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In this plasma model, consisting of ions, electrons, and positrons have been theoretically investigated when both the electrons and
positrons are obeying q-nonextensive velocity distribution. The reductive perturbation method is used to obtain Korteweg de Vries
(KdV) equation describing the basic set of normalized fluid equations. The existence of ion-acoustic solitary waves depending on
nonextensive parameter, electron to positron temperature ratio, ion to electron temperature ratio and streaming velocity are investigated
numerically. It has been found that solely fast ion-acoustic modes can produce the coexistence of small amplitude rarefactive solitons.
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1. INTRODUCTION
The investigation of ion-acoustic solitary waves in a plasmas with nonextensive electrons [1] and positrons are

tremendously descrived by Korteweg-de Vries equation. Almost all the systems behaved in statistical mechanics with
Boltzmann-Gibbs(BG) statics have been generally extensive [2]. In extensivity, there are two obvious exceptions which
are small system or clusters of particles and long range interparticle forces. Small system is consisting of a finite number
particles and in this system thermodynamic limit is not used and for long range interparticles, nonextensivity holds for
Coulomb electric or Newtonian gravitational forces. However, in recent years, numerous researcher have been showing
their interest regarding the study of particle distribution in plasma using the Boltzmann Gibbs (BG) statistics. Renyi [3]
was first recognized in generalization of the Boltzmann-Gibbs(BG) statistics and subsequently developed by Tsallis [4].
By citing this approach many researchers have worked nonextensive distribution for the number density of the particles
in plasma [5–21]. Latter, this Boltzmann-Gibbs(BG) statistics is known as an additional parameter 𝑞 and it is used to a
number of nonextensive systems. The 𝑞-nonextensive distribution function shows distinct behaviors and it is based on the
values of 𝑞, which determines the quantity of the nonextensivity of the system being recharged. If 𝑞 < 1 which is known as
superextensivity and it indicates the plasma with higher number of superthermal particles compared to that of Maxwellian
case. If 𝑞 > 1 which is known as subextensivity, the distribution function shows the plasma with large number of low-speed
particles compared to that of Maxwellian case. It may be useful for 𝑞 < −1 where 𝑞-distribution is unnormalizable. Again,
if 𝑞 = 1 then the distribution function is reduced to common Maxwellian-Boltzmann velocity distribution [22].Numerous
astrophysical plasma events include the formation of positrons in the plasma. In astrophysical objects electron-positron-ion
plasma can be found such as in polar region of neutron stars, active galactic nuclei, the semiconductor plasmas, quasars
and pulsar magnetosphere, the centre of Milky way galaxy, the early universe, intense laser fields etc. Moskalenko &
Strong [23] studied in cosmic-ray nuclei interact with atoms in interstellar medium. Influence of Temperature and Positron
Density on Large Amplitude Ion-acoustic Waves in an Electron–Positron–Ion Plasma was examined by Nejoh [24]. In
a nonextensive electron-positron-ion plasma, Ghosh et al. [25] have investigated the dynamic structures of nonlinear ion
acoustic waves. Ion acoustic solitary waves in plasmas including relativistic thermal ions, positrons, and nonextensively
distributed electrons have been investigated by Hafez et al. [26]. Danehkar [27] has investigated electrostatic solitary
waves in a plasma of electron-positron pairs with suprathermal electrons.

In this research, the propagation behavior of nonlinear ion-acoustic solitary waves in a three-component plasma
made up of inertial ions, nonextensive electrons and positrons is investigated theoretically. In this paper, the nonlinear
ion-acoustic waves are investigated using the reductive perturbation approach. The format of the paper is as follows: the
Introduction is given in Section (1); the Basic Governing Equations in Section (2); Derivation of the Korteweg-de Vries
equation and Its Solution in Section (3); and Results and Discussions in Section (4), and at the end References are included.

