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In this work, the dependence of the oscillation of the combined density of states on a strong magnetic field in heterostructures based 
on a rectangular quantum well is studied. The effect of a quantizing magnetic field on the temperature dependence of the combined 
density of states in nanoscale straight-band heterostructures is investigated. A new mathematical model has been developed for 
calculating the temperature dependence of the two-dimensional combined density of quantum well states in quantizing magnetic fields. 
The proposed model explains the experimental results in nanoscale straight-band semiconductors with a parabolic dispersion law. 
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INTRODUCTION 
As is known, the influence of external factors (temperature, magnetic field and pressure) on quantum–dimensional 

heterostructures leads to a change in the position of the energy levels of charge carriers and, consequently, to a shift of the 
magneto-optical absorption edge [1-20]. The magneto-optical absorption spectrum of nanoscale semiconductors is 
determined by the energy distance between different minima of the sparse zone. Hence, the width of the forbidden zone of 
the quantum well can either decrease or increase due to external influences. Thus, the study of the magneto-optical absorption 
spectrum near the boundary of its absorption edge provides information about the structure of the energy spectrum of charge 
carriers near the lower edge of the conduction band and near the upper edge of the valence band of the quantum well, which 
is essential for determining the magnetic, optical and electrical properties of nanoscale semiconductors.  

The combined densities of quantum well states play an important role in the oscillation of interband magneto-optical 
absorption. Therefore, in many cases, the matrix element ( ) changes little within the Brillouin zone. 

Consequently, the structure of the spectrum mainly determines the combined density of states in quantum-dimensional 
heterostructures. In works [1-3], a method was developed for calculating the oscillation of the combined density of states in a 
quantizing magnetic field with a non-quadratic law of dispersion under the influence of temperature and hydrostatic pressure. 
This method is used in the study of magnetic absorption in narrow-band semiconductors with a nonparabolic dispersion law. A 
fan diagram of the magnetic absorption spectrum in narrow-band semiconductors is constructed. However, these papers do not 
consider the temperature dependence of the two-dimensional combined density of states in the allowed zone of a quantum well 
with a parabolic law of dispersion. That is, the resulting method is applicable only for bulk semiconductor materials.  

In addition, in works [4,5], the spectrum of InGaN/AlGaN/GaN heterostructures with quantum wells is emitted by 
an LED and analyzed on the basis of a two-dimensional combined density of states model. The considered model of 
approximation of the luminescence spectra of LEDs in these works was developed for complex heterostructures with 
multiple quantum wells. In work [6], a random walk in a two-dimensional space consisting of an energy parameter of the 
order and an energy correlation function was performed, and a two-dimensional combined density of quantum well states 
was obtained. The order parameter, susceptibility and correlation function are calculated from the two-dimensional 
combined density of quantum well states. Numerical calculations of the author show that for the purposes of determining 
the two–dimensional combined density of states in continuous models, the Wang–Landau transition matrix method can 
be considered as an alternative to the pure Wang-Landau method. In work [7], an exact mathematical expression is 
proposed that directly combines the density functions of the states of the resolved zone of a quantum well to create a two-
dimensional combined density of states for direct transitions. Using both expressions, the absorption coefficient of the 
quantum well and the superlattice was calculated, which led to a positive coincidence with the experimental data. In the 
above literature, the temperature dependence of the oscillation of the two-dimensional combined density of quantum well 
states in a quantizing magnetic field are not discussed. Also, the work determines the oscillations of the combined density 
of quantum well states at constant temperatures in the absence of a magnetic field. 

The purpose of this work is to determine the effect of a strong magnetic field on the combined density of states in 
heterostructures with quantum wells. 
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MODEL 
Calculation of the oscillation of the combined density of states in heterostructures with quantum wells 

in the presence of a magnetic field 
In the absence of a magnetic field, the dependence of the density of the energy states of the conduction band and the 

valence band in the quantum well on the energy spectrum of charge carriers are step functions (Fig.1a) [21]: 
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Here, 𝑚௡
௘  and 𝑚௡

௛ are the effective masses of electrons and holes in the dimensional quantization subband in a 
quantum well numbered n and m. θ(E) - Heaviside step function. 

