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The current study explores the fluid dynamics and heat transfer characteristics of micropolar fluids within a channel filled with
anisotropic porous media. The governing equations for the fluid flow, microrotation, and temperature profiles are numerically solved
using Spectral Quasi-Linearization Method (SQLM). The research examines the influence of various key parameters such as the
anisotropic permeability ratio, anisotropic angle, Darcy number, Reynolds number, Brinkman number, Prandtl number, and coupling
number. Key findings indicate that the anisotropic permeability ratio and anisotropic angle significantly affect fluid flow and heat
distribution, with increased anisotropy leading to enhanced microrotation and temperature, albeit with reduced velocity at the channel
center. Higher Darcy numbers result in less restricted flow, increasing velocity and reducing microrotation effects, while increasing the
coupling number contributes to a more uniform temperature profile. These results provide significant insights into the optimization of
heat transfer and flow control in engineering applications that involve micropolar fluids in porous media.
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1. INTRODUCTION
The advent of the micropolar fluid theory occurred in recent decades due to the necessity to model a fluid with

rotating micro-components. Micropolar fluids are fluids that display a correlation between the rotational dynamics of
particles and the overall velocity structure at a large scale. Suspension of hard particles in a viscous medium forms these
fluids. Liquid Crystals, magnetic fluids(ferrofluids), blood, and lubricants with additives are examples of micropolar
fluids. Other industrial applications, including biological structures, lubricant fluids, and polymer solutions, utilise
micropolar fluids. Micropolar fluids theory has been extensively investigated by researchers worldwide. Eringen [1]
revolutionised the micropolar fluid framework and polymer solutions which make use of these fluids. He derived the
micropolar fluid flow governing equations and boundary conditions and implemented them in analysis of channel flow,
taking into account the thermodynamic limitations. Researchers have investigated the kinetics of both natural and combined
convection flows of micropolar fluids on flat and cylindrical surfaces [2]–[5]. Mirzaaghaian et al. [6] analysed the flow
characteristics of a micropolar fluid and the dynamics of heat transfer in a porous conduit. To solve nonlinear equations
the Differential Transformation Method (DTM) [7]–[11] was utilised. In this study, the influencing factors were the Peclet
number, Reynolds number, and the micro-rotation/angular velocity. The findings showed that while the temperature and
concentration fields will only slightly alter, the stream function will be greatly altered by varying the Reynolds number.
An analysis was conducted by Mabood et al. [12] to investigate the flow and heat transfer properties of a micropolar fluid
across a stretchable sheet in a porous media. The flow was exposed to a magnetic field, thermodiffusion, and variable
heat sources in their work and solutions were obtained for the resultant equations. A comparison of outcomes with earlier
research revealed very good agreement. The research revealed that the distribution of velocity decreased as the parameter
for the magnetic field increased, despite the fact that the thermal and concentration distribution were elevated.

Extensive research conducted globally on the use of micropolar and nanofluid fluids has shown promising results for
various industrial processes and scientific research oriented applications, including heat exchangers, combined propulsion
systems, and medical procedures. Many researchers [13]–[18] have conducted an in-depth review of the fundamental
principles governing micropolar fluid flow in porous conduits. The behaviour of micropolar fluid in a conduit confined
by two parallel permeable walls was analysed by Jalili et al. [19]. The fluid flow was considered two-dimensional,
and steady. It was observed that with the exception of the dimensionless microrotation profile, all of the mentioned
dimensionless parameters have increasing average values when the values of coupling number increase. Moreover,
temperature distribution is the most significant parameter that can be affected by Peclet number for heat diffusion. The
solution for this problem shows that the averages of the dimensionless parameters reduce if the ratio of micropolar-inertia
density is increased along channel, with the exception of the non-dimensional flow function characteristics. Under the
presumptions of heat radiation and reaction rate coefficients, Shamshuddin et al. [20] analysed the dynamics of a micropolar
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fluid flow through a conduit considering both combined and non-linear heat transfer. It was shown how the temperature,
concentration, and dimensionless velocity of micropolar fluid reached their peak values near the channel’s centre. The
dynamics of mass and heat tranfer in micropolar fluids are determined by their thermal and solution properties.

Abdalbagi [21] examined the dynamics of a micropolar fluid flow and characteristics of heat transfer in a porous
conduit, applying the method of iterative linearization. This study showed that fluid flow, mass transport, microrotation
and heat transfer are all positively impacted by increasing coupling and spin-gradient viscosity parameters. Conversely,
these profiles exhibit a decline as micro-inertia density increases. While an increased Peclet number indicates optimised
heat transfer by convection and mass transfer, higher Reynolds numbers reduce the distributions of velocity, microrotation,
and temperature. Micropolar fluid framework, which is applicable to non-Newtonian fluids, accounts for microrotation
and also couple stresses. The research explores how the magnetic force field slows down the flow of fluid, while channel
permeability increases velocity. Heat radiation enhances the temperature distribution, impacting heat transfer. The findings
have practical significance in the domains of engineering like temperature control systems, and MHD generators, where
these conditions are frequently encountered. A study by Shah et al. [22] provided a description of the fluid flow dynamics
and heat transfer of blood-infused gold micropolar nanofluids in a porous conduit. The channel contained thermal radiation
whether the walls were in motion or rest. Blood was considered as the base fluid, and microgold was thought to be the polar
nanofluid. The study conducted by Ahmad et al. [23] investigated the problem of mass and heat transfer in a micropolar
fluid flow within a porous conduit using a Quasi-linearization approach. At fluid temperatures above a certain threshold,
the concurrent phenomena of heat radiation buildup, absorption heat, heat exchange, and Brownian flow were observed.
When it comes to magnetic parameters and materials, supportive engineering forces like velocity, skin friction, and heat
exchange have proven to be beneficial. However, the transfer rate of mass showed an opposite response. Akbarzadeh et
al. [24] analysed the flow of a nanofluid which was considered laminar and forced convective heat transport within a
wavy channel. In their study, it was demonstrated that if the aspect ratio of the conduit is increased, the average Nusselt
number becomes more sensitive to the Reynolds number and also to the aspect ratio of the channel. The gradient of the
temperature on the left sheet will decrease as the motion parameter increases. However, the gradient exhibits a positive
correlation with Lorentz forces. The effects of thermal radiation and also thermo-diffusion on Williamson model nanofluid
along a porous and stretchable surface were examined by Rashidi, and Bhatti [25]. Their findings showed that the fluid’s
magnitude increases with large porosity and Williamson fluid parameters. On the other hand, the gradient on the left sheet
increases as Lorentz forces do. In a transverse magnetic force field presence, Rashidi et al. [26] examined the exchange of
heat for a nanofluid flow along a stretchable sheet while considering buoyancy effects, and heat radiation into account. It
has been noticed that nanofluid’s velocity rises when the buoyancy factor is increased while the distribution of temperature
decreases. Assuming the fluid is incompressible and steady, Takhar et al. [27] analysed the problem of axisymmetric
flow of micropolar fluid and heat transfer between two permeable discs. A finite analysis method was employed to solve
the flow governing equations, which describes the velocity, temperature and also microrotation. Quantitative simulations
have been conducted to determine the axial, radial, microrotation velocities, temperature, couple stress coefficient, skin
friction, and heat transfer rate on the discs, for varying values of injection Reynolds number and micropolar parameter.

