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This paper presents a new numerical method for solving the quantum mechanical complex-valued Schrodinger equation (CSE). The 
technique combines a second-order Crank-Nicolson scheme based on the finite element method (FEM) for temporal discretisation with 
nonic B-spline functions for spatial discretisation. This method is unconditionally stable with the help of Von-Neumann stability 
analysis. To verify our methodology, we examined an experiment utilising a range of error norms to compare experimental outcomes 
with analytical solutions. Our investigation verifies that the suggested approach works better than current methods, providing better 
accuracy and efficiency in quantum mechanical error analysis. 
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1. INTRODUCTION
Differential equations (DEs) are fundamental tools for analysing dynamic phenomena across various fields and are 

indispensable in mathematically representing physical systems. They find extensive application in simulating diverse 
physical problems such as fluid dynamics, signal processing, and electrical engineering. Dynamic systems with 
measurement errors often necessitate numerical treatment due to the complexity of obtaining analytical solutions. 

The Schrodinger equation (SE), formulated by Austrian physicist Erwin Schrodinger in 1926, stands as a cornerstone 
in quantum theory and mechanics, governing sub-microscopic events. And the probabilistic nature of wave functions. Its 
significance permeates through atomic, nuclear, and solid-state physics. Schrodinger's experimental validation of SE, 
particularly with the hydrogen atom, underscored its efficacy in describing quantum phenomena. 

SE exists in two primary forms: the time-dependent Schrodinger wave equation, portraying wave function evolution 
over time, and the time-independent Schrödinger equation, elucidating stationary states. While the former characterises 
progressive waves pertinent to free particle motion, the latter describes standing waves, especially when the particle's 
potential energy is independent of time and solely dependent on position. 

The solutions to the time-dependent Schrodinger equation mirror the dynamic properties of particles, analogous to 
Newton's force definition (Fൌ 𝑚𝑎) in classical physics. Furthermore, nonlinear Schrodinger equations find applications 
in various fields, such as plasma physics[2], nonlinear optics [19], and water waves [26]. 

Recent research delves into specialised solutions and applications of SE variants, including Haar wavelet and finite 
difference method [1], quantic Hermite collocation method [3], differential quadrature method (DQM) [4], quadratic 
B-Spline FEM [6], reverse-time SE [9], cubic spline technique [17]. Additionally, studies explore specific solutions and
phenomena like breather-type solutions and rogue waves in generalised nonlinear SE formulations [5], highlighting the
versatility and ongoing research interest in SE and its extensions.

Many approaches have been used with finite differences [18], and the finite element method [21] is designed 
specifically for fractional Schrodinger equations with trigonometric B-splines [8]. It has also been investigated to analyse 
the superconvergence of linearised MFEM for nonlinear Schrödinger equations [24]. Additionally, specialised methods 
have addressed time-dependent singly perturbed convection-diffusion equations, such as the Crank-Nicolson finite 
difference approach with a midpoint upwind scheme on non-uniform meshes [12]. 

Numerous numerical methods have been studied to solve the coupled nonlinear Schrödinger equation using cubic 
B-spline Galerkin methods [10]. Furthermore, to approximate solutions to Equation (1), multistep and hybrid
approaches [25] and two-step hybrid methods [15] have been proposed. Other techniques include B-Spline collocation
technique [11], [7] improvised cubic B-spline collocation [13], Crank-Nicolson scheme [14], homotopy analysis
method [20], BFRK scheme [22], septic B-Spline collocation [23] and numerical quadrature schemes, which have also
been applied. Despite exploring several ways, difficulties in delivering comprehensive computations for these techniques
continue to arise. For example, Lehtovaara et al., by the time propagation method [16], presents viable approaches to
solve equation (1), but the computation details are still elusive.
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Adopting the nonic B-spline collocation methodology is a significant step forward in tackling complicated problems 
like the Schrödinger equation by surpassing the drawbacks of the previous numerical methods. Using this technology, 
researchers can reduce problems associated with excessive computing complexity, poor precision, and programming 
difficulties. 

Researchers can effectively handle the complex computations needed to approximate solutions using MATLAB and 
MATHEMATICA for computing. Compared to more conventional approaches, this one simplifies computation, improves 
accuracy, and simplifies implementation. 

Furthermore, this effort offers scholars essential insights into the effectiveness of complex analysis as a physics tool 
by integrating these techniques within the quantum mechanics curriculum. Comprehending complex analysis broadens 
researchers' understanding and gives them an advantage when addressing other physics problems requiring advanced 
mathematical techniques. Using the finite element method in conjunction with the B-spline collocation method promotes 
a catalytic approach to quantum mechanics research advancement. This work opens the door for revolutionary 
developments in the discipline by proposing novel approaches and encouraging multidisciplinary collaboration. 

The primary goal of the scheme that we suggest in this study is to improve the accuracy of approximate solutions 
for quantum-mechanical energy, similar to Schrödinger's original answer. Our goal is to show that the nonic B-spline 
collocation approach, in combination with the finite element method (FEM) and Crank-Nicolson scheme, can be 
a valuable tool for the efficient implementation of intermediate-level complex analysis of the Schrödinger equation. 