For direct interband transitions, the combined densities of states are a convolution in energy, which also has a step 
function in energy [21]: 
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Here, 𝑚௠௡
∗  is the reduced effective mass of charge carriers for the subzones of dimensional quantization n and m, 

which is calculated by the ratio:      1 1 1* e h
mn n mm m m

  
  . 

 
Figure 1. The energy distribution of the density of electronic states in quantum-dimensional GeSi/Si structures [21]: a - quantum 

well, b - quantum dot. 

If the electronic and hole states in GeSi structures turn out to be size-quantized in all three quasi-momentum 
components, that is, they represent a quantum dot for charge carriers, then in this case the combined density of states in 
the allowed band of such a structure is a Gaussian function (Fig. 1b). Then, in the allowed zone there is a zero-dimensional 
combined density of states, which is a discrete non-decreasing function. In this case, the combined density of states is 
described using the so–called Dirac delta function 𝛿ሺ𝐸ሻ: 
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The combined density of states is a collection of infinitely narrow and high peaks (Fig.1b). All the results obtained 
above are valid for cases without the influence of quantization of the magnetic field, temperature and pressure. Specific 
questions arise: how to determine the combined density of states in quantum-dimensional direct transitions of 
heterostructures in the presence of a strong magnetic field? How does the dynamics of temperature rise affect this process? 

Let's calculate the dependence of the combined density of states on the quantizing magnetic field in two-dimensional 
semiconductor materials with direct allowed transitions. In a quantizing magnetic field, the combined density of states is 
defined as an integral over all states in the conduction band with energies EC and in the valence band with energies EV of 
the quantum well, which satisfy the law of conservation of energy during the magneto-optical transition. Let us analyze 
the simplest model of a band structure near the edge of the band gap of a straight-band heterostructure with a quantum 
well under the influence of a strong magnetic field. That is, the valence band of the quantum well is completely filled 
with charge carriers, and the conduction band is empty. Here, the filling functions of the corresponding states are equal 
to fV=1, fC=0. In addition, in this model, the dependence of impurity levels on the combined density of quantum well 
states with the parabolic law of dispersion can be neglected. The magnetic field inductions are directed across (along the 
Z axis) and will be perpendicular to the XY plane. This is called a transverse quantum magnetic field. 

Hence, in the presence of a strong magnetic field, the laws of dispersion energy are used to calculate the combined 
density of quantum well states, which can be written as follows: 
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Here, 𝑁௅௖ ,𝑁௅
௩ is the number of Landau levels of charge carriers in the allowed zone of the quantum well; 𝜔௖௖ ,𝜔௖௩ is 

the cyclotron frequency of the magnetic field in the conduction band and valence band of the quantum well; d is the 
thickness of the quantum well; 𝑛௘௓ଶ ,𝑛௩௓

ଶ  is the number of the dimensional quantization subzone in the conduction band 
and in the valence band of the quantum well; 𝑛௘௓,𝑛ఔ௓ is the ordinal number of the quantization levels of electrons and 
holes along the Z axis, respectively. 

Imagine that the electron and valence bands are symmetric, then the condition 𝑛௘௓ ൌ 𝑛ఔ௓ ൌ 𝑛௓ is fulfilled. 
𝑚௦
௖𝑔௖𝜇஻𝐻,𝑚௦

௩𝑔௩𝜇஻𝐻 is the spin energy in the allowed zone; 𝐸௚ଶௗሺ0ሻ is the width of the forbidden zone of the quantum 
well at absolute zero temperature; B is the induction of the magnetic field. 

