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We have developed a theory of dimensional quantization for nanostructures, both one-dimensional and zero-dimensional, constructed 
from monoatomic layers of transition metal dichalcogenides (TMDCs). This theory has enabled us to derive expressions for the energy 
spectra of charge carriers in both even and odd states (relative to coordinate inversion), as these states occur within quantum-confined 
lines and points of the TMDC monoatomic layers, dependent on their geometric dimensions. Our numerical analysis provides a detailed 
exploration of the quantum-confined energy states of electrons within these nanostructures, offering insights into their potential 
applications in advanced nanoelectronic devices. This work not only advances our understanding of the energy characteristics of TMDC 
monoatomic layers but also contributes to the broader field of material science by exploring the effects of dimensional quantization on 
electronic properties. 
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INTRODUCTION 
A vital component of modern solid-state physics, both in experimental and theoretical aspects, is the rapidly 

developing field of low-dimensional systems of charge carriers. In particular, such low-dimensional systems include 
various nano-sized structures: superlattices, structures with quantum-confined wells, wires, and dots [1-3], the practical 
development of which is continually growing with the advancement of modern technologies for their fabrication [4]. 
Alongside, these low-dimensional structures serve as the elemental base of contemporary nanoelectronics and are the 
subjects of forward-looking research aimed at creating fundamentally new devices for spintronics, opto- and 
nanoelectronics with unique physical properties [5-8]. The main properties of these quantum-confined structures are 
determined by the spatial restriction of charge carriers' movement in one or several directions, which leads to the 
restructuring of the sample's band structure, i.e., the energy dispersion of carriers and other quasiparticles, such as 
phonons, excitons, and polaritons [9-11]. 

The unique properties of quantum-confined structures, which distinguish them from bulk samples on which they are 
based, allow for addressing the following tasks: a) new effects often arise in such structures related to dimensional 
quantization, and studying them is of undeniable interest from the physical point of view for analyzing the fundamental 
properties of low-dimensional objects. Secondly, nanostructures can be used to create solid-state devices of a new 
generation [12]. 

It should be noted that while many studies have been dedicated to dimensional quantization in crystals with 
tetrahedral symmetry and their multilayer structures [13-16], the question of quantizing the energy dispersion of charge 
carriers in monatomic layers of transition metal dichalcogenides (TMDCs) remains open, which is the focus of this work. 

ENERGY DISPERSION IN A QUANTUM WIRE GROWN FROM MONATOMIC LAYERS 
OF TRANSITION METAL DICHALCOGENIDES 

Fig. 1a, b schematically shows the crystal structure and arrangement of atoms in TMD monolayers. The 
monomolecular layer 𝐷ଷ௛ is characterized by a point group in which the horizontal plane of specular reflection passes 
through the layer of metal atoms. The elementary lattice contains a metal atom and two chalcogen atoms located in planes 
above and below the metal plane. The Brillouin zone is described as a regular hexagon (Fig. 1c). The correct exclusion 
zone is determined at the points 𝐾േ, which are determined by the time inversion operator with each other. 𝐾േ  electron 
dispersion in the valence band and conduction band near the points has a parabolic form (Fig. 1d). Note that the 𝐾േ 
inclination of the bands relative to the spin at the points completely disappears. In this case, symmetry with respect to the 
time reversal operator makes it possible to associate states with opposite spins in different valleys. 

The effective Hamiltonian of electrons in bulk transition metal dichalcogenides is represented as [17] 

𝐻 ൌ ቆ
𝐸௚/2 𝛾𝑘ି
𝛾𝑘ା െ𝐸௚/2ቇ, (1)
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where 𝑘േ ൌ 𝑘௫ േ 𝑖𝑘௬ ,𝑘ሬ⃗ ୄ ൌ 𝑘ୄሺsin𝜑, cos𝜑ሻ - is a two-dimensional wave vector directed along the interface,  
𝛾 ൌ ℏ൫𝐸෨௚ 𝑚∗⁄ ൯

ଵ/ଶ is the bandgap width, 𝑚∗ is the effective mass of the charge carriers. For simplicity, in subsequent 
calculations of wave functions and energy spectra of charge carriers in quantum-confined structures grown based on 
TMDCs, assume that the effective mass of the charge carriers does not depend on the quantum number of dimensional 
quantization. 

