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The present work deals with the study of a locally rotationally symmetric (LRS) Bianchi type-I cosmological model in the framework
of a scalar-tensor theory of gravity formulated by Sáez and Ballester with time varying cosmological constant. To obtain the explicit
solutions of the Sáez-Ballester field equations we assume the average scale factor to obey a power law expansion and the cosmological
constant to be proportional to the energy density of the cosmic fluid. The dynamical behaviour of relevant cosmological parameters
including the Hubble parameter, the deceleration parameter, the energy density, the pressure, the equation of state parameter, the
cosmological constant, the shear scalar, the expansion scalar etc. are investigated graphically by examining their evolution versus the
redshift parameter. The validation of the four energy conditions are also checked. We find the outcomes of the constructed model to be
in good agreement with the recent observational data.

Keywords: Cosmological constant; Deceleration parameter; Hubble parameter; LRS Bianchi type-I; Sáez-Ballester theory
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1. INTRODUCTION
Throughout the last few decades, a number of observations in the field of cosmology and astrophysics have been

indicating that our universe is currently passing through a phase of accelerated expansion. The list of the observations
includes Supernova type Ia (SNIa), Large Scale Structure (LSS), Cosmic Microwave Background (CMB), Wilkinson
Microwave Anisotropy Probe (WMAP) [1]- [10] etc. These observations have contradicted the earlier beliefs of the
cosmologists that the expansion of the universe would be decelerating due to the gravitationally attractive nature of the
matter in the universe. As a result of the contradiction in the belief, cosmologists become more inquisitive to know the
root cause of the accelerated cosmic expansion. Within the framework of General Relativity, the leading cause behind the
late time acceleration in the expansion of the universe is considered to be a mysterious form of energy with anti-gravity
effect and tremendous negative pressure. This exotic form of energy is named dark energy which consists of nearly 68.3%
of the total energy budget of the present universe. Another exotic component of the universe is the dark matter which
takes approximately 26.8% of the total matter-energy content of the universe. The yet unknown nature of these two exotic
components consisting of more than 95% of the universe raises some fundamental questions which can not be explained
from the General Theory of Relativity although this theory is very successful in describing many gravitational phenomena
up to cosmological scales. In order to ascertain the true nature of dark energy and the root cause of the observed cosmic
acceleration, a variety of theoretical models are proposed in the literature which can be classified into two broad categories
- the dark energy models and the modified gravity models. The dark energy models are constructed by modifying the
matter part of the Einstein-Hilbert action. On the other hand, the modified gravity models are constructed by modifying
the gravitational part of the Einstein-Hilbert action.

