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We have developed a theory of dimensional quantization for nanostructures, both one-dimensional and zero-dimensional, constructed
from monoatomic layers of transition metal dichalcogenides (TMDCs). This theory has enabled us to derive expressions for the energy
spectra of charge carriers in both even and odd states (relative to coordinate inversion), as these states occur within quantum-confined
lines and points of the TMDC monoatomic layers, dependent on their geometric dimensions. Our numerical analysis provides a detailed
exploration of the quantum-confined energy states of electrons within these nanostructures, offering insights into their potential
applications in advanced nanoelectronic devices. This work not only advances our understanding of the energy characteristics of TMDC
monoatomic layers but also contributes to the broader field of material science by exploring the effects of dimensional quantization on
electronic properties.
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INTRODUCTION

A vital component of modern solid-state physics, both in experimental and theoretical aspects, is the rapidly
developing field of low-dimensional systems of charge carriers. In particular, such low-dimensional systems include
various nano-sized structures: superlattices, structures with quantum-confined wells, wires, and dots [1-3], the practical
development of which is continually growing with the advancement of modern technologies for their fabrication [4].
Alongside, these low-dimensional structures serve as the elemental base of contemporary nanoelectronics and are the
subjects of forward-looking research aimed at creating fundamentally new devices for spintronics, opto- and
nanoelectronics with unique physical properties [5-8]. The main properties of these quantum-confined structures are
determined by the spatial restriction of charge carriers' movement in one or several directions, which leads to the
restructuring of the sample's band structure, i.e., the energy dispersion of carriers and other quasiparticles, such as
phonons, excitons, and polaritons [9-11].

The unique properties of quantum-confined structures, which distinguish them from bulk samples on which they are
based, allow for addressing the following tasks: a) new effects often arise in such structures related to dimensional
quantization, and studying them is of undeniable interest from the physical point of view for analyzing the fundamental
properties of low-dimensional objects. Secondly, nanostructures can be used to create solid-state devices of a new
generation [12].

It should be noted that while many studies have been dedicated to dimensional quantization in crystals with
tetrahedral symmetry and their multilayer structures [13-16], the question of quantizing the energy dispersion of charge
carriers in monatomic layers of transition metal dichalcogenides (TMDCs) remains open, which is the focus of this work.

ENERGY DISPERSION IN A QUANTUM WIRE GROWN FROM MONATOMIC LAYERS
OF TRANSITION METAL DICHALCOGENIDES

Fig. la, b schematically shows the crystal structure and arrangement of atoms in TMD monolayers. The
monomolecular layer D3, is characterized by a point group in which the horizontal plane of specular reflection passes
through the layer of metal atoms. The elementary lattice contains a metal atom and two chalcogen atoms located in planes
above and below the metal plane. The Brillouin zone is described as a regular hexagon (Fig. 1c). The correct exclusion
zone is determined at the points K, which are determined by the time inversion operator with each other. K, electron
dispersion in the valence band and conduction band near the points has a parabolic form (Fig. 1d). Note that the K
inclination of the bands relative to the spin at the points completely disappears. In this case, symmetry with respect to the
time reversal operator makes it possible to associate states with opposite spins in different valleys.

The effective Hamiltonian of electrons in bulk transition metal dichalcogenides is represented as [17]

E,/2 yk_
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where ky =k, * ik,, El =k, (sing, cosp) - is a two-dimensional wave vector directed along the interface,

y = h(ﬁg / m*)l/2 is the bandgap width, m* is the effective mass of the charge carriers. For simplicity, in subsequent
calculations of wave functions and energy spectra of charge carriers in quantum-confined structures grown based on
TMDCs, assume that the effective mass of the charge carriers does not depend on the quantum number of dimensional
quantization.

First, consider dimensional quantization in a potential well with infinitely high walls, made from monatomic layers
of TMDCs, where it is assumed that the direction of dimensional quantization corresponds to the Ox axis. Then, the
Schrodinger equation with Hamiltonian (1) is written as

(Eg/z) —E V(kx - iky) =
y(kx + iky) (—Ez/2)—E
The solution of which is a column matrix with dimensions of 1x2.

