝑟 +𝑊𝑒 𝑓 ′′′𝑟 , 𝑒3,𝑟 = −2 𝑓 ′𝑟 − 𝐻𝑎, 𝑒4,𝑟 = 𝑓 ′′𝑟 , 𝑒5,𝑟 =
−2𝛽

(𝜂 + 𝑑)4
,

𝑒6,𝑟 = −Λ 𝑓𝑟 (𝜃′1)𝑟 , 𝑒7,𝑟 = 𝑃𝑟 (𝜃′1)𝑟 −
2𝜆𝛽𝜖

(𝜂 + 𝑑)3
+ 2𝜆𝛽(𝜃1)𝑟

(𝜂 + 𝑑)3
− Λ 𝑓 ′𝑟 (𝜃′1)𝑟 − 2Λ 𝑓𝑟 (𝜃′′1 )𝑟 ,

𝑒8,𝑟 = 1 − Λ 𝑓 2
𝑟 , 𝑒9,𝑟 = 𝑃𝑟 𝑓𝑟 − Λ 𝑓𝑟 𝑓

′
𝑟 , 𝑒10,𝑟 =

2𝜆𝛽 𝑓𝑟
(𝜂 + 𝑑)3

− 𝑃𝑟𝑄𝑠 , 𝑒11,𝑟 = 2,

𝑒12,𝑟 = 2Λ 𝑓𝑟 (𝜃2)𝑟 , 𝑒13,𝑟 = −2𝑃𝑟 (𝜃2)𝑟 +
2𝜆𝛽𝜖

(𝜂 + 𝑑)4
− 2𝜆𝛽(𝜃1)𝑟

(𝜂 + 𝑑)4
− 8Λ 𝑓 ′𝑟 𝜃2 + 3Λ 𝑓𝑟 (𝜃′2)𝑟 − 2𝜆𝐻𝑎 𝑓 ′,

𝑒14,𝑟 = 𝑃𝑟 (𝜃′2)𝑟 +
2𝜆𝛽(𝜃2)𝑟
(𝜂 + 𝑑)3

+ 4𝜆𝛽𝜖
(𝜂 + 𝑑)5

− 4𝜆𝛽(𝜃1)𝑟
(𝜂 + 𝑑)5

+ 3Λ 𝑓 ′𝑟 (𝜃′2)𝑟 − 2Λ 𝑓𝑟 (𝜃′′2 )𝑟 + 2Λ 𝑓 ′′𝑟 (𝜃2)𝑟 ,

𝑒15,𝑟 =
−2𝜆𝛽 𝑓 ′𝑟
(𝜂 + 𝑑)4

− 4𝜆𝛽 𝑓𝑟
(𝜂 + 𝑑)5

, 𝑒16,𝑟 = 1 − Λ 𝑓 2
𝑟 , 𝑒17,𝑟 = 𝑃𝑟 𝑓𝑟 + 3Λ 𝑓 ′𝑟 𝑓𝑟 ,

𝑒18,𝑟 = −2𝑃𝑟 𝑓 ′𝑟 − 𝑃𝑟𝑄𝑠 +
2𝜆𝛽 𝑓𝑟
(𝜂 + 𝑑)3

− 4Λ( 𝑓 ′𝑟 )2 + 2Λ 𝑓𝑟 𝑓 ′′𝑟 ,



126
EEJP. 1 (2025) Kairavadi Suresh Babu, et al.

𝑆1 = 𝑓𝑟 𝑓
′′
𝑟 − 𝑓 ′2𝑟 +𝑊𝑒 𝑓 ′′𝑟 𝑓 ′′′𝑟 , 𝑆2 = −Λ 𝑓 ′𝑟 𝑓𝑟 𝜃′𝑟 − Λ( 𝑓𝑟 )2 (𝜃′′1 )𝑟 + 𝑃𝑟 𝑓𝑟 (𝜃

