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This paper presents a new numerical method for solving the quantum mechanical complex-valued Schrodinger equation (CSE). The
technique combines a second-order Crank-Nicolson scheme based on the finite element method (FEM) for temporal discretisation with
nonic B-spline functions for spatial discretisation. This method is unconditionally stable with the help of Von-Neumann stability
analysis. To verify our methodology, we examined an experiment utilising a range of error norms to compare experimental outcomes
with analytical solutions. Our investigation verifies that the suggested approach works better than current methods, providing better
accuracy and efficiency in quantum mechanical error analysis.
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1. INTRODUCTION

Differential equations (DEs) are fundamental tools for analysing dynamic phenomena across various fields and are
indispensable in mathematically representing physical systems. They find extensive application in simulating diverse
physical problems such as fluid dynamics, signal processing, and electrical engineering. Dynamic systems with
measurement errors often necessitate numerical treatment due to the complexity of obtaining analytical solutions.

The Schrodinger equation (SE), formulated by Austrian physicist Erwin Schrodinger in 1926, stands as a cornerstone
in quantum theory and mechanics, governing sub-microscopic events. And the probabilistic nature of wave functions. Its
significance permeates through atomic, nuclear, and solid-state physics. Schrodinger's experimental validation of SE,
particularly with the hydrogen atom, underscored its efficacy in describing quantum phenomena.

SE exists in two primary forms: the time-dependent Schrodinger wave equation, portraying wave function evolution
over time, and the time-independent Schrodinger equation, elucidating stationary states. While the former characterises
progressive waves pertinent to free particle motion, the latter describes standing waves, especially when the particle's
potential energy is independent of time and solely dependent on position.

The solutions to the time-dependent Schrodinger equation mirror the dynamic properties of particles, analogous to
Newton's force definition (F= ma) in classical physics. Furthermore, nonlinear Schrodinger equations find applications
in various fields, such as plasma physics[2], nonlinear optics [19], and water waves [26].

Recent research delves into specialised solutions and applications of SE variants, including Haar wavelet and finite
difference method [1], quantic Hermite collocation method [3], differential quadrature method (DQM) [4], quadratic
B-Spline FEM [6], reverse-time SE [9], cubic spline technique [17]. Additionally, studies explore specific solutions and
phenomena like breather-type solutions and rogue waves in generalised nonlinear SE formulations [5], highlighting the
versatility and ongoing research interest in SE and its extensions.

Many approaches have been used with finite differences [18], and the finite element method [21] is designed
specifically for fractional Schrodinger equations with trigonometric B-splines [8]. It has also been investigated to analyse
the superconvergence of linearised MFEM for nonlinear Schrodinger equations [24]. Additionally, specialised methods
have addressed time-dependent singly perturbed convection-diffusion equations, such as the Crank-Nicolson finite
difference approach with a midpoint upwind scheme on non-uniform meshes [12].

Numerous numerical methods have been studied to solve the coupled nonlinear Schrodinger equation using cubic
B-spline Galerkin methods [10]. Furthermore, to approximate solutions to Equation (1), multistep and hybrid
approaches [25] and two-step hybrid methods [15] have been proposed. Other techniques include B-Spline collocation
technique [11], [7] improvised cubic B-spline collocation [13], Crank-Nicolson scheme [14], homotopy analysis
method [20], BFRK scheme [22], septic B-Spline collocation [23] and numerical quadrature schemes, which have also
been applied. Despite exploring several ways, difficulties in delivering comprehensive computations for these techniques
continue to arise. For example, Lehtovaara et al., by the time propagation method [16], presents viable approaches to
solve equation (1), but the computation details are still elusive.
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Adopting the nonic B-spline collocation methodology is a significant step forward in tackling complicated problems
like the Schrédinger equation by surpassing the drawbacks of the previous numerical methods. Using this technology,
researchers can reduce problems associated with excessive computing complexity, poor precision, and programming
difficulties.

Researchers can effectively handle the complex computations needed to approximate solutions using MATLAB and
MATHEMATICA for computing. Compared to more conventional approaches, this one simplifies computation, improves
accuracy, and simplifies implementation.

Furthermore, this effort offers scholars essential insights into the effectiveness of complex analysis as a physics tool
by integrating these techniques within the quantum mechanics curriculum. Comprehending complex analysis broadens
researchers' understanding and gives them an advantage when addressing other physics problems requiring advanced
mathematical techniques. Using the finite element method in conjunction with the B-spline collocation method promotes
a catalytic approach to quantum mechanics research advancement. This work opens the door for revolutionary
developments in the discipline by proposing novel approaches and encouraging multidisciplinary collaboration.