For 𝐸௖ଶௗሺ𝐵,𝑑,𝑛௓ሻ and 𝐸௩ଶௗሺ𝐵,𝑑,𝑛௓ሻ , without taking into account spin, magneto-optical transitions will correspond 
to the law of conservation of energy 
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Where, ℎ𝜈 is the absorbed photon energy, 𝜈 is the frequency of light, ଵ

௠೎ೡ
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effective mass. 
In the Z direction, a strong magnetic field does not change the relationship between the energy and the wave vector 

for the movement of charge carriers. However, for the movement of charge carriers in the direction of perpendicular 
magnetic induction (in the XY plane), the former quasi-continuous series of energy levels is replaced by a system of 
discrete Landau levels. Since the effective mass of electrons and holes is assumed to be constant, the distance between 
the Landau levels does not depend on the quantum number, which is ℏ𝜔с. Hence, in the conduction band and the valence 
band of the quantum well, the movement of free electrons and holes in all three directions is limited. When exposed to a 
quantizing magnetic field, a quantum well becomes an analogue of a quantum dot. And also, the energy spectrum of 
charge carriers will be entirely discrete. According to equation (3), when replacing E with ℏ𝜈 and 𝐸௟௠௡ with 𝐸௖௩ଶௗሺ𝐵,𝑑,𝑛௓ሻ 
in the argument 𝛿ሺ𝐸 െ 𝐸௟௠௡ሻ, we have: 
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Thus, under the influence of a quantizing magnetic field, the equation (6) can be used to determine the combined 
density of quantum well states. However, such equations do not take into account the influence of temperature and 
pressure on the discrete Landau levels of electrons and holes for straight-band quantum wells. 

 
Effects of the quantizing magnetic field on the temperature dependence of the combined 

density of states in nanoscale straight-band heterostructures 
The magneto-optical assimilation range could be a key prerequisite for many volumetric and low-dimensional 

optoelectronic devices. The method of magneto-optical retention in straight-band heterostructures with quantum wells 
and 𝛼஻ଶௗሺℏ𝜈,𝐵,𝑑ሻ can be communicated as a function of the combined thickness of states. When uncovered to a 
quantizing attractive field, the combined thickness of states gives a degree of the number of permitted magneto-optical 
moves between the electronic states of the filled valence band and the vacant electronic states of the conduction band 
isolated by the photon vitality ℏ𝜈. In well-known logical writing, a few endeavors have been detailed to relate the densities 
of the vitality states of the allowed zone with the combined thickness of states within the nonattendance and nearness of 
a attractive field. [4-7]. Be that as it may, all the experimental and rearranged expressions of the combined thickness of 
states gotten were restricted by the nonappearance of weight and at moo temperatures. 

From equation (6) it is clear that for h𝜈 ൐  𝐸௖௩ଶௗሺ𝐵,𝑑,𝑁௅
௖௩,𝑛௓ሻ , the form of the combined density of states as a 

function of energies reflects the nature of deltoidness.When exposed to a quantizing magnetic field, the two-dimensional 
combined density of states 𝑁௝ௗ௦ଶௗ൫ℎ𝜈,  𝐸௖௩ଶௗሺ𝐵,𝑑,𝑁௅

௖௩,𝑛௓ሻ൯ it is determined by the energy spectrum of charge carriers in the 
allowed zone of the quantum well. Experiments show that the density of states of electrons and holes depends on 
temperature. The temperature dependence of the density of states of electrons and holes in a quantum well is explained 
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by the thermal blurring of discrete Landau levels [22-25]. As shown in works [23,24], the density of electron states in the 
conduction band of a quantum well at sufficiently high temperatures transforms from discrete Landau levels into a 
continuous energy spectrum. And at low temperatures, the quantizing magnetic field strongly affects the densities of states 
in the resolved zone of the quantum well, whereas the continuous energy spectrum decomposes into discrete Landau 
levels. In this case, as the temperature increases, collisions of charge carriers and thermal motions lubricate the discrete 
Landau levels, turning it into a continuous spectrum of the density of quantum well states. Hence, the temperature 
dependence of discrete Landau levels of charge carriers can be described by decomposing the combined density of 
quantum well states into a series of delta-shaped functions. The temperature dependence of the oscillation of the interband 
magneto-optical absorption in heterostructures with quantum wells was explained by a study using the delta-shaped 
functions of two-dimensional combined densities of states. The temperature dependence of the two-dimensional 
combined density of states is determined by thermal broadening of discrete Landau levels of charge carriers in the allowed 
zone of the quantum well. 

