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The problem of the spatial motion of a passively gravitating body during an to the central body of a perturbing body — a test star — is
considered. Using the exact expression of the force function, an integral invariant relationship — a quasi-integral — was found. Due to
the quasi-integral, the regions of possible motion of the passively gravitating body, the surfaces of minimal energy (a generalization
of the zero velocity surfaces), and the singular points of these surfaces were determined. The stability of planetary motion according
to Hill during the approach of a test star to the Solar System was investigated. Criteria for the possibility, as well as the impossibility
of capturing the passively gravitating body by the test star, were established. According to the Hill stability criteria, critical values of
the orbital parameters of the test star were established, at which the planets of the Solar System either become satellites of the test
star or leave the bounds of the Solar System.
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1. PROBLEM FORMULATION. AN ANALOGUE OF JACOBIAN FUNCTION

In the works of A.G. Mamedov [4, 5, 6], the evolution of planetary orbits during stellar approaches to the Solar
System is explored within the framework of the planar averaged parabolic three-body problem. It has been shown that
with a moderate approach of the perturbing body to the central body, the size and shape of the orbit of the perturbed
body remain constant, with only its orientation changing. A test star of solar mass was used as the perturbing body, and
the orbits of the planets during its approach to the Sun at a distance of 50 au were studied. The results are presented in
the form of figures and tables.

In the work of Kholshevnikov and Mishchuk [13], the restricted hyperbolic three-body problem was considered,
and an assessment was made of the influence of a test star of solar mass on the orbits of the planets during its approach
to the Sun from a distance of 100 au. to 1152 au. It has been shown that during a moderate approach of such a star to the
Sun, the sizes of the planetary orbits do not undergo any changes. When the test star approaches the Sun to a distance of
100 au, the inclination, eccentricity, longitude of ascending node, and argument of pericenter change very little.

In this study, the motion of the passively gravitating body M is examined in a rotating and pulsating coordinate
system [1,2] within the framework of the restricted three-body problem. The actively gravitating bodies are: the central
body M, with mass m,, and the perturbing body M'with mass m', where m, <m'. In this coordinate system, the

origin coincides with the barycenter G, of the actively gravitating bodies, the G,xy plane aligns with the plane of
motion of these bodies, and the G,x axis aligns with the line connecting bodies M, and M. The true anomaly of the

perturbing body V' is used as the independent variable. Consequently, the equations of motion for body M in this
coordinate system take a simple form [1,2].
d’x 2d_y_@_Q d’y dx 0Q d’z 0Q
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We will refer to equation system (1) as SHAPNER's equations - an acronym formed from the surnames
Scheibner [9], Petr and Nechvil [10, 11 and Rein 12]. In equation system (1), the force function Q = Q(v’,x, y,z) is

analogous to the Jacobi function in the circular problem and is defined by equality
’ 1 2 2 12 ' 3| M 1- H
Q=p —(x +y —ez cosv)+p —+— 2)
2 noon
Here, the dimensionless quantity p’ is defined below, ¢'and p’ are the eccentricity and the focal parameter of the

perturbing body M’ orbit relative to the central M, and 1—u and u are the relative masses of the main bodies M’
and M,:
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respectively. The distances of the passively gravitating body from the main bodies 7 and 7, are determined by
equalities

B=(x=pu+p Y +y+2, 5 =(x-pu)+y +7 4)
In this context, the distance between the main bodies r' equals
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where ¢' is the minimum distance (perihelion distance in the Solar System) of the perturbing body from the central
one. The equality in (5) for 7' practically defines the orbit of the perturbing body: for e’ <1 it is an elliptical orbit, for
e'>1 it is a hyperbolic orbit, and for e'=1 it is a parabolic orbit. Additionally, the range of variation of the true
anomaly is assumed to be

!

1 1
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where the first interval corresponds to changes in v’ during elliptical and parabolic motions of the perturbing body, and
the second interval corresponds to hyperbolic motion.
REMARK 1. The Jacobian function analog defined by equality (2) corresponds to the case where m, <m'. If

m, >m', then the Jacobian function analog, the relative masses ¢ and 1— u, as well as the distances # and r, should
be determined by equalities
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2. QUASI-INTEGRAL AND THE LAW OF ENERGY CONSERVATION.

