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In this work, we construct a spatially homogeneous and anisotropic Bianchi type-V cosmological model with a hybrid expansion law by
considering the universe to be filled with cold dark matter and non-interacting Barrow holographic dark energy with Granda-Oliveros
length scale as IR cutoff. The physical and kinematical characteristics of the resulting model are discussed by studying the evolution of
various parameters of cosmological importance such as the Hubble parameter, the deceleration parameter, the anisotropic parameter, the
equation of state parameter, jerk parameter etc. We also examine whether the energy conditions are satisfied or violated. Our analysis
reveals that the Null, Weak, and Dominant energy conditions are fullfilled, while the Strong Energy Condition is violated, which supports
the accelerated expansion of the universe. Statefinder diagnostics have also been performed based on recent cosmological observations
in order to compare our model with different dark energy cosmological scenario. Additionally, we establish the correspondence between
the quintessence scalar field and the Barrow holographic dark energy model, supporting our description of the universe’s accelerated
expansion.
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1. INTRODUCTION
In the late twentieth century, the observational data from two independent projects, the High-redshift Supernova

Search Team led by A. G. Riess [1] and the Supernova Cosmology Project led by S. Perlmutter [2], revealed that the
universe is currently in a phase of accelerated expansion. Since then, various astrophysical and cosmological observations
such as the temperature anisotropies in the Cosmic Microwave Background (CMB) [3, 4, 5], Large Scale Structure (LSS)
such as the galaxy clustering [6, 7, 8], Baryon Acoustic Oscillations (BAO) [9] etc. have been supporting the observed
acceleration. The root cause or the source for this bizzare late-time cosmic acceleration has not been identified yet and
it remains as a great challenge in modern cosmology even after more than two decades of its discovery. Most of the
cosmological models presented in the literature attribute the cosmic acceleration to a component with negative pressure,
commonly referred to as dark energy, an enigmatic form of physical entity that dominates the universe and is causing the
current universe to enter into an accelerated phase of expansion. The observational data also show that the combined
dark components accounts for around 95% of the universe’s total energy density, with dark matter (DM), a non-relativistic
matter that interacts very weakly with baryonic i.e. standard matter particles, contributing about 27% and dark energy
(DE) contributing approximately 68% of the entire matter-energy allocation, and only about 5% is ordinary baryonic
matter, the most basic model being the concordance model, popularly known as the ΛCDM model, in which dark energy
is represented by the cosmological constant Λ , introduced by Einstein in his field equations, although it needs to be
fine-tuned to fit the available observational data [10, 11]. As a result, a variety of dynamically evolving scalar field models
such as quintessence , k-essence, tachyon, quintom, dilatonic ghost condensate, phantom etc. and exotic fluid models like
Chaplygin gas models [12] are proposed in the literature.

Recently, attention has been drawn to a number of holographic dark energy models initially originating from the
Holographic Principle proposed by G.’t Hooft [13] in the context of black hole physics, and on the hypothesis [14] on
the mutual relationship between the short distance UV cutoff and IR cutoff. However, the original holographic dark
energy models [15, 16, 17] constructed by attributing Bekenstein- Hawking entropy and Hubble horizon could not provide
satisfactory explanation for the current accelerated expansion. The density of holographic dark energy, as determined by
Li’s work [17], is 𝜌𝐷 = 3𝑐2𝑀2

𝑝𝐿
−2, where 𝐿 is the infrared (IR) cutoff, 𝑀𝑃 is the Planck mass and 3𝑐2 is a numerical

constant. Various appropriate choice of this IR cutoff result in new cosmological problems. The Granda and Oliveros
cutoff [18] is utilized in proposing a new holographic dark energy (NHDE) model, where the energy density is expressed
as the square of the Hubble parameter and its time derivative. The Tsallis holographic dark energy (THDE) model was
developed in 2018 [19] using the Tsallis generalized entropy 𝑆𝛿 = 𝛾𝐴𝛿 , where 𝛿 is a non-additive parameter, 𝐴 is the event
horizon’s surface area and 𝛾 is a constant [20]. Another holographic dark energy model, known as the Rényi holographic
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dark energy (RHDE), was formulated utilizing the Rényi entropy [21]. Barrow [22] has suggested a new approach to
black hole entropy, incorporating quantum gravitational effects. This could potentially introduce intricate and fractal

properties to the black hole’s area, represented by 𝑆𝐵 =

(
𝐴
𝐴0

)1+ Δ
2 , where 𝐴 is the standard horizon area, 𝐴0 is the Planck

area, and the exponent Δ, ranging from 0 to 1, quantifies the quantum gravitational deformation. When Δ equals 1, the
structure exhibits maximal complexity and fractal characteristics, whereas when Δ equals 0, it corresponds to the standard
Bekenstein-Hawking entropy or the standard smooth structure. The standard holographic dark energy density is defined by
the inequality 𝜌𝐻𝐷𝐸𝐿

4 ≤ 𝑆, where ‘𝐿’ represents the horizon length. When subjected to the condition 𝑆 ∝ 𝐴 ∝ 𝐿2 [23],
the Barrow entropy provides the energy density for Barrow holographic dark energy (BHDE) as 𝜌𝐵𝐻𝐷𝐸 = 3𝑐2𝑀2

𝑝𝐿
Δ−2,

where ‘𝑐2’ is the model parameter and ‘𝑀𝑝’ is the Planck mass. Saridakis [24] innovated the BHDE by utilizing the
Barrow entropy rather than the standard Bekenstein-Hawking entropy. Furthermore, Srivastava and Sharma [25] explore
the flat Friedmann-Lemaître-Robertson-Walker (FLRW) universe by employing the BHDE with the Hubble horizon as the
infrared cutoff. The authors in [26], recently investigated the Barrow holographic dark energy with the Granda-Oliveros
length serving as the infrared cutoff. The authors in [27] investigated Barrow holographic dark energy within a flat
Friedmann-Lemaître-Robertson-Walker (FLRW) universe, employing the Granda-Oliveros length as the infrared cutoff
and determined the impact of the deformation parameter Δ on the evolution of 𝐻 (𝑧). When Paul et al. [28] examined the
Bianchi type-I universe in the presence of BHDE, they found that the new exponent is crucial in determining the nature of
the universe.