The empirical study conducted by Pathak et al. [28] examined the flow and heat transfer properties of micropolar
fluids along a stretchable sheet in a Darcy porous media. The flow governing system of equations, which are nonlinear, were
solved by the authors using a quasi-uniform mesh in conjunction with a nonstandard finite difference approach. Validation
of the results was achieved by a comparison with those computed using the RK method of order four. The results indicate
that the boundary layer thickness was reduced with an increase in the values of the Reynolds number, micropolar parameter,
and injection/suction parameter. Additionally, a rise in the Prandtl number, heat index parameter, and the micropolar and
injection/suction parameters enhances microrotation, indicating a more pronounced effect of the micropolar characteristics
on the dynamics of fluid flow and heat transfer. In their study, Cutis [29] examined the phenomenon of a creeping flow
in an incompressible, micropolar fluid bounded over a permeable shell. Empirical evidence demonstrated that when
hydraulic resistivity is low and the sphere is completely porous, efficient circulation occurs between the porous area and
the surrounding fluid. This finding can be utilised for efficient drug delivery by using a fully porous sphere with outstanding
permeability as the carrier for the drug.

Recent progress has centered on creating effective numerical techniques to address the complex, nonlinear differential
equations that control fluid flow dynamics. The Spectral Quasi-Linearization Method (SQLM) is one such technique,
combining quasilinearization with spectral methods to achieve high accuracy in linearizing and solving nonlinear terms.
This method is effectively used for investigating boundary layer flows over stretching/shrinking sheets in non-Darcy porous
media and other fluid flow applications. Srinivasacharya et al. [30] have examined the process of production of entropy
and heat exchange in a micro-polar fluid flow inside an annular region subjected to a magnetic field. The two geometry
walls in this study, one acting as suction and the other as injection, have the same velocity. The solution was obtained
using a spectral Chebyshev collocation method. These findings demonstrate that the interior cylinder exhibited the greatest
entropy production, whereas the exterior cylinder displayed the lowest entropy production. Alharbey et al. [31] employed
Structural Equation Modelling (SQLM) to investigate the dynamics of a micropolar fluid along a horizontal plate within
a non-Darcy porous media. Similarity variables in SQLM convert flow-governing equations into ODE, resulting in
numerical solutions with rapid convergence. Entropy production decreases with Reynolds and Brinkman numbers, while
velocity profiles increase with material parameters, demonstrating the method’s resilience and effectiveness in complex
fluid dynamics applications.
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Majority of the studies reported in the literature focused on the study of micropolar fluid flow with regard to stretching
sheets or within porous conduits. This work presents a mathematical model for the analysis of flow and heat transfer
phenomena in a micropolar fluid in between a channel with parallel and permeable walls, saturated with anisotropic
porous media. The momentum and energy equations, together with the boundary conditions, are initially transformed into
a non-dimensional form by similarity transformation. Subsequently, a numerical solution is obtained using the Spectral
Quasi-Linearization Method (SQLM). A systematic investigation is conducted to examine the influence of several key
parameters, including the anisotropic permeability ratio, anisotropic angle, Darcy number, Reynolds number, Brinkmann
number, Prandtl number, and coupling number on the velocity, microrotation, and temperature distributions within the
boundary layer.

2. MATHEMATICAL FORMULATION OF THE PROBLEM
Consider a 2-D channel filled with anisotropic porous media, where the flow of a steady, laminar, incompressible

micropolar fluid is observed. This work assumes that the channel walls are permeable, enabling the steady flow of fluid
into or out of the channel at a constant velocity of 𝑣0. The 𝑋-axis is aligned parallel to the surface of the channel walls,
while the 𝑌 -axis exhibits a perpendicular orientation to them. Moreover, the channel walls are situated at 𝑦 = ±ℎ and
the temperatures near the boundaries are represented as 𝑇1 and 𝑇2, respectively (see Figure 1). As the porous media is
considered anisotropic the permeability matrix which is a second-order tensor K, is given by [32]

K =

[
𝑘2 cos2 𝜙 + 𝑘1 sin2 𝜙 (𝑘2 − 𝑘1) sin 𝜙 cos 𝜙
(𝑘2 − 𝑘1) sin 𝜙 cos 𝜙 𝑘2 sin2 𝜙 + 𝑘1 cos2 𝜙

]
. (1)

𝑘1 and 𝑘2 are the vertical and horizontal permeabilities which are assumed constant. 𝜙 is the anisotropic angle formed by
the intersection of the main axis and the horizontal permeability 𝑘2. The governing equations for micropolar fluid with
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Figure 1. A physical interpretation of micropolar fluid flow problem.

anisotropic porous permeability are stated below, taking into account the aforementioned factors:

𝜕𝑢

𝜕𝑥
+ 𝜕𝑣
𝜕𝑦

= 0, (2)

𝜌

[
𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣 𝜕𝑢

𝜕𝑦

]
= − 𝜕𝑝

𝜕𝑥
+ (𝜇 + 𝜅)

[ 𝜕2𝑢

𝜕𝑥2 + 𝜕
2𝑢

𝜕𝑦2

]
+ 𝜅 𝜕𝑊

𝜕𝑦

− 𝜇 + 𝜅
𝑘1𝑘2

[
(𝑘1 cos2 (𝜙) + 𝑘2 sin2 (𝜙))𝑢 + ( 1

2
(𝑘1 − 𝑘2) sin(2𝜙))𝑣

]
,

(3)

𝜌

[
𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣 𝜕𝑣

𝜕𝑦

]
= − 𝜕𝑝

𝜕𝑦
+ (𝜇 + 𝜅)

[ 𝜕2𝑣

𝜕𝑥2 + 𝜕
2𝑣

𝜕𝑦2

]
− 𝜅 𝜕𝑊

𝜕𝑥

− 𝜇 + 𝜅
𝑘1𝑘2

[
( 1
2
(𝑘1 − 𝑘2) sin 2(𝜙))𝑢 + (𝑘1 sin2 (𝜙) + 𝑘2 cos2 (𝜙))𝑣

]
,

(4)
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𝜌 𝑗

[
𝑢
𝜕𝑊

𝜕𝑥
+ 𝑣 𝜕𝑊

𝜕𝑦

]
= −𝜅

[
2𝑊 + 𝜕𝑢

𝜕𝑦
− 𝜕𝑣

𝜕𝑥

]
+ 𝛾

[ 𝜕2𝑊

𝜕𝑥2 + 𝜕
2𝑊

𝜕𝑦2

]
, (5)

(𝜌𝑐𝑝)
[
𝑢
𝜕𝑇
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]
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]
+ 𝜅

2
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𝜕𝑥

− 𝜕𝑢

𝜕𝑦
− 2𝑊

]2
+ 𝛾

[ ( 𝜕𝑊
𝜕𝑥

)2
+
(
𝜕𝑊

𝜕𝑦

)2 ]
+ (2𝜇 + 𝜅)
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( 𝜕𝑢
𝜕𝑥

)2 + ( 𝜕𝑣
𝜕𝑦

)2 + 1
2
( 𝜕𝑢
𝜕𝑦

+ 𝜕𝑣
𝜕𝑥

)2
]

+ 𝜇 + 𝜅
𝑘1𝑘2

[
(𝑘1 cos2 (𝜙) + 𝑘2 sin2 (𝜙))𝑢2 + (𝑘1 − 𝑘2) sin 2(𝜙)𝑢𝑣 + (𝑘2 cos2 (𝜙) + 𝑘1 sin2 (𝜙))𝑣2

]
.