′
1)𝑟 +

2𝜆𝛽 𝑓𝑟 (𝜃1)𝑟
(𝜂 + 𝑑)3

,

𝑆3 = −𝜆𝐻𝑎(( 𝑓 ′)2)𝑟 − 2𝑃𝑟 𝑓 ′𝑟 (𝜃2)𝑟 + 𝑃𝑟 𝑓𝑟 (𝜃′2)𝑟 +
2𝜆𝛽 𝑓𝑟 (𝜃2)𝑟
(𝜂 + 𝑑)3

− 2𝜆𝛽 𝑓 ′𝑟 (𝜃1)𝑟
(𝜂 + 𝑑)4

− 4𝜆𝛽(𝜃1)𝑟 𝑓𝑟
(𝜂 + 𝑑)5

− 3Λ 𝑓 ′𝑟 𝑓𝑟 (𝜃′2)𝑟

− Λ( 𝑓 2)𝑟 (𝜃′′2 )𝑟 + 2Λ 𝑓 ′′𝑟 𝑓𝑟 (𝜃2)𝑟 − (4( 𝑓 ′)2)𝑟 (𝜃2)𝑟 .

Equations (14)–(17) are solved numerically using the pseudo-spectral Chebyshev collocation method. In this framework, initially, the
semi-infinite range 𝜂 ∈ [0, ∞) is truncated to 𝜂 ∈ [0, 𝐿∞], where 𝐿∞ ∈ Z+. This range [0, 𝐿∞] is transformed into [−1, 1] using the
transformation variable 𝜂 = 𝐿∞ (1 + 𝜁)/2. Using the differential matrix D for Chebyshev polynomials (see, [27]), the derivatives of the
unknown functions 𝑓 (𝜂), 𝜃1 (𝜂), and 𝜃2 (𝜂) are derived at the collocation points of the product matrix vector as follows:

𝜕 𝑝 𝑓𝑟+1
𝜕𝜂𝑝

=

(
2
𝐿

) 𝑝 𝑁∑︁
𝑖=0

𝐷
𝑝

𝑁,𝑖
𝑓𝑟+1 (𝜂𝑖) = D𝑝𝐹,

𝜕 𝑝 (𝜃1)𝑟+1
𝜕𝜂𝑝

=

(
2
𝐿

) 𝑝 𝑁∑︁
𝑖=0

𝐷
𝑝

𝑁,𝑖
(𝜃1)𝑟+1 (𝜂𝑖) = D𝑝Θ1,

𝜕 𝑝 (𝜃2)𝑟+1
𝜕𝜂𝑝

=

(
2
𝐿

) 𝑝 𝑁∑︁
𝑖=0

𝐷
𝑝

𝑁,𝑖
(𝜃2)𝑟+1 (𝜂𝑖) = D𝑝Θ2.

(22)

The Chebyshev differentiation matrix D is scaled by 𝐿∞/2. The matrix D in this instance has a derivative order of 𝑝 and an order of
(𝑁 + 1) × (𝑁 + 1). Using 𝜁 𝑗 = cos (𝜋 𝑗/𝑁), 𝑗 = 1, 2, · · · 𝑁 , where 𝑁 denotes number of collocation points, the Gauss-Lobatto points
are constructed to characterize nodes in [−1, 1]. Substituting Eq. (22) into Eqs. (18)-(21), we obtain

[𝑒1,𝑟D3 + 𝑒2,𝑟D2 + 𝑒3,𝑟D + 𝑒4,𝑟 𝐼] 𝑓𝑟+1 + 𝑒5,𝑟 (𝜃1)𝑟+1 = 𝑆1, (23)

[𝑒6,𝑟D + 𝑒7,𝑟 𝐼] 𝑓𝑟+1 + [𝑒8,𝑟D2 + 𝑒9,𝑟D + 𝑒10,𝑟 𝐼] (𝜃1)𝑟+1 + [𝑒11,𝑟 𝐼] (𝜃2)𝑟+1 = 𝑆2, (24)
[𝑒12,𝑟D2 + 𝑒13,𝑟D + 𝑒14,𝑟 𝐼] 𝑓𝑟+1 + 𝑒15,𝑟 (𝜃1)𝑟+1 + [𝑒16,𝑟D2 + 𝑒17,𝑟D + 𝑒18,𝑟 𝐼] (𝜃2)𝑟+1 = 𝑆3. (25)