In the restricted circular (e’ =0) three-body problem, the equations of motion (1) for SHAPNER admit a Jacobi
integral
V?-20=2C, 2C=V-2Q,=const, (10)
where the zero subscript denotes the values of the velocity ¥ of the passively-gravitating body and the Jacobian
function Q at some initial value of the true anomaly v, , and C is the constant of the Jacobi integral.

It is clear that in the non-circular (e’ # 0) restricted three-body problem, such a first integral as the Jacobi integral
(10) does not exist. This is due to the fact that the force function Q explicitly depends on the independent variable v'.
Indeed, if we multiply the first equation of system (1) by dx/dv', the second by dy/dv', and the third by dz/dv',
summing the resulting equations and integrating over v', we obtain

V' v
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The relation obtained (12) is not a first integral of the motion equations (1): it should be considered as an integral
invariant relation, or quasi-integral [2]. This can be rewritten in the form of
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y? v,
7—Q+u(v'):h, h=%—90 +u(vy), (13)

if an unknown antiderivative function u(v") :
u(v')—u(v(;)zj.—ag' av', (14)
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is introduced. In the quasi-integral (13), 4 represents a constant energy and depends on the value of the unknown
function u(v;), i.e., it takes different values on different trajectories of motion.

Note that the quasi-integral (13) in the case of circular motion ¢'=0 of the perturbing body transforms into the
Jacobi integral (10), since in this case 6Q/0v' =0, i.e. u(v')=0. Thus, the obtained quasi-integral (13) in the non-
circular (e’ #0) restricted three-body problem represents the law of conservation of energy of the passively gravitating
body: the total energy of the body M, consisting of the Jacobi energy V> /2—-Q and the additional energy u(v'), is a

constant quantity, depending only on the initial values of the coordinates and velocities of the body M . The quantity 4
can be considered as the constant energy, having its specific value on each trajectory [2]. Additionally, the Jacobi

energy V> /2—Q reaches its maximum value at the pericenter of the orbits of the main bodies M, and M', and its

minimum value at the apocenter. Therefore, during 0 <v' < 7, the double inequality

2

2 2 V
%—QHSV?—QS%—QP, (15)

holds, where the indices "a" and "p" correspond to apocenter and pericenter. Moreover, the additional energy u(v")
monotonically increases as the main bodies M, and M'move away from the pericenter, and the passively gravitating

body M gains additional (potential) energy from them. Conversely, as the main bodies move towards the pericenter, the
additional energy u(v') decreases, and the body M transfers energy to the main bodies [2].
Note that the law of conservation of energy (13) at the moment the primary bodies pass through the periapses of
their orbits can be represented as
& v: Q
——Q+u(V)=h, h =L -Q 10 16
2 ()=4, P2 P 1+ (16)

where the index "p" signifies the values of the Jacobian function analog  and the velocity /' of the passively
gravitating body, calculated at the moment the perturbing body passes through the pericenter, i.e. at v'=0.

Furthermore, Q__.  denotes the minimum value of the function

min

5 6!

Q:%(xz+y2+zz)+p'3[ﬁ+l_—”]20, (17)

which is related to the Jacobian function analog Q by equality [2]
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Such a value of the function Q exists on the circle [2]
! r2
V4 2, 2 9P
x=—"=(1-2u), +z° = , 19
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and is equal to
2
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3. REGIONS OF POSSIBLE MOTION. SURFACES OF MINIMUM ENERGY
AND THEIR CRITICAL POINTS
The conservation of energy at the pericenter (16) can be rewritten in the form
V+2u(v)=2Q ., p' =2Q-2Q . - p'+2h, > 0, (21)

min
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from which we can identify the regions of possible motion

m_min , (22)

20-2Q,,-p' 2 C, C=-2h,=2Q -V} - e
+e

where C is the equivalent of the Jacobi constant, and €_. has been defined previously. The boundary of the region
(22)

20-2p'Q,,. > C, (23)

is referred to as surfaces of minimum energy, the equation of which we write in the form [2]

1- ~

H=x+y —ez’cosv' +2p" (ﬁ +_,u] =20, =C(1+¢€'cosV') . (24)
i ]

