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The problem of the spatial motion of a passively gravitating body during an to the central body of a perturbing body – a test star – is 
considered. Using the exact expression of the force function, an integral invariant relationship – a quasi-integral – was found. Due to 
the quasi-integral, the regions of possible motion of the passively gravitating body, the surfaces of minimal energy (a generalization 
of the zero velocity surfaces), and the singular points of these surfaces were determined. The stability of planetary motion according 
to Hill during the approach of a test star to the Solar System was investigated. Criteria for the possibility, as well as the impossibility 
of capturing the passively gravitating body by the test star, were established. According to the Hill stability criteria, critical values of 
the orbital parameters of the test star were established, at which the planets of the Solar System either become satellites of the test 
star or leave the bounds of the Solar System. 
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1. PROBLEM FORMULATION. AN ANALOGUE OF JACOBIAN FUNCTION
In the works of A.G. Mamedov [4, 5, 6], the evolution of planetary orbits during stellar approaches to the Solar 

System is explored within the framework of the planar averaged parabolic three-body problem. It has been shown that 
with a moderate approach of the perturbing body to the central body, the size and shape of the orbit of the perturbed 
body remain constant, with only its orientation changing. A test star of solar mass was used as the perturbing body, and 
the orbits of the planets during its approach to the Sun at a distance of 50 au were studied. The results are presented in 
the form of figures and tables. 

In the work of Kholshevnikov and Mishchuk [13], the restricted hyperbolic three-body problem was considered, 
and an assessment was made of the influence of a test star of solar mass on the orbits of the planets during its approach 
to the Sun from a distance of 100 au. to 1152 au. It has been shown that during a moderate approach of such a star to the 
Sun, the sizes of the planetary orbits do not undergo any changes. When the test star approaches the Sun to a distance of 
100 au, the inclination, eccentricity, longitude of ascending node, and argument of pericenter change very little. 

In this study, the motion of the passively gravitating body M is examined in a rotating and pulsating coordinate 
system [1,2] within the framework of the restricted three-body problem. The actively gravitating bodies are: the central 
body 0M  with mass 0m , and the perturbing body M with mass m , where 0m m . In this coordinate system, the 
origin coincides with the barycenter 0G  of the actively gravitating bodies, the 0G xy  plane aligns with the plane of 
motion of these bodies, and the 0G x  axis aligns with the line connecting bodies 0M  and M  . The true anomaly of the 
perturbing body v  is used as the independent variable. Consequently, the equations of motion for body M in this 
coordinate system take a simple form [1,2]. 
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We will refer to equation system (1) as SHAPNER's equations - an acronym formed from the surnames 
Scheibner [9], Petr and Nechvil [10, 11 and Rein 12]. In equation system (1), the force function  , , ,v x y z     is 
analogous to the Jacobi function in the circular problem and is defined by equality 
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Here, the dimensionless quantity    is defined below, eand p  are the eccentricity and the focal parameter of the 
perturbing body M orbit relative to the central 0M , and 1   and  are the relative masses of the main bodies M   
and 0M : 
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respectively. The distances of the passively gravitating body from the main bodies 1r  and 2r  are determined by 
equalities 
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In this context, the distance between the main bodies r  equals  

  1, , 1
1 cos

r p p q e
e v

          
 

, (5) 

where q  is the minimum distance (perihelion distance in the Solar System) of the perturbing body from the central 
one. The equality in (5) for rpractically defines the orbit of the perturbing body: for 1e   it is an elliptical orbit, for 

1e   it is a hyperbolic orbit, and for 1e   it is a parabolic orbit. Additionally, the range of variation of the true 
anomaly is assumed to be 
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where the first interval corresponds to changes in v  during elliptical and parabolic motions of the perturbing body, and 
the second interval corresponds to hyperbolic motion. 

REMARK 1. The Jacobian function analog defined by equality (2) corresponds to the case where 0m m . If 

0m m , then the Jacobian function analog, the relative masses   and 1  , as well as the distances 1r  and 2r  should 
be determined by equalities 
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2. QUASI-INTEGRAL AND THE LAW OF ENERGY CONSERVATION. 
In the restricted circular ( 0e  ) three-body problem, the equations of motion (1) for SHAPNER admit a Jacobi 

integral 
2 2

0 02 2 , 2 2 ,V C C V const        (10) 
where the zero subscript denotes the values of the velocity V  of the passively-gravitating body and the Jacobian 
function   at some initial value of the true anomaly 0v , and C is the constant of the Jacobi integral. 

