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Examining Bianchi's type-III cosmological model involves incorporating a zero-mass scalar field in the context of Lyra's geometry. The 
source of energy-momentum tensor is supposed to be a bulk viscous fluid. A barotropic equation of state is applied to characterize the 
Pressure and density, seeking a specific solution to the field equations. This solution is derived using the distinctive variation principle for 
Hubble's parameter proposed by [M.S. Berman, Il Nuovo Cimento B, 74, 182 (1983)]. The ensuing analysis delves into the physical 
properties inherent in this model. 
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INTRODUCTION 
The advancement of general relativity was profoundly influenced by the groundbreaking contributions of Einstein 

and Hilbert [2–4], leaving an indelible mark on cosmology, physics, and mathematics. The works of both Hilbert and 
Einstein extensively employed Riemannian geometry [5], a framework where space-time is equipped with a metric and 
an affine structure. These key components are delineated by gμν and a connection represented by Γఓఔఈ , respectively. 

The geometric and gravitational characteristics of space-time find expression in the curvature tensor Rμ
νσλ and its 

contraction, providing the foundation for the construction of the Einstein tensor. 
Several modifications to Riemannian geometry have been proposed to unify the universe's gravitation, the 

electromagnetic field, and other fundamental interactions. Weyl [6] made one such attempt by trying to unify gravitation 
and electromagnetism within a single space-time geometry. However, Weyl's theory faced criticism due to its reliance on 
the non-integrability of length transfer. Later, Lyra [7] introduced a further modification to Riemannian geometry by 
incorporating a gauge function into a less manifold structure, thereby eliminating the issue of non-integrability in length 
transfer. This modification naturally gave rise to a displacement vector. Building on Lyra's work, Sen [8] and Sen and 
Dunn [9] developed a new scalar-tensor theory of gravitation and formulated an analogy of the Einstein field equations 
based on Lyra's geometry. Halford [10] noted that the constant vector displacement field 𝜙௜ Lyra's geometry functions 
similarly to the cosmological constant Λin conventional general relativity. Furthermore, Halford [11] demonstrated that 
the scalar-tensor theory derived from Lyra's geometry yields predictions consistent with observational limits, matching 
the results of Einstein's theory. 

Cosmological models of Bianchi [12] exhibit both homogeneity and anisotropy, providing a framework for 
investigating the gradual isotropization of the universe over time. Additionally, from a mathematical and theoretical 
perspective, anisotropic universes offer greater generality than isotropic Friedmann-Robertson-Walker (FRW) models. 

Exploring interacting fields, particularly involving a zero-mass scalar field, is essential to address the unresolved 
challenge of unifying gravitational and quantum theories. This study delves into the intricate problem of reconciling these 
fundamental aspects of physics. 

Furthermore, examining viscous mechanisms in cosmology is pivotal in elucidating the high entropy observed at 
present. This investigation contributes valuable insights into understanding the thermodynamic properties and evolution 
of the cosmos. 

This paper is framed within the context of previous research studies. Reddy et al. [13-14] investigated Bianchi type-
III models incorporating bulk viscous coefficients. Katore et al. [15] explored solutions for zero-mass cosmological 
models with bulk viscous coefficients within the Lyra geometry. Halford [16] provided an overview of Lyra's geometry, 
and Singh [17] further delved into the same topic. Santhikumar [18] focused on accelerating cosmological models, while 
Santhikumaret al. [19] explored Lyra's geometry heat flow cosmological models. Krishna [20] also examined plane-
symmetric cosmological models within Lyra's geometry. Numerous authors have extended their research within Lyra's 
geometry, laying the foundation for future research. By Motivation from these studies, this paper presents a novel 
contribution: a Bianchi type-III cosmological model incorporating a zero-mass scalar field and perfect fluid and bulk 
viscous effects in Lyra's geometry. 
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The structure of this paper is organized as follows: Section 2 examines the metric and field equations within the 
Bianchi type-III cosmological model, incorporating a zero-mass scalar field in Lyra's Geometry. Section 3 is dedicated 
to deriving the solutions to the field equations. In Section 4, we focus on explaining the physical properties of the models. 
Section 5 provides a detailed discussion, and Section 6 concludes the paper. 

