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This work investigates the problem of a linear crack in the middle of a uniform elastic medium under normal tension-compression 
loading. The direct Finite Element numerical procedure is used to solve the fractured media deformation problem, which also includes 
an examination of the dynamic field variables of the problem. A Finite Element algorithm that satisfies the unilateral Signorini contact 
constraint is also described for solving the crack faces' contact interaction, as well as how this affects the qualitative and quantitative 
numerical results while calculating the dynamic fracture parameter. 
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INTRODUCTION 
Engineering materials are prone to cracking and delamination, which compromise the integrity of structures and 

components. The relationship between the load being applied and the dimension and location of a crack in an element can 
be determined using Fracture Mechanics solutions, which also help to predict the rate of crack formation and propagation 
[1, 2, 16]. As a result, it is vital to predict how fractured materials will react under dynamic loadings, as they are prone to 
failure under extremely small, unexpected loads. This is why it is critical to correctly determine the fracture parameter from 
the field variables, particularly as it is clear that under harmonic loading, the interior crack expands and contracts during the 
tension and compression phases, and the opposite crack faces move with respect to each other, significantly altering the 
stress and strain field near the crack tip [3, 4]. Until recently, the impacts of crack closure on fractured mechanics solutions 
were overlooked due to their level of complexity. However, it is extremely important to consider this phenomenon as the 
stresses and displacement jumps in cracked materials are usually higher for dynamic time-dependent conditions than in a 
static case, causing sudden failures in engineering structures even under small loads [5]. This is because the dynamic loading 
conditions induce more complex stress fields and crack propagation patterns than the static loading conditions. 

The most important fracture parameter, the Dynamic Stress Intensity Factor (DSIF), which measures the intensity 
of the crack-tip stress field, is affected by the loading frequency, load direction and amplitude, material properties, and 
the crack dimension (shape and size). Therefore, the analysis of dynamic linear crack problems requires more advanced 
numerical methods and experimental techniques than the analysis of static linear crack problems [6]. Due to the 
complexity and non-linearity (even for LEFM conditions) presented by considering the dynamic effect of the problem [7], 
a numerical technique has been adopted for the solution, rather than using analytical methods that are limited to static 
solutions and simple crack configurations. As a result, the Finite Element numerical approach was employed in this study 
for obtaining the stress and displacement fields because it is reliable, convenient, and simple to calculate the appropriate 
fracture parameter [8-10]. The current method of Finite Element Analysis (FEA), which examines an in-plane linear crack 
situated in the centre of a homogeneous elastic medium, will provide knowledge of the dynamics of a cracked structural 
element under harmonic loading, as well as the computational determination of an essential fracture parameter, the 
dynamic Stress Intensity Factor (DSIF), which estimates an appropriate crack size and level of stress before crack 
propagation occurs. Finite Element Analysis (FEA) is a powerful numerical technique used to solve complex engineering 
problems, including analysing dynamic linear crack problems. Here, we refer to a dynamic linear crack problem as the 
study of how cracks propagate in a material when subjected to dynamic loading conditions. In the case of this study of a 
dynamic linear crack problem, the material is subjected to harmonic tension-compression incident pulse, causing the crack 
faces to move relative to each other. The Finite Element (FE) model of this study takes into account the material properties, 
the nature of applied loads, and the original centroid crack configuration. This information is critical in many science and 
engineering fields where structural health and integrity are important, including mechanical engineering, structural 
engineering, materials science, and physics. It aids in understanding failure mechanisms, enhancing material design, and 
forecasting the lifespan of engineered structures containing delamination and cracks. Because FEA is an approximation, 
its accuracy is determined by the mesh fineness, input data quality, and appropriate model assumptions. Despite some of 
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its limitations, the FEA remains the most dependable technique for handling fracture mechanics problems that need 
dynamics analysis. It is crucial to highlight that under harmonic loading, both sides of the crack come into contact (during 
the compressive phase), which considerably changes the condition of the solution [11, 21 - 25]. In these works, the effects 
of crack closure were also examined, and the findings are provided in the following sections. 

