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This study looks at how radiation and heat move through a two-dimensional, unsteady Darcy-Forchheimer MHD flow that flows across 
a porous, stretched plate that is vertically inclined and has a transverse magnetic field applied to it. We use the MATLAB bvp4c 
approach to numerically translate the controlling boundary layer nonlinear PDEs, which are partial differential equations, into a set of 
nonlinear ODEs, which are ordinary differential equations, using the similarity transformation. We quantitatively assess the velocity 
and temperature profiles using graphs that represent the problem's various characteristics, including unsteadiness, Prandtl number, 
magnetic, Grashoff number, radiation parameter, and Eckert number. Tables illustrate the effects on skin friction (τ) and Nusselt 
number (Nu). The velocity profile decreases as the magnetic and inertial parameters increase, and the temperature profile decreases 
with the increases in the radiation parameters. 
Keywords: Magnetohydrodynamics (MHD); Radiation; Darcy-Forchheimer; Porous medium; Heat transfer; Unsteady 
PACS: 47.55.P-, 44.25.+f, 44.05.+e, 47.11.-j, 44.20.+b, 47.56.+r 

INTRODUCTION 
The study of magnetohydrodynamics (MHD) examines how magnetic fields affect the behavior of electrically 

conducting fluids, such as liquid metal and plasmas. This transdisciplinary area of study examines how fluid motion produces 
electric currents, which in turn produce magnetic fields that interact with the fluid by fusing concepts from electromagnetism 
and fluid dynamics. Applications for MHD may be found in geophysics, engineering, and astrophysics. In astrophysics, it 
explains phenomena like solar flares and star formation. In geophysics, it helps with the understanding of Earth's magnetic 
field and magnetospheric dynamics. MHD is crucial for researching phenomena ranging from space weather to industrial 
processes because of its intricate nonlinear equations regulating fluid motion, electric currents, and magnetic fields. 

Any substance with holes or pores in it that let liquids through is called a porous media. These materials can be 
manufactured, like ceramics and foams made for certain uses, or they can be natural, like soils, rocks, and biological 
tissues. Numerous disciplines, including geology, hydrology, petroleum engineering, environmental science, and 
biomedical engineering, depend heavily on the study of fluid flow through porous media. The link between the fluid 
velocity and the pressure gradient inside the porous medium is described by Darcy's law, which controls the behavior of 
fluids in porous media. Fluid flow characteristics are influenced by variables including porosity (the percentage of empty 
space in the medium), permeability (a measure of how readily fluids may flow through the medium), and tortuosity (the 
increase in route length caused by obstructions). Porous media are useful in many different contexts. They have an impact 
on soil and aquifer contamination transfer as well as groundwater flow in hydrology. Understanding fluid movement 
through reservoir rocks is essential to petroleum engineering in order to maximize the extraction of oil and gas. Porous 
scaffolds are utilized in biomedical engineering to enhance cell development and enable waste and nutrition exchange in 
tissue engineering. Complicated mathematical and numerical simulations are frequently used to model fluid flow in 
porous media in order to forecast characteristics including fluid distribution, transport phenomena, and filtration 
procedures. Comprehending and refining these procedures is crucial in addressing pragmatic issues pertaining to resource 
allocation, environmental restoration, and technological progress. 