Applying spectral method on the boundary conditions gives
𝑁∑︁
𝑘=0

D𝑁,𝑘 𝑓𝑟+1 (𝜁0) = 0, (𝜃1)𝑟+1 (𝜁0) = 0, (𝜃2)𝑟+1 (𝜁0) = 0, 𝑓𝑟+1 (𝜁𝑁 ) = 0,

𝑁∑︁
𝑘=0

D𝑁,𝑘 𝑓𝑟+1 (𝜁𝑁 ) = 1, (𝜃1)𝑟+1 (𝜁𝑁 ) = 1, (𝜃2)𝑟+1 (𝜁𝑁 ) = 0.

The above system of equations expressed in matrix form as:
K11 K12 K13
K21 K22 K23
K31 K32 K33

 ×

𝐹𝑟+1
Θ1𝑟+1
Θ2𝑟+1

 =


𝑆1
𝑆2
𝑆3

 , (26)

The boundary conditions are placed on the separate matrices as follows:

K11 =


D0,0 D0,1 · · · D0,𝑁−1 D0,𝑁

𝐾11
DN−1,0 DN−1,1 · · · DN−1,N−1 DN−1,N

0 0 · · · 0 1


, K12 =



0 0 · · · 0 0

𝐾12

0 0 · · · 0 0
0 0 · · · 0 0


,

K13 =



0 0 · · · 0 0

𝐾13

0 0 · · · 0 0
0 0 · · · 0 0


,K21 =


0 0 · · · 0 0

𝐾21

0 0 · · · 0 0


, K22 =


1 0 · · · 0 0

𝐾22

0 0 · · · 0 1


,

K23 =


0 0 · · · 0 0

𝐾23

0 0 · · · 0 0


, K31 =


0 0 · · · 0 0

𝐾31

0 0 · · · 0 0


, K32 =


0 0 · · · 0 0

𝐾32

0 0 · · · 0 0


,

K33 =


1 0 · · · 0 0

𝐾33

0 0 · · · 0 1


, F𝑟+1 =



𝑓𝑟+1,0

.

.

.

𝑓𝑟+1,𝑁−1
𝑓𝑟+1,𝑁


, 𝚯1𝑟+1 =



𝜃1𝑟+1,0

.

.

.

.

.

.

𝜃1𝑟+1,𝑁


,
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𝚯2𝑟+1 =



𝜃2𝑟+1,0

.

.

.

.

.

.

𝜃2𝑟+1,𝑁


, 𝑆1 =


0

s1
1
0


, 𝑆2 =


0

s2
1

 , 𝑆3 =


0

s3
0

 ,
where

𝐾11 = [diag(𝑒1,𝑟 ) diag(𝑒2,𝑟 ) diag(𝑒3,𝑟 ) diag(𝑒4,𝑟 )] [D3 D2 D 𝐼]𝑇 ,
𝐾12 = diag(𝑒5,𝑟 ), 𝐾13 = 0,

𝐾21 = [diag(𝑒6,𝑟 ) diag(𝑒7,𝑟 )] [D 𝐼]𝑇 ,
𝐾22 = [diag(𝑒8, 𝑟) diag(𝑒9,𝑟 ) diag(𝑒10,𝑟 )] [D3 D2 D 𝐼]𝑇 , 𝐾23 = [diag(𝑒11,𝑟 )] 𝐼,
𝐾31 = [diag(𝑒12,𝑟 ) diag(𝑒13,𝑟 ) diag(𝑒14,𝑟 )] [D2 D 𝐼]𝑇 , 𝐾32 = diag(𝑒15,𝑟 ),
𝐾33 = [diag(𝑒16𝑟 ) diag(𝑒17,𝑟 ) diag(𝑒18,𝑟 )] [D2 D 𝐼]𝑇 ,

where 𝑒 is (N + 1)×(N + 1) diagonal matrix, I, 0 are (N + 1)×(N + 1) unit matrix and zero matrix, respectively.

