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This research paper investigates the thermal stratification and chemical reaction effects on MHD Flow through oscillatory
vertical plate in a porous medium with temperature variation and exponential mass diffusion. Through the application
of the Laplace transform method, the paper derives analytical solutions that precisely depict the physical dynamics
of the flow. The investigation utilizes sophisticated mathematical models to scrutinize the complex dynamics between
Magnetohydrodynamics (MHD) and convective movements, considering a range of conditions involving temperature
fluctuations and exponential rates of mass diffusion. A pivotal finding from this research is the detailed comparison
between the outcomes of thermal stratification and those observed in environments lacking such stratification. It is
observed that the implementation of stratification within the flow leads to a more rapid achievement of equilibrium or
steady-state conditions.
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1. INTRODUCTION

The ubiquitous phenomena of thermal stratification in fluid systems result from fluids innate propensity to
arrange themselves into discrete temperature strata according to their thermal characteristics. The temperature
distribution that is stratified within a fluid medium is a key factor in determining the thermal properties of
different natural and artificial settings. Thermal stratification has a significant impact on heat transport, energy
efficiency, and environmental dynamics. It is especially common in water bodies, atmospheric conditions, and
industrial operations.

This research represents the first of its kind to examine the combined effects of thermal stratification
and chemical reaction on the flow around an oscillating vertical plate, building on a foundation established by
previous studies in related areas. Initial efforts by [1] and [2] were crucial in developing an understanding of
transient free convection flows along vertical flat plates, which was further expanded upon by [3] who looked
into unsteady natural convection adjacent to infinitely long vertical plates. Subsequent research broadened the
scope of investigation into various facets of this phenomenon. Investigations into transient buoyant flows within
stratified fluids were conducted by [4] and [5, 6], while [7] focused on flow dynamics driven by convection in fluids
that were stably stratified. The domain of porous media received significant attention as well, with [8] studying
unsteady free convection in a porous medium saturated with fluid, and [9] delving into the dynamics of heat
and mass transfer through natural convection in such mediums. The role of radiation and magnetic fields in
these processes was not overlooked; [10] assessed MHD boundary layer flow over vertical plates with a gradient
in temperature, and [11] evaluated MHD free convective mass transfer effects alongside variable suction and the
Soret effect. The interaction between chemical reaction and thermal radiation received particular focus in the
works of [12] and [13], who explored the influence of chemical reaction on vertical plates subjected to radiation
and thermal stratification. The dynamics of chemically reactive flows were extensively explored by [14], [15],
and [16], who concentrated on the consequences of chemical reactions on fluid movement near oscillating plates
and stretching surfaces across various scenarios, including heat and mass transfer, and the presence of magnetic
fields. This paved the way for more nuanced studies, such as those by [17] and [18, 19], which investigated
the unsteady flow near vertical plates with chemical reactions under thermal stratification. [20] extended these
observations to porous media with a focus on mass diffusion, and [21] further broadened the scope by examining
non-Newtonian fluids in porous media affected by chemical reaction and thermal stratification, highlighting the
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Figure 1. Physical Model and coordinate system

comprehensive exploration of these complex interactions in fluid dynamics.

This research, offering profound implications for industries like chemical manufacturing, polymer produc-
tion, and crystal separation, encompasses a wide array of studies on MHD unsteady and transient heat transfer
in vertical plates. These studies, covering stratification, chemical reaction, magnetic field, porous medium, and
radiation, collectively deepen our understanding of natural convection under diverse fluid and environmental
conditions.

2. MATHEMATICAL ANALYSIS

Consider the problem of an unsteady Magnetohydrodynamic (MHD) flow of a viscous, incompressible,
and stratified fluid over a vertically oscillating plate embedded in a porous medium. This setup is described
using a rectangular Cartesian coordinate system (x′, y′, t′), where the y′ axis is perpendicular to the plate and
the x′ axis is aligned vertically along the plate. The fluid velocity at any point (x′, y′, t′) is denoted by q =
(u′, 0). Initially, at t′ = 0, both the temperature and concentration of the fluid at the plate are T ′

∞ and C ′
∞,

respectively. For times t′ > 0, the plate starts oscillating in its own plane with a velocity of UR cosω′t′ relative
to the gravitational field. Concurrently, at t′ > 0, the temperature at the plate rises to T ′

∞ + (T ′
w − T ′

∞)At′,

and the concentration increases to C ′
∞ + (C ′

w − C ′
∞)ea

′t′ . These dynamics are analyzed under the assumption
of the standard Boussinesq approximation, leading to the formulation of equations for motion, energy, and
concentration, alongside the defined boundary conditions.

