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This research communication explores the Darcy - Forchheimer flow of a chemically reacting non-Newtonian Maxwell fluid over a
stretching sheet, incorporating the Cattaneo — Christov heat flux under a convective boundary condition. The fluid flow is described by a
set of partial differential equations, which are subsequently transformed into a system of nonlinear ordinary differential equations. To
solve these equations numerically, the BVP4C Method was employed after appropriately defining non dimensional variables and
implementing similarity transformations. The impacts of diverse active parameters such as Deborah parameter, Darcy-Forchheimer
parameter, magnetic parameter, Biot number, and porous parameter are examined on the velocity, temperature, and concentration
profiles. In addition, the value of the Skin friction, Nusselt number is calculated and presented through tabular forms.
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INTRODUCTION

As Advancements in technology progress, our understanding of fluid dynamics has expanded beyond the
limitations of Newtonian models. The emergence of non-Newtonian fluid concepts has proven invaluable in
comprehending complex flow behaviors. Of particular interest is the Maxwell fluid, renowned for its remarkable
attributes in both technical and industrial applications. Maxwell fluids are employed to enhance the thermal radiation
characteristics of conductive fluids. In the polymer manufacturing industry, they are particularly useful for
understanding and controlling the flow behavior of polymer melts during processing, as well as for optimizing thermal
properties such as heat transfer and radiation. Additionally, Maxwell fluids play a role in modeling the behavior of
biological fluids, such as blood flow in arteries, where both elastic and viscous effects are significant.

Khan et al. [1] conducted a study on the mathematical analysis of heat and mass transfer in a Maxwell fluid
flowing over a stretching sheet, considering the influence of thermophoretic and stratification effects. The heat transport
within a two-dimensional steady radiative boundary layer involving Maxwell fluid flow, while also analyzing the
impact of heat generation nd Magnetohydrodynamics (MHD) over a porous inclined plate investigated by
Sudarmozhi et al. [2]. Zhao et al. [3] reported the study of unsteady natural convection heat and mass transfer in a
porous medium involving a fractional MHD Maxwell fluid, considering the presence of Soret and Dufour effects.
Hayat et al. [4] analyzed the heat and mass transfer analysis in the stagnation region of Maxwell fluid with chemical
reaction over stretched surface. In their study, Riaz ef al. [5] focused on the combined effects of heat and mass transfer
on MHD free convective flow of Maxwell fluid with variable temperature and concentration. The numerical analysis of
absorbing boundary condition for the Maxwell fluid flow over a semi-infinite plate with considering the magnetic field
was studied by Bao ef al. [6]. Yasin et al. [7] discussed a contemporary investigation on peristatically induced flow of
Maxwell fluid, incorporating the modified Darcy’s law and Hall effect alongside slip conditions. Babu et al. [8] focused
on numerical investigation of Thermophorosis and activation energy effects of Maxwell nano fluid over an inclined
magnetic field applied to a disk. The authors [9,10,11,12] have instigated the MHD flow and Heat transfer for Maxwell
fluid over an exponentially stretching sheet with variable thermal conductivity in porous medium.

Darcy-Forchheimer flow characterizes the movement of fluid through a porous substance, combining the
principles of Darcy’s law and Forchheimer’s quadratic resistance law. This phenomenon finds widespread application
in engineering and geophysics, including scenarios like ground water percolation through soil, oil seepage in porous
rock formations, and fluid passage within packed beds in chemical reactors. Darcy’s law fundamentally states that the
flows rate of a fluid through a porous material is directly proportional to the pressure gradient. This principle serves as a
cornerstone in understanding fluid movement in porous media.

In their study, Waqas et al. [13] delved into the properties of Magneto-Maxwell nano lquid towards moving
radiated surface. Flow analysis subject to Darcy-Forchheimer concept is studied. Newtonian heat/mass conditions and
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heat source aspects are taken into account for modeling. Rashid et al. [14] explored the Darcy-Forchheimer flow of
Maxwell fluid with activation energy and thermal radiation over an exponential surface. Upreti et al. [15] analyzed the
computational study on MHD Darcy-Forchheimer flow and double-diffusive modeling of Maxwell fluid over rotating
stretchable surface. Das et al. [16] and Ganesh et al. [17] studied on the Darcy Forchheimer flow of hydromagnetic fluid
flow over a stretching surface in a thermally stratified porous medium with second order slip, viscous and ohmic
dissipation effects. Cui et al. [18] developed the thermal analysis of radiative Darcy-Forchheimer nano fluid flow across
an inclined stretching surface.

