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A locally rotationally symmetric Bianchi-I model filled with strange quark matter (SQM) is explored in 𝑓 (𝑅, 𝐿𝑚) gravity as a non-linear
functional of the form 𝑓 (𝑅, 𝐿𝑚)= 𝑅

2 + 𝐿𝛼
𝑚, where 𝛼 is the free model parameter. We considered the special law of variation of Hubble’s

parameter proposed by Berman (1983) and also used the power law relation between the scale factors to obtain the exact solution of
the field equation, which matches the model of the universe. We also analyze the physical and geometrical aspects of the universe’s
kinematic and dynamic behavior. Additionally, we employ equation-of-state (EoS) parameters and statefinder parameters as analytical
tools to gain insights into the evolution of the universe. We use the ΛCDM model as a benchmark to validate the results. By placing the
deviations of the universe from 𝜆CDM model and yet making important contributions to the study of the anisotropic nature of 𝑓 (𝑅, 𝐿𝑚)
gravity within the framework of cosmological dynamics, the paper increases our comprehension of our cosmic evolution.
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1. INTRODUCTION
Over the last twenty years, plenty of cosmological investigations have come out to suggest that we are living in an

accelerated growth phase of the universe. Strong evidence from Type Ia supernovae [1, 2, 3], which are crucial probes
of cosmic distances and expansion rates, supports this fast expansion. Moreover, studies on Baryon Acoustic Oscillations
(BAO) [4, 5], Wilkinson Microwave Anisotropy Probe [6], the large-scale structure of the universe [7, 8], assessments
of galaxy redshifts [9], and examinations of the cosmic microwave background radiation (CMBR) [10, 11] all provide
convincing empirical proof for this phenomenon. Collectively, these several lines of evidence indicate the impressive fact
that two mysterious substances, referred to as dark matter (DM) and dark energy (DE) with negative pressure, constitute
95% of the total universe [12]. Dark energy is thought to be the driving force causing the expanding universe’s noticeable
accelerated expansion, while dark matter, a substance that is gravitationally effective but unable to produce light, interacts
mostly through gravitational forces. The enormous significance of these mysterious components for determining the
evolution and fate of our universe is brought into focus by the convergence of universe facts.

Numerous theoretical descriptions of this acceleration have been suggested in the literature. The concept of dark
energy is basically associated with the rapid acceleration of the universe. It can be understood in two different ways. The
first one argues that the universe is currently expanding not due to the gravitation force but because of the existence of an
unknown force with a negative pressure higher than that of gravitation, and this force is called ”dark energy” (DE). The
literature proposes time-varying dark energy models such as quintessence [13], k-essence [14, 15], and even the perfect
fluid models, especially the Chaplygin gas model [16, 17] as a solution to this problem. Interpreting spacetime’s geometry
is the second tactic for explaining the universe’s acceleration. The left-hand side of the Einstein equation can be changed
for this purpose. Modified theories of gravity are the alteration of the Einstein-Hilbert action of general relativity to reach
the acceleration of the universe. These theories are geometric extensions of relativity by Einstein. Among the recent
developments, cosmologists have been detecting dark energy through the modified gravity theories as an explanation. It
is argued that dark energy would be the product of introducing a modification to the force of gravity. Various scientific
evidence shows that modified versions of gravity theories are likely to be the reasons for the acceleration of the universe at
the early and late stages, forming a consistent picture of the universe. Hence, there are many reasons to search for theories
that extend beyond general relativity, and the theories of gravity need to be revised. In the literature, there are several
modified theories that have been proposed. A few of the modified theories consist of 𝑓 (𝑅) gravity, the modification of
general relativity by introducing an arbitrary function of the Ricci scalar (𝑅) into the gravitational action [18],the 𝑓 (𝑅,𝑇)
theory, an extension of 𝑓 (𝑅) gravity coupled with the trace of energy-momentum tensor 𝑇 [19], 𝑓 (𝐺) theory where 𝐺

is the Gauss-Bonnet invariant [20, 21, 22], 𝑓 (𝑅, 𝐺) theory [23, 24], 𝑓 (𝑇) gravity [25, 26, 27], 𝑓 (𝑄,𝑇) theory [28] and
𝑓 (𝑅, 𝐿𝑚) gravity [29].