2. BASIC GOVERNING EQUATIONS
In this paper we consider one-dimensional collisionless three component plasma consisting of ions, electrons and

positrons. We assume that ions are extensive but electrons and positrons both are nonextensive that means both are obeying
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𝑞-nonextensive distribution. The nonlinear dynamics of the ion-acoustic waves is governed by the following normalized
continuity and motion equations for ions, electrons, positrons and the poisson equations are

𝜕𝑛𝑖

𝜕𝑡
+ 𝜕 (𝑛𝑖𝑣𝑖)

𝜕𝑥
= 0 (1)

𝜕𝑣𝑖

𝜕𝑡
+ 𝑣𝑖

𝜕𝑣𝑖

𝜕𝑥
+ 𝜎

𝑛𝑖

𝜕𝑝𝑖

𝜕𝑥
+ 𝜕𝜙

𝜕𝑥
= 0 (2)

𝜕𝑝𝑖

𝜕𝑡
+ 𝑣𝑖

𝜕𝑝𝑖

𝜕𝑥
+ 3𝑝𝑖

𝜕𝑣𝑖

𝜕𝑥
= 0 (3)

𝑛𝑒 = 𝛼 [1 + (𝑞 − 1)𝜙]
𝑞+1

2(𝑞−1) (4)

𝑛𝑝 = 𝛽
[
1 − 𝜎𝑝 (𝑞 − 1)𝜙

] 𝑞+1
2(𝑞−1) (5)

𝜕2𝜙

𝜕𝑥2 = 𝛼 − 𝛽 − 𝑛𝑖 + (𝛼 + 𝛽𝜎𝑝)𝑠1𝜙 + (𝛼 − 𝛽𝜎2
𝑝)𝑠2𝜙

2 + (𝛼 + 𝛽𝜎3
𝑝)𝑠3𝜙

3 + . . . (6)

where

𝑠1 =
(1 + 𝑞)

2
, 𝑠2 =

(1 + 𝑞) (3 − 𝑞)
8

,

𝑠3 =
(1 + 𝑞) (3 − 𝑞) (5 − 3𝑞)

48

 (7)

where parameter 𝑞 is the real number greater than -1 and it stands for the strength of nonextensive ion; 𝛼 is the electron to
ion density ratio; 𝛽 is the positron to ion density ratio; 𝑛𝑒, 𝑛𝑝 and 𝑛𝑖 are the electron, positron and ion number density; 𝑣𝑖
is the fluid velocity; 𝑝𝑖 is the ion pressure and 𝜙 is the electric potential. We, normalize 𝑛𝑖 , 𝑛𝑒 and 𝑛𝑝 by their unperturbed
densities 𝑛𝑖0, 𝑛𝑒0 and 𝑛𝑝0 respectively; 𝑣𝑖 by the ion-acoustic speed 𝐶𝑠𝑖 =

√︁
𝐾𝐵𝑇𝑒/𝑚𝑖 ; and 𝜙 by 𝐾𝐵𝑇𝑒/𝑒. The space and

time variables are in units of the ion Debye lengh 𝜆𝐷𝑖 =
√︁
𝐾𝐵𝑇𝑒/4𝜋𝑛𝑖𝑒2, and the ion plasma period 𝜔−1

𝑝𝑖
=
√︁
𝑚𝑖/4𝜋𝑛𝑖𝑒2,

respectively. Here, 𝐾𝑏 is the Boltzmann constant; 𝜎 = 𝑇𝑖/𝑇𝑒 is the ion to electron temperature ratio; 𝜎𝑝 = 𝑇𝑒/𝑇𝑝 is the
electron to positron temperature ratio.

3. DERIVATION OF THE KORTEWEG-DE VRIES EQUATION AND ITS SOLUTION
To derive the KdV equation from the set of equations (1)-(6) we use the stretch variables:

𝜂 = 𝜖1/2 (𝑥 − 𝑁𝑡), 𝜏 = 𝜖3/2𝑡 (8)

where 𝑁 represents the wave’s phase velocity and the following flow variable expansions are expressed in terms of the
smallness parameter 𝜖