The Cattaneo-Christov heat flux model improves upon Fourier’s law of heat conduction by incorporating a finite
thermal relaxation time, enhancing accuracy for systems with notable thermal inertia or fast temperature variations. This
model, when coupled with MHD Maxwell fluids, characterizes visco-elastic fluids affected by magnetic fields and
transient heat transfer. Its application extends to analyzing phenomena such as the flow of electrically conducting fluid
in magnetic confinement fusion, behavior of magnetorheological fluids in magnetic fields, and heat transfer in systems
experiencing rapid temperature changes or possessing high conductivity. Jawad and Nisar [19] studied the upper
convected flow of Maxwell fluid near stagnation point through porous surface using heat flux model. Khan et al. [20]
developed the numerical investigation of MHD Cattaneo-Christov thermal flux frame work for Maxwell fluid over a
steady extending surface with thermal generation in a porous medium. Rubab and Mustafa [21] conducted a study on
the MHD three-dimensional upper-convected Maxwell fluid over a bi-directional stretching surface by considering the
Cattaneo-Christov heat flux model. The numerical study of radiative Maxwell viscoelastic magnetized flow from a
stretching permeable sheet with a Cattaneo-Christov heat flux was developed by Sahid et al. [22]. Islam et al. [23]
studied the Cattaneo-Christov theory for a time-dependent magnetohydrodynamics Maxwell fluid through a stretching
cylinder. Salmi et al. [24] explained the numerical study of heat and mass transfer enhancement in Prandtl fluid MHD
flow using Cattaneo-Christov heat flux theory.

The current study delves into the investigation of steady, two-dimensional flow of a Darcy-Forchheimer Maxwell
fluid through a stretchable surface. Additionally, the analysis incorporates heat and mass transfer phenomena,
employing the Cattaneo-Christov theory with chemical reactions. The novelty of this work lies in its examination of the
Darcy-Forchheimer Maxwell fluid within the framework of the Cattaneo-Christov theory, considering convective
boundary conditions, a combination not explored in existing literature. To address this gap, the authors undertake an
examination of such effects on Maxwell fluid flow. To normalize the system, similarity variables are introduced.
Numerical solutions are obtained using the Matlab bvp4c technique. The study discusses the graphical representation of
the evolving parameters along the velocity profile, temperature profile, and concentration profile.

FORMULATION
Figure 1 illustrates a MHD steady Darcy — Forchheimer flow of Maxwell fluid. An incompressible fluid saturates
the porous plate. Flow is caused due to a linear stretching surface. Cattaneo-Christov heat flux model instead of
conventional Fourier’s law of heat conduction is applied to study the heat transfer characteristics. The Cartesian
coordinate system is adopted in such a way that x-axis is taken along the stretching sheet and y-axis is orthogonal to it.

Let U, (x) = ax denotes the surface stretching velocity along the x-axis direction. We also consider the effect of
constant magnetic field of strength By which is applied normally to the sheet. With these assumptions, the governing

equations for continuity, velocity, temperature, and concentration in a steady two dimensional flow of a Maxwell fluid
are given by
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Equation (1) is identically satisfied and Equations (2), (3), (4), and (5) with the help of Equation (6) take the following
forms:

f”,+ff”+ﬁ(2ff'f”_f2fw)_ﬂf,_Fr(f’)z _Mfrzo (7)
2 2 2
0"+ EcPrM (f") +Pr Nb0'y + PrNt(0') — Prf &' ~TPr(f 0+ £*0") = 0 (8)
n o r (th "
¢"+ fScgd'+| — |0"—KcScp=0 Q)
Nb

The transformed boundary conditions are

Atn=0, £ =0, f'=1,60=-Bi[1-0], ¢/ =1
[1-0] 10)
Asn—oow, 150,60 >0, >0

v
Where f is the Deborah number, I' = A,a is the non-dimensional thermal relaxation time, A4 = — denotes the porosity
ka

Cb v
parameter, Fr :Trepresents the inertia coefficient, Chrepresents drag coefficient, Pr=— stands for Prandtl
k a