The 𝑓 (𝑅, 𝐿𝑚) gravity [29, 30] is a theory that is based on general relativity, attaching additional terms to the action
that are dependent on matter density Lagrangian (𝐿𝑚) and the Ricci scalar (𝑅), respectively. It is an attempt to overcome
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the arising issues of general relativity and observation, such as the need for dark matter and dark energy to explain
universe occurrences. This function 𝑓 (𝑅, 𝐿𝑚) is likely to be required for several theoretical reasons, such as resolving the
cosmological constant puzzle, broadcasting the universe’s accelerated expansion, or offering an alternative explanation
for gravitational incidents observed at the universe scales. Researchers [31] derived the energy condition and Dolgov-
Kawasaki (DK) instability criterion [32] in 𝑓 (𝑅, 𝐿𝑚) gravity and provided the highly versatile energy requirements that can
reduce commonly accepted energy conditions found in f(R) theories of gravity and general relativity with any connection
between matter and geometry, non-minimal connection, and non-coupling. Geometry-matter couplings in the presence of
scalar fields were discussed in [33]. Kasner-type static, cylindrically symmetric interior string solutions in the 𝑓 (𝑅, 𝐿𝑚)
theory of modified gravity are studied [34]. Some of the researchers discussed various cosmological models [35, 36] and
phenomenon of gravitational baryogenesis [37] in 𝑓 (𝑅, 𝐿𝑚) gravity. Kavya et al. [38] have discussed the anisotropic
cosmological model in 𝑓 (𝑅, 𝐿𝑚) gravity. The universe’s accelerating scenarios [39] and warmhole solution [40] have all
been investigated recently.

The LRS Bianchi-type I cosmological model is a homogeneous and anisotropic cosmological solution to Einstein’s
field equations. It specifies a spatially homogeneous universe that allows anisotropic expansion since it experiences
different rates of expansion along distinct spatial directions. This model has been extensively studied in the context of both
general relativity (GR) and modified gravity theories to understand its implications and test the viability of such theories
against observations. Yadav et al. [41] have studied the LRS Bianchi 𝐼 bulk viscous cosmological model in 𝑓 (𝑅,𝑇)
gravity. Interacting two fluid dark energy radiating cosmological models [42] and power-exponential law models [43] have
been investigated in 𝑓 (𝑅) gravity. Later on, several researchers [44, 45, 46] discussed the various cosmological aspects of
the LRS Bianchi type 𝐼 cosmological model in 𝑓 (𝑅,𝑇) gravity. Recently, Solanke et al.[47] investigated the LRS Bianchi
type-I cosmological model in the 𝑓 (𝑄,𝑇) theory of gravity with observational constraints.

This research paper emphasizes the exploration of an exact solution for the LRS Bianchi Type I space-time within the
framework of 𝑓 (𝑅, 𝐿𝑚) gravity, Hubble’s law, and incorporating the presence of strange quark matter (SQM). The study
aims to advance understanding regarding the universe’s dynamics and properties within this gravitational framework. The
article is organized as follows: The basic field equation and detailed review of 𝑓 (𝑅, 𝐿𝑚) modified gravity, including the
metric and energy momentum tensor, are given in Sections 2 and 3. Moving to Section 4, efforts are directed to find
the exact solution of the 𝑓 (𝑅, 𝐿𝑚) cosmological model. The subsequent Sections, 5 and 6, covered the details about the
strange quark model and some physical parameters respectively, within the framework of the discussed modified gravity
theory. The important analytical tool statefinder parameters are discussed in Section 7. The figures and conclusion are
summarized in sections 8 and 9.

2. BASIC FIELD EQUATIONS IN 𝑓 (𝑅, 𝐿𝑚) GRAVITY
The action integral for the framework of 𝑓 (𝑅, 𝐿𝑚) interpreted with the matter Lagrangian density 𝐿𝑚 and the Ricci

scalar 𝑅 is given as,

𝑆 =

∫
𝑓 (𝑅, 𝐿𝑚)

√−𝑔𝑑𝑥4, (1)

where 𝑓 (𝑅, 𝐿𝑚) is arbitrary function of Ricci scalar 𝑅 and matter Lagrangian 𝐿𝑚.
By contracting the Ricci tensor 𝑅𝑚𝑛, one may get the Ricci scalar 𝑅,

𝑅 = 𝑔𝑖 𝑗𝑅𝑖 𝑗 (2)

where, the Ricci tensor is defined by,

𝑅𝑖 𝑗 = −𝛿𝜆Γ𝜆
𝑖 𝑗 + 𝛿 𝑗Γ

𝜆
𝑖𝜆 − Γ𝜆

𝜆𝜎Γ
𝜎
𝑖 𝑗 + Γ𝜆

𝑗𝜎Γ
𝜎
𝑖𝜆 (3)

Here Γ𝛼
𝛽𝛾

represents the components of well-known Levi-Civita connection defined by

Γ𝛼
𝛽𝛾 =

1
2
𝑔𝛼𝜆

(
𝛿𝑔𝛾𝜆

𝛿𝑥𝛽
+
𝛿𝑔𝜆𝛽

𝛿𝑥𝛾
−
𝛿𝑔𝛽𝛾

𝛿𝑥𝜆

)
(4)

The corresponding field equations of 𝑓 (𝑅, 𝐿𝑚) gravity are obtained by varying the action (1) for metric 𝑔𝑖 𝑗 is given by,

𝑓𝑅 (𝑅, 𝐿𝑚) 𝑅𝑖 𝑗 +
(
𝑔𝑖 𝑗∇𝑖∇𝑖 − ∇𝑖∇ 𝑗

)
𝑓𝑅 (𝑅, 𝐿𝑚)

