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Examining Bianchi's type-III cosmological model involves incorporating a zero-mass scalar field in the context of Lyra's geometry. The
source of energy-momentum tensor is supposed to be a bulk viscous fluid. A barotropic equation of state is applied to characterize the
Pressure and density, seeking a specific solution to the field equations. This solution is derived using the distinctive variation principle for
Hubble's parameter proposed by [M.S. Berman, Il Nuovo Cimento B, 74, 182 (1983)]. The ensuing analysis delves into the physical
properties inherent in this model.
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INTRODUCTION

The advancement of general relativity was profoundly influenced by the groundbreaking contributions of Einstein
and Hilbert [2—4], leaving an indelible mark on cosmology, physics, and mathematics. The works of both Hilbert and
Einstein extensively employed Riemannian geometry [5], a framework where space-time is equipped with a metric and
an affine structure. These key components are delineated by g, and a connection represented by [}7;,, respectively.

The geometric and gravitational characteristics of space-time find expression in the curvature tensor R*, and its
contraction, providing the foundation for the construction of the Einstein tensor.

Several modifications to Riemannian geometry have been proposed to unify the universe's gravitation, the
electromagnetic field, and other fundamental interactions. Weyl [6] made one such attempt by trying to unify gravitation
and electromagnetism within a single space-time geometry. However, Weyl's theory faced criticism due to its reliance on
the non-integrability of length transfer. Later, Lyra [7] introduced a further modification to Riemannian geometry by
incorporating a gauge function into a less manifold structure, thereby eliminating the issue of non-integrability in length
transfer. This modification naturally gave rise to a displacement vector. Building on Lyra's work, Sen [8] and Sen and
Dunn [9] developed a new scalar-tensor theory of gravitation and formulated an analogy of the Einstein field equations
based on Lyra's geometry. Halford [10] noted that the constant vector displacement field ¢; Lyra's geometry functions
similarly to the cosmological constant Ain conventional general relativity. Furthermore, Halford [11] demonstrated that
the scalar-tensor theory derived from Lyra's geometry yields predictions consistent with observational limits, matching
the results of Einstein's theory.

Cosmological models of Bianchi [12] exhibit both homogeneity and anisotropy, providing a framework for
investigating the gradual isotropization of the universe over time. Additionally, from a mathematical and theoretical
perspective, anisotropic universes offer greater generality than isotropic Friedmann-Robertson-Walker (FRW) models.

Exploring interacting fields, particularly involving a zero-mass scalar field, is essential to address the unresolved
challenge of unifying gravitational and quantum theories. This study delves into the intricate problem of reconciling these
fundamental aspects of physics.

Furthermore, examining viscous mechanisms in cosmology is pivotal in elucidating the high entropy observed at
present. This investigation contributes valuable insights into understanding the thermodynamic properties and evolution
of the cosmos.

This paper is framed within the context of previous research studies. Reddy et al. [13-14] investigated Bianchi type-
IIT models incorporating bulk viscous coefficients. Katore et al. [15] explored solutions for zero-mass cosmological
models with bulk viscous coefficients within the Lyra geometry. Halford [16] provided an overview of Lyra's geometry,
and Singh [17] further delved into the same topic. Santhikumar [18] focused on accelerating cosmological models, while
Santhikumaret al. [19] explored Lyra's geometry heat flow cosmological models. Krishna [20] also examined plane-
symmetric cosmological models within Lyra's geometry. Numerous authors have extended their research within Lyra's
geometry, laying the foundation for future research. By Motivation from these studies, this paper presents a novel
contribution: a Bianchi type-III cosmological model incorporating a zero-mass scalar field and perfect fluid and bulk
viscous effects in Lyra's geometry.
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The structure of this paper is organized as follows: Section 2 examines the metric and field equations within the
Bianchi type-III cosmological model, incorporating a zero-mass scalar field in Lyra's Geometry. Section 3 is dedicated
to deriving the solutions to the field equations. In Section 4, we focus on explaining the physical properties of the models.
Section 5 provides a detailed discussion, and Section 6 concludes the paper.