It's clear that the function H =H(x,y,z,p',e’,v',;,C), meaning the family of surfaces of minimum energy (24)

depends not only on the coordinates x, y, z but also on five parameters: p’,e’,v', 11,C . The Jacobi constant equivalent C

characterizes the energy of the passively-gravitating body M , and the focal parameter p' represents the linear scale of

the surfaces. With given values of these parameters p',e’,v',u and C, the body M cannot move beyond the surface

defined by equation (24). When e’ =0, the surfaces of minimum energy (24) transform into the zero velocity surfaces
of the restricted circular three-body problem. Moreover, from equation (24), it follows that the family of minimum
energy surfaces given values of the parameters p’,e’, 4 and C for all true anomaly values v' within the range [-v,,v, ]

is located between two surfaces [2]

1- .
X4yt -l cosv’+2p'3[ﬁ+—“j—zgmm =C(1+¢), 25)
i n
and
2 2 g2 sl 1—p A '
x4yt =€zl cosv, +2p"” | =+ —=|-2Q,, =C(1+¢€'cos, ), (26)
i n

Furthermore, the singular points of the family (24) at fixed values of the parameters p’,e',v' and u are the points

where it is impossible to construct a unique tangent plane. Therefore, the singular points of the family (24) are
determined by algebraic equations

OH ' ' ’ ’ 1- '
8—=2{x—p E(xtp -pu)-p 3—fl(x—py)}ﬂ,
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which coincide with the same equations used to determine libration points in the restricted three-body problem [1,2].
The  solutions to the  algebraic equations (27) are the collinear singular  points

L=L(x,0,0), L,=L,(x,,0,0), L;=L;(x;,0,0) and two pairs of coplanar (triangular) singular points:
L,=L,(x,,y,,0), Li=Ls(x,, - ,,0) in the plane z = 0 and L ;=L (x,,0,z), L,= L,(x,,0,—z) in the plane y = 0
(see below). The collinear singular point L, is located to the left of the main body M, of lesser mass, i.e.,
x, <X =—p'(1-p)<0, L, is located between the main bodies, i.e., X, <x, <0<X, =p'y, and L, is to the right of
the main body M’ of greater mass, i.e., x, >X,. The triangular singular points L, and L, are located in the left half-
plane x < 0, closer to the main body M, of lesser mass and for them x, <0. Furthermore, if the masses of the main
bodies are equal m, =m', then g =1/2 and the singular point L, will be located at the center of mass of the main

bodies — at the origin, i.e., x, =0.
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Now, let's determine the triangular singular points L, and L., in the plane z = 0 from the system of algebraic
equations (27), in which the third equation is absent, and the first equation is rewritten in another form:

' 2 1_ 1 1 1
x[l—p3%—p3—3“}—p4u(1—y)[r—3——3]=o, (28)

h h

i3 H ' 1—,U
y(l—p ‘o-p 3—3]=0-
h )
It is evident that the system (28) is consistent only when 7 =r,. Therefore, there exists a unique real analytical
solution at y#0 in the form of 5 =# = p'. Let's express the found solution in coordinates x and y , where in the
expression (4) for 7 and r, , z =0 should be set. This gives us

’

’ 3 ’
x:x4:—%+p,u, y:y4:7p, z=0. 29)

It is clear that the x, -coordinate ( x, ) of the singular point L, or L depends on the focal parameter p’ of the test star's
orbit and its mass through x , while the y,-coordinate ( y,) depends only on p'.
Next, from the system of equations (27) with y = 0, i.e., from the system of two equations

, a1l , I 1
9{1—1? ep 3—3”}17 4#(1—;:)[—3——3}:0
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z[e'cosv'+p'3ﬁ3+p'31_—'uj=0, (30)

we find two symmetric coplanar solutions L, =L, (x,,0,z,) and L, =L, (x,,0,—z,) relative to the x-axis. It is clear that

x, =x,(v") and z, =z,(v"), and from the second equation of the system (30), it follows that real solutions L, and L,
can only exist when cos v' <0 . It should be noted that at v' = i% , the coplanar singular points will also include two

infinitely distant singular points LS:LX(O,O,+oo) and LQ:LQ(O,O,—oo), known for the circular problem [2]. At

¢' — 0, the infinitely distant libration points tend towards the infinitely distant singular points. Moreover, the equations
(30) also have an analytical solution in the plane y = 0 for parabolic motion (e'=1) of the test star and cos v'=-1.