∂u′

∂t′
= gβ(T ′ − T ′

∞) + gβ∗(C ′ − C ′
∞) + ν

∂2u′

∂y′2
− σB2

0u
′

ρ
− ν

k
u′ (1)

∂T ′

∂t′
=

k

ρCp

∂2T ′

∂y′2
− γ′u′ (2)

∂C ′

∂t′
= D

∂2C ′

∂y′2
−K ′

cu
′ (3)

with the following initial and boundary Conditions:

u′ = 0 T ′ = T ′
∞ C ′ = C ′

∞ ∀y′, t′ ≤ 0

u′ = URcosω
′t′ T ′ = T ′

∞ + (T ′
w − T ′

∞)At C ′ = C ′
∞ + (C ′

w − C ′
∞)ea

′t′ at y′ = 0, t′ > 0

u′ → 0 T ′ → T ′
∞ C ′ → C ′

∞ as y′ → ∞, t′ > 0

where a′, η, ν, D, and Da are respectively constant, similarity parameter, kinematic viscosity, mass

diffusion coefficient, darcy number. The ”thermal stratification parameter” is termed as γ =
dT ′

∞
dx′ + g

Cp
. The

term ”thermal stratification” refers to the combination of vertical temperature advection
(

dT ′
∞

dx′

)
, where the

temperature of the surrounding fluid is height-dependent, and work of compression
(

g
Cp

)
, the rate at which

particles in a fluid do reversible work due to compression.
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and we provide non-dimensional quantities in the following:

U =
u′

UR
, t =

t′

tR
, y =

y′

LR
, ω = ω′tR, θ =

T ′ − T ′
∞

T ′
w − T ′

∞
, C =

C ′ − C ′
∞

C ′
w − C ′

∞
, M =

σB2
0ν

ρU2
R

, A =
1

tR

Gr =
νgβ(T ′

w − T ′
∞)

U3
R

, Gc =
νgβ∗(C ′

w − C ′
∞)

U3
R

, P r =
µCp

k
, Sc =

ν

D
, a = a′tR, ∆T = T ′

w − T ′
∞,

Da =
U2
Rk

′

ν2
, γ =

γ′LR

∆T
, Kc =

K ′
cL

2
R

ν
, UR = (νgβ∆T )1/3, tR = (gβ∆T )−2/3ν1/3, LR =

(
gβ∆T

ν2

)−1/3

Where Pr is Prandtl number, Gr is thermal Grashof number, Gc is mass Grashof number, M is Magnetic
parameter, Sc is Schmidt number, t is time in dimensionless coordinate, LR is reference length, tR is reference
time, U is dimensionless velocity, UR is reference velocity, µ is viscosity of fluid, θ is the dimensionless tem-
perature, C is dimensionless concentration, ω is frequency of oscillation. Then non-dimensional forms of the
equations (1)-(3) are given by

∂U

∂t
= Grθ +GcC +

∂2U

∂y2
−
(
M +

1

Da

)
U (4)

∂θ

∂t
=

1

Pr

∂2θ

∂y2
− γU (5)

∂C

∂t
=

1

Sc

∂2C

∂y2
−KcC (6)

Non-dimensional forms of initial and boundary Conditions are:

U = 0 θ = 0 C = 0 ∀y, t ≤ 0

U = cosωt θ = t C = eat at y = 0, t > 0

U → 0 θ → 0 C → 0 as y → ∞, t > 0 (7)

3. METHOD OF SOLUTION

We discovered that the Laplace transform method produces an equation of non-tractable form for any arbi-
trary Prandtl or Schmidt number. The non-dimensional governing equations (4)-(6) with boundary conditions
(7), are solved for the tractable situation of Pr = 1, Sc = 1. Hence, the expressions for velocity, temperature,
and concentration profiles can be determined with the help of [22] and [23] are as follows