METRIC AND FIELD EQUATIONS
The Bianchi type-III metric is

ds? = dt? — A%(t)dx? — B*(t)e **dy? — C%(t)dz?, (1)

where A, B&C are cosmic scale factors.
The field equations in standard gauge for Lyra's geometry, as obtained by Sen [8], are

ij —39ij ;PP — 7 9ij *) = KTy it ;j_%gij k¥
(R 19;R)+(3¢>¢, 3g,¢k¢) KT, +(¢¢ Y wk) )

In the Einstein field equations, k(kappa) is a constant related to the gravitational constant 'G' and the speed of light
'C' Specifically, k = i—ZG, in natural units, where c=1 k reduces to 8z, so k = 8mG. It simplifies the Einstein field

equations to avoid explicitly carrying around the constant, making focusing on the functional relationships between
variables easier. We consider k = 1, ( the natural units G = 1,8nG=1)).
Here ¢p; = (0,0,0, 8(t)) is the displacement vector,

Consider
B 3B2(¢), fori =j = 0 (Time — time
Ty = Gty ~2059e9") 4 : ©
i ==Pip; —=g;i = )
SRS s —%gijgooﬁz(t) ,fori=j # 0 (spatial componentsfori=j=1,2,3)
so, we have
=0 _ 3 = = = 3
Tg =20, T8 =TF = TS = - 6(0) @
_ ( L k) %1/)2 ,fori=1i=0(Time — time)
Vi = (Yt — 59590 ) = , . )
Y YT 2 JUTK —%gijll)z,fori = j # 0 (spatial componentsfori =j = 1,2,3)
so, we have
P9 = 12 B =93 = 03 = Ly ©)
T;; is the energy-momentum tensor for bulk viscous and zero-mass scalar fields as
T;j = (p + Puu; — Dgij (7)
Together with
uy; =1p=p—nu;=p—3nH ®)
Where u; is the four-velocity vector of the distribution,
p is the Pressure,p is the adequate Pressure,
7 is the bulk viscosity coefficient, and i is the zero-mass scalar field.
The non-vanishing energy-momentum tensor components are
Here
TO=pTi=T}=T5 = ©
Introducing a barotropic equation of state into the discussion
p=F-Dp0<y<2 (10)

Employing co-moving coordinates, the field equations (1) — (8)

_AC_BC_ 481y 3pe (g 1), (1n

AC BC AB A% 4
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BLC BC 3502 _ (35412
B+C+Bc+4ﬂ —(p+21p) (12)
A CLAC 350 (5012
A+C+Ac+4ﬂ _(p+zlp (13)
A, B AB 1 3, (= 1iH
A' B AB A2 4ﬁ —(p+21,b) (14)
A B _
~—3=0 (15)
The scalar field i/ complies with the following equation.
¥ =0 (16)
Hence, the semi-colon (,) indicates covariant differentiability
By using the equations(14), which yields that
. TA B €
¢+¢[Z+E+E]=0 (17)
And conservation of L.H.S of Eq.(2) leads that
i1 3 ; 3 j
(R =39iR) +[3 @), =3 (0u0*al) | =0 (18)
a¢1 i1.3 5[99 3¢
soufs+ o] + 30 (3% - oml] - ol 55+ o'mi] - Tolo* [3 - o] =0 (19)
Eq. (19) leads that
3pp 4 3p2(A LB O\
2[)’,3+2[3 (A+B+C)_0 (20)
The Solution to The Field Equations
Integrating eq. (13), we get
B =kA (21)
Take k = 1, without loss of generality, So we have
B=A (22)
By using Equation (16) in Equations (9)-(12) reduced to
AC (A . 1,
22 () H 3 = (o 107). (23)
A C AC 3 2 _ —_ l H 2
Stetac i = (). 4
A A2 13 2 _(=,1i2
25+ (5) —m i =(r+59?) (25)
The relation between average scale factor 'a' and Volume 'V' are
V=J=g=A0)B®)C)e *and a(t) = (V)3 = (A)BE)C()e™*)"s. (26)
The average Hubble parameter is
) .
=~ (Hy+Hy +H,) =~ @7

where H, =, H, = H, =

The scalar expanswn is



23

Accelerating the Cosmological Model with Zero-Mass Scalar Field in Lyra’s Geometry EEJP. 1 (2025)
—ui=244¢
Q—u;i—2A+C (28)

The shear scalar is

S HORIORH R ) @)

The mean anisotropic parameter is

2
Ao =130, () = S22+ B2 =L+ Hy o+ 1) (30)
where AH; = H; — H, fori = 1,2,3
Since Eqgs.(23) — (25)equations are highly non-linear equations. Hence, to derive a definitive solution, it is
imperative to consider the following requisite conditions.
(i) Utilizing the variation of Hubble's parameter proposed by Berman [1], we obtain models of the universe
characterized by the constant decelerating parameter

q= %Za = constant. (3D

The solutions of Eq. (31) yields that
1
This equation indicates that the criterion for accelerated expansion is(1 + q) > 0.