Among the several dark energy models, ΛCDM model is the simplest and the best fit model of the universe but
it is plagued with some theoretical challenges such as the fine-tuning and cosmic coincidence problems. To overcome
these problems, different dynamical scalar field models such as quintessence, k-essence, phantom, tachyons etc. [11],
Chaplygin gas models [12], Holographic dark energy models [13]- [17] etc. are proposed in the literature. Several
modified gravity models are also proposed in the literature such as the 𝑓 (𝑅) gravity, 𝑓 (𝐺) gravity, 𝑓 (𝑄) gravity, 𝑓 (𝑅,𝑇)
gravity, 𝑓 (𝑅, 𝐺) gravity, 𝑓 (𝑄,𝑇) gravity etc., where 𝑅 is the Ricci scalar curvature, 𝐺 is the Gauss–Bonnet invariant,
𝑄 is the non-metricity scalar, 𝑇 is the trace of the energy-momentum tensor and some scalar-tensor theories of gravity
such as Brans-Dicke theory [18], Sáez-Ballester theory [19] etc. in order to unfold the mystery behind the late time
acceleration in the cosmic expansion as well as to study various other aspects of the universe. The Sáez-Ballester theory
of gravity was formulated by Sáez and Ballester in 1986. This theory is a scalar-tensor theory in which the metric is
coupled with a dimensionless scalar field 𝜙 in a simple manner. The coupling satisfactorily describes the weak fields and
also provides a possible way of removing the missing matter problem in non-flat Friedmann-Lemaı̂tre-Robertson-Walker
cosmologies. After the discovery of the acceleration in the rate of expansion of the universe, many researchers have
constructed different cosmological models in Sáez-Ballester theory and investigated various aspects of the universe as it
can be shown that there exists an antigravity regime in this theory. Rao 𝑒𝑡 𝑎𝑙. [20] presented exact string cosmological
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models for Bianchi type II, VIII and IX. Rao 𝑒𝑡 𝑎𝑙. [21] also discussed the exact Bianchi type II, VIII and IX perfect
fluid cosmological models. Naidu 𝑒𝑡 𝑎𝑙. [22] investigated a Bianchi type-III universe in the presence of anisotropic dark
energy. Mishra and Chand [23] studied the dynamical nature of Bianchi type-I model considering a bilinearly varying
deceleration parameter. Mishra and Dua [24] investigated a Bianchi type-I model with cosmological constant, considering
the deceleration parameter to be a linear function of the Hubble parameter. They have also studied the statefinder diagnostic
and some cosmographic parameters graphically. Naidu 𝑒𝑡 𝑎𝑙. [25] investigated the dynamical behaviour of FRW type
Kaluza-Klein (KK) cosmological model taking the Planck Collaboration data as a special reference and discussed three
different models by using hybrid expansion law and varying deceleration parameters. Singh, 𝑒𝑡 𝑎𝑙. [26] examined a
FRW model with bulk viscous fluid. Mishra and Dua [27] examined the behaviours of bulk viscous string cosmological
models in the tilted Bianchi type-VI0 universe. Wath and Nimkar [28] studied a Bianchi type VIII anisotropic dark matter
fluid cosmological model. Dabgar and Bhabor [29] investigated a five-dimensional Bianchi type-III model with string
cosmology considering both power law and exponential law models.

In the present work, we also consider the Sáez-Ballester theory of gravity and study the cosmological dynamics
of a locally rotationally symmetric Bianchi type-I universe with a time varying cosmological constant Λ. The paper is
organised as follows: In section 2, we derive the Sáez-Ballester field equations corresponding to a locally rotationally
symmetric Bianchi type-I line-element. In section 3, we obtain cosmological solution of Sáez-Ballester field equations by
considering the cosmological constant Λ to be proportional to the energy density 𝜌, and by using a power law expansion for
the average scale factor. In section 4, we express the relevant cosmological parameters in terms of the redshift parameter
and study their physical behaviour as the universe evolves. In section 5, the validity of the energy conditions are checked.
The paper is concluded in section 6 with a brief summary of the main outcomes of our model.

2. BASIC EQUATIONS GOVERNING THE MODEL
The action for the Sáez-Ballester theory of gravity along with time-varying cosmological constant Λ can be expressed

as

𝑆 =

∫
Σ

[
(𝑅 − 2Λ) + 16𝜋L −𝑊𝜙𝑛𝜙,𝑖𝜙

,𝑖
] √−𝑔 𝑑𝑋1𝑑𝑋2𝑑𝑋3𝑑𝑋4 (1)

where, 𝑅 is the Ricci scalar curvature, L is the matter Lagrangian, 𝑊 and 𝑛 are arbitrary dimensionless constants, 𝜙 is a
dimensionless scalar field, 𝜙,𝑖 is the partial derivative of 𝜙 with respect to the coordinate 𝑋 𝑖 , 𝜙,𝑖 is the contraction 𝜙,𝛼𝑔

𝛼𝑖

and 𝑔 =
��𝑔𝑖 𝑗 ��.

By considering the scalar field 𝜙 to be vanishing at the boundary of the arbitrary region Σ of integration, the variation of
the action (1) with respect to the tensor 𝑔𝑖 𝑗 and the scalar field 𝜙 leads to the field equations