The Friedmann-Lemaître-Robertson-Walker model characterizes the universe as homogeneous and isotropic on a
large scale. But it is essential to note that there is no observable evidence definitively excluding the existence of an
anisotropic universe. Anisotropic cosmological models [29, 30, 31] have gained prominence due to observations of the
Cosmic Microwave Background Radiation (CMBR) and the formation of Helium in the early stages of the universe’s
evolution. The presence of anisotropy in cosmic expansion is a significant factor, supported by critical arguments and
experimental data suggesting the existence of an anisotropic phase transitioning towards isotropy over time. Hence, it
is crucial to consider models incorporating an anisotropic background. Spatially homogeneous and anisotropic Bianchi
models are commonly taken into consideration to gain a better understanding of the dynamics of the expanding universe.
This is because they are the most basic models with an anisotropic background and are important in explaining the
large-scale behavior of the universe. In order to properly connect the homogeneous and isotropic FLRW models with the
inhomogeneous and anisotropic models, Bianchi type models provide means of incorporating the influence of anisotropy.
As a result, a large number of scholars have investigated anisotropic and spatially homogeneous Bianchi cosmological
models in many contexts.

In this study, we develop a cosmological model of Bianchi type-V, which is both spatially homogeneous and
anisotropic. This model incorporates a hybrid expansion law, assuming the universe to filled with cold dark matter and
non-interacting Barrow holographic dark energy with the Granda-Oliveros length scale serving as the IR cutoff. The
paper is structured in the following manner: In section 2, we derive the Einstein field equations for the Bianchi type-V
metric. In Section 3, exact solutions to the field equations are obtained by employing a hybrid expansion law. Furthermore,
we consider several cosmologically relevant parameters. In section 4, we examine the model’s kinematical and physical
characteristics as well as its energy conditions. In Section 5, we explore the Statefinder diagnostics and examine its
consequences. In Section 6, we explore the correlation between BHDE and a quintessence scalar field. In Section 7, we
provide concluding remarks on our findings.

2. THE METRIC AND BASIC FIELD EQUATIONS
We consider the spatially homogeneous and anisotropic Bianchi type-V universe characterised by the metric:

𝑑𝑠2 = −𝑑𝑡2 + 𝐴2𝑑𝑥2 + 𝑒2𝜂𝑥 {
𝐵2𝑑𝑦2 + 𝐶2𝑑𝑧2} (1)

where 𝜂 is a positive constant and 𝐴(𝑡), 𝐵(𝑡) and 𝐶 (𝑡) are the directional scale factors with 𝑡 being the cosmic time.
With natural units of (8𝜋𝐺 = 1, 𝑐 = 1), the Einstien field equations are given by

𝑅𝑖 𝑗 −
1
2
𝑔𝑖 𝑗𝑅 = 𝑇𝑖 𝑗 (2)

where 𝑅𝑖 𝑗 is the Ricci tensor , 𝑔𝑖 𝑗 is the metric tensor, 𝑅 = 𝑔𝑖 𝑗𝑅𝑖 𝑗 is the Ricci scalar curvature and 𝑇𝑖 𝑗 is the energy
momentum tensor of the cosmic fluid.

We consider the universe to be filled with a mixture of pressureless cold dark matter and non-interacting Barrow
holographic dark energy with Granda Oliveros (GO) lenght scale as IR cutoff given by

𝜌𝐵𝐻𝐷𝐸 = 3
(
𝛼𝐻2 + 𝛽 ¤𝐻

) 2−Δ
2 (3)

where 𝜌𝐵𝐻𝐷𝐸 is the energy density of Barrow holographic dark energy (BHDE) and [𝐿]
−2Δ
2−Δ is the dimension of the
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constant parameters 𝛼 and 𝛽. 𝐻 represents the Hubble parameter.
The energy-momentum tensor 𝑇𝑖 𝑗 can be written as

𝑇𝑖 𝑗 = 𝜌𝑚𝑢𝑖𝑢 𝑗 + (𝜌𝐵𝐻𝐷𝐸 + 𝑝𝐵𝐻𝐷𝐸) 𝑢𝑖𝑢 𝑗 + 𝑔𝑖 𝑗 𝑝𝐵𝐻𝐷𝐸 (4)

where 𝜌𝑚 represents the energy density of cold dark matter, 𝜌𝐵𝐻𝐷𝐸 and 𝑝𝐵𝐻𝐷𝐸 are the energy density and pressure of
Barrow holographic dark energy, respectively and 𝑢𝑖 is the four velocity satisfying 𝑢𝑖𝑢𝑖 = −1.

In a comoving coordinate system, the Einstein field equations (2), along with equation (4) for the metric (1), result
in the following system of field equations:

¥𝐵
𝐵
+

¥𝐶
𝐶

+
¤𝐵
𝐵

¤𝐶
𝐶

− 𝜂2

𝐴2 = −𝑝𝐵𝐻𝐷𝐸 (5)

¥𝐴
𝐴
+

¥𝐶
𝐶

+
¤𝐴
𝐴

¤𝐶
𝐶

− 𝜂2

𝐴2 = −𝑝𝐵𝐻𝐷𝐸 (6)

¥𝐴
𝐴
+

¥𝐵
𝐵
+

¤𝐴
𝐴

¤𝐵
𝐵
− 𝜂2

𝐴2 = −𝑝𝐵𝐻𝐷𝐸 (7)

¤𝐴
𝐴

¤𝐵
𝐵
+

¤𝐴
𝐴

¤𝐶
𝐶

+
¤𝐵
𝐵

¤𝐶
𝐶

− 3𝜂2

𝐴2 = 𝜌𝑚 + 𝜌𝐵𝐻𝐷𝐸 (8)

2 ¤𝐴
𝐴

−
¤𝐵
𝐵
−

¤𝐶
𝐶

= 0 (9)

where a dot above indicates a differentiation with respect to 𝑡 .
From equation (9), we obtain:

𝐴2 = 𝐵𝐶 (10)

The conservation of energy-momentum yields

¤𝜌𝑚 + ¤𝜌𝐵𝐻𝐷𝐸 + 3𝐻 (𝜌𝑚 + 𝜌𝐵𝐻𝐷𝐸 + 𝑝𝐵𝐻𝐷𝐸) = 0 (11)

