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The dependence of the transparency coefficient of a five-layer two-barrier structure on the electron energy and the ratio of the widths 
of two neighboring potential barriers is calculated. It is shown that the extremum of the transparency coefficient significantly depends 
on the geometric dimensions of the structure layers. In a symmetric five-layer two-barrier semiconductor structure, the condition for 
the occurrence of "resonant" electron transitions is defined. It is demonstrated that the mechanism of such (resonant) transitions is 
explained by the interference of de Broglie waves of electrons in the potential well, where the phases of de Broglie waves are determined 
by the geometric dimensions of the structure, and their amplitudes - by the ratio of the carrier energy to the height of the potential 
barrier. It has been established that with an increase in the effective mass of charge carriers, the number of intersections of the quantities 

𝑓 𝜉  and   increases. These intersections determine the dimensionally-quantized levels where electrons are localized. 
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INTRODUCTION 
The investigation of charge carrier transport through multilayer semiconductors considering the symmetry of the 

structure is a relevant task due to its applications in the field of solid-state physics, particularly in nanoelectronics [1-5]. 
In works [6-9], the dynamic conductivity σ(ω) or the current j(ω) response of the system to external stimuli in a 
semiconductor multilayer structure has been calculated. The theory has been developed using various models and 
mathematical methods to solve the full Schrödinger equation [10] for a system of electrons interacting with the 
electromagnetic field in a structure with delta-shaped potential barriers. In works [1-10], electronic transport through 
multilayer structures has been investigated without considering the Bastard condition [11], i.e., the difference in the 
effective masses of electrons in the layers of the structure has not been taken into account. 

In the studies we have examined, computations are primarily conducted on computers, where it is difficult to analyze 
intermediate calculations [7-9], while analytical calculations have been performed [13-18], where changes in the effective 
masses of electrons when transitioning from one layer to another are not considered. 

Based on the results of works [1, 2, 14-20], it can be concluded that the transmission coefficient of electrons through 
an isolated potential barrier is less than unity and does not depend on whether the electron passes through the potential 
barrier from the left or the right. Based on this conclusion, it follows that in systems consisting of a periodically arranged 
sequence of "potential well + potential barrier," the resulting transmission coefficient of electrons through the potential 
barrier may be less than unity. However, it is not always possible to consider the resulting transmission coefficient through 
such structures as the sum of the transmission coefficients of electrons through individually isolated potential barriers. 
This is because the de Broglie waves belonging to electrons in a fixed well consist of components approaching the barrier, 
scattered from the barrier, and passing through the barrier, the first and second components of which interfere since they 
differ in amplitude and phase. As a result, not only the nature of the physical analysis of the problem changes but also the 
theoretical calculations applied to electron transport in multilayer semiconductor structures. 

QUANTUM-MECHANICAL ANALYSIS OF ELECTRON TRANSPORT 
Therefore, let us consider the two-barrier five-layer structure below, where each barrier is located between two 

adjacent potential wells (Fig. 1). In solving this problem, unlike simple quantum mechanical approximation [10], we take 
into account the change in the effective mass of the electron when transitioning from one layer to another, that is, we 
consider the carrier masses to be different in all layers [16-18]. 

It is worth noting that from Fig. 1, heterostructures with different energy structures can be obtained by choosing the 
magnitude and sign of the potential barrier heights. 

In particular, it provides the energy structure of ladder-cascade and other heterostructures, in which the height of the 
potential barriers increases, i.e., 𝑈 𝑈 𝑈 𝑈 , or decreases, i.e., 𝑈 𝑈 𝑈 𝑈 . For all the cases mentioned 
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above, by solving the Schrödinger equation with the Bastard condition [11-12, 16-18], one can determine characteristic 
parameters such as the transmission coefficient of the structure. However, depending on whether the electron's energy is 
significantly higher or lower than the height of the considered potential barrier, the electron's wave vector can be either a 
real or an imaginary quantity. Therefore, in intermediate calculations, especially when separating the wave function into 
real and imaginary parts in the initial stages of the calculation, one must be extremely careful to avoid confusion in the 
analysis of the final results. 

 

Figure 1. Carrier transport through a five-layer semiconductor structure. 1 corresponds to carrier transport above the potential, 
4 - below the potential, 2, 3 - transport below the first and above the second potential. In case 1, the energy of the carriers exceeds 
all potential barrier heights, in case 4, the energy of the carriers is less than all potential barrier heights, and in the remaining cases, 
the energy is higher than some potential barrier height and lower than the height of another. 