(ii) Since, 82 o o2Collin et al. [21]
which gives us

A=C"forn#1 (33)
By Equations (22), (31), (32) and (33)
We obtain metric coefficients, which are
3n
A = B = [kyt + kg]0roGn+D (34)
3
C = [k4t + ks](1+q)(2n+1). (35)

Using Eq. (22) and (33), the Egs. (23)-(25) reduces to

—(2n+n2)(§)2 +C‘2"+%,82(t) = p+%1[)2, (36)
(4 DS+ n? (§)2+§ﬁz(t)=ﬁ+§¢)2 (37
2n§+n(2n— 1) (%)2 —C‘2“+%,82(t) =ﬁ+%1j)2. (3%

By substituting the values 4, B and C in (2), we get

6N 6
ds? = dt? — [kt + ks|TF0@[dx? + e~ 2%dy?] — [k,t + kg |TFOC#D 72, (39)

Some Physical Properties of the Model
Eq. (39) describes the Bianchi type-III cosmological model featuring bulk viscous effects and a zero-mass scalar
field under Lyra's geometry.
The Spatial volume is

3(n+1)

V = (k4t + k5) 1+q e_x (40)
The Hubble's parameter is

ks

T ) (kattks) @0
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Figure 1. Hubble's Parameter H Vs. time t
Parameters used ka =1; ks =1

The scalar expansion is

The shear scalar is

Clearly

_ 3ky
A+q)(kat+ks)

2
2 _ 2 — =
g = 3(11 +n 1) ((2n+1)(1+q)(k4t+k5)) ’

Lima—z _ n%+n-1)
t—o0 02 3(2n+1)2

Hence, the model approaches anisotropy for large values of ¢

The mean anisotropic

By Solving Equation.

C1(1+q)

where C, = Fa(140-3)

parameter is
(1-4n)
@7 3(2n+1)2

(17) the zero-mass scalar field is

Y(t) = C3(kyt + ks)(i{T_‘zl) + C,

, Cyand C, are integration constants

By solving equation (20) with the help of Egs. (34) and (35), we have
The displacement vector B(t) is

— Cs
ﬁ(t)_ (3 )

(kat+ks)\ 14

Where C,is integration constant
Using Eqs. (34) and (35) in Eqs.(36)-(38) , we get
The density of the model is

=

-9(n?+2n) )( Ky )2+ L

2
Cs 1 C1

(2n+1)2(1+q)2) \kyt+ks e < (%)) 2( .

(kyt+kp)(1FO(En+D) (kyt+ks)\1+a (kit+k)1+a

aSlw
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Figure 2. Density Vs. time
Parametersusedn=2;q=Lki=l; k=1, ka=1;ks=1;C1=1;C4 =1
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The Adequate Pressure of the model is

2
— (9(n2+n+1)—3(2n+1)(1+q))( Ky )2 43 Cq 1 ¢ (49)
p= (2n+1)2(1+q)? kat+ks 4 (L) 2 EEN
(kat+ks)\1+a (kit+kz)1*d
— Line Graph of \bar{p} as a function of time
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Figure 3. Adequate Pressure Vs. time
Parametersusedn=2;q=Lki=l; ke=1;ka=1;ks=1;C1=1;C4 =1
The Pressure of the model is

2
—9(n?+2 ks )2 1 c 1 c
p=(y—1)[( e )( n ) + —a T ( 4(L)) _E<—1L)l (50)
(kqt+ky) 1+ D (n+1) (kgt+ks)\1+a (kqt+ky)1ta
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Figure 4. Pressure Vs. time
Parametersusedn=2;q=1;ki=L;ke=1;ka=1;ks=1;C1=1;C4=1,0<y < 2

The Coefficient of Bulk Viscosity of the model is

9(n2+n+1)-3(2n+1)(1+q)
—9(Y—1)(n2+2")_<( (2n+)1)2(1+q)2 ) ( kaq )2
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The Density parameter of the model is

2
_ 1 () (kat+ks)\? —9(n%+2n) ks \2 1 3 Cy 1 ¢
Q= 3 ( Ky ) ((2n+1)2(1+q)2) (k4t+k5) + " ( (Pf—q)> 2 < 2 )] (52)

