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Within the framework of the impedance concept, approximate analytical formulas for the distributed surface impedance of the
magnetodielectric layer with the inhomogeneous permeability and permittivity located on a perfectly conducting plane (PCP) for the
cases of a quadratic law of changes in electrical parameters along the layer thickness are obtained. A comparative analysis of
electromagnetic waves reflection coefficient from this structure for various laws of change of the permeability and permittivity is
presented.
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INTRODUCTION

One of the ways to expand the limits of change in the electrodynamic characteristics of antenna and waveguide
devices in SHF and EHF bands is the deposition of dielectric ( £ -type), magnetic ( & -type), magnetodielectric (4, € -
type) coatings, in the general case, with variable physical properties, directly on their metal radiating devices (for
example, [1]-[12] for ¢ -type, [10]-[14] for u -type) and waveguide surfaces (for example, [15]-[19] for & -type,
[20]-[23] for u -type, [24]-[31] for u,& -type), including metamaterial coating [30]-[34]. Modern technologies to produce
thin-film coatings make it possible to obtain non-uniform in the direction perpendicular to the ideally conducting plane
of the base and inhomogeneous structures [31], [35]-[41]. Note that the nonuniformity of the coating is achieved by using
multilayered magnetodielectrics. To calculate the parameters of the devices by setting and solving the corresponding
boundary value problem, it is desirable to use the boundary conditions of the impedance type [12], [30], [31], [42]-[48].

An approximate analytical solution of the field equations for an inhomogeneous magnetodielectric layer on a PCP
with a linear law of change the permittivity is obtained in [31] by the authors. A similar solution was found in [51] also
by the authors for a layer with a linear law of change in magnetic permeability.

In this paper the approximate analytical expressions for the distributed surface impedance of the magnetodielectric
layer with the inhomogeneous permeability and permittivity located on a PCP for the cases of a quadratic law of changes
in electrical parameters along the layer thickness are presented. If the surface impedance is found, it is not difficult to
determine other electrodynamic characteristics of the structure under consideration (for example, reflection (absorption)
coefficient [21]-[23] or backscattering cross section [43]). A comparative analysis of reflection characteristics for various
laws of change the permeability and permittivity is also presented.

APPROXIMATE BOUNDARY CONDITIONS FOR ELECTROMAGNETIC FIELDS
The one-sided impedance boundary conditions allow to decrease the number of interfacing electrodynamic volumes
which should be taken into account for the solution of a problem. Rejecting the need to determine fields inside the adjacent
metal-dielectric elements at the problem formulation level is the main benefit of the impedance approach. The Shchukin-
Leontovich impedance condition on the connected boundary surface S (see for example [12, 30, 31, 42-48]) can be
written in following form:

[n,E]|s = Z[n,[n,H]]| , (1)

where E and H are the vectors the electrical and magnetic fields with harmonic time dependence (in our case, the time
t dependence is €, w=2xf is the circular frequency, f is the frequency, measured in Hz), n is the normal to
impedance surface, directed inside the impedance region, Z = R, +iX = Z, / Z, is the surface impedance normalized
to the resistance of free space Z, =120z Ohm.

Thus, only the tangential components of the electromagnetic fields are involved in the boundary condition (1), there
are some restrictions on the form of the surface S . It is clear that the condition (1) holds if the radius of surface curvature
is much greater than the length of the incident electromagnetic wave.
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SURFACE IMPEDANCE OF MAGNETODIELECTRIC LAYER WITH INHOMOGENEOUS
PARAMETERS ON PCP
Let us consider a plane layer of a magnetodielectric substance specified in Cartesian coordinate system (x, y,z) for

—oo <X,y <oo, —h, <z<h, with permeability g and permittivity g . The layer is placed on PCP at z =4, . Let the
plane monochromatic electromagnetic wave with E (z)=E, e (k=27/A, A is the wavelength in a free space) be
incident from the free half-space z =—oo on the magnetodielectric layer (Fig. 1).