 
METRIC AND FIELD EQUATIONS 

The Bianchi type-III metric is  

 𝑑𝑠ଶ = 𝑑𝑡ଶ − 𝐴ଶሺ𝑡ሻ𝑑𝑥ଶ − 𝐵ଶሺ𝑡ሻ𝑒ିଶ௫𝑑𝑦ଶ − 𝐶ଶሺ𝑡ሻ𝑑𝑧ଶ, (1) 

where 𝐴,𝐵&𝐶 are cosmic scale factors. 
The field equations in standard gauge for Lyra's geometry, as obtained by Sen [8], are 

 ቀ𝑅௜௝ − ଵଶ 𝑔௜௝𝑅ቁ + ቀଷଶ𝜙௜𝜙௝ − ଷସ 𝑔௜௝𝜙௞𝜙௞ቁ = 𝜅𝑇௜௝ + ቀ𝜓;௜𝜓;௝ − ଵଶ 𝑔௜௝𝜓,௞𝜓,௞ቁ. (2) 

In the Einstein field equations, 𝜅(kappa) is a constant related to the gravitational constant 'G' and the speed of light 
'C' Specifically, 𝜅 = ଼గ௖ర 𝐺, in natural units, where c=1 𝜅 reduces to 8π, so 𝜅 = 8𝜋𝐺. It simplifies the Einstein field 
equations to avoid explicitly carrying around the constant, making focusing on the functional relationships between 
variables easier. We consider κ = 1, ( 𝑡ℎ𝑒 𝑛atural units 𝐺 = 1 , 8πG = 1 ) ). 
Here 𝜙௜ = (0,0,0,𝛽(𝑡)) is the displacement vector, 
Consider  

 𝑇ത௜௝ = ቀଷଶ𝜙௜𝜙௝ − ଷସ 𝑔௜௝𝜙௞𝜙௞ቁ = ൝ ଷସ 𝛽ଶ(𝑡), 𝑓𝑜𝑟 𝑖 = 𝑗 = 0 (𝑇𝑖𝑚𝑒 − 𝑡𝑖𝑚𝑒)−ଷସ𝑔௜௝𝑔଴଴𝛽ଶ(𝑡) ,𝑓𝑜𝑟 𝑖 = 𝑗 ≠ 0 (𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠𝑓𝑜𝑟 𝑖 = 𝑗 = 1,2,3), (3) 

so, we have 

 𝑇ത଴଴ = ଷସ 𝛽ଶ(𝑡),𝑇തଵଵ =,𝑇തଶଶ =  𝑇തଷଷ = −ଷସ𝛽ଶ(𝑡) (4) 

 Ψഥ௜௝ = ቀ𝜓;௜𝜓;௝ − ଵଶ 𝑔௜௝𝜓,௞𝜓,௞ቁ = ൝ ଵଶ𝜓ሶ ଶ ,𝑓𝑜𝑟 𝑖 = 𝑖 = 0 (𝑇𝑖𝑚𝑒 − 𝑡𝑖𝑚𝑒)−ଵଶ𝑔௜௝𝜓ሶ ଶ,𝑓𝑜𝑟 𝑖 = 𝑗 ≠ 0 (𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠𝑓𝑜𝑟 𝑖 = 𝑗 = 1,2,3), (5) 

so, we have 

 Ψഥ଴଴ =  ଵଶ𝜓ሶ ଶ ,Ψഥଵଵ = Ψഥଶଶ = Ψഥଷଷ = −ଵଶ𝜓ሶ ଶ (6) 𝑇௜௝ is the energy-momentum tensor for bulk viscous and zero-mass scalar fields as 

 𝑇௜௝ = (𝜌 + 𝑝)𝑢௜𝑢௝ − 𝑝𝑔௜௝ (7) 

Together with 

 𝑢௜𝑢௜ = 1,𝑝 = 𝑝 − 𝜂𝑢,௜௜ = 𝑝 − 3𝜂𝐻 (8) 

Where 𝑢௜ is the four-velocity vector of the distribution, 𝑝 is the Pressure,𝑝 is the adequate Pressure,  𝜂 is the bulk viscosity coefficient, and 𝜓 is the zero-mass scalar field. 
The non-vanishing energy-momentum tensor components are 
Here 

 𝑇଴଴ = 𝜌,𝑇ଵଵ = 𝑇ଶଶ = 𝑇ଷଷ = − 𝑝. (9) 