(6)

Mathematical formulations for boundary conditions of a micropolar fluid flow problem are as below:

𝑢 = 0, 𝑣 = −𝑣0, 𝑊 = 0, 𝑇 = 𝑇1, at 𝑦 = −ℎ,
𝑢 = 0, 𝑣 = 𝑣0, 𝑊 = 0, 𝑇 = 𝑇2, at 𝑦 = +ℎ. (7)

The variables 𝑢 and 𝑣 in the equations above represent the dimensional components of fluid velocity in 𝑋 and𝑌 coordinate
directions. Furthermore, the variables considered are: 𝑝 denotes pressure,𝑇 denotes temperature,𝑊 denotes microrotation
velocity, 𝜅 denotes vortex viscosity, 𝛾 denotes spin-gradient viscosity, 𝑗 denotes micro-inertia density, 𝜌 denotes the
effective density of the micropolar fluid, 𝜇 denotes effective dynamic viscosity of micropolar fluid, 𝑐𝑝 denotes specific
heat of micropolar fluid, and 𝐾 𝑓 denotes the thermal conductivity of micropolar fluid.
Following dimensionless parameters are introduced:

𝜉 =
𝑥

ℎ
, 𝜂 =

𝑦

ℎ
, 𝑢 = −𝑣0𝑥

ℎ
𝑓 ′ (𝜂), 𝑊 =

𝑣0𝑥

ℎ2 𝑔(𝜂), 𝑣 = 𝑣0 𝑓 (𝜂), 𝜃 =
(𝑇 − 𝑇1)
(𝑇2 − 𝑇1)

= 𝜃1 (𝜂) + 𝜉2𝜃2 (𝜂). (8)

In these equations, 𝑣0 is the cross-flow transpiration velocity, which remains constant. 𝑣0 < 0 stands for suction and 𝑣0 >
0 for injection. After substituting the above into the flow governing equations (3)- (6) and after the pressure gradient is
removed, and upon equating the coefficients of 𝜉0, 𝜉, and 𝜉2 we get:( 1

1 − 𝑁

)
𝑓 𝑖𝑣 − 𝑁

1 − 𝑁 𝑔
′′ + 𝑅𝑒[ 𝑓 ′ 𝑓 ′′ − 𝑓 𝑓 ′′′] − 1

(1 − 𝑁)𝐷𝑎 [𝐾 cos2 𝜙 + sin2 𝜙] 𝑓 ′′ = 0, (9)

(2 − 𝑁
𝑚2

)
𝑔
′′ − 2𝑔 + 𝑅𝑒 𝑎 𝑗

(1 − 𝑁
𝑁

)
( 𝑓 ′𝑔 − 𝑓 𝑔

′ ) + 𝑓 ′′ = 0, (10)

𝜃′′1 + 2𝜃2 − 𝑃𝑟 𝑅𝑒[ 𝑓 𝜃1
′] + 𝑁 (2 − 𝑁)

1 − 𝑁
𝐵𝑟

𝑚2 𝑔
2 + 𝐵𝑟

𝐷𝑎
[cos2 𝜙 + 𝐾 sin2 𝜙] 𝑓 2

+2
(2 − 𝑁
1 − 𝑁

)
𝐵𝑟 𝑓

′2 = 0,
(11)

𝜃′′2 + 𝐵𝑟
2

( 𝑁

1 − 𝑁

)
[ 𝑓 ′′2 + 4𝑔2 − 4 𝑓 ′′𝑔] + 𝐵𝑟

𝑚2 𝑔
′2
(𝑁 (2 − 𝑁)

1 − 𝑁

)
+ 2𝑃𝑟 𝑅𝑒 𝜃2 𝑓

′ − 𝑃𝑟 𝑅𝑒 𝑓 𝜃′2

+𝐵𝑟
2

(2 − 𝑁
1 − 𝑁

)
𝑓 ′′2 + 𝐵𝑟

(1 − 𝑁)𝐷𝑎 [𝐾 cos2 𝜙 + sin2 𝜙] 𝑓 ′2 = 0.
(12)

The boundary conditions are:

𝑓 (𝜂) = −1, 𝑓 ′ (𝜂) = 0, 𝑔(𝜂) = 0, 𝜃1 (𝜂) = 0, 𝜃2 (𝜂) = 0 at 𝜂 = −1,
𝑓 (𝜂) = 1, 𝑓 ′ (𝜂) = 0, 𝑔(𝜂) = 0, 𝜃1 (𝜂) = 1, 𝜃2 (𝜂) = 0, at 𝜂 = 1.

(13)

Here 𝐵𝑟 represents Brinkman number, 𝑃𝑟 represents Prandtl number, 𝑅𝑒 represents Reynolds number, 𝐷𝑎 represents
Darcy number, 𝑁 represents coupling number, 𝑎 𝑗 represents micro-inertia parameter, 𝑚2 represents micropolar parameter,
𝐾 represents anisotropic permeability ratio. These parameters are defined as below:

𝐵𝑟 =
𝜇𝑣0

2

𝐾 𝑓 (𝑇2 − 𝑇1)
, 𝑃𝑟 =

𝜇𝑐𝑝

𝐾 𝑓

, 𝑅𝑒 =
𝜌𝑣0ℎ

𝜇
, 𝐷𝑎 =

𝑘1

ℎ2 ,

𝑁 =
𝜅

(𝜅 + 𝜇) , 𝑎 𝑗 =
𝑗

ℎ2 , 𝑚
2 =

(𝜅 + 2𝜇)ℎ2𝜅

(𝜅 + 𝜇)𝛾 , 𝐾 =
𝑘1
𝑘2
.