It is clear that in the non-circular ( 0e  ) restricted three-body problem, such a first integral as the Jacobi integral 
(10) does not exist. This is due to the fact that the force function   explicitly depends on the independent variable v . 
Indeed, if we multiply the first equation of system (1) by /dx dv , the second by /dy dv , and the third by /dz dv , 
summing the resulting equations and integrating over v , we obtain 

 
0 0

22
0

2 2

v v

v v

VV dx dy dz d
dv dv

x dv y dv z dv dv v

 

 

                          , (11) 

or  
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The relation obtained (12) is not a first integral of the motion equations (1): it should be considered as an integral 
invariant relation, or quasi-integral [2]. This can be rewritten in the form of 
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if an unknown antiderivative function ( )u v :  
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is introduced. In the quasi-integral (13), h represents a constant energy and depends on the value of the unknown 
function 0( )u v , i.e., it takes different values on different trajectories of motion. 

Note that the quasi-integral (13) in the case of circular motion 0e   of the perturbing body transforms into the 
Jacobi integral (10), since in this case / 0v   , i.e. ( ) 0u v  . Thus, the obtained quasi-integral (13) in the non-
circular ( 0e  ) restricted three-body problem represents the law of conservation of energy of the passively gravitating 
body: the total energy of the body M, consisting of the Jacobi energy 2 / 2V   and the additional energy ( )u v , is a 
constant quantity, depending only on the initial values of the coordinates and velocities of the body M . The quantity h 
can be considered as the constant energy, having its specific value on each trajectory [2]. Additionally, the Jacobi 
energy 2 / 2V   reaches its maximum value at the pericenter of the orbits of the main bodies 0M  and M  , and its 
minimum value at the apocenter. Therefore, during 0 v   , the double inequality 
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holds, where the indices "a" and "p" correspond to apocenter and pericenter. Moreover, the additional energy ( )u v  
monotonically increases as the main bodies 0M  and M move away from the pericenter, and the passively gravitating 
body M gains additional (potential) energy from them. Conversely, as the main bodies move towards the pericenter, the 
additional energy  ( )u v  decreases, and the body M transfers energy to the main bodies [2]. 

Note that the law of conservation of energy (13) at the moment the primary bodies pass through the periapses of 
their orbits can be represented as 
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where the index "p" signifies the values of the Jacobian function analog   and the velocity V  of the passively 
gravitating body, calculated at the moment the perturbing body passes through the pericenter, i.e. at 0v  . 
Furthermore, min  denotes the minimum value of the function 
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which is related to the Jacobian function analog   by equality [2] 
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Such a value of the function   exists on the circle [2]  
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and is equal to 
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3. REGIONS OF POSSIBLE MOTION. SURFACES OF MINIMUM ENERGY 

AND THEIR CRITICAL POINTS 
The conservation of energy at the pericenter (16) can be rewritten in the form 

 2
min min2 ( ) 2 2 2 2 0,pV u v h                (21) 
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from which we can identify the regions of possible motion  
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where C is the equivalent of the Jacobi constant, and min  has been defined previously. The boundary of the region 
(22) 

 min2 2 C    , (23) 

is referred to as surfaces of minimum energy, the equation of which we write in the form [2] 
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It's clear that the function  , , , , , , ,H H x y z p e v C   , meaning the family of surfaces of minimum energy (24) 
depends not only on the coordinates x, y, z but also on five parameters: , , , ,p e v C   . The Jacobi constant equivalent C 
characterizes the energy of the passively-gravitating body M , and the focal parameter p  represents the linear scale of 
the surfaces. With given values of these parameters , , ,p e v     and C , the body M cannot move beyond the surface 
defined by equation (24). When 0e  , the surfaces of minimum energy (24) transform into the zero velocity surfaces 
of the restricted circular three-body problem. Moreover, from equation (24), it follows that the family of minimum 
energy surfaces given values of the parameters , ,p e    and C for all true anomaly values v  within the range [ , ]a av v  
is located between two surfaces [2] 
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Furthermore, the singular points of the family (24) at fixed values of the parameters , ,p e v    and   are the points 
where it is impossible to construct a unique tangent plane. Therefore, the singular points of the family (24) are 
determined by algebraic equations 
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 (27) 

 
which coincide with the same equations used to determine libration points in the restricted three-body problem [1,2]. 