U = D2
η

t
√
π
e−Et−η2

+D3f1(E,−a)− E

2(P − E)
[f1(E, iω) + f1(E,−iω)] +

Gr

P − E
f2(E) + (D1 −D2)

η

t
√
π
e−Pt−η2

+
P

2(P − E)
[f1(P, iω) + f1(P,−iω)] + (aD1 +D1Kc −D3)f1(P,−a)− Gr

P − E
f2(P )

D1(a+Kc)f1(Kc,−a) (8)

θ = D4t

{
(1 + 2η2)erfc(η)− 2η√

π
e−η2

}
− γ
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D2 +

D1 −D2

P
− D1

Kc

)
η

t
√
π
e−η2

+

{
D3

E
+

aD1 +D1Kc −D3

P

−D1(a+Kc)

Kc

}
f3(a)−

D2

E

η

t
√
π
e−Et−η2

− D1 −D2

P

η

t
√
π
e−Pt−η2

+
D1

Kc

η

t
√
π
e−Kct−η2

− D3

E
f1(E,−a)

− Gr

E(P − E)
f2(E) +

1

2(P − E)
(f1(E, iω) + f1(E,−iω))− 1

2(P − E)
(f1(P, iω) + f1(P,−iω))

aD1 +D1Kc −D3

P
f1(P,−a) +

D1(a+Kc)

Kc
f1(Kc,−a) +

Gr

P (P − E)
f2(p)

]
(9)

C =
1

2

[
e−2η

√
(a+Kc)t erfc

(
η −

√
(a+Kc)t

)
+ e2η

√
(a+Kc)t erfc

(
η +

√
(a+Kc)t

)]
(10)
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Where,

η =
y

2
√
t
, EP = γGr, E + P = M +

1

Da
, E − P =

√(
M +

1

Da

)2

− 4γ Gr

D1 =
Gc

Kc

(
Kc −M − 1

Da

)
+ γGr

, D2 =
4aD1 −D1Kc +D1P

P − E

D3 =
a2D1 + aD1Kc + aD1P +D1KcP + 3a2D1 − 2aD1Kc −D1K

2
c +Gc

P − E
, D4 = 1+

γGr

P (P − E)
− γGr

E(P − E)

Also, fi’s are inverse Laplace’s transforms given by

f1(p, q) = L−1

{
e−y

√
s+p

s+ q

}
, f2(p) = L−1

{
e−y

√
s+p

s2

}
, f3(q) = L−1

{
e−y

√
s

s+ q

}
We separate the complex arguments of the error function contained in the previous expressions into real

and imaginary parts using the formulas provided by [22].

4. CLASSICAL CASE (γ = 0)

We derived solutions for the classical case of no thermal stratification (γ = 0). We want to compare the
results of the fluid with thermal stratification to the case with no stratification. Hence, the solutions for the
classical case with boundary conditions (7) by using the Laplace transformation are as follows:

θc = (1 + 2η2)erfc(η)− 2η√
π
e−η2

(11)

Uc =
1

2
[f1 ((E + P ) , iω) + f1 ((E + P ) ,−iω)]− Gr

E + P
f2 (E + P ) +

Gc

Kc − (E + P )

f1 ((E + P ) ,−a) +
tGr

(E + P )

{(
1 + 2η2

)
erfc(η)− 2η√

π
e−η2

}
− Gc

Kc − (E + P )
f1 (Kc,−a) (12)

4.1. Skin-Friction

The non-dimensional Skin-Friction, which is determined as shear stress on the surface, is obtained by

τ = −dU

dy

∣∣∣∣
y=0

The solution for the Skin-Friction is calculated from the solution of Velocity profile U , represented by (8), as
follows:

τ =
D2e

−Et

2
√
πt3

+
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−Pt

2
√
πt3

+D3

[
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√
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√
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√
πt

]
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√
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√
(E + iω)t) + e−iωt

