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In this paper, the Friedmann-Lemaitre-Robertson-Walker cosmological models with a perfect fluid in the f(R,T) theory of gravity are
re-discussed. There are several ways to generate solutions. One way is to assume a barotropic equation of state. The other is to use a
deceleration parameter that varies linearly with time. An existing solution in the literature is reviewed, where solutions are obtained by
assuming, in addition to a barotropic equation of state, a linear varying deceleration parameter. It is pointed out such an assumption
leads to an over-determination of the solution. Hence, the feasibility of the solutions is a necessary condition to be satisfied. Only one
of the assumptions of an equation of state or of a linearly varying deceleration parameter is sufficient to generate solutions. The proper
solutions are given and discussed.
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1. INTRODUCTION
Recent observations from the anisotropy of the Cosmic Microwave Background (CMB) [1], supernova type Ia

(SNeIa) [2], large scale structure [3], baryon acoustic oscillations [4] and weak lensing [5] indicate the phenomenon of the
accelerated expansion of the universe at late times. At early times the universe was decelerating, and there was a transition
from deceleration to acceleration. There are bacsically two ways to try to explain this. One is that, in general relativity, the
matter of the universe contains an exotic component dubbed dark energy which causes a gravitationally repulsive force.
Several candidates have been proposed in this direction [6]-[10]. The other way is a modification of general relativity
resulting in modified gravity theories which change the Einstein-Hilbert Lagrangian, such as 𝑓 (𝑅) gravity [11].

Recently, Harko et al. [12] generalized 𝑓 (𝑅) gravity by introducing an arbitrary function of the Ricci scalar 𝑅 and
the trace 𝑇 of the energy-momentum tensor. The dependence upon 𝑇 (in addition to 𝑅 in the Lagrangian) may be due to
quantum effects (conformal anomaly) or to an exotic imperfect fluid. As a result of coupling between matter and geometry,
the motion of test particles is non-geodetic, and an extra acceleration is always present. In 𝑓 (𝑅,𝑇) gravity, where 𝑓 (𝑅,𝑇)
is an arbitrary function of 𝑅 and 𝑇 , cosmic acceleration may result not only from the geometrical contribution to the total
cosmic energy density, but from the matter content. This theory can be applied to explore several issues of current interest
and may lead to some major differences. Houndjo [13] developed the cosmological reconstruction of 𝑓 (𝑅,𝑇) gravity for
𝑓 (𝑅,𝑇) = 𝑓1 (𝑅) + 𝑓2 (𝑇) and discussed the transition of the deceleration matter dominated era to the acceleration one.

Various aspects of the theory have been explored by literally hundreds of authors since Harko et al [12] introduced
that theory. We cite a few of the key articles and also recent papers that have a relation to the work that we do in this
article. All these articles contain additional references. Akarsu and Dereli [14] studied accelerating universes with a
linearly varying deceleration parameter (LVDP). An LVDP in higher dimensions with strange quark matter and domain
walls was investigated by Caglar [15]. Bishi et al [16] have applied a quadratic deceleration parameter to 𝑓 (𝑅,𝑇) gravity,
finding bouncing cosmologies. Sofuoglu et al [17] have applied a cubic deceleration parameter to f(R,T) gravity, finding
a big-bang singularity at the beginning, and a big rip one in the future.

The LVDP, as well as other variations of it have attracted a lot of interest. Alkaound et al [18] have studied an LVDP
in Lyra’s geometry, focussing on observational constraints, and future singularities, such as the big rip. Perturbation theory
has been used [19] to study the big rip singularity with a LVDP. Ramesh and Umadevi [20] have studied Friedmann-
Lemaitre-Robertson Walker (FLRW) solutions in f(R,T) gravity, in which they obtained solutions by assuming, in addition
to a barotropic equation of state, a LVDP. In this study, we review this solution, and point out that, firstly, both those
assumptions lead to an over-determination of the solution. Only one of them is sufficient to generate a solution. Secondly,
each of the assumptions leads to a different solution. The assumption of an equation of state leads to the equivalent
solutions in general relativity. Only the second assumption of a linearly varying deceleration parameter alone leads to a
solution that exhibits a transition from deceleration to acceleration. Thirdly, there appear to be several errors in the paper,
which we correct here.