𝑅𝑖 𝑗 −
𝑅

2
𝑔𝑖 𝑗 + Λ𝑔𝑖 𝑗 −𝑊𝜙𝑛

(
𝜙,𝑖𝜙, 𝑗 −

1
2
𝑔𝑖 𝑗𝜙,𝑘𝜙

,𝑘

)
= −8𝜋𝑇𝑖 𝑗 (2)

and

2𝜙𝑛𝜙,𝑘
;𝑘 + 𝑛𝜙𝑛𝜙,𝑘𝜙

,𝑘 = 0 (3)

where 𝑅𝑖 𝑗 is the Ricci tensor, 𝑇𝑖 𝑗 is the energy-momentum tensor and semicolon represents the covariant derivative.
Now, in order to construct a cosmological model, we consider a locally rotationally symmetric (LRS) Bianchi type-I
space-time characterised by the metric

𝑑𝑠2 = 𝑑𝑡2 − 𝐴2𝑑𝑥2 − 𝐵2
(
𝑑𝑦2 + 𝑑𝑧2

)
(4)

where 𝐴 and 𝐵 are the functions of the cosmic time 𝑡.
We assume the matter-energy distribution of the universe to be as isotropic perfect fluid of density 𝜌 and pressure 𝑝 so
that the energy-momentum tensor 𝑇𝑖 𝑗 can be taken as

𝑇𝑖 𝑗 = (𝜌 + 𝑝) 𝑢𝑖𝑢 𝑗 − 𝑝𝑔𝑖 𝑗 (5)

where 𝑢𝑖 is the four velocity with 𝑢𝑖𝑢
𝑖 = 1.

In a comoving coordinate system, the field equations (2) and (3) with equations (5) for the metric (4) lead to the following
set of field equations:

2
¥𝐵
𝐵
+

¤𝐵2

𝐵2 − 𝑊

2
𝜙𝑛 ¤𝜙2 − Λ = −8𝜋𝑝 (6)

¥𝐴
𝐴
+

¥𝐵
𝐵
+

¤𝐴
𝐴

¤𝐵
𝐵
− 𝑊

2
𝜙𝑛 ¤𝜙2 − Λ = −8𝜋𝑝 (7)
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2
¤𝐴
𝐴

¤𝐵
𝐵
+

¤𝐵2

𝐵2 + 𝑊

2
𝜙𝑛 ¤𝜙2 − Λ = 8𝜋𝜌 (8)

¥𝜙
¤𝜙
+

¤𝐴
𝐴
+ 2

¤𝐵
𝐵
+ 𝑛

2
¤𝜙
𝜙
= 0 (9)

Integration of equation (9) yields

𝜙 =

[
𝐸

(𝑛
2
+ 1

)] 2
𝑛+2

, 𝑛 ≠ −2 (10)

where 𝐸 (𝑡) =
∫

𝑘1
𝑎3 𝑑𝑡, 𝑘1 is a constant of integration.

From the equations (6) and (7), we have
¥𝐵
𝐵
−

¥𝐴
𝐴
+

¤𝐵
𝐵

( ¤𝐵
𝐵
−

¤𝐴
𝐴

)
= 0 (11)

On integration, it gives
𝐵

𝐴
= 𝐷 (𝑡) (12)

where 𝐷 (𝑡) = 𝑒

∫ 𝑘2
𝑎3 𝑑𝑡 , 𝑘2 is an integrating constant.

Therefore, the average scale factor, 𝑎 (𝑡) can be expressed as

𝑎 =

(
𝐴𝐵2

) 1
3
= 𝐴𝐷

2
3 (13)

Equations (6)-(8) can be written in terms of the average scale factor 𝑎 as

2
¥𝑎
𝑎
+ ¤𝑎2

𝑎2 + 𝑘2
2

3𝑎6 − 𝑊

2
𝑘1

2

𝑎6 − Λ = −8𝜋𝑝 (14)

3
¤𝑎2

𝑎2 − 𝑘2
2

3𝑎6 + 𝑊

2
𝑘1

2

𝑎6 − Λ = 8𝜋𝜌 (15)

3. ASSUMPTIONS AND SOLUTION OF THE FIELD EQUATIONS
We have three equations and five unknowns 𝑎, Λ, 𝑝, 𝜌 and 𝜙, which allows us to take two conditions in consideration

in order to find the exact solutions of the field equations.
We assume the average scale factor 𝑎 to obey a power law expansion as