2

oB v Kr
number, M = —"— is the magnetic parameter, Sc = —— denotes Schmidt number, Kc = — represents the chemical
pa Dy a
D, (T, -T,) w0, (C,-C,)
reaction parameter, Nt = ———————=is the Thermophoretic parameter, Nb = ——————= denotes Brownian
vT,

0

. v(h . o
motion parameter, Bi = \/: (T/J represents the Biot number, /12 denotes Relaxation time for heat flux.
a

The expression for the Local Skin friction, the Local Nusselt number, and the Sherwood number are defined as:
C,Re,” = £7(0); NuRe,”"? =-0'(0); ShRe,”"* = -4'(0);
METHODOLOGY

The reduced ODE models (7), (8), and (9) are solved numerically by applying the MATLAB bvp4c algorithm. In
this regard, initially we convert the higher order equations to first order equations. Let us



229
Flow of Magnetohydrodynamic Maxwell Fluid in Darcy — Forchheimer Model, with Cattaneo... EEJP. 3 (2024)

take fi =1, fh=f =" 1, =0,/5 =0, fy =@, f, = ¢ Then the reduced equations are written as in the following

form:

£ =1 (11
L=h (12)
, 1 5

1y = Ay + et My — £y =281 1o (14)

3 (1—ﬂf12)( 2 2 2713 123)
1= (15)

, 1

A :(1_1_Prf12)(l"Prf1f2f5 +Pr f,f; — EcPr My’ ~Pr Nbf. f, — Pr Nify” ) (16)
I =1 (17)

, N
£ = KeScf, - Scf.f, —N—Z(rprﬁ]g/g +Prff, - EcPrMfy} ~PrNbf,f, ~PrNgf?)  (18)

The transformed boundary conditions are

Atn=0, f;=0, f,=1, fy ==Bi[l-f,]. £, =1
Asn— oo, f, >0, f; >0, fi >0

(19)

RESULTS AND DISCUSSIONS

In this study, a system of nonlinear ordinary differential equations represented by the equations (7), (8), and (9),
subject to the constraints specified in equation (10), is solved numerically. The numerical solution is obtained using the
shooting process with the bvp4dc MATLAB Package. This computational approach allows for the investigation of the
influence of various non-dimensional parameters on the profiles of velocity, temperature, and concentration within the
system.

Specially, the study explores the impact of non-dimensional parameters such as Deborah number, inertia
coefficient, and Biot number, and others on the velocity, temperature and concentration profiles. Additionally, the
effects of these parameters on skin friction coefficient, Nusselt number are examined. The study maintains certain non-
dimensional parameter values throughout its analysis, setting M to 0.5, Pr to 0.62, Bi to 0.7, Ec to 1, Nt to 0.3, Nb to
0.3, Frto 0.5, and g to 0.2, A to 0.2. These values remain constant through the study, except when varying parameters

are explicitly depicted in the figures. Overall, the study provides valuable insights into the behavior of the system under
different parameter combinations, facilitating a deeper understanding of the underlying physical phenomena and aiding
in the optimization of system performance.

Figures 2-4 illustrates the impact of the local Forchheimer number (inertia coefficient) Fr. It is evident from the
figures that fluid velocity diminishes with enhancing Fr, as the inertia coefficient is directly related to the porosity of the
medium and drag coefficient Cb. Thus, with higher values of Cb, both the porosity of the medium and drag coefficient
enhances. Consequently, the resistance force on the liquid is enhanced, resulting in lower velocity corresponding to
larger Forchheimer numbers. An enhancing in inertia coefficient (Fr) leads to stronger temperature and concentration
profiles and more thickness of boundary layers.
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Figures 5-7 depicts the change in velocity, concentration, and temperature profiles for different values of the

porosity parameter 4. As porous media tends to increase resistance to fluid motion, the fluid velocity diminishes
accordingly. Conversely, an opposite trend is observed in the concentration profile and temperature profile with an

increase in the porosity parameter.
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Figures 8-10 elucidate how the imposition of magnetic constraints (M) impacts velocity, temperature, and
concentration fields. Analysis of these figures led us to anticipate a flattening of fluid velocity with enhancing M.
Physically, the magnetic field induces a drag force that opposes fluid motion, thereby reducing velocity. Conversely,
temperature and species concentration profiles intensify with changes in the magnetic parameter.
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Figure 11 illustrates how the velocity distribution f'(77)is influenced by the Deborah number. As the Deborah
number () enhances, resulting that the velocity diminishes. In Figure 12, it is shown that higher values of the Deborah
number lead to an augmentation in the temperature field ( 9) and thickness of the thermal boundary layer. Physically, the