The primary goal of the scheme that we suggest in this study is to improve the accuracy of approximate solutions
for quantum-mechanical energy, similar to Schrédinger's original answer. Our goal is to show that the nonic B-spline
collocation approach, in combination with the finite element method (FEM) and Crank-Nicolson scheme, can be
a valuable tool for the efficient implementation of intermediate-level complex analysis of the Schrodinger equation.

The Schrodinger equation is converted into an algebraic system of equations at each step of the procedure, making
a numerical solution easier, more dependable, and more effective than other approaches. Optical soliton solutions require
managing the complex function's real and imaginary parts.

The Crank-Nicolson method, initially proposed by Crank and Phyllis Nicolson in 1947 for the numerical solution
of partial differential equations, emerges as an elegant solution for our purposes. This method is known for its convergence

and stability properties across finite values of the Courant number w, defined as (%) = w. Implementing the Crank-

Nicolson method offers an efficient solution to the time-dependent Schrédinger equation, a fundamental tool with
extensive utility in various fields of physics such as acoustics and optics. By employing this comprehensive approach, we
aim to provide researchers with a robust framework for tackling complex quantum-mechanical problems while shedding
light on the practical applications of the Schrodinger equation in diverse physical phenomena.

The non-dimensionalized form of the equation can be written as

ivt+yvxx+plvlzv =0, (1)
with the initial conditions
v(x,0)=f(x), a<x<bh, 2)
and the boundary conditions
v(a,t) =v(b,t) =0
Vs (@, 1) = sy (b, t) = V(@ ) = vex(b,t) =0
V7x(a, ) = V7,(b, ) = vge(a, t) = vgy(b,t) = 0,¢ € [0, T]. (3)

Here,y # 0 and i? = —1 is an imaginary unit, and f(x) is a smooth function.

If y =—1 and p = 0, then equation (1) becomes
Wy — Vg =0 4

The current work is organised as follows: Section 2 suggests and constructs the nonic B-spline. The nonic B-spline is
implemented in Section 3. The Section 4 is reported with linear stability analysis. Section 5 discusses numerical examples,
and corresponding results are reported in the table and surfed in figures. Section 6 contains a portion of the conclusions.

2. B-SPLINE OF ORDER NINE
Let's find the step length h = x,,.1 — x,,, m = 0,1,.. N, where m=0,1,..., N, and divide the interval [a,b] into N
equally spaced points x, suchthat a = xy < x; <...< xy = b. Next, at the knots x,,, the nonic B-splines B,,(x), m =
—4(1)N + 4 are provided by:
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d? X € I
(1) ven
a7 - (1) ag+(3") a2 x€ I
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B =y = (1) a3+ () a - (3) 3 + () ddo x ety v
a-(a(a-(e e
a3 - (1%)az+(3") a2 x €l
- (')
d?o x € Iy
0 otherwise

where
di = (X —Xps), dy = (x —Xp_y), d3 = (X — Xp_3), dy = (X — Xpy_3), ds = (X = Xpy_1), dg = (45 — X),
d; = (Xmya — %), dg = (g3 — X), dg = (Xppyz — X), dig = (Xpyq — X)),

Iy = X5, Xm—4), I = [Xm—2 Xim—3), I3 = [Xm—3, Xim—2), 14 = [Xm—2, Xm—1), Is = [Xpm—1, Xm), s = [Xm) Xm41),
I; = [Xms1, Xma2)s Is = [Xoma2s Xma3)s Io = [Xmass Xmaa)s lio = [Xomsar Ximas)

The nonic B-splines B_4, B_3, ..., By4constitute a basis over the area of space [a,b].The solution u(x,t),
approximating the exact solution v(x,t) of equation (1), is expressed as:

u(x,t) = ivn-:l-—zt Cm (t) B (%) (6)

At each time level, the parameters ¢, and B,,(x) are the temporal quantities to be found.
At the mesh points x,,, the nodal values of u,, and its higher-order derivatives were acquired using equations (5) and
(6), which are as follows:

Um = g + 502C_5 + 14608c,,_5 + 88234c,_1 + 156190c,, + 88234C, 41 + 4608C,15 + 502Cm4s + Cmra