Fluid motion in a porous material when viscous and inertial effects are important is described by Darcy-Forchheimer 
flow. In order to account for non-linear flow behavior at higher velocities or through extremely porous materials, it adds 
a term to Darcy's law. The resistance resulting from inertial forces is represented by the Forchheimer term in this model, 
and it becomes dominant as fluid velocities rise or the porosity of the porous medium increases. This phrase usually 
contains coefficients pertaining to the fluid density and viscosity, as well as the permeability and porosity of the medium. 
In order to represent fluid flow in porous tissues or scaffolds, Darcy-Forchheimer equations are used in a variety of 
domains, including groundwater hydrology, petroleum reservoir engineering, filtration processes, and biomedical 
engineering. Comprehending Darcy-Forchheimer flow is essential for precise fluid dynamics prediction and process 
optimization when fluid flow through porous media is important. 
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The flow field resulting from a continuous surface flowing at a constant speed was established by Saikiadis [1]. He 
[2] then examined the flow of fluid across a continuous, flat surface. Crane [3] examined the flow and heat transmission 
across a stretched sheet of an electrically conducting viscous fluid's boundary layer. Boundary-layer equations for flow 
driven exclusively by a stretched surface were introduced and studied by Banks [4]. Numerous scientists study radiation 
and transverse magnetic field effects, realizing the benefits of using MHD to solve a wide range of technical issues and 
natural phenomena. Wang [5] then looked at the flow that an expanded flat surface produced in three dimensions. A 
perfect similarity solution was discovered via the Navier-Stokes equations. The fluid motion arising from the expansion 
of a flat surface was represented in three dimensions by the solution. Viscoelastic fluid flow over a stretched sheet in the 
presence of a transverse magnetic field was investigated by Andersson [6]. Viscoelasticity is shown to affect flow in a 
manner akin to that of an external magnetic field by providing an accurate analytical solution to the governing non-linear 
boundary layer equation. Elbashbeshy [7] investigated how injection and suction affected heat transport across a stretched 
surface with a constant and fluctuating surface heat flux. Furthermore, in the presence of suction, Siri et al. [8] investigated 
heat transfer across a continuous stretched surface. Researchers Andersson et al. [9] looked at how a horizontal sheet 
affected the heat transmission in a liquid film. Researchers Raptis et al. [10], Ghaly [11], Ishak et al. [12], and a few others 
evaluated the effect of heat radiation on MHD flow problems using a stretched sheet. Ariel [13] investigated the effects 
of axisymmetric stretching on boundary layer flows using the Homotopy perturbation method. The behavior of an 
incompressible fluid passing through a stretched surface in an unstable boundary layer with a heat source present was 
studied by Elbashbeshy et al. [14]. The increasing velocity associated with the surface and the time dependency of the 
heat flux lead to the instability of the temperature and flow fields. The mobility of the boundary layer and heat transfer 
across an extended plate with variable thermal conductivity were examined by Ahmad et al. [15]. Heat transmission via 
a stretched plate in combination with unstable MHD laminar flow was also studied by Ishak et al. [16]. Expanding on 
Ishak's work, Jhankal et al. [17] studied the stretched plate in the presence of a porous material. Research on the issue of 
unstable viscous flow on a curved surface was done by Natalia Rosca et al. [18]. In order to account for a transverse 
magnetic field of constant intensity, Choudhary et al. [19] conducted a theoretical study to explain a 2-dimensional 
unsteady flow over a stretched permeable surface of a viscous, incompressible electrically conducting fluid. Alarifi et al. 
[20] looked at the source influence as well as the MHD flow across a vertically extending sheet. When thermal radiation, 
fluctuating heat flow, and porous media are present, the MHD fluid movement generated by a stretched sheet that is not 
constant is examined by Megahed et al. [21]. The effects of a porous media on the flow of MHD heat transfer fluid across 
a stretched cylinder were examined by Reddy et al. [22]. The effect of thermal radiation on convective heat transport in 
Carreau fluid was examined by Shah et al. [23].  

Rasool et al. [24] used the Darcy-Forchheimer relationship to investigate the Casson-type MHD nanofluid flow that 
occurred on a nonlinear stretching surface. Patil et al. [25] did a study on unstable mixed convection over an exponentially 
stretched surface. They looked at the effects of cross diffusion and the Darcy-Forchheimer porous medium. Al-Kouz et 
al. [26] explored MHD Darcy-Forchheimer nanofluid flow and entropy optimization in an atypically shaped container 
filled with MWCNT-Fe3O4/water. They did this by using Galerkin finite element analysis. Mandal et al. [27] studied the 
steady two-dimensional laminar mixed convective flow, heat transfer, and mass transfer for a Newtonian fluid that 
conducts electricity but not very well on an isothermal stretched semi-infinite inclined plate in a Darcy porous medium. 
Recent years have seen a number of researchers [28-30] focusing their attention on the investigation of Darcy-
Forchheimer MHD flow with a variety of flow effects. 