The Schrödinger equation is converted into an algebraic system of equations at each step of the procedure, making 
a numerical solution easier, more dependable, and more effective than other approaches. Optical soliton solutions require 
managing the complex function's real and imaginary parts. 

The Crank-Nicolson method, initially proposed by Crank and Phyllis Nicolson in 1947 for the numerical solution 
of partial differential equations, emerges as an elegant solution for our purposes. This method is known for its convergence 
and stability properties across finite values of the Courant number 𝜔, defined as  ሺ

୼௧

௛మ
ሻ ൌ 𝜔. Implementing the Crank-

Nicolson method offers an efficient solution to the time-dependent Schrödinger equation, a fundamental tool with 
extensive utility in various fields of physics such as acoustics and optics. By employing this comprehensive approach, we 
aim to provide researchers with a robust framework for tackling complex quantum-mechanical problems while shedding 
light on the practical applications of the Schrödinger equation in diverse physical phenomena. 

The non-dimensionalized form of the equation can be written as 

 𝑖𝑣௧ ൅ 𝛾𝑣௫௫ ൅ 𝑝|𝑣|ଶ𝑣 ൌ 0, (1) 

with the initial conditions  

 𝑣ሺ𝑥, 0ሻ ൌ fሺ𝑥ሻ, 𝑎 ൑ 𝑥 ൑ 𝑏, (2) 

 and the boundary conditions  

𝑣ሺ𝑎, 𝑡ሻ ൌ 𝑣ሺ𝑏, 𝑡ሻ ൌ 0 

𝑣ହ௫ሺ𝑎, 𝑡ሻ ൌ 𝑣ହ௫ሺ𝑏, 𝑡ሻ ൌ 𝑣଺௫ሺ𝑎, 𝑡ሻ ൌ 𝑣଺௫ሺ𝑏, 𝑡ሻ ൌ 0 

 𝑣଻௫ሺ𝑎, 𝑡ሻ ൌ 𝑣଻௫ሺ𝑏, 𝑡ሻ ൌ 𝑣଼௫ሺ𝑎, 𝑡ሻ ൌ 𝑣଼௫ሺ𝑏, 𝑡ሻ ൌ 0, 𝑡 ∈ ሾ0,𝑇ሿ. (3) 

Here, 𝛾 ് 0 𝑎𝑛𝑑 𝑖ଶ ൌ െ1 is an imaginary unit, and 𝑓ሺ𝑥ሻ is a smooth function. 
If 𝛾 ൌ െ1 and 𝑝 ൌ 0, then equation (1) becomes 

 𝑖𝑣௧ െ 𝑣௫௫ ൌ 0 (4) 

The current work is organised as follows: Section 2 suggests and constructs the nonic B-spline. The nonic B-spline is 
implemented in Section 3. The Section 4 is reported with linear stability analysis. Section 5 discusses numerical examples, 
and corresponding results are reported in the table and surfed in figures. Section 6 contains a portion of the conclusions. 
 

2. B-SPLINE OF ORDER NINE 
Let's find the step length ℎ ൌ 𝑥௠ାଵ െ 𝑥௠,𝑚 ൌ 0,1, . .𝑁, where m=0,1,..., N, and divide the interval [a,b] into N 

equally spaced points 𝑥௡ such that 𝑎 ൌ 𝑥଴ ൏ 𝑥ଵ ൏. . .൏ 𝑥ே ൌ 𝑏. Next, at the knots 𝑥௠, the nonic B-splines 𝐵௠ሺ𝑥ሻ, 𝑚 ൌ
െ4ሺ1ሻ𝑁 ൅ 4 are provided by: 
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 (5) 

 
where 

𝑑ଵ ൌ ሺ𝑥 െ 𝑥௠ିହሻ, 𝑑ଶ ൌ ሺ𝑥 െ 𝑥௠ିସሻ, 𝑑ଷ ൌ ሺ𝑥 െ 𝑥௠ିଷሻ,  𝑑ସ ൌ ሺ𝑥 െ 𝑥௠ିଶሻ, 𝑑ହ ൌ ሺ𝑥 െ 𝑥௠ିଵሻ, 𝑑଺ ൌ ሺ𝑥௠ାହ െ 𝑥ሻ,
𝑑଻ ൌ ሺ𝑥௠ାସ െ 𝑥ሻ, 𝑑଼ ൌ ሺ𝑥௠ାଷ െ 𝑥ሻ,  𝑑ଽ ൌ ሺ𝑥௠ାଶ െ 𝑥ሻ,  𝑑ଵ଴ ൌ ሺ𝑥௠ାଵ െ 𝑥ሻ, 

𝐼ଵ ൌ ሾ𝑥௠ିହ, 𝑥௠ିସሻ,  𝐼ଶ ൌ ሾ𝑥௠ିସ, 𝑥௠ିଷሻ, 𝐼ଷ ൌ ሾ𝑥௠ିଷ, 𝑥௠ିଶሻ,  𝐼ସ ൌ ሾ𝑥௠ିଶ, 𝑥௠ିଵሻ, 𝐼ହ ൌ ሾ𝑥௠ିଵ, 𝑥௠ሻ, 𝐼଺ ൌ ሾ𝑥௠, 𝑥௠ାଵሻ,
𝐼଻ ൌ ሾ𝑥௠ାଵ, 𝑥௠ାଶሻ, 𝐼 ൌ ሾ𝑥௠ାଶ, 𝑥௠ାଷሻ, 𝐼ଽ ൌ ሾ𝑥௠ାଷ, 𝑥௠ାସሻ, 𝐼ଵ଴ ൌ ሾ𝑥௠ାସ, 𝑥௠ାହሻ 