9
Uy = E(—Cm_4 — 246Cy,_3 — 4046¢Cy,_5 — 11326¢y,_1 + 11326Cy, 41 + 4046¢,,42 + 246C43 + Cpta)

" 72
Uy = F(cm_4 + 118¢,,,_3 + 952¢,,,_5 + 154c¢,,_1 — 2450¢,,, + 154¢;1 +952¢40 + 118¢p43 + Csa)

Uy = 5}%4(—07,1_4 —54cy_3 — 134cpy_p + 434c 1 — 434c 41 + 134Cman + 54Cmaz + Cnsa)
) 3024
up = T(Cm_4 + 22¢p—3 — 32¢py—p — 86Cp—q + 190c), — 86Cp 41 — 32C 42 + 22C43 + Cyta)
» _ 15120
Un = s (—Cm—4 — 6Cm—_3 + 3413 — 46Cy_1 + 46C 41 — 34Cmiz + 6Cmyz + Cnra)
. 60480
Uy = T(Cm—4 — 203 = 8-z + 34cm-1 — 50¢y + 34Cmi1 — 8Oy — 2Cmaz + Cmta)
i 181440
upt = = (—Cm—a + 6Cp_3 — 14cp_p + 140y — 14cpmyq + 14042 — 6Cpys + Crga)
sl = 22222 (C—s — 8Cm—3 + 28Cm—z — 56Cm_1 + 70 = 56Cn41 + 28Cmsz = 8Cmyz + Cmaa)- (7

The continuity of nonic B-splines and their first eight derivatives is ensured.

3. EXECUTION
The current implementation strategy revolves around leveraging a hybrid numerical approach to approximate the
equation's solution. The temporal derivatives within the equation are discretised using the forward finite difference
method. This method, known for its simplicity and ease of implementation, involves approximating the derivatives by the
difference between neighbouring points in time. Discretizing the time derivatives transforms the continuous-time problem
into a discrete-time one, enabling numerical computation using iterative techniques.

LMD _ @ D+H0R)
At 2

®)

With equation (8) established, we derive the recurrence relation (9) through a systematic analysis of the simplified
system's behaviour. This involves identifying recurring patterns or dependencies among the system's variables across
consecutive time steps, which can be expressed using a recursive formula.
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n+1 n+1 n+1 n+1 n+1 n+1 n+1 n+1 n+1
8m,1cm—4 + 5m,2cm—3 + 5m,3 Cm—2 + 6m,4cm—1 + 6m,scm + 6m,4-cm+1 + 6m,3cm+2 + Sm,zcm+3 + 6m,1Cm+4
— n n n n n n n n n
- 6m,6cm—4 + 6m,7cm—3 + 5m,8cm—2 + 5m,9cm—1 + 5m,10Cm + 6m,9cm+1 + 5m,8cm+2 + 5m,7cm+3 + 6m,6cm+4-s (9)

where m =0,1,...,N and i is an imaginary unit.

Sma = 2ih? — 724t Sm2 = 1004ih? — 8496At
83 = 29216ih? — 68544At Sma = 176468ih? — 11088At
Sms = 312380ih? + 176400At S = 2ih% + 724t

8m7 = 1004ih? + 8496At Omg = 29216ih% + 68544At
8mo = 176468ih? + 11088At Sm10 = 312380ih? — 176400At

Consequently, with the aid of MATLAB, the augmented system (9) is efficiently formulated, incorporating the
additional equations derived from the boundary conditions(3). This expanded system now consists of (N+9) equations,
precisely matching the number of unknowns, thereby enabling a comprehensive solution. MATLAB's robust numerical
solvers facilitate the exploration of the solution space, allowing for accurate and reliable results to be obtained with
minimal effort.

A @ = A,(a") (10)
where, @1 = [c™}t Mt cRii]T, Ay A, are (N4 9) X (N +9) and (N +9) X 1 matrix respectively.

1 502 14608 88234 156190 88234 14608 502 1

-1 =54 -134 434 0 —434 134 54 1
-1 -6 34 —46 0 46 —34 6 1
-1 6 -14 14 0 -14 14 -6 1
801 o2 o3 80,4 805 80,4 803 8o,z 80,1
611 b1 813 814 815 814 813 81 811
A = _ _ _ _ _ _ _ _ _
Sy-11 On-12 On-13 On-14 On-15 On-14  On-13 Onv-12  On-11

6N,1 6N,2 5N,3 6N,4 6N,5 éVN,4 éVN,3 6N,2 5N,1

1 502 14608 88234 156190 88234 14608 502 1
-1 —54 —134 434 0 —434 134 54 1
-1 -6 34 —46 0 46 —34 6 1
-1 6 -14 14 0 —14 14 -6 1

Initial state
To evaluate the initial vector a®and the solution space u(x,t) is decomposed into complex form as follows:

u(x,t) = X(x,t) +i¥Y(x,t). an

Here, X and Y are real coefficients. We derive the associated coupled pair of real differential equations by substituting
equation (11) into equation (4).

