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The dependence of the transparency coefficient of a five-layer two-barrier structure on the electron energy and the ratio of the widths
of two neighboring potential barriers is calculated. It is shown that the extremum of the transparency coefficient significantly depends
on the geometric dimensions of the structure layers. In a symmetric five-layer two-barrier semiconductor structure, the condition for
the occurrence of "resonant" electron transitions is defined. It is demonstrated that the mechanism of such (resonant) transitions is
explained by the interference of de Broglie waves of electrons in the potential well, where the phases of de Broglie waves are determined
by the geometric dimensions of the structure, and their amplitudes - by the ratio of the carrier energy to the height of the potential
barrier. It has been established that with an increase in the effective mass of charge carriers, the number of intersections of the quantities
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increases. These intersections determine the dimensionally-quantized levels where electrons are localized.

INTRODUCTION

The investigation of charge carrier transport through multilayer semiconductors considering the symmetry of the
structure is a relevant task due to its applications in the field of solid-state physics, particularly in nanoelectronics [1-5].
In works [6-9], the dynamic conductivity c(w) or the current j(w) response of the system to external stimuli in a
semiconductor multilayer structure has been calculated. The theory has been developed using various models and
mathematical methods to solve the full Schrédinger equation [10] for a system of electrons interacting with the
electromagnetic field in a structure with delta-shaped potential barriers. In works [1-10], electronic transport through
multilayer structures has been investigated without considering the Bastard condition [11], i.e., the difference in the
effective masses of electrons in the layers of the structure has not been taken into account.

In the studies we have examined, computations are primarily conducted on computers, where it is difficult to analyze
intermediate calculations [7-9], while analytical calculations have been performed [13-18], where changes in the effective
masses of electrons when transitioning from one layer to another are not considered.

Based on the results of works [1, 2, 14-20], it can be concluded that the transmission coefficient of electrons through
an isolated potential barrier is less than unity and does not depend on whether the electron passes through the potential
barrier from the left or the right. Based on this conclusion, it follows that in systems consisting of a periodically arranged
sequence of "potential well + potential barrier," the resulting transmission coefficient of electrons through the potential
barrier may be less than unity. However, it is not always possible to consider the resulting transmission coefficient through
such structures as the sum of the transmission coefficients of electrons through individually isolated potential barriers.
This is because the de Broglie waves belonging to electrons in a fixed well consist of components approaching the barrier,
scattered from the barrier, and passing through the barrier, the first and second components of which interfere since they
differ in amplitude and phase. As a result, not only the nature of the physical analysis of the problem changes but also the
theoretical calculations applied to electron transport in multilayer semiconductor structures.

QUANTUM-MECHANICAL ANALYSIS OF ELECTRON TRANSPORT

Therefore, let us consider the two-barrier five-layer structure below, where each barrier is located between two
adjacent potential wells (Fig. 1). In solving this problem, unlike simple quantum mechanical approximation [10], we take
into account the change in the effective mass of the electron when transitioning from one layer to another, that is, we
consider the carrier masses to be different in all layers [16-18].

It is worth noting that from Fig. 1, heterostructures with different energy structures can be obtained by choosing the
magnitude and sign of the potential barrier heights.

In particular, it provides the energy structure of ladder-cascade and other heterostructures, in which the height of the
potential barriers increases, i.e., U; > U, > Uz > U,, or decreases, i.e., U; < U, < U3 < U,. For all the cases mentioned
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above, by solving the Schrodinger equation with the Bastard condition [11-12, 16-18], one can determine characteristic
parameters such as the transmission coefficient of the structure. However, depending on whether the electron's energy is
significantly higher or lower than the height of the considered potential barrier, the electron's wave vector can be either a
real or an imaginary quantity. Therefore, in intermediate calculations, especially when separating the wave function into
real and imaginary parts in the initial stages of the calculation, one must be extremely careful to avoid confusion in the
analysis of the final results.
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Figure 1. Carrier transport through a five-layer semiconductor structure. 1 corresponds to carrier transport above the potential,
4 - below the potential, 2, 3 - transport below the first and above the second potential. In case 1, the energy of the carriers exceeds
all potential barrier heights, in case 4, the energy of the carriers is less than all potential barrier heights, and in the remaining cases,
the energy is higher than some potential barrier height and lower than the height of another.

Thus, let us denote the solution of the Schrodinger equation for case 1 in the potential depicted in Fig. 1, i.e., the
electron transition above the potential, as follows:

Y1(x) = A; exp(ik;x) + B; exp( — ik;x), (D

where k; = ’%E, k; = ’%(E —U;), i =234 are quantities determined by the boundary conditions of the

problem, such as continuity and finiteness conditions of the wave functions at the interface of two adjacent layers.