The work by Ishak at al. [16] is generalised in this paper. We have examined the problem of 2D, laminar flow that 
is unstable when radiation and a transverse magnetic field occur across a vertically inclined porous stretching plate in a 
Darcy Forchheimer MHD flow. 
 

MATHEMATICAL FORMULATION 
We investigate the flow of a porous vertically stretched plate inclined at an angle α with the vertical across an 

unstable, laminar, 2D MHD boundary layer flow in the presence of heat radiation. It's a viscous incompressible fluid that 
conducts electricity. The Hall effect and the polarization of charges are neglected. Externally applied transverse magnetic 
field 𝐵 is perpendicular to the x-axis in the positive direction of the y-axis. While the x-axis is parallel to the stretching 
plate, the y-axis is normal to it. The origin is held fixed as the surface is extended along the x-axis with a velocity of U୵ = ୟ୶ଵିୡ୲. The problem is formulated in presence of radiation and Joule’s heating [24] effect which has been incorporated 
in the energy equation (3). The graphical representation of the problem is depicted in Figure 1. 

Under these conditions and Boussinesq’s approximation, the governing continuity, momentum and energy equations 
[16][29] are: 

 డ௨డ௫ + డ௩డ௬ = 0, (1) 

 డ௨డ௧ + 𝑢 డ௨డ௫ + 𝑣 డ௨డ௬ = 𝜈 డమ௨డ௬మ − ఙబమ௨ఘ + 𝑔βሺ𝑇 − 𝑇ஶሻ𝑐𝑜𝑠α − ఔ௨୩ − ᇲ√ 𝑢ଶ, (2) 

 డ்డ௧ + 𝑢 డ்డ௫ + 𝑣 డ்డ௬ = ச డమ்డ௬మ + ఙబమ௨మఘ − ଵఘ డೝడ௬ . (3) 
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by virtue of boundary conditions [16] given by: 

0 : , 0, , andw wy u U v T T= = = =  

 : 0,y u T T∞→ ∞ → → , (4) 𝑞 [12][30] is expressed as follows 

 𝑞 = −ସభଷభ ப்రப௬ , (5) 

where α indicates Stefan-Boltzmann constant, 𝑘ଵ represents Rosseland mean absorption coefficient. 

 

Figure 1. Graphical representation of the problem 

Assuming that the difference in internal flow temperature is appropriately small, 𝑇ସ may be represented by the 
Taylor series around 𝑇ஶ, omitting the components of higher order. 

 4 3 44 3T T T T∞ ∞= − . (6) 

We consider the extending velocity ( , )wU x t  and surface temperature ( , )wT x t  are as follows: 

 ,
1 1w w

ax bxU T T
ct ct∞= = +

− −
. (7) 

Continuity equation (1) is fulfilled, by using a stream function ψ  such that u
y
ψ∂

=
∂

 and v
x
ψ∂= −

∂
. 

The given nonlinear PDEs (2)- (3) are transformed to a set of nonlinear ODEs using following similarity variables 
and nondimensional quantities given as follows:   

𝜂 = ቀ ఔሺଵି௧ሻቁభమ 𝑦, 𝜓 = ቀ ఔ௫మሺଵି௧ሻቁభమ 𝑓ሺ𝜂ሻ, 𝜃ሺ𝜂ሻ = ்ି ಮ்்ೢ ି ಮ் , 𝐴 = . 

𝑀 = ఙబమሺଵି௧ሻఘ , 𝑆 = ఔሺଵି௧ሻ , 𝐸𝑐 = ౭మେ౦ሺ౭ିಮሻ, 𝐹 = ᇲ√, 

𝑁 = భସఙభ்యಮ , 𝜆 = ସାଷேଷே , 𝑃𝑟 = ఓ ,  𝐺𝑟 = ஒሺଵି௧ሻమሺ்ೢ ି ಮ்ሻమ௫ . 