Deborah number is associated with relaxation time, which is greater for higher Deborah numbers. Consequently, a
larger relaxation time correlates with higher temperatures and thicker thermal boundary layers. The impact of Deborah

number (f)on the concentration profile is depicted in Figure 13. Here we observed that the concentration profile is

higher when we enhance the values of Deborah number (/).
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Observing the Figure 14, it becomes apparent that the temperature profile of the fluid diminishes as the thermal
relaxation parameter (I') enhances. This phenomenon occurs because, as the parameter (I') rises, material particles
require more time to transfer heat to adjacent particles. In essence, for higher values of the thermal relaxation
parameter (I'), the material exhibits characteristics akin to non-conductivity, leading to decrease in the temperature

profile. Consequently, it can be concluded that the temperature profile is lower in the case of the Cattaneo-Christov heat
flux model compared to Fourier’s Law. Figure 15 describes the impact of thermal relaxation parameter (I') on

concentration profile. It shows an increase in the thermal relaxation parameter, the concentration distribution also
enhances.

Figures 16-17 showcase the influence of the Prandtl number (Pr) on temperature and concentration distribution.
The Prandtl number varies depending on the material and is unique to each fluid. The figures indicate that as Pr
increases, the fluid temperature decreases. A high Pr implies that momentum diffusivity surpasses thermal diffusivity,
resulting in a reduction in energy boundary layer thickness. Typically, in heat transfer problems, Pr is employed to
decrease the relative thickness of both thermal and momentum boundary layers. Similarly, this behavior is observed in
concentration profiles.
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Figures 18-19 depict the impact of the thermophoresis parameter (NVf) on the both temperature profiles and

concentration profiles. These figures depict that €(77),#(77) are the increasing function of thermophoresis parameter for

escalating values of Nt. As Nt increases, the thermal conductivity of liquid also enhances. A higher thermal
conductivity liquid leads to more advanced temperature and concentration fields.
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Figures 20-21 depict the impact of the Brownian motion parameter (Nb) on the both temperature and concentration

profiles. In Figure 20, as enhancing in the Brownian motion parameter (/Nb)the temperature profile enhances. Figure



233

Flow of Magnetohydrodynamic Maxwell Fluid in Darcy — Forchheimer Model, with Cattaneo... EEJP. 3 (2024)

21 illustrates how Nb impacts concentration profiles. Increasing Nb leads to reduced concentration profiles due to
enhanced Brownian motion. This parameter signifies diffusion at a microscopic level, causing particles to spread out
over time. Higher Nb values indicate more energetic motion, accelerating diffusion and resulting in a more uniform
concentration profile. Boundary conditions, like container size and surface presence, influence particle behavior,
affecting concentration profiles, particularly near solid boundaries.
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Table 1. In this section, we have to elaborate the numerical result against the different prominent factor like,
=02, 1=02, Fr=0.5, M =0.5 are the fixed values for the local skin friction coefficient. It is seemed to be as

enhance in the values of Deborah number, Porosity parameter, local Forchheimer number (inertia coefficient), and
Magnetic parameter, there is a decreasing nature in the skin friction coefficient.

i) A Fr

M

C,

0.2

-0.217955
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-0.261130
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-0.294298

1

-0.406792

2

-0.724761

3

-0.993166

Table 2. In this section, we have to elaborate the numerical result against the different prominent factor like,
£=02,1=0.2, Fr=0.5, M =0.5 are the fixed values for the Nusselt number. It is noticed that the Nusselt number

diminishes gradually, an escalating in the values of Deborah number, Porosity parameter, local Forchheimer number

(inertia coefficient), and Magnetic parameter.

p A Fr

Nu

0.2

0.140714

0.3

0.139823

0.4

0.138949

0.3

0.139880

0.4

0.139062

0.5

0.138263

0.6

0.140584

0.7

0.140452

0.8

0.140318

0.068228

-0.049182

-0.144519
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CONCLUSIONS

Key findings of the study are summarized as follows.