This paper is organised as follows. In section 2, we give a brief introduction to f(R,T) gravity. Section 3 provides
details of the solution by Ramesh and Umadevi [20]. In section 4, we provide the updated solution and in section 5 we
give the conclusion.
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2. REVIEW OF F(R,T) GRAVITY
The action for 𝑓 (𝑅,𝑇) gravity is:

𝑆 =
1

16𝜋

∫
𝑓 (𝑅,𝑇) √−𝑔 𝑑4𝑥 +

∫
𝐿m

√−𝑔 𝑑4𝑥 , (1)

where 𝑓 (𝑅,𝑇) is an arbitrary function of the Ricci scalar 𝑅, and of the trace 𝑇 of the energy-momentum tensor of the
matter, 𝑇𝑎𝑏. 𝐿𝑚 is the matter Lagrangian density, and the energy-momentum tensor of matter is defined as:

𝑇𝑎𝑏 = − 2
√−𝑔

𝛿
(√−𝑔𝐿𝑚

)
𝛿𝑔𝑎𝑏

, (2)

and the trace of 𝑇𝑎𝑏 by 𝑇 = 𝑔𝑎𝑏𝑇𝑎𝑏. By assuming that the Lagrangian density 𝐿m of matter depends only on the metric
tensor components 𝑔𝑎𝑏, and not on its derivatives, we obtain:

𝑇𝑎𝑏 = 𝑔𝑎𝑏𝐿𝑚 − 2
𝜕𝐿𝑚

𝜕𝑔𝑎𝑏
. (3)

By varying the action 𝑆 of the gravitational field with respect to the metric tensor components 𝑔𝑎𝑏 we get:

𝛿𝑆 =
1

16𝜋

∫ [
𝑓𝑅 (𝑅,𝑇) 𝛿𝑅 + 𝑓𝑇 (𝑅,𝑇) 𝛿𝑇

𝛿𝑔𝑎𝑏
𝛿𝑔𝑎𝑏 − 1

2
𝑔𝑎𝑏 𝑓 (𝑅,𝑇) 𝛿𝑔𝑎𝑏 + 16𝜋

1
√−𝑔

𝛿
(√−𝑔𝐿m

)
𝛿𝑔𝑎𝑏

]
√−𝑔𝑑4𝑥 , (4)

where we have denoted 𝜕 𝑓 (𝑅,𝑇) /𝜕𝑅 by 𝑓𝑅 (𝑅,𝑇) and 𝜕 𝑓 (𝑅,𝑇) /𝜕𝑇 by 𝑓𝑇 (𝑅,𝑇). For the variation of the Ricci scalar,
we obtain

𝛿𝑅 = 𝛿

(
𝑔𝑎𝑏𝑅𝑎𝑏

)
= 𝑅𝑎𝑏𝛿𝑔

𝑎𝑏 + 𝑔𝑎𝑏
(
∇𝑑𝛿Γ

𝑑
𝑎𝑏 − ∇𝑏𝛿Γ

𝑑
𝑎𝑑

)
, (5)

where ∇𝑑 is the covariant derivative with respect to the symmetric connection Γ associated with the metric 𝑔. The variation
of the Christoffel symbols yields

𝛿Γ𝑑
𝑎𝑏 =

1
2
𝑔𝑑𝑒 (∇𝑎𝛿𝑔𝑏𝑒 + ∇𝑏𝛿𝑔𝑒𝑎 − ∇𝑒𝛿𝑔𝑎𝑏) , (6)

and the variation of the Ricci scalar provides the expression

𝛿𝑅 = 𝑅𝑎𝑏𝛿𝑔
𝑎𝑏 + 𝑔𝑎𝑏□𝛿𝑔𝑎𝑏 − ∇𝑎∇𝑏𝛿𝑔

𝑎𝑏 . (7)

Therefore, for the variation of the action of the gravitational field we obtain

𝛿𝑆 =
1

16𝜋

∫ [
𝑓𝑅 (𝑅,𝑇) 𝑅𝑎𝑏𝛿𝑔

𝑎𝑏 + 𝑓𝑅 (𝑅,𝑇) 𝑔𝑎𝑏□𝛿𝑔𝑎𝑏 − 𝑓𝑅 (𝑅,𝑇) ∇𝑎∇𝑏𝛿𝑔
𝑎𝑏

+ 𝑓𝑇 (𝑅,𝑇)
𝛿
(
𝑔𝑑𝑒𝑇𝑑𝑒

)
𝛿𝑔𝑎𝑏

𝛿𝑔𝑎𝑏 − 1
2
𝑔𝑎𝑏 𝑓 (𝑅,𝑇) 𝛿𝑔𝑎𝑏 + 16𝜋

1
√−𝑔

𝛿
(√−𝑔𝐿𝑚

)
𝛿𝑔𝑎𝑏

]
√−𝑔𝑑4𝑥 . (8)

where □ = ∇𝑑∇𝑑 . We define the variation of 𝑇 with respect to the metric tensor as

