122

East EUROPEAN JOURNAL OF PHYsICS. 4. 122-133 (2024)
DOI:10.26565/2312-4334-2024-4-11 ISSN 2312-4334

ENTROPY GENERATION OPTIMIZATION IN A REE-EYRING TERNARY HYBRID
NANOFLUID FLOW OVER AN ELASTIC SURFACE WITH NON-FOURIER HEAT FLUX

Gadamsetty Revathi®, ©D. Purnachandra Rao®, ©S. Ramalingeswara Rao®, ®K.S. Srinivasa Babu®*,

T.R.K.D. Vara Prasad‘, ©M. Jayachandra Babu*

“Department of Mathematics, Gokaraju Rangaraju Institute of Engineering and Technology, Bachupally, Hyderabad — 500090, India
bDepartment of Mathematics, Matrusri Engineering College, Saidabad, Hyderabad — 500059, Telangana, India
“Department of EM&H, S.R.K.R. Engineering College, Bhimavaram, Andhra Pradesh — 534204, India
4Department of Mathematics, Government Degree College, Rajampeta, Annamayya district, Andhra Pradesh — 516115, India
*Corresponding Author e-mail: kssb@srkrec.ac.in
Received September 14, 2024; revised November 12, 2024; accepted November 20, 2024

The significance of Ree-Eyring ternary hybrid nanofluid flow lies in its potential applications in various fields. By incorporating three
different types of nanoparticles into a base fluid using the Ree-Eyring model, this innovative fluid offers enhanced thermal conductivity,
heat transfer efficiency, and rheological properties. These characteristics are particularly valuable in industries such as electronics
cooling, solar energy systems, and heat exchangers, where efficient heat management is crucial. Additionally, the unique rheological
behavior of Ree-Eyring nanofluids can provide advantages in processes like drilling, lubrication, and drug delivery. Under Thompson-
Troian boundary conditions, this study aims to theoretically analyse 2D radiative flow of the Ree-Eyring ternary hybrid nanofluid over
an angled sheet with Cattaneo-Christov heat flux and higher order chemical reaction parameters. In order to express them as ordinary
differential equations (ODEs), flow-driven equations undergo suitable similarity transformations. The ensuing system is resolved by
employing a bvp4c approach. The main takeaway from this study is that the thermal relaxation parameter reduces the width of the
temperature profile and the fluid velocity is minimized by adjusting the slip parameter. The concentration profile is minimized by the
chemical reaction parameter and the Ree-Eyring fluid parameter increases with the same (fluid velocity). In addition, we found that
the skin friction coefficient is strongly correlated negatively with the Ree-Eyring fluid parameter, positively with the (thermal)
relaxation parameter, and significantly correlated positively with the chemical reaction through the Nusselt number. When Brinkman
number increases, Bejan number drops. Furthermore, a rise in thermal radiation parameter leads to the escalation in both entropy
generation and Bejan number. We observed a worthy agreement when we checked the outcomes of this investigation with prior effects.
Keywords: Viscous dissipation; Thermal Radiation; MHD; Non-Fourier Heat Flux; Nanofluid

PACS: 47.15.-x, 47.50.-d

Nomenclature
u, v — Components of velocity in x, y y*- Navier’s slip length
directions respectively v — Kinematic viscosity
p — Fluid density C — Fluid concentration (dimensional)
u — Dynamic viscosity k* - Mean absorption coefficient
g — Acceleration due to gravity o™ - Stefan-Boltzmann constant
a — Angle of inclination D,, — Molecular diffusivity
v,y — Permeability of porous surface A — Thermal relaxation parameter
o — Electric conductivity Sc — Schmidt number
T — Fluid temperature (dimensional) We — Ree-Eyring fluid parameter
&* - Critical shear rate A4 — Mixed convection parameter
B, ¢ — fluid constants A" — Buoyancy ratio parameter
Br — Thermal expansion coefficient R, — Radiation parameter
B¢ — Concentration expansion coefficient E. — Eckert number
C, — Specific heat capacity Bn — Bejan number
ko — Chemical reaction parameter Br — Brinkman number
By, — Initial magnetic strength 0 — Fluid temperature (non-dimensional)
M — Magnetic field parameter ¢ — Fluid concentration (non-dimensional)

