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This study examines how thermal and mass stratification affect unsteady MHD parabolic flow past an infinite vertical
plate through porous medium with variable heat and mass diffusion. Analytical solutions are derived for unitary Prandtl
and Schmidt numbers using Laplace transform technique to simulate the the flow’s physical process. The investigation
takes into account how the flow field is impacted by thermal and mass stratification. Following that, the outcomes of
the stratification case are then comapared with the scenario in which the flow field has no stratification. The finding of
this study can help us comprehend more about the unsteady MHD parabolic flow and provide insightful information for
stratified systems.
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1. INTRODUCTION

The most evident effect of thermal stratification is felt by anyone who has gone for a summer swim and
felt the chilly water a few feet under the warm surface. The process by which density causes a body of fluid to
develop comparatively stable and distinct layers is known as stratification of fluid which takes place mostly at
higher temperatures. It happens mostly due to change in temperature, concentration, or the presence of various
fluids with differing densities. Many natural systems, including lakes and oceans, exhibit the phenomenon of
thermal stratification. Stratification obstructs the vertical fluid mixing that influences the exchange of nutrients,
carbon, oxygen, and heat.

The study of parabolic flow problem plays an important role because it lessens viscous interactions between
adjacent fluid layers and the pipe wall, which helps to minimize energy losses in flowing fluids. The parabolic
motion has several uses, including solar cookers, solar concentrators, and parabolic trough solar collectors.

Using an infinite vertical plate in mass and heat transfer process is one of the applications for parabolic flow.
Due to their significance in engineering and industrial processes such as the cooling of electronic equipment,
sun collectors, solar cookers, solar concentrators, etc.—these difficulties are being studied in great detail. [1],
[2], [3] and [4] came up with analytical solutions of different problems of thermal stratification or stratified fluid
with various conditions. Numerous authors have been studied MHD flow past vertical plates and cylinders with
stratification effects. [5], [6] and [7] studied MHD flow problems past vertical plate with stratification effects. [8]
investigated the heat and mass diffusion flow along a surface in porous medium. [9] studied the effects of both
thermal and mass stratification past an accelerated infinite vertical plate in porous medium. [10], conducted an
investigation on parabolic flow problem past vertical plate, while [11] and [12] investigted MHD parabolic flow
problems past vertical plates with several conditions.

In this article, we investigate the combined effects of thermal and mass stratification on unsteady MHD
parabolic flow past an infinite vertical plate embedded in a porous medium with variable temperature and mass
diffusion. For the unitary Prandtl and Schmidt numbers the solutions are then obtained. The investigation
on velocity, temperature and concentration profiles are made under the impacts of variables and displayed on
graphs. These variables include the thermal Grashof number Gr, mass Grashof number Gc, magnetic parameter
M , time t, Darcy number Da and stratification parameters γ and ξ. On other physical phenomena including
the rate of heat and mass transfer and skin friction, the effects of M , Gr, Gc, γ, ξ and t are also studied. For
classical case when γ and ξ are absent, the solutions are then obtained and are compared to the original case
that is when stratification is present. The conclusion of this study have numerous applications in engineering
and several industries.
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2. MATHEMATICAL ANALYSIS

In this work, we investigate an unstable MHD parabolic flow in two dimensions across an infinite vertical
plate of a viscous, incompressible, and electrically conducting fluid embedded in a porous medium with variable
temperature and mass diffusion. In order to examine the flow scenario, we utilize a coordinate system where
the x′ axis is selected vertically upward along the plate and the y′ axis is perpendicular to the plate. The fluid
and plate have the same initial fluid concentration C ′

∞ and starting temperature T ′
∞. The plate is moving with

the velocity URt
′2 in its own plane at time t′ > 0 relative to the gravitational field. Also the plate temperature

and concentration level are raised to T ′
w and C ′

w respectively at time t′ > 0. Due to the infinite length of the
plate, all the flow variables are independent of x′ and only impacted by y′ and t′. The equations for motion,
energy, and concentration are then represented by the Boussinesqs’ approximation as follows:

Figure 1. Physical model of the problem
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Considering the initial and boundary conditions as:

u′ = 0, T ′ = T ′
∞, C ′ = C ′

∞ ∀ y′, t′ ≤ 0

u′ = URt
′2, T ′ = T ′

∞ + (T ′
w − T ′

∞)At′,

C ′ = C ′
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u′ → 0, T ′ → T ′
∞, C ′ → C ′