We can divide equation (11) into the following two continuity equations as the BHDE and cold dark matter are
non-interacting:

¤𝜌𝑚 + 3𝐻𝜌𝑚 = 0 (12)

¤𝜌𝐵𝐻𝐷𝐸 + 3𝐻 (𝜌𝐵𝐻𝐷𝐸 + 𝑝𝐵𝐻𝐷𝐸) = 0 (13)

3. COSMOLOGICAL SOLUTIONS OF THE FIELD EQUATIONS
From Einstein’s field equations (5) − (8), we obtain:

𝐴

𝐵
= 𝑑1𝑒

𝑘1
∫
𝑎−3𝑑𝑡 (14)

𝐴

𝐶
= 𝑑2𝑒

𝑘2
∫
𝑎−3𝑑𝑡 (15)

𝐵

𝐶
= 𝑑3𝑒

𝑘3
∫
𝑎−3𝑑𝑡 (16)

where 𝑑1, 𝑑2, 𝑑3, 𝑘1, 𝑘2, 𝑘3 are the constants of integration and 𝑎 is the average scale defined by.

𝑎 = (𝐴𝐵𝐶)
1
3 (17)

which parameterizes the universe’s relative expansion.
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The metric functions from equations (14) − (16) and (10) can be directly obtained as

𝐴 = 𝑎 (18)

𝐵 = 𝑚𝑎𝑒𝑙
∫
𝑎−3𝑑𝑡 (19)

𝐶 =
𝑎

𝑚
𝑒−𝑙

∫
𝑎−3𝑑𝑡 (20)

where 𝑚 = (𝑑2𝑑3)
1
3 , 𝑙 =

𝑘2 + 𝑘3
3

, 𝑑2 = 𝑑−1
1 , 𝑘2 = −𝑘1 (21)

To derive a complete solution for the field equations, we take into account a hybrid expansion law in the form:

𝑎 = 𝑎0

(
𝑡𝑘𝑒𝑡

) 1
𝑛 (22)

where 𝑎0, 𝑘 and 𝑛 are positive constants.

Using (22) in (18), (19), (20), we then obtain

𝐴 = 𝑎0

(
𝑡𝑘𝑒𝑡

) 1
𝑛 (23)

𝐵 = 𝑚𝑎0

(
𝑡𝑘𝑒𝑡

) 1
𝑛

𝑒𝑙𝐹 (𝑡 ) (24)

𝐶 =
𝑎0
𝑚

(
𝑡𝑘𝑒𝑡

) 1
𝑛

𝑒−𝑙𝐹 (𝑡 ) (25)

where 𝐹 (𝑡) =
∫
𝑎0

(
𝑡𝑘𝑒𝑡

) −3
𝑛 𝑑𝑡.

4. PHYSICAL AND KINEMATICAL PROPERTIES OF THE MODEL
In order to comprehend the universe’s evolution, we now introduce a few cosmic parameters: the mean Hubble

parameter 𝐻, which determines the universe’s rate of expansion, the spatial volume 𝑉 , the scalar expansion (𝜃), shear
scalar (𝜎), average anisotropic parameter (𝐴𝑚) defined for the metric(1) by

𝑉 = 𝑎3 = 𝐴𝐵𝐶 (26)

𝐻 =
1
3
(𝐻1 + 𝐻2 + 𝐻3) (27)

𝜃 = 3𝐻 (28)

𝜎2 =
1
3

[( ¤𝐴
𝐴

)2

+
( ¤𝐵
𝐵

)2

+
( ¤𝐶
𝐶

)2

−
¤𝐴
𝐴

¤𝐵
𝐵
−

¤𝐵
𝐵

¤𝐶
𝐶

−
¤𝐶
𝐶

¤𝐴
𝐴

]
(29)

𝐴𝑚 =
1
3

3∑︁
𝑖=1

(
𝐻𝑖 − 𝐻

𝐻

)2
(30)

where the directional Hubble parameters along the three spatial directions 𝑥, 𝑦, and 𝑧, are respectively,
𝐻1 =

¤𝐴
𝐴
, 𝐻2 =

¤𝐵
𝐵
, 𝐻3 =

¤𝐶
𝐶

.
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The universe’s relative rate of expansion (or contraction) is measured by the expansion scalar 𝜃, its deformation due
to density fluctuations is measured by the shear scalar 𝜎, and its divergence from isotropy is measured by the anisotropy
parameter 𝐴𝑚.

The directional Hubble parameters and the mean Hubble parameter (𝐻) are obtained for the metric in (1) as :

𝐻1 =
¤𝐴
𝐴

=
𝑘 + 𝑡

𝑛𝑡
(31)

𝐻2 =
¤𝐵
𝐵

=
𝑘 + 𝑡

𝑛𝑡
+ 𝑙𝐹′ (𝑡) (32)

𝐻3 =
¤𝐶
𝐶

=
𝑘 + 𝑡

𝑛𝑡
− 𝑙𝐹′ (𝑡) (33)

𝐻 =
1
3

( ¤𝐴
𝐴
+

¤𝐵
𝐵
+

¤𝐶
𝐶

)
=

𝑘 + 𝑡

𝑛𝑡
(34)

The evolution of the Hubble parameter (𝐻) with respect to cosmic time 𝑡 are shown in figure 1. We can see from the
figure that, for all values of 𝑛 and 𝑘 , 𝐻 diverges at 𝑡 = 0 and then decreases with cosmic time 𝑡.

The deceleration parameter can be found as follows using the relation 𝑞 = −𝑎 ¥𝑎
¤𝑎2 :

𝑞 =
𝑘𝑛

(𝑘 + 𝑡)2 − 1 (35)

The dynamics of deceleration parameter (𝑞) is determined by the two free parameters, 𝑛 and 𝑘 , as shown in Figure
2. The universe is accelerating from the beginning for 𝑛 = 1, 𝑘 = 1.5 (Red solid line) and 𝑛 = 0.5, 𝑘 = 1 (Green solid
line); but, for 𝑛 = 1.1, 𝑘 = 1 (Blue solid line) and 𝑛 = 1.05, 𝑘 = 1 (Black solid line), it is transitioning from an early
decelerating phase to the current accelerating phase. It is noted that our model is transitioning from the deceleration phase
to the acceleration phase for 0 < 𝑘

𝑛
< 1. Furthermore, current SNeIa data reveal that the universe is expanding and that

the deceleration parameter’s value falls somewhere between the interval −1 < 𝑞 < 0.
We select 𝑛 = 1.1 and 𝑘 = 1 for plotting the graphs of the cosmological parameters to study their behaviour as the

universe evolves. This is the most appropriate choice as we are looking for a model that describes the universe from early
decelerating phase to current accelerating phase.