1. INTRODUCTION

Nanofluids are the colloidal mixtures of ordinary liquid particles having a dimension of less than one nanometre.
These particles will enhance the thermal properties of typical liquids with low thermal conductivity. The latest generations
have used a number of innovative techniques to increase the heat transfer rates, which has allowed them to achieve
different degrees of thermal adeptness. Enhancing heat conduction is necessary to do this. Thus, many attempts were
made to increase heat conductivity in the liquids by dispersing higher, solid thermally conductive components throughout
them. The goal of developing nanofluids to meet industrial demands has been attempted multiple times. While efforts to
develop a superior fluid are still on, researchers and experts in energy use might discover that nanofluids meet their
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requirements. For instance, Sheikholeslami and Rokni [1] has been studied the behaviour of heat transfer of a nanofluid
along with magnetic effect. Ganvir et al. [2] discussed the characteristics of transmission of heat in a nanofluid.
Revathi et al. [3] conducted research on the flow of Darcy—Forchheimer power-law (Ostwald-de Waele type) nanofluid
past an inclined plate subject to the influences of thermal radiation, activation energy. Recently, Rasool et al. [4] reported
the results for the MHD radiative Darcy-Forchheimer nanofluid flow. Along a porous rotating disk, a stagnant Maxwell
nanofluid flow and heat transfer is another study of Li et al. [5]. Radiative motion of a Water-Al>O; based nanoliquid past
a Riga surface with thermal radiation is reported by Madhukesh et al. [6]. Modelling of nanofluids with a mixture of two
or more special types of nanoparticles treating as hybrid as well as ternary hybrid nanofluids based on their greater heat
transfer production is another interesting aspect in the present literature. Huge amount of research can be observed from
the recent literature on it. For instance, Yasir et al. [7] conducted research on a mixed convective radiative Hybrid
nanofluid with heat generation/absorption impacts. Kho et al. [8] discussed the impacts of viscous dissipation and thermal
radiation in a MHD flow of hybrid nanofluid. Abbas et al. [9] presented the numerical findings on a convective motion
of a hybrid nanofluid along an infinite disk. Focusing on the very recent articles Khan et al. [10], Mishra and Pathak [11],
Najafpour et al. [12], Farooq et al. [13], Mahboobtosi et al. [14] and Mohanty et al. [15], one can notice the similar
attempts which are noteworthy.

The Cattaneo-Christov heat flux model is a mathematical approach, which can be utilized to describe transfer of
heat in fluids and materials. It represents an improvement over the classical Fourier's law on conduction of heat. In contrast
to the instantaneous heat transmission assumed by Fourier's law, the Cattaneo-Christov model includes a thermal
relaxation time. This time constant reflects the finite time it takes for a material's temperature to adjust to a change in heat
flux. This is particularly important for studying heat transfer at the microscopic level or in situations with rapid
temperature variations. The model is used to analyze heat transfer in boundary layer flows, where thin layers of fluid
develop near surfaces with different temperatures. This is applicable in various engineering contexts like heat ex-changers
and fluid flow over objects. Most relevant applications of said model particularly occurs in engineering and biomedical
processes. Metal spinning, nuclear reactor cooling, magnetic drug targeting, hot rolling, drawing copper wires, heat
conduction in tissues and in energy production etc. Hayat et al. [16] included Cattaneo-Christov (C-C) mass flux model
to scrutinize the features of heat transmission in the investigation of non-Newtonian fluid flow. Ahmad et al. [17]
considered a wedge and numerically examined micropolar fluid flow by using bvp4c technique in MATLAB with thermal
relaxation time and observed that it alleviates fluid temperature. Ibrahim and Gadisa [18] considered CCHF and examined
the Oldroyd-B fluid flow by an irregular elongating sheet. They emphasized that this fluid model is good at examining
the dilute polymetric solutions for visco-elastic behaviour. Reddy et al. [19] and Gireesha et al. [20] discussed various
dusty fluid flows by a stretching sheet with CCHF model. They identified the fact that radiation parameter is predominant
in cooling procedure and observed that the melting parameter lessens fluid temperature. Ali et al. [21] applied variational
FEM (finite element method) to unriddle the mathematical model in the rotational Casson fluid flow examination through
an extendable surface with double diffusive Cattaneo-Christov and detected diminution in secondary velocity with larger
magnetic field parameter. Tassaddiq [22] considered elastic body and elucidated a micropolar-hybrid fluid flow with
CCHF and Ohmic heating. Jakeer et al. [23] identified that the larger Darcy number ameliorates the fluid velocity in the
scrutiny of HNF within a porous cavity with CCHF model. Examination of HNF (water with graphene and silver) flow
among rotating disks with CCHF is done by Mahesh et al. [24] and amelioration in tangential velocity with larger
Reynolds number is one of their results. Ali et al. [25] utilized Galerkin technique to theoretically examine the rotational
nanofluid flow by an elastic surface and discovered that the Lewis number escalates the value of Sherwood number.
Recently, several authors [26-33] considered various geometries and scrutinised diverse fluid flows with CCHF model.