(14)
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3. METHOD OF SOLUTION
A numerical solution was obtained for the non-linear equations (9) - (12) by applying the Spectral Quasi-Linearization

approach, while considering the boundary conditions in equation (13). This iterative approach combines a spectral
framework with a Quasi-linearization method for solving nonlinear differential equations. Bellman and Kalaba [33]
developed the Quasilinearization Method (QLM) as an extension of the Newton-Raphson method, specifically designed
to address nonlinear boundary value problems. On applying the above procedure, the linear equations are obtained as:

𝑒1,𝑟 𝑓
𝑖𝑣
𝑟+1 + 𝑒2,𝑟 𝑓

′′′
𝑟+1 + 𝑒3,𝑟 𝑓

′′
𝑟+1 + 𝑒4,𝑟 𝑓

′
𝑟+1 + 𝑒5,𝑟 𝑓𝑟+1 + 𝑒6,𝑟𝑔

′′
𝑟+1 = 𝑆1, (15)

𝑓 ′′𝑟+1 + 𝑒7,𝑟 𝑓
′
𝑟+1 + 𝑒8,𝑟 𝑓𝑟+1 + 𝑒9,𝑟𝑔

′′
𝑟+1 + 𝑒10,𝑟𝑔

′
𝑟+1 + 𝑒11,𝑟𝑔𝑟+1 = 𝑆2, (16)

𝑒12,𝑟 𝑓
′
𝑟+1 + 𝑒13,𝑟 𝑓𝑟+1 + 𝑒14,𝑟𝑔𝑟+1 + (𝜃1)′′𝑟+1 + 𝑒15,𝑟 (𝜃1)′𝑟+1 + 𝑒16,𝑟 (𝜃2)𝑟+1 = 𝑆3, (17)

𝑒17,𝑟 𝑓
′′
𝑟+1 + 𝑒18,𝑟 𝑓

′
𝑟+1 + 𝑒19,𝑟 𝑓𝑟+1 + 𝑒20,𝑟𝑔

′
𝑟+1 + 𝑒21,𝑟𝑔𝑟+1 + (𝜃2)′′𝑟+1 + 𝑒22,𝑟 (𝜃2)′𝑟+1 + 𝑒23,𝑟 (𝜃2)𝑟+1 = 𝑆4. (18)

The obtained boundary conditions are :

𝑓𝑟+1 = −1, 𝑓 ′𝑟+1 = 0, 𝑔𝑟+1 = 0, (𝜃1)𝑟+1 = 0, (𝜃2)𝑟+1 = 0 at 𝜂 = −1,
𝑓𝑟+1 = 1, 𝑓 ′𝑟+1 = 0, 𝑔𝑟+1 = 0, (𝜃1)𝑟+1 = 1, (𝜃2)𝑟+1 = 0, at 𝜂 = 1.

(19)

The coefficients obtained are as follows:

e1,𝑟 = 1
1−𝑁 , 𝑒2,𝑟 = −𝑅𝑒 𝑓𝑟 , 𝑒3,𝑟 = − 1

(1 − 𝑁)𝐷𝑎 [𝐾 cos2 𝜙 + sin2 𝜙] + 𝑅𝑒 𝑓 ′𝑟 , 𝑒4,𝑟 = 𝑅𝑒 𝑓 ′′𝑟 ,

𝑒5,𝑟 = −𝑅𝑒 𝑓 ′′′𝑟 , 𝑒6,𝑟 = − 𝑁

1 − 𝑁 , 𝑒7,𝑟 = 𝑅𝑒 𝑎 𝑗 (
1 − 𝑁
𝑁

)𝑔𝑟 , 𝑒8,𝑟 = −𝑅𝑒 𝑎 𝑗 (
1 − 𝑁
𝑁

)𝑔′𝑟 , 𝑒9,𝑟 =
2 − 𝑁
𝑚2 ,

𝑒10,𝑟 = −𝑅𝑒 𝑎 𝑗 (
1 − 𝑁
𝑁

) 𝑓𝑟 , 𝑒11,𝑟 = 𝑅𝑒 𝑎 𝑗 (
1 − 𝑁
𝑁

) 𝑓 ′𝑟 − 2, 𝑒12,𝑟 = 4( 2 − 𝑁
1 − 𝑁 )𝐵𝑟 𝑓 ′𝑟 ,

𝑒13,𝑟 = −𝑃𝑟 𝑅𝑒(𝜃′1)𝑟 + 2
𝐵𝑟

(1 − 𝑁)𝐷𝑎 [cos2 𝜙 + 𝐾 sin2 𝜙] 𝑓𝑟 , 𝑒14,𝑟 =
2𝑁 (2 − 𝑁)

1 − 𝑁
𝐵𝑟

𝑚2 𝑔𝑟 , 𝑒15,𝑟 = −𝑃𝑟𝑅𝑒 𝑓𝑟 ,

𝑒16,𝑟 = 2, 𝑒17,𝑟 =
𝑁

1 − 𝑁 𝐵𝑟 ( 𝑓
′′)𝑟 −

2𝑁
1 − 𝑁 𝐵𝑟 𝑔𝑟 +

2 − 𝑁
1 − 𝑁 𝐵𝑟 ( 𝑓

′′
𝑟 ),

𝑒18,𝑟 = 2𝑃𝑟 𝑅𝑒(𝜃2)𝑟 +
2𝐵𝑟

(1 − 𝑁)𝐷𝑎 [𝐾 cos2 𝜙 + sin2 𝜙] 𝑓 ′𝑟 , 𝑒19,𝑟 = −𝑃𝑟𝑅𝑒(𝜃′2)𝑟 , 𝑒20,𝑟 =
2𝑁 (2 − 𝑁)

1 − 𝑁
𝐵𝑟

𝑚2 𝑔
′
𝑟 ,

𝑒21,𝑟 =
4𝑁

1 − 𝑁 𝐵𝑟 𝑔𝑟 −
2𝑁

1 − 𝑁 𝐵𝑟 ( 𝑓
′′)𝑟 , 𝑒22,𝑟 = −𝑃𝑟 𝑅𝑒 𝑓𝑟 , 𝑒23,𝑟 = 2𝑃𝑟 𝑅𝑒 𝑓 ′𝑟 ,

𝑆1 = 𝑅𝑒[ 𝑓 ′𝑟 𝑓 ′′𝑟 − 𝑓𝑟 𝑓
′′′
𝑟 ], 𝑆2 = 𝑅𝑒 𝑎 𝑗 (

1 − 𝑁
𝑁

) [ 𝑓 ′𝑟 𝑔𝑟 − 𝑓𝑟𝑔
′
𝑟 ],

𝑆3 = −𝑃𝑟 𝑅𝑒( 𝑓 )𝑟 (𝜃′1)𝑟 +
𝑁 (2 − 𝑁)

1 − 𝑁
𝐵𝑟

𝑚2 (𝑔)
2
𝑟 +

𝐵𝑟

(1 − 𝑁)𝐷𝑎 [cos2 𝜙 + 𝐾 sin2 𝜙] ( 𝑓 )2
𝑟 +

2(2 − 𝑁)
1 − 𝑁 𝐵𝑟 ( 𝑓 ′)2

𝑟 ,

𝑆4 =
1
2
( 𝑁

1−𝑁 )𝐵𝑟 [( 𝑓 ′′)2
𝑟 + 4(𝑔)2

𝑟 − 4( 𝑓 ′′)𝑟𝑔𝑟 ] +
𝑁 (2 − 𝑁)

1 − 𝑁
𝐵𝑟

𝑚2 (𝑔′)2
𝑟 + 2𝑃𝑟𝑅𝑒( 𝑓 ′)𝑟 − 𝑃𝑟𝑅𝑒( 𝑓 )𝑟 (𝜃′2)𝑟

+ 1
2
( 2 − 𝑁
1 − 𝑁 )𝐵𝑟 ( 𝑓 ′′2)𝑟 +

𝐵𝑟

(1 − 𝑁)𝐷𝑎 [𝐾 cos2 𝜙 + sin2 𝜙] ( 𝑓 ′)2
𝑟 .