First, consider dimensional quantization in a potential well with infinitely high walls, made from monatomic layers 
of TMDCs, where it is assumed that the direction of dimensional quantization corresponds to the 𝑂𝑥 axis. Then, the 
Schrödinger equation with Hamiltonian (1) is written as 

 ሺ𝐻 െ 𝐸ሻ𝜓 ൌ ቈ
൫𝐸௚/2൯ െ 𝐸 𝛾൫𝑘௫ െ 𝑖𝑘௬൯

𝛾൫𝑘௫ ൅ 𝑖𝑘௬൯ ൫െ𝐸௚/2൯ െ 𝐸
቉𝜓 ൌ 0, (2) 

The solution of which is a column matrix with dimensions of 1×2. 
Then, from the equality 𝑑𝑒𝑡ሺ𝐻 െ 𝐸ሻ ൌ 0, it is easy to obtain the Schrödinger equation, with which one can determine 

the wave function and energy dispersion of charge carriers  

 பమట

ப௫మ
൅ ℵ௬ଶ𝜓 ൌ 0, (3) 

where ℵ௬ଶ ൌ
ଵ

ఊమ
൫𝐸ଶ െ 𝐸௬ଶ൯, 𝐸௬ଶ ൌ ൫𝐸௚/2൯

ଶ
൅ 𝛾ଶ𝑘௬ଶ and we assume 𝑘௫ ൌ െ𝑖

ப

ப௫
 , 𝑘௬ െis the wave vector of the charge 

carriers directed along the 𝑂𝑦 axis. Then, by representing solution (3) as a superposition of exponential functions 
describing de Broglie waves with the wave vector ℵ௬ propagating both along and against the 𝑂𝑥 axis, and considering 
the continuity and uniqueness of the wave function, it is easy to obtain that: 

a) The energy dispersion of dimensional quantization in even (with respect to coordinate inversion) states is 
determined from the condition 𝑒௜ଶℵ೤௔ ൌ 1   ൫𝑒௜ℵ೤௔ ൌ േ1൯. Then, the condition cos൫ℵ௬𝑎൯ ൌ ൅1 yields the 
expression for the quantum-confined energy dispersion as 

 𝐸௔
ሺേሻ ൌ േ ቂ൫𝐸௚/2൯

ଶ
൅ 𝛾ଶ𝑘௬ଶ ൅ 𝛾ଶ

గమ

௔మ
𝑛ଶቃ

ଵ/ଶ
, (4) 

From the condition cos൫ℵ௬𝑎൯ ൌ െ1, we obtain 

 𝐸௕
ሺേሻ ൌ േ ቂ൫𝐸௚/2൯

ଶ
൅ 𝛾ଶ𝑘௬ଶ ൅ 𝛾ଶ

గమ

ସ௔మ
ሺ2𝑛 ൅ 1ሻଶቃ

ଵ/ଶ
, (5) 

where 𝑛 െ is the number of quantum-confined states; 
b) The quantum-confined energy dispersion in odd (with respect to coordinate inversion) states is determined from 
the condition sin൫ℵ௬𝑎൯ ൌ 0, from which we obtain the expression determined by equation (4). 

On Fig. 1, the graphs of the first quantum-confined energy dispersion of charge carriers are presented as a function 
of well thickness and wave vector of charge carriers in a one-dimensional quantum well in a monatomic layer of TMDCs 
for bandgap widths 𝐸௚ ൌ 1 𝑒𝑉 (graph 3), 𝐸௚ ൌ 1.5 𝑒𝑉 (graph 2), and 𝐸௚ ൌ 2 𝑒𝑉 (graph 3): a) energy dispersion of even 
states; b) energy dispersion of odd states, where the wave vector of the charge carriers is in units of 10ଽ  𝑚ିଵ. Calculations 
were carried out according to formulas (5) and (6) with 𝑚 ൌ 0.5 𝑚଴. It can be seen from Fig. 1 that the energy dispersion 