The nonic B-splines 𝐵ିସ,𝐵ିଷ, … ,𝐵ேାସ constitute a basis over the area of space ሾ𝑎, 𝑏ሿ .The solution 𝑢ሺ𝑥, 𝑡ሻ , 
approximating the exact solution 𝑣ሺ𝑥, 𝑡ሻ of equation (1), is expressed as: 

 𝑢ሺ𝑥, 𝑡ሻ ൌ ∑ேାସ
௠ୀିସ 𝑐௠ሺ𝑡ሻ𝐵௠ሺ𝑥ሻ (6) 

At each time level, the parameters 𝑐௠ and 𝐵௠ሺ𝑥ሻ are the temporal quantities to be found. 
At the mesh points 𝑥௠, the nodal values of 𝑢௠ and its higher-order derivatives were acquired using equations (5) and 
(6), which are as follows:  

𝑢௠  ൌ 𝑐௠ିସ ൅ 502𝑐௠ିଷ ൅ 14608𝑐௠ିଶ ൅ 88234𝑐௠ିଵ ൅ 156190𝑐௠ ൅ 88234𝑐௠ାଵ ൅  4608𝑐௠ାଶ ൅ 502𝑐௠ାଷ ൅ 𝑐௠ାସ 

𝑢௠ᇱ  ൌ
9
ℎ
ሺെ𝑐௠ିସ െ 246𝑐௠ିଷ െ 4046𝑐௠ିଶ െ 11326𝑐௠ିଵ ൅ 11326𝑐௠ାଵ ൅ 4046𝑐௠ାଶ ൅ 246𝑐௠ାଷ ൅ 𝑐௠ାସሻ 

𝑢௠"  ൌ
72
ℎଶ
ሺ𝑐௠ିସ ൅ 118𝑐௠ିଷ ൅ 952𝑐௠ିଶ ൅ 154𝑐௠ିଵ െ 2450𝑐௠ ൅ 154𝑐௠ାଵ ൅ 952𝑐௠ାଶ ൅ 118𝑐௠ାଷ ൅ 𝑐௠ାସሻ 

𝑢௠ᇱᇱᇱ  ൌ
ହ଴ସ

௛య
ሺെ𝑐௠ିସ െ 54𝑐௠ିଷ െ 134𝑐௠ିଶ ൅ 434𝑐௠ିଵ െ 434𝑐௠ାଵ ൅ 134𝑐௠ାଶ ൅ 54𝑐௠ାଷ ൅ 𝑐௠ାସሻ  

𝑢௠௜௩  ൌ
3024
ℎସ

ሺ𝑐௠ିସ ൅ 22𝑐௠ିଷ െ 32𝑐௠ିଶ െ 86𝑐௠ିଵ ൅ 190𝑐௠ െ 86𝑐௠ାଵ െ 32𝑐௠ାଶ ൅ 22𝑐௠ାଷ ൅ 𝑐௠ାସሻ 

𝑢௠௩  ൌ
15120
ℎହ

ሺെ𝑐௠ିସ െ 6𝑐௠ିଷ ൅ 34𝑐௠ିଶ െ 46𝑐௠ିଵ ൅ 46𝑐௠ାଵ െ 34𝑐௠ାଶ ൅ 6𝑐௠ାଷ ൅ 𝑐௠ାସሻ 

𝑢௠௩௜  ൌ
60480
ℎ଺

ሺ𝑐௠ିସ െ 2𝑐௠ିଷ െ 8𝑐௠ିଶ ൅ 34𝑐௠ିଵ െ 50𝑐௠ ൅ 34𝑐௠ାଵ െ 8𝑐௠ାଶ െ 2𝑐௠ାଷ ൅ 𝑐௠ାସሻ 

𝑢௠௩௜௜  ൌ
181440
ℎ଻

ሺെ𝑐௠ିସ ൅ 6𝑐௠ିଷ െ 14𝑐௠ିଶ ൅ 14𝑐௠ିଵ െ 14𝑐௠ାଵ ൅ 14𝑐௠ାଶ െ 6𝑐௠ାଷ ൅ 𝑐௠ାସሻ 

𝑢௠௩௜௜௜  ൌ
ଷ଺ଶ଼଼଴

௛ఴ
ሺ𝑐௠ିସ െ 8𝑐௠ିଷ ൅ 28𝑐௠ିଶ െ 56𝑐௠ିଵ ൅ 70𝑐௠ െ 56𝑐௠ାଵ ൅ 28𝑐௠ାଶ െ 8𝑐௠ାଷ ൅  𝑐௠ାସሻ. (7) 

The continuity of nonic B-splines and their first eight derivatives is ensured. 
 

3. EXECUTION 
The current implementation strategy revolves around leveraging a hybrid numerical approach to approximate the 

equation's solution. The temporal derivatives within the equation are discretised using the forward finite difference 
method. This method, known for its simplicity and ease of implementation, involves approximating the derivatives by the 
difference between neighbouring points in time. Discretizing the time derivatives transforms the continuous-time problem 
into a discrete-time one, enabling numerical computation using iterative techniques. 