The transformed nonlinear ODEs are: 𝑓ᇱᇱᇱ + 𝑓𝑓ᇱᇱ − ሺ𝐹 + 1ሻ𝑓ᇱమ − (𝑀 + 𝑆)𝑓ᇱ − 𝐴 ቀ𝑓ᇱ + ଵଶ 𝜂𝑓ᇱᇱቁ + 𝐺𝑟θcosα = 0, (8) 

 ఒ 𝜃ᇱᇱ + 𝑀𝐸𝑐𝑓ᇱమ + 𝑓𝜃ᇱ − 𝜃𝑓ᇱ − 𝐴(𝜃 + ଵଶ 𝜂𝜃ᇱ) = 0. (9) 

Also, the transformed initial and boundary conditions are: 𝑓(0) = 0, 𝑓ᇱ(0) = 1, 𝜃(0) = 1 and 

 ( ) 0, ( ) 0f θ′ ∞ → ∞ → . (10) 
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METHOD OF SOLUTION 
Equations (1) to (3) with boundary conditions (4) are converted into non-dimensional equations (8) and (9) with 

boundary conditions (10) by applying the dimensionless quantities. MATLAB's bvp4c technique is then used to solve 
those equations. To apply finite difference-based solver bvp4c the equations (8), (9) and (10) are transformed respectively 
as follows: 

 1 1 2 2 3 4 4 5, , , ,f y f y y f y y y y yθ θ′ ′ ′′ ′ ′ ′= = = = = = = = , (11) 

 𝑦ଷᇱ = −𝑦ଵ𝑦ଷ + (𝐹 + 1)𝑦ଶଶ + 𝑀𝑦ଶ + 𝑆𝑦ଶ + 𝐴 ቀ𝑦ଶ + ଵଶ 𝜂𝑦ଷቁ − 𝐺𝑟𝑦ସ𝑐𝑜𝑠α, (12) 

 𝑦ହᇱ = ఒ [−𝑀𝐸𝑐𝑦ଶଶ − 𝑦ଵ𝑦ହ + 𝑦ସ𝑦ଶ + 𝐴(𝑦ସ + ଵଶ 𝜂𝑦ହ)]. (13) 

Also, the initial and boundary conditions (10) are transformed as follows: 

 1 2 4(0) 0, (0) 1, (0) 1y y y= = = , (14) 

 2 4( ) 0, ( ) 0y y∞ = ∞ = . (15) 

The above transformed results are used by the MATLAB solver bvp4c to perform the numerical computation. 
 

RESULTS AND DISCUSSION 
The aforementioned factors are taken into account when solving the problem numerically, and the results are 

displayed in graphs in Figures 2 to 13 for various parameters, such as the unsteadiness parameter (A), radiation parameter 
(N), Grashoff number (Gr) owing to heat transfer, angle of inclination (α), Eckert number (Ec), Hartmann number (M), 
Prandtl number (Pr), inertial parameter (F) and Porosity parameter (Sp). Table 1 depicts the effects of the various 
parameters on Skin friction and Nusselt number. 

Figures 2, 3, 4, 5, 6 and 7 show the variation in the velocity profile for different values of A, M, SP, F, Gr and α, 
respectively, while the other parameters remain unchanged. As can be seen, the velocity profile constantly rises as Gr 
increases and decreases as A, M, SP, F and α increases. 