𝑎 = 𝑎0𝑡
𝛼 (16)

where 𝛼 > 0, 𝑎0 is a constant and represents the present value of 𝑎.
In view of equation (15), we consider the cosmological constant Λ (𝑡) to be proportional to the energy density 𝜌 (𝑡) with
ℎ as the constant of proportionality as

Λ = ℎ𝜌 (17)

Then, from the equations (10) and (14)-(17) the expressions for 𝜙, Λ, 𝑝 and 𝜌 are obtained as

𝜙 (𝑡) =
[
𝑘1

𝑎03

(𝑛
2
+ 1

) ( 𝑡1−3𝛼

1 − 3𝛼

)] 2
𝑛+2

, 𝑛 ≠ −2 (18)

Λ (𝑡) = ℎ

8𝜋 + ℎ

[
3𝛼2

𝑡2
− 𝑘2

2

3 (𝑎0𝑡𝛼)6 + 𝑊

2
𝑘1

2

(𝑎0𝑡𝛼)6

]
(19)

𝑝 (𝑡) = 1
8𝜋

[
2𝛼
𝑡2

− 2𝑘2
2

3 (𝑎0𝑡𝛼)6 +𝑊
𝑘1

2

(𝑎0𝑡𝛼)6

]
− 1

8𝜋 + ℎ

[
3𝛼2

𝑡2
− 𝑘2

2

3 (𝑎0𝑡𝛼)6 + 𝑊

2
𝑘1

2

(𝑎0𝑡𝛼)6

]
(20)

𝜌 (𝑡) = 1
8𝜋 + ℎ

[
3𝛼2

𝑡2
− 𝑘2

2

3 (𝑎0𝑡𝛼)6 + 𝑊

2
𝑘1

2

(𝑎0𝑡𝛼)6

]
(21)

4. PROPERTIES OF THE MODEL
The Hubble parameter 𝐻 measures the rate of expansion of the universe. It is related to the scale factor 𝑎 by the

relation 𝐻 = ¤𝑎
𝑎

and therefore, 𝐻 > 0 infers the expanding universe. The deceleration parameter 𝑞 reveals whether the
expansion of the universe is uniform, accelerating or decelerating. It is defined by the relation 𝑞 = − 𝑎 ¥𝑎

¤𝑎2 and therefore, 𝑞 is
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related to the Hubble parameter 𝐻 through the relation 𝑞 = −1 − ¤𝐻
𝐻2 .

For our model, these two parameters are obtained as

𝐻 (𝑡) = ¤𝑎
𝑎
=
𝛼

𝑡
(22)

𝑞 (𝑡) = −1 + 1
𝛼

(23)

The spatial volume (𝑉), the expansion scalar (\), the shear scalar (𝜎2), the mean anisotropy parameter (𝐴𝑚) and the
equation of state (EoS) parameter ([) are obtained as

𝑉 (𝑡) = 𝑎3 = (𝑎0𝑡
𝛼)3 (24)

\ (𝑡) = 3𝐻 = 3
𝛼

𝑡
(25)

𝜎2 (𝑡) = 1
3

𝑘2
2

(𝑎0𝑡𝛼)6 (26)

𝐴𝑚 (𝑡) = 2
9

( 𝑡
𝛼

)2 𝑘2
2

(𝑎0𝑡𝛼)6 (27)

[ (𝑡) = 𝑝 (𝑡)
𝜌 (𝑡) =

(8𝜋 + ℎ)
[

2𝛼
𝑡2 − 2𝑘2

2

3(𝑎0𝑡𝛼 )6 +𝑊
𝑘1

2

(𝑎0𝑡𝛼 )6

]
8𝜋

[
3𝛼2

𝑡2 − 𝑘2
2

3(𝑎0𝑡𝛼 )6 + 𝑊
2

𝑘1
2

(𝑎0𝑡𝛼 )6

] − 1 (28)

The scale factor redshift relation is given by
𝑎 =

𝑎0
1 + 𝑧

(29)

Using equation (16), we obtain
𝑡 = (1 + 𝑧)−

1
𝛼 (30)

Therefore, the cosmic time 𝑡 dependent cosmological parameters of our model can be expressed in terms of the redshift 𝑧
as
Hubble parameter,