To solve the linearised equations (15)-(18), a Chebyshev spectral collocation approach [34, 35] is used. Chebyshev
interpolating polynomials are used to estimate the unknown functions. These polynomials are collocated at the Gauss-
Lobatto points, which are defined as 𝜁 𝑗 = cos (𝜋 𝑗/𝑀), where 𝑗 = 1, 2, · · ·𝑀 of collocation points. The derivatives of
𝑓 (𝜂), 𝑔(𝜂), 𝜃1 (𝜂), and 𝜃2 (𝜂) are determined by using the differential matrix D to calculate Chebyshev polynomials from
the collocation nodes. At the collocation nodes, the derivatives of 𝑓𝑟+1, 𝑔𝑟+1, (𝜃1)𝑟+1, and (𝜃2)𝑟+1 are represented as:

𝜕 𝑝 𝑓𝑟+1
𝜕𝜂𝑝

=

(
2
𝐿

) 𝑝 𝑀∑︁
𝑖=0

𝐷
𝑝

𝑀,𝑖
𝑓𝑟+1 (𝜂𝑖) = D𝑝𝐹,

𝜕 𝑝𝑔𝑟+1
𝜕𝜂𝑝

=

(
2
𝐿

) 𝑝 𝑀∑︁
𝑖=0

𝐷
𝑝

𝑀,𝑖
𝑔𝑟+1 (𝜂𝑖) = D𝑝𝐺,

𝜕 𝑝 (𝜃1)𝑟+1
𝜕𝜂𝑝

=

(
2
𝐿

) 𝑝 𝑀∑︁
𝑖=0

𝐷
𝑝

𝑀,𝑖
(𝜃1)𝑟+1 (𝜂𝑖) = D𝑝Θ1,

𝜕 𝑝 (𝜃2)𝑟+1
𝜕𝜂𝑝

=

(
2
𝐿

) 𝑝 𝑀∑︁
𝑖=0

𝐷
𝑝

𝑀,𝑖
(𝜃2)𝑟+1 (𝜂𝑖) = D𝑝Θ2.

(20)
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Where D is Chebyshev differentiation matrix which is scaled by 𝐿/2 and is of order (𝑀 + 1) × (𝑀 + 1) with derivative of
order 𝑝 . On substituting the equation (20) into equations (15) - (18), we obtain

[𝑒1,𝑟D4 + 𝑒2,𝑟D3 + 𝑒3,𝑟D2 + 𝑒4,𝑟D + 𝑒5,𝑟 𝐼] 𝑓𝑟+1 + 𝑒6,𝑟D2𝑔𝑟+1 = 𝑆1, (21)

[D2 + 𝑒7,𝑟D + 𝑒8,𝑟 𝐼] 𝑓𝑟+1 + [𝑒9,𝑟D2 + 𝑒10,𝑟D + 𝑒11,𝑟 𝐼]𝑔𝑟+1 = 𝑆2, (22)

[𝑒12,𝑟D + 𝑒13,𝑟 𝐼] 𝑓𝑟+1 + [𝑒14,𝑟 𝐼]𝑔𝑟+1 + [D2 + 𝑒15,𝑟D] (𝜃1)𝑟+1 + [𝑒16,𝑟 𝐼] (𝜃2)𝑟+1 = 𝑆3, (23)

[𝑒17,𝑟D2 + 𝑒18,𝑟D + 𝑒19,𝑟 𝐼] 𝑓𝑟+1 + [𝑒20,𝑟D + 𝑒21,𝑟 𝐼]𝑔𝑟+1 + [D2 + 𝑒22,𝑟D + 𝑒23,𝑟 𝐼] (𝜃2)𝑟+1 = 𝑆4. (24)

On applying the spectral method to boundary conditions we get:

𝑓𝑟+1 (𝜁0) = 1,
𝑀∑︁
𝑘=0

D𝑀,𝑘 𝑓𝑟+1 (𝜁0) = 0,

𝑓𝑟+1 (𝜁𝑀 ) = −1,
𝑀∑︁
𝑘=0

D𝑀,𝑘 𝑓𝑟+1 (𝜁𝑀 ) = 0,

𝑔𝑟+1 (𝜉0) = 0, 𝑔𝑟+1 (𝜁𝑀 ) = 0,
(𝜃1)𝑟+1 (𝜁0) = 1, (𝜃1)𝑟+1 (𝜁𝑀 ) = 0,
(𝜃2)𝑟+1 (𝜁0) = 0, (𝜃2)𝑟+1 (𝜁𝑀 ) = 0.

(25)

The matrix form of the aforementioned equation system is written as
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

 ×

𝐹𝑟+1
𝐺𝑟+1
Θ1𝑟+1
Θ2𝑟+1

 =

𝑆1
𝑆2
𝑆3
𝑆4

 , (26)

Boundary conditions are placed on separate matrices as follows:

A11 =



1 0 · · · 0 0
D1,0 D1,1 · · · D1,M−1 D1,M

𝐴11
DM−1,0 DM−1,1 · · · DM−1,M−1 DM−1,M

0 0 · · · 0 1


, A12 =



0 0 · · · 0 0
0 0 · · · 0 0

𝐴12

0 0 · · · 0 0
0 0 · · · 0 0


,

A13 =



0 0 · · · 0 0
0 0 · · · 0 0

𝐴13

0 0 · · · 0 0
0 0 · · · 0 0


, A14 =



0 0 · · · 0 0
0 0 · · · 0 0

𝐴14

0 0 · · · 0 0
0 0 · · · 0 0


, A21 =


0 0 · · · 0 0

𝐴21

0 0 · · · 0 0


,

A22 =


1 0 · · · 0 0

𝐴22

0 0 · · · 0 1


, A23 =


0 0 · · · 0 0

𝐴23

0 0 · · · 0 0


, A24 =


0 0 · · · 0 0

𝐴24

0 0 · · · 0 0


,

A31 =


0 0 · · · 0 0

𝐴31

0 0 · · · 0 0


, A32 =


0 0 · · · 0 0

𝐴32

0 0 · · · 0 0


, A33 =


1 0 · · · 0 0

𝐴33

0 0 · · · 0 1


,

A34 =


0 0 · · · 0 0

𝐴34

0 0 · · · 0 0


, A41 =


0 0 · · · 0 0

𝐴41

0 0 · · · 0 0


, A42 =


0 0 · · · 0 0

𝐴42

0 0 · · · 0 0


,
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A43 =


0 0 · · · 0 0

𝐴43

0 0 · · · 0 0


, A44 =


1 0 · · · 0 0

𝐴44

0 0 · · · 0 1


, F𝑟+1 =



𝑓𝑟+1,0
𝑓𝑟+1,1

...

𝑓𝑟+1,𝑀−1
𝑓𝑟+1,𝑀


,

G𝑟+1 =


𝑔𝑟+1,0

...