Introducing a barotropic equation of state into the discussion 

 𝑝 = (𝛾 − 1)𝜌, 0 ≤ 𝛾 ≤ 2 (10) 

Employing co-moving coordinates, the field equations (1) – (8) 

 −஺ሶ஼ሶ஺஼ − ஻ሶ ஼ሶ஻஼ − ஺ሶ஻ሶ஺஻ + ଵ஺మ + ଷସ 𝛽ଶ = ቀ𝜌 + ଵଶ 𝜓ሶ ଶቁ, (11) 
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 ஻ሷ஻ + ஼ሷ஼ + ஻ሶ ஼ሶ஻஼ + ଷସ 𝛽ଶ = ቀ𝑝 + ଵଶ𝜓ሶ ଶቁ (12) 

 ஺ሷ஺ + ஼ሷ஼ + ஺ሶ஼ሶ஺஼ + ଷସ 𝛽ଶ = ቀ𝑝 + ଵଶ 𝜓ሶ ଶቁ (13) 

 ஺ሷ஺ + ஻ሷ஻ + ஺ሶ஻ሶ஺஻ − ଵ஺మ + ଷସ 𝛽ଶ = ቀ𝑝 + ଵଶ𝜓ሶ ଶቁ (14) 

 ஺ሶ஺ − ஻ሶ஻ = 0 (15) 

The scalar field ψ complies with the following equation. 

 𝜓;௜௜ = 0  (16) 

Hence, the semi-colon ( );  indicates covariant differentiability 
By using the equations(14), which yields that 

 𝜓ሷ + 𝜓ሶ ቂ஺ሶ஺ + ஻ሶ஻ + ஼ሶ஼ቃ = 0  (17) 

And conservation of L.H.S of Eq.(2) leads that  

 ቀ𝑅௜௝ − ଵଶ 𝑔௜௝𝑅ቁ;௝ + ቂଷଶ (𝜙௜𝜙௝);௝ − ଷସ ൫𝜙௞𝜙௞𝑔௜௝൯;௝ቃ = 0 (18) 

 ଷଶ𝜙௜ ቂడథೕడ௫ೕ + 𝜙௟Γ୪୨୨ ቃ + ଷଶ 𝜙௝ ቂడథ೔డ௫ೕ − 𝜙௟Γ୧୨୪ ቃ − ଷସ 𝑔௜௝𝜙௞ ቂడథೖడ௫ೕ + 𝜙௟Γ୪୨୩ቃ − ଷସ 𝑔௜௝𝜙௞ ቂడథೖడ௫ೕ − 𝜙௟Γ୩୨୪ ቃ = 0. (19) 

Eq. (19) leads that  

 ଷଶ 𝛽𝛽ሶ + ଷଶ 𝛽ଶ ቀ஺ሶ஺ + ஻ሶ஻ + ஼ሶ஼ቁ = 0 (20) 

 
The Solution to The Field Equations 

Integrating eq. (13), we get  

 𝐵 = 𝑘𝐴 (21) 

Take 𝑘 = 1, without loss of generality, So we have 

 𝐵 = 𝐴  (22) 

By using Equation (16) in Equations (9)-(12) reduced to 

 −2 ஺ሶ஼ሶ஺஼ − ቀ஺ሶ஺ቁଶ + ଵ஺మ + ଷସ 𝛽ଶ = ቀ𝜌 + ଵଶ 𝜓ሶ ଶቁ, (23) 

 ஺ሷ஺ + ஼ሷ஼ + ஺ሶ஼ሶ஺஼ + ଷସ 𝛽ଶ = ቀ𝑝 + ଵଶ 𝜓ሶ ଶቁ, (24) 

 2 ஺ሷ஺ + ቀ஺ሶ஺ቁଶ − ଵ஺మ + ଷସ 𝛽ଶ = ቀ𝑝 + ଵଶ𝜓ሶ ଶቁ. (25) 

The relation between average scale factor 'a' and Volume 'V' are  

 𝑉 = ඥ−𝑔 = 𝐴(𝑡)𝐵(𝑡)𝐶(𝑡)𝑒ି௫𝑎𝑛𝑑 𝑎(𝑡) = (𝑉)ଵ ଷൗ = (𝐴(𝑡)𝐵(𝑡)𝐶(𝑡)𝑒ି௫)ଵ ଷൗ . (26) 