Figure 1. Plotting the Hubble parameter (𝐻) vs
cosmic time (𝑡) for 𝑛 = 1, 𝑘 = 1.5 (Red solid
line) , 𝑛 = 0.5, 𝑘 = 1 (Green solid line), 𝑛 =

1.1, 𝑘 = 1(Blue solid line) and 𝑛 = 1.05, 𝑘 =

1(Black solid line)

Figure 2. Plotting the deceleration parameter
(DP) vs cosmic time (𝑡) for 𝑛 = 1, 𝑘 = 1.5 (Red
solid line) , 𝑛 = 0.5, 𝑘 = 1 (Green solid line),
𝑛 = 1.1, 𝑘 = 1(Blue solid line) and 𝑛 = 1.05, 𝑘 =

1(Black solid line)
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For our model, the spatial volume 𝑉 , shear scalar 𝜎, expansion scalar 𝜃, and average anisotropy parameter 𝐴𝑚 are
determined as follows:

𝑉 = 𝑎3
0

(
𝑡𝑘𝑒𝑡

) 3
𝑛 (36)

𝜎2 =
𝑙2(

𝑡𝑘𝑒𝑡
) 6
𝑛

(37)

𝜃 = 3
(
𝑘 + 𝑡

𝑛𝑡

)
(38)

𝐴𝑚 =
2
3
𝑙2

(
𝑡𝑘𝑒𝑡

) −6
𝑛(

𝑘+𝑡
𝑛𝑡

)2 (39)

From equations (36)–(39), we may infer that at the beginning of the universe, the spatial volume𝑉 is zero. Therefore,
the Big Bang singularity is where our model begins. Both the shear scalar 𝜎 and the expansion scalar 𝜃 diverge at 𝑡 = 0
and decrease as cosmic time 𝑡 increases up to a fixed limit. The anisotropic parameter (𝐴𝑚) varies with cosmic time, as
seen in figure 3. It is demonstrated that for sufficiently long times, 𝐴𝑚 diminishes with time and tends to zero for large 𝑡.
As a result, the universe’s anisotropic behavior eventually ends, and the derived model can produce the universe’s observed
isotropy.

Figure 3. Plotting the anisotropic parameter vs
cosmic time (𝑡) for 𝑛 = 1.1 and 𝑘 = 1

Figure 4. Plotting the matter energy density vs
cosmic time (𝑡) for 𝑐1 = 100 , 𝑛 = 1.1 and 𝑘 = 1

Using equation (34), from equations (12) and (3), we obtain

𝜌𝑚 = 𝑐1𝑡
−3𝑘
𝑛 𝑒

−3𝑡
𝑛 (40)

where 𝑐1 is the integration constant.
And

𝜌𝐵𝐻𝐷𝐸 = 3

(
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

)) 2−Δ
2

(41)

We can see that both the energy densities are decreasing functions of cosmic time 𝑡. The evolution of the matter
energy density (𝜌𝑚) is shown in Figure 4, showing that it is large in the early stages of the universe and tends to zero in the
later stages. For Δ = 0, the BHDE density provided by equation (41) behaves like the standard HDE. A different cosmic
scenario will arise from the deviation of BHDE’s behavior from the standard one, contingent on the Δ parameter. Plotting
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Figure 5. Plotting the Barrow HDE density vs
cosmic time (𝑡) for 𝛼 = 1, 𝛽 = 0.7 withΔ = 0
(Red solid line) , Δ = 0.5 (Green solid line), Δ =

1.5(Black solid line) and Δ = 2(Blue solid line)

Figure 6. Plotting the Barrow HDE pressure
𝑝𝐵𝐻𝐷𝐸 vs cosmic time (𝑡) for 𝛼 = 1, 𝛽 = 0.7
withΔ = 0 (Red solid line) , Δ = 0.5 (Green solid
line), Δ = 1.5(Black solid line) and Δ = 2(Blue
solid line)

BHDE against cosmic time 𝑡 for various values of Δ allows us to comprehend its evolution. Figure 5 illustrates that the
BHDE density decreases as cosmic time 𝑡 increases for values of Δ = 0, 0.5 and 1.5, and eventually tends to a constant
value. The BHDE density, on the other hand, remains constant throughout the evolution of the universe for Δ = 2. In
this case, the model is referred to as the ΛCDM model, and the BHDE acts like a cosmological constant. Volume of the
universe is increasing, according to the physical consequences of the decline in energy densities.

We obtain pressure 𝑝𝐵𝐻𝐷𝐸 of the Barrow HDE as follows by using equations (34) and (41) in equation (13) as

𝑝𝐵𝐻𝐷𝐸 = −
[
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

)] −Δ
2

[
(2 − Δ) 𝑛𝑡
𝑘 + 𝑛

(
−𝛼𝑘

(
𝑛 + 𝑘

𝑛2𝑡3

)
+ 𝛽𝑘

𝑛𝑡3

)
+ 3

(
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

))]
(42)

Equation (42) gives the Barrow holographic dark energy pressure (𝑝𝐵𝐻𝐷𝐸) with respect to cosmic time 𝑡, which is
shown in Figure 6. For Δ = 0, 0.5 and 1.5, the pressure 𝑝𝐵𝐻𝐷𝐸 is extremely negative at the beginning and rises gradually
as cosmic time 𝑡 increases until it reaches a certain constant value. However for Δ = 2, the pressure is constantly negative
in the entire evolution of the universe. This indicates that the universe is undergoing accelerated expansion for all the
values of Δ, as the pressure remains negative throughout the evolution.

Equation of state parameter (EoS parameter) 𝜔𝐵𝐻𝐷𝐸 of Barrow HDE is determined as follows by using equations
(41) and (42).