𝑔𝑟+1,𝑀


, 𝚯1𝑟+1 =


𝜃1𝑟+1,0

...

𝜃1𝑟+1,𝑀


,𝚯2𝑟+1 =


𝜃2𝑟+1,0

...

𝜃2𝑟+1,𝑀


, 𝑆1 =



1
0

s1
0
−1


,

𝑆2 =


0

s2
0

 , 𝑆3 =


1

s3
0

 , 𝑆4 =


0

s4
0

 .
where

𝐴11 = [diag(e1,𝑟 ) diag(e2,𝑟 ) diag(e3,𝑟 ) diag(e4,𝑟 ) diag(e5,𝑟 )] [D4 D3 D2 D 𝐼]𝑇 ,
𝐴12 = [diag(e6,𝑟 )] [D2]𝑇 , 𝐴13 = 0, 𝐴14 = 0,
𝐴21 = [1 diag(e7,𝑟 ) diag(e8,𝑟 )] [𝐷2 D 𝐼]𝑇 ,
𝐴22 = [diag(e9,𝑟 ) diag(e10,𝑟 ) diag(e11,𝑟 )] [D2 D 𝐼]𝑇 , 𝐴23 = 0,
𝐴24 = 0, 𝐴31 = [diag(e12,𝑟 ) diag(e13,𝑟 )] [𝐷 𝐼]𝑇 , 𝐴32 = [diag(e13,𝑟 )] [𝐼]𝑇 ,
𝐴33 = [diag(e14,𝑟 ) diag(e15,𝑟 )] [D2 𝐷]𝑇 , 𝐴34 = [diag(e16,𝑟 )] [𝐼]𝑇 ,
𝐴41 = [diag(e17,𝑟 ) diag(e18,𝑟 ) diag(e19,𝑟 )] [D2 D 𝐼]𝑇 ,
𝐴42 = [diag(e20,𝑟 ) diag(e21,𝑟 )] [D 𝐼]𝑇 , 𝐴43 = 0,
𝐴44 = [1 diag(e22,𝑟 ), diag(e23,𝑟 )] [𝐷2 𝐷 𝐼] .

Here, e, I, and 0 represent the diagonal, unit, and null matrices, respectively which are of order (𝑀 + 1) × (𝑀 + 1).

æ

æ æ

æ æ

æ

æ

æ æ

æ

æ

æ
æ

æ

æ
æ æ

æ

æ æ æ æ
æ æ

æ

æ

æ

æ æ

æ

à

à

à

à
à

à
à

à
à à

à
à

à

à à à à

à

à

à
à

à

à
à

à
à

à

à à
à

ì

ì
ì

ì

ì

ì
ì

ì

ì

ì ì
ì

ì
ì

ì
ì

ì

ì

ì
ì

ì ì ì

ì

ì
ì ì

ì

ì

ì

- M = 30

- M = 35

- M = 40

5 10 15 20 25 30

10-5

0.001

0.1

Iterations

°Re
sHfH

ΗLL´
¥

(a)

æ

æ

æ

æ

æ
æ

æ
æ

æ

æ
æ

æ

æ

æ
æ

æ
æ

æ
æ æ

æ
æ

æ
æ

æ
æ

æ æ
æ

æ

à

à

à

à
à à

à
à

à à
à

à

à
à

à

à

à
à à

à
à

à à
à

à à

à

à
à

à

ì

ì

ì
ì

ì ì ì
ì ì

ì

ì

ì ì ì ì ì ì ì
ì

ì
ì ì

ì
ì

ì
ì

ì
ì

ì

ì

- M = 30

- M = 35

- M = 40

5 10 15 20 25 30

10-8

10-6

10-4

0.01

1

Iterations

°Re
sHΘ 1

HΗLL
´ ¥

(b)

Figure 2. Influence of iterations on (a) ∥Res( 𝑓 (𝜂))∥∞ and (b) ∥Res(𝜃1)∥∞
for collocation points when 𝑎 𝑗 = 1, 𝑚 = 2 𝜙 = 𝜋/4, 𝑅𝑒 = 0.4, 𝑁 = 0.4, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5 .

4. CONVERGENCE ANALYSIS AND RESULTS
Convergence analysis entails demonstrating that the iterative procedure converges to an exact solution for the nonlinear
differential equations (9) and (11), by taking the boundary conditions (13) into account. The calculation of residual errors
is performed to guarantee the precision of the numerical results. Inaccuracies measure the extent of discrepancy between
the numerical solution and the precise original solution. These errors quantify the degree of deviation experienced by the
numerical solution from the original solution. For equations (9) and (11), the residual errors are obtained as follows:

Res( 𝑓 ) =
( 1
1 − 𝑁

)
𝑓 𝑖𝑣 − 𝑁

1 − 𝑁 𝑔
′′ + 𝑅𝑒[ 𝑓 ′ 𝑓 ′′ − 𝑓 𝑓

′′′ ] − 1
(1 − 𝑁)𝐷𝑎 [𝐾 cos2 𝜙 + sin2 𝜙] 𝑓 ′′ , (27)
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Figure 3. Axial velocity profile for different values of (a) Anisotropic permeability ratio 𝐾 (b) Anisotropic angle 𝜙 for
𝑎 𝑗 = 1, 𝑚 = 2, 𝑅𝑒 = 0.4, 𝑁 = 0.4, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.

Res(𝜃1) = 𝜃′′1 + 2𝜃2 − 𝑃𝑟 𝑅𝑒[ 𝑓 𝜃′1] +
𝑁 (2 − 𝑁)

1 − 𝑁
𝐵𝑟

𝑚2 𝑔
2 + 𝐵𝑟

(1 − 𝑁)𝐷𝑎 [cos2 𝜙 + 𝐾 sin2 𝜙] 𝑓 2 + 2
(2 − 𝑁
1 − 𝑁

)
𝐵𝑟 𝑓 ′2. (28)

The infinite norms of (27) and (28) are represented as ∥Res( 𝑓 )∥∞, and ∥Res(𝜃1)∥∞ respectively which indicate the largest
absolute value of the error over the whole domain. Increasing the values of 𝑀(number of collocation points), affects the
accuracy of the solution generated by SQLM, as illustrated in Figure (2). The residual error in 𝑓 over 30 iterations for
different collocation points (𝑀 = 30, 35, 40) is displayed in figure 2(a). The optimal accuracy is achieved with collocation
points between 30 and 40, with residual errors around 10−6. The residual error in 𝜃1 over 30 iterations is depicted in figure
2(b). Furthermore, the convergence becomes increasingly evident after the fifth iteration, as the residual error norms fall
in between 10−9 to 10−10. Effects of various key parameters on micropolar fluid flow and heat transfer characteristics are
investigated. These parameters include Darcy number, Reynolds number, Prandtl number, Brinkman number, anisotropic
ratio, anisotropic angle, and the coupling number.