𝛿
(
𝑔𝑒 𝑓𝑇𝑒 𝑓

)
𝛿𝑔𝑎𝑏

= 𝑇𝑎𝑏 + Θ𝑎𝑏 , (9)

where
Θ𝑎𝑏 ≡ 𝑔𝑑𝑒

𝛿𝑇𝑑𝑒

𝛿𝑔𝑎𝑏
. (10)

After partially integrating the second and third terms in Eq. (8), we obtain the field equations of the 𝑓 (𝑅,𝑇) gravity model
as

𝑓𝑅 (𝑅,𝑇) 𝑅𝑎𝑏 −
1
2
𝑓 (𝑅,𝑇) 𝑔𝑎𝑏 + (𝑔𝑎𝑏□ − ∇𝑎∇𝑏) 𝑓𝑅 (𝑅,𝑇) = 8𝜋𝑇𝑎𝑏 − 𝑓𝑇 (𝑅,𝑇) 𝑇𝑎𝑏 − 𝑓𝑇 (𝑅,𝑇) Θ𝑎𝑏 . (11)

Note that when 𝑓 (𝑅,𝑇) ≡ 𝑓 (𝑅), from Eqs. (11) we obtain the field equations of 𝑓 (𝑅) gravity.
By contracting, Eq. (11) gives the following relation between the Ricci scalar 𝑅 and the trace 𝑇 of the stress-energy

tensor,

𝑓𝑅 (𝑅,𝑇) 𝑅 + 3□ 𝑓𝑅 (𝑅,𝑇) − 2 𝑓 (𝑅,𝑇) = 8𝜋𝑇 − 𝑓𝑇 (𝑅,𝑇) 𝑇 − 𝑓𝑇 (𝑅,𝑇) Θ , (12)
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where we have denoted Θ = Θ
𝜇
𝜇 .

By eliminating the term □ 𝑓𝑅 (𝑅,𝑇) between Eqs. (11) and (12), the gravitational field equations can be written in
the form

𝑓𝑅 (𝑅,𝑇)
(
𝑅𝑎𝑏 −

1
3
𝑅𝑔𝑎𝑏

)
+ 1

6
𝑓 (𝑅,𝑇) 𝑔𝑎𝑏 = 8𝜋

(
𝑇𝑎𝑏 −

1
3
𝑇𝑔𝑎𝑏

)
− 𝑓𝑇 (𝑅,𝑇)

(
𝑇𝑎𝑏 −

1
3
𝑇𝑔𝑎𝑏

)
− 𝑓𝑇 (𝑅,𝑇)

(
Θ𝑎𝑏 −

1
3
Θ𝑔𝑎𝑏

)
+ ∇𝑎∇𝑏 𝑓𝑅 (𝑅,𝑇) . (13)

Taking into account the covariant divergence of Eq. (11), with the use of the following mathematical identity [21]

∇𝑎

[
𝑓𝑅 (𝑅,𝑇) 𝑅𝑎𝑏 −

1
2
𝑓 (𝑅,𝑇) 𝑔𝑎𝑏 + (𝑔𝑎𝑏□ − ∇𝑎∇𝑏) 𝑓𝑅 (𝑅,𝑇)

]
≡ 0 , (14)

where 𝑓 (𝑅,𝑇) is an arbitrary function of the Ricci scalar 𝑅 and of the trace of the energy-momentum tensor 𝑇 , we obtain
for the divergence of the stress-energy tensor 𝑇𝑎𝑏, the equation

∇𝑎𝑇𝑎𝑏 =
𝑓𝑇 (𝑅,𝑇)

8𝜋
[(𝑇𝑎𝑏 + Θ𝑎𝑏) ∇𝑎 ln 𝑓𝑇 (𝑅,𝑇) + ∇𝑎Θ𝑎𝑏] . (15)