e The velocity field diminishes for escalating the values of inertia coefficient, Magnetic parameter, Porosity
Parameter, Deborah number, and also thermal relaxation parameter.

e By enhancing the values of inertia coefficient, Magnetic parameter, Porosity Parameter, Deborah number, and
thermal relaxation parameter one can escalating the temperature field, but the opposite tend seen with Prandtl
number.

e The concentration field increases for larger values of inertia coefficient, Magnetic parameter, Porosity
Parameter, Deborah number, thermal relaxation parameter, and also for Prandtl number.

e An increment in the values of thermophoresis parameter, the temperature and concentration profiles
corresponding boundary layers are upsurges gradually.

e By increasing the values of Brownian motion parameter, the temperature profile upsurges, but the reverse tend
seen in the concentration profile.

e The local skin friction coefficient and Nusselt number diminishes with escalating the values of Deborah
number, Inertia coefficient, Porosity, and Magnetic parameter.
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MOTIK MATHITOTTIPOAUHAMIYHOI PIIMTHA MAKCBEJIJIA B MOJIEJI IAPCI — ®OPXTEAMEPA
3 TEIJIOBUM INIOTOKOM KATTAHEO — KPICTOBA HAJ JIUCTOM, IO PO3TAI'YETHCH,
3A KOHBEKTUBHUX TPAHUYHUX YMOB
. Hacraripi Ba6y?, C. Benkaremsapay?, P. Xanyma Haik®, JI. Mangxymaa®
“Kagheopa mamemamuxu, Memopianeruil koreooic indicenepii ma mexnonozii Paoocusa I'anoi,
Hanowvan-518501, Anoxpa-Ilpaoew, Inois
bKagpeopa enexmponixu ma xomynixayitinoi mexuixu, Memopiansnuii konedc inoicenepii ma mexnonozii Padcusa I'anoi,
Hanowvan-518501, Anoxpa-Ilpadews, Inois
‘Kaghedpa mamemamuxu, Incmumym inoicenepii ma mexrnonoeii mamepi Tepesu,
IHanamanep-517408, Anoxpa-Ilpaoew, Inois

VY upoMy JOCHIZHUIBEKOMY MOBIIOMIICHHI HociimkyeTbes motik Jlapci-dopxreiiMepa HEeHBIOTOHIBCHKOI pimvHM MakcBeia, ska
XIMIYHO pearye, HaJl pO3TSATHYTUM JHMCTOM, BKJIFOUarouM TerutoBuit motik Karraneo-KpicToBa 3a KOHBEKTUBHMX I'PaHHMYHUX YMOB.
TToTiK piAMHK OMUCYETHCS CHCTEMOIO AU(EpeHIiaIbHUX PIBHSIHD Y YaCTHHHHX MOXiJHUX, SKi 3rO0OM IIePETBOPIOIOTHCS HA CHCTEMY
HeNHIHHAX 3BUYAiHUX AnQepeHIianbHuX piBHsHB. J{JIs YMCenTbHOrO BUPIIICHHS LUX PiBHSIHB Oyno Bukopucrano metox BVP4C
MiCsl HaJIeKHOrO BH3HAYCHHS 0E3pOo3MipHHX 3MIHHHX 1 peaiizamil MepeTBOpeHb MOAiIOHOCTI. BIinB pi3HOMaHITHUX aKTHBHHX
mapaMeTpiB, Takux sk napamertp [debopu, mapametp apci @opxreiimepa, MarHiTHHIT mapameTp, uncio bio Ta mapameTp HOpUCTOCTI,
JIOCTIIDKY€ETHCS Ha TMpodiyi MBUAKOCTI, TEMIEpaTypH Ta KOoHIeHTpalii. KpiM Toro, po3paxoBaHi 3HaUe€HHS IIOBEPXHEBOTO TEPTS, Ta
yucito Hyccenbra npeacTasieHi B TabauaHii Gpopmi.

Kunrouosi caoBa: MI/{; piouna Maxcseana; modenv [apci-@opxeetimepa; mennoguii nomix Kammaneo-Kpicmosa, maenimmnui
napamemp