4. CONVERGENCE ANALYSIS AND RESULTS
The convergence analysis shows that iterative approach convergence to exact solution of the equations (14) and (15), while

considering the boundery conditions (17). The residual error quantifies the proximity of the numerical solution to exact solution. The
residual error of equations (14) and (15) is represented below:

𝑅𝑒𝑠( 𝑓 ) = 𝑓 ′′′ + 𝑓 𝑓 ′′ − ( 𝑓 ′)2 +𝑊𝑒 𝑓 ′′ 𝑓 ′′′ − 2𝛽𝜃1

(𝜂 + 𝑑)4
− 𝐻𝑎 𝑓 ′, (27)

𝑅𝑒𝑠(𝜃1) = 𝜃′′1 + 𝑃𝑟 [ 𝑓 𝜃′1 −𝑄𝑠𝜃1] − 𝜆𝛽(𝜖 − 𝜃1)
[

2 𝑓
(𝜂 + 𝑑)3

]
− Λ

(
𝑓 𝑓 ′𝜃′1 + 𝑓 2𝜃′′1

)
+ 2𝜃2. (28)

∥𝑅𝑒𝑠( 𝑓 )∥∞ and ∥𝑅𝑒𝑠(𝜃1)∥∞ measure the largest absolute value of the error throughout the domain.
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Figure 2. Influence of iterations on ∥𝑅𝑒𝑠( 𝑓 )∥∞ and ∥𝑅𝑒𝑠(𝜃1)∥∞ when 𝑃𝑟 = 1, 𝜆= 0.01,𝑄𝑠=0.5, 𝜖=2, 𝛽 = 1, Λ = 0.5, 𝐻𝑎
= 1 and𝑊𝑒 = 0.01.

The residual error in 𝑓 over 50 iterations for several numbers of collocation points (N = 65, 70, 75) is displayed in Fig. (2)(a). The
figure shows that the best accuracy is achieved in between the collocation points 65 and 75, with residual errors around 10−8. Similarly,
The optimal residuals are achieved around 10−11 for the residual errors in 𝜃1 that is shown in Fig. (2)(b). The accuracy gradually
reduces beyond this range of collocation points. From the above results, the numerical approach achieved the best accuracy between 65
to 75 collocation points and performance after the seventh iteration in 𝑓 and the tenth iteration in 𝜃1.

The resistance that the fluid applies to the surface as a result of shear stresses is measured by 𝐶 𝑓 , the skin friction coefficient defined as:

𝐶 𝑓 =
𝜏𝑤

𝜌𝑈2
𝑠

where 𝜏𝑤 is the wall shear stress at surface (𝑦 = 0):

𝜏𝑤 = 𝜇

(
1 − 1

Γ ¤𝛾 + 1

) (
𝜕𝑢

𝜕𝑦

)
𝑦=0
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A simplified expression for skin friction coefficient is given as:

𝐶 𝑓 𝑅𝑒
1
2
𝑥 = 𝑓 ′′ (0) + 𝑊𝑒

2
𝑓 ′′ (0)2

Table 1. Numerical values of 𝐶 𝑓 𝑅𝑒
1
2
𝑥

𝑊𝑒 𝐶 𝑓 𝑅𝑒
1
2
𝑥

𝛽=0 𝛽=0.1 𝛽=0.2 𝛽=0.3 𝛽=0.4 𝛽 = 1
0 -1.095599662 -1.128912975 -1.162233927 -1.195730434 -1.229308197 -1.432427836

0.001 -1.095382958 -1.128657128 -1.162015567 -1.195459333 -1.228989428 -1.43204273
0.1 -1.073084327 -1.105917857 -1.13882558 -1.171808576 -1.204867949 -1.404893248
0.2 -1.048548562 -1.08079605 -1.113097732 -1.145454265 -1.177866314 -1.373542304
0.3 -1.0213007 -1.052721717 -1.084153148 -1.11559285 -1.147038361 -1.335636773
0.4 -0.990052177 -1.02015071 -1.050134304 -1.079979608 -1.109655784 -1.146034455