The average Hubble parameter is 

 𝐻 = ଵଷ ൫𝐻௫ + 𝐻௬ + 𝐻௭൯ = ௔ሶ௔ (27) 

where 𝐻௫ = ஺ሶ஺ ,𝐻௬ = ஻ሶ஻ ,𝐻௭ = ஼ሶ஼. 
The scalar expansion is 
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 𝜃 = 𝑢;௜௜ = 2 ஺ሶ஺ + ஼ሶ஼ (28) 

The shear scalar is 

 𝜎ଶ =  ଵଶ 𝜎௜௞𝜎௜௞ = ଵଶ ൤2 ቀ஺ሶ஺ቁଶ + ቀ஼ሶ஼ቁଶ − ଵଷ ቀ2 ஺ሶ஺ + ஼ሶ஼ቁଶ൨ (29) 

The mean anisotropic parameter is 

 𝐴ఈ = ଵଷ∑ ቀ௱ு೔ு ቁଶଷ௜ୀଵ = ଵଷுమ ቂ𝐻௫ଶ + 𝐻௬ଶ + 𝐻௭ଶ − ଵଽ ൫𝐻௫ + 𝐻௬ + 𝐻௭൯ଶቃ (30) 

where 𝛥𝐻௜ = 𝐻௜ − 𝐻, for 𝑖 = 1,2,3 
Since Eqs.(23) − (25)equations are highly non-linear equations. Hence, to derive a definitive solution, it is 

imperative to consider the following requisite conditions. 
(i) Utilizing the variation of Hubble's parameter proposed by Berman [1], we obtain models of the universe 

characterized by the constant decelerating parameter 

 𝑞 = ି௔௔ሷ௔ሶ మ = constant. (31) 

The solutions of Eq. (31) yields that 

 𝑎 = ሾ𝑘ଵ𝑡 + 𝑘ଶሿ భ(೜శభ) (32) 

This equation indicates that the criterion for accelerated expansion is(1 + 𝑞) > 0. 
(ii) Since, 𝜃ଶ ∞ 𝜎ଶCollin et al. [21]  

which gives us 

 𝐴 = 𝐶௡, for 𝑛 ≠ 1 (33) 

By Equations (22), (31), (32) and (33) 
We obtain metric coefficients, which are 

 𝐴 = 𝐵 = ሾ𝑘ସ𝑡 + 𝑘ହሿ య೙(భశ೜)(మ೙శభ) (34) 

 𝐶 = ሾ𝑘ସ𝑡 + 𝑘ହሿ య(భశ೜)(మ೙శభ). (35) 

Using Eq. (22) and (33), the Eqs. (23)-(25) reduces to  

 −(2𝑛 + 𝑛ଶ) ቀ஼ሶ஼ቁଶ + 𝐶ିଶ௡ + ଷସ 𝛽ଶ(𝑡) = 𝜌 + ଵଶ𝜓ሶ ଶ, (36) 

 (𝑛 + 1) ஼ሷ஼ + 𝑛ଶ ቀ஼ሶ஼ቁଶ + ଷସ 𝛽ଶ(𝑡) = 𝑝̅ + ଵଶ 𝜓ሶ ଶ (37) 

 2𝑛 ஼ሷ஼ + 𝑛(2𝑛 − 1) ቀ஼ሶ஼ቁଶ − 𝐶ିଶ௡ + ଷସ 𝛽ଶ(𝑡) = 𝑝̅ + ଵଶ𝜓ሶ ଶ. (38) 

By substituting the values 𝐴,𝐵 and C  in (2), we get 

 𝑑𝑠ଶ = 𝑑𝑡ଶ − ሾ𝑘ସ𝑡 + 𝑘ହሿ ల೙(భశ೜)(మ೙శభ)ሾ𝑑𝑥ଶ + 𝑒ିଶ௫𝑑𝑦ଶሿ − ሾ𝑘ସ𝑡 + 𝑘ହሿ ల(భశ೜)(మ೙శభ)𝑑𝑧ଶ. (39) 

 
Some Physical Properties of the Model 

Eq. (39) describes the Bianchi type-III cosmological model featuring bulk viscous effects and a zero-mass scalar 
field under Lyra's geometry. 
The Spatial volume is 

 𝑉 = (𝑘ସ𝑡 + 𝑘ହ)య(೙శభ)భశ೜ 𝑒ି௫ (40) 