Y

Perfectly conducting plane

Figure 1. The dipole geometry and accepted designations

Then the distributed surface impedance for this layer determined by the expression (1) can be written as
Zs=E, (=h,))/ Hy, (=h,) , )

where the fields £, (-4,) and H, (-h,),ie. E (z) and H (z) at the plane z =—h, , inside the magnetodielectric layer

with material parameters 4, = 4,(z), € =const can be found as solution of the following differential equations

CE() 1 du(2)dE(2)

& e & & FAEaEE=0. .
__ i dE(»)
Hy(z)_klul(z) dz 4 (3b)

with the boundary conditions on the surfaces z==h, .

For the case & =¢,(z), u, =const, the field equations have the form

dzExz(Z) +k* e (2)E, (2)=0, (4a)
dz
Hy(z)=i%, (4b)

also, with the boundary conditions on the surfaces z =4, .
The equations (3) and (4) are valid for arbitrary permeability and permittivity functions 4 (z) and &(z). The

relation (2) for normal incidence of plane wave on the plane magnetodielectric layer is exact. The solutions of the
equations (3) and (4) are quite complex, can be obtained analytically for a limited number of the functions g, (z) (&(z),

and can be expressed by special functions. If the distribution g, (z) or &(z) is arelatively slow varying function within

the layer, then an approximate solution in a class of elementary functions can be obtained.
Let consider the following form of #,(z) and £/(z):

#(2) = 4 (0)[1=p. 1 (2)], (5a)
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£(2)=£(0)1-¢,/(2)], (5b)

where the constant g =|[,(0)—,(=h,)]/ 1,(0)| (& =|[£(0)—&(=h,)]/ £(0)]) is the relative value of permeability
(or permittivity) change in the layer (4, <<1, €,<<1), f(z)=(-z/h, )” ,(n=1,2,3...) is a predefined function. Then for
the linear law of change of function f(z)= (—z / h,) the approximate analytical solution of the equation system (3) and

(4) by the method of expanding the desired function into a series in a small parameter &, (€, ) up to terms of order 2 (
£”) have the form ([51], [31])

_ _ tan(k, &
74 =7 (- 1) il hy) (62)
1+, 1, (kl,uhd )tan(k]#hd)
Z; — ZZS tan(k]ghd) ,
I+¢, [, (ki h)tan(k,h,) (6b)
i) =| ——+%
Lin 1u(e)'d 2k1#(5)hd 2 >

where h, is the total thickness of the magnetodielectric layer; k7, =k*1,(0)e,, ZF' =Ju0)/ & ; ki =k e (0)
ZS =M,/ €(0) respectively for (6a) and (6b).

We further use the same method for solving equations (3) and (4) for the quadratic law of change permeability and
permittivity f(z)=(z/h, )2 . Then the result is:

tan(klyhd )+ /urqul (kl,uhd )

f=10.0 Z" =iZ"(1-u,) , (7a)
s 1+ 41, [y, (k, b, tan(k, ,h,)
Se .5 tan(klghd)+8rf5ql(k1€hd)
Zs =i/, s
1 +€rquz(klshd ytan(k, h,) (7b)
1 tan(k, ., h,) ko

kb)) = - me) 42 ko h,)=—2L

qul( 1u(e) d) kw(g)hd (kllu(g)hd)z f:S'qZ( lu(e) d) 6

The field reflection coefficient R from the structure under consideration, and, accordingly, the power absorption
coefficient A will be determined by the following expressions:

R=[1-Z9|/[1+Z®], A=1-R?. (®)

NUMERICAL RESULTS
The material parameters of the magnetodielectric TDK IR-E110 used in these calculations at the frequency band
f =7+12 GHz according [25] are & =8.84-i0.084 and u, =2.42-0.0825f[GHz]—-i0.994 . If the layer thickness is

equal to the quarter wavelength in the magnetodielectric (4, =1.8 mm at GHz), as seen in the Figs. 2a-5a, the reflection
coefficient R has the distinct minimum both for g (z) and for & (z) (first resonance). Here and further in the Fig. 2: if
M., £>0,then 1 (z), &(z) increasing towards the PCP, if x4 , € <0, then 1, (z), &(z) decreasing towards the PCP.