Thus, let us denote the solution of the Schrödinger equation for case 1 in the potential depicted in Fig. 1, i.e., the 
electron transition above the potential, as follows: 

 𝝍𝟏 𝒙 𝑨𝒊 𝒆𝒙𝒑 𝒊𝒌𝒊𝒙 𝑩𝒊 𝒆𝒙𝒑 𝒊𝒌𝒊𝒙 , (1) 

where 𝑘
ℏ

𝐸,  𝑘
ℏ

𝐸 𝑈 ,   𝑖 2,3,4 are quantities determined by the boundary conditions of the 

problem, such as continuity and finiteness conditions of the wave functions at the interface of two adjacent layers. 
If the energy of the electron is lower than the heights of the potential barriers in all layers, then the solution of the 

Schrödinger equation can be written in the form (1), where one needs to make the substitution 𝑘 𝑖𝜅 , which for an 
electron with energy 𝐸⟨𝑈  takes the form: 

 𝜓 𝑥 𝐴 𝑒𝑥𝑝 𝜅 𝑥 𝐵 𝑒𝑥𝑝 𝜅 𝑥 𝐷 . (2) 

Then, following the work [17], it is not difficult to obtain the expression for the electron transmission coefficient for 
case 1 as: 

𝑡 4
𝑘

𝑘
ℜ ℜ ℜ ℜ ℜ ℜ 𝑠𝑖𝑛 𝑘 𝑑 𝑑  

2 ℜ ℜ ℜ ℜ 𝑐𝑜𝑠 𝑘 𝑑 𝑑 𝑠𝑖𝑛 𝑘 𝑑 𝑑 , (3) 

Here: 
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𝑘 𝑘
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𝑘 𝑘
𝑡𝑔 𝑘 𝑑 𝑑 𝑡𝑎𝑛 𝑘 𝑑 𝑑 𝑑  

𝑐𝑜𝑠 𝑘 𝑑 𝑑 𝑐𝑜𝑠 𝑘 𝑑 𝑑 𝑑 , 

ℜ
1

𝑘 𝑘
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𝑐𝑜𝑠 𝑘 𝑑 𝑑 𝑐𝑜𝑠ℎ 𝑘 𝑑 𝑑 𝑑 . (4) 
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Fig.2 shows the graph of the oscillatory dependence of the above-barrier transmission coefficient on the electron 

energy (in electron-volts) and the ratio of the widths of the two potential barriers 𝑛𝑠 ), where 𝑑2 is the thickness of 

the second layer (first potential barrier), 𝑑4 is the thickness of the fourth layer (second potential barrier). In the 
calculations, it was assumed that the effective masses of electrons in the 1st, 2nd, 3rd, and 4th layers are respectively 
equal to 𝑚 0.15 ⋅ 𝑚 , 𝑚 0.0623 ⋅ 𝑚 , 𝑚 0.0122 ⋅ 𝑚 , 𝑚 0.12 ⋅ 𝑚 , and the width of the potential wells 
is 25 nm. In this case, a) 0.47 eV < E < 0.59 eV; b) 0.80 eV < E < 0.95 eV corresponds to the energy range. From this 
figure, it can be seen that the amplitude values of 𝑡 𝐸,𝑛𝑠  significantly depend on the ratio of the thicknesses 
of the potential barriers and the electron energy, and the oscillatory dependence is described by the interference of de 
Broglie waves approaching the barrier and scattered from it. Since the interfering waves differ in amplitude and phase, 
the oscillation in 𝑡 𝐸,𝑛𝑠  as a function of both 𝐸 and 𝑛𝑠 is asymmetric. 

  

Figure 2. Graph of the dependence of the transparency coefficient of the potential barrier on the electron energy (in electron-volts) 

and the ratio of the widths of the two potential barriers (𝑛𝑠 ) when electrons pass through the potential barrier: 

a) 0.47 eV < E < 0.59 eV; b) 0.80 eV < E < 0.95 eV. 

In case 2, i.e., when the energy of the electrons is lower than the height of the first barrier and higher than the height 
of the second barrier, the transition coefficient can be determined using (3), where the quantities ℜ 𝑗 1,2,3,4   should 
be replaced by ℜ′ 𝑗 1,2,3,4 : 
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𝑐𝑜𝑠ℎ 𝜅 𝑑 𝑑 cos 𝜅 𝑑 𝑑 𝑑 , 

Here: 𝑘 2𝑚 𝐸 ℏ . 