The Hubble's parameter is 

 𝐻 = ௞ర(ଵା௤)(௞ర௧ା௞ఱ) (41) 
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Figure 1. Hubble's Parameter H Vs. time t 

Parameters used k4 = 1; k5 = 1 

The scalar expansion is 

 𝜃 = ଷ௞ర(ଵା௤)(௞ర௧ା௞ఱ). (42) 

The shear scalar is 

 𝜎ଶ = 3(𝑛ଶ + 𝑛 − 1) ቀ ௞ర(ଶ௡ାଵ)(ଵା௤)(௞ర௧ା௞ఱ)ቁଶ. (43) 
Clearly 

 Lim௧→∞ ఙమఏమ = (௡మା௡ିଵ)ଷ(ଶ௡ାଵ)మ ≠ 0. (44) 

Hence, the model approaches anisotropy for large values of 𝑡 
The mean anisotropic parameter is 
 𝐴ఈ = (ଵିସ௡)ଷ(ଶ௡ାଵ)మ. (45) 

By Solving Equation. (17) the zero-mass scalar field is 

 𝜓(𝑡) = 𝐶ଷ(𝑘ସ𝑡 + 𝑘ହ)ቀ೜షమభశ೜ቁ + 𝐶ଶ, (46) 

where 𝐶ଶ = ஼భ(ଵା௤)௞ర(ଵା௤ିଷ)  ,𝐶ଵ𝑎𝑛𝑑 𝐶ଶ are integration constants  
By solving equation (20) with the help of Eqs. (34) and (35), we have  

The displacement vector 𝛽(𝑡) is  

 𝛽(𝑡) = ஼ర(௞ర௧ା௞ఱ)ቀ యభశ೜ቁ. (47) 

Where 𝐶ସis integration constant 
Using Eqs. (34) and (35) in Eqs.(36)-(38) , we get  
The density of the model is 

 𝜌 = ቀ ିଽ൫௡మାଶ௡൯(ଶ௡ାଵ)మ(ଵା௤)మቁ ቀ ௞ర௞ర௧ା௞ఱቁଶ + ଵ(௞భ௧ା௞మ) ల೙(భశ೜)(మ೙శభ) + ଷସ ቆ ஼ర(௞ర௧ା௞ఱ)ቀ యభశ೜ቁቇଶ − ଵଶ ቆ ஼భ(௞భ௧ା௞మ) యభశ೜ቇ (48) 

 
Figure 2. Density Vs. time 

Parameters used n = 2; q = 1; k1 = 1; k2 = 1; k4 = 1; k5 = 1; C1 = 1; C4 = 1 
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The Adequate Pressure of the model is  

 𝑝 = ቀଽ൫௡మା௡ାଵ൯ିଷ(ଶ௡ାଵ)(ଵା௤)(ଶ௡ାଵ)మ(ଵା௤)మ ቁ ቀ ௞ర௞ర௧ା௞ఱቁଶ + ଷସ ቆ ஼ర(௞ర௧ା௞ఱ)ቀ యభశ೜ቁቇଶ − ଵଶ ቆ ஼భ(௞భ௧ା௞మ) యభశ೜ቇ. (49) 

 
Figure 3. Adequate Pressure Vs. time 

Parameters used n = 2; q = 1; k1 = 1; k2 = 1; k4 = 1; k5 = 1; C1 = 1; C4 = 1 
The Pressure of the model is 

 𝑝 = (𝛾 − 1) ൥ቀ ିଽ൫௡మାଶ௡൯(ଶ௡ାଵ)మ(ଵା௤)మቁ ቀ ௞ర௞ర௧ା௞ఱቁଶ + ଵ(௞భ௧ା௞మ) ల೙(భశ೜)(మ೙శభ) + ଷସ ቆ ஼ర(௞ర௧ା௞ఱ)ቀ యభశ೜ቁቇଶ − ଵଶ ቆ ஼భ(௞భ௧ା௞మ) యభశ೜ቇ൩. (50) 

 
Figure 4. Pressure Vs. time 

Parameters used n = 2; q = 1; k1 = 1; k2 = 1; k4 = 1; k5 = 1; C1 = 1; C4 = 1, 0 ≤ 𝛾 ≤ 2 
 