Next we consider the calculation of the tensor Θ𝑎𝑏, once the matter Lagrangian is known. From Eq. (3) we obtain
first

𝛿𝑇𝑑𝑒

𝛿𝑔𝑎𝑏
=

𝛿𝑔𝑑𝑒

𝛿𝑔𝑎𝑏
𝐿𝑚 + 𝑔𝑑𝑒

𝜕𝐿m

𝜕𝑔𝑎𝑏
− 2

𝜕2𝐿𝑚

𝜕𝑔𝑎𝑏𝜕𝑔𝑑𝑒

=
𝛿𝑔𝑑𝑒

𝛿𝑔𝑎𝑏
𝐿m + 1

2
𝑔𝑑𝑒𝑔𝑎𝑏𝐿𝑚 − 1

2
𝑔𝑑𝑒𝑇𝑎𝑏 − 2

𝜕2𝐿𝑚

𝜕𝑔𝑎𝑏𝜕𝑔𝑑𝑒
. (16)

From the condition 𝑔𝑎𝑑𝑔
𝑑𝑏 = 𝛿𝑏𝑎, we have

𝛿𝑔𝑑𝑒

𝛿𝑔𝑎𝑏
= −𝑔𝑑 𝑓 𝑔𝑒ℎ𝛿

𝑓 ℎ

𝑎𝑏
, (17)

where 𝛿
𝑓 ℎ

𝑎𝑏
= 𝛿𝑔 𝑓 ℎ/𝛿𝑔𝑎𝑏 is the generalized Kronecker symbol. Therefore for Θ𝑎𝑏 we find

Θ𝑎𝑏 = −2𝑇𝑎𝑏 + 𝑔𝑎𝑏𝐿m − 2𝑔𝑑𝑒
𝜕2𝐿𝑚

𝜕𝑔𝑎𝑏𝜕𝑔𝑑𝑒
. (18)

We take the matter Lagrangian to be given by 𝐿m = 𝑝. Now, there is degeneracy in the choice of the matter Lagrangian
in the sense that this choice does not make any difference to the resulting field equations in general relativity. Hence one
could also choose 𝐿𝑚 = −𝜌, where 𝜌 is the energy density. [22]. We now indicate briefly how this Lagrangian leads to
the energy momentum tensor (Hawking and Ellis [23] give an excellent derivation of this). The fluid current four-vector
is defined as 𝑗𝑎 = 𝜌𝑢𝑎, where 𝑢𝑎 is the fluid four-velocity. Now it is assumed that this is conserved, i.e., 𝑗𝑎 ;𝑎 = 0. Taking
the Lagrangian to be 𝐿𝑚 = −𝜌, and varying so that the action is stationary, we get the momentum equation:

(𝜌 + 𝑝) ¤𝑢𝑎 = −𝑝;𝑏 (𝑔𝑏𝑎 + 𝑢𝑎𝑢𝑏) (19)

where 𝜌 = 𝜇(1 + 𝜖), 𝜇 is the density, 𝜖 is the internal energy and the pressure 𝑝 is given by 𝑝 = 𝜇2 (𝑑𝜖/𝑑𝜇). So ¤𝑢𝑎 is the
acceleration.

We now turn to the form of the energy momentum tensor. The conservation of current may be expressed as:

𝑗𝑎 ;𝑎 =
1

√−𝑔
𝜕

𝜕𝑥𝑎
(√−𝑔 𝑗𝑎) (20)

or
2𝜇𝛿𝜇 = ( 𝑗𝑎 𝑗𝑏 − 𝑗𝑑 𝑗𝑑𝑔

𝑎𝑏)𝛿𝑔𝑎𝑏 (21)

Now, in general, the Lagrangian 𝐿 is a scalar function of some fields Ψ𝑎. The equations of motion can be obtained by the
requirement that the action:

𝐼 =

∫
𝐿𝑑𝑣 (22)

be invariant under a variation of the fields in some suitable region. The variation of the fields can be written as an integrand
in Δ𝑔𝑎𝑏 only. Then the integral 𝜕𝐼/𝜕𝑢 is:

1
2

∫
(𝑇𝑎𝑏𝛿𝑔𝑎𝑏)𝑑𝑣 (23)
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where 𝑇𝑎𝑏 are the components of a symmetric tensor which is taken to be the energy momentum tensor of the fields. Thus,
from equations (21)-(23), we get:

𝑇𝑎𝑏 =

[
𝜇(1 + 𝜖) + 𝜇2 𝑑𝜖

𝑑𝜇

]
𝑢𝑎𝑢𝑏 + 𝜇2 𝑑𝜖

𝑑𝜇
𝑔𝑎𝑏 (24)

or, finally
𝑇𝑎𝑏 = (𝜌 + 𝑝)𝑢𝑎𝑢𝑏 + 𝑝𝑔𝑎𝑏 (25)

The four-velocity 𝑢𝑎 satisfies the conditions 𝑢𝑎𝑢𝑎 = −1 and 𝑢𝑎∇𝑏𝑢𝑎 = 0. Then, with the use of Eq. (18), we obtain
for the variation of the energy momentum of a perfect fluid the expression

Θ𝑎𝑏 = −2𝑇𝑎𝑏+𝑝𝑔𝑎𝑏 . (26)

As in the case of [20], we take 𝑓 (𝑅,𝑇) = 𝑅 + 2F (𝑇), where F (𝑇) = 𝜆𝑇 . The gravitational field equations immediately
follow from Eq. (11), and are given by

𝑅𝑎𝑏 −
1
2
𝑅𝑔𝑎𝑏 = 8𝜋𝑇𝑎𝑏 − 2F ′ (𝑇) 𝑇𝑎𝑏 − 2F ′ (𝑇)Θ𝑎𝑏 + F (𝑇)𝑔𝑎𝑏 , (27)

where the prime denotes a derivative with respect to the argument.
For the perfect fluid (25), Θ𝑎𝑏 = −2𝑇𝑎𝑏+𝑝𝑔𝑎𝑏, and the field equations become

𝑅𝑎𝑏 −
1
2
𝑅𝑔𝑎𝑏 = 8𝜋𝑇𝑎𝑏 + 2F ′ (𝑇) 𝑇𝑎𝑏 − 2𝑝F ′ (𝑇)𝑔𝑎𝑏 + F (𝑇)𝑔𝑎𝑏 . (28)

The above equation for F (𝑇) = 𝜆𝑇 , i.e., 𝑓 (𝑅,𝑇) = 𝑅 + 2𝜆𝑇 , where the trace 𝑇 = −𝜌+3𝑝 finally simplifies as follows:

𝑅𝑎𝑏 −
1
2
𝑅g𝑎𝑏 = (8𝜋 + 2𝜆)𝑇𝑎𝑏 + 𝜆(𝑝 − 𝜌)g𝑎𝑏 . (29)

3. BRIEF OUTLINE OF THE RAMESH/UMADEVI PAPER
In this section, we briefly outline the paper [20]. The FLRW metric was given by

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2 (𝑡)
[

𝑑𝑟2

1 − 𝑘𝑟2 + 𝑟2 (𝑑𝜃2 + sin2 𝜃𝑑𝜙2)
]
, (30)

where 𝑎 is the scale factor, (𝑟, 𝜃, 𝜙) are the usual spherical coordinates, and 𝑘 represents the geometrical curvature of the
universe, i.e., 𝑘 = 0 implies a flat universe, 𝑘 = +1 is a closed universe, and 𝑘 = −1 is an open universe. For the FLRW
metric (30), and the energy–momentum tensor (25), the field equations (29) in 𝑓 (𝑅,𝑇) gravity have been given as [20]:

2
(
¥𝑎
𝑎

)
+

(
¤𝑎2

𝑎2

)
+ 𝑘

𝑎2 = 𝑝(8𝜋 + 7𝜆) − 𝜆𝑝, (31)

3
(
¤𝑎2

𝑎2

)
+ 3

𝑘

𝑎2 = 𝑝(8𝜋 + 3𝜆) + 5𝜆𝑝. (32)

Ramesh and Umadevi then make two assumptions to derive their solutions, viz.,
1. A barotropic equation of state (EoS) of the form

𝑝 = 𝜖 𝜌, 𝜖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (33)

where the constant 𝜖 = −1 to describe DE, 𝜖 = 0 for pressure-free matter (dust), 𝜖 = 1/3 for radiation.
2. A linear varying deceleration parameter (LVDP) 𝑞 of the form [14]

𝑞 ≡ − ¥𝑎𝑎
¤𝑎2 = −𝑛𝑡 + 𝑚 − 1, (34)

where 𝑛 ≥ 0 and 𝑚 ≥ 0 are constants.
Solving (34), the solutions were given as the three different forms for the scale factor:

𝑎 = 𝑎0 𝑒𝑥𝑝

[
2√︁

𝑚2 − 2𝑐1𝑛
arctanh

(
𝑛𝑡 − 𝑚√︁
𝑚2 − 2𝑐1𝑛

)]
for 𝑛 > 0 and 𝑚 ≥ 0, (35)

𝑎 = 𝑎0 (𝑚𝑡 + 𝑐2)1/𝑚 for 𝑛 = 0 and 𝑚 > 0, (36)

𝑎 = 𝑎0𝑒
𝑐1𝑡 for 𝑛 = 0 and 𝑚 = 0, (37)
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where 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑐1, 𝑐2 and 𝑐3 are constants of integration.
It is then stated that by taking 𝑎0 = 0 in equation (35), the following solution is obtained:

𝑎(𝑡) = 𝑒𝑥𝑝

[
2
𝑚

arctanh
( 𝑛
𝑚
𝑡 − 1

)]
. (38)

The Hubble parameter was given as:

𝐻 =
¤𝑎
𝑎
= − 2

𝑡 (𝑛𝑡 − 2𝑚) . (39)

and the energy density as:

𝜌 =
1

[8𝜆(3𝜖 + 1) + 16𝜖𝜆]

[
24(𝑛𝑡 − 𝑚 + 1)
(𝑛𝑡2 − 2𝑚𝑡)2

]
(40)

Since they assumed the barotropic equation of state (33) where 𝜖 is a constant, the pressure is just 𝑝 = 𝜖 𝜌:

𝑝 =
𝜖

[8𝜆(3𝜖 + 1) + 16𝜖𝜆]

[
24(𝑛𝑡 − 𝑚 + 1)
(𝑛𝑡2 − 2𝑚𝑡)2

]
(41)

4. REVIEW OF THE SOLUTION IN PREVIOUS SECTION 3
In this section, we first go through the paper [20] as discussed in the previous section, correcting the equations.

• Equations (31) and (32) should read as follows:

2
(
¥𝑎
𝑎

)
+

(
¤𝑎2

𝑎2

)
+ 𝑘

𝑎2 = 𝜆𝜌 − (8𝜋 + 3𝜆)𝑝, (42)

3
(
¤𝑎2

𝑎2

)
+ 3

𝑘

𝑎2 = (8𝜋 + 3𝜆)𝜌 − 𝜆𝑝. (43)

• Then in the solutions (35), the constants 𝑎1, 𝑎2, 𝑎3 are missing.

• They state that by taking 𝑎0 = 0 in equation (35), a solution is obtained. However, if one takes 𝑎0 = 0 in equation
(35), then one gets 𝑎 = 0.

• In the paragraph just before the conclusion, it is claimed that the energy density 𝜌 us always positive iirrespective of
the curvature of the space. However, this is only true if the constants 𝑛, 𝑚, 𝜆, 𝜖 are such as to allow positivity - they
have to ensure that both numerator and denominator in the equation for the energy density (40) are both positive, or
both are negative.

• In their solutions (40) and (41), the “8𝜆” in the denominators should read “8𝜋”.

• We notice that equations (42) and (43) are two equations in the three unknowns 𝑎, 𝜌 and 𝑝. Hence only one extra
condition is necessary to solve these equations. However, in their paper, Ramesh and Umadevi [20] have chosen
two conditions, viz., (33) and (34). We now show that any one of them is sufficient to generate solutions, but that
only the second condition allows for the transition from an early decelerated universe to a late accelerated one.

Let us start with the first condition of a barotropic equation of state (33), where 𝜖 is a constant. In this case, equations
(42) and (43) can be written as:

2
(
¥𝑎
𝑎

)
+

(
¤𝑎2

𝑎2

)
+ 𝑘

𝑎2 = 𝜆𝜌 − (8𝜋 + 3𝜆)𝜖 𝜌, (44)

3
(
¤𝑎2

𝑎2

)
+ 3

𝑘

𝑎2 = (8𝜋 + 3𝜆)𝜌 − 𝜆𝜖𝜌. (45)

Without loss of generality, we now focus on the case 𝑘 = 0, which can easily be extended to the cases 𝑘 = ±1. This
assumption of the EoS (33) alone is sufficient to obtain a solution since we then have only two unknowns, viz., 𝑎 and 𝜌,
and two equations. From equations (44) and (45), we obtain the following equation for 𝜌:

[(8𝜋 + 𝜆)2 − 𝜆2]𝜌 = −2𝜆
(
¥𝑎
𝑎

)
+ (24𝜋 + 8𝜆)

(
¤𝑎2

𝑎2

)
(46)

It is possible to also write a similar equation for the pressure 𝑝 alone by eliminating the energy density 𝜌 from equations
(42) and (43).The two resulting equations will be sufficient to obtain solutions. The general solutions to these equations are
quite complicated, involving hypergeometric functions, so we do not list them here. This is quite unlike general relativity.
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We now focus on the second condition of a LVDP (34) alone. This equation alone is enough to find a solution without
the additional need for an equation of state. We first note that in the solutions given by [20], viz., (35), (36) and (37), the
constants 𝑎1, 𝑎2, 𝑎3 as well as 𝑐3 do not appear. The corrected solutions as given by Akarsu and Dereli [14] to equation
(34) are:

𝑎 = 𝑎1 𝑒𝑥𝑝

[
2√︁

𝑚2 − 2𝑐1𝑛
arctanh

(
𝑛𝑡 − 𝑚√︁
𝑚2 − 2𝑐1𝑘

)]
for 𝑛 > 0 and 𝑚 ≥ 0, (47)

𝑎 = 𝑎2 (𝑚𝑡 + 𝑐2)
1
𝑚 for 𝑛 = 0 and 𝑚 > 0, (48)

𝑎 = 𝑎3𝑒
𝑐3𝑡 for 𝑛 = 0 and 𝑚 = 0, (49)

where 𝑎1, 𝑎2, 𝑎3, 𝑐1, 𝑐2 and 𝑐3 are constants of integration. In these solutions, we see the constants 𝑎1, 𝑎2, 𝑎3 as well as 𝑐3,
and also that there is no 𝑎0. The last two of the above solutions are for constant 𝑞, which have been dealt with previously.
The new solution (47), was found by [14]. Only the solution for 𝑘 > 0 and 𝑚 > 0 is discussed further, and the integration
constant 𝑐1 has been set equal to . This sets the initial time of the universe as 𝑡i = 0. If we need early deceleration and
late-time acceleration, we have to choose 𝑛 > 0 and 𝑚 > 0 for compatibility with the observed universe. The condition
𝑛 > 0 corresponds to increasing acceleration ( ¤𝑞 = −𝑛 < 0). In order to get early deceleration, the condition 𝑚 > 0 must
hold, and it can even be 𝑚 > 1. Hence equation (47) is reduced to:

𝑎 = 𝑎1 𝑒𝑥𝑝

[
2
𝑚

arctanh
( 𝑛
𝑚
𝑡 − 1

)]
. (50)

We now have to find the energy density and pressure from equations (42) and (43). Let us first find the Hubble
parameter 𝐻 = ¤𝑎/𝑎. From equation (50), we find the Hubble parameter as:

𝐻 ≡ ¤𝑎
𝑎
= − 2

𝑡 (𝑛𝑡 − 2𝑚) . (51)

From the above two equations, we find
¥𝑎
𝑎
=

4𝑛𝑡 − 4𝑚 + 4
2𝑚𝑡 − 𝑛𝑡2

(52)

From equations (42) and (43), we can derive an expression for the energy density 𝜌 (for 𝑘 = 0):

(64𝜋2 + 16𝜋𝜆)𝜌 = (24𝜋 + 8𝜆)𝐻2 − 2𝜆( ¤𝐻 + 𝐻2) (53)

and then using equations (50) and (51), we find that:

𝜌 =
96𝜋 + 24𝜆 − 8𝜆𝑛𝑡 + 8𝜆𝑚

(64𝜋2 + 16𝜋𝜆) (𝑛𝑡 − 2𝑚)2𝑡2
(54)

This solution for 𝜌 is a generalisation of the one given by Akarsu and Dereli [14] for the case 𝑘 = 0, and it reduces to that
when 𝜆 = 0 (note the system of units we are using corresponds to that used in [20] in which they put only the gravitational
constant 𝐺 = 1. In ref [14], the condition 8𝜋𝐺 = 1 is used). The pressure may also be determined similarly, as well as for
the cases 𝑘 = ±1.

