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There are extensive range of applications related to nuclear industry, industrial manufacturing, science and engineering processing, in
which the boundary layer hydromagnetic motion of Casson liquids perform vital role. Casson liquid is a useful liquid in the nuclear
industry for optimizing the design and operation of nuclear reactors. Researchers have investigated transfer of heat in liquid motions
with linear stratification, which is a phenomenon where the temperature varies linearly with height, affecting various fields such as
medical equipment, glass fiber production, electronic devices, polymer sheets, paper production, filaments, and medicine. However,
the most discussion of heat transfer problems is to get numerical solutions of a comprehensive Casson liquid model with heat generation
described by the BVP4 via shooting method. In this study, a new velocity slip boundary condition is applied at the stretching or
shrinking surface. These conditions are grounded in the previously established Buongiorno model, providing a more practical and
realistic approach compared to previous study. The time independent Gov. Egs. changed into a set of couple non-linear ODEs with
help of suitable similarity conversions. The equations are evaluating via R-K-F by help of MATLAB software programming.
Keywords: Magnetohydrodynamic,; Shrinking/stretching surface; Velocity slip; Heat Generation/absorption; Casson fluid; 3D

PACS: 04.25.D, 47.50.-d, *43.28.JS, 62.60. +v.

INTRODUCTION

Till date, lots of plentiful fields (such as astrophysics, oceanography) in analytical, experimental and exact solutions
are studied to describe the NNF because in view of their real time applications existing in biological lubricants and
biomedical flows, industrial processes (“Metal extrusion, drawing of plastics and rubber sheets, coal-oil slurries, blowing,
manufacturing, extrusion of polymeric fluids”), polymer and metal extrusion mechanisms and technological applications
like coating of wires, oil recovery. Therefore, the upcoming research scholars and scientists are doing towards rheological
features of NNF. In 1959, Casson [1] introduce Casson liquid as a NN model. The laminar motion of pseudo-plastic NN
NFs (“Al,O3; + CMC”) within the porous circular concentric region was examined by Barnoon and Toghraie [2]. Peri
P.K. Kameswaran et al. [3] developed the SP motion of NN Casson liquid via SS with Soret and Dufour effects. The
transfer of heat of Casson viscous gad motion on linear SS was created by Mahabaleswar et al. [4]. Duguma et al. [5]
described the 2D BL motion of incompressible viscous Casson NFs via permeable SS. Himanshu et al. [6] exhibited the
SP motion of Au-blood liquid via SS. The non-linear mixed convective HMT features of a NN Casson liquid motion via
SS was explored by Vishnu Ganesh et al. [7]. Shankar Goud et al. [8] studied the streamline BL Casson liquid motion via
wedge inspired by magnetic effect. Recently some of scientists respectively, NNF model [9], Eyring-Powell fluid model
[10], Casson nanofluid with mixed convection model [11], Maxwell fluid with Cattaneo-Christov model [12], Williamson
nanofluid model [13], Walter’s nanofluid model [14], and Casson NFs with convective condition [15].

Recently, Adel et al. [16] exhibited the behavior of a slippery NFs flowing via permeable SS. The rate of HMT in
an MHD viscoelastic NFs via SS with HG was described by Raja Sekhar et al. [17]. Ali et al. [18] described the motion
of a Ree-Eyring HNFs by a stretch motion. Akolade et al. [19] created the heat source and generalized Fourier’s law on
Carreau liquid motion via NLSS. Saleem et al. [20] examine and comparison of the effects of momentum fields. The
Artificial neural networks are applied in Casson liquid motion past via SS was examination by Srinivasacharya and
Shravan Kumar [21]. Ouyang et al. [22] developed the thermal conductivity and stability by delving into VD via SS with
velocity slip. Biswal et al. [23] created an exciting and rapidly developing field takes thermal radiation in blood motion.
Eid et al. [24] presented the MF and ohmic dissipation on NN Casson liquid motion via VSS. Some of the numerical
solutions in SS medals [25-31].