Surface stretching mechanism in flow dynamical problems has become widely accepted in many industrial and
technological processes. In particular, the quantity and quality of industrial processes heavily rely on the stretching of
sheets. Rubber sheeting, hot rolling, glass blowing, drawing of wires, manufacturing of glass, processes like
polymerization of sheets are some of the usages of stretching mechanisms. By using numerical simulations,
Khan et al. [34] were able to observe that the Soret effect improves the concentration profile when MHD nanofluid flows
through an extending sheet. Activation energy included Nanofluid flow was studied by Rasool et al. [35], who found that
it reduces the mass flux rate. Abbas et al. [36] applied HAM method to elucidate MHD flow of Carreau fluid with varying
thermal conductivity. Yasmin et al. [37] examined the features of heat transfer in the flow of MHD micropolar fluid by a
tilted stretchable surface and detected that fluid velocity is minified with larger curvature parameter. Sankar Giri et al.
[38] considered stretching cylinder and scrutinized MHD nanofluid (CNT nanoparticles) flow with chemical reaction.
Gayatri et al. [39] considered nonuniform elongating sheet and discussed MHD dissipative Carreau fluid flow with Ohmic
heating. Kumar et al. [40] used FEM to unriddle the mathematical model in their study on MHD fluid flows with various
spherical nanoparticles by a vertical plate and noticed an inverse relationship among magnetic field parameter and Nusselt
number. Newly, several researchers [41-52] discussed various MHD fluid flows through a variety of stretchable
geometries.

Upon reviewing the aforementioned literature, it became apparent that the Ree-Eyring ternary hybrid nanofluid flow
across an angled stretchable sheet subjected to Thompson-Troian boundary conditions has not been previously
investigated. The originality of this study is in its examination of the dissipative magnetohydrodynamic Ree-Eyring
ternary hybrid nanofluid flow via an angled plate with boundary conditions imposed by Thompson Troian theory. Entropy
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optimization and Bejan number calculation were also included in this study. Two events, suction and injection, are
depicted graphically to show the consequences. Findings of this study are well agreed with already published results
which was shown in validation section.

2. FORMULATION
A radiative and chemically reactive motion of a Ree-Eyring ternary hybrid nanofluid across an elastic surface
(angled) in addition to Thompson-Troian boundary conditions is investigated theoretically in the present analysis. The
following hypotheses form the basis of the current inquiry:
)] The utilisation of non-Fourier heat flux is aptly applied in the examination of thermal
conduction processes.

(i)  kindly see Table 1 for exact numerical calculations of the thermo-physical properties of water (H,0), Graphene,
Si0,, and CuO.

(iii)  Sheet is inclined by an angle & (observe Fig. 1).

(iv)  An external magnetic field applied vertically with an intensity B, influences the flow.

(v)  In this work, the influence of induced magnetic fields is ignored.

u—0T~T, . C—C, Nanoparticles

0s
\ i ( - ¢ du \'
v=v,u=u,+ &
W wtVY ady)

Figure 1 Schematic representation of the present situation

Table 1. Key parameters' values of H,O , Graphene, Si0,, and Cu0O

S. No. Properties H,0 (f) Graphene (®) 5i0, (D) Cu0 (@)
1 o(S/m) 0.005 107 10725 2.7 x 1078
2 k(W/mK) 0.613 2500 1.38 76.5
3 p(Kg/m*) 997.1 2250 2200 6320
4 C,(J/KgK) 4179 2100 703 531.8

Here are the conditions (prerequisites) and basic equations required for the study, based on these presumptions:
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2
u2€ va—C=a—§Dm—(C—Cw)mk0, “4)
ox dy dy
~05 Ju
aty=0:v=v, ,u=u, +u, =bx+ }/*(l—f*uv) —| ,T=T,C=C,,
’ V1,20 (Ahmad and Nadeem [53]) )

asy > e:u—>0,7T->7T,,C—>C..