For the present study, the FE solution for the boundary value problem was implemented in the commercial software 
ABAQUS/CAE. The isoparametric hexahedral element was adapted for simulating the centroid crack. This choice was 
influenced by the fact that typical cracks are 3D in nature and the hexahedral elements satisfy the geometry of the fractured 
medium and the crack shape of the current study. The faces of the hexahedral elements align with the geometry and 
discontinuities of the discretized linear crack. The use of these hexahedral elements also makes it possible to accurately 
model the singularity of the crack front. The hexahedral isoparametric finite elements generally offer a solution with 
acceptable accuracy at a lower cost [18, 20]. It best describes the properties of this model as a three-dimensional continuous 
(solid) cube with explicit analysis (for dynamic stress and displacements) that allows for the modelling of various geometries 
and structures [16]. Mesh refinement and analysis of its sensitivity are used to determine the stress singularity. To satisfy the 
unilateral Signorini conditions, the "Hard contact" mechanical constraint was imposed in the Abaqus explicit solver. 
 

THE PROBLEM DESCRIPTION 
A harmonic incident wave with a unit amplitude of normal tension-compression load, propagating in a homogeneous 

elastic material is considered on the linear crack faces. Ideal elastic waves propagate through materials without causing a 
permanent change in their condition when the load is removed, but the material deforms and their cracked faces come 
into contact relative to each other, due to harmonic loading, as considered in this work.  
 This dissipation mechanism causes elastic waves to attenuate and scatter as they travel, and the rate of attenuation is 
usually proportional to the incident wave's frequency [12, 13]. 

 
Figure 1. (a) - Crack geometry, (b) - FE Model of linear crack under normal tensile-compressive loading 

The homogeneous material is composed of two half-spaces with identical material properties. The linear crack is 
located at the center of the domain. The solid domain (Ω1 = Ω2) with both lower and the upper half-spaces (𝐸1 = 𝐸2, 𝜈1 = 𝜈2, 𝜌1 = 𝜌2) has the following properties of steel [The Young’s modulus (E) = 200 GPa, The Poisson’s ratio (ν) = 0.3, 
density (𝜌) = 7800 kg/m3], and we assume that only small deformations occur according to LEFM. Figure 1 shows the 
3D model built with Abaqus/CAE with an initial non-zero crack opening of ℎ0 = 10−6mm in a Cartesian coordinate 
system, such that the path of the incident wave is at right angles to the interface. The incident wave was applied at 
frequencies and corresponding wavenumbers of 𝑘ఈ = 0.1 and the normal angle of the wave incidence, 𝜃0 = 00. 

The interface separating the half-spaces, Γ∗, serves as the boundary for the top half-space, Γ1, while the bottom half-
space is represented by Γ2. In this model case, surfaces 1 and 2 consist of a finite part (crack surface) with a specific 
dimension and crack size (2𝑎), and the bonding interface; all of which satisfies the plane strain condition. The crack 
surface for materials 1 and 2 is represented by Γ𝑐𝑟 such that;    Γ𝑐𝑟 = Γ1(Cr) ∪ Γ2(Cr) (1) 

The spatial distribution of tractions at the point of bonding, Γ∗ = Γ1(𝐶𝑟) ∩ Γ2(𝐶𝑟), meets the continuity criteria for 
displacements and stresses, so that;   𝑈1(𝑥, 𝑡) = −𝑈2(𝑥, 𝑡), 𝑃1(𝑥, 𝑡) = −𝑃2 (𝑥, 𝑡) {𝑥 ∈ Г∗, t ∈ T} (2) 

The unknown traction vectors on the crack’s surfaces induced by the external loads are: 𝑝1 (𝑥, 𝑡) = −𝑔1, {𝑥 ∈ Г1(𝐶𝑟), t ∈ T}  𝑝2 (𝑥, 𝑡) = 𝑔2, {𝑥 ∈ Г2(𝐶𝑟), t ∈ T} (3) 

Where (𝑥, 𝑡) is the displacement vector, 𝑝(𝑥, 𝑡) is the traction vector, and 𝑔(𝑥, 𝑡) is the load caused from the incoming 
wave [3, 9]. 

The traction vector, (𝑥, 𝑡), on each face of the fracture is given by: 
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 (𝑥, 𝑡) = 𝑔(𝑥, 𝑡) + 𝑞(𝑥, 𝑡) (4) 

The vector (𝑥, 𝑡) represents the contact force at the contact area (Γ𝑐𝑟). 
The “small” initial crack opening introduced in the model problem of this work satisfies the condition of non-

zero initial opening. Signorini constraints must be imposed for the normal components of the contact force and the 
displacement discontinuity vectors [13-15]. The constraints ensure that there is no interpenetration of the opposite crack 
faces and there are no initial contact forces due to a non-zero initial opening of the crack. The constraints are given by the 
following inequalities; Δ𝑢௡ (𝑥, 𝑡) ൒  −ℎ଴(𝑥) ; ℎ଴(𝑥) ൐ 0, (5) 𝑞௡(𝑥, 𝑡)  ൒ 0, ∴   (𝛥𝑢௡ (𝑥, 𝑡) + ℎ଴(𝑥)) 𝑞௡(𝑥, 𝑡) = 0. (6) 