√
E − iω erf(

√
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2e−Et

√
πt

]
+

Gr
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t
√
E erf(

√
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√
P erf(

√
Pt) +

√
t

π
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√
Et)

2
√
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− erf(
√
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2
√
P

]

(aD1 +D1Kc −D3)

[
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√
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√
(a+ P )t) +

e−Pt

√
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]
+

P
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eiωt

√
P + iω erf(

√
(P + iω)t) + e−iωt

√
P − iω erf(

√
(P − iω)t) +
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√
πt

]
−D1Kc

[
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√
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√
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]
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2
√
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The solution for the Skin-Friction for the classical case is given from the expression (12), which is represented
by
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τ∗ =
[
eiωt

√
(E + P ) + iω erf

(√
(E + P ) t+ iωt

)
+ e−iωt
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)
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√
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√
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+

√
t
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√
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2
√
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√
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√
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4.2. Nusselt Number

The non-dimensional Nusselt number, which is determined as the rate of heat transfer, is obtained by

Nu = −dθ

dy

∣∣∣∣
y=0

The solution for the Nusselt number is calculated from the solution of Temperature profile θ, represented by
(9), as follows:

Nu = 2D4

√
t

π
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+
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√
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√
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2
√
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E
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√
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)
+
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√
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√
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√
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√
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√
P erf(

√
Pt) +

√
t

π
e−Pt +

erf(
√
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The solution for the Nusselt number for the classical case is given from the expression (11), which is
represented by

Nu∗ = 2

√
t

π

4.3. Sherwood Number

The non-dimensional Sherwood number, which is determined as the rate of mass transfer, is obtained by

Sh = −dC

dy

∣∣∣∣
y=0

The solution for the Sherwood number is calculated from the solution of Concentration profile C, represented
by (10), as follows:

Sh =
√
a+Kc erf(

√
(a+Kc)t) +

1√
πt

e−(a+Kc)t
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5. RESULT AND DISCUSSIONS

We calculated the numerical values for velocity, temperature, concentration, skin friction, Nusselt number,
and Sherwood number by utilizing the solutions obtained in previous sections, for different values of the physical
parameters γ,Gr,Gc,M,Da,Kc, ω, and t. This process enhanced our comprehension of the problem’s physical
importance. Additionally, by employing MATLAB, we visually represented these calculations in Figures 2
through 17.

Figure 2. Effects of γ on Velocity Profile for t =
1.5, a = 0.2, ω = π/4, Gr = 5, Gc = 5,M = 2, Da =
0.5,Kc = 0.2

Figure 3. Effects of γ on Velocity Profile for t =
1.5, a = 0.2, ω = π/4, γ = 0.5,M = 2, Da = 0.5,Kc =
0.2

Figure 4. Effects of M on Velocity Profile for t =
1.5, a = 0.2, ω = π/4, Gr = 5, Gc = 5, γ = 0.5, Da =
0.5,Kc = 0.2

Figure 5. Effects of Da on Velocity Profile for t =
1.5, a = 0.2, ω = π/4, Gr = 5, Gc = 5, γ = 0.5,M =
2,Kc = 0.2

Figure 6. Effects of Kc on Velocity Profile for t =
1.5, a = 0.2, ω = π/4, Gr = 5, Gc = 5, γ = 0.5,M =
2, Da = 0.5

Figure 7. Effects of γ on Velocity Profile against time
for y = 1.2, a = 0.2, ω = π/4, Gr = 5, Gc = 5, γ =
0.5,M = 2, Da = 0.5

The presented Figures 2 through 7 illustrate the influence of various physical parameters on velocity profiles.
In Figure 2, as the parameter γ increases, there’s a marked reduction in peak velocity, suggesting a damping



Thermal Stratification and Chemical Reaction Effects on MHD Flow Through Oscillatory...
215

EEJP.2(2024)

effect. In the 3 and 4 Figures, it is evident that increases in Grashof number Gr for thermal buoyancy and
magnetic parameterM cause velocity profiles to peak at lower values and shift to the left. Figure 5 indicates that
with increasing Darcy number Da, peak velocities increase, suggesting less resistance to flow through porous
media. Figure 6 highlights the influence of the chemical reaction parameter Kc, with higher values leading
to lower velocities, indicative of the retarding influence of the chemical reaction on the flow. Lastly, Figure 7
shows that as the thermal stratification parameter (γ) increases, the fluid’s velocity initially decreases and then
stabilizes over time, with (γ = 0) exhibiting the highest velocity.