−1
2
[
𝑓 (𝑅, 𝐿𝑚) − 𝑓𝐿𝑚

(𝑅, 𝐿𝑚) 𝐿𝑚

]
𝑔𝑖 𝑗 =

1
2
𝑓𝐿𝑚

(𝑅, 𝐿𝑚) 𝑇𝑖 𝑗 (5)

Where, 𝑓𝑅 (𝑅, 𝐿𝑚) = 𝛿 𝑓 (𝑅,𝐿𝑚 )
𝛿𝑅

, 𝑓𝐿𝑚
(𝑅, 𝐿𝑚) = 𝛿 𝑓 (𝑅,𝐿𝑚 )

𝛿𝑅𝑚
Here covariant derivative is represented by ∇𝑖 and the energy

momentum tensor 𝑇𝑖 𝑗 can be expressed as,

𝑇𝑖 𝑗 = − 2
√−𝑔

𝛿
(√−𝑔 𝐿𝑚

)
𝛿𝑔𝑖 𝑗

= 𝑔𝑖 𝑗𝐿𝑚 − 2
𝛿𝐿𝑚

𝛿𝑔𝑖 𝑗
(6)
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Now, from the explicit form of the field equation (5), the covariant divergence of Energy momentum tensor 𝑇𝑖 𝑗 can be
obtained as,

∇𝑖𝑇𝑖 𝑗 = 2∇𝑖 𝑙𝑛
[
𝑓𝐿𝑚

(𝑅, 𝐿𝑚)
] 𝛿𝐿𝑚

𝛿𝑔𝑖 𝑗
(7)

The relation between the trace of energy momentum-tensor 𝑇 , Ricci scalar 𝑅, and the Lagrangian density of the matter
𝐿𝑚 obtained by contracting the field equation (5)

𝑓𝑅 (𝑅, 𝐿𝑚) 𝑅 + 3∇𝑖∇𝑖 𝑓𝑅 (𝑅, 𝐿𝑚) − 2
[
𝑓 (𝑅, 𝐿𝑚) − 𝑓𝐿𝑚

(𝑅, 𝐿𝑚) 𝐿𝑚

]
=

1
2
𝑓𝐿𝑚

(𝑅, 𝐿𝑚) 𝑇 (8)

The relation between the trace of the energy momentum tensor 𝑇 = 𝑇 𝑖
𝑖
, 𝐿𝑚, and 𝑅 can be established by taking account of

the previously mentioned equation.

3. METRIC AND FIELD EQUATION IN 𝑓 (𝑅, 𝐿𝑚) GRAVITY
The spatially homogeneous and anisotropic LRS Bianchi type 𝐼 spacetime can be written in the form of,

𝑑𝑠2 = −𝑑𝑡2 + 𝐿2𝑑𝑥2 + 𝑀2
(
𝑑𝑦2 + 𝑑𝑧2

)
(9)

Where 𝐿 and 𝑀 are the metric potential that are the functions of cosmic time 𝑡 only.
The Ricci scalar for LRS Bianchi - 𝐼 spacetime can be expressed as

𝑅 = −2
[ ¥𝐿
𝐿
+ 2

¥𝑀
𝑀

+ 2
¤𝐿 ¤𝑀
𝐿𝑀

+
¤𝑀2

𝑀2

]
(10)

The overhead dot (.) denotes the derivative with respect to time 𝑡. The spatial volume V of the universe is defined as

𝑉 = 𝐿𝑀2 (11)

The generalized mean Hubble parameter (𝐻), which describes the space-time expansion rate, can be stated as

𝐻 =
1
3
(𝐻1 + 𝐻2 + 𝐻3) (12)

where 𝐻1, 𝐻2, 𝐻3 are the directional Hubble’s parameters in the direction of the x-, y-, and z-axes, respectively. In order
to figure out whether the models approach isotropy or not, we define the expansion’s anisotropy parameter as

𝐴𝑚 =
1
3

3∑︁
𝑖=1

(
𝐻𝑖 − 𝐻

𝐻

)2
(13)

The expansion scalar and shear scalar are defined as follows:

𝜃 = 𝑢𝑖;𝑖 =
¤𝐿
𝐿
+ 2

¤𝑀
𝑀

(14)

𝜎2 =
3
2
𝐻2𝐴𝑚 (15)

Let us take the matter that contains the energy momentum tensor for quark matter, which is of the form

𝑇
𝑗 (𝑞𝑢𝑎𝑟𝑘 )
𝑖

= (𝑝 + 𝜌)𝑢 𝑗𝑢𝑖 + 𝑝𝑔
𝑗

𝑖
= 𝑑𝑖𝑎𝑔 (−𝜌, 𝑝, 𝑝, 𝑝) (16)

where 𝜌 = 𝜌𝑞 + 𝐵𝑐 is a quark matter total energy density, 𝑝 = 𝑝𝑞 − 𝐵𝑐 is the quark matter total pressure, and 𝑢𝑖 is the
four-velocity vector such that 𝑢𝑖𝑢𝑖 = −1.
The EoS parameter for quark matter is defined as,

𝑝𝑞 = 𝜔𝜌𝑞 , 0 ≤ 𝜔 ≤ 1 (17)

The linear equation of state for strange quark matter is provided by

𝑝 = 𝜔 (𝜌 − 𝜌0) (18)
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where 𝜔 is constant and 𝜌0 is the energy density at zero pressure. When 𝜔 = 1
3 and 𝜌0 = 4𝐵𝑐, in the bag model, strange

quark matter changes the above linear equation of state to the one that follows EoS.