𝑛𝑖 = 1 + 𝜖𝑛𝑖1 + 𝜖2𝑛𝑖2 + 𝜖3𝑛𝑖3 + . . .
𝑛𝑒 = 1 + 𝜖𝑛𝑒1 + 𝜖2𝑛𝑒2 + 𝜖3𝑛𝑒3 + . . .
𝑛𝑝 = 1 + 𝜖𝑛𝑝1 + 𝜖2𝑛𝑝2 + 𝜖3𝑛𝑝3 + . . .
𝑣𝑖 = 𝑣𝑖0 + 𝜖𝑣𝑖1 + 𝜖2𝑣𝑖2 + 𝜖3𝑣𝑖3 + . . .
𝑝𝑖 = 1 + 𝜖 𝑝𝑖1 + 𝜖2𝑝𝑖2 + 𝜖3𝑝𝑖3 + . . .
𝜙 = 𝜖𝜙1 + 𝜖2𝜙2 + 𝜖3𝜙3 + 𝜖4𝜙4 + . . .


(9)

Following the standard perturbation method with the use of transformation (8), expansions (9) in the normalized set of
equations (1)-(6) and the boundary conditions 𝑛𝑖1 = 0, 𝑣𝑖1 = 0, 𝜙1 = 0 at |𝜂 | −→ ∞, we obtain the lowest order
perturbation in 𝜖 as

𝑛𝑖1 =
𝜙1

(𝑁 − 𝑣𝑖0)2 − 3𝜎
, 𝑛𝑒1 = 𝛼𝑠1𝜙1 ,

𝑣𝑖1 =
(𝑁 − 𝑣𝑖0)𝜙1

(𝑁 − 𝑣𝑖0)2 − 3𝜎
, 𝑛𝑝1 = −𝛽𝜎𝑝𝑠1𝜙1 ,

𝑝𝑖1 =
3𝜙1

(𝑁 − 𝑣𝑖0)2 − 3𝜎


(10)

Again, using (8) and (9) in equation(6), we obtain the coefficient of 𝜖0 and 𝜖1 as

𝛼 − 𝛽 = 1 (11)

𝑛𝑖1 − (𝛼 + 𝛽𝜎𝑝)𝑠1𝜙1 = 0 (12)
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Using the expression of 𝑛𝑖1 from (10), the expression for phase velocity 𝑁 is obtained as

𝑁 = 𝑣𝑖0 ±

√︄
1 + 3𝜎(𝛼 + 𝛽𝜎𝑝)𝑠1

(𝛼 + 𝛽𝜎𝑝)𝑠1
(13)

Again, equating the coefficients of second higher order terms of 𝜖 from (1)-(6) we get,

𝜕𝑛𝑖1
𝜕𝜏

− (𝑁 − 𝑣𝑖0)
𝜕𝑛𝑖2
𝜕𝜂

+ 𝜕𝑣𝑖2
𝜕𝜂

+ 𝜕 (𝑛𝑖1𝑣𝑖1)
𝜕𝜂

= 0 (14)

𝜕𝑣𝑖1
𝜕𝜏

− (𝑁 − 𝑣𝑖0)
𝜕𝑣𝑖2
𝜕𝜂

− (𝑁 − 𝑣𝑖0)𝑛𝑖1
𝜕𝑣𝑖1
𝜕𝜂

+ 𝑣𝑖1
𝜕𝑣𝑖1
𝜕𝜂

+ 𝜎𝜕𝑝𝑖2
𝜕𝜂

+ 𝜕𝜙2
𝜕𝜂

+ 𝑛𝑖1
𝜕𝜙1
𝜕𝜂

= 0 (15)

𝜕𝑝𝑖1
𝜕𝜏

− (𝑁 − 𝑣𝑖0)
𝜕𝑝𝑖2
𝜕𝜂

+ 3
𝜕𝑣𝑖2
𝜕𝜂

+ 3𝑝𝑖1
𝜕𝑣𝑖1
𝜕𝜂

+ 𝑣𝑖1
𝜕𝑝𝑖1
𝜕𝜂

= 0 (16)

Now, putting the values of 𝑛𝑖1, 𝑣𝑖1 and 𝑝𝑖1 in (14), (15) and (16) and eliminating
𝜕𝑣𝑖2
𝜕𝜂

and
𝜕𝑝𝑖2
𝜕𝜂

, we obtain the following

equations

𝜕𝑛𝑖2
𝜕𝜂

=
2(𝑁 − 𝑣𝑖0)