                     
Figure 1.  Graphs of the first quantum-confined energy dispersion of charge carriers as a function of well thickness and wave vector 
of charge carriers in a one-dimensional quantum well in a monatomic layer of various TMDCs, with bandgap widths 𝐸௚ ൌ 1 𝑒𝑉 
(graph 3), 𝐸௚ ൌ 1.5 𝑒𝑉 (graph 2), and 𝐸௚ ൌ 2 𝑒𝑉 (graph 3): a) energy dispersion of even states; b) energy dispersion of odd states. 
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of charge carriers, both for even and odd states, consists of a set of quantum-confined subbands, the shape of which (in 
momentum space ℏ𝑘௬) remains almost unchanged. 

In Fig. 2, graphs of the quantum-confined energy dispersion of charge carriers in a one-dimensional quantum well 
in a monatomic layer of TMDCs are presented for a bandgap width of 𝐸௚ ൌ 1 𝑒𝑉 (Figures a and b) and 𝐸௚ ൌ 1.5 𝑒𝑉 
(Figures c and d): a) and c) energy dispersion of even states; b) and d) energy dispersion of odd states, where the wave 
vector of the charge carriers is in units of 10ଽ𝑚ିଵ. Calculations were carried out according to formulas (5) and (6) with  
𝑚 ൌ 0.5 𝑚଴ . It can be seen from Fig. 2 that for both even and odd states, the shape (steepness in momentum space  𝑘௬ሻ 
of the quantum-confined subbands depends on both the subband number and the geometric size (a). In particular, the 
bandgap width in this quantum-confined structure increases with decreasing a, which is associated with the fact that the 
energy dispersion of charge carriers is inversely proportional to the magnitude of 𝑎. 

  

Figure 2.  Graphs of the quantum-confined energy dispersion of charge carriers as a function of well thickness and wave vector of 
charge carriers in a one-dimensional quantum well in a monatomic layer of two TMDCs, with bandgap widths 𝐸௚ ൌ 1 𝑒𝑉 (Figures a 
and b) and 𝐸௚ ൌ 1.5 𝑒𝑉 (Figures c and d): a) and c) energy dispersion of even states; b) and d) energy dispersion of odd states. 

                            

Figure 3.  Graphs of the quantum-confined energy dispersion of charge carriers as a function of bandgap width and wave vector of 
charge carriers in a one-dimensional quantum wire of a monatomic layer of TMDCs, depending on the bandgap width 𝐸௚: a) energy 
dispersion of even states; b) energy dispersion of odd states. 

 𝐸௕
ሺേሻ ൌ േ ቂ൫𝐸௚/2൯

ଶ
൅ 𝛾ଶ𝑘௬ଶ ൅ 𝛾ଶ

గమ

ସ௔మ
ሺ2𝑛 ൅ 1ሻଶቃ

ଵ/ଶ
. (6) 

On Fig. 3, graphs of the quantum-confined energy dispersion of charge carriers in a one-dimensional structure - a 
quantum wire grown from a monatomic layer of TMDCs are presented as a function of the bandgap width 𝐸௚: a) energy 
dispersion of even states; b) energy dispersion of odd states, where the well thickness is in units of 20 ⋅ 10ିଵ଴  𝑚, and the 
wave vector of the charge carriers is in units of 10ଽ  𝑚ିଵ. Calculations were carried out according to formulas (5) and (6) 
with 𝑚 ൌ 0.5 𝑚଴𝑒𝑉. It can be seen from Fig. 3 that for both even and odd states of the quantum-confined energy 
dispersion of charge carriers, the narrower the bandgap width of the two-dimensional TMDC layer, the more noticeably 
the bandgap width of the one-dimensional structure decreases. This is associated with the dimensional quantization of the 
energy dispersions of charge carriers of the valence band and conduction band separately. 

 
THE ENERGY DISPERSION IN A QUANTUM DOT GROWN FROM A MONATOMIC LAYER OF TMDCS 

To calculate the energy spectrum in a quantum dot grown from a monatomic layer of TMDCs, let's choose the 
potential to be zero.  