 𝑖
ሺ௩೙శభሻିሺ௩೙ሻ

୼௧
 ൌ

ሺ௩ೣೣ
೙శభሻାሺ௩ೣೣ

೙ ሻ

ଶ
 (8) 

With equation (8) established, we derive the recurrence relation (9) through a systematic analysis of the simplified 
system's behaviour. This involves identifying recurring patterns or dependencies among the system's variables across 
consecutive time steps, which can be expressed using a recursive formula. 
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௡ାଵ ൅ 𝛿௠,ଶ𝑐௠ାଷ
௡ାଵ ൅ 𝛿௠,ଵ𝑐௠ାସ

௡ାଵ  

ൌ 𝛿௠,଺𝑐௠ିସ
௡ ൅ 𝛿௠,଻𝑐௠ିଷ

௡ ൅ 𝛿௠,଼𝑐௠ିଶ
௡ ൅ 𝛿௠,ଽ𝑐௠ିଵ

௡ ൅ 𝛿௠,ଵ଴𝑐௠௡ ൅ 𝛿௠,ଽ𝑐௠ାଵ
௡ ൅ 𝛿௠,଼𝑐௠ାଶ

௡ ൅ 𝛿௠,଻𝑐௠ାଷ
௡ ൅ 𝛿௠,଺𝑐௠ାସ

௡ , (9) 

where 𝑚 ൌ 0,1, . . . ,𝑁 and 𝑖 is an imaginary unit. 

𝛿௠,ଵ ൌ 2𝑖ℎଶ െ 72Δ𝑡                                  𝛿௠,ଶ ൌ 1004𝑖ℎଶ െ 8496Δ𝑡  

𝛿௠,ଷ ൌ 29216𝑖ℎଶ െ 68544Δ𝑡                          𝛿௠,ସ ൌ 176468𝑖ℎଶ െ 11088Δ𝑡 

𝛿௠,ହ ൌ 312380𝑖ℎଶ ൅ 176400Δ𝑡                       𝛿௠,଺ ൌ 2𝑖ℎଶ ൅ 72Δ𝑡  

𝛿௠,଻ ൌ 1004𝑖ℎଶ ൅ 8496Δ𝑡                            𝛿௠,଼ ൌ 29216𝑖ℎଶ ൅ 68544Δ𝑡  

𝛿௠,ଽ ൌ 176468𝑖ℎଶ ൅ 11088Δ𝑡                        𝛿௠,ଵ଴ ൌ 312380𝑖ℎଶ െ 176400Δ𝑡 

Consequently, with the aid of MATLAB, the augmented system (9) is efficiently formulated, incorporating the 
additional equations derived from the boundary conditions(3). This expanded system now consists of (N+9) equations, 
precisely matching the number of unknowns, thereby enabling a comprehensive solution. MATLAB's robust numerical 
solvers facilitate the exploration of the solution space, allowing for accurate and reliable results to be obtained with 
minimal effort. 

 𝐴ଵ𝛼ത௡ାଵ ൌ 𝐴ଶሺ𝛼௡ሻ (10) 

where, 𝛼ത௡ାଵ ൌ ሾ𝑐ିସ
௡ାଵ 𝑐ିଷ

௡ାଵ. . . 𝑐ேାସ
௡ାଵሿ், 𝐴ଵ,𝐴ଶ are ሺ𝑁 ൅ 9ሻ ൈ ሺ𝑁 ൅ 9ሻ and ሺ𝑁 ൅ 9ሻ ൈ 1 matrix respectively. 
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െ1 െ6 34 െ46 0 46 െ34 6 1

െ1 6 െ14 14 0 െ14 14 െ6 1
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𝛿ଵ,ଵ 𝛿ଵ,ଶ 𝛿ଵ,ଷ 𝛿ଵ,ସ 𝛿ଵ,ହ 𝛿ଵ,ସ 𝛿ଵ,ଷ 𝛿ଵ,ଶ 𝛿ଵ,ଵ

െ െ െ െ െ െ െ െ

െ െ െ െ െ െ െ െ െ
𝛿ேିଵ,ଵ 𝛿ேିଵ,ଶ 𝛿ேିଵ,ଷ 𝛿ேିଵ,ସ 𝛿ேିଵ,ହ 𝛿ேିଵ,ସ 𝛿ேିଵ,ଷ 𝛿ேିଵ,ଶ 𝛿ேିଵ,ଵ

𝛿ே,ଵ 𝛿ே,ଶ 𝛿ே,ଷ 𝛿ே,ସ 𝛿ே,ହ 𝛿ே,ସ 𝛿ே,ଷ 𝛿ே,ଶ 𝛿ே,ଵ

1 502 14608 88234 156190 88234 14608 502 1

െ1 െ54 െ134 434 0 െ434 134 54 1

െ1 െ6 34 െ46 0 46 െ34 6 1

െ1 6 െ14 14 0 െ14 14 െ6 1

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

 

 
Initial state 

To evaluate the initial vector 𝛼଴and the solution space 𝑢ሺ𝑥, 𝑡ሻ is decomposed into complex form as follows: 

 𝑢ሺ𝑥, 𝑡ሻ ൌ 𝑋ሺ𝑥, 𝑡ሻ ൅ 𝑖𝑌ሺ𝑥, 𝑡ሻ. (11) 

Here, X and Y are real coefficients. We derive the associated coupled pair of real differential equations by substituting 
equation (11) into equation (4). 