The heat generation effect on fluid motion has been expansive motivation research work in heat transfer problems
and it is attractive applications in practical, numerical fields and industrial (“such as the storage of nuclear wastes, heaters
and coolers of electrical and mechanical devices, thermal insulation, chemical factories etc.”). In general, the term “Heat
Generation” is occurring high temperature variation between the surface and ambient liquid. Some of the problem of HG
on Casson liquid motion is considered to be a constant, space dependent or temperature dependent. The 3D motion and
transfer of heat caused by a bidirectional SS with HG was created by Khan et al. [32]. Javed and Siddiqui [33] presented
the numerical computation for mixed convection transfer of heat motion of micropolar NFs. Some of authors [34-42]
described the numerical computation for HG effect on NNNFs motions via linear or non-linear SS.
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MATHEMATICAL ANALYSIS
The 3D NFs motion via shrinking or SS with VS with MHD is considered. The physical model of the coordinate
system is explored in Fig. 1.
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Figure 1. Flow Chart of the Problem

The problem created by the SS in x, y, — surface area with VS.
The z, directional area is orthogonally to SS b, >0 or SHS b, <0.

3. The NFs motion occupies area at z, >0 and VC of the surface trough x, and y, directional areas are u,(x) = a, x,
andv,(y,) =b, », , respectively.

4.  The liquid is EC under influence of UMF B, as well as VMF is w, = w;,, where w, < Othen it is called suction and
w, >0 then it is known as injection.
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Figure 4. Problem Layout

Under the above considerations, the basic Gov. Eqs are:
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The below dimensionless functions and translated variables are:

a
n :Z]\/;: u, =ax '), v =ayg'(),
|

Q)
= (702 @), 0 =3 o) =
Utilizing the above dimensions, Eq. (6) is identically satisfied and translate Eqs. (2)- (4) becomes:
Sr==L () H(MAP) [, @)
g =—g"(f+2)+(g) +(M+P)g-1, ®
0"=-Pr((f+g)0'-Hb). Q)

With subject to the B.Cs. are:

f(0)=0, g0)=0, f'(0)=1+A1"(0), g'(0)=A4+Bg"0),
0(0)=1, 6'(0)=—Bi(1-6(0)), ) (10)
f'm)—0, g@m)—0, 6(,)—>0, ¢(,)—>0 as 7, >oo

The physical quantities of practical interest are C; and C

s, »and Nu_, itis defined as
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Defines the SF via x,, y, directional area, HF ¢, and MF g, from SS are

Jdu v, oT, aC
wal = I[ll — > Tw|y, = I[ll — s qwl = _k — > qwl = _DB — . (12)
oz ), oz, ) _, 0z, ), dz, ) _,

1

Substituting the u,, v,, 7, from the Eq. (11) onto Eq. (12) and using Eq. (6), we getting

Rel/Z C )

2C, =/"(0), Re'”C, =g"(0), Nu, Re;?=-6'0), Sh, Re'=-4'0), (13)

where Re, =U, (x,/v,) and Re, =U, (y,/v,)are LRN.

RESULTS AND DISCUSSION
To discuss the outstanding variations of velocity of NN motion and Re_"* Nu_ (“Heat Transfer Rate”) due to relevant
physical parameters involved in this study with statistical solutions are explained through their plotted graphs: 2-10. The
present work is considering different cases, like pure fluid, NN liquid, stretching (4>0) and shrinking cases (4 <0).
The physical parameter Pr (“Prandtl number”) on 6(7,) (“Temperature Profile”) and ReL/ : Nu_ (“Heat transfer
rate”) as predict Figs. 2(a)-2(b) with higher statistical values of Pr for the cases of Pure liquid ( B= 0) , NN liquid
(“Casson liquid”) (/8 =0.5) and presence of slip parameter on axial direction (4 =B =0.1), absence of (4= B =0) slip

parameter on transverse direction. It is perceived, the 6(77,) decline the layer inregion 0.02 <7, <1.5 as well as Re!” Nu,

with distinct statistical values of Pr . We noticed that the temperature is more in pure fluid when compared with NN liquid,
because of thermal conductivity is more in Casson liquid.