The Coefficient of Bulk Viscosity of the model is  

 𝜂 = (ଵା௤)(௞ర௧ା௞ఱ)ଷ௞ర ⎣⎢⎢
⎢⎢⎡ ቌିଽ(ఊିଵ)൫௡మାଶ௡൯ିቆవ൫೙మశ೙శభ൯షయ(మ೙శభ)(భశ೜)(మ೙శభ)మ(భశ೜)మ ቇ(ଶ௡ାଵ)మ(ଵା௤)మ ቍ ቀ ௞ర௞ర௧ା௞ఱቁଶ
+ (ఊିଵ)(௞భ௧ା௞మ) ల೙(భశ೜)(మ೙శభ) +  ଷ(ఊିଶ)ସ ቆ ஼ర(௞ర௧ା௞ఱ)ቀ యభశ೜ቁቇଶ − ଵଶ ቆ (ఊିଶ)஼భ(௞భ௧ା௞మ) యభశ೜ቇ⎦⎥⎥

⎥⎥⎤. (51) 

 
Figure 5. Bulk viscous Coefficient Vs. time t Parameters used n = 2; q = 1; k1 = 1; k2 = 1; k4 = 1; k5 = 1; C1 = 1; C4 = 1, 0 ≤ 𝛾 ≤ 2 
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The Density parameter of the model is 

 Ω = ଵଷ ቀ(ଵା௤)(௞ర௧ା௞ఱ)௞ర ቁଶ ൥ቀ ିଽ(௡మାଶ௡)(ଶ௡ାଵ)మ(ଵା௤)మቁ ቀ ௞ర௞ర௧ା௞ఱቁଶ + ଵ(௞భ௧ା௞మ) ల೙(భశ೜)(మ೙శభ) + ଷସ ቆ ஼ర(௞ర௧ା௞ఱ)ቀ యభశ೜ቁቇଶ − ଵଶ ቆ ஼భ(௞భ௧ା௞మ) యభశ೜ቇ൩. (52) 

 
Figure 6. Density Parameter Vs. time t 

Parameters used n = 2; q = 1; k1 = 1; k2 = 1; k4 = 1; k5 = 1; C1 = 1; C4 = 1 

From Eqs. (40) to (52), we observed that at t=0, the spatial volume and zero mass scalar are zero, increasing with 
cosmic time, showing the late-time accelerated expansion of the universe. Also, at t=0, the parameters 𝐻,𝜃,𝜌,𝑝, 𝑝̅, 𝜂,Ω 
are diverse while they vanish for infinitely large values of t. The mean anisotropic parameter is uniform throughout the 
whole evolution of the universe, which shows that the dynamics of the mean anisotropic parameter do not depend on 
cosmic time t. Also, since Lim௧→∞ ఙమఏమ It is constant; the model does not approach isotropy through the whole evolution of the 
universe. It may also be observed that the model Eq. (39) has no initial singularity. 

 
Discussions for Physical Properties of the Model 

Here, we can discuss the three physical models based on the value of 𝛾 = 0, 2, ସଷ respectively  
 

False Vacuum model 
When 𝛾 = 0equals zero, the model embodies the false vacuum model with an Equation of State given by 𝑝 = −𝜌, 

characterizing both the 'false vacuum' and 'degenerate vacuum.' The explicit form and physical properties of this model 
are then delineated 

 𝑝 = −𝜌 = −൥ቀ ିଽ൫௡మାଶ௡൯(ଶ௡ାଵ)మ(ଵା௤)మቁ ቀ ௞ర௞ర௧ା௞ఱቁଶ + ଵ(௞భ௧ା௞మ) ల೙(భశ೜)(మ೙శభ) + ଷସ ቆ ஼ర(௞ర௧ା௞ఱ)ቀ యభశ೜ቁቇଶ − ଵଶ ቆ ஼భ(௞భ௧ା௞మ) యభశ೜ቇ൩. (53) 

 𝜂 = (ଵା௤)(௞ర௧ା௞ఱ)ଷ௞ర ൥൭ିଽ(௡మାଶ௡)ି൬వ൫೙మశ೙శభ൯షయ(మ೙శభ)(భశ೜)(మ೙శభ)మ(భశ೜)మ ൰(ଶ௡ାଵ)మ(ଵା௤)మ ൱ ቀ ௞ర௞ర௧ା௞ఱቁଶ + ଵ(௞భ௧ା௞మ) ల೙(భశ೜)(మ೙శభ) − ଷଶ ቆ ஼ర(௞ర௧ା௞ఱ)ቀ యభశ೜ቁቇଶ + ቆ ஼భ(௞భ௧ା௞మ) యభశ೜ቇ൩ (54) 

The Equation of State parameter is 

 𝜔 = ௣ఘ = −1  (55) 

 
Zel'dovish fluid model (Stiff fluid model) 

At 𝛾 = 2, 𝑝 = 𝜌, representing a Zel'dovich fluid distribution. Then, the explicit form of the physical properties inherent 
in this model is detailed. 