The solutions to the algebraic equations (27) are the collinear singular points 
     1 1 1 2 2 2 3 3 3,0,0 , ,0,0 , ,0,0L L x L L x L L x  

 
and two pairs of coplanar (triangular) singular points: 

 4 4 4 4, ,0L L x y ,  5 5 4 4, ,0L L x y   in the plane z = 0 and  6 6 6 6,0, ,L L x z  7L   7 6 6,0,L x z  in the plane y = 0 
(see below). The collinear singular point 1L  is located to the left of the main body 0M  of lesser mass, i.e., 

1 1 (1 ) 0x x p      , 2L  is located between the main bodies, i.e., 1 2 20x x x p     , and 3L  is to the right of 
the main body M of greater mass, i.e., 3 2x x . The triangular singular points 4L  and 5L  are located in the left half-
plane x < 0, closer to the main body 0M  of lesser mass and for them 4 0x  . Furthermore, if the masses of the main 
bodies are equal 0m m , then 1 / 2   and the singular point 2L  will be located at the center of mass of the main 
bodies – at the origin, i.e., 2 0x  . 
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Now, let's determine the triangular singular points 4L  and 5L , in the plane z = 0 from the system of algebraic 
equations (27), in which the third equation is absent, and the first equation is rewritten in another form: 

  3 3 4
3 3 3 3
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It is evident that the system (28) is consistent only when 1 2r r . Therefore, there exists a unique real analytical 
solution at 0y   in the form of 1 2r r p  . Let's express the found solution in coordinates x  and y , where in the 
expression (4) for 1r  and 2r , z = 0 should be set. This gives us 

 4 4
3, , 0

2 2
p

x x p y y p z

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It is clear that the 4x -coordinate ( 4x ) of the singular point 4L  or 5L  depends on the focal parameter p  of the test star's 
orbit and its mass through  , while the 4y -coordinate ( 4y ) depends only on p . 

Next, from the system of equations (27) with y = 0, i.e., from the system of two equations 
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we find two symmetric coplanar solutions  6 6 6 6,0,L L x z  and  7 7 6 6,0,L L x z   relative to the x-axis. It is clear that 

6 6 ( )x x v  and 6 6 ( )z z v , and from the second equation of the system (30), it follows that real solutions 6L  and 7L  

can only exist when cos 0v  . It should be noted that at 
2

v
   , the coplanar singular points will also include two 

infinitely distant singular points  8 8 0,0,L L 
 

and  9 9 0,0,L L  , known for the circular problem [2]. At  
0e , the infinitely distant libration points tend towards the infinitely distant singular points. Moreover, the equations 

(30) also have an analytical solution in the plane y = 0 for parabolic motion ( 1e  ) of the test star and cos 1v   . 
This solution also has the form 1 2r r p   and in coordinates, similar to (29), is written as follows: 

  6 6
3, 0, cos 1, 1 .

2 2
p

x x p y z z p v e


              (31) 

Therefore, in the parabolic motion of the test star and at cos 1v   , the x-coordinate of the singular point 6L  or 

7L  depends on the focal parameter p  of the orbit of the test star and its mass through  , while the z-coordinate 6z  
depends only on p . In other cases, the coordinates of the coplanar singular points 6L  or 7L  are determined only 
numerically.  

Thus, in the restricted circular three-body problem, there are a total of seven libration points including the 
infinitely distant ones, whereas in the non-circular problem we are considering, the number of singular points is greater. 

In conclusion, let us note some differences between singular points and libration points. In each singular point, 
there is a bifurcation of the minimum energy surfaces, i.e., a transition from one state to another. Bifurcation also occurs 

at the values of the true anomaly 
2

v
  

 
[2]. Unlike the coordinates of libration points, the coordinates of coplanar 

singular points are not stationary particular solutions of the SHAPNER equations (1), as they do not satisfy these 
equations. Libration points are conical singular points, while coplanar points are singular points of the "center" type. 
REMARK 2. The existence of a Jacobian integral analogue in the restricted elliptical, parabolic, and hyperbolic three-
body problems was denied. However, work [2] has proven that such an analogue – a quasi-integral does exist. From this 
discovered quasi-integral, an analogue of zero-velocity surfaces – minimum energy surfaces – is derived. These 
surfaces also allow for the existence of satellite-type motions, i.e., there is Hill stability at certain parameter values, 
which will be discussed in the next section. 
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4. CRITERIA FOR HILL STABILITY OF MOTION. 
In the restricted three-body problem, the motion of a passively gravitating body is considered Hill stable if it 