𝜔𝐵𝐻𝐷𝐸 =
𝑝𝐵𝐻𝐷𝐸

𝜌𝐵𝐻𝐷𝐸

= −1 +
(Δ − 2) 𝑘

𝑛𝑡2

(
𝛽

𝑡
− 𝛼

(
𝑘+𝑡
𝑛𝑡

))
(
𝑘+𝑡
𝑛𝑡

) [
𝛼

(
𝑘+𝑡
𝑛𝑡

)2
− 𝛽𝑘

𝑛𝑡2

] (43)

According to equation (43), when Δ < 2, the EoS parameter 𝜔𝐵𝐻𝐷𝐸 in our model is a strictly decreasing function
of cosmic time 𝑡. For various values of Δ, Figure 7 shows how the EoS parameter 𝜔𝐵𝐻𝐷𝐸 varies with cosmic time 𝑡. The
graph shows that, after a specific point in time throughout its evolution, initially the EoS parameter 𝜔𝐵𝐻𝐷𝐸 in our model
varies in the quintessence region

(
−1 < 𝜔𝐵𝐻𝐷𝐸 < − 1

3

)
for Δ = 0, 0.5, and 1.5 and after 5 billion years(approx), the EoS

parameter 𝜔𝐵𝐻𝐷𝐸 eventually approaches the ΛCDM (𝜔𝐵𝐻𝐷𝐸 = −1) model as it converges to −1 at late times. With Δ =

2, the evolution of the EoS parameter 𝜔𝐵𝐻𝐷𝐸 never changes and always has a value of −1. The Barrow holographic dark
energy behaves like the cosmological constant Λ, as was previously mentioned. After taking into account every scenario
in our model, we can say that the expansion rate will accelerate more with large values of cosmic time 𝑡.

The total energy density is obtained from equations (34) , (40) and (41) as

Ω =
𝜌𝑚

3𝐻2 + 𝜌𝐵𝐻𝐷𝐸

3𝐻2 = Ω𝑚 +Ω𝐵𝐻𝐷𝐸
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Figure 7. Plotting the equation of state param-
eter(EoS parameter) 𝜔𝐵𝐻𝐷𝐸 vs cosmic time (𝑡)
for 𝛼 = 1, 𝛽 = 0.7 withΔ = 0 (Red solid line) ,
Δ = 0.5 (Green solid line), Δ = 1.5(Black solid
line) and Δ = 2(Blue solid line)

Figure 8. Plotting the total energy density
parameter(Ω ) vs cosmic time (𝑡) for 𝛼 = 1, 𝛽 =

0.7, 𝑐1 = 100 with Δ = 0.5

=
𝑐1𝑡

−3𝑘
𝑛 𝑒

−3𝑡
𝑛

3
(
𝑘+𝑡
𝑛𝑡

)2 +

(
𝛼

(
𝑘+𝑡
𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

)) 2−Δ
2

(
𝑘+𝑡
𝑛𝑡

)2 (44)

The total energy density Ω varies throughout cosmic time 𝑡 as seen in the graph shown in Figure 8. The parameters
denoting the total energy density, Ω > 1,Ω = 1, and Ω < 1, respectively, correspond to the open, flat, and closed universe.
The overall density parameter Ω decreases with time, as the figure shows. The universe eventually becomes flat at later
times, as indicated by the total density parameter Ω eventually approaching 1.

4.1. Jerk parameter (j)

The universe’s acceleration, or how quickly the rate of expansion is changing throughout cosmic time 𝑡, is measured
by the cosmic jerk parameter, 𝑗 . It is a dimensionless quantity that gives crucial information on the universe’s expansion
and is defined as the third derivative of the scale factor 𝑎 with respect to cosmic time 𝑡. The universe transitions from an
era of decelerated expansion to one of accelerated expansion, when the jerk parameter, 𝑗 , is positive. The jerk parameter
𝑗 for the widely used ΛCDM model has a value of one.
The jerk parameter 𝑗 is defined mathematically as

𝑗 =
1

𝑎𝐻3
𝑑3𝑎

𝑑𝑡3
(45)

We derive the jerk parameter 𝑗 for our model as

𝑗 =

(
1
𝑛

)3
+

3𝑘
𝑛3
𝑡
+

3𝑘
𝑛2 ( 𝑘

𝑛
−1)

𝑡2 +
𝑘
𝑛

{
( 𝑘
𝑛 )2−3( 𝑘

𝑛 )+2
}

𝑡3(
𝑡+𝑘
𝑛𝑡

)3 (46)

Figure 9 displays the graph of the jerk parameter 𝑗 . It is clear from the figure that the jerk parameter 𝑗 stays positive
during the universe’s evolution, indicating a growing rate of expansion. Furthermore, figure 9 shows that the jerk parameter
𝑗 converges to 1 at late times, suggesting that the model mimics the behavior of the ΛCDM model.
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Figure 9. Plotting the jerk parameter vs cosmic
time (𝑡) for 𝑛 = 1.1 and𝑘 = 1

Figure 10. Plotting the snap parameter vs cosmic
time (𝑡) for 𝑛 = 1.1 and 𝑘 = 1

4.2. Snap parameter(s):
The fourth order derivative of the scale factor 𝑎 with respect to cosmic time 𝑡 is known as the snap parameter (𝑠),

a dimensionless quantity. It aids in understanding the dynamics of the universe by describing the pace at which the
acceleration of the universe’s expansion is changing.
Mathematically, the snap parameter (𝑠) is defined as

𝑠 =
1

𝑎𝐻4
𝑑4𝑎

𝑑𝑡4
(47)

The snap parameter (𝑠) for our model is found as

𝑠 =

(
1
𝑛

)4
+

4𝑘
𝑛4
𝑡
+

6𝑘
𝑛3 ( 𝑘

𝑛
−1)

𝑡2 +
4𝑘
𝑛2

(
( 𝑘
𝑛 )2−3( 𝑘

𝑛 )+2
)

𝑡3 + ( 𝑘
𝑛 )4−6( 𝑘

𝑛 )3+11( 𝑘
𝑛 )2−6( 𝑘

𝑛 )
𝑡4(

𝑘+𝑡
𝑛𝑡

)4 (48)

The variation of the snap parameter 𝑠 with respect to cosmic time 𝑡 is shown in Figure 10. The increasing behavior is
displayed by the snap parameter (𝑠). It is negative when 𝑡 → 0 and increases with cosmic time 𝑡. Eventually, the snap
parameter 𝑠 converges to 1 at late times. This indicates an accelerated expansion phase of the universe.