Now we determine the equation for the pressure using the LVDP. Again, from equations (50) and (51), we get (for
𝑘 = 0):

𝑝 = −
64𝜋(𝑘𝑡 − 𝑚 + 3

2 ) + 24𝜆 − 24𝑚𝜆 + 24𝑛𝜆𝑡
(64𝜋2 + 48𝜋𝜆 + 8𝜆2) (𝑛𝑡2 − 2𝑚𝑡)2 . (55)

The equation of state 𝜔 = 𝑝/𝜌 is given by:

𝜔 =
(64𝜋(𝑛𝑡 − 𝑚 + 3

2 ) + 24𝜆 − 24𝑚𝜆 + 24𝑛𝜆𝑡) (64𝜋2 + 16𝜋𝜆)
(64𝜋2 + 48𝜋𝜆 + 8𝜆2) (96𝜋 + 24𝜆 − 8𝜆𝑛𝑡 + 8𝜆𝑚)

(56)

It can be seen clearly that the pressure (55) is not just a multiple of the energy density (54), as can also be seen from the
equation of state (56). If we put 𝜆 = 0, then we recover general relativity, and the corresponding equations as in [14]. They
have plotted all these parameters in general relativity, and shown that with a LVDP, it is possible to obtain a transition
from deceleration to acceleration. In addition, they have shown that for the values 𝑚 = 0.097 and 𝑛 = 1.6, it is possible to
satisfy observational constraints.
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5. CONCLUSION
In this work, we have discussed the FLRW solutions in 𝑓 (𝑅,𝑇) using a linear deceleration parameter. We first began

by giving a brief review of the 𝑓 (𝑅,𝑇) theory of gravity. Then we discussed the paper by Ramesh and Umadevi [20].
Various points from that paper were been clarified. The full solutions to the equations for a linearly varying deceleration
parameter as proposed by Akarsu and Dareli were provided and discussed next. We note the following:

• The solutions with a LVDP do not have a barotropic equation of state in general.

• In the above sense, either of the assumptions made is not compatible with the other, and each has to be made
separately to generate solutions.

• The solutions in f(R,T) theory provide a transition from deceleration to acceleration.

• The kinematical quantities such as the scale factor, Hubble parameter and deceleration parameter have the same
behaviour as that discusssed by Akarsu and Dareli [14].

• f(R,T) offers a wider range of possibilities than general relativity.

• Several investigations have been made with slightly different forms of the LVDP such as linear in different forms of
time 𝑡, the redshift 𝑧, or in the scale factor 𝑎 [24]. These authors found that these models compare just as well, if not
better, than the standard ΛCDM model.
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[15] D. Çağlar, Mod. Phys. Lett. A, 39, 2350197 (2024). https://doi.org/10.1142/S0217732323501973
[16] B. Bishi, A. Beesham, and K.L.Z. Mahanta, Zeitschrift für Naturforschung A, 77, 259 (2022). https://doi.org/10.1515/

zna-2021-0192
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КОСМОЛОГIЧНА МОДЕЛЬ FLRW У f(R,T) ГРАВIТАЦIЇ
Арункумар Бiшем

Технологiчний унiверситет Мангосуту, ПС 12363, Джейкобс, 4026, Пiвденна Африка
У цiй статтi обговорюються космологiчнi моделi Фрiдмана-Леметра-Робертсона-Уокера з iдеальною рiдиною в f(R,T) теорiї
гравiтацiї. Iснує кiлька способiв створення рiшень. Один iз способiв — припустити баротропне рiвняння стану. Iнший полягає
у використаннi параметра уповiльнення, який змiнюється лiнiйно з часом. Оглядається iснуюче рiшення в лiтературi, де рiше-
ння отриманi шляхом припущення, на додаток до баротропного рiвняння стану, лiнiйного змiнного параметра уповiльнення.
Зазначається, що таке припущення призводить до надмiрної визначеностi рiшення. Отже, здiйсненнiсть рiшень є необхiдною
умовою, яка повинна бути задоволена. Лише одне з припущень рiвняння стану або лiнiйно змiнного параметра уповiльнення є
достатнiм для створення рiшень. Надаються та обговорюються вiдповiднi рiшення.
Ключовi слова: f(R,T) гравiтацiя; моделi FLRW; лiнiйний змiнний параметр уповiльнення; космологiчнi рiшення; здiйснен-
нiсть рiшень
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