remains confined within a certain closed region around one of the primary bodies. In other words, if the passively 
gravitating body, at any values of the true anomaly v , maintains a satellite-type motion around one of the primary 
bodies and remains within a restricted area, its motion is deemed Hill stable. The concept of Hill stability is intimately 
linked to the value of the Jacobian constant analog C, calculated at the special point 2L , which lies between the primary 
bodies 0M  and M   and corresponds to a satellite-type motion. The value of the Jacobian constant analog from the 
family of minimal energy surfaces corresponding to the special point  2 2 ,0,0L x  is denoted by 2C , i.e., from equation 
(24) we set 

  
   

 2 3 2 2
2 2 2 2 2

2 2

1,0,0 2 3C H x x p p
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 

         
      

. (32) 

Then, for any values of the true anomaly v , chosen as the independent variable, the inequality 

 2 min 222 ,
1 1 cosp p

C
C V

e e v


    

   


 (33) 

where 2,p pV and min  are defined earlier, is satisfied. 
Using inequality (33), the criteria for stability, instability, and conditional stability of the motion of a small mass 

body are determined in the restricted elliptical, hyperbolic, and parabolic three-body problems. 
In the case of the restricted elliptical three-body problem, the sufficient condition – a criterion for Hill stability of 

the motion of a small mass body M – takes the form of equation in reference [2], 

 2 ,
1

C
C

e



 (34) 

where the values of the Jacobian constant analog 2C  and C are determined by equations (32) and (33). 
The opposite inequality (34)  

 2

1
C

C
e



 (35) 

defines the criterion for the instability of the motion of the body M according to Hill. In this case, there will be values of 
v for which the inequality 2C C  will hold. 

For the parabolic or hyperbolic restricted three-body problem, one should use the inequality 

1
1 cose v

 
 

, 

from which it follows that the criterion for the stability of the motion of body M  according to Hill is asymptotically 
fulfilled, i.e., when C  . Therefore, stability of the motion of body M  according to Hill in the restricted parabolic 
and hyperbolic three-body problems can never be achieved. Indeed, for any arbitrarily chosen C, there will be a positive 
value of the true anomaly 0pv   such that for any | | pv v  , the inequality 2C C  will hold. 

When the instability criterion (35) is satisfied, there will be such a value of 0pv   that for any | | pv v   the 
inequality 2C C  is met. In such cases, the motion of the passively gravitating body is referred to as conditionally 
stable according to Hill [2]. 

In the case of the restricted elliptical three-body problem, the criterion for conditional stability of the motion of 
body M according to Hill is the fulfillment of the double inequality 

 2 2

1 1
C C

C
e e

 
  

 (36) 

and for the parabolic and hyperbolic restricted three-body problems, conditional stability of the motion of body M 
according to Hill is achieved under condition 

 2 .
1
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C
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 (37) 
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It should be noted that conditional stability of the motion of a small mass body M according to Hill occurs when the 
instability criterion (35) and inequality [2]  

 21cos | cos 1 , | |a a

C
v v v v

e C
          

, (38) 

are met.  
The criterion for absolute instability of the motion of body M according to Hill is the inequality 

 2 ,
1
C

C
e




 (39) 

which ensures that the inequality 2C C  is satisfied at any v .  
The criterion for stability of the motion of a passively gravitating body in the restricted elliptical three-body 

problem according to Hill within a certain bounded area encompassing both primary bodies is the fulfillment of 
inequality 

 3 3 3, .
1 1 1

C C C
C C

e e e
         

 (40) 

Here  3 3 ,0,0C H x
 
is the value from the family of minimal energy surfaces corresponding to the special point 

 3 3,0,0L x , located to the right of the primary body of greater mass M  . Additionally, the brackets indicate the 
criterion for conditional stability according to Hill for motion in this area. The inequality opposite to (40) represents the 
criterion for instability of the motion of body M in this area. 