If the energy of the electron is lower than the heights of the potential barriers in all layers, then the solution of the
Schrodinger equation can be written in the form (1), where one needs to make the substitution k; = ix;, which for an
electron with energy E(U; takes the form:

Y;i(x) = Ajexp(k;x) + B exp(— Kix)D;. @)

Then, following the work [17], it is not difficult to obtain the expression for the electron transmission coefficient for
case 1 as:

k -
toverbarrier = 412_5{9?% + ER% + (iR% + mi - mf - iRg) Sinz (k3(d2 - dl)) +
1
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Fig.2 shows the graph of the oscillatory dependence of the above-barrier transmission coefficient on the electron
energy (in electron-volts) and the ratio of the widths of the two potential barriers ns = %), where d2 is the thickness of

the second layer (first potential barrier), d4 is the thickness of the fourth layer (second potential barrier). In the
calculations, it was assumed that the effective masses of electrons in the 1st, 2nd, 3rd, and 4th layers are respectively
equal to my; = 0.15 - my, m, = 0.0623 - my, m3 = 0.0122 - my, my = 0.12 - m,, and the width of the potential wells
is 25 nm. In this case, a) 0.47 eV <E < 0.59 eV; b) 0.80 eV < E < 0.95 eV corresponds to the energy range. From this
figure, it can be seen that the amplitude values of t,,erparrier (E, 1S) significantly depend on the ratio of the thicknesses
of the potential barriers and the electron energy, and the oscillatory dependence is described by the interference of de
Broglie waves approaching the barrier and scattered from it. Since the interfering waves differ in amplitude and phase,
the oscillation in t,yerparrier (E, nS) as a function of both E and ns is asymmetric.
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Figure 2. Graph of the dependence of the transparency coefficient of the potential barrier on the electron energy (in electron-volts)
and the ratio of the widths of the two potential barriers (ns = %) when electrons pass through the potential barrier:
a) 0.47eV<E<0.59¢V;b)0.80eV<E<0.95¢V.

In case 2, i.e., when the energy of the electrons is lower than the height of the first barrier and higher than the height
of the second barrier, the transition coefficient can be determined using (3), where the quantities R;(j = 1,2,3,4) should
be replaced by SRJ(] = 1,2,3,4):
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Here: k; = /2m;E;h~2.

In case 4, i.e., if the energy of the electrons is lower than the heights of both potential barriers, the transition
coefficient is also determined using (3), but in this case, the expressions R;(j = 1,2,3,4) should be replaced by the
quantities ER;(j = 1,2,3,4), given below:
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Fig. 3 presents the graphs of the dependence of the transparency coefficient of the potential barriers on the electron
energy (in electron-volts) and the ratio of the widths of the two potential barriers when electrons pass below the potential
barrier in a five-layer structure considering the Bastard condition, where: in Fig. a) the range of electron energy values is
0.47 eV <E < 0.59 eV, and in Fig. b) it is 0.80 eV < E < 0.95 eV. The following values are used in the calculations:
my; = 0.15 - my, m, = 0.0623 - my, mz = 0.0122 - my, my, = 0.12 - m,, where is the effective mass of electrons in the
Ist, 2nd, 3rd, and 4th layers, respectively, and the widths of the potential wells are 25 nm.

tsubbarrie

Figure 3. Graph of the dependence of the transparency coefficient of the potential barrier on the electron energy and ns = % when

electrons pass below the potential barrier: a) 0.47 eV <E<0.59¢V;b) 0.80 eV < E < 0.95 eV. In the calculations, the effective
masses of electrons in the Ist, 2nd, 3rd, and 4th layers are respectively m; = 0.15 - my, m, = 0.0623 - my, mz = 0.0122 - mg,
my = 0.12 - my, and the widths of the potential wells are 25 nm.

ANALYSIS OF THE RESULTS
Now let's consider a five-layer structure with symmetric double potential barriers, i.e., U3 = U = 0, U, = U, = Uy,
as shown in Fig. 1, where we assume that the effective masses of charge carriers in all layers are the same. Then the
electron transmission coefficient for case 2 is expressed as follows:

2 _1
. (k2 +x2)” 51 (i(dp—dy)) [2k— (k2= th (e(dp—d1) ) g (kd1)] )
- 4-k4K4Ch_2(K(d2—dl))COS_Z(kdl) ’

where d, — is the thickness of the first layer, d, = d, — d, is the thickness of the second layer, k = V2mA~—2E and

=2mh=2(Uy — E)
Calculations show that in the aforementioned symmetric five-layer double-barrier semiconductor structure, the
transmission coefficient equals unity under the condition.

= . ©)
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where resonant transitions occur, where f(§) = 2cth (Ko,/ 1-¢&(d, — dl)) ctg(Ko\/Edl), &= Ui, Ko = ’zh_rzn Uy. The
0

latter condition is the condition for observing "resonant" transitions through a symmetric five-layer structure, where the
phases and amplitudes of de Broglie waves obey this condition, where the phases of de Broglie waves are determined by
the geometric dimensions of the structure, and their amplitudes are determined by the ratio of the carrier energy to the
height of the potential barrier.

In Fig. 4, graphs of the dependence of the function f3 (§) on & = E /U, are shown for ng = d,/d; = 1.01 (Figure 4a)
and ng = d,/d, = 1.5 (Figure 4b) for various values of the effective masses of charge carriers. Here, d; = 50nm is the
thickness of the first layer, d, is the thickness of the second layer, U, = 0.1eV is the height of the first potential barrier,
m, is the mass of a free electron.