4.3. Lerk parameter(l):
Another dimensionless quantity is the lerk parameter 𝑙, which is the fifth order derivative of the scale factor 𝑎 with

respect to cosmic time 𝑡.
The lerk parameter 𝑙 is described mathematically as

𝑙 =
1

𝑎𝐻5
𝑑5𝑎

𝑑𝑡5
(49)

We derive the lerk parameter 𝑙 for our model as

𝑙 =

(
1
𝑛

)5
+

5𝑘
𝑛5
𝑡
+

10𝑘
𝑛4 ( 𝑘

𝑛
−1)

𝑡2 +
10

(
𝑘

𝑛3

) (
( 𝑘
𝑛 )2−3( 𝑘

𝑛 )+2
)

𝑡3 +
5
(

𝑘

𝑛2

) (
( 𝑘
𝑛 )3−6( 𝑘

𝑛 )2+11( 𝑘
𝑛 )−6

)
𝑡4 + ( 𝑘

𝑛 )5−10( 𝑘
𝑛 )4+35( 𝑘

𝑛 )3−50( 𝑘
𝑛 )2+24( 𝑘

𝑛 )
𝑡5(

𝑡+𝑘
𝑛𝑡

)5

(50)

The variation of the lerk parameter 𝑙 with respect to cosmic time 𝑡 is shown in Figure 11. The figure illustrates that
the lerk parameter, 𝑙, is high at 𝑡 → 0 and decreases progressively as cosmic time 𝑡, increases. At late times, it converges
to 1.
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4.4. Energy conditions:
In the context of general relativity, energy conditions are a collection of theoretical inequalities which operate as

linear combinations of energy density and pressure that describe the behavior of energy and matter in a given spacetime.
These conditions are derived from the Einstein field equations of general relativity and play a crucial role in under-
standing the properties and evolution of the universe. They often place constraints on the possible forms of energy and
matter that can exist in the universe. There are several types of energy conditions, each with its own implications for
the nature of matter and energy in the universe. The null energy condition (NEC), the weak energy condition (WEC),
the strong energy condition (SEC), and the dominant energy condition (DEC) are the linear energy conditions among them.

The four energy conditions are as follows:

Null energy condition(NEC) ⇔ (𝜌 + 𝑝) ≥ 0 (51)

Weak energy condition(WEC) ⇔ (𝜌 ≥ 0) and (𝜌 + 𝑝 ≥ 0) (52)

Strong energy condition(SEC) ⇔ (𝜌 + 3𝑝 ≥ 0) and (𝜌 + 𝑝 ≥ 0) (53)

Dominant energy condition(DEC) ⇔ (𝜌 ≥ 0) and (𝜌 ± 𝑝 ≥ 0) (54)

For our model,

𝜌 = 𝜌𝑚 + 𝜌𝐵𝐻𝐷𝐸 and 𝑝 = 𝑝𝐵𝐻𝐷𝐸

consequently,

𝜌 + 𝑝 = 𝑐1𝑡
−3𝑘
𝑛 𝑒

−3𝑡
𝑛 −

(
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

))− Δ
2

.

[
(2 − Δ)𝑛𝑡
𝑘 + 𝑛

{
−𝛼𝑘

(
𝑛 + 𝑘

𝑛2𝑡3

)
+ 𝛽𝑘

𝑛𝑡3

}]
(55)

𝜌 − 𝑝 = 𝑐1𝑡
−3𝑘
𝑛 𝑒

−3𝑡
𝑛 +

(
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

))− Δ
2

.

[
(2 − Δ)𝑛𝑡
𝑘 + 𝑛

{
−𝛼𝑘

(
𝑛 + 𝑘

𝑛2𝑡3

)
+ 𝛽𝑘

𝑛𝑡3

}
+ 6

{
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
− 𝛽𝑘

𝑛𝑡2

}]
(56)

𝜌 + 3𝑝 = 𝑐1𝑡
−3𝑘
𝑛 𝑒

−3𝑡
𝑛 − 3

(
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

))− Δ
2

.

[
(2 − Δ)𝑛𝑡
𝑘 + 𝑛

{
−𝛼𝑘

(
𝑛 + 𝑘

𝑛2𝑡3

)
+ 𝛽𝑘

𝑛𝑡3

}
+ 2

{
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
− 𝛽𝑘

𝑛𝑡2

}]
(57)

However, the SEC is known to be violated in an accelerated expansion phase of the universe. Figure 12 shows a plot
of the energy conditions, which indicates that in our model, initially, the NEC, WEC, SEC and DEC are all satisfied, but
at late times, the SEC gets violated. The violation of the SEC results in the acceleration of the universe.

4.5. Coincidence parameter (𝑟):
The coincidence parameter, symbolized by 𝑟, is a measure representing the ratio between two energy densities within

the universe, namely 𝑟 =
𝜌𝐵𝐻𝐷𝐸

𝜌𝑚
. According to current data, the coincidence parameter’s value must either stay constant

or vary very slowly as the universe expands. However, the simplest and most widely acknowledged dark energy model, the
ΛCDM model, doesn’t align with these observations. Numerous different models are therefore taken into consideration to
get over this problem of coincidence.

The coincidence parameter (𝑟) for our model can be found as

𝑟 =

3
(
𝛼

(
𝑘+𝑡
𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

)) 2−Δ
2

𝑐1𝑡
−3𝑘
𝑛 𝑒

−3𝑡
𝑛

(58)

The graph in Figure 13 illustrates the change in the coincidence parameter 𝑟 over cosmic time 𝑡. It’s evident that 𝑟
increases rapidly in later stages, indicating that our model doesn’t resolve the coincidence problem. As we’ve assumed no
interaction between BHDE and dark matter, exploring an interacting model could be insightful. Therefore, a specific form
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Figure 11. Plotting the lerk parameter vs cosmic
time (𝑡) for 𝑛 = 1.1 and 𝑘 = 1

Figure 12. Plotting the energy conditions vs
cosmic time (𝑡) for 𝑛 = 1.1, 𝑘 = 1, 𝑐1 = 100,Δ =

0.5, 𝛼 = 1, 𝛽 = 0.7, 𝜌 + 𝑝 (blue line), 𝜌 − 𝑝

(green line), 𝜌 + 3𝑝(red line)

of interaction between Barrow holographic dark energy and dark matter might keep their density ratios relatively constant
over the course of the universe’s evolution.