∞ as y′ → ∞, t′ > 0

where, γ′ =
dT ′

∞
dx′ + g

Cp
denotes the thermal stratification parameter and

dT ′
∞

dx′ denotes the vertical tem-

perature convection known as thermal stratification. In addition, g
Cp

represents the rate of reversible work

done on fluid particles by compression, often known as work of compression. The variable (γ′) denotes the
thermal stratification parameter in our study as the compression work is relatively minimal. Regarding testing
of computational methods, compression work is kept as an additive to thermal stratification.
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Now, we introduce the following non-dimensional quantities:
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When the non-dimensional quantities defined in (5) above are employed, equations (1), (2), and (3) take
on the following forms:
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And the corresponding initial and boundary conditions (4) then reduce to,

u = 0, θ = 0, C = 0 ∀ y, t ≤ 0

u = t2, θ = t, C = t at y = 0, t > 0 (9)

u → 0, θ → 0, C → 0 as y → ∞, t > 0

2.1. Method of Solution

Solving the non-dimensional governing equations (6), (7) and (8) with respect to the boundary conditions
(9) for the unitary Prandtl and Schmidt numbers, we obtain the velocity, temperature and concentration profiles
with the help of [13] and [14] as:
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[
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]
− C3f(B1) (10)
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For the sake of succinctness, our study refers to the situation where pressure work is omitted and the
environment is isothermal (γ = 0, ξ = 0) as the classical scenario. The velocity (u∗), temperature (θ∗) and
concentration (C∗) profiles for classical case are obtained as,
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And f and h are inverse Laplace transforms and are given by
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Using the formulas given by [14], we separate the complex arguments of the error function that were present
in the preceding expressions into real and imaginary components.

2.2. Skin-Friction

The non-dimensional computation of skin-friction of the plate is given by:
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Now from equation (10) we get the expression for skin-friction as,
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Skin-friction in classical scenario is obtained as,
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2.3. Plate Heat Flux (Nusselt Number)

The non-dimensional form of rate of heat transfer (Nusselt Number) is given by,
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Now from equation (11) we get the expression for Nusselt number as,
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For classical case, Nusselt number is derived as,
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2.4. Sherwood Number

The non-dimensional form of rate of mass transfer (Sherwood Number) is given by,
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Now from equation (12) we get the expression for Sherwood number as,
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For classical case, Sherwood number is obtained as,

Sh∗ = 2

√
t

π
(24)

3. RESULTS AND DISCUSSIONS

The solutions obtained from the previous section’s numerical computations are displayed in Figures from
2 to 25 and discuss the effects of various physical parameters on temperature, velocity, concentration fields,
skin friction, Nusselt number, and Sherwood number, which provides us with better insight of the problem in
terms of physical significance. It has been found that a stratified fluid moves slower in compare to unstratified
fluid because of density varying property a resistive type of force (Lorentz force) occurs which lowers the flow
velocity. The velocity profiles are shown in figures from 2 to 7 for different values of magnetic parameter M ,
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Figure 2. Effects of γ and ξ on Velocity Profile for
Gr = 5, Gc = 5, t = 1, M = 1, Da = 0.5

Figure 3. Effects of Gr and Gc on Velocity Profile for
γ = 1, ξ = 0.8, t = 1, M = 1, Da = 0.5

Figure 4. Effects of M on Velocity Profile for γ = 1,
ξ = 0.8, Gr = 5, Gc = 5, t = 1, Da = 0.5

Figure 5. Effects of Da on Velocity Profile for γ = 1,
ξ = 0.8, Gr = 5, Gc = 5, M = 1, t = 1

Figure 6. Effects of γ and ξ on Velocity Profile against
time for y = 1, Gr = 5, Gc = 5, M = 1, Da = 0.5

Figure 7. Effects of Gr and Gc on Velocity Profile
against time for y = 1, γ = 1, ξ = 0.8, M = 1, Da =
0.5

Darcy number Da, thermal Grashof number Gr, mass Grashof number Gc, thermal stratification parameter
γ, mass stratification parameter ξ and time t. As the values of γ and ξ, which stand for thermal and mass
stratification, rise, the velocity decreases. It has been observed that when the magnetic parameter M increases,
the velocity profile falls because the flow velocity is lowered due to a resistive type of force known as the Lorentz
force occurs. When thermal Grashof number Gr, mass Grashof number Gc, and Darcy number Da increase,
velocity profile and velocity profile against time increase as well in both classical and non-classical cases. The
velocity profile against time increases in classical (γ = 0 and ξ = 0) case in compare to the stratified case.
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Figure 8. Effects of γ and ξ on Temperature Profile
for Gr = 5, Gc = 5, t = 1.5, M = 1, Da = 0.5