  
Figure 2. Velocity profile vs A Figure 3. Velocity profile vs M 

  
Figure 4. Velocity profile vs SP Figure 5. Velocity profile vs F 

From Fig. 2 it can be noticed that the velocity profile decreases with the rise in unsteadiness parameter because the 
parameter reflects the temporal changes in the flow. High unsteadiness implies rapid fluctuations in the flow's velocity 
over time, which tends to reduce the average velocity. These fluctuations cause increased energy dissipation and mixing, 
leading to a reduction in the momentum of the flow. This results in a flattened velocity profile, with lower peak velocities 
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and a more uniform distribution across the flow's cross-section. Fig. 3 depicts that when the magnetic parameter increases, 
the velocity profile in a conductive fluid decreases due to the Lorentz force. This force opposes the fluid motion and 
generates a magnetic drag, which resists the fluid's flow. As the magnetic parameter rises, the Lorentz force becomes 
stronger, enhancing the drag effect. This suppresses the fluid's momentum and slows down the flow, leading to a reduction 
in the overall velocity profile. Additionally, the interaction between the magnetic field and the electric currents within the 
fluid can increase the viscous dissipation, further decreasing the velocity. Fig. 4 shows that the velocity profile decreases 
with a rise in the porosity parameter because increased porosity enhances the resistance to fluid flow through a porous 
medium. Higher porosity reduces the effective area available for fluid to pass, increasing frictional resistance and drag 
forces within the medium. This results in greater energy dissipation and slower fluid movement. Consequently, as the 
porosity parameter rises, the ability of the fluid to maintain its momentum diminishes, leading to a reduction in the overall 
velocity profile through the porous structure. The increased resistance also disrupts the fluid’s streamline, causing a more 
pronounced decline in velocity. Fig. 5 depicts that the velocity profile decreases with a rise in the inertial parameter 
because this parameter represents the ratio of inertial forces to viscous forces in fluid flow. As the inertial parameter 
increases, the influence of inertial forces becomes more significant relative to viscous forces. This leads to greater 
momentum diffusion and turbulence, which disrupts the orderly flow and reduces the fluid's velocity. Higher inertial 
forces also cause more resistance against the fluid's motion, contributing to a flattening and lowering of the velocity 
profile. The flow's instability and increased energy dissipation further contribute to the decreased velocity as the inertial 
parameter rises. Fig. 6 shows that the velocity profile increases with a rise in the Grashof number due to heat transfer 
because the Grashof number quantifies the buoyancy forces relative to viscous forces in a fluid. Higher Grashof numbers 
signify stronger buoyancy forces resulting from thermal gradients. This increase in buoyancy force enhances natural 
convection, driving the fluid more vigorously. The intensified buoyancy-driven flow contributes to higher velocities as 
warmer, less dense fluid rises, and cooler, denser fluid sinks. This promotes increased movement and momentum in the 
fluid, steepening the velocity profile and resulting in faster overall flow, especially in regions where buoyancy forces 
dominate over viscous resistance. Fig. 7 depicts that with the rise in α the fluid’s velocity decreases. The velocity profile 
decreases with a rise in the angle of inclination because the gravitational component along the inclined surface increases, 
which opposes the fluid flow. As the angle of inclination increases, gravity acts more strongly against the direction of the 
flow, creating additional resistance and reducing the fluid's momentum. This leads to a decrease in velocity, as the fluid 
must work harder against the gravitational pull. Moreover, the increased gravitational component enhances the vertical 
stratification of the fluid, leading to more pronounced variations in the velocity profile and further flattening or lowering 
the average velocity across the inclined plane. 

  
Figure 6. Velocity profile vs Gr Figure 7. Velocity profile vs α 

Figures 8, 9, 10, 11, 12 and 13 shows the variation in the temperature profile for different values of A, M, Pr, Ec, N 
and Gr, respectively, while the other parameters remain unchanged. As it can be seen that the temperature profile rises as 
M and Ec increases and decreases as A, Pr, N and Gr increases. Fig. 8 depicts that the temperature profile decreases with 
the unsteadiness parameter because this parameter reflects temporal variations in the heat transfer within the fluid. As 
unsteadiness increases, the temperature field fluctuates more rapidly, leading to enhanced mixing and diffusion of thermal 
energy. These fluctuations disrupt the temperature gradients, causing the heat to spread more uniformly throughout the 
fluid. This results in a more uniform and lower average temperature profile, as the thermal energy is distributed more 
evenly over time. Additionally, rapid changes in the flow's velocity and temperature can increase convective heat transfer, 
further contributing to the overall decrease in the temperature profile. Fig. 9 shows that the temperature profile increases 
with the magnetic parameter because the Lorentz force induced by the magnetic field slows down the fluid's motion, 
reducing convective heat transfer. This deceleration diminishes the ability of the fluid to carry heat away from the heated 
region efficiently. As a result, heat accumulates near the heat source, leading to higher temperatures in that area. 
Additionally, the magnetic field can induce Joule heating, where electrical currents generated by the magnetic field 
increase the internal energy of the fluid. This combined effect of reduced convective cooling and additional heating results 
in a rise in the temperature profile as the magnetic parameter increases. The temperature curve and Pr's influence are 
displayed in Fig. 10. As Pr increases, temperature is seen to drop, indicating a relationship between velocity and thermal 