𝐻 (𝑧) = 𝛼 (1 + 𝑧)
1
𝛼 (31)

Deceleration parameter,

𝑞(𝑧) = −1 + 1
𝛼

(32)

Spatial volume,
𝑉 (𝑧) = 𝑎3 = 𝑎0

3 (1 + 𝑧)−3 (33)

Expansion scalar,
\ (𝑧) = 3𝐻 = 3𝛼 (1 + 𝑧)

1
𝛼 (34)

Shear scalar,

𝜎2 (𝑧) = 1
3
𝑘2

2

𝑎06 (1 + 𝑧)6 (35)

Mean anisotropy parameter,

𝐴𝑚 (𝑧) = 2
9𝛼2

𝑘2
2

𝑎06 (1 + 𝑧)6− 2
𝛼 (36)

Also, scalar field,

𝜙 (𝑧) =
[
𝑘1

𝑎03

(𝑛
2
+ 1

) ( 1
1 − 3𝛼

)
(1 + 𝑧)

3𝛼−1
𝛼

] 2
𝑛+2

, 𝑛 ≠ −2 (37)

Cosmological constant,

Λ (𝑧) = ℎ

8𝜋 + ℎ

[
3𝛼2 (1 + 𝑧)

2
𝛼 − 𝑘2

2

3𝑎06 (1 + 𝑧)6 + 𝑊

2
𝑘1

2

𝑎06 (1 + 𝑧)6
]

(38)

Pressure,

𝑝 (𝑧) = 1
8𝜋

[
2𝛼 (1 + 𝑧)

2
𝛼 − 2𝑘2

2

3𝑎06 (1 + 𝑧)6 +𝑊
𝑘1

2

𝑎06 (1 + 𝑧)6
]
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− 1
8𝜋 + ℎ

[
3𝛼2 (1 + 𝑧)

2
𝛼 − 𝑘2

2

3𝑎06 (1 + 𝑧)6 + 𝑊

2
𝑘1

2

𝑎06 (1 + 𝑧)6
]

(39)

Energy density,

𝜌 (𝑧) = 1
8𝜋 + ℎ

[
3𝛼2 (1 + 𝑧)

2
𝛼 − 𝑘2

2

3𝑎06 (1 + 𝑧)6 + 𝑊

2
𝑘1

2

𝑎06 (1 + 𝑧)6
]

(40)

The EoS (equation of state) parameter,

[ (𝑧) =
8𝜋 + ℎ

[
2𝛼 (1 + 𝑧)

2
𝛼 − 2𝑘2

2

3𝑎06 (1 + 𝑧)6 +𝑊
𝑘1

2

𝑎06 (1 + 𝑧)6
]

8𝜋
[
3𝛼2 (1 + 𝑧)

2
𝛼 − 𝑘2

2

3𝑎06 (1 + 𝑧)6 + 𝑊
2

𝑘1
2

𝑎06 (1 + 𝑧)6
] − 1 (41)

Figure 1. Plot of the cosmic time 𝑡 v/s redshift 𝑧 for 𝛼 =

1.233
Figure 2. Evolution of the Hubble parameter 𝐻 v/s red-
shift 𝑧 for 𝛼 = 1.233

Figure 3. Evolution of the pressure 𝑝 v/s
redshift 𝑧 for 𝛼 = 1.233, ℎ = 1,𝑊 = 1, 𝑎0 = 𝑘1 = 𝑘2 = 1

Figure 4. Evolution of the energy density 𝜌 v/s redshift
𝑧 for 𝛼 = 1.233, ℎ = 1,𝑊 = 1, 𝑎0 = 𝑘1 = 𝑘2 = 1