Where ℎ0 is the initial crack initial opening:  ℎ଴ = 𝑏∆𝑢௦௧௔௧,   ௠௔௫𝑎 (1 + cos (𝜋ඥ𝑥ଵଶ + 𝑥ଶଶ/𝑎)) /2  7) 

The maximum crack opening under static normal loading is represented by ∆𝑢𝑠𝑡𝑎𝑡, 𝑚𝑎𝑥 = 2(1 − 𝜈)/𝜇, while b 
represents the normalized magnitude of the crack's initial opening [13]. 

 
Dynamic Stress Distribution in Elastic Homogeneous Material  

The magnitude of the applied load is defined with a step time using the Fourier function; 

 𝑓(𝑡) = 𝑎଴ + ∑ (𝐴௡cosωt + 𝐵௡sinωt)ஶ௡ୀଵ   (8) 

The amplitudes 𝐴𝑛 and 𝐵𝑛 of the Fourier functions are depicted by the elements of the tractions and displacements, 
respectively, as illustrated below:  𝑝௖௢௦ (𝑥) = ఠଶగ ׬  𝑝 (𝑥, 𝑡) ଴் cos(𝜔𝑡)𝑑𝑡 ,  𝑢௖௢௦ (𝑥) = ఠଶగ ׬  𝑢 (𝑥, 𝑡) ଴் cos(𝜔𝑡)𝑑𝑡 (9) 𝑝௦௜௡ (𝑥) = ఠଶగ ׬  𝑝 (𝑥, 𝑡) ଴் sin(𝜔𝑡)𝑑𝑡 ,  𝑢௦௜௡ (𝑥) = ఠଶగ ׬  𝑢 (𝑥, 𝑡) ଴் sin(𝜔𝑡)𝑑𝑡. (10) 

The potential function defines the incident tension-compression harmonic wave as:   Φ (𝑥, 𝑡)  = Φ଴𝑒௜(௞ഀ௫೙ିఠ௧) (11) 
In Figure 2, Φ0 and ω represent the amplitude and circular frequency (ω = 2πf) of the incident wave, respectively. 𝑘𝛼 is the generalized wave number given by 𝑘𝛼 = 𝜔⁄𝐶𝛼 and 𝐶𝛼 are the velocities of incident waves in isotropic elastic 

media [3,11,13]. 

 𝐶ଵ =  ටఒାଶఓఘ    (Longitudinal wave), 𝐶ଶ =  ටఓఘ    (Transverse wave).  (12) 

Where λ and µ are lame constants, and ρ is the density of the material (steel). Figure 2 depicts the unit amplitude of the 
incident sine wave (equation 10) travelling as a function of time, t, along the normal y-direction (𝑥2 axis), with tensile 
(crest) and compressive (trough) phases. 
 

 
Figure 2. Harmonic incident wave pattern 

The applied load of 1 MPa is a time-dependent sinusoidal incident wave, and at a given frequency, the generalized 
wave number (𝑘ఈ) is obtained and the corresponding dynamic field variable is then extracted. Since the two half-spaces 
are made of the same materials, there is no change in the properties of the wave distribution between them. The incident 
wave is completely transmitted into lower material and there is no reflection. The initial incident wave propagates through 
both half-spaces with the magnitude of reflected and transmitted waves equal to zero. Section 5 of this work describes the 
distribution of the normal components of the dynamic field variables. 
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Finite Element Approximation 
The appropriate Finite Element approximation for the linear interface crack is based on those obtained in [16] and 

briefly described in Section 1 of this study. Again, to establish the presence of stress singularities at the crack tip only 
requires a mesh refinement around that region of interest. This enables the accurate assessment of reliable field variables 
at the crack tip. 

 
Figure 3. FE mesh discretization for the Griffith crack 

In this Finite Element composition, no specific crack tip elements were required. Mesh refinement and sensitivity 
analysis were adequate to approximate the singularity condition at the crack tip of the FE model. Figure 4 depicts the 
numerical GUI results of the FE model. When the harmonic load is applied, under compression, the stress level at the 
contact region of the crack surfaces increases, and the model deforms depending on the load increment, with each 
successive step until the entire process is completed [16]. 