In Fig. 4a, it is shown that with an increase in the effective mass of charge carriers, the number of intersections of
1-2¢

the values of and
with large effective masses of charge carriers, the transparency coefficient approaches unity. A comparison of the results

in Figures 4a and 4b shows that the number of intersections of fz(§) and E/lg__i;fz) in the low-energy region does not change

increases, leading to an increase in the value of the transmission coefficient. Thus, in crystals

with the increase in the parameter ng = d,/d; in the range of its values from 1.0 to 1.5.
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Figure 4. Graphs of the dependence of the function fx (¢) on the ratio § = E /U, forng = d,/d; = 1.01 (a),and ng = d,/d; = 1.5 (b)
for various values of the effective masses of electrons. Here, d; = 50nm nm is the thickness of the first layer, d, is the thickness
of the second layer, U, = 0.1eV is the height of the first potential barrier, m, is the mass of a free electron.

CONCLUSIONS

In this way, the dependence of the transparency coefficient of the five-layer double-barrier structure on the electron
energy and the ratio of the widths of two adjacent potential barriers has been calculated. It has been demonstrated that the
extremum of the transparency coefficient significantly depends on the geometric dimensions of the structure layers. In
the symmetric five-layer double-barrier semiconductor structure, a condition has been defined under which the numerical
value of the transmission coefficient through the potential barriers is approximately unity, indicating a "resonant” electron
transition.

It has been shown that the mechanism of such a "resonant" transition is explained by the interference of de Broglie
waves of electrons in the potential well. It has been established that the phases of de Broglie waves are determined by the
geometric dimensions of the structure, while their amplitudes are determined by the ratio of the carrier energy to the
height of the potential barrier.

It has been determined that with an increase in the effective mass of charge carriers, the number of intersections of

fr (%) and (\};_i:;, increases, which determine the dimensionally-quantized levels where electrons are localized. It has also

(1-2%)
VE-E?

of ng = d,/d, ranging from 1.0 to 1.5 in crystals with a large effective mass of electrons.

been shown that the number of intersections of fi (&) and in the low-energy region remains unchanged for values
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TEOPISI TPAHCIIOPTY EJIEKTPOHIB Y JIBOBAP’€EPHUX I’ITUIIAPOBUX
HAMIBINPOBITHUKOBUX CTPYKTYPAX
Pycram 0. Pacyaos?, Bokco6 P. Pacynos?, Maxuiiio A. Mamarosa?®, MapaouGex X. Hacipos?, Ymiza M. Isomanninosa®
“@epeancoruil depacasnuil yHisepcumem, Depeana, Yzbexucman
bKokanocvkuil depacasnuii nedazozivnuii incmumym, Koxano, Yzbexucman

Po3paxoBaHo 3ayeKHICTh KOe]illieHTa MPO30POCTi I’ ATUIIAPOBOT ABOGAp’€PHOT CTPYKTYPH Bijl €HEPrii eJIeKTPOHIB Ta BiJHOIICHHSI
LIMPUH [BOX CyCiaHIX mnoTeHuiiinnx Oap’epiB. ITokazaHo, 1m0 ekcTpeMyM KoedilieHTa MPO30POCTi ICTOTHO 3aJeXKUTHh Bif
TEOMETPUYHUX PO3MIpPIB IAPiB CTPYKTYpU. Y CUMETPHYHIN M'ATHIIAPOBil JBOOAP'€pHIil HAMMIBIIPOBIAHUKOBIN CTPYKTYpi BU3HAUEHO
YMOBY BUHUKHEHHS «PE30HAHCHUX» €JIEKTPOHHUX mepexomiB. [TokazaHo, o MexaHi3M TakuX (Pe30HaHCHUX ) IEPEXOIiB HOSCHIOETHCS
iHTep(epeHIiiclo XBIIb e bpoins enekTpoHiB y NMOTeHHiHHIN sMi, ne (a3u XBWIb Ae Bpoiins BH3HAYarOThCS T€OMETPHYHHMH
po3MipaMH CTPYKTYpH, a iX aMIUIITyAd — BiJHOIICHHS CHEprii HOCis JO BHCOTH IMOTEHHiHHOTO Oap'epy. BceraHoBieHo, 1m0 3i
36i1bIenHsIM e)eKTHBHOT MacH HOCIIB 3apsily KUIbKIiCTb nepeTHiB Bemmuns fr(E) i (1-28)/N(E-E2) 3poctae. Lli mepeTnHy BH3HAYAIOTH
PO3MIpHO-KBaHTOBaHI PiBHI, Ha SIKHX JIOKaJIi30BaHi €JIEKTPOHHU.

KorouoBi cioBa: nomenyitinuii 6ap'cp;, nomenyitina sima; 0606ap'epna n'smuwiaposa cmpykmypa, Koe@iyicnm nponyCcKauHsi,
KBAHMYBAHHS PO3MIDY