 𝑝 = 𝜌 = ൥ቀ ିଽ൫௡మାଶ௡൯(ଶ௡ାଵ)మ(ଵା௤)మቁ ቀ ௞ర௞ర௧ା௞ఱቁଶ + ଵ(௞భ௧ା௞మ) ల೙(భశ೜)(మ೙శభ) + ଷସ ቆ ஼ర(௞ర௧ା௞ఱ)ቀ యభశ೜ቁቇଶ − ଵଶ ቆ ஼భ(௞భ௧ା௞మ) యభశ೜ቇ൩ (56) 

 𝜂 = (ଵା௤)(௞ర௧ା௞ఱ)ଷ௞ర ቎ቌିଽ൫௡మାଶ௡൯ିቆవ൫೙మశ೙శభ൯షయ(మ೙శభ)(భశ೜)(మ೙శభ)మ(భశ೜)మ ቇ(ଶ௡ାଵ)మ(ଵା௤)మ ቍ ቀ ௞ర௞ర௧ା௞ఱቁଶ + ଵ(௞భ௧ା௞మ) ల೙(భశ೜)(మ೙శభ)቏ (57) 

 𝜔 = ௣ఘ = 1 (58) 
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Radiating model 
When 𝛾 = ସଷ, then𝑝 = ఘଷ. This representation corresponds to a matter distribution with disordered radiation, 

signifying the universe where the predominant portion of energy density exists, like radiation. Consequently, the model 
is termed a radiation-dominated universe or a radiating model. The explicit form of the physical properties inherent in 
this model is then elaborated. 

 𝑝 = ଵଷ 𝜌 = ଵଷ ൥ቀ ିଽ൫௡మାଶ௡൯(ଶ௡ାଵ)మ(ଵା௤)మቁ ቀ ௞ర௞ర௧ା௞ఱቁଶ + ଵ(௞భ௧ା௞మ) ల೙(భశ೜)(మ೙శభ) + ଷସ ቆ ஼ర(௞ర௧ା௞ఱ)ቀ యభశ೜ቁቇଶ − ଵଶ ቆ ஼భ(௞భ௧ା௞మ) యభశ೜ቇ൩ (59) 

 𝜂 = (ଵା௤)(௞ర௧ା௞ఱ)ଷ௞ర ൥൭ିଷ(௡మାଶ௡)ି൬వ൫೙మశ೙శభ൯షయ(మ೙శభ)(భశ೜)(మ೙శభ)మ(భశ೜)మ ൰(ଶ௡ାଵ)మ(ଵା௤)మ ൱ ቀ ௞ర௞ర௧ା௞ఱቁଶ + ଵଷ(௞భ௧ା௞మ) ల೙(భశ೜)(మ೙శభ) − ଵଶ ቆ ஼ర(௞ర௧ା௞ఱ)ቀ యభశ೜ቁቇଶ + ଵଷ ቆ ஼భ(௞భ௧ା௞మ) యభశ೜ቇ൩ (60) 

 𝜔 = ௣ఘ = ଵଷ (61) 

Our observations show that the model described by equation (39) exhibits no singularity, specifically at t=0. The 
zero-mass scalar field displays divergence at t=0 but diminishes for larger t values. The spatial volume undergoes 
expansion with increasing t, as indicated by the positivity of 1+q, portraying accelerated universe expansion. Additionally, 
θ, 𝜎ଶ, and H tend towards infinity at t=0 and converge towards zero for larger t values. The constancy of the average 
anisotropy parameter signifies its uniformity throughout the universe's evolution. However, since ఙమఏమRemains unalter, 
indicating a sustained anisotropic nature. It is observed that for the closed universe, when 𝜔஽ It is a decreasing function 
of time and an increasing function of time for open and flat universes. Universe is Closed, open, and flat universes are 
varying in quintessence (𝜔஽ > −0.5), phantom (−3 < 𝜔஽ < −1), and super phantom (𝜔஽ < −0.3) regions, 
respectively. 