148
EEJP. 4 (2024) Ankur Kumar Sarma, et al.

boundary layer thickness. It is believed that large values of Pr suggest a thermal diffusivity preponderance and, 
consequently, a smaller thermal boundary layer than a velocity boundary layer. As the surface distance grows, the 
temperature in the zone of unrestricted stream flow actually drops and asymptotically approaches zero. Fig. 11 shows the 
effect of Ec on temperature. When the fluid's temperature rises, the fluid's enthalpy decreases and its kinetic energy 
increases, as indicated by the rising Eckert number. 

  
Figure 8. Temperature profile vs A Figure 9. Temperature profile vs M 

  
Figure 10. Temperature profile vs Pr Figure 11. Temperature profile vs Ec 

Fig. 12 shows how radiation affects temperature profiles. It may be observed that as N grows, the fluid's temperature 
drops. This is due to the fact that rising N denotes rising radiation in the thermal boundary surface where temperature 
description declines. Fig. 13 shows the alteration of the temperature profile with respect to the change in Gr. It is clear 
that the fluid's temperature decreases as Gr values rise. As the Grashof number (Gr) increases in natural convection, 
buoyancy forces become stronger relative to viscous forces. This results in more vigorous fluid motion and enhanced 
convective heat transfer. The increased fluid movement facilitates more efficient mixing of temperature within the fluid. 
Consequently, the temperature gradient decreases because heat is distributed more evenly throughout the fluid volume. 
Near the heated surface, temperatures may still be higher due to direct heat input, but as Gr increases, the overall 
temperature profile becomes smoother with less steep variations. This phenomenon reflects the improved thermal 
homogenization and heat transfer efficiency characteristic of higher Grashof numbers in natural convection systems. 

  
Figure 12. Temperature profile vs N Figure 13. Temperature profile vs Gr 

The effects of various parameters on the Skin friction and Nusselt number are shown in Table 1. The magnitude of 
the Skin friction escalates with the rise in A, M, Sp ,F, 𝛼 , Pr and N, while it decreases with the rise in Gr and Ec. The 
magnitude of rate of heat transfer escalates with the rise in A, Gr, Pr and N, while it decreases with the rise in M, Sp F, 𝛼 
and Ec. 
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Table 1. Variation of Skin Friction and Nusselt number for 𝐴, M, S୮, F, Gr,α, Pr, Ec, N. 𝑨 𝑴 𝑺𝒑 𝑭 𝑮𝒓 𝛂 𝑷𝒓 𝑬𝒄 𝑵 𝒇ᇱᇱ(𝟎) 𝛉ᇱ(𝟎) 

1 0.5 0.4 0.1 1 0 1.0 0.05 1 -1.2580 -0.8519 
2         -1.5311 -1.0189 
3         -1.7672 -1.1680 
1 0.5        -1.2580 -0.8519 
 1.0        -1.4194 -0.8473 
 1.5        -1.5683 -0.8255 
 0.5 0.4       -1.2580 -0.8519 
  0.6       -1.3244 -0.8473 
  0.8       -1.3884 -0.8430 
  0.4 0.1      -1.2580 -0.8519 
   0.5      -1.3507 -0.8475 
   1.0      -1.4595 -0.8425 
   0.1 1     -1.2580 -0.8519 
    2     -0.8886 -0.8786 
    3     -0.5343 -0.9079 
    1 π/6    -1.3089 -0.8480 
     π/3    -1.4498 -0.8369 
     π/2    -1.6474 -0.8204 
     0 0.7   -1.2401 -0.7199 
      1.2   -1.2685 -0.9327 
      1.5   -1.2823 -1.0452 
      1.0 0.05  -1.2580 -0.8519 
       1.0  -1.2514 -0.7862 
       1.5  -1.2479 -0.7513 
       0.05 1 -1.2580 -0.8519 
        2 -1.2779 -1.0087 
        3 -1.2872 -1.0862 