The following similarity transmutations for transforming controlling equations were offered by Rafique et al. [54]:

6= T__Y;"j u :bx%:bxf’(n),v:—f(bv)o's,

T ; (6)
C=C_+¢(n)(C,-C.),n= \/;y.

Through the use of (6), the continuity equation (1) is satisfied in a straightforward manner. Then (6) was skilfully
used to alter (2, 3, 4 and 5) in the following procedure:
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Friction factor, Nusselt and Sherwood numbers are outlined as:
16 0*1°
kxhn/‘ +— T ow
3 k oT
kf (Tw -I. ) dy

1
(/’lrhnf-l-j [
Cf:_ﬂca_“& Nut, = —x (Sh, = —x——n .an
Jx 1 2 ay a.x

EP”W

y=0 y=0

Equation (6) allows us to rewrite (11) as

(Re, )" Nu, =~(S,+R,)0'(n)] _,.(Re.)™" Sh, =~¢"(n)|

=0

n=0"

(Re,)"C, = 2(%+ Wejf"(n)

2

2.1. Entropy generation and Bejan number
The formula below constitutes the dimensional representation used to calculate the entropy generation in the current work:

kt % T3 k 2 2
R (s
TARDEA S S

! - : (12)
RD,(3CY | RD, dC T
C. oy T. dy dy

By applying (6), equation (12) can be rewritten as follows:

EG=(S, +Ra)a9'2+SiBrf"2+S3MBrf'2+Jﬁ¢'2+J¢'0', (13)
o

2

where:
_ uT.S, _ )’ s R(C,-C.)D,
b(T,-T.)k.” (T,-T.)k.’ k, ’
Cc,-C, T, -T.
fi=mo =

The mathematical expression to find the Bejan number is:

By = Entropy formation due to the transfer of mass and heat
The overall generation of entropy '

Bn can be restated in the following way by using (13):

(S4+Ra)a9'2+J%¢'2+J¢'9'

Bn= .
(S, +Rﬂ)a9'2+SiBrf"2+ S3MBrf'2+Jé¢'2+J¢’9'
(44

2

3. VALIDATION
We verified our results with previous results under specific conditions (e.g., We=0) and found a satisfactory

agreement (see Table 2).

Table 2. Consistency with prior findings for f"(0) and —6'(0) to validate our findings

y 70 (0
Devi and Kumar [55] Current result Devi and Kumar [55] Current result
0 -0.5608 -0.56081123 1.0873 1.08733452
0.1 -0.5659 -0.56590213 1.0863 1.08633192
0.2 -0.5810 -0.58101087 1.0833 1.08337829
0.5 -0.6830 -0.68300657 1.0630 1.06300176
1 -1.0000 -1.00000000 1 1
-1.8968 -1.89687214 0.8311 0.83118274
5 -4.9155 -4.91554536 0.4703 0.47030201
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4. RESULTS AND DISCUSSION
Equations (7-9) along with (10) are puzzled out with the bvp4c solver. In this study, solutions are rendered for
suction and injection cases.

4.1. Velocity profile

As displayed in Fig. 2, the fluid velocity declines as M upsurges. The Lorentz force grows in amplitude in proportion
to the strength of the magnetic field. It leads to a greater reduction in the fluid's velocity. The increment in the Ree-Eyring
fluid parameter corresponds to a decrement in the fluid's effective viscosity at higher shear rates. This reduction in
viscosity lowers the resistance to flow, allowing the fluid to move more freely and resulting in an increase in fluid velocity
[see Fig. 3]. The rise in the volume fraction of nanoparticles in a fluid causes to a rise in viscosity, enhanced inertia,
increased drag, and potential microstructure formation. These factors collectively increase the resistance to flow, thereby
reducing the overall velocity of the fluid [see Fig. 4].