At T=0, the Gaussian distribution function is delta-shaped and is defined by the following expression [26]: 
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In addition, to describe the interband magneto-optical absorption, it is usually assumed that each energy spectrum 
of a quantum well is blurred according to the Gaussian law with a blurring parameter. This approach can be described by 
the temperature dependence of the two-dimensional combined density of states in a quantum well. Hence, the deep filled 
discrete Landau levels of charge carriers in a quantum well depend exponentially on the two-dimensional combined 
density of states. To calculate the temperature dependence of the two-dimensional combined density of states 
𝑁௝ௗ௦
ଶௗሺℎ𝜈,  𝐸௖௩ଶௗሺ𝐵,𝑑,𝑛௓ሻ ሻ we assume that 𝑁௝ௗ௦ଶௗሺℏ𝜈,  𝐸௖௩ଶௗሺ𝐵,𝑑,𝑁௅

௖௩,𝑛௓ሻ ሻ for T=0 equal to the known energy functions 
 𝐸௖௩ଶௗሺ𝐵,𝑑,𝑁௅

௖௩,𝑛௓ሻ. For a heterostructure with quantum wells, in a strong magnetic field, the two-dimensional combined 
density of states is calculated by the equation (6). With increasing temperature, each combined density of states in the 
allowed zone of the quantum well with the energy of the conduction band and the valence band  𝐸௖௩ଶௗሺ𝐵,𝑑,𝑁௅

௖௩,𝑛௓ሻ is 
eroded. Thermal blur 𝑁௝ௗ௦ଶௗሺℎ𝜈,  𝐸௖௩ଶௗሺ𝐵,𝑑,𝑁௅

௖௩,𝑛௓ሻ ሻ with energy  𝐸௖௩ଶௗሺ𝐵,𝑑,𝑁௅
௖௩,𝑛௓ሻ is calculated by the Shockley-Reed-

Hall statistics [27]. Thus, under the influence of a quantizing magnetic field, in the permitted zone of the quantum well, 
the resulting two-dimensional combined density of states, taking into account the contribution of thermal blurring of all 
states, will be determined by the sum of all blurring. Hence, at a finite temperature T, this reduces to the decomposition 
into a series 𝑁௝ௗ௦ଶௗሺℎ𝜈,  𝐸௖௩ଶௗሺ𝐵,𝑑,𝑁௅

௖௩,𝑛௓ሻ ሻ by Gaussian functions, for nanoscale semiconductor structures. 
The equation (6) does not take into account thermal blurring of the two-dimensional combined density of states. If 

we decompose 𝑁௝ௗ௦ଶௗሺℎ𝜈,  𝐸௖௩ଶௗሺ𝐵,𝑑,𝑁௅
௖௩,𝑛௓ሻ ሻ in a row according to equations (7), then it is possible to take into account 

the temperature dependence of the two-dimensional combined density of states in the allowed zone of the quantum well. 
In a strong magnetic field, temperature blurring of the combined density of quantum well states lead to smoothing of 
discrete Landau levels of charge carriers, and thermal blurring is calculated using the equation (7). At T=0, the 
equation (7) turns into a delta-like function of the form: 

    
0
, ,i i

T

Gauss E E T E E


  . (8) 

Thus, it follows from equations (5), (6) and (7) that under the influence of a quantizing magnetic field, the 
temperature dependence of the combined density of quantum well states is reduced to the following analytical expression: 
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Where, 𝑁௝ௗ௦ଶௗሺℏ𝜈,  𝐸௖௩ଶௗሺ𝐵,𝑇,𝑑,𝑁௅
௖௩,𝑛௓ሻ ሻ - temperature dependence of the oscillation of the combined density of 

states in the allowed zone of the quantum well in the presence of a strong magnetic field. B is the induction of a 
transverse quantizing magnetic field. 