 𝑋௧ െ 𝑌௫௫ ൌ 0       and        𝑋௧ ൅ 𝑌௫௫ ൌ 0 (12) 

In the collocation method implementation, loops are recognised as collocation sites for systems. (11) and (12). The 
nonic B-splines 𝐵௠ሺ𝑥ሻ provide solutions for global approximation  
by expressing 𝑋ሺ𝑥, 𝑡ሻ and 𝑌ሺ𝑥, 𝑡ሻ as expansions: 

𝑋ேሺ𝑥, 𝑡ሻ ൌ ∑ேାସ
௠ୀିସ 𝛼௠ሺ𝑡ሻ𝐵௠ሺ𝑥ሻ,   and     𝑌ேሺ𝑥, 𝑡ሻ ൌ ∑ேାସ

௠ୀିସ 𝛽௠ሺ𝑡ሻ𝐵௠ሺ𝑥ሻ (13) 
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In this case, the parameters 𝜂௜ and 𝜁௜ must be found gradually. equation (12) and the B-splines found in equation 
(5) are used to estimate the solution of equation (4) by obtaining the initial parameters, 𝛼௠଴  and 𝛽௠଴ . This leads to a system 
of (2N+18) equations containing 2N unknowns. equation (3) yields the subsequent equations derived from boundary 
conditions. 
 