This solution also has the form 7 =, = p’ and in coordinates, similar to (29), is written as follows:

!

3
x=x6=—%+p’,u, y=0, z=26=7p’ (cosv'=—-1,¢'=1). 31

Therefore, in the parabolic motion of the test star and at cos v' =—1, the x-coordinate of the singular point L, or
L, depends on the focal parameter p' of the orbit of the test star and its mass through x, while the z-coordinate z,
depends only on p’. In other cases, the coordinates of the coplanar singular points L, or L, are determined only

numerically.
Thus, in the restricted circular three-body problem, there are a total of seven libration points including the
infinitely distant ones, whereas in the non-circular problem we are considering, the number of singular points is greater.
In conclusion, let us note some differences between singular points and libration points. In each singular point,
there is a bifurcation of the minimum energy surfaces, i.e., a transition from one state to another. Bifurcation also occurs

at the values of the true anomaly v' = i; [2]. Unlike the coordinates of libration points, the coordinates of coplanar

singular points are not stationary particular solutions of the SHAPNER equations (1), as they do not satisfy these
equations. Libration points are conical singular points, while coplanar points are singular points of the "center" type.
REMARK 2. The existence of a Jacobian integral analogue in the restricted elliptical, parabolic, and hyperbolic three-
body problems was denied. However, work [2] has proven that such an analogue — a quasi-integral does exist. From this
discovered quasi-integral, an analogue of zero-velocity surfaces — minimum energy surfaces — is derived. These
surfaces also allow for the existence of satellite-type motions, i.e., there is Hill stability at certain parameter values,
which will be discussed in the next section.
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4. CRITERIA FOR HILL STABILITY OF MOTION.

In the restricted three-body problem, the motion of a passively gravitating body is considered Hill stable if it
remains confined within a certain closed region around one of the primary bodies. In other words, if the passively
gravitating body, at any values of the true anomaly V', maintains a satellite-type motion around one of the primary
bodies and remains within a restricted area, its motion is deemed Hill stable. The concept of Hill stability is intimately
linked to the value of the Jacobian constant analog C, calculated at the special point L, , which lies between the primary

bodies M, and M' and corresponds to a satellite-type motion. The value of the Jacobian constant analog from the
family of minimal energy surfaces corresponding to the special point L, (xz,0,0) is denoted by C,, i.e., from equation
(24) we set

C, = H(x,,0,0)=x} +2p" £ R ~pP(3-u+ ). (32)

\/(xz +p' - pu) \/(xz ~p'u)

Then, for any values of the true anomaly V', chosen as the independent variable, the inequality

20 C
C=2Q, -y, - —mn>__ 2 (33)
l+e 1+e'cosv

where Q .77 and Q,,

Using inequality (33), the criteria for stability, instability, and conditional stability of the motion of a small mass
body are determined in the restricted elliptical, hyperbolic, and parabolic three-body problems.

In the case of the restricted elliptical three-body problem, the sufficient condition — a criterion for Hill stability of
the motion of a small mass body M — takes the form of equation in reference [2],
CZ

are defined earlier, is satisfied.

n

Cc> -, (34)
1-e
where the values of the Jacobian constant analog C, and C are determined by equations (32) and (33).
The opposite inequality (34)
C< G - (35)
l—e

defines the criterion for the instability of the motion of the body M according to Hill. In this case, there will be values of
v' for which the inequality C < C, will hold.

For the parabolic or hyperbolic restricted three-body problem, one should use the inequality

1

— < ®
1+e'cosy’

from which it follows that the criterion for the stability of the motion of body M according to Hill is asymptotically
fulfilled, i.e., when C — oo . Therefore, stability of the motion of body M according to Hill in the restricted parabolic
and hyperbolic three-body problems can never be achieved. Indeed, for any arbitrarily chosen C, there will be a positive
value of the true anomaly v/ — 0 such that for any |v'[>V’ , the inequality C <C, will hold.