 
Figure 4. FE model with Stress Extrapolation 

 
 

NUMERICAL RESULTS AND DISCUSSIONS 
In this study, the numerical distribution of the stress field variables is extracted at the points of integration nearest 

to the crack tip, whereas displacements are determined at relative nodal points indicating the vicinity of the tip [16-18]. 
Note that 𝑟 = 0 is the crack tip with infinite stresses (which is not realistic in real materials). Away from the crack tip, 
field variables become less valuable for fracture parametric analysis. Therefore, the region under consideration must be 
as close to the tip as possible (0 < 𝑟⁄𝑎 ≤ 1) [19, 20] to obtain accurate results with desired stability and reduced distortion 
of the elements around the crack-tip region. To model this “small” distance from the crack tip, the meshing “art” becomes 
very useful. Another way to avoid infinite stresses is to assume some elastic deformation during loading in order to 
provide a large area during the contact of crack faces. 

The desired stresses are in the y-direction of the tension-compression load, and they are extracted at the Integrating 
Points in the FE model and then extrapolated to nodal points to represent the crack tip, for evaluation. This also gives a 
good approximation of stress singularity. 

The distribution of the normal component of the harmonic stress waves along the crack plane during the entire period 
of oscillation (0 ≤ 𝜔𝑡 ≤ 2𝜋) for wave number 𝑘ఈ = 0.1   is shown in Figure 5. It shows that the stresses rapidly decrease 
with distance from the crack front and vice versa. 

 

Figure 5. Normal distribution of stresses near the crack front 
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On the other hand, the magnitudes of normal displacement discontinuities along the diametrical crack surface before 
and after loading are presented in Figure 6. The normal distribution of displacement of the crack surfaces during the 
oscillation period (0 ≤ 𝜔𝑡 ≤ 2𝜋) for wave number 𝑘ఈ = 0.1 is also presented in Figure 7 for the leading edge of the crack. 
In the current study, there is symmetry between the leading (+) and trailing (-) crack fronts (see Figure 6), so only one 
front (the leading) of the specimen is used for the analysis. 

Figure 6. Magnitude of normal displacements along the diametrical crack face before and after loading (upper half-space) 

Figure 7. Normal distribution of displacement discontinuity without contacts interaction (upper half-space) 

It should be noted that the tangential components of the stresses and displacements are absent or negligible due to 
the location of the crack in relation to the direction of the loading and the small curvature of the crack faces. Therefore, it 
was only necessary to evaluate the normal components of the solution.   

There are no contact forces during the tensile phase of harmonic loading and crack opening, as shown in Figure 8. 
However, when unilateral constraints are enforced, the contact forces become present (see section 6 below). 

Figure 8. Absence of contact forces at the crack surface due to the opening of the crack faces 
 

Finite Element Algorithm for Contact Interaction 
Following the solution of the current problem, the Finite Element contact interaction has been implemented with the 

algorithm below for the next stage of this study. 
1. Apply initial harmonic loads, which completes the description of the physical problem
2. Solve for Fourier coefficients using equations (8) to (10)
3. Obtain the initial stresses and displacements without contact constraints
4. Define interaction pair for the crack (contact surfaces) without friction (𝓀 = 0)
5. Apply Kinematic contact conditions to satisfy Signorini constraints of equations (5) and (6)
6. Check for overlapping and penetration of crack surfaces; if yes, then go to 5 and repeat
7. Else, go to 8
8. Obtain the unknown stresses and displacements of interest under contact
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9. Obtain unknown contact forces resulting from 5 and as part of 8   
10. Repeat the algorithm to get all the appropriate extrapolated variables at the crack tip 
11. Extract the numerical results and post-process using an IDE 
12. Compute the Dynamic Stress Intensity Factors from 3, 8 and 11 without and with contact interaction 

Figure 9 shows the linear crack under contact constraints. When external forces or pressures cause the crack surfaces 
to interact or remain in contact, it is said to be a linear crack under contact constraints. This situation often occurs in 
materials where the behavior and transmission of the crack are influenced by friction, crack closure or other boundary 
conditions. 

 
Figure 9. FE Model of Linear crack under contact constraints 

In Figure 9, the constraints shown in the middle of the model (with yellow dentations) are the contact interaction 
properties that are imposed as boundary conditions on the crack faces of the FE model to address the components of the 
contact forces and load vector on the crack surfaces as indicated in equations (5) through (7). Using isoparametric surface-
to-surface contact discretization and a “Hard” Kinematic mechanical constraint method from [19], the Signorini contact 
conditions are strictly enforced, and the penetration of contact elements is minimized. The numerical results are extracted 
without and with the effects of the crack closure. 