Figure 1 shows the graphical plot of cosmic time 𝑡 v/s redshift 𝑧. From Figure 2 and Figure 8 we can see the decreasing
and positive nature of the Hubble parameter 𝐻 and the expansion scalar \. In Figure 3, we observe that the pressure
𝑝 of the cosmic fluid has a peculiar behaviour. It is positive in the early phases of the universe, subsequently becomes
negative in the later phase and keeps increasing to attain the zero value at far future. Figure 4 depicts the behaviour of
the energy density 𝜌. It decreases as the universe evolves, remains positive throughout the evolution of the universe and
tends to zero at far future, thereby hinting about the expanding universe during the cosmic evolution. Figure 5 shows that
the cosmological constant Λ is an increasing function of the redshift 𝑧, or equivalently it is a decreasing function of the
cosmic time 𝑡. The Figure also depicts the positive nature of Λ in the evolving universe which fades away at far future.
In Figure 6 we observe the decreasing nature of the EoS parameter [ with the universe’s evolution. The Figure indicates
that the model starts in the radiation-dominated phase and subsequently it enters into the matter-dominated phase. At the
late phase of universe’s evolution, the model behaves as in the quintessence phase

(
−1 < [ < − 1

3

)
. Figure 7 depicts the

increasing nature of the spatial volume𝑉 , with the evolution of the universe, which gives the indication of the acceleration
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Figure 5. Evolution of the cosmological constant Λ v/s
redshift 𝑧 for 𝛼 = 1.233, ℎ = 1,𝑊 = 1, 𝑎0 = 𝑘1 = 𝑘2 = 1

Figure 6. Evolution of the EoS parameter [ v/s redshift
𝑧 for 𝛼 = 1.233, ℎ = 1,𝑊 = 1, 𝑎0 = 𝑘1 = 𝑘2 = 1

Figure 7. Evolution of the spatial volume 𝑉 v/s redshift
𝑧 for 𝑎0 = 1

Figure 8. Evolution of the expansion scalar \ v/s redshift
𝑧 for 𝛼 = 1.233

in the expansion rate of the universe at late times. Figure 9 and Figure 10 show the decreasing nature of the shear scalar
𝜎2 and the mean anisotropy parameter 𝐴𝑚 which tends to zero at late times, thereby indicating the transition from early
anisotropic phase to an isotropic phase at late time.

5. ENERGY CONDITIONS:
Energy conditions are simply some linear combinations of the energy density and the pressure with constraints.

These conditions are helpful in studying the characteristics of the universe. A normal matter always satisfies all the energy
conditions, for the reason that the energy density and the pressure of the normal matter are positive. Violation of the
energy conditions hints about the presence of some unknown matter energy which is not normal in the universe. The four
energy conditions are: Strong Energy Condition (SEC), Weak Energy Condition (WEC), Dominant Energy Condition
(DEC) and Null Energy Condition (NEC).

The SEC suggests that the rate of expansion of the universe decelerates, independent of whether the universe is open,
flat, or closed [30]. The WEC suggests that the energy density is always positive and non-increasing. The DEC provides
an upper bound on the energy density and therefore an upper bound on the rate of expansion. The NEC implies a (very
weak) upper bound on the Hubble parameter and indicates that the energy density of the universe goes down as its size
increases.
The energy conditions are given as:
SEC: 𝜌 + 3𝑝 ≥ 0 and 𝜌 + 𝑝 ≥ 0
WEC: 𝜌 + 𝑝 ≥ 0 and 𝜌 ≥ 0
DEC: 𝜌 + 𝑝 ≥ 0, 𝜌 − 𝑝 ≥ 0 and 𝜌 ≥ 0
NEC: 𝜌 + 𝑝 ≥ 0
For our model,

(𝜌 + 3𝑝) (𝑧) = 3
8𝜋

[
2𝛼 (1 + 𝑧)

2
𝛼 − 2𝑘2

2

3𝑎06 (1 + 𝑧)6 +𝑊
𝑘1

2

𝑎06 (1 + 𝑧)6
]
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Figure 9. Evolution of the shear scalar 𝜎2 v/s redshift 𝑧
for 𝑎0 = 𝑘2 = 1

Figure 10. Evolution of the mean anisotropy parameter
𝐴𝑚 v/s redshift 𝑧 for 𝛼 = 1.233, 𝑎0 = 𝑘2 = 1
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Figure 11. Plot of the energy conditions v/s redshift 𝑧 for 𝛼 = 1.233, ℎ = 1,𝑊 = 1, 𝑎0 = 𝑘1 = 𝑘2 = 1

In Figure 11 we observe that at the very early stage of the universe, all the four energy conditions are satisfied and
the three conditions other than the SEC are satisfied throughout the cosmic evolution. However, at a later stage the SEC is
violated hinting about the accelerated rate of the universe’s expansion, which is in agreement with recent obeservational
data.