Figs. 3(a)-3(b) presented 6(7,) (“Temperature Profile”), Re"” Nu_ (“Heat Transfer Rate”) with higher numerical
values of H for the cases of Pure liquid (/4 =0) and non-Newtonian liquid (“Casson Liquid”) (/4 =0.5) respectively. It

is perceived, the 8(17,) decline the layer in region 0.0015 <7, <1 as well as Re!” Nu_. We noticed that the temperature,

heat transfer is more in pure fluid when compared with NN liquid, because of thermal conductivity is more in Casson
liquid.
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The main characteristics of this model is £ (“Casson Parameter”) on f(7,) (“Axial Direction”), g(7,) (“Transverse

Direction”) as predict Fig. 4. It is perceived, the decline of both axial and transverse direction with distinct numerical
values of 5 . We observe that, the Casson liquid motion is very high motion in axial direction on stretching surface while

compare to transverse direction. Because, the plastic dynamic viscosity of Casson liquid motion is very high. Due to this,
the Casson liquid is slow motion on surface in axial direction.
The physical parameter M (“Magnetic Field Parameter”) on f(7,) (“Axial Direction”), g(7,) (“Transverse

Direction”) as predict Fig. 5. It is perceived, the decline of both axial and transverse direction with high distinct numerical
values of M . We observe that, the magnetic field parameter is very high motion in transverse direction on SS while
compare to axial direction. Because, the magnetic force applied to Casson liquid which has generate drag force named as
“Lorentz force”. This force acts Casson liquid in opposite direction to the motion.
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The characteristics of Bi (“Stretching/Shrinking Parameter”) on 6(73,) (“Temperature Profile”) and B (“Slip Parameter
on Transverse Direction”) for Stretching (Bi > 0) and shrinking (Bi < 0) cases as depicted Fig. 6(a)-6(b). It is perceived, the
Bi improves temperature while opposite direction of B with distinct enlarge statistical values. We observe that, the Casson
liquid flow is very high temperature motion in case of (Bi 2 0) (“Stretching”) while compare to (Bi < 0) (“Shrinking”).
Because, the viscosity of Casson liquid motion in stretching sheet is very high.
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Figs. 7(a)-7(b) illustrate the characteristics of A (“Slip Parameter on Axial Direction”) on Rei/2 C (“Skinfriction”

coefficient along axial direction”), Re{lv/2 C, (“Skinfriction” Coefficient along Transverse Direction”) respectively. It is

clear that, the 4 (“Slip Parameter on Axial Direction™) declined both axial and transverse directions of Skinfriction
coefficient foe higher enlarge statistical values of "A". We noticed that, the Skinfriction is less movement in Casson
liquid flow via stretching surface.
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The Table 1 and 2 presented that, the comparison study of present and previous study for Skinfriction coefficient
with various numerical cases of magnetic parameter M.

Table. 1 Evaluation of SFC—f"(0) for A=B=Bi=0

M Present study = Sarah et al. [36] Nadeem et al. [37] Gupta and Sharma [38] Ahmad and Nazar [39]

0.0 1.000000 1.00000 1.0004 1.0003181 1.0042
10 3.316624 3.31662 3.3165 3.3165824 3.3165
100 10.04987 10.04987 10.049 10.049864 10.049
Table. 2 Comparison of SFC —f "(e0) for A=B=Bi=0
M Present study Nadeem et al. [37]
0.0 1.173719 --
10 3.367222224 3.3667

100 10.06646642 10.066
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CONCLUSIONS
A statistical analysis has been done for HG effect on 3D MHD motion of Casson liquid via SS with VS Condition.

The main contribution of the present investigations is mentioned below:

The Re!” Nu, is very less motion in Casson liquid when presence of slip parameter while comparing with absence

of slip parameter for higher values of Pr.

The temperature is less transfer in NN liquid motion when compares with pure liquid motion with higher statistical
values of Pr.

The HG is high in pure fluid while opposite motion in HTR when compared with Casson liquid for escalate values
of H.

Nomenclature
(x,3) Cartesian coordinate’s T, Constant fluid Temperature of the wall
u,, v;, w, velocity components along x,, y,,z, -axis U, Stretching velocity
A Velocity slip along x-axes /ay, N, U. Free stream velocity
B Velocity slip along y-axes +/ay, N, Greek symbols
f Dimensionless stream function P Density
f Dimensionless velocity (of Boltzmann constant
10) A Constant stretching/shrinking parameter b, /a,
H Heat Generation Parameter | —=>—
a,(p,c) f
. N Ki ic viscosity of the flui
M Magnetic field parameter = o, B, Y, inematic viscosity of the fluid
a,p
u 6 Dimensionless temperature
P Porous Parameter =| —
pv