For brevity, the stability of motion according to Hill, associated with the value 2C  of the Jacobian constant 
analogue, i.e., meeting criterion (34), will be referred to as first-type stability, while the stability of motion according to 
Hill when criterion (40) with the value 3C  is met will be referred to as second-type stability. 

Similarly, criteria for stability, conditional stability, instability, and absolute instability according to Hill for the 
motion of a passively-gravitating body in the restricted elliptical three-body problem associated with other special 
points can be established. For brevity, these criteria are not presented here. 

 
5. SATELLITE EXCHANGE BETWEEN PRIMARY BODIES 

Let us now consider the problem of exchanging a satellite between the primary bodies 0M  and M  , which are 
approaching each other along elliptical, hyperbolic, and parabolic orbits. The theory outlined above regarding the 
criteria for the stability of the motion of body M  by Hill [2] allows us to establish: a) the necessary condition for the 
exchange or capture to take place, b) the sufficient condition for the impossibility of exchange, c) the range of values of 
the true anomaly v  during which a satellite exchange is possible. 

Let's first consider the restricted elliptical three-body problem. When inequality (34) – the condition for the 
stability of the motion of body M  by Hill – is met, an exchange of satellites between the primary bodies in elliptical 
motion is not possible. Therefore, inequality (34) can be considered as a sufficient condition for the impossibility of 
satellite exchange in the case of elliptical motion, as the energy of the satellite in this case is so low that it cannot detach 
from its parent body. However, the necessary condition for satellite exchange in elliptical motion is the fulfillment of 
the instability criterion by Hill, i.e., inequality (35). This inequality, along with the surfaces of minimal energy, 
facilitates the numerical search for the satellite's trajectory during exchange. Thus, when inequality (35) is met and the 
initial conditions are appropriately chosen, the satellite may either leave the vicinity of its parent body and become the 
satellite of the second body (exchange), transform into an independent celestial body (ejection), or remain the satellite 
of its parent body. Furthermore, when the criterion for conditional stability (36) is met, the conditions for the possibility 
of satellite exchange in elliptical motion should be clarified. The exchange can then only occur in interval | | av v  , i.e., 
in the vicinity of the most distant point of the primary bodies’ orbit. It is precisely in this interval of true anomaly 
values, according to inequality (38), that the loss of conditional stability by Hill occurs. 

In the case of parabolic and hyperbolic motion of the primary bodies, the necessary condition for exchange, i.e., 
the instability criterion (35) for the motion of body M  by Hill, is always met. In this case, instability by Hill occurs at 
any energy level when | |v is sufficiently large. Furthermore, in the case of violation of the conditions for conditional 
stability (38) by Hill, i.e., in interval | | av v  , satellite exchange can occur in both elliptical and in parabolic and 
hyperbolic motions of the primary bodies. 

Under the criterion of absolute instability (39), satellite exchange is theoretically possible at any value of the true 
anomaly v . It is worth noting that such conditions were previously unknown, and the possibility or impossibility of 
satellite exchange was checked by intuitively selecting initial conditions and parameters [2]. 
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For example, Hill [8], within the framework of the restricted circular three-body problem of the Sun-Earth-Moon, 
established that the satellite motion of the Moon relative to Earth is stable according to Hill, as the sufficient condition – 
inequality (34) is met when 20 : 2.2544 2.00092e C C     . As shown in the study [2], the Moon's motion remains 
stable according to Hill in the restricted elliptical three-body problem as well – the condition 

22.2544 / (1 )C C e   =2.03501 is met, where e  = 0.016751 is the eccentricity of Earth's orbit. If e  were seven 
times larger, then the motion of the Moon would become conditionally stable according to Hill, i.e., inequality (38) 
would be met: 22.2544 / (1 7 ) 1.7909C C e    , and inequality (34) would not be satisfied: 

22.2544 / (1 7 ) 2.2667C C e    . 
 