The Nusselt number for a Williamson fluid over a stretched sheet quantifies the convective heat transfer at the surface in relation
to the conductive heat transfer inside the fluid. The following is the definition of the local Nusselt number 𝑁𝑢𝑥 at a distance 𝑥 from the
leading edge:

𝑁𝑢𝑥 =
𝑞𝑤𝑥

𝑘 (𝑇𝑤 − 𝑇𝑐)

where 𝑞𝑤 = −𝑘
(
𝜕𝑇
𝜕𝑦

)
𝑦=0

is the wall heat flux.

The local Nusselt number becomes:
𝑁𝑢𝑥 = −𝜃′ (0)

√︁
𝑅𝑒𝑥

Table 2. Numerical values of 𝑁𝑢𝑥𝑅𝑒
−1
2
𝑥

𝑊𝑒 𝑁𝑢𝑥𝑅𝑒
−1
2
𝑥

𝛽=0 𝛽=0.1 𝛽=0.2 𝛽=0.3 𝛽=0.4 𝛽=1
0 1.073455819 1.068598579 1.068738038 1.064270995 1.060645959 1.042842363

0.001 1.074442179 1.071432388 1.068411953 1.065378014 1.062332056 1.043801078
0.1 1.067971776 1.064767511 1.06154568 1.058306182 1.055048916 1.03512635
0.2 1.06075601 1.057305343 1.053827978 1.050323504 1.046791495 1.024995014
0.3 1.052633942 1.048854466 1.045030664 1.041160916 1.037243449 1.012610756
0.4 1.04319135 1.038916915 1.034552705 1.030089571 1.025515841 0.993059527

Tables (1) and (2) display variations in coefficient of Skin friction and heat transfer rate for different values of Γ and 𝛽. Other
parameters are maintained at following values: 𝑑 = 1, 𝜆 = 0.01, 𝜖 = 2, 𝑃𝑟 = 1, Λ = 0.5, 𝐻𝑎 = 0.2, 𝑄𝑠 = 0.5. From Table (1) it can
be noticed that for a fixed 𝛽, the drag coefficient increases with a rise in 𝑊𝑒. The augmentation of the drag coefficient with a rise
in Weissenberg number is attributable to the fluid’s shear-thinning characteristics, and increased energy dissipation within the flow.
Further, it decreases with a rise in 𝛽. This is attributed to the stabilising influence of magnetic field, a decrease in flow instabilities,
laminar flow development, or alterations in the velocity gradient and shear stress adjacent to the wall. Table (2) depicts a decrease in
heat transfer coefficient with a rise in 𝑊𝑒 and 𝛽. Higher values of 𝛽 intensify the effects of magnet in fluid and speed up heat transfer
as a consequence of the interaction between ferromagnetic particles in fluid and magnetic field. Better thermal conductivity and more
effective heat transfer are encouraged by this interaction. The effects of 𝛽, 𝑃𝑟 𝑊𝑒, 𝑄𝑠, Γ on profiles of velocity and temperature are
depicted in (3)-(10). From Figure (3)(a), one can notice that velocity drops from the highest value near the wall where 𝜂=0, towards
the free stream value (where 𝜂 → ∞) with the increment of 𝛽. This signifies that enhanced magnetic effects lead to a more rapid
deceleration of fluid in boundary layer as 𝛽 levels rise. Figure 3(b) illustrates that as 𝛽 is increased, it leads to a more pronounced
temperature differential near the wall, indicating a reduced thickness of the thermal boundary layer. Increased values of 𝛽 facilitate the
transfer of heat to fluid from the surface.