Then, from the equality det(H — E) = 0, it is easy to obtain the Schrodinger equation, with which one can determine
the wave function and energy dispersion of charge carriers

(H-E) = 0, 2

62
LRI =0, 3)

where N% = yiz(E2 —E2),EZ= (Eg/Z)2 + y2k; and we assume k, = —i%
carriers directed along the Oy axis. Then, by representing solution (3) as a superposition of exponential functions
describing de Broglie waves with the wave vector X, propagating both along and against the Ox axis, and considering
the continuity and uniqueness of the wave function, it is easy to obtain that:
a) The energy dispersion of dimensional quantization in even (with respect to coordinate inversion) states is
determined from the condition e’®® =1 (e™% = +1). Then, the condition cos(X,a) = +1 yields the

expression for the quantum-confined energy dispersion as

, ky, —is the wave vector of the charge

1/2

2 2
ESP = £[(B,/2)" +v2g + v 52| )
From the condition cos(Nya) = —1, we obtain
2 2 1/2
ESP = £[(E,/2)" + V2K +v2 5 2n + 10?] (5)

where n — is the number of quantum-confined states;
b) The quantum-confined energy dispersion in odd (with respect to coordinate inversion) states is determined from
the condition sin(Nya) = 0, from which we obtain the expression determined by equation (4).
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Figure 1. Graphs of the first quantum-confined energy dispersion of charge carriers as a function of well thickness and wave vector
of charge carriers in a one-dimensional quantum well in a monatomic layer of various TMDCs, with bandgap widths E; = 1 eV
(graph 3), E; = 1.5 eV (graph 2), and E; = 2 eV (graph 3): a) energy dispersion of even states; b) energy dispersion of odd states.

On Fig. 1, the graphs of the first quantum-confined energy dispersion of charge carriers are presented as a function
of well thickness and wave vector of charge carriers in a one-dimensional quantum well in a monatomic layer of TMDCs
for bandgap widths E; = 1 eV (graph 3), E; = 1.5 eV (graph 2), and E; = 2 eV (graph 3): a) energy dispersion of even
states; b) energy dispersion of odd states, where the wave vector of the charge carriers is in units of 10° m~?. Calculations
were carried out according to formulas (5) and (6) with m = 0.5 m,. It can be seen from Fig. 1 that the energy dispersion
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of charge carriers, both for even and odd states, consists of a set of quantum-confined subbands, the shape of which (in
momentum space £k, ) remains almost unchanged.

In Fig. 2, graphs of the quantum-confined energy dispersion of charge carriers in a one-dimensional quantum well
in a monatomic layer of TMDCs are presented for a bandgap width of E; = 1 eV (Figures a and b) and E; = 1.5 eV
(Figures ¢ and d): a) and c) energy dispersion of even states; b) and d) energy dispersion of odd states, where the wave
vector of the charge carriers is in units of 109m ™. Calculations were carried out according to formulas (5) and (6) with
m = 0.5m, . It can be seen from Fig. 2 that for both even and odd states, the shape (steepness in momentum space k)
of the quantum-confined subbands depends on both the subband number and the geometric size (a). In particular, the
bandgap width in this quantum-confined structure increases with decreasing a, which is associated with the fact that the
energy dispersion of charge carriers is inversely proportional to the magnitude of a.
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Figure 2. Graphs of the quantum-confined energy dispersion of charge carriers as a function of well thickness and wave vector of
charge carriers in a one-dimensional quantum well in a monatomic layer of two TMDC:s, with bandgap widths E; = 1 eV (Figures a
and b) and £, = 1.5 eV (Figures c and d): a) and c) energy dispersion of even states; b) and d) energy dispersion of odd states.
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Figure 3. Graphs of the quantum-confined energy dispersion of charge carriers as a function of bandgap width and wave vector of
charge carriers in a one-dimensional quantum wire of a monatomic layer of TMDCs, depending on the bandgap width E: a) energy
dispersion of even states; b) energy dispersion of odd states.

2 2 1/2
ESP =+ [(E,2)" + v+ S an+ 12| (6)

On Fig. 3, graphs of the quantum-confined energy dispersion of charge carriers in a one-dimensional structure - a
quantum wire grown from a monatomic layer of TMDCs are presented as a function of the bandgap width E: a) energy
dispersion of even states; b) energy dispersion of odd states, where the well thickness is in units of 20 - 1071% m, and the
wave vector of the charge carriers is in units of 102 m ™. Calculations were carried out according to formulas (5) and (6)
with m = 0.5 mgyeV. It can be seen from Fig. 3 that for both even and odd states of the quantum-confined energy
dispersion of charge carriers, the narrower the bandgap width of the two-dimensional TMDC layer, the more noticeably
the bandgap width of the one-dimensional structure decreases. This is associated with the dimensional quantization of the
energy dispersions of charge carriers of the valence band and conduction band separately.