When the instability criterion (35) is satisfied, there will be such a value of v/ >0 that for any [V'|<V) the

inequality C = C, is met. In such cases, the motion of the passively gravitating body is referred to as conditionally

stable according to Hill [2].
In the case of the restricted elliptical three-body problem, the criterion for conditional stability of the motion of
body M according to Hill is the fulfillment of the double inequality

G, <C< G
1+e' l-e

(36)

’

and for the parabolic and hyperbolic restricted three-body problems, conditional stability of the motion of body M
according to Hill is achieved under condition

C2
1+€'

<C<w. (37)
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It should be noted that conditional stability of the motion of a small mass body M according to Hill occurs when the
instability criterion (35) and inequality [2]

1(C
cosv'|2cosv;:—(—2—lj, V<V, (38)

e\ C

are met.
The criterion for absolute instability of the motion of body M according to Hill is the inequality
C

C<—— , (39)

l+e

which ensures that the inequality C < C, is satisfied at any v'.

The criterion for stability of the motion of a passively gravitating body in the restricted elliptical three-body
problem according to Hill within a certain bounded area encompassing both primary bodies is the fulfillment of
inequality

> G [Q <c<-G ) (40)
' 1+¢ 1-¢

Here C,=H (x3,0,0) is the value from the family of minimal energy surfaces corresponding to the special point

L, (xS,O,O), located to the right of the primary body of greater mass M'. Additionally, the brackets indicate the

criterion for conditional stability according to Hill for motion in this area. The inequality opposite to (40) represents the
criterion for instability of the motion of body M in this area.
For brevity, the stability of motion according to Hill, associated with the value C, of the Jacobian constant

analogue, i.c., meeting criterion (34), will be referred to as first-type stability, while the stability of motion according to
Hill when criterion (40) with the value C, is met will be referred to as second-type stability.

Similarly, criteria for stability, conditional stability, instability, and absolute instability according to Hill for the
motion of a passively-gravitating body in the restricted elliptical three-body problem associated with other special
points can be established. For brevity, these criteria are not presented here.

5. SATELLITE EXCHANGE BETWEEN PRIMARY BODIES
Let us now consider the problem of exchanging a satellite between the primary bodies M, and M', which are

approaching each other along elliptical, hyperbolic, and parabolic orbits. The theory outlined above regarding the
criteria for the stability of the motion of body M by Hill [2] allows us to establish: a) the necessary condition for the
exchange or capture to take place, b) the sufficient condition for the impossibility of exchange, c) the range of values of
the true anomaly v' during which a satellite exchange is possible.

Let's first consider the restricted elliptical three-body problem. When inequality (34) — the condition for the
stability of the motion of body M by Hill — is met, an exchange of satellites between the primary bodies in elliptical
motion is not possible. Therefore, inequality (34) can be considered as a sufficient condition for the impossibility of
satellite exchange in the case of elliptical motion, as the energy of the satellite in this case is so low that it cannot detach
from its parent body. However, the necessary condition for satellite exchange in elliptical motion is the fulfillment of
the instability criterion by Hill, i.e., inequality (35). This inequality, along with the surfaces of minimal energy,
facilitates the numerical search for the satellite's trajectory during exchange. Thus, when inequality (35) is met and the
initial conditions are appropriately chosen, the satellite may either leave the vicinity of its parent body and become the
satellite of the second body (exchange), transform into an independent celestial body (ejection), or remain the satellite
of its parent body. Furthermore, when the criterion for conditional stability (36) is met, the conditions for the possibility
of satellite exchange in elliptical motion should be clarified. The exchange can then only occur in interval |v'|> V), i.e.,

in the vicinity of the most distant point of the primary bodies’ orbit. It is precisely in this interval of true anomaly
values, according to inequality (38), that the loss of conditional stability by Hill occurs.

In the case of parabolic and hyperbolic motion of the primary bodies, the necessary condition for exchange, i.c.,
the instability criterion (35) for the motion of body M by Hill, is always met. In this case, instability by Hill occurs at
any energy level when |v'|is sufficiently large. Furthermore, in the case of violation of the conditions for conditional

stability (38) by Hill, i.e., in interval |v'|>v!, satellite exchange can occur in both elliptical and in parabolic and

hyperbolic motions of the primary bodies.