𝑋ே
௩ሺ𝑎, 0ሻ ൌ ሺെ𝛼ିସ

଴ െ 6𝛼ିଷ
଴ ൅ 34𝛼ିଶ

଴ െ 46𝛼ିଵ
଴ ൅ 46𝛼ଵ

଴ െ 34𝛼ଶ
଴ ൅ 6𝛼ଷ

଴ ൅ 𝛼ସ
଴ሻ ൌ  0 

𝑋ே
௩௜ሺ𝑎, 0ሻ  ൌ ሺ𝛼ିସ

଴ െ 2𝛼ିଷ
଴ െ 8𝛼ିଶ

଴ ൅ 34𝛼ିଵ
଴ െ 50𝛼଴

଴ ൅ 34𝛼ଵ
଴ െ 8𝛼ଶ

଴ െ 2𝛼ଷ
଴ ൅ 𝛼ସ

଴ሻ  ൌ  0  
𝑋ே
௩௜௜ሺ𝑎, 0ሻ  ൌ ሺെ𝛼ିସ

଴ ൅ 6𝛼ିଷ
଴ െ 14𝛼ିଶ

଴ ൅ 14𝛼ିଵ
଴ െ 14𝛼ଵ

଴ ൅ 14𝛼ଶ
଴ െ 6𝛼ଷ

଴ ൅ 𝛼ସ
଴ሻ  ൌ  0  

𝑋ே
௩௜௜௜ሺ𝑎, 0ሻ ൌ ሺ𝛼ିସ

଴ െ 8𝛼ିଷ
଴ ൅ 28𝛼ିଶ

଴ െ 56𝛼ିଵ
଴ ൅ 70𝛼଴

଴ െ 56𝛼ଵ
଴ ൅ 28𝛼ଶ

଴ െ 8𝛼ଷ
଴ ൅ 𝛼ସ

଴ሻ  ൌ  0 
𝑋ேሺ𝑥, 0ሻ  ൌ ሺ𝛼௠ିସ

଴ ൅ 502𝛼௠ିଷ
଴ ൅ 14608𝛼௠ିଶ

଴ ൅ 88234𝛼௠ିଵ
଴ ൅ 156190𝛼௠଴ ൅ 88234𝛼௠ାଵ

଴ ൅ 4608𝛼௠ାଶ
଴ ൅ 502𝛼௠ାଷ

଴ ൅ 𝛼௠ାସ
଴ ሻ  

ൌ  𝑋ሺ𝑥௠, 0ሻ 
𝑋ே
௩ሺ𝑏, 0ሻ  ൌ ሺെ𝛽ேିସ

଴ െ 6𝛽ேିଷ
଴ ൅ 34𝛽ேିଶ

଴ െ 46𝛽ேିଵ
଴ ൅ 46𝛽ேାଵ

଴ െ 34𝛽ேାଶ
଴ ൅ 6𝛽ேାଷ

଴ ൅ 𝛽ேାସ
଴ ሻ  ൌ  0 

𝑋ே
௩௜ሺ𝑏, 0ሻ  ൌ ሺ𝛽ேିସ

଴ െ 2𝛽ேିଷ
଴ െ 8𝛽ேିଶ

଴ ൅ 34𝛽ேିଵ
଴ െ 50𝛽ே

଴ ൅ 34𝛽ேାଵ
଴ െ 8𝛽ேାଶ

଴ െ 2𝛽ேାଷ
଴ ൅ 𝛽ேାସ

଴ ሻ  ൌ  0 
𝑋ே
௩௜௜ሺ𝑏, 0ሻ  ൌ ሺെ𝛽ேିସ

଴ ൅ 6𝛽ேିଷ
଴ െ 14𝛽ேିଶ

଴ ൅ 14𝛽ேିଵ
଴ െ 14𝛽ேାଵ

଴ ൅ 14𝛽ேାଶ
଴ െ 6𝛽ேାଷ

଴ ൅ 𝛽ேାସ
଴ ሻ  ൌ  0 

𝑋ே
௩௜௜௜ሺ𝑏, 0ሻ  ൌ ሺ𝛽ேିସ

଴ െ 8𝛽ேିଷ
଴ ൅ 28𝛽ேିଶ

଴ െ 56𝛽ேିଵ
଴ ൅ 70𝛽ே

଴ െ 56𝛽ேାଵ
଴ ൅ 28𝛽ேାଶ

଴ െ 8𝛽ேାଷ
଴ ൅ 𝛽ேାସ

଴ ሻ  ൌ  0. (14) 

Analogously, 𝑌ேሺ𝑥, 𝑡ሻ  may be derived. The initial vector 𝑐௠଴  is computed as 𝑐௠଴ ൌ 𝛼௠଴ ൅ 𝑖𝛽௠଴ , where i denotes 
the imaginary unit. 
 

4. STUDY OF STABILITY 
Examining the robustness of a methodology includes pinpointing the scenarios in which the divergence between 

theoretical expectations and numerical approximations remains limited with successive temporal iterations. Utilising the 
Von-Neumann technique aids in validating the stability of the method. 
Consider 
 𝜙௜

௡ ൌ 𝐸𝜙௡𝑒௜ఝ௄௛, (15) 

where 𝑖 ൌ √െ1 represents an imaginary unit, 𝐸 represents the amplitude, 𝜙 is the amplification factor, ℎ represents 
the spatial step length, and 𝜑 is the mode number. 
Now, applying equation (15) in the equation (9) and after simplification, we obtained 

𝜙௡ାଵሾ𝑎ଵ𝑒ିସ௜ఝ௛ ൅ 𝑎ଶ𝑒ିଷ௜ఝ௛ ൅ 𝑎ଷ𝑒ିଶ௜ఝ௛ ൅ 𝑎ସ𝑒ି௜ఝ௛ ൅ 𝑎ହ ൅ 𝑎଺𝑒௜ఝ௛ ൅ 𝑎଻𝑒ଶ௜ఝ௛ ൅ 𝑎଼𝑒ଷ௜ఝ௛ ൅ 𝑎ଽ𝑒ସ௜ఝ௛ሿ ൌ
𝜙௡ሾ𝑏ଵ𝑒ିସ௜ఝ௛ ൅ 𝑏ଶ𝑒ିଷ௜ఝ௛ ൅ 𝑏ଷ𝑒ିଶ௜ఝ௛ ൅ 𝑏ସ𝑒ି௜ఝ௛ ൅ 𝑏ହ ൅ 𝑏଺𝑒௜ఝ௛ ൅ 𝑏଻𝑒ଶ௜ఝ௛ ൅ 𝑏଼𝑒ଷ௜ఝ௛ ൅ 𝑏ଽ𝑒ସ௜ఝ௛ሿ

 (16) 

Applying Euler’s formula 𝑒േ௜ఝ௛ ൌ cosሺ𝜑ℎሻ േ 𝑖ሺsinሺ𝜑ℎሻሻ to equation (16) 

 థ೙శభ

థ೙
ൌ

஻భା௜஼భ
஻మି௜஼మ

, (17) 
where 

𝐵ଵ ൌ ሺ𝑏ଵ ൅ 𝑏ଽሻcosሺ4𝜑ℎሻ ൅ ሺ𝑏ଶ ൅ 𝑏଼ሻcosሺ3𝜑ℎሻ ൅ ሺ𝑏ଷ ൅ 𝑏଻ሻcosሺ2𝜑ℎሻ ൅ ሺ𝑏ସ ൅ 𝑏଺ሻcosሺ𝜑ℎሻ ൅ 𝑏ହ 

𝐶ଵ ൌ ሺ𝑏ଵ െ 𝑏ଽሻsinሺ4𝜑ℎሻ ൅ ሺ𝑏ଶ െ 𝑏଼ሻsinሺ3𝜑ℎሻ ൅ ሺ𝑏ଷ െ 𝑏଻ሻsinሺ2𝜑ℎሻ ൅ ሺ𝑏ସ െ 𝑏଺ሻsinሺ𝜑ℎሻ 

𝐵ଶ ൌ ሺ𝑎ଵ ൅ 𝑎ଽሻcosሺ4𝜑ℎሻ ൅ ሺ𝑎ଶ ൅ 𝑎଼ሻcosሺ3𝜑ℎሻ ൅ ሺ𝑎ଷ ൅ 𝑎଻ሻcosሺ2𝜑ℎሻ ൅ ሺ𝑎ସ ൅ 𝑎଺ሻcosሺ𝜑ℎሻ ൅ 𝑎ହ 

𝐶ଶ ൌ ሺ𝑎ଵ െ 𝑎ଽሻsinሺ4𝜑ℎሻ ൅ ሺ𝑎ଶ െ 𝑎଼ሻsinሺ3𝜑ℎሻ ൅ ሺ𝑎ଷ െ 𝑎଻ሻsinሺ2𝜑ℎሻ ൅ ሺ𝑎ସ െ 𝑎଺ሻsinሺ𝜑ℎሻ. (18) 

Check the stability condition |
థ೙శభ

థ೙
| ൑ 1, we get 

 𝐵ଵଶ ൅ 𝐶ଵଶ െ 𝐵ଶ
ଶ െ 𝐶ଶ

ଶ ൑ 1.  (19) 

Consequently, the proposed scheme exhibits unconditional stability. 
 