 
CONCLUSIONS 

The findings are translated into the following conclusions, which are given below: 
• The velocity profile decreases with the rise in A. M. SP, F and α. 
• The velocity profile increases as Gr increases. 
• The temperature profile falls with rise in A, Pr , N and Gr. 
• The temperature profile escalates with the rise in M and Ec.. 
• The magnitude of the Skin friction escalates with the rise in A, M, Sp ,F, 𝛼 , Pr and N, while it decreases with the 

rise in Gr and Ec. 
• The magnitude of rate of heat transfer escalates with the rise in A, Gr, Pr and N, while it decreases with the rise in 

M, Sp F, α and Ec. 
 

Nomenclature 

a,b,c Constant 𝑣 Fluid’s velocity along y-direction, (m/s) 𝐴 Unsteady parameter (c/a), (x,y) Cartesian coordinates 𝐵 Constant Magnetic field, (N m/A) 𝐺𝑟 Grashoff number due to heat transfer 𝐶 Specific heat at constant pressure, (  ) Greek Symbols 𝑓 Dimensionless stream function, ρ density of fluid, ( య ) 
Ec Eckert number, μ dynamic viscosity, (Pa s) 𝑘 Permeability of porous medium, (m2) σ Electrical conductivity, ( ଵஐ ) 𝑘ᇱ Forchheimer resistance factor, η Dimensionless similarity variable, 𝑞 radiative heat flux, (𝑊/𝑚ଶ) ν Kinematic viscosity, (𝑚ଶ/𝑠) 𝑀 Magnetic parameter (Hartmann number), κ Thermal conductivity, ( ௐ ) 𝑃𝑟 Prandtl number, ψ Stream function, 𝑆 Porosity parameter, τ Skin friction, 𝑁 Radiation parameter, θ Dimensionless temperature 
Nu Nusselt number, Superscript 
F Inertial parameter, ′ With regard to η, differentiation 
t Dimensionless time, (K) Subscript 𝑇 Fluid’s temperature, (K) 𝑤 values at the plate 𝑢 Fluid’s velocity along x-direction, (m/s) ∞ conditions at the free stream 
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РАДІАЦІЙНИЙ ЕФЕКТ НА НЕСТАЦІОНАРНИЙ МГД-ПОТІК ДАРСІ ФОРХГЕЙМЕРА ПО ВЕРТИКАЛЬНОМУ ПОХИЛОМУ 

ЛИСТУ, ЩО РОЗТЯГУЄТЬСЯ У ПРИСУТНОСТІ ПОРИСТОГО СЕРЕДОВИЩА 
Анкур Кумар Сармаa,e, Сунмоні Мудоіa, Палаш Натb, Панкадж Калітаc, Гаураб Бардханd 
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У цьому дослідженні розглядається, як випромінювання та тепло переміщуються через двовимірний, нестаціонарний МГД-
потік Дарсі-Форхгеймера, який протікає через пористу розтягнуту вертикально нахилену пластину, до якої прикладено 
поперечне магнітне поле. Ми використовуємо підхід MATLAB bvp4c для чисельного перетворення нелінійних PDE 
керуючого граничного шару, які є рівняннями в часткових похідних, у набір нелінійних ODE, які є звичайними 
диференціальними рівняннями, використовуючи перетворення подібності. Ми кількісно оцінюємо профілі швидкості та 
температури за допомогою графіків, які представляють різні характеристики проблеми, включаючи нестаціонарність, число 
Прандтля, магнітне поле, число Грашоффа, параметр випромінювання та число Екерта. Таблиці ілюструють вплив на тертя 
шкіри (τ) і число Нуссельта (Nu). Профіль швидкості зменшується зі збільшенням магнітних та інерційних параметрів, а 
профіль температури зменшується зі збільшенням параметрів випромінювання. 
Ключові слова: магнітогідродинаміка (МГД); випромінювання; Дарсі-Форххаймер; пористе середовище; теплообмін; 
нестабільність 