𝑝 =
(𝜌 − 4𝐵𝑐)

3
(19)

where 𝐵𝑐 is the bag constant.
By using the help of equation (16), the field equation (5) can be translated into the action of metric (10) in the co-moving
coordinate system as,

−
( ¥𝐿
𝐿
+ 2

¤𝐿 ¤𝑀
𝐿𝑀

)
𝑓𝑅 − 1

2
(
𝑓 − 𝑓𝐿𝑚

𝐿𝑚

)
− 2

¤𝑀
𝑀

¤𝑓𝑅 − ¥𝑓𝑅 =
1
2
𝑓𝐿𝑚

(
𝑝𝑞 − 𝐵𝑐

)
(20)

−
( ¥𝑀
𝑀

+
¤𝑀2

𝑀2 +
¤𝐿 ¤𝑀
𝐿𝑀

)
𝑓𝑅 − 1

2
(
𝑓 − 𝑓𝐿𝑚

𝐿𝑚

)
−
( ¤𝐿
𝐿
+

¤𝑀
𝑀

)
¤𝑓𝑅 − ¥𝑓𝑅 =

1
2
𝑓𝐿𝑚

(
𝑝𝑞 − 𝐵𝑐

)
(21)

−
( ¥𝐿
𝐿
+ 2

¥𝑀
𝑀

)
𝑓𝑅 − 1

2
(
𝑓 − 𝑓𝐿𝑚

𝐿𝑚

)
−
( ¤𝐿
𝐿
+ 2

¤𝑀
𝑀

)
¤𝑓𝑅 − ¥𝑓𝑅 = −1

2
𝑓𝐿𝑚

(
𝜌𝑞 + 𝐵𝑐

)
(22)

4. COSMOLOGICAL 𝑓 (𝑅, 𝐿𝑚) MODEL
In the present study,to examine the dynamics of the cosmological model in 𝑓 (𝑅, 𝐿𝑚) gravity, we use the relation

between 𝑅 and 𝐿𝑚 [38]

𝑓 (𝑅, 𝐿𝑚) =
𝑅

2
+ 𝐿𝛼

𝑚 (23)

where 𝛼 ≠ 0 is a parameter and one can retain GR for 𝛼 = 1.
For this particular 𝑓 (𝑅, 𝐿𝑚) model, we have to consider 𝐿𝑚 = 𝜌 [48]
Using the above particular choice of 𝐿𝑚, the field equations (20),(21) and (22) becomes,

2
¥𝑀
𝑀

+
¤𝑀2

𝑀2 − (1 − 𝛼)
(
𝜌𝑞 + 𝐵𝑐

)𝛼
= 𝛼

(
𝜌𝑞 + 𝐵𝑐

)𝛼−1 (
𝑝𝑞 − 𝐵𝑐

)
(24)

¥𝐿
𝐿
+

¥𝑀
𝑀

+
¤𝐿 ¤𝑀
𝐿𝑀

− (1 − 𝛼)
(
𝜌𝑞 + 𝐵𝑐

)𝛼
= 𝛼𝛼

(
𝜌𝑞 + 𝐵𝑐

)𝛼−1 (
𝑝𝑞 − 𝐵𝑐

)
(25)

¤𝑀2

𝑀2 + 2
¤𝐿 ¤𝑀
𝐿𝑀

= (1 − 2𝛼)
(
𝜌𝑞 + 𝐵𝑐

)𝛼 (26)

The field equations (24), (25) and (26) are three independent differential equations with four unknowns: 𝐿, 𝑀 , 𝜌𝑞 , and
𝑝𝑞 . Hence, to determine solutions, we have to use physically plausible conditions.