Where 𝑎 and 𝑏 are the thicknesses of the potential well along the 𝑂𝑥 and 𝑂𝑦 axes, respectively.  
Then the Schrödinger equation takes the form: 
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 ቈ
൫𝐸௚/2൯ െ 𝐸 𝛾൫𝑘௫ െ 𝑖𝑘௬൯

𝛾൫𝑘௫ ൅ 𝑖𝑘௬൯ ൫െ𝐸௚/2൯ െ 𝐸
቉ ൤
𝜓ଵ
𝜓ଶ
൨ ൌ 0, (7) 

where 𝑘௫ ൌ
ଵ

௜

ப

ப௫
, 𝑘௬ ൌ

ଵ

௜

ப

ப௬
. Considering the operators of wave vectors, it is easy to 

 ቐ
ൣ൫𝐸௚/2൯ െ 𝐸൧𝜓ଵ ൅ 𝛾 ቀ

ଵ

௜

பటమ
ப௫

െ 𝑖
ଵ

௜

பటమ
ப௫
ቁ ൌ 0,

𝛾 ቀ
ଵ

௜

பటభ
ப௫

൅ 𝑖
ଵ

௜

பటభ
ப௫
ቁ ൅ ൣ൫െ𝐸௚/2൯ െ 𝐸൧𝜓ଶ ൌ 0,

 (8) 

where 𝜓ଵ and 𝜓ଶ. Considering the operators of wave vectors, it is easy to 

𝜓ଵ ൌ െ
ఊ

൫ா೒/ଶ൯ିா
ቀ
ଵ

௜

பటమ
ப௫

െ
பటమ
ப௬
ቁ, 𝜓ଶ ൌ െ

ఊ

൫ିா೒/ଶ൯ିா
ቀ
ଵ

௜

பటభ
ப௫

൅
பటభ
ப௬
ቁ. 

Then it is easy to obtain the Schrödinger equation for 𝜓ଵ 

 பమటభ
ப௫మ

൅
பమటభ
ப௬మ

൅
ாమି൫ா೒/ଶ൯

మ

ఊమ
𝜓ଵ ൌ 0, (9) 

assuming 𝜓ଵሺ𝑥,𝑦ሻ ൌ 𝑋ሺ𝑥ሻ ൈ 𝑌ሺ𝑦ሻ, we obtain equations for the functions 𝑋ሺ𝑥ሻ and 𝑌ሺ𝑦ሻ 

 பమ௑ሺ௫ሻ

ப௫మ
൅ 𝜅ଶ𝑋ሺ𝑥ሻ ൌ 0,   ப

మ௒ሺ௬ሻ

ப௬మ
൅ 𝜒ଶ𝑌ሺ𝑦ሻ ൌ 0, (10) 

where 

 𝜒ଶ ൌ
ாమି൫ா೒/ଶ൯

మ

ఊమ
െ 𝜅ଶ,  (11) 

where 𝜅ଶ is an unknown quantity determined depending on the boundary conditions of the problem. We seek solutions 
to the latter equations in the form of 

 𝑋ሺ𝑥ሻ ൌ Сା𝑒௜఑௫ ൅ 𝐶ି𝑒ି௜఑௫, 𝑌ሺ𝑦ሻ ൌ 𝐷ା𝑒௜ఞ௬ ൅ 𝐷ି𝑒ି௜ఞ௬. (12) 

From the continuity condition of wave functions for even states with respect to coordinate inversion, we obtain the 
following relationships:  
 𝑋ାሺ𝑥ሻ ൌ ሺ2𝜅ሻଵ/ଶ𝑒ି௜఑௔

ୡ୭ୱ൫఑ሺ௫ି௔ሻ൯

ሾୡ୭ୱሺ఑௔ሻ⋅ୱ୧୬ሺ఑௔ሻା఑௔ሿభ/మ,  (13) 