Figures in (3) and (4), depict the axial velocity distribution 𝑓 ′ (𝜂) against the dimensionless distance 𝜂. In figure 3(a),
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Figure 4. Axial velocity profile for different values of (a) Darcy number 𝐷𝑎 (b) Coupling number 𝑁 for 𝑎 𝑗 = 1, 𝑚 = 2,
𝑅𝑒 = 0.4, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.

it is evident that the velocity rises near the vicinity of the boundaries as the values of permeability ratio 𝐾 are increased.
Whereas near the centre line, a decline can be noted, and maximum velocity is attained at the centre. This is due to the
fact that the value of 𝑘 = 𝑘1/𝑘2 increases which implies the horizontal permeability decreases and so the velocity at the
walls. Figure 3(b) depicts the variation of velocity with an anisotropic angle. Optimal velocity is attained when 𝜙 = 0,
while the lowest velocity is seen when 𝜙 = 𝜋

2 . This behaviour is consistent with the concept that when the value of 𝐾
is less than or equal to 1 and keeps 𝐷𝑎 or 𝑘1 constant, a value of 𝜙 = 0 indicates a higher horizontal permeability 𝑘2.
Conversely, if the value of 𝐾 is greater than 1, the behaviour will be the opposite. The value of 𝜙 = 0 is equivalent to
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Figure 5. Transverse velocity profile for different values of (a) Anisotropic permeability ratio 𝐾 (b) Anisotropic angle 𝜙
for 𝑎 𝑗 = 1, 𝑚 = 3, 𝑅𝑒 = 0.2, 𝑁 = 0.2, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.2, 𝜙 = 𝜋/4.

𝑘2 the horizontal permeability, resulting in a reduction in permeability along the flow direction. The velocity exhibits
an upward trend in the vicinity of the walls and a downward trend at the centre as the angle increases. The graph in
figure 4(a) illustrates a reduction in the velocity at boundaries and an increase at the centre of channel as the values of
𝐷𝑎 are raised. As 𝐷𝑎 increases from 0.001 to 1, the velocity profile shifts from uniform to parabolic, indicating less
restricted fluid flow and increased velocity near the center. In the graph of figure 4(b), it can be observed that the velocity
distribution is decreasing near the boundaries, whereas it is increasing at the centre. With increasing 𝑁 , the influence
of microrotations becomes more pronounced, leading to a flatter, more uniform velocity distribution across the channel.
Figures (5)-(6), depict the transverse velocity profile 𝑓 (𝜂) against the dimensionless distance 𝜂. Figure 5(a) illustrates
that the transverse velocity rises at the lower boundary and reduces at the upper boundary, as the value of 𝐾 is increased.
Maximum velocity is attained at the upper wall. For a constant 𝐷𝑎 (constant 𝑘1), an increase in 𝐾 results in a decrease in
𝑘2, the horizontal permeability. As 𝑘2 diminishes, the shear resistance in the horizontal direction escalates, consequently
enhancing the energy dissipation attributed to internal friction within the flow. This energy dissipation influences the
overall decrease in fluid momentum and, indirectly, the transverse velocity as well. In figure 5(b), the velocity is seen
rising near the lower boundary and decreasing towards upper boundary with an increase in 𝜙. Elevating anisotropic angle
𝜙 causes the permeability of the porous media to align with the transverse direction. This alignment reduces resistance
and induces redistributing of the fluid flow, so enhancing the transverse velocity component near the lower wall and a
decrease at the upper wall. Figures in 6(a) and 6(b) show the effect of 𝐷𝑎 and 𝑁 on the transverse velocity. The velocity
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Figure 6. Transverse velocity profile for different values of (a) Darcy number 𝐷𝑎 (b) Coupling number 𝑁 for 𝑎 𝑗 = 1, 𝑚 =

3, 𝑅𝑒 = 0.2, 𝑁 = 0.2, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.2, 𝜙 = 𝜋/4.

is observed to reduce near the lower boundary and rises from the centre towards the upper wall as values of 𝐷𝑎 and 𝑁
are increased. This is expected because a higher Darcy number typically implies a more permeable medium, allowing
fluid to move more freely. As 𝑁 increases, the velocity profiles are almost overlapping with a slight shift upward. This
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overlap suggests that variations in the coupling number have a relatively small impact on the transverse velocity. The
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Figure 7. Microrotation profile for different values of (a) Anisotropic permeability ratio 𝐾 (b) Aisotropic angle 𝜙 for 𝑎 𝑗 =
1, 𝑚 = 2, 𝑅𝑒 = 0.2, 𝑁 = 0.2, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.

microrotation profile in figure 7(a) shows a wave-like pattern with distinct peaks and troughs. The amplitude of these
oscillations, especially at the centre of the channel, can be seen to decrease. This is due to the dampening effects of rotation
in the fluid as the anisotropic permeability 𝐾 increases. Figure 7(b) demonstrates that increasing the anisotropic angle
also reduces microrotation, affecting the rotational dynamics in the fluid. In figure 8(a), as 𝐷𝑎 increases, an increase in
microrotation near the vicinity of lower wall is observed, which declines towards the upper wall. A higher Darcy number,
corresponding to more permeable media, reduces microrotation effects. Understanding this relationship is crucial for
accurately modelling fluid behaviour in micropolar systems, especially in industrial and biomedical applications where
porous media play a significant role. Figure 8(b) demonstrates that increasing the values of coupling number 𝑁 leads

2

-1 -0.5 0 0.5 1

g(
2

)

-0.4

-0.2

0

0.2

0.4

Da = 0.001, 0.01, 0.1, 1, 100

(a)
2

-1 -0.5 0 0.5 1

g(
2

)

-0.2

-0.1

0

0.1

0.2

N = 0.2, 0.3, 0.4

(b)

Figure 8. Microrotation profile for different values of (a) Darcy number 𝐷𝑎 (b) Coupling number 𝑁 for 𝑎 𝑗 = 1, 𝑚 = 2,
𝑅𝑒 = 0.2, 𝑁 = 0.2, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.

to reduction in microrotation located near the upper channel wall. This phenomenon occurs because an increase in the
coupling number leads to a decrease in the thickness of the boundary layer. Furthermore, the microrotation is unimpeded
by the microelements distributed over the metal plate. The microrotation profile in the boundary layer thickness is not
hindered by the microelements that are dispersed away from the plate. Therefore, the distribution of microrotation is an
increasing function of the coupling number till 𝜂 = 0 and opposite from 𝜂 = 0 to 𝜂 = 1. Figures in (9) depict the reverse
trend for increasing the values of 𝑅𝑒, 𝑃𝑟 , and 𝐵𝑟 . Figures in (10)- (12) depict the variation of temperature profile against
the non-dimensional distance 𝜂. It can be seen from figure 10(a) the flatter curve is a result of increased permeability,
which raises K values and results in a more uniform temperature distribution. Figure 10(b) shows that the temperature is
decreasing when the anisotropic angle 𝜙 is increased. A wider and more uniform temperature distribution is indicated by
the peak temperature’s slight decrease with increasing anisotropic angle. According to this, better heat diffusion throughout
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Figure 9. Microrotation profile for different values of (a) Reynold’s number 𝑅𝑒 (b) Prandtl number 𝑃𝑟 (c) Brinkman
number 𝐵𝑟 , for 𝑎 𝑗 = 1, 𝑚 = 2.4, 𝑅𝑒 = 0.75, 𝑁 = 0.2, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.
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Figure 10. Temperature profile for different values of (a) Anisotropic permeability ratio 𝐾 (b) Anisotropic angle 𝜙 for
𝑎 𝑗 = 1, 𝑚 = 2, 𝑅𝑒 = 0.4, 𝑁 = 0.4, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.