61
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Figure 6. Density Parameter Vs. time t
Parametersusedn=2;q=Lki=; ke=1ki=1;ks=1;C1=1;C4 =1

From Egs. (40) to (52), we observed that at t=0, the spatial volume and zero mass scalar are zero, increasing with
cosmic time, showing the late-time accelerated expansion of the universe. Also, at t=0, the parameters H, 9, p,p,p,1, Q2
are diverse while they vanish for infinitely large values of t. The mean anisotropic parameter is uniform throughout the
whole evolution of the universe, which shows that the dynamics of the mean anisotropic parameter do not depend on

2
cosmic time t. Also, since [t.im Z_Z It is constant; the model does not approach isotropy through the whole evolution of the
—00

universe. It may also be observed that the model Eq. (39) has no initial singularity.

Discussions for Physical Properties of the Model

Here, we can discuss the three physical models based on the value of y = 0, 2, % respectively

False Vacuum model
When y = Oequals zero, the model embodies the false vacuum model with an Equation of State given by p = —p,
characterizing both the 'false vacuum' and 'degenerate vacuum.' The explicit form and physical properties of this model
are then delineated

2
-9(n?%+2n) ky \? 1 3 Cy 1 (o)
p=—p= | () () 2 (— ) () @
[(2"“) W2 Matrks) gy T D@D \(kyeakg) T30 2 \(yeaky) T
9(n?+n+1)-3(2n+1)(1+q) 2
p = QrOkatrks) ‘9(”2+2")‘(W) ( ks )2+ ! _3 Ca + G (54)
3k (2n+1)2(1+q)? kyt+ks (lekz)mqf(#ﬂ) 2 (k4t+k5)(1’3f_‘?) (k1t+kz)%
The Equation of State parameter is

w=%=—1 (55)

Zel'dovish fluid model (Stiff fluid model)
Aty = 2, p = p, representing a Zel'dovich fluid distribution. Then, the explicit form of the physical properties inherent
in this model is detailed.

2

-9(n?+2n) ke \? 1 Cq 1 o
p=p=|( () 4 — ) (e
@n+1)2(14+q)2) \kat+ks (ky £y TFDGAFD (k4t+k5)(1+q) 2 (eat+kp)TF

o2 _(9(n?+n+1)-3C2n+1)(1+9)
_ (1+q)(k4t+ks) 3(n*+2n) ( (2n+1)2(1+q)? ( Ky )2 i 1 (57)
- 3ky (2n+1)2(1+q)2 kat+ks

(56)

Bl w

6n
(k1t+k2)(1+q)(2"+1)

_p_
w=2=1 (58)
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Radiating model
When y = §= thenp = g. This representation corresponds to a matter distribution with disordered radiation,

signifying the universe where the predominant portion of energy density exists, like radiation. Consequently, the model
is termed a radiation-dominated universe or a radiating model. The explicit form of the physical properties inherent in
this model is then elaborated.

2
1 1|7 -9(n2+2n) ke \? 1 3 C4 1 o
p=-P=-( P 2)( ) + i T = T\ = 9
3 3 [ (2n+1)2(1+9)2) \kat+ks (ky 41y EFDEFD 4 (k4t+k5)(1+‘1) 2 (s t+ky)TF0
n2+n+1)-3(2n+1)(1+q) 2
_ (1+q)(kyt+ks) ‘3(n2+2n)_(9( tz:i)l_);(j+;—)12 Hq) ki \2 1 1 Cs 1 (o 60
= 3k (n+D?(1+q)? (k t+k ) + o 2 (=) t3 = | (60)
+ a 4ttt 3(ky t+k,)TFOEAFD) (at+ks)\ T (s t+k;)TH
P 1
w=>"=7 (61)

Our observations show that the model described by equation (39) exhibits no singularity, specifically at t=0. The
zero-mass scalar field displays divergence at t=0 but diminishes for larger t values. The spatial volume undergoes
expansion with increasing t, as indicated by the positivity of 1+q, portraying accelerated universe expansion. Additionally,
0, 02, and H tend towards infinity at t=0 and converge towards zero for larger t values. The constancy of the average

2
. . . . . . . . . (2 .
anisotropy parameter signifies its uniformity throughout the universe's evolution. However, since e—zRemams unalter,

indicating a sustained anisotropic nature. It is observed that for the closed universe, when wp It is a decreasing function
of time and an increasing function of time for open and flat universes. Universe is Closed, open, and flat universes are
varying in quintessence (wp > —0.5), phantom (—3 < wp < —1), and super phantom (wp < —0.3) regions,
respectively.