Under the criterion of absolute instability (39), satellite exchange is theoretically possible at any value of the true
anomaly v'. It is worth noting that such conditions were previously unknown, and the possibility or impossibility of
satellite exchange was checked by intuitively selecting initial conditions and parameters [2].
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For example, Hill [8], within the framework of the restricted circular three-body problem of the Sun-Earth-Moon,
established that the satellite motion of the Moon relative to Earth is stable according to Hill, as the sufficient condition —
inequality (34) is met when ¢'=0: C =2.2544 > C, =2.00092. As shown in the study [2], the Moon's motion remains

stable according to Hill in the restricted elliptical three-body problem as well — the condition
C=2.2544>C,/(1-¢')=2.03501 is met, where ¢ = 0.016751 is the eccentricity of Earth's orbit. If ¢’ were seven

times larger, then the motion of the Moon would become conditionally stable according to Hill, i.e., inequality (38)
would be met: C=22544>C,/(1+7)=1.7909, and inequality (34) would not be satisfied:

C=22544<C,/(1-7¢')=2.2667 .

6. ON SOME APPLICATIONS OF THE RESTRICTED THREE-BODY PROBLEM
TO ASTRONOMICAL OBJECTS

In the study [3], within the framework of the restricted three-body problem, the motion of a star in a close binary
system (CBS) with conservative mass transfer was investigated. Unlike the well-known Paczynski-Huang model, a new
model defining the relative motion of the star in the CBS along an elliptical orbit was used. The third body in this
scenario is the mass stream flowing from the donor star to the accretor star. The elliptical motion of the star takes into
account the mutual attraction of the stars, reactive forces, and the gravitational force of the stars on the flowing stream.
Changes in the semi-major axis and eccentricity of the second star were identified, showing that CBS does not form a
closed mechanical system, i.e., a system that allows for the conservation of linear momentum and angular momentum.
Moreover, the classical law of conservation of energy does not apply, but there exists an analogue of the conservation
law in the form of a quasi-integral. This can be confirmed based on the general equations of motion by Meshcherskiy
for a two-body problem with variable masses. Therefore, the use of the Paczynski-Huang model, which assumes that
CBS forms a closed mechanical system, is not appropriate for this problem. The model proposed in the study [3] was
subsequently named the Luk’yanov’s model.

In the work [7], the problem of the motion of a rotating star in a close binary system (CBS) with conservative mass
transfer was considered. Using the Luk’yanov’s model [3], the relative motion of the star in close binary systems along
an elliptical orbit was determined. The elliptical motion of the star accounts for the mutual attraction of the stars,
reactive forces, the gravitational force of the stars on the flowing stream, and disturbances from the rotational
movement of the accretor star. Changes in the semi-major axis, eccentricity, and angular velocity of the accretor star's
orbit were defined depending on the parameter ¢ — the mass ratio of the stars. The results were applied to the star system
BF Aurigae (in the constellation Auriga) and presented in the form of diagrams. The Luk’yanov model is also
applicable in studying the motion of stars in CBS with non-conservative mass exchange.

In the study [14], the problem of the stability of a planet's satellite motion was considered. Within the general
three-body problem (Sun-planet-satellite), "Sundman surfaces" were constructed, based on which the concept of
"stability by Sundman" was formulated. Special points of these surfaces were identified, possible motion regions were
defined, and the stability of the special points by Sundman was established. The stability of the motion of all known
natural satellites of planets was investigated, and it was shown that the motion of a number of natural satellites, stable
by Hill, as well as some planet satellites stable by the Golubev method, turn out to be unstable by Sundman.

In work [15], within the framework of the restricted elliptical three-body problem, the criterion for stability by Hill
was established. By virtue of this criterion, the stability of four exoplanets outside the solar system in a binary star
system: CepheiAb, Gliese 86 Ab, HD 41004 Ab, and HD 41004 Bb was investigated.