This new analytical equation expresses the effect of the quantizing magnetic field on the temperature dependence of 
the two-dimensional combined density of states in heterostructures with quantum wells. The obtained expression is 
convenient for processing experimental data on the oscillation of interband magneto-optical absorption in quantum wells 
at various magnetic fields and temperatures. Thus, a mathematical model describing the effects of external factors 
(temperature and magnetic field) on the two-dimensional combined density of states in nanoscale semiconductor 
structures has been obtained. 
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RESULTS AND DISCUSSION 
The results obtained on the new reduced model and its discussion. 

Now, for specific straight-band heterostructures based on quantum wells, we consider the temperature dependence 
of the two-dimensional combined density of states in a quantizing magnetic field. In work [28], a high-quality 
heterostructure with a GaAs/AlGaAs quantum well with a width of 14 nm with a small concentration of aluminum (3%) 
in the barrier layers was investigated. Heterostructures with a GaAs/AlGaAs quantum well were studied at a temperature 
of 4 K. In the absence of a magnetic field, the band gap of the GaAs quantum well is equal to 1.464 eV (Fig. 2). Fig. 2 
shows the dependence of the two-dimensional combined density of states on the absorbing photon energy for a GaAs 
quantum well d=14 nm (nz=1) at a temperature T=4 K and a quantizing magnetic field B = 9 T. This graph was created 
by numerical calculation based on equation (9). In Fig.2, the number of discrete Landau levels of charge carriers is 
fourteen. These peaks (discrete Landau levels of charge carriers (𝑁௅௖௩=14)) are observed in the allowed band of the GaAs 
quantum well. It shows the two-dimensional combined density of states in a quantizing magnetic field 0,02c eV   at 

T = 4K, kT = 4.10-4, 50, .c
ckT

kT


 

   In this case, the thermal smearing of the Landau levels of charge carriers is 

very weak and the two-dimensional combined density of states does not feel any deviation from the ideal shape. In this 
plot, the valence band and conduction band are chosen as symmetrical energy spectra. Then, from the first discrete Landau 
level of holes (NL(V)=0) to NL(V)=6, they are located higher from the beginning of the ceiling of the valence band of the 
quantum well. As well as other discrete Landau levels of electrons are located above the bottom of the conduction band 
of the quantum well. 

 
Figure 2. Dependence of the two-dimensional combined density of states on the absorbing photon energy in direct-gap 

heterostructures with GaAs/AlGaAs quantum wells (d = 14 nm) at a temperature T = 4 K and a quantizing magnetic field B = 9 T. 

Fig. 3 appears the impact of temperature on the reliance of the two-dimensional combined thickness of states on the 
retaining photon vitality in direct-gap heterostructures with GaAs/AlGaAs quantum wells (d=14 nm) beneath the activity 
of a quantizing attractive field. 

 
Figure 3. Effects of temperature on the dependence of the two-dimensional combined density of states on the absorbing photon energy in 

direct-gap heterostructures with GaAs/AlGaAs quantum wells (d = 14 nm) under the influence of a quantizing magnetic field B=9 T. 

Here, the sum of acceptance of the quantizing attractive field is 9 T and plots of 𝑁௝ௗ௦ଶௗሺℏ𝜈,  𝐸௖௩ଶௗሺ𝐵,𝑇,𝑑,𝑁௅
௖௩,𝑛௓ሻ ሻ are 

made for temperatures of 4 K, 20 K, 40 K, 60K, 77 K. It can be seen from Fig.3 that with expanding temperature, the sharp 
crests of the Landau levels start to smooth out, and at adequately tall temperatures the discrete vitality densities of states 
turn into nonstop vitality spectra. These comes about were gotten for a steady quantum well thickness and attractive field. 
With expanding temperature, the sharp crests of the Landau levels of charge carriers start to smooth out (Fig. 3) and at 
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𝑘𝑇 ൎ ℏ𝜔௖௖௩steadily vanish. Additionally, at adequately tall temperatures 𝑘𝑇 ൐ ℏ𝜔௖௖௩ 𝑁௝ௗ௦
ଶௗሺℏ𝜈,  𝐸௖௩ଶௗሺ𝐵,𝑇,𝑑,𝑁௅