THE ENERGY DISPERSION IN A QUANTUM DOT GROWN FROM A MONATOMIC LAYER OF TMDCS
To calculate the energy spectrum in a quantum dot grown from a monatomic layer of TMDC:s, let's choose the
potential to be zero.
Where a and b are the thicknesses of the potential well along the Ox and Oy axes, respectively.
Then the Schrodinger equation takes the form:
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(Eg/2) —E  y(ks—iky) (s
, =0, (N
y(kx + iky) (—E4/2) —E]l¥2
where k, —%, ky, = %%. Considering the operators of wave vectors, it is easy to
10y, 1 Y,
[(E /2) E]lpl + y(l 0x - l 0x) - 0’ (8)
10y 19y
y (G224 1328) 1+ [(—E,/2) - E]w, = 0,
where Y, and 1,. Considering the operators of wave vectors, it is easy to
Sy (A% Wa)\ oy (10 %
¥ = (Eg/z)—E(i ox dy )’¢2 ( Eg/2)- E(L ox + 6y)'

Then it is easy to obtain the Schrodinger equation for 1

8%y,  0%yp, , E? (Eg/z)
e +_ay2 +——9Y, =0, O]

assuming ¥, (x,y) = X(x) X Y(y), we obtain equations for the functions X (x) and Y (y)

9%x %y
SO X =0, T4 v (y) = 0, (10)
where
2 _ Ez‘(Eg/Z)Z 2

K2, an

where k2 is an unknown quantity determined depending on the boundary conditions of the problem. We seek solutions
to the latter equations in the form of

X(x) = C+eilcx + C_e~irx, Y(y) = D+eixy + D _e v, (12)

y2

From the continuity condition of wave functions for even states with respect to coordinate inversion, we obtain the
following relationships:

X, (x) = (2K) /2 ika ___cosletra) (13)

[cos(ka)-sin(ka)+xa]l/?’

_ 1/2 —ixb cos(x(x=b))
Y, (y) (ZX) e [cos(xb)-sin(yb)+x-b]1/2’ (14)

and for odd states

X_(x) = (212 ina —_Sin(x-a) (15)

[-cos(ka)-sin(ka)+ka]l/?’

_ 1/2 ,—ixb sin(x(y-b))
) = @0 [—cos(xb)-sin(yb)+xb]1/2’ (16)

From the condition of uniqueness of the wave functions X (x) and Y (y), we obtain expressions for the unknown
quantity x? as follows:

w2 2
= — nx’

a) for even states: k = % (2n, + 1), and for odd states: k> =

b) for the quantity y, we have the following relationships: for even states: y = % (Zny + 1), and for odd states: y =

5y where n,, and n,, are integers numbering the quantum-confined states of charge carriers moving in the directions

of Ox and Oy.

Taking into account the previous results, we obtain expressions for the quantum-confined energy dispersion of
charge carriers in the quantum dot grown from a monatomic layer of TMDCs as follows:

a) for even states

12,
EE (n,n,) = +{(E /2)" +y [ ~(2n, + 1% + (Zny +1) ]} (17
b) for odd states
2 2 1/2
ESm(nemy) = £{(Bo/2)" +7? G2+ 5nd]} (18)

From the last relationships, it is evident that if the quantum dot has symmetric shape (cube), i.e., equal dimensions
a = b, then both E( ) (nx,ny) and E&

Simm ny) are degenerate for certain values of the quantum number. This means

astmm (nx ’
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that the energy dispersion of charge carriers is doubly degenerate. Specifically, we have E gi)mm(simm)(l,Z) =

Eéfi)mm(simm) (2,1),E éfi)mm(simm)(B,Z) =F t(lfi)mm(simm)(&Z), and so on. A similar situation occurs in an asymmetric
quantum dot (when a # b)) (see Fig. 4).

On Fig. 4, graphs of the quantum-confined energy dispersion of charge carriers in the quantum dot grown from a
monatomic layer of TMDC:s are presented for band gap widths E; = 1 eV (Figs. aand b) and E; = 1.5 eV (Figs. 4 c and
d) as a function of geometric dimensions: a) and c) energy dispersion of even states; b) and d) energy dispersion of odd
states. Here, the well thickness is in units of 10™° m m, and the wave vector of the charge carriers is in units of 10° m™1.
The calculations are performed according to formulas (18) and (19) with m = 0.5 m,. The quantum numbers are chosen
as (nx, ny). From Fig. 4, it can be observed that: a) the energy dispersion of charge carriers consists of a set of quantum-
confined subbands, the values of which depend on both the band parameters and the geometric dimensions of the sample,
as well as on the quantum number of the subbands; b) the energy difference between closely spaced quantum-confined
subbands increases as the geometric dimensions of the structure decrease, which is related to the fact that the energy
dispersion is inversely proportional to the size of the structure; c) some quantum-confined subbands intersect, resulting
in a twofold degeneracy, and the regions of intersection depend on both the quantum numbers of the quantum-confined
subbands and the aspect ratio (a/b).