[(𝑁 − 𝑣𝑖0)2 − 3𝜎]2
𝜕𝜙1
𝜕𝜏

+ 1
(𝑁 − 𝑣𝑖0)2 − 3𝜎

𝜕𝜙2
𝜕𝜂

+ 3(𝑁 − 𝑣𝑖0)2

[(𝑁 − 𝑣𝑖0)2 − 3𝜎]3 𝜙1
𝜕𝜙1
𝜕𝜂

(17)

𝜕𝑛𝑒2
𝜕𝜂

= 2𝛼𝑠2𝜙1
𝜕𝜙1
𝜕𝜂

+ 𝛼𝑠1
𝜕𝜙2
𝜕𝜂

(18)

𝜕𝑛𝑝2

𝜕𝜂
= 2𝛽𝑠2𝜎

2
𝑝𝜙1

𝜕𝜙1
𝜕𝜂

− 𝛽𝑠1𝜎𝑝

𝜕𝜙2
𝜕𝜂

(19)

𝜕2𝜙1

𝜕𝜂2 = − 𝑛𝑖2 + 𝛼𝑠1𝜙2 + 𝛼𝑠2𝜙
2
1 + 𝛽𝑠1𝜎𝑝𝜙2 − 𝛽𝑠2𝜎

2
𝑝𝜙

2
1 (20)

=⇒ 𝜕3𝜙1

𝜕𝜂3 = − 𝜕𝑛𝑖2
𝜕𝜂

+ 𝛼𝑠1
𝜕𝜙2
𝜕𝜂

+ 2𝛼𝑠2𝜙1
𝜕𝜙1
𝜕𝜂

+ 𝛽𝑠1𝜎𝑝

𝜕𝜙2
𝜕𝜂

− 2𝛽𝑠2𝜎
2
𝑝𝜙1

𝜕𝜙1
𝜕𝜂

(21)

Using the relation (12) and entering the values of
𝜕𝑛𝑖2
𝜕𝜂

,
𝜕𝑛𝑒2
𝜕𝜂

and
𝜕𝑛𝑝2

𝜕𝜂
in (21), we ultimately obtain the Korteweg-de

Vries(KdV) equation as

𝜕𝜙1
𝜕𝜏

+ 𝐴𝜙1
𝜕𝜙1
𝜕𝜂

+ 𝐵𝜕
3𝜙1

𝜕𝜂3 = 0 (22)

where the nonlinear coefficient 𝐴 and the dispersion coefficient 𝐵 are given by

𝐴 =
3(𝑁 − 𝑣𝑖0)2 − 2𝑠2 (𝛼 − 𝛽𝜎2

𝑝)
[
(𝑁 − 𝑣𝑖0)2 − 3𝜎

]3

2(𝑁 − 𝑣𝑖0)
[
(𝑁 − 𝑣𝑖0)2 − 3𝜎

] and 𝐵 =

[
(𝑁 − 𝑣𝑖0)2 − 3𝜎

]2

2(𝑁 − 𝑣𝑖0)

From the expressions of 𝐴 and 𝐵, we have 2(𝑁 − 𝑣𝑖0)
[
(𝑁 − 𝑣𝑖0)2 − 3𝜎

]
≠ 0

In order to determine the stationary solitary wave solutions of the KdV equation (22), we introduce the variable
𝜒 = 𝜂 − 𝐶1𝜏, where 𝐶1 represents the wave’s velocity in the linear 𝜒-space. With this, the solitary wave solution can be
obtained by integrating the KdV equation (22) as

𝜙1 = 𝜙0 sech2
( 𝜒
Δ

)
(23)

Here, 𝜙0 = 3𝐶1/𝐴 is the wave amplitude of the soliton and it is proportional to the soliton speed 𝐶1; Δ = 2
√︁
𝐵/𝐶1 is the

width, and is inversely proportional to the soliton speed 𝐶1.