X,— V=0 and X, +Y,=0 (12)

In the collocation method implementation, loops are recognised as collocation sites for systems. (11) and (12). The
nonic B-splines B,,(x) provide solutions for global approximation
by expressing X(x,t) and Y(x,t) as expansions:

Xy(xt) = Xty am(©Bn(x), and  Yy(x,t) = TR, Bn (8) B () (13)
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In this case, the parameters 7; and ¢; must be found gradually. equation (12) and the B-splines found in equation
(5) are used to estimate the solution of equation (4) by obtaining the initial parameters, a3, and B, This leads to a system
of (2N+18) equations containing 2N unknowns. equation (3) yields the subsequent equations derived from boundary
conditions.

X%(a,0) = (—al, — 6a%; +34a%, — 46a°; + 462 — 34ad + 6ad + ) = 0

X5 (a,0) = (a% —2a% —8a?’, + 34a’, — 50ad + 34af —8ad — 2ad +a) = 0

X5(a,0) = (—al, + 6a’; — 14a®, + 14a®; — 14af + 14ad — 6ad +a) = 0

X3 (a,0) = (a2, — 8a%; +28a%, — 56a%; + 70a) — 56a + 28a) —8ad + a) = 0

Xn(x,0) = (a%_, +502a%_5 + 14608al,_, + 88234a’,_, + 15619028, + 88234al,,, + 4608a8,,, + 502a2.,5 + a%,,)

= X(xn, 0)

Xn(b,0) = (_.313—4 - 6/;1(\)1—3 + 3431(\]1—2 - 46ﬁ13—1 + 4631(\]1+1 - 34’313+2 + 6.313+3 + .313+4) =0

XN'(5,0) = (BN-4 — 2BN-3 — 8BN—2 + 34BN-1 — 508y + 34BN+1 — 8BN+2 — 2BN4s + BN+a) = 0

XFH(B,0) = (—Bl-g + 6B — 1455 + 1483y — 14541 + 14815 — 68543 + Blles) = 0

XN (D,0) = (BN-4 — 8BN-3 + 28BN — 568§ _1 + 708y — 56BN 11 + 28BN42 — 8BN4s + Biea) = O. (14)
Analogously, Yy(x,t) may be derived. The initial vector ¢2, is computed as ¢, = a3, + iB2, where i denotes

the imaginary unit.

4. STUDY OF STABILITY
Examining the robustness of a methodology includes pinpointing the scenarios in which the divergence between
theoretical expectations and numerical approximations remains limited with successive temporal iterations. Utilising the
Von-Neumann technique aids in validating the stability of the method.
Consider

o1 = Egretvkh, (15)

where i = +/—1 represents an imaginary unit, E represents the amplitude, ¢ is the amplification factor, h represents
the spatial step length, and ¢ is the mode number.
Now, applying equation (15) in the equation (9) and after simplification, we obtained

P a,e MR + aye T30 4 g eT20M 4 g e + g + aget + a,e? PN + ageliPh + agetiPh] =

. ) ) ) ; 4 > ° 16
¢ [bye " 4 be 30h 4 piem20h 4 hy e 4 by + bge'Ph + b,e? PN + hgediPh + pyetiPh) (16)
Applying Euler’s formula e*¥" = cos(@h) + i(sin(@h)) to equation (16)
¢t Bi+iCy
o By-icy a7
where
B; = (by + bg)cos(4@h) + (b, + bg)cos(3¢ph) + (b; + b;)cos(2¢h) + (b, + bg)cos(ph) + bg
C; = (b1 — bg)sin(4¢h) + (b, — bg)sin(3ph) + (bs — b;)sin(2¢h) + (by — bg)sin(ph)
B, = (a; + ag)cos(4¢ph) + (a, + ag)cos(3¢ph) + (a; + a;)cos(2¢h) + (a, + ag)cos(ph) + ag
C, = (a; — ag)sin(4ph) + (a, — ag)sin(3ph) + (a; — a;)sin(2ph) + (a, — ag)sin(ph). (18)
Check the stability condition | ¢;:1 | <1, we get
B?+C?}—B?—-C}<1. (19)

Consequently, the proposed scheme exhibits unconditional stability.