 𝑌ାሺ𝑦ሻ ൌ ሺ2𝜒ሻଵ/ଶ𝑒ି௜ఞ௕
ୡ୭ୱ൫ఞሺ௫ି௕ሻ൯

ሾୡ୭ୱሺఞୠሻ⋅ୱ୧୬ሺఞୠሻାఞ⋅ୠሿభ/మ, (14) 

and for odd states 
 𝑋ିሺ𝑥ሻ ൌ ሺ2𝜅ሻଵ/ଶ𝑒ି௜఑௔

ୱ୧୬൫఑ሺ௫ି௔ሻ൯

ሾିୡ୭ୱሺ఑௔ሻ⋅ୱ୧୬ሺ఑௔ሻା఑௔ሿభ/మ,  (15) 

 𝑌 ሺ𝑦ሻ ൌ ሺ2𝜒ሻଵ/ଶ𝑒ି௜఑௕
ୱ୧୬൫ఞሺ௬ି௕ሻ൯

ሾିୡ୭ୱሺఞ௕ሻ⋅ୱ୧୬ሺఞ௕ሻାఞ௕ሿభ/మ, (16) 

From the condition of uniqueness of the wave functions 𝑋ሺ𝑥ሻ and 𝑌ሺ𝑦ሻ, we obtain expressions for the unknown 
quantity 𝜅ଶ as follows: 
a) for even states: 𝜅 ൌ గ

ଶ௔
ሺ2𝑛௫ ൅ 1ሻ, and for odd states: 𝜅ଶ ൌ గ

௔మ
ଶ
𝑛௫ଶ; 

b) for the quantity 𝜒, we have the following relationships: for even states: 𝜒 ൌ గ

ଶ௔
൫2𝑛௬ ൅ 1൯, and for odd states: 𝜒 ൌ

గ

௕
𝑛௬, where 𝑛௫ and 𝑛௬ are integers numbering the quantum-confined states of charge carriers moving in the directions 

of 𝑂𝑥 and 𝑂𝑦. 
Taking into account the previous results, we obtain expressions for the quantum-confined energy dispersion of 

charge carriers in the quantum dot grown from a monatomic layer of TMDCs as follows:  
a) for even states 

 𝐸௦௜௠௠
ሺേሻ ൫𝑛௫,𝑛௬൯ ൌ േ ቄ൫𝐸௚/2൯

ଶ
൅ 𝛾ଶ ቂ

గమ

ସ௔మ
ሺ2𝑛௫ ൅ 1ሻଶ ൅

గమ

ସ௔మ
൫2𝑛௬ ൅ 1൯

ଶ
ቃቅ
ଵ/ଶ

; (17) 

b) for odd states 

 𝐸௔௦௜௠௠
ሺേሻ ൫𝑛௫,𝑛௬൯ ൌ േቄ൫𝐸௚/2൯

ଶ
൅ 𝛾ଶ ቂ

గమ

௔మ
𝑛௫ଶ ൅

గమ

௕మ
𝑛௬ଶቃቅ

ଵ/ଶ
. (18) 

From the last relationships, it is evident that if the quantum dot has symmetric shape (cube), i.e., equal dimensions 
𝑎 ൌ 𝑏, then both 𝐸௦௜௠௠

ሺേሻ ൫𝑛௫ ,𝑛௬ ൯ and 𝐸௔௦௜௠௠
ሺേሻ ൫𝑛௫ ,𝑛௬ ൯ are degenerate for certain values of the quantum number. This means 
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that the energy dispersion of charge carriers is doubly degenerate. Specifically, we have 𝐸௔௦௜௠௠ሺ௦௜௠௠ሻ
ሺേሻ ሺ1,2ሻ ൌ