 
Figure 10. Distribution of normal displacement considering contact interaction 

 
Figure 11. Normal contact forces at the crack surface 

Figures 10 and 11 show the normal distribution of displacement and the corresponding contact force at the crack 
face during the period of oscillation (0 ≤ 𝜔𝑡 ≤ 2𝜋) for wavenumber 𝑘ఈ = 0.1 for the upper half-space at the leading edge 
of the crack. It is shown that the distribution of the normal component of the displacement, even during the tensile phase 
is significantly altered when the contact interaction of the opposite crack faces is considered (see line 5 of the algorithm). 
The kinematic contact constraints enforced during the period of oscillation prevent the interpenetration (overclosure) of 
the crack faces. The displacement discontinuity over the crack surface is observed to be distorted, especially during the 
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compressive phase where contact takes place. By the elimination of the interpenetration of the contacting (crack) surfaces, 
there is a corresponding contact force which repels the slave surfaces from the master sections, thereby leading to a 
substantial decrease in the magnitude of the normal component of the displacement discontinuity (see line 6 of the 
algorithm). This accounts for the qualitative and quantitative changes in determining the fracture parameter, Stress 
Intensity Factors (SIF) without and with contact interactions.  

Using the asymptotic expression from [21], the Stress Intensity Factors for mode I is determined as the next stage 
of this study as follows:   𝐾ூ = lim௥→଴ 𝜎௬ √2𝜋𝑟 (13) 

Where r is the distance from the crack front. In this problem, there is symmetry between the leading (+) and trailing 
(-) crack fronts (see Figure 6), so only one front of the specimen would be used for the determination of the mode I 
fracture parameter and the values of the Stress Intensity Factors would be normalized by the static value, and the results 
validated with those from [22, 26].    𝐾ூ௦௧௔௧ = 𝜎௬√𝜋𝑎 (14) 

From equations (13) and (14), and by the stress extrapolation method shown in Figure 4, the Dynamic Stress 
Intensity Factor at the crack front can be determined, neglecting, and taking the effects of contact interaction into account. 

 
CONCLUSIONS 

The direct Finite Element Analysis was used to obtain the normal opening mode of dynamic stresses at the crack 
tip, and the displacements across the diametrical crack face of a homogeneous fractured media. The normal (Mode I) 
distribution of stresses along the crack plane during the entire period of oscillation (0 ≤ 𝜔𝑡 ≤ 2𝜋) for wave number 𝑘ఈ =0.1 was determined and analyzed. The magnitudes of normal displacements along the diametrical crack face before and 
after loading were also analyzed for the upper half-space with a distribution of displacement (without and with contact 
interaction) of the crack faces during the period of oscillation. The dynamic numerical results show that the nature of 
dynamic loading and the frequency of the incident wave on the cracked elastic media affect the distribution of the stress 
waves and therefore alter the fracture parameter significantly. 

In what follows the solution of the current problem; the implemented Finite Element algorithm satisfies the unilateral 
Signorini constraints for the contact interaction on the surface of the crack during the period of oscillation and leads to 
the determination of the dynamic Stress Intensity Factor for varying (higher) wave numbers. 
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КІНЦЕВО-ЕЛЕМЕНТНИЙ АНАЛІЗ ПРОБЛЕМИ ДИНАМІКИ ЛІНІЙНОЇ ТРІЩИНИ 
Брайан Е. Усібеa, Вільямс Е. Азогорa, Принц Ч. Івудзіa, Джозеф Амаджамаa, Нкойо А. Нкангb, 

Орук О. Егбайc, Олександр І. Ікеубаd 
aДепартамент фізики, Університет Калабара, Нігерія 
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dДослідницька група з хімії матеріалів, Департамент чистої та прикладної хімії, Університет Калабара, Нігерія 
У роботі досліджено задачу про лінійну тріщину в середині однорідного пружного середовища при нормальному 
навантаженні розтяг-стискування. Пряма чисельна процедура кінцевих елементів використовується для розв’язання задачі 
деформації середовища з тріщинами, яка також включає дослідження змінних динамічного поля задачі. Алгоритм кінцевих 
елементів, який задовольняє одностороннє контактне обмеження Синьоріні, також описано для вирішення контактної 
взаємодії поверхонь тріщин, а також як це впливає на якісні та кількісні числові результати під час розрахунку динамічного 
параметра руйнування. 
Ключові слова: гармонічне навантаження; лінійна тріщина; параметр руйнування; контактна взаємодія; еластичний 
середній; кінцево-елементний аналіз 
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