Berman [49] indicate that there exists a connection between the deceleration parameter as well as the average scale
factor given as,

𝑞 = −𝑎 ¥𝑎
¤𝑎2 (27)

Here, 𝑎 is the average scale factor with 𝑎 =
(
𝐿𝑀2) 1

3 and 𝑞 is the deceleration parameter. If we use Hubble’s law and relate
Hubble’s parameter 𝐻 to the average scale factor 𝑎 then we get a constant value of the deceleration parameter 𝑞.
Hence the Hubble’s law gives,

𝐻 = 𝑏𝑎−𝑚 (28)

where 𝑏 and 𝑚 are constants.Also, Hubble’s parameter (12) can be written as

𝐻 =
1
3

( ¤𝐿
𝐿
+ 2

¤𝑀
𝑀

)
=

¤𝑎
𝑎

(29)

Using equation (29), we can re-write equation (28) as

¤𝑎 = 𝑏𝑎−𝑚+1 (30)
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Using the equations (28), (29), and (30) in (27), we get

𝑞 = −𝑚 + 1 (31)

This equation demonstrates that the deceleration parameter is going to stay constant, whatever its significance, and
regardless of whether the value is positive or negative. The standard deceleration model is indicated by positive values of
the deceleration parameters. Negative numbers, on the other hand, lead the model to accelerate or lead to inflation. on
solving the equation (28) with the help of equation (29), we get

𝑎 = (𝑐𝑡 + 𝑑)
1

𝑞+1 , 𝑞 ≠ −1 (32)

considering that 𝑑 is the integration constant and 𝑐 ≠ 0.Using equation (??) and 𝐿𝑀2 = 𝑎3, we can obtain,

𝐿𝑀2 = (𝑐𝑡 + 𝑑)
3

𝑞+1 , 𝑞 ≠ −1 (33)

In order to obtain a favorable solution to the field equations, we have to consider the constraining equation. Here we
presume the anisotropic relation can be written in terms of expansion scalar (𝜃) and shear scalar (𝜎)as,

𝜎 ∝ 𝜃

With reference to the scale factors L and M, the above assumption leads to the following anisotropic relation:

𝐿 = 𝑀 𝑘 (34)

where 𝑘 ≠ 1 is an arbitrary constant. The model becomes isotropic if 𝑘 = 1, indicating that the distribution of matter in
the universe is homogeneous; otherwise, it turns out to be anisotropic.
Using the equation (34), equation (33) implies that

𝐿 = (𝑐𝑡 + 𝑑)
3𝑘

(𝑞+1) (𝑘+2) (35)

𝑀 = (𝑐𝑡 + 𝑑)
3

(𝑞+1) (𝑘+2) (36)

Equations (35) and (36) indicate that the model’s metric potentials 𝐿 and 𝑀 are time-dependent functions that rise with
time at 𝑞 > −1, 𝑘 ≠ −2 and fall with time at 𝑞 < −1, 𝑘 ≠ −2; they also do not exist at 𝑞 = −1 or 𝑘 = −2. Moreover, it is
important to note that for 𝑞 > −1, 𝑘 ≠ −2, these parameters begin at a constant value, but at the point 𝑡 = − 𝑑

𝑐
, they start at

zero, indicating that the model exhibits point-type singularity at that point.
Thus, the metric (9) with the help of equations (35) and (36) can be written as,

𝑑𝑠2 = −𝑑𝑡2 + (𝑐𝑡 + 𝑑)
6𝑘

(𝑞+1) (𝑘+2) 𝑑𝑥2 + (𝑐𝑡 + 𝑑)
6

(𝑞+1) (𝑘+2)
(
𝑑𝑦2 + 𝑑𝑧2

)
(37)

Equation (37) represents the homogeneous anisotropic plane symmetric cosmological model with quark and strange quark
matter in the framework of 𝑓 (𝑅, 𝐿𝑚) gravity. The model increases with time for the constants 𝑞 < −1, 𝑘 ≠ −2 and has a
singularity at the point 𝑡 = − 𝑑

𝑐

5. STRANGE QUARK MATTER FOR COSMOLOGICAL MODEL
From the equations (25) and (26), with the help of metric potential, the energy density and pressure of strange quark

matter are given as,

𝜌 =

[
9(1 + 2𝑘)𝑐2

(1 − 2𝛼) (𝑞 + 1)2 (𝑘 + 2)2 (𝑐𝑡 + 𝑑)2

] 1
𝛼

(38)

𝑝 = 𝐷

[
9𝑐2 (1 + 2𝑘)1−𝛼

(1 − 2𝛼) (𝑞 + 1)2 (𝑘 + 2)2 (𝑐𝑡 + 𝑑)2

] 1
𝛼

(39)

where, 𝐷 =
[ (2𝛼−1)𝑞+(2−4𝛼) ]𝑘2+[3𝑞 (2𝛼−1)+6(𝛼−1) ]𝑘+[2(2𝛼−1)𝑞+(𝛼−2) ]

3𝛼

Using the above equations, the pressure and energy density of the quark matter as follows:

𝜌𝑞 =

[
9(1 + 2𝑘)𝑐2

(1 − 2𝛼) (𝑞 + 1)2 (𝑘 + 2)2 (𝑐𝑡 + 𝑑)2

] 1
𝛼

− 𝐵𝑐 (40)
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𝑝𝑞 = 𝐷

[
9𝑐2 (1 + 2𝑘)1−𝛼

(1 − 2𝛼) (𝑞 + 1)2 (𝑘 + 2)2 (𝑐𝑡 + 𝑑)2

] 1
𝛼

+ 𝐵𝑐 (41)

Using the equations (38) and (39), the equation of state (EoS) for strange quark matter and quark matter are given as