[04 Thermal diffusivity =k/(pc),

Pr Prandtl number = (v]j ! y =k/(pe,),
al
Re, Reynolds number Subscripts
T Temperature of the fluid 0o condition at free stream
T, fluid temperature far away from the surface
Abbreviations
NFs Nanofluids HTR Heat Transfer Rate
HT Heat TRansfer SS Stretching Sheet
HMT Heat and Mass Transfer VD Viscous Dissipation
HG Heat generation SHS Shrinking Sheet
MHD Magnetohydrodynamic 3D Three Dimensional
MF Magnetic Field NN non-Newtonian
BL Boundary Layer B.Cs. Boundary Conditions
SP Stagnation Point HNFs Hybrid Nanofluids
BVP Boundary Value Problem RKF Range Kutta Fehlberg
SFC Skinfriction Coefficient NNF non-Newtonian Nanofluid
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BILIAB FTEHEPAIIIT TEIJIA HA 3D MI'J HOTIK KACCOHOBOI PIIMHA YEPE3 IIOPHUCTY IIOBEPXHIO
1O PO3TATYETHCSA/CKOPOUYYEDBCS 3 YMOBOIO IIBUJAKICHOT'O KOB3AHHS
b. Ixxaragimm Kymap, Haiinapy Tapakapamy
Dakynbmem mMamemMamuky, WKod GibHUX Mucmeyms i Hayk, Yrisepcumem Moxana Ba6y,
Cpi Caiinam Haeap, Tipynami-517102, Anopanadew, Inois

IcHye mMpOKWI CHEKTp 3acTOCyBaHb, IIOB’SI3aHUX 3 SIEPHOI0 MPOMHCIIOBICTIO, HPOMHCIOBAM BHPOOHMIITBOM, HAayKOIO Ta
IH)KeHEpHOI0 00pOOKOI0, Y SKUX I'iIPOMarHiTHAN pyX NPUKOPIOHHOTO mapy pianH KaccoHa Bigirpae skUTTeBO BaXKIIMBY poiib. PinuHa
Casson € KOPHCHOIO PiIMHOIO B aTOMHIi MPOMHUCIOBOCTI ISl ONTHUMI3alil KOHCTPYKLIl Ta poOOTH sAEPHHUX peakTopiB. JocmiTHUKK
JOCIIDKYBaU Mepeiady TeIia B pyci piuHY 3 NiHIHHOI cTpaTudikalieo, ska € sBUIIEM, KOJIU TeMIepaTypa 3MiHIOEThCS JITHIHHO 3
BHCOTOI0, BIUIMBAIOYM Ha Pi3HI Taiy3i, Taki K MeJHYHe 00JaJHaHH:, BUPOOHUIITBO CKIIOBOJIOKHA, €IEKTPOHHI MPUCTPOI, HOMTIMEPHi
JIUCTH, BUPOOHUITBO Tarepy, HUTOK i MenunuHa . [IpoTte Haiibinbiie oOroBopeHHS MpoOiieM TEIIooOMiHy MOJSIrae B TOMY, 100
OTPUMAaTH YUCEJIbHI PillIeHHS KOMILIEKCHOI pinquHHOI Mojeni KaccoHa 3 yTBopeHHsM Tera, onrcaHuM BVP4 3a gomomoror Metony
3HOMKH. Y 1IbOMY JIOCIIi[PKEHHI HOBA I'PaHUYHAa YMOBA IIBH/IKICHOTO KOB3aHHS 3aCTOCOBaHA Ha IIOBEPXHi PO3TATYBaHHS a00 3BY)KCHHS.
L{i yMoBH IpYHTYIOThCS Ha paHillle BCTAaHOBJIEHiH Mozeni ByoHriopHo, 1mo 3a0e3medye OLTBII TPAKTUYHMHN 1 peaiCTUYHMN MiAXif
MOPIBHSIHO 3 TonepenHiM aochikeHHsaM. Heszanexne Bin yacy Gov. Eqs. 3MiHeHo Ha Habip napu HemiHiiHNX ODE 3a momoMororo
BIIMIOBIIHKX MepeTBOPEHb MoAiOHOCTI. PiBHsAHHS oniHIoroThCs Yepe3 R-K-F 3a momomororo nporpamuoro 3abe3neuenns MATLAB.
KurouoBi ciioBa: maznimoeiopoounamixa,; nogepxus, wo cKOpOUyEMbC/po3smazyemvcsl; WeUOKiCHe KOB3AHHS, 2eHepayis/NOIUHAHHS
menaa; Kacconoea piouna; 3D