 
Scientific Comparison 

Compared to the model proposed by B. Misra et al. (2015) [22], the current framework is more streamlined, with 
time dependence primarily expressed through power-law terms. It adopts a more phenomenological perspective on 
density evolution over time, featuring reduced complexity in its dependencies. This approach indicates an alternative or 
simplified cosmological paradigm, offering a distinct interpretation of ρ that could imply processes such as dissipation, 
decay, or energy loss. K.P. Singh et al. (2018) [23] explored cosmological models within the framework of Lyra's 
geometry, utilizing the Bianchi type III metric, with particular emphasis on the interaction between the Van der Waals 
fluid and Lyra's manifold, as well as its contribution to the generation of dark energy. In contrast, the current model 
focuses on deriving solutions involving a zero-mass scalar field and a bulk viscous fluid characterized by a barotropic 
equation of state. These two models adopt different approaches and interpretations, highlighting their distinct objectives 
and methodologies. 
 

CONCLUSIONS 
In this investigation, we explored the characteristics of a Bianchi type-III cosmological model incorporating a zero-

mass scalar within Lyra's geometry, with the energy-momentum tensor sourced by bulk viscous fluid. We observed that 
at t = 0, the spatial volume and zero mass scalar are zero, increasing with cosmic time, showing the late-time accelerated 
expansion of the universe. Also, at t = 0, the parameters 𝐻,𝜃,𝜌,𝑝, 𝑝̅, 𝜂,Ω are diverse while they vanish for infinitely large 
values of t. The mean anisotropic parameter is uniform throughout the whole evolution of the universe, which shows that 
the dynamics of the mean anisotropic parameter do not depend on cosmic time t. Also, since Lim௧→∞ ఙమఏమ It is constant; the 
model does not approach isotropy through the whole evolution of the universe. It may also be observed that the model 
Eq. (39) has no initial singularity. 

Notably, our findings reveal that the model is non-singular, exhibits shearing and non-rotating properties, and does 
not tend towards isotropy for large values of cosmic time t. The spatial volume displays an increasing trend with time (as 
1+q > 0), suggesting the possibility of cosmic re-collapse in the finite future. This dynamic evolution entails phases of 
inflation, deceleration, and subsequent acceleration. Consequently, the model emerges as an accelerating cosmological 
model featuring a zero-mass scalar under Lyra's geometry. We have discussed the physical models corresponding to the 
False Vacuum, Stiff fluid, and radiating. These cosmological models are anisotropic and have no initial singularity. 
Hence,zero-mass scalar field and bulk viscosity are expected to play an essential role in the universe's early evolution. 
Therefore, the model presented here better understands the evaluation of the universe. 
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ПРИСКОРЕННЯ КОСМОЛОГІЧНОЇ МОДЕЛІ ЗІ СКАЛЯРНИМ ПОЛЕМ НУЛЬОВОЇ МАСИ У ГЕОМЕТРІЇ ЛІРИ 
М. Крішнаa, К. Собхан Бабуb, Р. Сантікумарc 

aІнженерний коледж Рагу, Вісакхапатнам, штат Андхра-Прадеш, Індія 
bУніверситетський інженерний коледж, Нарасараопета, Андхра-Прадеш, Індія 

cІнститут технології та менеджменту Адітя, Теккалі, округ Шрікакулам. Андхра-Прадеш-Індія 
Вивчення космологічної моделі III типу Б’янкі передбачає включення скалярного поля з нульовою масою в контексті 
геометрії Ліри. Джерелом тензора енергії-імпульсу вважається об’ємна в’язка рідина. Баротропне рівняння стану 
використовується для характеристики тиску та густини, шукаючи конкретний розв’язок рівнянь поля. Це рішення отримано 
з використанням принципу відмінної варіації для параметра Хаббла, запропонованого [M.S. Berman, Il Nuovo Cimento B, 74, 
182 (1983)]. Подальший аналіз заглиблюється в фізичні властивості, притаманні цій моделі. 
Ключові слова: прискорення; космологія; геометрія Ліри 