4. RESULTS AND DISCUSSIONS
In this present plasma system, ion-acoustic solitary waves in plasma comprising 𝑞-nonextensive electrons and

positrons through the KdV equation are discussed. In our investigations, only fast ion-acoustic mode is found to exist. We
have examined numerically, the influences of plasma parameters such as nonextensive parameter (𝑞), the positron to ion
density ratio (𝛽), electron to ion density ratio (𝛼), electron to ion temperature ratio (𝜎), positron to ion temperature ratio
(𝜎𝑝) and ion streaming velocities (𝑣𝑖0) on the variations of nonlinear term 𝐴 and dispersion term 𝐵 given in (22). In our
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(a) (b)

Figure 1. The variation of (𝑎) 𝐴 and (𝑏) 𝐵 versus 𝛽 for different values of 𝜎.

investigation, for all the cases, we consider −1 < 𝑞 < 0 and 𝑣𝑖0 < 5; otherwise no solitons found to exist in this model of
plasma.

Fig. [1a-1b] shows the numerical analysis of the variation of the nonlinear term 𝐴 and the dispersion term 𝐵 versus
𝛽 for various values of 𝜎 = 0.1, 0.3, 0.5, 0.7, for fixed 𝜎𝑝 = 0.05, 𝑣𝑖0 = 2.5, 𝑞 = −0.9, 𝐶1 = 0.5 and 𝛼 = 1.1. In Fig.
[1a], we observe that 𝐴 is negative and grows as 𝜎 increases, while in Fig. [1b] 𝐵 is positive, indicating that it increases
as 𝜎 increases.

(a) (b)

Figure 2. The variation of (𝑎) 𝐴 and (𝑏) 𝐵 versus 𝛽 for different values of 𝜎𝑝 .

Fig. [2a-2b] revels that the nonlinear term 𝐴 and the dispersion term 𝐵 are varying with 𝛽 for various values of
𝜎𝑝 = 0.03, 0.05, 0.07, 0.09 for fixed 𝜎 = 0.1, 𝑣𝑖0 = 2.5, 𝑞 = −0.9, 𝐶1 = 0.5 and 𝛼 = 1.1. For all values of 𝜎𝑝 , the
nonlinear term 𝐴 is negative (Fig.[2a]), and dispersion term 𝐵 is positive (Fig.[2b]).

The variation of (𝑎) 𝐴 and (𝑏) 𝐵 versus 𝛼 for various values of 𝜎𝑝 = 0.03, 0.05, 0.07, 0.09 with 𝜎 = 0.1, 𝑣𝑖0 =

2.5, 𝑞 = −0.9, 𝐶1 = 0.5, and 𝛽 = 0.1 are plotted in Fig. [3a-3b]. Fig. [3a] shows that 𝐴 is negative and decreases
nonlinearly as 𝜎𝑝 increases, while Fig. [3b] shows a compressive reduction as 𝜎𝑝 increases.

In Fig.[4a-4b] we observe the variation of amplitude (𝜙0) and width (Δ) versus nonextensive parameter 𝑞 with
different values of 𝜎 = 0.1, 0.3, 0.5, 0.7 and 𝜎𝑝 = 0.05, 𝑣𝑖0 = 2.5, 𝑞 = −0.9, 𝐶1 = 0.5 and 𝛼 = 1.1. In (Fig.4a) we find
that amplitude is rarefactive and linearly decreasing as the increasing values of 𝜎, and width (Fig.4b) is increasing linearly
as well as 𝜎.

In Fig.[5a-5b] we have seen the variation of amplitude (𝜙0) and width (Δ) versus nonextensive parameter 𝑞 with
different values of 𝜎𝑝 = 0.03, 0.05, 0.07, 0.09 with 𝜎𝑝 = 0.05, 𝑣𝑖0 = 2.5, 𝑞 = −0.9, 𝐶1 = 0.5 and 𝛼 = 1.1. In (Fig.5a) we
find that amplitude is rarefactive and linearly increasing for the increasing values of 𝜎𝑝 , and width (Fig.5b) is decreasing
linearly as well as 𝜎𝑝 . In Fig.[6a-6b] we shown the variation of amplitude (𝜙0) and width (Δ) versus streaming velocity
𝑣𝑖0 with different values of 𝜎 = 0.1, 0.3, 0.5, 0.7 and 𝜎𝑝 = 0.05, 𝑣𝑖0 = 2.5, 𝑞 = −0.9, 𝐶1 = 0.5, 𝛼 = 1.1. In (Fig.6a)
we observe that the amplitude is rarefactive and linearly decreasing as the increasing values of 𝜎 and width (Fig.6b) is
increasing linearly as well as 𝜎.