𝜔 =
𝐷

(1 + 2𝑘) (42)

𝜔𝑞 =

𝐷

[
9𝑐2 (1+2𝑘 )1−𝛼

(1−2𝛼) (𝑞+1)2 (𝑘+2)2 (𝑐𝑡+𝑑)2

] 1
𝛼 + 𝐵𝑐[

9(1+2𝑘 )𝑐2

(1−2𝛼) (𝑞+1)2 (𝑘+2)2 (𝑐𝑡+𝑑)2

] 1
𝛼 − 𝐵𝑐

(43)

6. SOME PHYSICAL PARAMETERS
The spatial volume 𝑉 of the universe is given as

𝑉 = (𝑐𝑡 + 𝑑)
3

𝑞+1 (44)

The spatial volume of the universe increases with increasing cosmic time, starting with a constant value at 𝑡 = 0 and with
a big bang at 𝑡 = − 𝑑

𝑐
. As a result of this approach, inflation. This illustrates that the universe begins to evolve at zero

volume and grows over cosmic time. The mean generalized Hubble’s parameter (29) of the model is given by

𝐻 =
𝑐

(𝑞 + 1) (𝑐𝑡 + 𝑑) (45)

The expansion scalar of the model turns out to be

𝜃 =
3𝑐

(𝑞 + 1) (𝑐𝑡 + 𝑑) (46)

At the initial stage, both the Hubble’s parameter and the expansion scalar are constant and approach zero steadily at 𝑡 →
∞, but at 𝑡 = − 𝑑

𝑐
both are infinitely large. The mean anisotropic parameter of the model is given as

𝐴𝑚 =
2𝑘2 − 4𝑘 + 2
𝑘2 + 4𝑘 + 4

(47)

The shear scalar of the model is represented as

𝜎2 =
3𝑐2

(𝑞 + 1)2
𝑘2 − 2𝑘 + 1
𝑘2 + 4𝑘 + 4

1
(𝑐𝑡 + 𝑑)2 (48)

The shear scalar, the scalar expansion, and the Hubble parameter are all the functions of time that are rapidly decreasing
with the increase of cosmic time and getting closer to zero in the later stages. This fact reveals that in the earliest stages of
the universe, the rate of expansion was very high for a while, but gradually it became slower. This shows that the evolution
of the universe starts at an infinite rate, but with expansion, it declines.

7. STATEFINDER PARAMETERS
The so-called cosmic acceleration may arise from a quite wide range of dark energy models, many of which are

distinguishable by the utilization of the statefinder diagnostic tool. It is a model-free way of quantifying the dark energy
intrinsic properties of higher derivatives to the scale factor. Through employing the cosmic statefinder diagnostic fiction
pair {𝑟, 𝑠}, the technique permits research to investigate dark energy properties, free of any particular models. The
statefinder parameters are defined as [50, 51].

𝑟 =
1

𝑎𝐻3
𝑑3

𝑑𝑡3
(𝑎) , 𝑠 =

𝑟 − 1
3(𝑞 − 1

2 )
(49)

Identifying between different cosmological domains is mostly dependent on the paths in the {𝑟, 𝑠} plane. For example,
in the {𝑟, 𝑠} plane, the 𝜆CDM model is characterized by the point (𝑟 = 1, 𝑠 = 0), Standard Cold Dark Matter is for (𝑟 =

1, 𝑠 = 1), and the holographic DE model is represented by (𝑟 = 1, 𝑠 = 2
3 ). The phantom region is associated with (𝑟 >

1, 𝑠 < 0), and the quintessence region is identified by (𝑟 < 1, 𝑠 > 0). with the help of equations (32), (44) and (45), the
equation (49) becomes

{𝑟, 𝑠} = {2𝑞2 + 𝑞,
2
3
(𝑞 + 1)} (50)

We can see that for a given model, 𝑞, 𝑟, 𝑠 are constant. For different values of 𝑞, we have different expansion factors, which
can be analyzed in the following Table 1.



Anisotropic Cosmological Model with SQM in 𝑓 (𝑅, 𝐿𝑚) Gravity
51

EEJP. 3 (2024)

Table 1. Description of Models

q r s Type of Model

0.5 1 1 SCDM
-0.5 0 1

3 quintessence
-1 1 0 𝜆 CDM
-2 6 - 2

3 Phantom

8. FIGURES
In this section, in order to gain a deeper insight into our cosmological model, let us plot different physical and

dynamic parameters against cosmic time.

(a) (b)

Figure 1. The Variation of Spatial volume (𝑉) (left) and Hubble’s parameter (𝐻) (right) as a function of cosmic time (t)
are shown. 𝑉 ,𝐻 and 𝑡 are in arbitrary units. To derive above plot we have used 𝑐 = 𝑑 = 1.