In case 4, i.e., if the energy of the electrons is lower than the heights of both potential barriers, the transition 
coefficient is also determined using (3), but in this case, the expressions ℜ 𝑗 1,2,3,4  should be replaced by the 
quantities ℜ″ 𝑗 1,2,3,4 ,  given below: 
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Fig. 3 presents the graphs of the dependence of the transparency coefficient of the potential barriers on the electron 
energy (in electron-volts) and the ratio of the widths of the two potential barriers when electrons pass below the potential 
barrier in a five-layer structure considering the Bastard condition, where: in Fig. a) the range of electron energy values is 
0.47 eV < E < 0.59 eV, and in Fig. b) it is 0.80 eV < E < 0.95 eV. The following values are used in the calculations: 
𝑚 0.15 ⋅ 𝑚 , 𝑚 0.0623 ⋅ 𝑚 , 𝑚 0.0122 ⋅ 𝑚 , 𝑚 0.12 ⋅ 𝑚 , where is the effective mass of electrons in the 
1st, 2nd, 3rd, and 4th layers, respectively, and the widths of the potential wells are 25 nm. 

  
Figure 3. Graph of the dependence of the transparency coefficient of the potential barrier on the electron energy and 𝒏𝒔

𝒅𝟐

𝒅𝟒
 when 

electrons pass below the potential barrier: a) 0.47 eV < E < 0.59 eV; b  𝟎.𝟖𝟎 𝒆𝑽  𝑬  𝟎.𝟗𝟓 𝒆𝑽. In the calculations, the effective 
masses of electrons in the 1st, 2nd, 3rd, and 4th layers are respectively 𝑚 0.15 ⋅ 𝑚 , 𝑚 0.0623 ⋅ 𝑚 , 𝑚 0.0122 ⋅ 𝑚 , 
𝑚 0.12 ⋅ 𝑚 , and the widths of the potential wells are 25 nm. 

 
ANALYSIS OF THE RESULTS 

Now let's consider a five-layer structure with symmetric double potential barriers, i.e., U U 0, U U U , 
as shown in Fig. 1, where we assume that the effective masses of charge carriers in all layers are the same. Then the 
electron transmission coefficient for case 2 is expressed as follows: 

 𝑡2 1
𝑘2 𝜅2 2

𝑠ℎ2 𝜅 𝑑2 𝑑1 2𝑘𝜅 𝑘2 𝜅2 𝑡ℎ 𝜅 𝑑2 𝑑1 𝑡𝑔 𝑘𝑑1

4𝑘4𝜅4𝑐ℎ 2 𝜅 𝑑2 𝑑1 cos 2 𝑘𝑑1

2 1

, (5) 

where 𝑑  – is the thickness of the first layer, 𝑑 𝑑 𝑑  is the thickness of the second layer, 𝑘 √2𝑚ℏ 𝐸 and 
𝜅 2𝑚ℏ 𝑈 𝐸  

Calculations show that in the aforementioned symmetric five-layer double-barrier semiconductor structure, the 
transmission coefficient equals unity under the condition. 

 𝑓 𝜉 , (6) 
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where resonant transitions occur, where 𝑓 𝜉 2𝑐𝑡ℎ к 1 𝜉 𝑑 𝑑 𝑐𝑡𝑔 к 𝜉𝑑 , 𝜉
  
, к

ℏ
𝑈 . The 

latter condition is the condition for observing "resonant" transitions through a symmetric five-layer structure, where the 
phases and amplitudes of de Broglie waves obey this condition, where the phases of de Broglie waves are determined by 
the geometric dimensions of the structure, and their amplitudes are determined by the ratio of the carrier energy to the 
height of the potential barrier. 

In Fig. 4, graphs of the dependence of the function 𝑓 𝜉  on 𝜉 𝐸/𝑈  are shown for 𝑛 𝑑 /𝑑 1.01 (Figure 4a) 
and 𝑛 𝑑 /𝑑 1.5 (Figure 4b) for various values of the effective masses of charge carriers. Here, 𝑑 50𝑛𝑚 is the 
thickness of the first layer, 𝑑  is the thickness of the second layer, 𝑈 0.1𝑒𝑉 is the height of the first potential barrier, 
𝑚  is the mass of a free electron. 

In Fig. 4a, it is shown that with an increase in the effective mass of charge carriers, the number of intersections of 

the values of 𝑓 𝜉  and  increases, leading to an increase in the value of the transmission coefficient. Thus, in crystals 

with large effective masses of charge carriers, the transparency coefficient approaches unity. A comparison of the results 

in Figures 4a and 4b shows that the number of intersections of 𝑓 𝜉  and  in the low-energy region does not change 

with the increase in the parameter 𝑛 𝑑 /𝑑   in the range of its values from 1.0 to 1.5. 