Figure 9. Effects of γ and ξ on Temperature Profile
against time for y = 1.5, Gr = 5, Gc = 5, M = 1,
Da = 0.5

Figure 10. Effects of Gr and Gc on Temperature
Profile for γ = 1, ξ = 0.8, t = 1.5, M = 1, Da = 0.5

Figure 11. Effects of Gr and Gc on Temperature
Profile against time for y = 1.5, γ = 1, ξ = 0.8, M =
1, Da = 0.5

Figure 12. Effects of M on Temperature Profile for
γ = 1, ξ = 0.8, Gr = 5, Gc = 5, t = 1.5, Da = 0.5

Figure 13. Effects of Da on Temperature Profile for
γ = 1, ξ = 0.8, Gr = 5, Gc = 5, t = 1.5, M = 1

The temperature and concentration profiles with and without stratification for various values of γ, ξ, M ,
Gr, Gc, Da and t are shown graphically in figures 8 to 19. From figures 8 and 9 it is seen that temperature is
more in classical case as compared to the non-classical case. Likewise figures 14 and 15 depict that concentration
is less in stratified fluid in compare to the unstratified fluid. Figures 12 and 18 depict the effect of magnetic
parameterM on temperature and concentration profile. Temperature and concentration increase asM increases.
From figures 13 and 19 it is seen that as Darcy number (Da) grows, temperature and concentration fall down.
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It is clear from figures 10 and 11 and 16 and 17 that temperature and concentration decrease when the thermal
and mass Grashof numbers (Gr and Gc) increase.

Figure 14. Effects of γ and ξ on Concentration Profile
for Gr = 5, Gc = 5, t = 1.5, M = 1, Da = 0.5

Figure 15. Effects of γ and ξ on Concentration Profile
against time for y = 1.5, Gr = 5, Gc = 5, M = 1, Da =
0.5

Figure 16. Effects of Gr and Gc on Concentration
Profile for γ = 1, ξ = 0.8, t = 1.5, M = 1, Da = 0.5

Figure 17. Effects of Gr and Gc on Concentration
Profile against time for y = 1.5, γ = 1, ξ = 0.8, M =
1, Da = 0.5

Figure 18. Effects of M on Concentration Profile for
γ = 1, ξ = 0.8, Gr = 5, Gc = 5, t = 1.5, Da = 0.5

Figure 19. Effects of Da on Concentration Profile for
γ = 1, ξ = 0.8, Gr = 5, Gc = 5, t = 1.5, M = 1

The effects of γ, ξ, thermal Grashof (Gr) and mass Grashof (Gc) numbers on skin-friction, Nusselt number
and Sherwood number are presented in the figures 20 to 25. In classical case that is when γ = 0 and ξ = 0,
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Figure 20. Effects of γ and ξ on skin-friction for Gr =
5, Gc = 5, M = 1, Da = 0.5

Figure 21. Effects of Gr and Gc on skin-friction for
γ = 1, ξ = 0.8, M = 1, Da = 0.5

Figure 22. Effects of γ and ξ on Nusselt number for
Gr = 5, Gc = 5, M = 1, Da = 0.5

Figure 23. Effects of Gr and Gc on Nusselt number
for γ = 1, ξ = 0.8, M = 1, Da = 0.5

skin-friction, Nusselt number and Sherwood number decrease as compared to the stratification case. It has been
observed that while rising in the values of Gr and Gc, skin-friction falls down. In case of Nusselt and Sherwood
numbers, when Gr and Gc increase, both Nusselt and Sherwood numbers increase.

Figure 24. Effects of γ and ξ on Sherwood number
for Gr = 5, Gc = 5, M = 1, Da = 0.5

Figure 25. Effects of Gr and Gc on Sherwood number
for γ = 1, ξ = 0.8, M = 1, Da = 0.5

4. CONCLUSION

We have explored the impact of thermal and mass stratification on unsteady MHD parabolic flow past
an infinite vertical plate embedded in a porous medium with variable heat and mass diffusion. The present
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study’s findings have been juxtaposed with those of the classical scenario in which stratification is absent. The
conclusion of our study that based on the results derived from the previous sections are as follows:

� When γ and ξ grow, velocity, temperature and concentration drop as both the stratification (thermal
and mass) effect stabilises the fluid and becomes steady state. But in the classical situation, velocity,
temperature and concentration are higher than in the thermally and mass stratified fluid.