Figure 8. Effects of γ on Temperature Profile for t =
1.5, a = 0.2, ω = π/4, Gr = 5, Gc = 5,M = 2, Da =
0.5,Kc = 0.2

Figure 9. Effects of γ on Temperature Profile for t =
1.5, a = 0.2, ω = π/4, γ = 0.5,M = 2, Da = 0.5,Kc =
0.2

Figure 10. Effects of M on Temperature Profile
for t = 1.5, a = 0.2, ω = π/4, Gr = 5, Gc = 5, γ =
0.5, Da = 0.5,Kc = 0.2

Figure 11. Effects of Da on Temperature Profile
for t = 1.5, a = 0.2, ω = π/4, Gr = 5, Gc = 5, γ =
0.5,M = 2,Kc = 0.2

Figure 12. Effects of Kc on Temperature Profile
for t = 1.5, a = 0.2, ω = π/4, Gr = 5, Gc = 5, γ =
0.5,M = 2, Da = 0.5

Figure 13. Effects of γ on Temperature Profile
against time for y = 1.2, a = 0.2, ω = π/4, Gr =
5, Gc = 5, γ = 0.5,M = 2, Da = 0.5

Figures 8 through 13 depicts the temperature profiles for various physical parameters. In figure 8 shows that
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as the parameter γ increases, the temperature decreases across the profile, with the steepest gradient near γ = 0.
Figure 9 indicates that higher Grashof numbers for thermal buoyancy lead to lower temperatures, particularly
noticeable for Gr = 10, Gc = 5. Figure 10 suggests that an increase in the magnetic parameter M results in
a more uniform temperature distribution, highlighting magnetic damping of thermal fluctuations. In Fig 11,
higher Darcy numbers result in lower temperatures, indicating reduced resistance to thermal conduction in
porous media. Figure 12 shows that reduced chemical reaction parametersKc correspond to lower temperatures.
Finally, fig 13 demonstrates the time evolution of the temperature profile, with higher γ values leading to a
slower increase in temperature over time, likely due to thermal diffusion or delayed thermal response in the
system.

Figure 14. Effects of Kc on Concentration Profile for
t = 1.6, a = 0.2

Figure 15. Effects of γ on Skin friction for a =
0.2, ω = π/4, Gr = 5, Gc = 5,M = 2, Da = 0.5,Kc =
0.2

Figure 16. Effects of γ on Nusselt Number for a =
0.2, ω = π/4, Gr = 5, Gc = 5,M = 2, Da = 0.5,Kc =
0.2

Figure 17. Effects of Kc on Sherwood Number for
t = 1.6, a = 0.2

Figure 14 displays concentration profiles for different values of the chemical reaction parameter Kc. As Kc

increases, concentration within the boundary layer decreases, indicating a stronger chemical reaction diminishes
species concentration.

Figure 15 presents skin friction decreasing linearly over time for different values of γ, with the rate of
decrease being similar across the values. Nusselt number increases linearly over time for different values of
γ, with higher γ, having a steeper slope as shown in figure 16. Figure 17 illustrates the Sherwood number
decreasing with time and approaching a constant value for various Kc, with higher Kc resulting in a lower
asymptote.

6. CONCLUSION

Building on the insights garnered from the discussion earlier in this paper, the subsequent sections outline
the key conclusions drawn from this research.

� As γ increases, both velocity and temperature decrease due to the stabilizing influence of thermal strat-
ification, leading the fluid towards a steady state. Conversely, in the classical scenario without thermal
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stratification, the velocity and temperature remain higher compared to those in the thermally stratified
fluid.

� As Gr and Gc rise, velocity increases, yet temperature falls with the increase of Gr and Gc. Conversely,
an increase in M leads to a decrease in velocity while causing an increase in temperature.

� As the Darcy number Da increases, there is an increase in velocity, whereas the temperature decreases
with the rise of Da.