5. NUMERICAL ILLUSTRATIONS AND CONVERSATIONS 
Three test problems are examined to assess the present study's efficiency and accuracy. The accuracy of the methods 

is evaluated in this section by computing the error norms 𝐿ଶ and the maximum absolute error norm 𝐿ஶ, defined as 
follows: 

By computing both the 𝐿ଶ and  𝐿ஶ, error norms for each test problem, the study can effectively evaluate the 
accuracy of the methods across different scenarios and provide a comprehensive assessment of their performance. These 
error norms serve as valuable metrics for quantifying the discrepancy between computed and exact solutions, thereby 
informing decisions regarding the suitability and reliability of the computational methods employed in the study. 
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 𝐿ஶ ൌ max
଴ஸ௠ஸே

|𝑢௠ െ 𝑣௠| 

 𝐿ଶ ൌ ඥℎ∑ே
௠ୀ଴ |ሺ𝑢௠ െ 𝑣௠ሻଶ| 

Where 𝑢௠ and 𝑣௠ represent the exact and numerical solutions, respectively. 
MATLAB R2019 and MATHEMATICA software were utilised for numerical simulations. 

 
Example-1. Solve the equation (4) commencing with the exact solution within the domain 

𝑣ሺ𝑥, 𝑡ሻ ൌ 𝑒
ష೔೟శೣ
మ  , 𝑥 ∈ ሾ0,𝜋ሿ 

followed by the initial condition 𝑣ሺ𝑥, 0ሻ ൌ 𝑒
ೣ
మ and boundary conditions 

𝑣ሺെ𝜋, 𝑡ሻ ൌ 𝑣ሺ𝜋, 𝑡ሻ ൌ 𝑣ହ௫ሺെ𝜋, 𝑡ሻ ൌ 𝑣ହ௫ሺ𝜋, 𝑡ሻ ൌ 𝑣଺௫ሺെ𝜋, 𝑡ሻ ൌ 𝑣଺௫ሺ𝜋, 𝑡ሻ ൌ 𝑣଻௫ሺെ𝜋, 𝑡ሻ ൌ 𝑣଻௫ሺ𝜋, 𝑡ሻ ൌ 𝑣଼௫ሺെ𝜋, 𝑡ሻ
ൌ 𝑣଼௫ሺ𝜋, 𝑡ሻ ൌ 0, 𝑡 ∈ ሾ0,𝑇ሿ. 

Solution. 
The numerical solution, along with error norms 𝐿ଶ and 𝐿ஶ, incorporating absolute error at parameters ∆𝑡 ൌ 0.01,

ℎ ൌ 0.05, 𝑥 ∈ ሾ0,𝜋ሿ, and 𝑥 ∈ ሾ0,𝜋ሿ fo or various time steps 𝑡 is as follows: 
 
Observations from Table 1. 

 As time progresses, the absolute errors in the numerical solution tend to increase. This indicates that the accuracy 
of the numerical solution decreases over time. 

 Conversely, the error norms 𝐿ଶ 𝑎𝑛𝑑 𝐿ஶ decrease as time advances from 𝑡 ൌ 2 to 𝑡 ൌ 4. This implies that, 
although the absolute errors increase, the overall discrepancy between the numerical and exact solutions 
decreases. 

Table 1. Numerical solution with error norms at the parameters ∆𝑡 ൌ 0.01, ℎ ൌ 0.05, 𝑥 ∈ ሾ0,𝜋ሿ for Example-1. 