Figure 4(𝑎) clearly illustrates that the velocity diminishes from its maximum near the wall to the free stream value across different
Prandtl numbers 𝑃𝑟 . Fluctuations in the Prandtl number exert negligible influence on the thickness of velocity boundary layer, as they
do not significantly alter the velocity profile. Figure 4(𝑏) illustrates a reduction in temperature profile as Prandtl number (𝑃𝑟) increases.
This suggests that a higher 𝑃𝑟 value results in diminished thermal diffusivity, thereby decreasing the efficiency of heat conduction away
from the wall. Consequently, there is an elevated rate of temperature change and a reduced temperature near the surface. Fig. (5)(a) and
Fig. (5)(b) illustrate the impact of heat source 𝑄𝑠 on profiles of velocity and temperature. Figure 5(𝑎) demonstrates a more significant
velocity gradient near the wall, signifying a reduction in boundary layer thickness as values of 𝑄𝑠 increase. Figure 5(𝑏) shows that
elevated values of (𝑄𝑠) result in a diminished temperature profile near the wall. The observed phenomena can be attributed to the



Biomagneto-Hydrodynamic Williamson Fluid Flow and Heat Transfer...
129

EEJP. 1 (2025)

2

0 1 2 3 4 5 6

f0 (2
)

0

0.2

0.4

0.6

0.8

1

We = 0.01
Pr   = 1
   6 = 0.01
   0  = 2
  $  = 0.5
 Ha  = 0.2
 Qs  = 0.5

- = 0, 2, 4, 6

(a)
2

0 1 2 3 4 5 6

3
1(2

)

0

0.2

0.4

0.6

0.8

1

We = 0.01
Pr   = 1
   6 = 0.01
   0  = 2
  $  = 0.5
 Ha  = 0.2
 Qs  = 0.5

- = 0, 2, 4, 6

(b)

Figure 3. Impact of 𝛽 on velocity and temperature.
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Figure 4. Impact of 𝑃𝑟 on velocity and temperature.
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Figure 5. Impact of 𝑄𝑠 on velocity and temperature.
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Figure 6. Impact of𝑊𝑒 on velocity and temperature.
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Figure 7. Impact of Λ on velocity and temperature.
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Figure 8. Impact of 𝐻𝑎 on velocity and temperature.
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Figure 9. Impact of𝑊𝑒 and 𝛽 on transverse velocity − 𝑓 (𝜂).
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Figure 10. Impact of 𝑃𝑟 and Λ on transverse velocity − 𝑓 (𝜂).

increased heat generation in the fluid, which leads to a more uniform distribution of temperature within boundary layer and diminishing
temperature variation near the wall.

Fig. (6)(a)-6(b) are depicted to notice the influence of 𝑊𝑒 on profiles of velocity and temperature. Due to the fluid particle’s
increased relaxation time, the velocity profile decreases as𝑊𝑒 rises. The thickness of thermal boundary layer decreases as𝑊𝑒 increases
which results in an enhancement in the temperature profile.

Fig. (7)(a) and (7)(b) illustrates a rise in velocity and reduction of temperature as Λ increases. The axial velocity is noticed to
increase with a rise Λ due to reduced thermal effects which causes the momentum to increase. With an increase of Λ, a time lag is
introduced in the process of heat conduction, which slows the heat diffusion rate due which the reduction in temperature.

Fig. (8)(a) and (8)(b) depict the influence of 𝐻𝑎 on profiles of velocity and temperature. A rise in Hartmann number increases the
resistive force, leading to reduced flow. The temperature is noticed to increase with a rise in 𝐻𝑎, due to increased viscous dissipation
and slowed convective heat transfer. The graphs in figure (9) and (10) are plotted for the values: 𝜆 = 0.01, 𝜖 = 2, 𝑃𝑟 = 1, 𝐻𝑎 = 0.2, 𝛽=2,
𝑄𝑠 = 0.5,𝑊𝑒=0.01 and Λ= 0.5.

Fig. (9) (a) and (9)(b) illustrate the impact of 𝑊𝑒 and 𝛽 on the transverse velocity. With a rise in both 𝑊𝑒 and 𝛽, the elastic and
magnetic interactions of fluid are enhanced, leading to an increase in transverse velocity. Figures in (10) illustrate the influence of 𝑃𝑟
and Λ on transverse velocity.

The decline in transverse velocity with an elevation of 𝑃𝑟 and Λ results from the synergistic effects of heightened viscous
dissipation, diminished temperature gradients, and alterations in the fluid’s responsiveness to thermal fluctuations.