5. NUMERICAL ILLUSTRATIONS AND CONVERSATIONS

Three test problems are examined to assess the present study's efficiency and accuracy. The accuracy of the methods
is evaluated in this section by computing the error norms L, and the maximum absolute error norm L,, defined as
follows:

By computing both the L, and L, error norms for each test problem, the study can effectively evaluate the
accuracy of the methods across different scenarios and provide a comprehensive assessment of their performance. These
error norms serve as valuable metrics for quantifying the discrepancy between computed and exact solutions, thereby
informing decisions regarding the suitability and reliability of the computational methods employed in the study.
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Lo = max |y, — Uyl

0smsN

L, = \/hzlrvrpo | (U — V)2

Where u,, and v, represent the exact and numerical solutions, respectively.
MATLAB R2019 and MATHEMATICA software were utilised for numerical simulations.

Example-1. Solve the equation (4) commencing with the exact solution within the domain

—it+x

vix,t)=e 2z , x€[0,m

followed by the initial condition v(x,0) = eg and boundary conditions

U(_T[, t) = 17(77.', t) = va(_TT, t) = va(n: t) = UGX(_T[i t) = 176x(Tl,', t) = v7x(_7t: t) = U7X(T[i t) = 'st(_ﬂ', t)
= vg,(m,t) =0,t € [0,T].

Solu

tion.

The numerical solution, along with error norms L, and L, incorporating absolute error at parameters At = 0.01,
h =0.05, x € [0,7],and x € [0,7] fo or various time steps t is as follows:

Observations from Table 1.
» Astime progresses, the absolute errors in the numerical solution tend to increase. This indicates that the accuracy
of the numerical solution decreases over time.

»

Conversely, the error norms L, and L, decrease as time advances from t = 2 to t = 4. This implies that,

although the absolute errors increase, the overall discrepancy between the numerical and exact solutions

decreases.

Table 1. Numerical solution with error norms at the parameters At = 0.01, h = 0.05,x € [0, 7] for Example-1.

X t=1 t=4
Numerical Exact Absolute Error | Numerical Exact Absolute Error

0.20 | 0.329963 — 0.513877i | 0.329963 — 0.513887i | 9.712170e — 06 | —0.399172 + 0.462174i | —0.399181 + 0.462180i | 9.841173e — 06
0.30 | 0.364670 — 0.567915i | 0.364665 — 0.567933i | 1.843042¢ — 05| —0.441153 + 0.51078i | —0.441163 + 0.510788i | 1.172312e — 05
0.50 | 0.445413 — 0.693649i | 0.445403 — 0.693675i | 2.800452e — 05 | —0.538829 + 0.623867i | —0.538838 + 0.623878i | 1.364284e — 05
0.60 | 0.492253 — 0.766603i | 0.492247 — 0.766630i | 2.672546e — 05| —0.595497 + 0.689477i | —0.595508 + 0.689492i | 1.795372¢ — 05
1.20 | 0.896940 — 1.396860i |0.896933 — 1.396891i | 3.129149e — 05 | —1.085095 + 1.256315i | —1.085086 + 1.256336i | 2.239132¢ — 05
1.50 | 1.210741 — 1.885569i | 1.210733 — 1.885605i | 3.741733e — 05 | —1.464716 + 1.695852i | —1.464713 + 1.695876i | 2.402096¢ — 05
1.60 | 1.338075 — 2.083884i |1.338067 — 2.083916i | 3.310374e — 05 | —1.618761 + 1.874208i | —1.618759 + 1.874233i | 2.529512¢ — 05
1.70 | 1.478800 — 2.303052i |1.478793 — 2.303083i [3.227069e — 05 | —1.789007 + 2.071320i | —1.789005 + 2.071348i [2.837233¢-05
2.50 | 3.291092 — 5.125581i | 3.291114 — 5.125607i | 3.435566e — 05 | —3.981497 + 4.609828i | —3.981504 + 4.609870i | 4.318684e — 05
3.10 | 5.996802 — 9.339465i | 5.996802 — 9.339465i | 8.881784e — 16 | —7.254774 + 8.399732i | —7.254774 + 8.399732i | 1.776356e — 15

L, 5.0676e — 05 4.8695e — 05

Ly 2.7220e — 05 2.6560e — 05

Plotting Numerical Solution vs. Exact Solutions.
Figure 1 illustrates the natural part, and Figure 2 depicts the imaginary part of the numerical solutions compared to
the exact solutions. The curves in these plots overlap closely, indicating that the numerical solutions are approximately
equal to the analytical solution.