௖௩,𝑛௓ሻ ሻ they 
turn into a persistent combined thickness of states of the quantum well and there will be no feel the impact of a quantizing 
attractive field. In expansion, as the temperature increments, the sharp crests within the Landau levels of charge carriers, 
due to the quantization of the energy levels of electrons and gaps within the permitted quantum well, steadily smooth out. 
This leads to the reality that at the temperature T=40 K, kT=3,510-3, 𝑘𝑇 ൎ ℏ𝜔௖௖௩ discrete Landau levels of quantum well 
charge carriers gotten to be invisible. At a temperature of 77 K, the discrete Landau levels within the permitted band of 
the GaAs/AlGaAs quantum well are nearly imperceptible and coincide with the two-dimensional combined thickness of 
states within the nonappearance of a magnetic field. Consequently, the two-dimensional combined thickness of states 
within the conduction band and within the valence band of the quantum well are watched at temperatures 𝑘𝑇 ൏ ℏ𝜔௖௖௩. 
Beginning from temperatures of the arrange of 0.5𝑘𝑇~ℏ𝜔௖௖௩, the two-dimensional combined densities of states due to 
Landau quantization within the permitted band of the quantum well are not watched. 

In this case, the measurements give a continuous spectrum of the two-dimensional combined density of states. 
Changing the cyclotron frequency of the magnetic field 𝜔௖௖௩ changes the energy distance between discrete Landau levels 
of charge carriers in the quantum well (Fig.4). On Fig. 4 shows graphs of the two-dimensional combined density of states 
in direct-gap heterostructures with GaAs/AlGaAs quantum wells (d=14 nm) at various magnetic fields B=9 T and 12 T. 
As can be seen from these figures, with an increase in the induction of the quantizing magnetic field, we obtain a change 
in the discrete peaks of the Landau levels of charge carriers. 

Figure 4. Influence of a quantizing magnetic field on the dependence of the two-dimensional combined density of states upon 
absorption of photon energy in direct-gap heterostructures with GaAs/AlGaAs (d=14 nm) quantum wells at a temperature of T=4K. 

 
Comparison of theory with experimental results in the absence and presence of a quantizing magnetic field 

As is shown from work [29], the impact of a quantizing magnetic field on two-dimensional electron systems will 
illustrate exceptionally curiously physical properties emerging from the quantum imprisonment of charge carriers in a 
quantum well. Since of this quantum imperative, the 2D combined thickness of states of charge carriers in a quantum well 
shows Van Hove singularities, where within the case of a perfect unbounded zero-dimensional cross section (quantum 
dab), the combined thickness of states tends to boundlessness for well-defined vitality values. Restricting a expansive 
number of 2D combined densities of states to a single vitality esteem leads to striking physical properties such as greatly 
tall magneto-optical assimilation, expanded thermoelectric control, quantized electronic conductivity, etc. Applications 
based on these properties seem lead to imperative unused nanotechnological gadgets and optoelectronic devices. 

In particular, in work [30], two-dimensional combined densities of states of heterostructures based on an InGaN/GaN 
quantum well with different radiation wavelengths (violet, blue, and green) operating at different currents were studied. 
The results show that the blue shift of the emission with increasing current is associated with a change in the two-
dimensional combined density of states. In this work, the dependence of the two-dimensional combined density of states 
of the InGaN/GaN quantum well on the absorbing photon energy in the absence of a magnetic field (B=0) and at 
temperatures T=300 K (Fig.5) was obtained. Here, the band gap of the InGaN/GaN quantum well is Eg(0)=3.2 eV, and 
the thickness of the quantum well is d=10 nm. 