• The graph of volume against cosmic time is increasing in nature (Fig. 1(a)), and that of the Hubble parameter 𝐻 is
a decreasing function of cosmic time (𝑡) in the positive region (Fig. 1(b)). From it, we collect important insights
about the expansion of the universe. This observation serves as a necessary foundation for our understanding of the
universe’s dynamics.

(a) (b)

Figure 2. Variation of Expansion scalar (𝜃) (left) and Shear scalar (𝜎2) (right) as a function of cosmic time (t) are shown.
𝜃 ,𝜎2 and 𝑡 are in arbitrary units. To derive above plot we have used 𝑐 = 𝑑 = 1.

• We found that the expansion scalar (Fig. 2(a)) and shear scalar (Fig. 2(b)) are the diminishing functions of cosmic
time (𝑡).
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(a) (b)

Figure 3. Variations of energy density of strange quark matter(𝜌) (left) and quark matter(𝜌𝑞) (right) as a function of
cosmic time (t) for 𝑞 < −1. All quantities are in arbitrary units. These plots are derived using 𝑐 = 𝑑 = 𝐵𝑐 = 1, 𝑘 = 2.

• The energy density of strange quark matter (𝜌) and quark matter (𝜌𝑞) both appear constant at the initial stage and
becomes infinite as 𝑡 tends to infinity, as shown in Fig. 3.

(a) (b)

Figure 4. Variations of pressure of strange quark matter(𝑝) and quark matter(𝑝𝑞) as a function of cosmic time (t) for 𝑞 <

−1. All quantities are in arbitrary units. These plots are derived using 𝑐 = 𝑑 = 𝐵𝑐 = 1, 𝑘 = 2.

• The pressure of strange quark matter (𝑝) and quark matter (𝑝𝑞), both decreasing functions of time, remains negative
throughout the evolution, as shown in Fig. 4.

(a) (b)

Figure 5. Variations of energy density of strange quark matter (𝜌) and quark matter (𝜌𝑞) as a function of cosmic time (t)
for 𝑞 > −1. All quantities are in arbitrary units.These plots are derived using 𝑐 = 𝑑 = 𝐵𝑐 = 1, 𝑘 = 2.

9. CONCLUSIONS
In this article, we explore an accelerating model of the universe in the context of the 𝑓 (𝑅, 𝐿𝑚) theory of gravity as a

non-linear functional of the form 𝑓 (𝑅, 𝐿𝑚)=𝑅
2 + 𝐿𝛼

𝑚, where 𝛼 is the free model parameter. Utilizing a unique formulation
of the deceleration parameter, we derive cosmological solutions that closely resemble the characteristics of the dark
energy-driven 𝜆CDM model. We assumed a power law relation between the scale factors. We also considered the special
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law of variation of Hubble’s parameter proposed by Berman (1983), which yields the constant deceleration parameter.The
findings of the research are very interesting and ultimately result in the following conclusions:

Around 𝑡 = 0, the metric potentials 𝐿 and 𝑀 are constant, and then both vanish. This brings one to the conclusion
that the model exhibits an initial singularity at 𝑡 = − 𝑑

𝑐
. As a result, similar to the standard Big Bang theory, the values of

𝐿 and 𝑀 increase steadily over time. At a singular point, the model is similar to the work of [52]. We discovered that the
spatial volume (𝑉), expansion scalar (𝜃), shear scalar (𝜎2), and mean Hubble’s parameter (𝐻) are all functions of cosmic
time (𝑡). These parameters tend to zero as 𝑡 tends to infinity (𝑡 → ∞), but they diverge with the exception of spatial volume
when cosmic time approaches 𝑡 = − 𝑐

𝑑
, as shown in Fig.(1) and Fig.(2) The spatial volume (𝑉) of the model is zero when

cosmic time is 𝑡 = − 𝑑
𝑐

. Depending on the value of 𝑞 we have the following two cases:

case(i)when 𝑞 < −1: The proposed model starts expanding with the Big Bang singularity at 𝑡 = − 𝑑
𝑐

. At 𝑡 = 0,
both the pressure 𝑝 and energy density 𝜌 of strange quark matter are constant, and at 𝑡 → ∞, both 𝑝 and 𝜌 become
infinite, as shown in Fig. 3(a) and Fig. 4(a). The pressure of strange quark matter (𝑝) and quark matter (𝑝𝑞), both
decreasing functions of time, remains negative throughout the evolution. Negative pressure (𝑝) and (𝑝𝑞) corresponds
to the accelerating expansion of the universe. Also, the pressure 𝑝𝑞 and energy density 𝜌𝑞 for quark matter behave the
same as for strange quark matter. The shift in the 𝜌 values than that of 𝑝𝑞 is due to the additional term of bag constant in
equation (40). In this study, we chose the bag constant as unity, as shown in Fig. 3(b) and Fig. 4(b).

case (ii) when 𝑞 > −1: At cosmic time 𝑡 = 0, the proposed model has constant volume, which increases with an
increase in time and becomes infinite at 𝑡 → ∞. At 𝑡 = 0, energy density 𝜌 of strange quark matter are constant, and at
𝑡 → ∞, it become infinite, as shown in Fig. 5(a) and Fig. 5(b).The energy and pressure profiles for quark and strange
quark matter are the same except from the extra bag constant. The bag constant is subtracted for energy density and added
for the pressure of quarks.