𝐸௔௦௜௠௠ሺ௦௜௠௠ሻ
ሺേሻ ሺ2,1ሻ,𝐸௔௦௜௠௠ሺ௦௜௠௠ሻ

ሺേሻ ሺ3,2ሻ ൌ 𝐸௔௦௜௠௠ሺ௦௜௠௠ሻ
ሺേሻ ሺ3,2ሻ, and so on. A similar situation occurs in an asymmetric 

quantum dot (when 𝑎 ് 𝑏)) (see Fig. 4). 
On Fig. 4, graphs of the quantum-confined energy dispersion of charge carriers in the quantum dot grown from a 

monatomic layer of TMDCs are presented for band gap widths 𝐸௚ ൌ 1 𝑒𝑉 (Figs. a and b) and 𝐸௚ ൌ 1.5 𝑒𝑉 (Figs. 4 c and 
d) as a function of geometric dimensions: a) and c) energy dispersion of even states; b) and d) energy dispersion of odd 
states. Here, the well thickness is in units of 10ିଽ  𝑚 m, and the wave vector of the charge carriers is in units of 10ଽ  𝑚ିଵ. 
The calculations are performed according to formulas (18) and (19) with 𝑚 ൌ 0.5 𝑚଴. The quantum numbers are chosen 
as ൫𝑛௫,𝑛௬൯. From Fig. 4, it can be observed that: a) the energy dispersion of charge carriers consists of a set of quantum-
confined subbands, the values of which depend on both the band parameters and the geometric dimensions of the sample, 
as well as on the quantum number of the subbands; b) the energy difference between closely spaced quantum-confined 
subbands increases as the geometric dimensions of the structure decrease, which is related to the fact that the energy 
dispersion is inversely proportional to the size of the structure; c) some quantum-confined subbands intersect, resulting 
in a twofold degeneracy, and the regions of intersection depend on both the quantum numbers of the quantum-confined 
subbands and the aspect ratio ሺ𝑎/𝑏ሻ. 

 
CONCLUSIONS 

A theory of dimensional quantization of energy dispersions of charge carriers has been developed both in the valence 
band and in the conduction band in zero and one-dimensional nanostructures grown from monolayers of transition metal 
dichalcogenides (TMDs). Expressions for the energy spectra of charge carriers in one- and zero-dimensional structures 
have been obtained for both even and odd (with respect to spatial inversion) states, showing that the energy dispersion of 
charge carriers consists of dimensionally quantized subbands. The energy gap between them increases with decreasing 
geometric dimensions of the structure, both in quantum wires and quantum dots made from monolayers of TMDs 

It should be noted here that the energy dispersion of charge carriers in dimensionally quantized structures grown 
based on monolayers of transition metal dichalcogenides (TMDs) should depend on temperature and mechanical 
deformation due to changes in the width of the bandgap, both in bulk [18, 19, 20] and in low-dimensional [21] 
semiconductors. However, this case requires separate consideration. 
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ТЕОРІЯ ЛІНІЙНО-КРУГОВОГО ДИХРОЇЗМУ В ОДНОАТОМНИХ ШАРАХ ДИХАЛЬКОГЕНІДІВ 

ПЕРЕХІДНИХ МЕТАЛІВ З УРАХУВАННЯМ ЕФЕКТУ РАБІ 
Рустам Я. Расулов, Воксоб Р. Расулов, Мардон К. Насіров, Махлійо А. Маматова, Ісломжон А. Мумінов 

Ферганський державний університет, Фергана, Узбекистан 
Ми розробили теорію розмірного квантування для наноструктур, як одновимірних, так і нульвимірних, побудованих з 
одноатомних шарів дихалькогенідів перехідних металів (ДПМ). Ця теорія дозволила нам отримати вирази для енергетичних 
спектрів носіїв заряду як у парних, так і в непарних станах (щодо інверсії координат), оскільки ці стани відбуваються в межах 
квантово обмежених ліній і точок моноатомних шарів ДПМ, залежно від їхніх геометричних розмірів. . Наш чисельний аналіз 
забезпечує детальне дослідження квантово-обмежених енергетичних станів електронів у цих наноструктурах, пропонуючи 
розуміння їхнього потенційного застосування в передових наноелектронних пристроях. Ця робота не тільки покращує наше 
розуміння енергетичних характеристик моноатомних шарів ДПМ, але й робить внесок у ширшу сферу матеріалознавства, 
досліджуючи вплив розмірного квантування на електронні властивості. 
Ключові слова: розмірне квантування; одно- та нульвимірна наноструктура; одноатомний шар дихалькогенідів перехідних 
металів; енергетична дисперсія; валентна зона; зона провідності 