5. STATEFINDER DIAGNOSTIC

In order to differentiate between different dark energy-related cosmological scenarios, a precise and robust method
for evaluating DE models is important. In order to do this, Sahni et al. [32] proposed the Statefinder diagnostis, that uses
the parameter pair {𝑟, 𝑠}. Different dark energy models, including the cosmological constant, quintessence, Chaplygin
gas, braneworld models, and models with interacting dark energy, can be effectively distinguished by the pair. The
construction of the dimensionless Statefinder diagnostic involves taking into account the universe’s scale factor 𝑎 and
its higher order derivative just with regard to cosmic time 𝑡. The parameter 𝑟 represents the hierarchy of geometrical
cosmological parameters, succeeding the Hubble parameter 𝐻 and the deceleration parameter 𝑞. The parameter 𝑠, on the
other hand, is independent of the density associated to dark energy as it is obtained as a linear combination of 𝑞 and 𝑟 .
The definition of the Statefinder diagnostic pair {𝑟, 𝑠} is

𝑟 =
1

𝑎𝐻3
𝑑3𝑎

𝑑𝑡3
and 𝑠 =

𝑟 − 1
3(𝑞 − 1

2 )
, where 𝑞 ≠

1
2

(59)

In case of our model, 𝑟 and 𝑠 are found to be as

𝑟 =

(
1
𝑛

)3
+

3𝑘
𝑛3
𝑡
+

3𝑘
𝑛2 ( 𝑘

𝑛
−1)

𝑡2 +
𝑘
𝑛

{
( 𝑘
𝑛 )2−3( 𝑘

𝑛 )+2
}

𝑡3(
𝑡+𝑘
𝑛𝑡

)3 (60)

𝑠 =

−6
(
𝑘

𝑛2

)
𝑡 − 6

(
𝑘
𝑛

)2
+ 4

(
𝑘
𝑛

)
3
(

1
𝑛

)
(𝑡 + 𝑘)

{
2
(
𝑘
𝑛

)
− 3

(
1
𝑛
𝑡 + 𝑘

𝑛

)2
} (61)

For these cosmological parameters, the 𝑟 − 𝑠 plane is (1, 0) for ΛCDM and (1, 1) for standard CDM(SCDM). While the
trajectories for Chaplygin gas are located in the range (𝑟 > 1, 𝑠 < 0), the quintessential dark energy epochs are represented
by the region (𝑟 < 1, 𝑠 > 0). The Statefinder diagnostic pair in our model is dependent on the cosmic time 𝑡, as shown by
equations (60) and (61). The diagnostic pair results in 𝑟 = 1 and 𝑠 = 0 as 𝑡 approaches infinity. Additionally, figure 14
verifies that later stages of our model coincide with the ΛCDM model.
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Figure 13. Plotting the coincidence parameter vs
cosmic time (𝑡) for 𝑛 = 1.1, 𝑘 = 1, 𝑐1 = 100,Δ =

0.5, 𝛼 = 1, 𝛽 = 0.7

Figure 14. Plotting the statefinder parameters 𝑠

vs 𝑟 (𝑡) for 𝑛 = 1.1 and 𝑘 = 1

6. CORRESPONDENCE BETWEEN THE BARROW HOLOGRAPHIC DARK ENERGY MODEL AND
QUINTESSENCE SCALAR FIELD MODEL

To establish correspondence between holographic dark energy with quintessence dark energy models, we compare
their equations of state and dark energy densities. For the universe to undergo accelerated expansion, the equation of state
parameter for quintessence must be less than − 1

3 .
The energy density and pressure for the quintessence scalar field model are defined by:

𝜌𝜙 =
¤𝜙2

2
+𝑉 (𝜙) (62)

𝑝𝜙 =
¤𝜙2

2
−𝑉 (𝜙) (63)

where 𝜙 represents the quintessence scalar field and 𝑉 (𝜙) denotes the potential of the scalar field 𝜙.
The equation of state parameter for the scalar field is expressed as

𝜔𝜙 =
𝑝𝜙

𝜌𝜙

=
¤𝜙2 − 2𝑉 (𝜙)
¤𝜙2 + 2𝑉 (𝜙)

(64)

Equations (62) and (63) provide

¤𝜙2 = 𝜌𝜙 + 𝑝𝜙 (65)

𝑉 (𝜙) =
𝜌𝜙 − 𝑝𝜙

2
(66)

By using equations (43) and (64), we obtain

−1 +
(Δ − 2) 𝑘

𝑛𝑡2

(
𝛽

𝑡
− 𝛼

(
𝑘+𝑡
𝑛𝑡

))
(
𝑘+𝑡
𝑛𝑡

) [
𝛼

(
𝑘+𝑡
𝑛𝑡

)2
− 𝛽𝑘

𝑛𝑡2

] =
¤𝜙2 − 2𝑉 (𝜙)
¤𝜙2 + 2𝑉 (𝜙)

(67)

By equating 𝜌𝜙 with 𝜌𝐵𝐻𝐷𝐸 and 𝑝𝜙 with 𝑝𝐵𝐻𝐷𝐸 , we can compute the kinetic energy ¤𝜙2 and the scalar potential𝑉 (𝜙) as

¤𝜙2 = −
[
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2

)] −Δ
2 [

(2 − Δ)
𝑘 + 𝑛

(
−𝛼𝑘

(
𝑛 + 𝑘

𝑛𝑡2

)
+ 𝛽𝑘

𝑡2

)]
(68)
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𝑉 (𝜙) = 3

[
𝛼

(
𝑘 + 𝑡

𝑛𝑡

)2
+ 𝛽

(
−𝑘
𝑛𝑡2
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2

+ 1
2

[
𝛼

(
𝑘 + 𝑡

𝑛𝑡
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+ 𝛽
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−𝑘
𝑛𝑡2

)] −Δ
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𝑘 + 𝑛
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−𝛼𝑘

(
𝑛 + 𝑘

𝑛𝑡2

)
+ 𝛽𝑘

𝑡2

)]
(69)

Thus, we have determined the potential 𝑉 (𝜙) and the scalar field 𝜙 for the quintessence scalar field model corre-
sponding to the BHDE model. The kinetic energy ¤𝜙2 is shown in Figure 15, illustrating that it decreases over cosmic time
𝑡 and eventually diminishes at late times. Figure 16 depicts the scalar field potential 𝑉 (𝜙) for the quintessence model,
indicating that 𝑉 (𝜙) also decreases over cosmic time 𝑡 and tends to a constant value at late times. This type of potential
and kinetic energy can lead to the accelerated expansion of the universe.