3

u(x.t)

Num t=1
Exactt=1
L e N 12

®  Exactt=2
—Num =3

*  Exactt=3
Num =4
Exactt=4

[ 05 1

Figure 1. Comparison of numerical solution with exact
solution (Real) of Example-1

uix,t)

®  Exactt=1
Num t=2

®  Exactt=2
e N =3
®  Exactt=3
Num =4
*  Exactt=4

0 05 1

Figure 2. Comparison of numerical solution with analytical

solution (Imaginary) of Example 1
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3D Comparison of Numerical Solutions and Analytical Solutions:

Figures 3 and 4 present 3D plots comparing the numerical and analytical solutions. These plots, at parameters h =
At = 0.1,t = 4,x € [0, ], demonstrate the approximate nature of the numerical solutions. The close alignment between
the surfaces suggests that the numerical solutions closely resemble the analytical solutions.

Numerical solution Analytical solution

=

o & A b O N £ @ @
o b b b O N B & ©

-10

=

Figure 3. 3D plot of comparison of numerical with analytical solution (Real) of Example 1

Numerical solution Analytical solution

Figure 4. 3D plot of comparison of numerical with analytical solution (Imaginary) of Example 1
The 3D plot of the numerical solution of (a) real and (b) imaginary at h = At = 0.1, t = 4,x € [0, 7].

6. CONCLUSION

This study provides a comprehensive approach to approximate solutions to the Schrédinger equation in quantum
mechanics using the nonic B-spline technique. An intermediate level of knowledge in complex analysis is necessary for
this strategy, especially when defining and applying B-spline collocation techniques. We stress that the B-spline
collocation method can solve a broad range of analytically solvable quantum mechanical problems, not just the
Schrédinger equation. We provide a reliable framework for solving the Schrodinger equation quickly by fusing the finite
element method (FEM) with the nonic B-spline collocation method. We have thoroughly evaluated inaccuracy, stability,
and convergence to verify the suggested plan's efficacy. We look into the three conservation constants' approximations
and assess them.
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CKIHYEHHO-PISHUIEBHIA IMMIIXIJI BULOTO MOPAIKY B-CIIAMHA JJISI PIBHSAHHSA IIPEITHTEPA
Y KBAHTOBIA MEXAHIIII
Apuana Cenanari, banagxki aaxi, IHamikanT Jdac
VYuisepcumem mexwnonoeivi ma meneodoscmenmy Llenmypion, Odiwa, In0is

VY Wit cTaTTi MpencTaBICHO HOBUI YMCEIBHUN METOM PO3B’sA3yBaHHSI KBaHTOBO-MEXaHIYHOTO KOMIUIEKCHOTO piBHSAHHA LlIpeninrepa
(CSE). Meroauka noennye cxeMy Kpenka-Hikoncona npyroro mopsiiky, 3acHOBaHy Ha MeToAl ckiHueHHUX eneMmeHTiB (FEM) mis
4acoBOi AUCKpeTH3alLil 3 HeHIYHUMH B-crumaifHOBUMY (DYHKITISIME IJIsI IPOCTOPOBOI Tuckperu3arii. Lleit meton € 6e3yMOBHO cTiiikuM
3a JOIOMOror0 aHamiizy crabumepHocTi (on-Hefimana. I1[o6 mnepeBipuTH Hamly METOZOJIOTiIO, MU IIEPEBIPHIM EKCIIEPUMEHT,
BUKOPUCTOBYIOYHM HU3KY HOPM HMOMMJIOK, II0O HOPIBHATH EKCIIEpPUMEHTANIbHI Pe3yNbTaTH 3 aHANITHYHUMH pinieHHsMH. Hamre
JOCIIDKEHHST HiATBEPKYE, 110 3alPOIIOHOBAHU MiAXiJ Mpalioe Kpalle, HiXK MOTOYHI METOAH, 3a0e3Meuyoun Kpally TOYHICTh i
e(eKTHBHICTh KBAHTOBO-MEXaHIYHOTO aHANi3y TOMHJIOK.

Kurouosi cinoBa: memoo Kpanxa-Hixoncona; finite element scream; oyinka cmitikocmi 3a ¢pon-Hetimanom; B-cnnatin