6. CONCLUDING REMARKS
In this paper, we explore LRS Bianchi type-I universe with a power law expansion in the framework of Sáez-Ballester

scalar-tensor theory with a cosmological termΛwhich is assumed to be directly proportional to the matter-energy density 𝜌.
We study the evolution of some parameters of cosmological importance such as the Hubble parameter 𝐻, the deceleration
parameter 𝑞, the equation of state (EoS) parameter [, spatial volume 𝑉 , the expansion scalar \, Shear scalar 𝜎2 and the
mean anisotropy parameter 𝐴𝑚 graphically by choosing the values of the parameters as 𝛼 = 1.233, ℎ = 1,𝑊 = 1, 𝑎0 =

𝑘1 = 𝑘2 = 1. We observe that
• The increasing nature of the scale factor 𝑎 and the Spatial volume 𝑉 of the universe throughout the cosmic evolution
implies the acceleration in the rate of cosmic expansion.
• The decreasing nature of the Hubble parameter 𝐻 and the expansion scalar \ gives the hint of accelerated expansion of
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the universe.
• The deceleration parameter 𝑞 is constant in nature which may be positive, negative or zero according as
0 < 𝛼 < 1, 𝛼 > 1 or 𝛼 = 1.
• With the evolving universe, the cosmological constant Λ and the energy density 𝜌 decrease and tend to zero at later
phase of the universe’s evolution.
• The decreasing nature of the EoS parameter [ with the universe’s evolution is seen in Figure 6, which indicates that
the model starts in the radiation-dominated phase and subsequently it enters into the matter-dominated phase. At the late
phase of universe’s evolution, the model behaves as in the quintessence phase

(
−1 < [ < − 1

3

)
.

• The decreasing nature of the shear scalar 𝜎2 and the mean anisotropy parameter 𝐴𝑚 which gradually fades away signifies
the transitioning from early anisotropic phase to a later isotropic phase.
• Violation of the SEC is indicating the accelerated cosmic expansion agreeing with the observation.
Thus the results of our model, are found to be satisfactory with the current observational data.
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КОСМОЛОГIЧНА МОДЕЛЬ LRS BIANCHI В ТЕОРIЇ ГРАВIТАЦIЇ САЙЄЗ-БАЛЕСТЕРА ЗI ЗМIННОЮ В ЧАСI 
КОСМОЛОГIЧНОЮ КОНСТАНТОЮ

Чандра Рекха Маханта, Андiта Басуматарi
Факультет математики, Унiверситет Гаухатi, Гувахатi - 781014, Iндiя

Ця робота присвячена вивченню локально-обертально-симетричної (LRS) космологiчної моделi Б’янкi типу I в рамках скалярно-
тензорної теорiї гравiтацiї, сформульованої Сайєзом i Баллестером, зi змiнною в часi космологiчною сталою. Щоб отримати 
явнi розв’язки рiвнянь поля Сайєз-Балестера, ми припускаємо, що середнiй масштабний коефiцiєнт пiдкоряється степеневому 
закону розширення, а космологiчна стала пропорцiйна щiльностi енергiї космiчної рiдини. Динамiчну поведiнку вiдповiдних 
космологiчних параметрiв, включаючи параметр Хаббла, параметр уповiльнення, щiльнiсть енергiї, тиск, параметр рiвняння 
стану, космологiчну постiйну, скаляр зсуву, скаляр розширення тощо, дослiджується графiчно шляхом вивчення їх еволюцiї 
проти параметр червоного зсуву. Також перевiряється перевiрка чотирьох енергетичних умов. Ми вважаємо, що результати 
побудованої моделi добре узгоджуються з останнiми даними спостережень.
Ключовi слова: космологiчна стала; параметр уповiльнення; параметр Хабла; LRS Бьянчi тип-I; теорiя Сайєз-Балестера
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