   𝑥 𝑡 ൌ 1 𝑡 ൌ 4 
Numerical Exact Absolute Error Numerical Exact Absolute Error 

0.20   0.329963 െ  0.513877𝑖  0.329963 െ  0.513887𝑖 9.712170𝑒 െ 06  െ0.399172 ൅  0.462174𝑖 െ0.399181 ൅  0.462180𝑖 9.841173𝑒 െ 06 
0.30  0.364670 െ  0.567915𝑖 0.364665 െ  0.567933𝑖 1.843042𝑒 െ 05 െ0.441153 ൅  0.51078𝑖 െ0.441163 ൅  0.510788𝑖 1.172312𝑒 െ 05 
0.50  0.445413 െ  0.693649𝑖 0.445403 െ  0.693675𝑖 2.800452𝑒 െ 05 െ0.538829 ൅  0.623867𝑖 െ0.538838 ൅  0.623878𝑖 1.364284𝑒 െ 05 
0.60  0.492253 െ  0.766603𝑖 0.492247 െ 0.766630𝑖 2.672546𝑒 െ 05 െ0.595497 ൅  0.689477𝑖 െ0.595508 ൅  0.689492𝑖 1.795372𝑒 െ 05 
1.20  0.896940 െ  1.396860𝑖 0.896933 െ  1.396891𝑖 3.129149𝑒 െ 05 െ1.085095 ൅  1.256315𝑖 െ1.085086 ൅  1.256336𝑖 2.239132𝑒 െ 05 
1.50  1.210741 െ  1.885569𝑖 1.210733 െ  1.885605𝑖 3.741733𝑒 െ 05 െ1.464716 ൅  1.695852𝑖 െ1.464713 ൅  1.695876𝑖 2.402096𝑒 െ 05 
1.60  1.338075 െ  2.083884𝑖 1.338067 െ  2.083916𝑖 3.310374𝑒 െ 05 െ1.618761 ൅  1.874208𝑖 െ1.618759 ൅  1.874233𝑖 2.529512𝑒 െ 05 
1.70  1.478800 െ  2.303052𝑖 1.478793 െ  2.303083𝑖 3. 227069𝑒 െ 05 െ1.789007 ൅  2.071320𝑖 െ1.789005 ൅  2.071348𝑖 2.837233e-05 
2.50  3.291092 െ  5.125581𝑖 3.291114 െ  5.125607𝑖 3.435566𝑒 െ 05 െ3.981497 ൅  4.609828𝑖 െ3.981504 ൅  4.609870𝑖 4.318684𝑒 െ 05 
3.10  5.996802 െ  9.339465𝑖 5.996802 െ  9.339465𝑖 8.881784𝑒 െ 16 െ7.254774 ൅  8.399732𝑖 െ7.254774 ൅  8.399732𝑖 1.776356𝑒 െ 15 
𝐿ଶ 5.0676e െ 05 4.8695e െ 05 
𝐿ஶ 2.7220e െ 05 2.6560e െ 05 

Plotting Numerical Solution vs. Exact Solutions. 
Figure 1 illustrates the natural part, and Figure 2 depicts the imaginary part of the numerical solutions compared to 

the exact solutions. The curves in these plots overlap closely, indicating that the numerical solutions are approximately 
equal to the analytical solution. 

  

Figure 1. Comparison of numerical solution with exact 
solution (Real) of Example-1 

Figure 2. Comparison of numerical solution with analytical 
solution (Imaginary) of Example 1 
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3D Comparison of Numerical Solutions and Analytical Solutions: 
Figures 3 and 4 present 3D plots comparing the numerical and analytical solutions. These plots, at parameters ℎ ൌ

∆𝑡 ൌ 0.1, 𝑡 ൌ 4, 𝑥 ∈ ሾ0,𝜋ሿ, demonstrate the approximate nature of the numerical solutions. The close alignment between 
the surfaces suggests that the numerical solutions closely resemble the analytical solutions. 

 
Figure 3. 3D plot of comparison of numerical with analytical solution (Real) of Example 1 

 
Figure 4. 3D plot of comparison of numerical with analytical solution (Imaginary) of Example 1 

The 3D plot of the numerical solution of (a) real and (b) imaginary at ℎ ൌ ∆𝑡 ൌ 0.1, 𝑡 ൌ 4, 𝑥 ∈ ሾ0,𝜋ሿ. 
 

6. CONCLUSION 
This study provides a comprehensive approach to approximate solutions to the Schrödinger equation in quantum 

mechanics using the nonic B-spline technique. An intermediate level of knowledge in complex analysis is necessary for 
this strategy, especially when defining and applying B-spline collocation techniques. We stress that the B-spline 
collocation method can solve a broad range of analytically solvable quantum mechanical problems, not just the 
Schrödinger equation. We provide a reliable framework for solving the Schrödinger equation quickly by fusing the finite 
element method (FEM) with the nonic B-spline collocation method. We have thoroughly evaluated inaccuracy, stability, 
and convergence to verify the suggested plan's efficacy. We look into the three conservation constants' approximations 
and assess them. 
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СКІНЧЕННО-РІЗНИЦЕВИЙ ПІДХІД ВИЩОГО ПОРЯДКУ B-СПЛАЙНА ДЛЯ РІВНЯННЯ ШРЕДІНГЕРА 

У КВАНТОВІЙ МЕХАНІЦІ 
Арчана Сенапаті, Баладжі Падхі, Шашікант Дас 

Університет технологій та менеджменту Центуріон, Одіша, Індія 
У цій статті представлено новий чисельний метод розв’язування квантово-механічного комплексного рівняння Шредінгера 
(CSE). Методика поєднує схему Кренка-Ніколсона другого порядку, засновану на методі скінченних елементів (FEM) для 
часової дискретизації з ненічними B-сплайновими функціями для просторової дискретизації. Цей метод є безумовно стійким 
за допомогою аналізу стабільності фон-Неймана. Щоб перевірити нашу методологію, ми перевірили експеримент, 
використовуючи низку норм помилок, щоб порівняти експериментальні результати з аналітичними рішеннями. Наше 
дослідження підтверджує, що запропонований підхід працює краще, ніж поточні методи, забезпечуючи кращу точність і 
ефективність квантово-механічного аналізу помилок. 
Ключові слова: метод Кранка-Ніколсона; finite element scream; оцінка стійкості за фон-Нейманом; B-сплайн 