6. ON SOME APPLICATIONS OF THE RESTRICTED THREE-BODY PROBLEM 
TO ASTRONOMICAL OBJECTS 

In the study [3], within the framework of the restricted three-body problem, the motion of a star in a close binary 
system (CBS) with conservative mass transfer was investigated. Unlike the well-known Paczynski-Huang model, a new 
model defining the relative motion of the star in the CBS along an elliptical orbit was used. The third body in this 
scenario is the mass stream flowing from the donor star to the accretor star. The elliptical motion of the star takes into 
account the mutual attraction of the stars, reactive forces, and the gravitational force of the stars on the flowing stream. 
Changes in the semi-major axis and eccentricity of the second star were identified, showing that CBS does not form a 
closed mechanical system, i.e., a system that allows for the conservation of linear momentum and angular momentum. 
Moreover, the classical law of conservation of energy does not apply, but there exists an analogue of the conservation 
law in the form of a quasi-integral. This can be confirmed based on the general equations of motion by Meshcherskiy 
for a two-body problem with variable masses. Therefore, the use of the Paczynski-Huang model, which assumes that 
CBS forms a closed mechanical system, is not appropriate for this problem. The model proposed in the study [3] was 
subsequently named the Luk’yanov’s model. 

In the work [7], the problem of the motion of a rotating star in a close binary system (CBS) with conservative mass 
transfer was considered. Using the Luk’yanov’s model [3], the relative motion of the star in close binary systems along 
an elliptical orbit was determined. The elliptical motion of the star accounts for the mutual attraction of the stars, 
reactive forces, the gravitational force of the stars on the flowing stream, and disturbances from the rotational 
movement of the accretor star. Changes in the semi-major axis, eccentricity, and angular velocity of the accretor star's 
orbit were defined depending on the parameter q – the mass ratio of the stars. The results were applied to the star system 
BF Aurigae (in the constellation Auriga) and presented in the form of diagrams. The Luk’yanov model is also 
applicable in studying the motion of stars in CBS with non-conservative mass exchange. 

In the study [14], the problem of the stability of a planet's satellite motion was considered. Within the general 
three-body problem (Sun-planet-satellite), "Sundman surfaces" were constructed, based on which the concept of 
"stability by Sundman" was formulated. Special points of these surfaces were identified, possible motion regions were 
defined, and the stability of the special points by Sundman was established. The stability of the motion of all known 
natural satellites of planets was investigated, and it was shown that the motion of a number of natural satellites, stable 
by Hill, as well as some planet satellites stable by the Golubev method, turn out to be unstable by Sundman. 

In work [15], within the framework of the restricted elliptical three-body problem, the criterion for stability by Hill 
was established. By virtue of this criterion, the stability of four exoplanets outside the solar system in a binary star 
system: CepheiAb, Gliese 86 Ab, HD 41004 Ab, and HD 41004 Bb was investigated. 

 
7. INVESTIGATION OF HILL'S STABILITY OF PLANETARY MOTIONS DURING STELLAR 

APPROACHES 
To investigate the stability of planetary motion in the Hill frame during the approach of a test star to the Solar 

System, moving along a hyperbolic (parabolic or elliptical) orbit, it is necessary to know its mass and orbital 
parameters. As an example, let us take a test star with mass m , heliocentric distance q  (in astronomical units), and 
eccentricity e , varying within the range 

  5 , 50 100, 1 5, 0.1 0.9M m M q e e            , (41) 

where M  is the mass of the Sun, 1e   corresponds to parabolic motion of the test star, and the values of the 
eccentricity of its orbit are indicated in parentheses for elliptical motion. It should be noted that the relationship between 
the time t and the true anomaly v  of the test star depends on the type of its orbit. Thus, in the case of elliptical motion 
of the test star with orbit parameters 0.2e  , 50q   au, and m  = 3 M , the change in v  in interval [0, 3π/4] 
corresponds to a change in time in the interval [0, 80.26] years. For the same values of eccentricity and mass of the test 
star, but at 75q   au, this interval of changes in v  corresponds to the interval [0, 147.45] years, and at 0.2e  , 

75q   au, and m  = 5 M , it corresponds to [0, 120.39] years. 
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In the case of parabolic motion ( 1e  ) of the test star at 50q   au and m=3 M , the interval of changes [0, 
3π/4] in the true anomaly v  corresponds to the time interval [0, 799.53] years, at 75q   au and m  = 3 M  – [0, 
1468.83] years, and at 75q   au and m  = 5 M  –     [0, 1199.29] years. 

Finally, in the case of hyperbolic motion with 1.15e  , 50q   au, and m  = 3 M , the interval [0, 3π/4] of 
changes in v  corresponds to the time interval [0, 466.49] years, at 75q   au and m  = 3 M  –  [0, 857.0] years, and 
at 75q   au and m  = 5 M  –  [0, 699.74] years. 