The next resonance occurs at the layer thickness equal to three quarters of the wavelength in the magnetodielectric (
h, =54 mm at f =10.0 GHz). Moreover, these resonances are observed for both considered laws of distribution of

material parameters in the layer.

Due to the losses in the substance, we do not have a perfect absorption for the uniform distribution, as the black
curves show in all the figures. Thus, a small decrease in the refractive index of the medium at the air-medium interface
makes it possible to reduce reflection compared to the case of an increase in this index (Figs. 2a,b, 4a,b —red curves), and
even compared to a homogeneous medium (Figs. 4a, b —red and black curves). The latter is very important for creating
new structures with strong radio wave absorption. For a relatively thick layer of a medium, see Figs. 2c, 4c, the reflection
is smaller in the case of a decrease in the refractive index in the direction of an ideal conductor, since it is more difficult
for a wave that has entered the medium to leave it.
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Figure 2. Reflection coefficient R versus layer thickness £, at
f=10GHz (a); and frequency (b) - A, =1.8 mm, (c) -

h, =5.4 mm for linear law 1, (z).
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Figure 3. Reflection coefficient R versus layer thickness /4, at
S =10GHz (a); and frequency (b) - &, =1.8 mm, (c) -
h, =5.4 mm for quadratic law #,(z).
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CONCLUSION

The work presents an approximate analytical solution of the field equations for finding the distributed surface
impedance of a magnetodielectric layer with the inhomogeneous permeability and permittivity located on PCP. In contrast
to the known solutions for creating coatings with inhomogeneous parameters, when a multilayer magnetodielectric is
used, the solution found is valid for the continuous change in the parameters of the magnetodielectrics inside the layer
according to a certain law. The analysis shows that the influence of the magnetodielectric inhomogeneity on the surface
impedance can reach tens of percent compared to the case of a uniform layer, which can be considered as additional
means of controlling the electrodynamic characteristics of antenna-waveguide devices and creating new absorbing
structures. Note that similar results can also be obtained for cylindrical [12] and spherical [30] structures if the
corresponding field equations are solved in the cylindrical or spherical coordinate systems. Expressions for the surface
impedances of metal conductors coated with the magnetodielectric layer were obtained in [12] for the case of the uniform
coating and are in quite satisfactory agreement with the experimental data presented in [3], [7].
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BILTUB EJEKTPO®I3UUHUX HAPAMETPIB MATHITOAIEJTEKTPUYHOTI'O LIIAPY HA IIIIT HA OT'O
EJEKTPOAUHAMIYHI XAPAKTEPUCTHUKHN
Mpuxaiisio B. Hecrepenko, Bikrop O. Katpuy, Onexcanap M. lymin, Hatanesa K. Biainosa
Xapriecvruil nayionanvruil ynieepcumem imeni B.H. Kapaszina, maiioan Ceoboou, 4, Xapkis, Ykpaina, 61022

VYV paMkax iMmmenaHCHOT KOHILEMIii OTpHMaHi HAaOIIKeHI aHANTHYHI (OPMYNIH Uil PO3MOJINICHOTO MOBEPXHEBOTO IMIEIaHCY
MAarHITOHIeJIEKTPUYHOTO IIapy 3 HEOJHOPIMHUMH MArHiTHOIO Ta IieNEKTPUYHOIO MPOHUKHOCTSIMHM, PO3TAIIOBAHOTO HA ileanbHO
nipoBifHii miomuHi (IITIT) w1t BUmaakiB KBaApaTHIHOTO 3aKOHY 3MIiHH eJIEKTPUYHHX ITapaMeTpiB B30BXK TOBIIMHY miapy. [IpoBexeHo
MOPIBHSUTBHUM aHai3 KoedilieHTa BiOMTTS eNeKTPOMArHITHUX XBWJIb Bifl 1€l CTPYKTYpH AJIS Pi3HUX 3aKOHIB 3MIiHM MarHiTHOI
MIPOHUKHOCTI Ta JieNeKTPHYHOT IPOHUKHOCTI.
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