For 𝛼 < 0, equations (38) to (41) give the real value of pressure and energy density for quark matter and strange quark
matter (SQM), and values turn out to be complex for 𝛼 > 0. The anisotropic parameter 𝐴𝑚 is nonzero for 𝑘 ≠ 1 provided
𝑘 ≠ −2, and in such a case, the model does not approach isotropy, but for 𝑘 = 1 provided 𝑘 ≠ −2, the mean anisotropic
parameter is zero, and the model becomes isotropic. Moreover, the mean anisotropic parameter (𝐴𝑚) remains constant
throughout the evolution of the universe as it is independent of the cosmic time (𝑡). Regarding the current statefinder
parameters, the value {𝑟, 𝑠}={1, 0} generated by our investigation is in the same line with the 𝜆CDM model, which is very
close to the recent data [53, 54]
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АНIЗОТРОПНА КОСМОЛОГIЧНА МОДЕЛЬ IЗ SQM У 𝑓 (𝑅, 𝐿𝑚) ГРАВIТАЦIЇ
Правiн Болкеa, Васудео Патiлb, Сачин Вагмареc, Неха Махаджанb

𝑎Факультет математики, коледж iнженерiї та менеджменту iменi проф. Рама Меге, Баднера, Дист. Амраватi (MS), Iндiя
𝑏Коледж факультету математики, мистецтв, науки та торгiвлi, Чикхалдара, округ Амраватi (MS), Iндiя

𝑐Департамент математики, TGPCET, Нагпур (MS), Iндiя
Локально обертально-симетрична модель Bianchi-I, заповнена дивною кварковою матерiєю (SQM), дослiджується в 𝑓 (𝑅, 𝐿𝑚)
гравiтацiї як нелiнiйний функцiонал у формi 𝑓 (𝑅, 𝐿𝑚)=𝑅

2 + 𝐿𝛼
𝑚, де 𝛼 — вiльний параметр моделi. Ми розглянули спецiальний

закон змiни параметра Хаббла, запропонований Берманом (1983), а також використали степеневий зв’язок мiж масштабними
факторами, щоб отримати точний розв’язок рiвняння поля, який вiдповiдає моделi Всесвiту. Ми також аналiзуємо фiзичнi
та геометричнi аспекти кiнематичної та динамiчної поведiнки Всесвiту. Крiм того, ми використовуємо параметри рiвняння
стану (EoS) i параметри визначення стану як аналiтичнi iнструменти, щоб отримати уявлення про еволюцiю Всесвiту. Ми
використовуємо модель ΛCDM як еталон для перевiрки результатiв. Розмiщуючи вiдхилення Всесвiту вiд моделi 𝜆CDM i
водночас роблячи важливий внесок у дослiдження анiзотропної природи 𝑓 (𝑅, 𝐿𝑚) гравiтацiї в рамках космологiчної динамiки,
стаття покращує наше розумiння нашої космiчної еволюцiї.
Ключовi слова: космологiчна модель LRS типу Bianchi-I; 𝑓 (𝑅, 𝐿𝑚) гравiтацiя; дивна кваркова матерiя; космiчний час

https://doi.org/10.1016/j.dark.2023.101223
https://doi.org/10.1016/j.dark.2022.101126
https://doi.org/10.1016/j.newast.2022.101974
https://doi.org/10.1016/j.newast.2022.101974
https://doi.org/10.1016/j.cjph.2023.06.005
https://doi.org/10.1016/j.newast.2020.101382
https://prespacetime.com/index.php/pst/article/view/1852/1734
https://doi.org/10.1016/j.newast.2021.101634
https://doi.org/10.1142/S0217751X22501214
https://doi.org/10.1142/S0217751X22501214
https://doi.org/10.26565/2312-4334-2023-3-03
https://doi.org/10.26565/2312-4334-2023-3-03
https://doi.org/10.1142/S0219887823502122
https://doi.org/10.1142/S0219887823502122
https://doi.org/10.1140/epjc/s10052-015-3620-5
https://doi.org/10.1007/BF02721676
https://doi.org/10.1007/BF02721676
https://doi.org/10.1134/1.1574831
https://doi.org/10.1046/j.1365-8711.2003.06871.x
https://doi.org/10.1046/j.1365-8711.2003.06871.x
https://doi.org/10.1007/s12036-016-9420-y
https://doi.org/10.1088/1674-4527/18/3/26
https://doi.org/10.1140/epjp/s13360-021-02048-w

	Introduction
	Basic Field Equations in f(R,Lm) gravity
	Metric and Field equation in f(R,Lm) gravity
	Cosmological f(R,Lm) Model
	Strange Quark matter for Cosmological Model
	Some Physical parameters
	Statefinder Parameters
	Figures
	Conclusions