5. CONCLUSIONS
This article examines the flow and heat transfer characteristics of Williamson fluid over a stretched sheet when a magnetic dipole

is present. Equations governing fluid flow are transformed to non-linear ordinary differential equations using similarity transformations.
These equations are solved numerically through the Spectral Quasi-Linearization Method. A MATLAB program is utilized to generate
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graphical results, facilitating a detailed analysis of the influence of various parameters on the velocity and temperature profiles. The
conclusions that can be drawn are:

• An increase of 𝛽,𝑊𝑒 and 𝐻𝑎 results in a decline of axial velocity and a rise in temperature, and transverse velocity.
• With higher values of the 𝑄𝑠, Prandtl number 𝑃𝑟, and Thermal relaxation parameter Λ, the temperature declines and velocity

rises.
• With an increase in𝑊𝑒, coefficient of skin friction reduces and rate of heat transfer rises, while both decrease with a rise in 𝛽.

Residual errors for velocity and temperature profiles clearly showed rapid convergence, with a significant improvement in accuracy after
the fifth iteration. The optimal accuracy required 40-80 collocation points, after which the accuracy gradually decreased. The residual
error norms for different parameters ranged from 10−5 to 10−11, indicating the numerical scheme’s robustness and efficiency.

The results can be applied to simulate blood flow in the presence of a magnetic field, as blood exhibits non-Newtonian behavior
similar to Williamson fluids under certain conditions. This is crucial for designing medical devices like magnetic resonance imaging
(MRI) systems or improving techniques for controlling blood flow during surgeries.
In industries dealing with non-Newtonian fluids, the results are vital for optimizing processes such as extrusion and stretching of polymer
sheets or films. Understanding heat transfer and fluid flow characteristics ensures better quality control and energy efficiency during
production.
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БIОМАГНIТО-ГIДРОДИНАМIЧНИЙ ПОТIК РIДИНИ ВIЛЬЯМСОНА ТА ТЕПЛОПЕРЕНОС ЧЕРЕЗ ПОВЕРХНЮ,
ЩО РОЗТЯГУЄТЬСЯ: СПЕКТРАЛЬНИЙ КВАЗIЛIНЕАРИЗАЦIЙНИЙ ПIДХIД

Кайравадi Суреш Бабуb, Вангала Сугунаммаa, Вамсi Крiшна Нарлаc
𝑎Унiверситет Шрi Венкатешвара, Тiрупатi, AP, 517502, Iндiя

𝑎Iнженерно-технологiчний iнститут Гокараджу Рангараджу, TG, Iндiя
𝑐GITAM вважається унiверситетом, факультет математики, Хайдарабад, 502329, Iндiя

Потiк i теплопередача рiдини Вiльямсона, пiдданої магнiтному полю, аналiзуються та дослiджуються методом спектральної
квазiлiнеаризацiї (SQLM). Рiвняння, пов’язанi з iмпульсом i енергiєю, отриманi з рiвнянь Нав’є-Стокса з урахуванням ненью-
тонiвських ефектiв, в’язкої дисипацiї, магнiтних сил i сили Лоренца. Взаємодiя електропровiдної рiдини з магнiтним полем
створює силу Лоренца, яка суттєво змiнює поведiнку потоку, застосовуючи силу опору проти швидкостi рiдини. Метод ефе-
ктивно лiнеаризує нелiнiйнi рiвняння, забезпечуючи точнi рiшення за допомогою спектрального методу. Чисельнi результати
пiдкреслюють вплив параметрiв рiдини Вiльямсона, iнтенсивностi магнiтного поля та джерел тепла на поля швидкостi та тем-
ператури, пропонуючи зрозумiти поведiнку рiдини в промислових застосуваннях, що включають неньютонiвськi рiдини та
магнiтнi поля.
Ключовi слова: рiдина Вiльямсона; параметр джерела тепла; магнiтний диполь; сила Лоренца та метод спектральної
квазiлiнеаризацiї
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