Figure 4. Graphs of the quantum-confined energy dispersion of charge carriers in the quantum dot of a monatomic layer of
TMDC:s for band gap widths E; = 1 eV (Figs. a and b) and E; = 1.5 eV (Figs. ¢ and d): a) and c) energy dispersion of even

states; b) and d) energy dispersion of odd states. The quantum numbers are represented on the figure as (nx, ny).

CONCLUSIONS

A theory of dimensional quantization of energy dispersions of charge carriers has been developed both in the valence
band and in the conduction band in zero and one-dimensional nanostructures grown from monolayers of transition metal
dichalcogenides (TMDs). Expressions for the energy spectra of charge carriers in one- and zero-dimensional structures
have been obtained for both even and odd (with respect to spatial inversion) states, showing that the energy dispersion of
charge carriers consists of dimensionally quantized subbands. The energy gap between them increases with decreasing
geometric dimensions of the structure, both in quantum wires and quantum dots made from monolayers of TMDs

It should be noted here that the energy dispersion of charge carriers in dimensionally quantized structures grown
based on monolayers of transition metal dichalcogenides (TMDs) should depend on temperature and mechanical
deformation due to changes in the width of the bandgap, both in bulk [18, 19, 20] and in low-dimensional [21]
semiconductors. However, this case requires separate consideration.
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TEOPIA JIHIAHO-KPYTOBOI'O JIUXPOI3MY B OJJHOATOMHMX IIAPAX JIUXAJbKOI'EHIIIB
NEPEXITHUX METAJIIB 3 YPAXYBAHHSIM E®EKTY PABI
Pycram 5. Pacynos, Bokco6 P. Pacynos, Mapaon K. Hacipos, Maxuiiiio A. MamaroBa, Ici1omixon A. MymiHoB
Depeancokuil deporcasnuil yuisepcumem, Depeana, Yzbexucman

Mu po3pobmiy Teopiro po3MiIpHOrO KBAaHTYBAHHS JUISi HAaHOCTPYKTYp, SK OIHOBUMIPHHUX, TaK 1 HYJIbBUMIPHHUX, NMOOYZOBaHHX 3
OTHOATOMHHX IApiB TUXajJbKOreHifiB nepexigquux metaiis (JIIM). L{s Teopis m03BoHIa HAM OTPUMATH BUPA3H ULl CHEPTeTUIHHX
CIEKTPIiB HOCITB 3apsity sSIK y MApHHX, TaK i B HEMAPHUX CTaHax (11010 iHBepCii KOOPIMHAT), OCKIJIBKH 11i CTAHH BiIOYBaIOTHCS B ME)KaxX
KBaHTOBO OOMEXEHUX JIiHIH 1 TOYOK MOHOATOMHHX I1apiB J{[1IM, 3aiexHo Bif iXHIX TeOMETpHYHHX po3MipiB. . Hamn uncensauii aHami3
3abe3neuye AeTalbHe JOCIHIIKEHHS KBAHTOBO-OOMEKEHHX SHEPTETHYHUX CTaHIB €JICKTPOHIB Y HUX HAaHOCTPYKTypaxX, MPOMOHYIOUH
PO3YMIHHS IXHBOT'O NOTEHIIHHOTO 3aCTOCYBAHHS B II€PEIOBUX HAHOEIEKTPOHHUX MPUCTPOsX. List poboTa He TiNBKYM MOKpamrye Hare
PO3YMIHHSI €HEpreTUYHHUX XapaKTepPUCTHK MOHOATOMHUX mapiB JI[IM, ane i poOuTh BHECOK y mHpHIy cepy MaTepialo3HaBCTBa,
JOCIIIJDKYIOUH BILIMB PO3MIPHOTO KBAaHTYBaHHS Ha €JICKTPOHHI BIACTHBOCTI.

KurouoBi ciioBa: posmipne keanmyeanis,; 00HO- ma HYIb8UMIPHA HAHOCMPYKMYPA; 00HOAMOMHUL WAp OUXATLKOLEHIOI8 nepexiOnux
Memanie; enepeemuyHa OUCNepCis; 8aleHmHA 30HA, 30HA NPOBIOHOCMI