7. INVESTIGATION OF HILL'S STABILITY OF PLANETARY MOTIONS DURING STELLAR
APPROACHES
To investigate the stability of planetary motion in the Hill frame during the approach of a test star to the Solar
System, moving along a hyperbolic (parabolic or elliptical) orbit, it is necessary to know its mass and orbital
parameters. As an example, let us take a test star with mass m’, heliocentric distance ¢’ (in astronomical units), and

eccentricity e', varying within the range
My <m'<5M,, 50<q'<100, 1<e'<5, (0.1<€'<0.9), (41)

where M is the mass of the Sun, ¢'=1 corresponds to parabolic motion of the test star, and the values of the

eccentricity of its orbit are indicated in parentheses for elliptical motion. It should be noted that the relationship between
the time ¢ and the true anomaly v' of the test star depends on the type of its orbit. Thus, in the case of elliptical motion
of the test star with orbit parameters e¢'=0.2, ¢'=50 au, and m' = 3 M, the change in V' in interval [0, 3m/4]
corresponds to a change in time in the interval [0, 80.26] years. For the same values of eccentricity and mass of the test
star, but at ¢'=75 au, this interval of changes in v' corresponds to the interval [0, 147.45] years, and at ¢'=0.2,

g'=75 au, and m' =5M_, it corresponds to [0, 120.39] years.
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In the case of parabolic motion (e’ =1) of the test star at ¢'=50 au and m'=3 M, the interval of changes [0,
3m/4] in the true anomaly V' corresponds to the time interval [0, 799.53] years, at ¢'=75 au and m' =3 M — [0,
1468.83] years, and at ¢'=75 auand m' =5M_ — [0, 1199.29] years.

Finally, in the case of hyperbolic motion with e¢'=1.15, ¢'=50 au, and m' = 3 M, the interval [0, 3n/4] of
changes in V' corresponds to the time interval [0, 466.49] years, at ¢'=75 auand m' =3 M_ — [0, 857.0] years, and
at ¢'=75 auand m' =5M_ — [0, 699.74] years.

Table 1 presents the results of the study of Hill stability motion of three planets (Earth, Jupiter, and Saturn)
depending on the focal parameter p’ of the star's orbit and its mass m' during hyperbolic orbits, and in Table 2 - during

parabolic orbits of the star. In these tables, C, denotes the value of the analogue of the Jacobi constant when v'=0,

and C, denotes its value computed at the special point L2. It turned out that in the case of a parabolic or hyperbolic star
orbit, only conditional stability of planetary motion in the Hill frame occurs.

Table 1. The Hill stability of planetary motion in the restricted hyperbolic three-body problem: planet — Sun — star

Planets »(au) m' Stability
M
107.5 aM
AL
M
Earth 161.25 BT
a0
M
215 BT
5M. 1651006349 19089110814 Conditional
M 1333170751 67 1A TH00
7.5 ERYE 24861.51172
M
A
Jupiter 161.25 aM
LM
M
215 30
oM stability
M £
107.5 EAT 2 ]
SM 12001, 0334
L) 18T16. 70519
Saturmn 161.25 EAT 6340214497
5M. 02061
M S}
215 ERY 115 7E
S0 16220 1008041084

Table 2. The Hill stability of planetary motion in the restricted parabolic three-body problem: planet — Sun — star

Planets ¥ (au) m' Cp J{_-. Stability
M 11219.60303 62500
100 AM. | 2348233868 | 5200.79401
5M 1460558085 | 4430.39787
M TO07 1 08400 TA0n2.
Earth 150 an 56332 90884 | 11904
M Q958,645
M Z5000.1
200 auM 21163. 17606
S0 ! Conditional
M
100 M
M
M
Tupiter 150 aM
HM
M
200 M 21163, 17606
M 5759148 stability
M BIG0.0 B
100 M
M
M
Satum 130 M 2461672023
Gz | 337912.0926
X TR s T
200 M | # 5| 2116317606
HM 15097560500 | 1775759148
8. CONCLUSION