the fluid is produced by larger anisotropic angles. The temperature reaches its maximum at the center of the wall and
for 𝜙 = 0. Figure 11(a) shows that higher 𝐷𝑎 values typically correspond to more permeable media, allowing for more
efficient heat transfer. Figure 11(b) illustrates that higher values of 𝑁 indicate more significant coupling effects, which
enhance thermal diffusion, leading to a more uniform temperature profile. As 𝑅𝑒 increases, in figure 12(a), we observe
that the temperature profile peaks near the center and reduces towards the boundaries. This indicates higher Reynold’s
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Figure 11. Temperature profile for different values of (a) Darcy number 𝐷𝑎 (b) Coupling number 𝑁 for 𝑎 𝑗 = 1, 𝑚 = 2,
𝑅𝑒 = 0.4, 𝑁 = 0.4, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.95, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.
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Figure 12. Temperature profile for different values of (a) Reynold’s number 𝑅𝑒 (b) Prandtl number 𝑃𝑟 for 𝑎 𝑗 = 1, 𝑚 = 2,
𝑅𝑒 = 0.4, 𝑁 = 0.4, 𝑃𝑟 = 0.7, 𝐵𝑟 = 0.2, 𝐷𝑎 = 0.01, 𝐾 = 0.5, 𝜙 = 𝜋/4.
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0.7, 𝐷𝑎 = 0.1, 𝐾 = 0.5, 𝜙 = 𝜋/4.

number leads to more uniform temperature distribution, resulting in enhanced heat transfer. Higher 𝑅𝑒 corresponds to
higher flow rates or lower viscosity due to which the temperature gradient becomes less steep. Figure 12(b) illustrates
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that the temperature peaks near 𝜂 = 0 and decreases towards the boundaries as the value of 𝑃𝑟 increases. Greater Prandtl
number 𝑃𝑟 values result in decreased thermal diffusion and more pronounced temperature gradients, which results in more
localised changes near the center. Figure (13) shows that increasing the value of Brinkman number 𝐵𝑟 , results in a higher
temperature peak, indicating that viscous dissipation effects become more significant.

5. CONCLUSIONS
The present work introduces a mathematical model that describes the dynamics of fluid flow and the heat transfer of

a micropolar fluid within a conduit that is saturated with anisotropic porous media. The numerical solutions are obtained
using a Spectral Quasi-Linearization Method (SQLM). An in-house developed MATLAB program is used to generate
graphs that depict the impacts of some important physical parameters identified in the review. The results obtained are
summarized as follows:

• Anisotropic permeability ratio and angle significantly impact the fluid flow and heat characteristics. As 𝐾 , 𝜙
increases, the microrotation and temperature increase, whereas the velocity reduces at the centre of the wall, and
rises near the end of the walls.

• Higher values of Darcy number (𝐷𝑎) indicate less restricted flow, leading to decreased axial velocity near the walls
and increased transverse velocity at the upper wall due to higher vertical permeability. This also reduces microrotation
effects. Understanding this relationship is essential for accurately modelling fluid behavior in micropolar systems,
particularly in industrial and biomedical applications involving porous media. Additionally, the temperature tends
to rise near the centre of the channel.

• Increasing coupling number 𝑁 leads to a reduction in velocity and microrotation in conjunction with an increase in
temperature, mostly due to the substantial micropolar effects.

• As the Brinkmann number 𝐵𝑟 increases, the viscous dissipation effects cause microrotation at the upper channel
wall and temperature to decrease.

• Increase in Reynolds number 𝑅𝑒, causes the microrotation to decrease after the middle of channel and the temperature
distribution becomes less pronounced, indicating stronger convective effects.

• Higher Prandtl number 𝑃𝑟 leads to reduced microrotation and increased temperature, indicating improved heat
transfer efficiency attributed to increased thermal conductivity.

The convergence analysis demonstrated that the SQLM is effective. The residual errors for velocity and temperature
profiles showed rapid convergence, with accuracy significantly improving after the fifth iteration. Accuracy reached its
peak at 35-40 collocation points, but then gradually declined. The numerical method proved robust and efficient, with
residual error norms ranging from 10−6 to 10−7 and 10−9 to 10−10 for various parameters.

The present work addresses a research gap by investigating the impact of micropolar fluid dynamics on fluid flow and
heat transfer. The paper offers valuable recommendations for enhancing the transfer of heat and flow control in engineering
applications that involve micropolar fluids. The numerical method is found to be robust and efficient.
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ВПЛИВ АНIЗОТРОПНОЇ ПРОНИКНОСТI НА МIКРОПОЛЯРНУ ДИНАМIКУ РIДИНИ ТА
ТЕПЛОПЕРЕНОС У ПОРИСТИХ КАНАЛАХ

Р. Вiджая срia,b, В. К. Нарлаb
𝑎Iнженерний коледж ACE, Гхаткесар Мандал, округ Медчал, Телангана, 501301, Iндiя

𝑏GITAM, факультет математики, Хайдарабад, 502329, Iндiя
У поточному дослiдженнi вивчається динамiка рiдин та характеристики теплопередачi мiкрополярних рiдин у каналi, запов-
неному анiзотропним пористим середовищем. Керiвнi рiвняння для профiлiв потоку рiдини, мiкрообертання та температури
розв’язуються чисельно за допомогою методу спектральної квазiлiнеаризацiї (SQLM). Дослiдження вивчає вплив рiзних клю-
чових параметрiв, таких як коефiцiєнт анiзотропної проникностi, анiзотропний кут, число Дарсi, число Рейнольдса, число
Брiнкмана, число Прандтля та число зв’язку. Ключовi висновки вказують на те, що коефiцiєнт анiзотропної проникностi та
анiзотропний кут значно впливають на потiк рiдини та розподiл тепла, при цьому пiдвищена анiзотропiя призводить до по-
силеного мiкрообертання та температури, хоча й зi зниженою швидкiстю в центрi каналу. Вищi числа Дарсi призводять до
менш обмеженого потоку, збiльшення швидкостi та зменшення ефектiв мiкрообертання, тодi як збiльшення числа сполучення
сприяє бiльш рiвномiрному температурному профiлю. Цi результати дають суттєве уявлення про оптимiзацiю теплопере-
дачi та керування потоком у iнженерних додатках, якi включають мiкрополярнi рiдини в пористих середовищах. Ключовi
слова: мiкрополярнi рiдини, анiзотропнi пористi середовища, анiзотропна проникнiсть, мiкроротацiя, теплопередача, метод
спектрально-квазiлiнеаризацiї.
Ключовi слова: мiкрополярна рiдина; анiзотропнi пористi середовища; анiзотропна проникнiсть; мiкроротацiя; теплооб-
мiн; спектральний квазiлiнеаризацiйний метод
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