� With an increase in the chemical reaction parameter Kc, both velocity and concentration decrease, while
the temperature increases as Kc rises.

� In the isothermal scenario, there is a reduction in both Skin friction and Nusselt numbers when compared
to the stratification scenario.
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ÂÏËÈÂ ÒÅÐÌI×ÍÎ� ÑÒÐÀÒÈÔIÊÀÖI� ÒÀ ÕIÌI×ÍÎ� ÐÅÀÊÖI� ÍÀ ÌÃÄ-ÏÎÒIÊ
×ÅÐÅÇ ÊÎËÈÂÀËÜÍÓ ÂÅÐÒÈÊÀËÜÍÓ ÏËÀÑÒÈÍÓ Â ÏÎÐÈÑÒÎÌÓ ÑÅÐÅÄÎÂÈÙI

ÇI ÇÌIÍÎÞ ÒÅÌÏÅÐÀÒÓÐÈ ÒÀ ÅÊÑÏÎÍÅÍÖIÀËÜÍÎÞ ÄÈÔÓÇI�Þ ÌÀÑÈ
Äiãáàø Ñàõó, Ðóäðà Êàíòà Äåêà

Ôàêóëüòåò ìàòåìàòèêè, Óíiâåðñèòåò Ãàóõàòi, Ãóâàõàòi, 781014, Àññàì, Iíäiÿ

Ó öié ðîáîòi äîñëiäæó¹òüñÿ òåðìi÷íà ñòðàòèôiêàöiÿ òà âïëèâ õiìi÷íî¨ ðåàêöi¨ íà ÌÃÄ-ïîòiê ÷åðåç êîëèâàëüíó
âåðòèêàëüíó ïëàñòèíó â ïîðèñòîìó ñåðåäîâèùi çi çìiíîþ òåìïåðàòóðè òà åêñïîíåíöiàëüíîþ ìàñîâîþ äèôóçi¹þ.
Çàâäÿêè çàñòîñóâàííþ ìåòîäó ïåðåòâîðåííÿ Ëàïëàñà â ñòàòòi îòðèìàíî àíàëiòè÷íi ðiøåííÿ, ÿêi òî÷íî âiäîáðàæà-
þòü ôiçè÷íó äèíàìiêó ïîòîêó. Ðîçñëiäóâàííÿ âèêîðèñòîâó¹ ñêëàäíi ìàòåìàòè÷íi ìîäåëi äëÿ ðåòåëüíîãî âèâ÷åííÿ
ñêëàäíî¨ äèíàìiêè ìiæ ìàãíiòîãiäðîäèíàìiêîþ (ÌÃÄ) i êîíâåêòèâíèìè ðóõàìè, âðàõîâóþ÷è íèçêó óìîâ, ùî âêëþ-
÷àþòü òåìïåðàòóðíi êîëèâàííÿ òà åêñïîíåíöiàëüíó øâèäêiñòü äèôóçi¨ ìàñè. Êëþ÷îâèì âèñíîâêîì öüîãî äîñëiäæå-
ííÿ ¹ äåòàëüíå ïîðiâíÿííÿ ðåçóëüòàòiâ òåðìi÷íî¨ ñòðàòèôiêàöi¨ òà òèõ, ùî ñïîñòåðiãàþòüñÿ â ñåðåäîâèùàõ, äå òàêà
ñòðàòèôiêàöiÿ âiäñóòíÿ. Ïîìi÷åíî, ùî ðåàëiçàöiÿ ñòðàòèôiêàöi¨ âñåðåäèíi ïîòîêó ïðèçâîäèòü äî áiëüø øâèäêîãî
äîñÿãíåííÿ ðiâíîâàæíèõ àáî ñòàöiîíàðíèõ óìîâ.
Êëþ÷îâi ñëîâà: ÌÃÄ ïîòiê; õiìi÷íà ðåàêöiÿ; òåðìi÷íà ñòðàòèôiêàöiÿ; ïîðèñòå ñåðåäîâèùå; êîëèâàëüíà âåð-

òèêàëüíà ïëàñòèíà; ïåðåòâîðåííÿ Ëàïëàñà; Matlab
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