  

Figure 4. Graphs of the dependence of the function 𝑓 𝜉  on the ratio 𝜉 𝐸/𝑈  for 𝑛 𝑑 /𝑑 1.01 (a), and 𝑛 𝑑 /𝑑 1.5 (b) 
for various values of the effective masses of electrons. Here, 𝑑 50𝑛𝑚 nm is the thickness of the first layer, 𝑑  is the thickness 
of the second layer, 𝑈 0.1𝑒𝑉 is the height of the first potential barrier, 𝑚  is the mass of a free electron. 

 
CONCLUSIONS 

In this way, the dependence of the transparency coefficient of the five-layer double-barrier structure on the electron 
energy and the ratio of the widths of two adjacent potential barriers has been calculated. It has been demonstrated that the 
extremum of the transparency coefficient significantly depends on the geometric dimensions of the structure layers. In 
the symmetric five-layer double-barrier semiconductor structure, a condition has been defined under which the numerical 
value of the transmission coefficient through the potential barriers is approximately unity, indicating a "resonant" electron 
transition.  

It has been shown that the mechanism of such a "resonant" transition is explained by the interference of de Broglie 
waves of electrons in the potential well. It has been established that the phases of de Broglie waves are determined by the 
geometric dimensions of the structure, while their amplitudes are determined by the ratio of the carrier energy to the 
height of the potential barrier. 

It has been determined that with an increase in the effective mass of charge carriers, the number of intersections of 

f ξ  and , increases, which determine the dimensionally-quantized levels where electrons are localized. It has also 

been shown that the number of intersections of f ξ  and  in the low-energy region remains unchanged for values 

of 𝑛 𝑑 /𝑑  ranging from 1.0 to 1.5 in crystals with a large effective mass of electrons. 
 

ORCID 
Rustam Y. Rasulov, https://orcid.org/0000-0002-5512-0654; Voxob R. Rasulov, https://orcid.org/0000-0001-5255-5612 
Makhliyo A. Mamatova, https://orcid.org/0000-0001-6980-9877; Mardonbek X. Nasirov, https://orcid.org/0000-0002-6811-072X 



315
Theory of Electron Transport in Two-Barrier Five-Layer Semiconductor Structures EEJP. 3 (2024)

REFERENCES 
[1] E.L. Ivchenko, and G.E. Pikus, Superlattices and other heterostructures. Symmetry and optical phenomena. (Springer, Berlin, 

1995). 
[2] E.L. Ivchenko, Optical spectroscopy of semiconductor nanostructures. (Alpha Science, Harrow (UK), 2005), pp. 350. ISBN: 1-

84265-150-1. 
[3] V.E. Borisenko, and A.I. Vorobieva, Nanoelectronics. Part 2. Tutorial. (BSUIR, Minsk, 2003). (in Russian) 
[4] A.Ya. Shik, L.G. Bakueva, S.F. Musikhin, and S.A. Rykov, Physics of low-dimensional systems, edited by A.I. Shik, (Nauka, 

SPb., 2001). (in Russian) 
[5] V. Timofeev, “Electron correlation phenomena in semiconductor low-dimension structures and nanostructures,” UFN, 174, 1109 

(2004). https://doi.org/10.3367/UFNr.0174.200410f.1109. (in Russian) 
[6] J.N. Davies, The Physics of low-dimensional semiconductors, (Cambridge University, 1998). 
[7] V.F. Elesin, and I.Y. Kateev, “High-frequency properties of double-well nanostructures,” Semiconductors, 42(5), 571–575 

(2008). https://doi.org/10.1134/S106378260805014X 
[8] V.F. Elesin, “Resonant tunneling of interacting electrons in an alternating electric field,” JETP, 144(11), 1086-1098 (2013). 

https://doi.org/10.7868/S0044451013110199 
[9] V.F. Elesin, “Transient processes in double-barrier nanostructures,” JETP, 145(6), 1078-1086 (2014). 

https://doi.org/10.7868/S004445101406 
[10] L.D. Landau, and E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, 3rd ed. (Butterworth-Heinemann, 2004). 
[11] G. Bastard, “Theoretical investigations of superlattice band structure in the envelope-function approximation,” Physical Review 

B, 25(12), 7584-7594 (1982). https://doi.org/10.1103/PhysRevB.25.7584 
[12] R. Ferreira, and G. Bastard, “Unbound states in quantum heterostructures,” Nanoscale Research Letters, 1, 120-136 (2006). 