Now, let's apply the proposed model to the InGaN/GaN material. Fig.6 shows the influence of the quantizing 
magnetic field on the dependence of the two-dimensional combined density of states of the InGaN/GaN quantum well on 
the energy-absorbing photon at different temperatures. Here, B=10 T, T=300 K, 77 K and 5 K. Figures 5 and 6 show 
similar results with and without a magnetic field at room temperature. At room temperature, the influence of the magnetic 
field is not felt when the photon energy of the two-dimensional combined density of states is absorbed, since 𝑘𝑇 ≫ ℏ𝜔௖. 
The combined density of states behaves as if there is no magnetic field. 

It follows from this that the proposed model obeys certain laws, and this indicates the correctness of the model. 
Using equation (9), one can observe oscillations of the two-dimensional combined density of states (6) at different 

low temperatures. Also, a new analytical expression (the proposed new model) allows one to obtain the results of changes 
in the thickness of the quantum well associated with the combined density of states. This leads to a theoretical analysis 
of a number of experimental data. 



276
EEJP. 3 (2024) Ulugbek I. Erkaboev, et al.

 
Figure 5. Dependence of the two-dimensional combined density of states on the energy-absorbing photon in direct-gap 

heterostructures based on an InGaN/GaN quantum well in the presence of a magnetic field and at room temperature [30]. 

 
Figure 6. Influence of temperature and quantizing magnetic field on the two-dimensional combined density of states in direct-gap 

heterostructures based on the InGaN/GaN quantum well. Calculated using the model. 
 

CONCLUSION 
Based on the work carried out, the following conclusions can be drawn: An analytical expression is obtained for the 

oscillations of the two-dimensional combined density of states in the allowed band of a quantum well under the action of 
a quantizing magnetic field. A new model has been developed for calculating the effect of a quantizing magnetic field on 
the temperature dependence of the two-dimensional combined density of states in direct-gap heterostructures with 
quantum wells. The temperature dependence of the oscillations of the two-dimensional combined density of states of the 
quantum well is explained by the thermal smearing of the Gaussian distribution function in a strong magnetic field. Based 
on the proposed new models, the Landau levels of charge carriers in a direct-gap quantum well are determined in a wide 
temperature range. The experimental results were interpreted using the oscillations of the combined density of states of 
the quantum well in a quantizing magnetic field. The calculation results were compared with experimental results obtained 
for heterostructures based on an InGaN/GaN quantum well in a quantizing magnetic field at various temperatures. 
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МОДЕЛЮВАННЯ ТЕМПЕРАТУРНОЇ ЗАЛЕЖНОСТІ КОМБІНОВАНОЇ ГУСТИНИ СТАНІВ 
В ГЕТЕРОСТРУКТУРАХ З КВАНТОВИМИ ЯМАМИ ПІД ВПЛИВОМ КВАНТУЮЧОГО МАГНІТНОГО ПОЛЯ 

Улугбек І. Єркабоєвa, Шерзоджон А. Рузалієвb, Рустамжон Г. Рахімовa, Нозімжон А. Саїдовa 
aНаманганський інженерно-технологічний інститут, 160115, Наманган, Узбекистан 

bФерганський державний університет, 150100, Фергана, Узбекистан 
У даній роботі досліджено залежність осциляції комбінованої густини станів від сильного магнітного поля в гетероструктурах 
на основі прямокутної квантової ями. Досліджено вплив квантуючого магнітного поля на температурну залежність 
комбінованої густини станів у нанорозмірних прямозонних гетероструктурах. Розроблено нову математичну модель для 
розрахунку температурної залежності двовимірної комбінованої щільності станів квантових ям у квантуючих магнітних 
полях. Запропонована модель пояснює експериментальні результати в нанорозмірних прямозонних напівпровідниках з 
параболічним законом дисперсії. 
Ключові слова: напівпровідник; нанорозмірні напівпровідникові структури; квантуюче магнітне поле; квантова яма; 
осциляції, щільність енергетичних станів 