The problem of the spatial motion of a passive-gravitating body during approach to the central body of a test star —
the perturbing body, has been considered. The perturbing body - the star - may move along an elliptical, parabolic, or
hyperbolic orbit. An exact expression of the force function without expansion into a series has been used. An integral
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invariant relationship - a quasi-integral, has been found. Due to the quasi-integral, regions of possible motion of the
passive-gravitating body, surfaces of minimum energy, which generalize the surfaces of zero velocity, and the special
points of these surfaces have been determined. The necessary condition has been established - the fulfillment of the Hill
instability criterion for satellite exchange in the restricted elliptical three-body problem. It has been shown that in the
case of parabolic or hyperbolic motion of the principal bodies, the necessary condition for satellite exchange is always
satisfied. In the region of instability loss of Hill motion, satellite exchange can occur in both elliptical and parabolic or
hyperbolic motions of the principal bodies. Exchange can only occur in the vicinity of the farthest point of the principal
bodies' orbits. When the instability criterion is met and the initial conditions of the satellite are properly chosen, the
satellite may either leave the vicinity of the parent body and become a satellite of the second body (exchange), or
transform into an independent celestial body (ejection), or remain a satellite of the parent body.

To illustrate the obtained results, restricted hyperbolic, parabolic, and elliptical three-body problems have been
considered as an example: Sun-planet-test star. In this case, the heliocentric distance ¢’ of the test star and its mass m’

oscillate within the range of 50 to 100 au and from one to five solar masses, respectively. According to the stability criteria
of the first and second types, critical values of the orbit parameters of the test star have been established, at which the
planets of the Solar System either become satellites of the test star or leave the boundaries of the Solar System.
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PO CTIMKICTD PYXIB IVIAHET ITIJ YAC 3BJIMKEHHSI 31P
A.T'. Mamenai?, P.T. Mamenos*?, ¥.C. BaJjiies?
“bamabamcvra Acmpoghizuuna Obcepsamopis Minicmepcmea Hayxu i Oceimu Azepbaiioscancoroi Pecnyonixu,
Haxiueeann, AZ-7000, A3epbaiiodncan
bHaxiuesancokuii Uepoicasnuti Yuisepcumem, Haxivesanv, AZ-7012, Azepbaiioxncan

Po3risHyTO 3a/1auy PO MPOCTOPOBHI PyX MAaCHMBHO IPaBITALlIHHOrO TiNa i Yac HaOJIVDKEHHs 10 HEHTPAIBHOTO Tijia 30ypIOIouoro
Tina — nmpo6Hoi 3ipkH. BUKOPHCTOBYIOUM TOYHUI BUpa3 CHIOBOI (QYHKLII, 3HAiICHO iHTerpajbHEe iHBapiaHTHE CIiBBIAHOIICHHSI —
KBasiiHTerpaas. 3a [ONOMOrol0 KBasiiHTerpajia BH3HA4YeHO 00JacTi MOXJIMBOIO pPyXy MAcHBHO TpaBiTAI[ifHOro Tijia, MOBEpXHi
MiHIMaJIbHOT eHeprii (y3aralbHEHHS OBEPXOHb HYJIHOBOI IIBUAKOCTI) Ta OCOOJMBI TOUYKH LUX MOBEPXOHb. JlOCTiKEeHO CTa0IBHICTh
pyxy mianeT 3a XiutoM mix gac HabmmkeHHS mpoOHOi 3ipku 10 COHSYHOI cucTeMu. BeTaHOBIEHO KpUTEpii MOXKIIMBOCTI, a TAKOXK
HEMOJKJIMBOCTI 3aXOIUICHHSI TECTOBOIO 3iPKOI0 IACHBHO TpaBiTaliiHOro Tina. BimmoBimHo no kpurepiiB criiikocti Ximma Oyiu
BCTAHOBJICHI KPUTHYHI 3HA4EHHs IapaMeTpiB OpOiTH IOCIIDKyBaHOI 3ipKH, NpH sSKuX IutaHeTH COHSYHOI cucTeMH abo CTaloTh
CYIMYTHUKaMH JOCIIKYBaHOI 3ipKH, a00 3aiuimatoTh Mexxi COHSYHOI CHCTEMH.

KurwuoBi cnoBa: nebecna mexanixa; obmedcena 3aoaua mpvox min, ananoe Qyukyii Axobi; xkeasziinmezpan, 3aKOH 30epedicents
eHnepeii; nogepxni MiHiManbHOI enepeii; ocobnusi mouxuy, cmitikicmes Xinna