Table 1 presents the results of the study of Hill stability motion of three planets (Earth, Jupiter, and Saturn) 
depending on the focal parameter p  of the star's orbit and its mass m  during hyperbolic orbits, and in Table 2 - during 
parabolic orbits of the star. In these tables, pC  denotes the value of the analogue of the Jacobi constant when 0v  , 
and 2C  denotes its value computed at the special point L2. It turned out that in the case of a parabolic or hyperbolic star 
orbit, only conditional stability of planetary motion in the Hill frame occurs. 
Table 1. The Hill stability of planetary motion in the restricted hyperbolic three-body problem: planet – Sun –  star 

 
 

Table 2. The Hill stability of planetary motion in the restricted parabolic three-body problem: planet – Sun –  star 

     
 

8. CONCLUSION 
The problem of the spatial motion of a passive-gravitating body during approach to the central body of a test star – 

the perturbing body, has been considered. The perturbing body - the star - may move along an elliptical, parabolic, or 
hyperbolic orbit. An exact expression of the force function without expansion into a series has been used. An integral 
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invariant relationship - a quasi-integral, has been found. Due to the quasi-integral, regions of possible motion of the 
passive-gravitating body, surfaces of minimum energy, which generalize the surfaces of zero velocity, and the special 
points of these surfaces have been determined. The necessary condition has been established - the fulfillment of the Hill 
instability criterion for satellite exchange in the restricted elliptical three-body problem. It has been shown that in the 
case of parabolic or hyperbolic motion of the principal bodies, the necessary condition for satellite exchange is always 
satisfied. In the region of instability loss of Hill motion, satellite exchange can occur in both elliptical and parabolic or 
hyperbolic motions of the principal bodies. Exchange can only occur in the vicinity of the farthest point of the principal 
bodies' orbits. When the instability criterion is met and the initial conditions of the satellite are properly chosen, the 
satellite may either leave the vicinity of the parent body and become a satellite of the second body (exchange), or 
transform into an independent celestial body (ejection), or remain a satellite of the parent body. 

To illustrate the obtained results, restricted hyperbolic, parabolic, and elliptical three-body problems have been 
considered as an example: Sun-planet-test star. In this case, the heliocentric distance q  of the test star and its mass m  
oscillate within the range of 50 to 100 au and from one to five solar masses, respectively. According to the stability criteria 
of the first and second types, critical values of the orbit parameters of the test star have been established, at which the 
planets of the Solar System either become satellites of the test star or leave the boundaries of the Solar System. 
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ПРО СТІЙКІСТЬ РУХІВ ПЛАНЕТ ПІД ЧАС ЗБЛИЖЕННЯ ЗІР 

А.Г. Мамедліа, Р.Т. Мамедова,b, У.С. Валієва 
aБатабатська Астрофізична Oбсерваторія Міністерства Науки і Освіти Азербайджанської Республіки, 

Нахічевань, AZ-7000, Азербайджан 
bНахічеванський Державний Університет, Нахічевань, AZ-7012, Азербайджан 

Розглянуто задачу про просторовий рух пасивно гравітаційного тіла під час наближення до центрального тіла збурюючого 
тіла – пробної зірки. Використовуючи точний вираз силової функції, знайдено інтегральне інваріантне співвідношення – 
квазіінтеграл. За допомогою квазіінтеграла визначено області можливого руху пасивно гравітаційного тіла, поверхні 
мінімальної енергії (узагальнення поверхонь нульової швидкості) та особливі точки цих поверхонь. Досліджено стабільність 
руху планет за Хіллом під час наближення пробної зірки до Сонячної системи. Встановлено критерії можливості, а також 
неможливості захоплення тестовою зіркою пасивно гравітаційного тіла. Відповідно до критеріїв стійкості Хілла були 
встановлені критичні значення параметрів орбіти досліджуваної зірки, при яких планети Сонячної системи або стають 
супутниками досліджуваної зірки, або залишають межі Сонячної системи. 
Ключові слова: небесна механіка; обмежена задача трьох тіл; аналог функції Якобі; квазіінтеграл; закон збереження 
енергії; поверхні мінімальної енергії; особливі точки; стійкість Хілла 