Scientific Comparison

Compared to the model proposed by B. Misra et al. (2015) [22], the current framework is more streamlined, with
time dependence primarily expressed through power-law terms. It adopts a more phenomenological perspective on
density evolution over time, featuring reduced complexity in its dependencies. This approach indicates an alternative or
simplified cosmological paradigm, offering a distinct interpretation of p that could imply processes such as dissipation,
decay, or energy loss. K.P. Singh et al. (2018) [23] explored cosmological models within the framework of Lyra's
geometry, utilizing the Bianchi type III metric, with particular emphasis on the interaction between the Van der Waals
fluid and Lyra's manifold, as well as its contribution to the generation of dark energy. In contrast, the current model
focuses on deriving solutions involving a zero-mass scalar field and a bulk viscous fluid characterized by a barotropic
equation of state. These two models adopt different approaches and interpretations, highlighting their distinct objectives
and methodologies.

CONCLUSIONS
In this investigation, we explored the characteristics of a Bianchi type-III cosmological model incorporating a zero-
mass scalar within Lyra's geometry, with the energy-momentum tensor sourced by bulk viscous fluid. We observed that
at t = 0, the spatial volume and zero mass scalar are zero, increasing with cosmic time, showing the late-time accelerated
expansion of the universe. Also, at t = 0, the parameters H, 8, p, p, p, 1, Q are diverse while they vanish for infinitely large
values of t. The mean anisotropic parameter is uniform throughout the whole evolution of the universe, which shows that

2
the dynamics of the mean anisotropic parameter do not depend on cosmic time t. Also, since Lt.im% It is constant; the
-0

model does not approach isotropy through the whole evolution of the universe. It may also be observed that the model
Eq. (39) has no initial singularity.

Notably, our findings reveal that the model is non-singular, exhibits shearing and non-rotating properties, and does
not tend towards isotropy for large values of cosmic time t. The spatial volume displays an increasing trend with time (as
1+q > 0), suggesting the possibility of cosmic re-collapse in the finite future. This dynamic evolution entails phases of
inflation, deceleration, and subsequent acceleration. Consequently, the model emerges as an accelerating cosmological
model featuring a zero-mass scalar under Lyra's geometry. We have discussed the physical models corresponding to the
False Vacuum, Stiff fluid, and radiating. These cosmological models are anisotropic and have no initial singularity.
Hence,zero-mass scalar field and bulk viscosity are expected to play an essential role in the universe's early evolution.
Therefore, the model presented here better understands the evaluation of the universe.
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MPUCKOPEHHSI KOCMOJIOTTYHOI MOJEJII 31 CKAJIIPHUM HMOJEM HYJIbOBOi MACH Y TEOMETPII JIIPA
M. Kpimmna?, K. Co6xan Bady®, P. Cantikymap®
“Iuorcenepnuii konedoc Pazy, Bicakxanamuam, wmam Anoxpa-Ilpadews, Inois
bYnieepcumemcoruii inoicenepnuii konedoe, Hapacapaonema, Anoxpa-Ilpadew, Inois
“Incmumym mexuonoeii ma menedscmenmy Aoimsa, Texxani, okpye Llpikaxynam. Anoxpa-Ilpadew-Indisn

Busuenns xocmonorigHoi mozaeni III tunmy B’sHKI mepenbayae BKIIOUEHHS CKaISAPHOTO TOJISL 3 HYJBOBOIO MacOK B KOHTEKCTI
reomerpii Jlipu. J[xepemom TeH30pa eHepril-iMITyJIbcy BBaXKaeTbCsl 00’€MHa B’s3ka piguHa. bapoTpomHe pIBHSHHS CTaHy
BHUKOPHUCTOBYETHCS U XapaKTEPUCTUKY THCKY Ta I'YCTHHH, ITyKAalOYH KOHKPETHUH PO3B 30K PiBHAHG 1o Lle pimeHHs oTpuMaHO
3 BUKOPUCTAHHAM IIPUHIMITY BiAMIHHOI Bapiawil [uis mapamerpa Xa60ima, 3anpornosHoBanoro [M.S. Berman, 11 Nuovo Cimento B, 74,
182 (1983)]. [TomanbIuuii aHai3 3arauOII0EThCs B Gi3MYHI BIACTHBOCTI, IPUTAMAHHI Iid MO,

KurouoBi cnoBa: npuckopenns,; kocmonoeisa; eeomempis Jlipu