https://doi.org/10.1007/s11671-006-9000-1 
[13] L.E. Golub, E.L. Ivchenko, and R.Ya. Rasulov, “Intersubband absorption of light in the quantum well of a semiconductor with a 

complex band structure,” FTP, 29(6), 1093-1100 (1995). (in Russian) 
[14] R.Ya. Rasulov, V.R. Rasulov, I.M. Eshboltayev, M. Kuchkarov, and K.K. Urinova, “To the theory of dimensional quantization 

in crystals in the Kane approximation,” Journal of Physics: Conference Series, 2697(1), 012003 (2024). 
https://doi.org/10.1088/1742-6596/2697/1/012003 

[15] R.Ya. Rasulov, V.R. Rasulov, B.B. Akhmedov, I.A. Muminov, and K.K. Urinova, “Dimensional quantization in InSb and GaAs 
in three-zone model,” Journal of Physics: Conference Series, 2697(1), 012005 (2024). https://doi.org/10.1088/1742-
6596/2697/1/012005 

[16] V.R. Rasulov, “To the theory of electron passage in a semiconductor structure consisting of alternating asymmetric rectangular 
potential wells and barriers,” Russian Physics Journal, 59(10), 1699-1702 (2017). https://doi.org/10.1007/s11182-017-0963-4 

[17] R.Ya. Rasulov, V.R. Rasulov, I.M. Eshboltayev, M. Kuchkarov, and K.K. Urinova, “To the theory of dimensional quantization 
in crystals in the Kane approximation,” Journal of Physics: Conference Series, 2697(1), 012003 (2024). 
https://doi.org/10.1088/1742-6596/2697/1/012003 

[18] V.R. Rasulov, R.Y. Rasulov, M.A. Mamatova, and F. Qosimov, “Semiclassical theory of electronic states in multilayer 
semiconductors. Part 2,” Journal of Physics: Conference Series, 2388(1), 012158 (2022). https://doi.org/10.1088/1742-
6596/2388/1/012158  

[19] Rasulov, R. Y., Rasulov, V. R., Urinova, K. K., Mamatova, M. A., & Akhmedov, B. B. (2024). Single and Multiphoton Optical 
Transitions in Atomically Thin Layers of Transition Metal Dichalcogenides. East European Journal of Physics, (1), 393-397. 
https://doi.org/10.26565/2312-4334-2024-1-40  

[20] S.B. Utamuradova, R.Y. Rasulov, V.R. Rasulov, K.K. Urinova, and K.M. Fayzullaev, “To the Theory of Dimensional 
Quantization in Narrow-Gap Crystals,” East European Journal of Physics, (4), 307-310(2023). https://doi.org/10.26565/2312-
4334-2023-4-40 

 
ТЕОРІЯ ТРАНСПОРТУ ЕЛЕКТРОНІВ У ДВОБАР’ЄРНИХ П’ЯТИШАРОВИХ 

НАПІВПРОВІДНИКОВИХ СТРУКТУРАХ 
Рустам Ю. Расулова, Воксоб Р. Расулова, Махлійо А. Маматоваа, Мардонбек X. Насірова, Уміда М. Ізомаддіноваb 

aФерганський державний університет, Фергана, Узбекистан 
bКокандський державний педагогічний інститут, Коканд, Узбекистан 

Розраховано залежність коефіцієнта прозорості п’ятишарової двобар’єрної структури від енергії електронів та відношення 
ширин двох сусідніх потенційних бар’єрів. Показано, що екстремум коефіцієнта прозорості істотно залежить від 
геометричних розмірів шарів структури. У симетричній п'ятишаровій двобар'єрній напівпровідниковій структурі визначено 
умову виникнення «резонансних» електронних переходів. Показано, що механізм таких (резонансних) переходів пояснюється 
інтерференцією хвиль де Бройля електронів у потенційній ямі, де фази хвиль де Бройля визначаються геометричними 
розмірами структури, а їх амплітуди – відношення енергії носія до висоти потенційного бар'єру. Встановлено, що зі 
збільшенням ефективної маси носіїв заряду кількість перетинів величин fR(ξ) і (1-2ξ)/√(ξ-ξ2) зростає. Ці перетини визначають 
розмірно-квантовані рівні, на яких локалізовані електрони. 
Ключові слова: потенційний бар'єр; потенційна яма; двобар'єрна п'ятишарова структура; коефіцієнт пропускання; 
квантування розміру 