The variation of amplitude (𝜙0) and width (Δ) versus streaming velocity 𝑣𝑖0 with varying values of 𝜎𝑝 =

0.03, 0.05, 0.07, 0.09 for fixed 𝜎 = 0.1, 𝑣𝑖0 = 2.5, 𝑞 = −0.9, 𝐶1 = 0.5 and 𝛼 = 1.1 are shown in Fig. [7a-7b].
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(a) (b)

Figure 3. The variation of (𝑎) 𝐴 and (𝑏) 𝐵 versus 𝛼 for different values of 𝜎𝑝 .

(a) (b)

Figure 4. The variation of (𝑎) 𝜙0 and (𝑏) Δ versus 𝑞 for different values of 𝜎.

The amplitude is rarefactive and increases linearly as 𝜎𝑝 increases, while the width decreases linearly as 𝜎𝑝 increases.
Again, the variation of solitary wave potential 𝜙1 (𝜒) given in (23) versus 𝜒 are plotted in the Fig.[8a-8b] with different

values of (𝑎) 𝜎𝑝 = 0.03, 0.05, 0.07, 0.09 with 𝜎 = 0.1, 𝑣𝑖0 = 2.5, 𝑞 = −0.9, 𝑉 = 0.5 and (𝑏) 𝜎 = 0.1, 0.3, 0.5, 0.7 with
𝜎𝑝 = 0.05, 𝑣𝑖0 = 2.5, 𝑞 = −0.9, 𝐶1 = 0.5 and 𝛼 = 1.1. For both the positron to ion density ratio 𝛽 and electron to
ion density ratio 𝛼, we have observed that the ion-acoustic soliton propagates rarefactively and that the amplitude of the
solitary pulse increases (Fig.8a). We have also observed that as 𝜎 grows, the width of the solitary pulse increases slightly
and the amplitude decreases.

(a) (b)

Figure 5. The variation of (𝑎) 𝜙0 and (𝑏) Δ versus 𝑞 for different values of 𝜎𝑝 .
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(a) (b)

Figure 6. The variation of (𝑎) 𝜙0 and (𝑏) Δ versus 𝑣𝑖0 for different values of 𝜎.

(a) (b)

Figure 7. The variation of (𝑎) 𝜙0 and (𝑏) Δ versus 𝑣𝑖0 for different values of 𝜎𝑝 .

(a) (b)

Figure 8. The variation of electric potential (𝜙1) versus 𝜒 for different values of (𝑎) 𝜎𝑝 with 𝛼 = 1.1 and (𝑏) 𝜎 with
𝛽 = 0.1.
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УТВОРЕННЯ IОННО-АКУСТИЧНИХ ОДИНОЧНИХ ХВИЛЬ У ПЛАЗМI З НЕЕКСТЕНСИВНИМИ
ЕЛЕКТРОНАМИ I ПОЗИТРОНАМИ
Рафiя Ханамa, Сатьєндра Нат Барманb

𝑎Департамент математики, Унiверситет Гаухатi, Гувахатi -781014, Ассам, Iндiя
𝑏B. Borooah College, Guwahati-781007, Ассам, Iндiя

У цiй моделi плазми теоретично дослiджено iони, електрони та позитрони, коли i електрони, i позитрони пiдкоряються q-
неекстенсивному розподiлу швидкостей. Метод вiдновного збурення використовується для отримання рiвняння Кортевега де
Фрiза (KdV), що описує базовий набiр нормалiзованих рiвнянь рiдини. Чисельно дослiджено iснування iонно-акустичних оди-
ночних хвиль залежно вiд неекстенсивного параметра, вiдношення температур електрона до позитрона, вiдношення температур
iона до електрона та швидкостi потоку. Було виявлено, що лише швидкi iонно-акустичнi моди можуть викликати спiвiснування
розрiджених солiтонiв малої амплiтуди.
Ключовi слова: q-неекстенсивний розподiл; редуктивний метод збурень; рiвняння KdV
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