1 . . . . . 1.4 T T T
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0.9 12 Dashed : injection
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041 i
0
0 05 1 1.5 2 25 3 35 4
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Figure 2. Situation in which f '(7]) is impacted by @, Figure 3. Situation in which f '(77) is impacted by M
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08 b
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<06 ]
04 r b
02 ]
0

3.5 4
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Figure 4. Situation in which f'(77) is impacted by We

4.2. Temperature profile

A rise in the Eckert number corresponds to a hike in the relative importance of kinetic energy compared to thermal
energy. This results in more kinetic energy being converted into heat through viscous dissipation, causes to a rise in the
fluid's temperature [see Fig. 5]. A rise in the thermal relaxation parameter causes the fluid to respond more slowly to
thermal disturbances, reducing the rate of heat conduction and energy dispersal within the fluid. As a result, there is a
reduction in temperature [see Fig. 6]. An increase in the thermal radiation parameter enhances the amount of radiant
energy absorbed by the fluid. This absorbed energy raises the internal energy of the fluid, resulting in a higher temperature
[see Fig. 7]. The effect is particularly significant in systems where thermal radiation plays a major role in the heat transfer
process, such as in high-temperature applications or in fluids with strong radiative properties.
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4.3. Concentration profile
Raising the value of Sc causes the fluid's concentration to decline, as can be seen in Fig. 8. An increment in the
parameter of chemical reaction accelerates the rate at which reactants are altered into products. This heightened reaction
rate leads to a more rapid depletion of the reactants, thereby reducing their concentration in the fluid. The balance between
mass transfer and chemical reaction shifts towards greater consumption, resulting in a lower overall concentration of the
reactant species in the fluid (see Fig. 9).
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4.4. Engineering quantities of interest
Figs. 10-15 explains the impression of pertinent parameters on heat transmission rate, surface friction drag and mass
transmission rate.
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It is detected that both Ree-Eyring fluid parameter, magnetic field parameters minimize the surface friction drag
(Fig. 10-11). As the Ree-Eyring fluid parameter increases, the fluid exhibits more pronounced shear-thinning behaviour,
leading to a reduction in viscosity near the wall where shear rates are high. This reduction in viscosity lowers the wall
shear stress, which directly reduces the skin friction coefficient. An increase in the Eckert number enhances viscous
dissipation in the fluid, which generates additional heat and reduces the temperature gradient between the heated surface
and the fluid. This reduction in the temperature gradient weakens the convective heat transfer, leading to a lower Nusselt
number. In essence, the higher the Eckert number, the less efficient the heat transfer becomes, resulting in a reduced
Nusselt number (Fig. 12). Rise in thermal relaxation parameter enhances the heat transmission rate as seen in Fig. 13.
Furthermore, it is seen that chemical reaction and Schmidt numbers are cooperative to improve mass transmission rate of
the fluid (Figs. 14-15).
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4.5. Bejan number and other profiles
As the Brinkman number rises, indicating a higher ratio of viscous dissipation to thermal conduction, the internal
heat generation in the fluid increases. This results in larger temperature gradients and greater irreversibility in the heat
transfer processes, leading to increased entropy generation (see Fig. 16).

5 " T T T T T T T al 1 T T T T T T T
4sr Solid  : Suction 1 09 == = = ———_",
Dashed : Injection .7
4 08t zc
-
357 1 07 P
3 1 06}
|}
Br=0.3,0.6,0.9
2251 Sosl
\) 1 Br=0.3,0.6,09
Znly 1 04 I' !,
W ,
15 W 1 0.3 7/ 1
AR /1! Solid  : Suction
i 1 02F //r? Dashed : Injection
W //, ',
WA
051 QNN 0.1;/’,/
~ :}..’ v A
0 ' - e 0 C L L L L L L L
e o5 15228 3 35 4 o o5 1 15 2 25 3 35 4
n n
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An increase in the Brinkman number highlights the growing significance of viscous dissipation within the fluid,
leading to greater irreversibility associated with fluid flow. This shift in the balance of irreversibility reduces the Bejan
number, indicating that viscous dissipation becomes the dominant source of entropy generation in the system,
overshadowing the irreversibility due to heat transfer (see Fig. 17). From Figs. 18-19, it is clear that the rise in thermal
radiation parameter leads to the escalation in both entropy generation and Bejan number.
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5. CONCLUSIONS

Entropy generation optimization in Ree-Eyring ternary hybrid nanofluid flow across an angled stretched sheet
subject to Thompson Troian boundary conditions has been investigated numerically. Careful observations from the
numerical results, the following are the main takeaways from this study:

e  Ree-Eyring parameter elevates fluid velocity.

Raise in the slip parameter of velocity leads to the decrement in fluid velocity.

Eckert number and thermal relaxation parameter exhibited different influences on temperature.
Concentration profile contracts with bigger chemical reaction parameter.

Friction factor is bearing a considerable negative connection with We .