� Velocity, temperature and concentration profiles grow as Gr and Gc increase but velocity decreases as M
increases and both temperature and concentration rise as M grows.

� Velocity grows as Darcy number Da increases but temperature and concentration fall down as Da rises.

� Skin-friction, Nusselt number and Sherwood number decrease in isothermal case as compared to the
stratification case.

� With rising the values of Gr and Gc, Nusselt number and Sherwood number also increase but skin-friction
falls down.
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ÂÏËÈÂ ÒÅÐÌI×ÍÎ� ÒÀ ÌÀÑÎÂÎ� ÑÒÐÀÒÈÔIÊÀÖI� ÍÀ ÍÅÑÒÀÖIÎÍÀÐÍÈÉ
ÌÃÄ-ÏÀÐÀÁÎËI×ÍÈÉ ÏÎÒIÊ ÏÎÂÇ ÍÅÑÊIÍ×ÅÍÍÓ ÂÅÐÒÈÊÀËÜÍÓ ÏËÀÑÒÈÍÓ

ÇI ÇÌIÍÍÎÞ ÒÅÌÏÅÐÀÒÓÐÎÞ ÒÀ ÄÈÔÓÇI�Þ ÌÀÑÈ ×ÅÐÅÇ
ÏÎÐÈÑÒÅ ÑÅÐÅÄÎÂÈÙÅ
Ïàïïó Äàñ, Ðóäðà Êàíòà Äåêà

Ôàêóëüòåò ìàòåìàòèêè, Óíiâåðñèòåò Ãàóõàòi, Ãóâàõàòi-781014, Àññàì, Iíäiÿ

Ó öüîìó äîñëiäæåííi äîñëiäæó¹òüñÿ, ÿê òåïëîâà òà ìàñîâà ñòðàòèôiêàöiÿ âïëèâà¹ íà íåñòàöiîíàðíèé ÌÃÄ-

ïàðàáîëi÷íèé ïîòiê ïîâç íåñêií÷åííó âåðòèêàëüíó ïëàñòèíó ÷åðåç ïîðèñòå ñåðåäîâèùå çi çìiííîþ äèôóçi¹þ òåïëà

òà ìàñè. Àíàëiòè÷íi ðiøåííÿ îòðèìàíi äëÿ óíiòàðíèõ ÷èñåë Ïðàíäòëÿ òà Øìiäòà ç âèêîðèñòàííÿì òåõíiêè ïåðå-

òâîðåííÿ Ëàïëàñà äëÿ ìîäåëþâàííÿ ôiçè÷íîãî ïðîöåñó ïîòîêó. Äîñëiäæåííÿ áåðå äî óâàãè òå, ÿê íà ïîëå òå÷i¨

âïëèâà¹ òåïëîâà òà ìàñîâà ñòðàòèôiêàöiÿ. Ïiñëÿ öüîãî ðåçóëüòàòè âèïàäêó ñòðàòèôiêàöi¨ ïîðiâíþþòüñÿ çi ñöåíà-

ði¹ì, ó ÿêîìó ïîëå ïîòîêó íå ìà¹ ñòðàòèôiêàöi¨. Ðåçóëüòàòè öüîãî äîñëiäæåííÿ ìîæóòü äîïîìîãòè íàì çðîçóìiòè

áiëüøå ïðî íåñòàöiîíàðíèé ÌÃÄ-ïàðàáîëi÷íèé ïîòiê i íàäàòè ãëèáîêó iíôîðìàöiþ äëÿ ñòðàòèôiêîâàíèõ ñèñòåì.

Êëþ÷îâi ñëîâà: ÌÃÄ ïîòiê; âåðòèêàëüíà ïëàñòèíà; ïàðàáîëi÷íèé ïîòiê; åëåêòðîïðîâiäíà ðiäèíà; íåñòàáiëüíèé

ïîòiê; ñòðàòèôiêîâàíà ðiäèíà; ïîðèñòå ñåðåäîâèùå
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