Figure 15. Plotting the kinetic energy ¤𝜙2 vs (𝑡)
for 𝑛 = 1.1, 𝑘 = 1 , Δ = 0.5, 𝛼 = 1 and 𝛽 = 0.7

Figure 16. Plotting the potential energy 𝑉 (𝜙) vs
(𝑡) for 𝑛 = 1.1, 𝑘 = 1 , Δ = 0.5, 𝛼 = 1 and 𝛽 =

0.7

7. CONCLUSION
In this study, we consider Barrow holographic dark energy with Granda - Oliverso length scale as the infrared cutoff

to construct a spatially homogeneous and anisotropic Bianchi type-V universe within the framework of General Relativity.
The universe is assumed to be filled with a mixture of cold dark matter and the Barrow holographic dark energy which
does not interact with the cold dark matter. Exact solution of the Einstein field equations are obtained by imposing the
condition that the average scale factor 𝑎 obeys a hybrid expansion law. We then investigate the physical and kinematic
characteristics of the model by analyzing its parameters of cosmological importance and find that:

• At time 𝑡 → 0, the volume 𝑉 of the universe is zero, indicating that the universe starts from a point of zero volume
and expands throughout its evolution. This suggests that the universe began with a Big Bang singularity.

• The universe transitions from an early deceleration phase to a recent acceleration phase, as illustrated in Figure 2,
and this aligns well with recent observations.

• The Hubble parameter 𝐻, the expansion scalar 𝜃, and the shear scalar 𝜎 each diverges at 𝑡 → 0, and then all decrease
with increasing cosmic time 𝑡 but remains positive.

• The anisotropic parameter 𝐴𝑚 approaches zero for sufficiently large time. Thus, the present model becomes isotropic
at late times.

• The matter energy density 𝜌𝑚 and the Barrow holographic dark energy density 𝜌𝐵𝐻𝐷𝐸 both decrease as cosmic
time 𝑡 increases. This decrease in energy densities over time results in the expansion of the universe.

• In later epochs, the pressure of Barrow holographic dark energy 𝑝𝐵𝐻𝐷𝐸 becomes negative, indicating the universe’s
accelerated expansion.

• In the beginning, the equation of state parameter 𝜔𝐵𝐻𝐷𝐸 for Barrow holographic dark energy experiences variation
within the quintessence region, gradually approaching the ΛCDM model as time progresses.
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• The total energy density parameter Ω tends to 1 as 𝑡 → ∞. This implies that the universe is approaching towards a
flat universe in its later stage.

• The Null energy condition, Weak energy condition, and Dominant energy condition are all satisfied, but in the later
stages, the Strong energy condition is violated, indicating the universe’s accelerated expansion.

• The cosmic jerk parameter ( 𝑗), snap parameter (𝑠), and lerk parameter (𝑙) all approach the value 1 as time progresses.
This convergence, particularly of 𝑗 , indicates that our model aligns with the ΛCDM model at late time.

• Throughout the evolution of the universe, the coincidence parameter, 𝑟 varies. In our model, the coincidence
problem remains unresolved.

• The Statefinder parameters intersect at the point (1, 0), signifying alignment with the ΛCDM model.

• The correlation between the Barrow holographic dark energy model and the quintessence scalar field model explains
the accelerated expansion phase of the universe.
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КОСМIЧНА ЕВОЛЮЦIЯ У ВСЕСВIТI БIАНКI ТИПУ V З ГОЛОГРАФIЧНОЮ ТЕМНОЮ ЕНЕРГIЄЮ БАРРОУ ЗI 
ШКАЛОЮ ДОВЖИНИ ГРАНДА-ОЛIВЕРОСА ЯК IЧ ВIДСIЧЕННЯ

Чандра Рекха Маханта, Раджашрi Маханта, Джой Пракаш Медхi
Факультет математики, Унiверситет Гаухатi, Гувахатi - 781014, Iндiя

У цiй роботi ми будуємо просторово однорiдну та анiзотропну космологiчну модель типу Б’янкi V iз гiбридним законом роз-
ширення, розглядаючи Всесвiт як заповнений холодною темною матерiєю та невзаємодiючою голографiчною темною енергiєю 
Барроу зi шкалою довжини Гранда-Олiвероса як IЧ-вiдсiкання. . Фiзичнi та кiнематичнi характеристики отриманої моделi 
обговорюються шляхом вивчення еволюцiї рiзних параметрiв космологiчного значення, таких як параметр Хаббла, параметр 
уповiльнення, анiзотропний параметр, параметр рiвняння стану, параметр ривка тощо. Ми також дослiджуємо, чи енергетичнi 
умови виконуються або порушуються. Наш аналiз показує, що умови нульової, слабкої та домiнантної енергiї виконуються, тодi 
як умова сильної енергiї порушена, що пiдтримує прискорене розширення Всесвiту. Дiагностика вимiрювача стану також була 
виконана на основi останнiх космологiчних спостережень, щоб порiвняти нашу модель з рiзними космологiчними сценарiями 
темної енергiї. Крiм того, ми встановлюємо вiдповiднiсть мiж квiнтесенцiйним скалярним полем i голографiчною моделлю 
темної енергiї Барроу, що пiдтверджує наш опис прискореного розширення Всесвiту.
Ключовi слова: космiчне прискорення; голографiчна темна енергiя Барроу; Бiанкi тип-V; холодна темна матерiя; параметр 
уповiльнення; рiвняння параметра стану
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