Sherwood number is bearing a significant progressive correlation with Sc,I".

e When Br enhances, Viscous dissipation's contribution to overall irreversibility becomes increasingly noticeable.
So that Bejan number declines.

e  Enhanced thermal radiation parameter causes to the escalation in both entropy generation and Bejan number.
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3HaueHHs MOTPIHHOTO ribpuaHOro MoTOKy HaHOpiAuMH Ree-Eyring mossrae B #oro moTeHNiHHOMY 3aCTOCYBaHHI B PI3HUX 00JIACTSIX.
3aB/sKM BBEJICHHIO TPHOX PI3HUX THIIIB HAHOYACTHHOK B 0a30BY PiJMHY 3a JOIOMOroro Mozeni Pi-Afipinra ns iHHOBamiliHa pinuHa
3abe3reuye MOoKpaIleHy TeIUIONPOBIIHICTh, €EKTHBHICTh TEILIONEPEaadi Ta PEONIOTiYHI BAACTHBOCTI. LIi XapaKTepHUCTHKU OCOOIHUBO
LiHHI B TAKUX Tally3sX, SK OXOJOKCHHS eJICKTPOHIKH, COHSYHI €HepPreTHYHI CUCTEMHU Ta TeIIO0OMIHHHUKH, ¢ epEeKTHBHE KepyBaHHS
TEIJIOM Ma€ BupilnanpHe 3HaueHHsA. KpiM Toro, yHikajabHa peojioridHa moBeniHka HaHOoQuoOIniB Pi-AlipiHra Moxe 3a0e3neunTd
HepeBaru B TaKMX MPOLECcax, SK CBEPUIIHH, 3MAICHHS Ta JJ0CTaBKa JIiKiB. Y rpaHnuHuX yMoBax TomicoHa-TposiHa e 1oCiipKeHHs
Ma€ Ha METi TEOPETHYHO MpPOAHANI3yBaTW JBOBUMIPHHN pamialiiHWA MOTIK MOTpiiiHOI TibpuaHoi HaHOpimuHHM Pi-Aifpinra Han
KYTOBHUM JIUCTOM 3 TeIUI0BIMM oTokoM Karraneo-KpicroBa Ta mapaMeTpamu XimMidHOI peakiii Bumoro mopsaky. L{o6 Bupasutu ix sk
3BuyaiiHi audepenmianeHi piBHAHEA (OJlY), pIBHSHHS, KEepoBaHI IIOTOKOM, 3a3HAIOTh BIJIIOBIJHUX IEPETBOPEHb IOJIOHOCTI.
Hacrynna cuctema BHpinIyeThes 3a JONOMOTOIO migxoxy bvpdc. OcHOBHHIT BHCHOBOK LBOTO JOCTIPKCHHS IIOJISITAa€ B TOMY, IO
rapaMeTp TeIUIOBOI penakcalii 3MeHIIye LIMPUHY TeMIepaTypHOro npodimo, a MIBHAKICTh PIAMHHM MiHIMI3Yy€ThCS LUISIXOM
perynoBaHHs napameTpa KoB3aHHs. IIpodinb KoHLEHTpauii MiHIMI3yeTbCsS HapaMeTpoM XiMiuHOI peakiii, a mapamerp pizuau Pi-
Aljipinra 3pocTae 3 TuM caMuM (IIBUIAKICTIO pinuuu). KpiM TOro, Mu BHSABHIM, 110 KOC(ILI€HT HIKIPHOTO TEPTs CHIBHO HEraTUBHO
KOpEJIIoe 3 mapaMeTpoM pimunu Pi-AfipiHra, mo3uTHBHO 3 mapaMeTpoM (TepMI4HOI) penakcallii Ta 3HaYHO MO3UTUBHO KOPEINIOE 3
ximMigHOIO peakmieto yepe3 uucno Hyccenpra. Komm uncino Bpinkmana 36inbmryerses, uncio bexxana nanae. KpiM Toro, migBUIeHHs
rmapamMeTpa TEIUIOBOTO BHIIPOMIHIOBaHHS MPH3BOAMTH 0 €cKajalii sk reHeparii eHTpomnii, Tak i yncna bexxana. Mu momituiu ringHy
3rofy, KOJI! IIePeBipsUTH Pe3yIbTaTH [OTO PO3CIIAYBaHHS 3 IONEPeIHIMI HACIiJKaMU.
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