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The present study aims to perform a comparative analysis of the plane Couette flow of a couple stress fluid under
the influence of magnetohydrodynamics (MHD) using two different methods: the Optimal Auxiliary Function Method
(OAFM) and the Homotopy Perturbation Method (HPM). The couple stress fluid is known for its non-Newtonian
behavior, where the fluid’s response to shear is influenced by the presence of internal microstructure.The OAFM and
HPM are utlized to solve the governing equations of the couple stress fluid flow under MHD. The OAFM is a numerical
technique that involves introducing an auxiliary function to simplify the equations, leading to an easier solution procedure.
On the other hand, HPM is an analytical method that employs a series solution .The comparative analysis focuses on
examining the accuracy, efficiency, and convergence behavior of the two methods. Various flow parameters such as the
couple stress parameter, the magnetic parameter, and the velocity ratio are considered to investigate their influence on
the flow behavior. Furthermore the HPM solution was compared with the OAFM solution using different graphs and
tables.It reveals that the solution obtained by HPM is batter than OAFM solution.

Keywords: Couple stress fluid; Optimal Auziliary Function Method (OAFM); Homotopy Perturbation Method (HPM);
magnetohydrodynamics (MHD)

PACS: specify the PACS code(s) here

1. INTRODUCTION

In recent years, the magnetohydrodynamic (MHD) flow and heat transfer have obtained a wide concern,
because of its various applications, such as nuclear reactor, physics, ocean dynamics, the generation of MHD
energy [1, 2], chemical manufacturing, and the synthesis of magnetic liquids [3, 4, 7, 7, 8,9, 10, 11]. Ahmed et al.
[12] conducted a theoretical study of an electrically conducting couple stress fluid (CSF) in an oscillatory viscous
flow with heat transfer influenced by convection and MHD, which has important applications in the production
of electro-conductive polymers and liquids. Ajaz [13] investigated the influence of an applied inclined magnetic
field on the peristaltic flow that occurs during heat and mass transfer in a CSF. Pei-Ying and colleagues [14]
evaluated the velocity and temperature distributions of hafnium nanoparticles subjected to a thermal radiation
effect and a magnetic field. They do this by compiling the findings of varying thermal conductivity and viscosity
in the hafnium nanoparticles’ appearance. Ajala et al. [15] studied how the existence of a variable viscosity
and thermal radiation affects the flow of a two-dimensional boundary layer. Falade et al. [16] investigated the
minimization of the entropy generation rate as a result of temperature-dependent viscosity and couple stress
fluid caused by the heated channel. This is done to lower the entropy production rate to its lowest attainable
value. Swarnalathamma et al. [17] and Ramesh [18] studied the influence of heat transfer on the peristaltic
flow of a couple stress fluid with MHD and a porous media. They looked at how the new factors affected the
peristaltic pumping rate, frictional forces, velocity, temperature, pressure gradient, and concentration fields.
Divya et al. [19] reported and analysed the combined impact of temperature-dependent viscosity and thermal
conductivity on the MHD peristaltic flow of the Bingham fluid in a porous medium with heat transfer. This is
done in order to better understand how these factors affect the flow of the Bingham fluid. The authors analysed
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the effects of these variables on temperature as well as pumping rate and heat transfer coefficient. In their study
of an unsteady three-dimensional flow over a stretched surface accompanied by a chemical reaction, Hayat et al.
[20] came to the conclusion that both the velocity field and the associated boundary layer thickness decreased
as a function of the couple stress parameter. This is one of the findings of their study.

In this paper, the couette flow of couple stress fluids between two parallel plates under the influence of MHD
has been explored utilising the two well known approaches the Homotopy Perturbation Method (HPM)[21],[22]
and the Optimal Auxiliary Function Method (OAFM)[23],[24]. Results obtained by the proposed approaches
are compared with each other using various graphs and tables. The residual error obtained using the proposed
methods reveals the HPM solution is better than the OAFM solution. Graphs have been utilised to demonstrate
how the non-dimensional parameters affect the flow pattern.

The rest of the paper is organized as: Section (2) provides general methodology of the HPM and OAFM.
Section (3) contains basic equation of couple stress fluid and problem formulation. Solution of the problem is
provided in section (4). Section (5) discusses the numerical results and discussion. Section (6) provides final
conclusion.

2. GENERAL METHODOLOGY OF THE PROPOSED METHODS
2.1. Homotopy Perturbation Method

To explain the general idea of the homotopy perturbation method, we consider the nonlinear differential
equation illustrated below.

N(u(y)) =n(r) =0, reQ, (1)
B(u, =), r €, (2)

where N is the combination of the linear v (u) and nonlinear N(u), differential operators and B represents
boundary conditions, n(r) is the known analytical function. Therefore Eq.(1) can be written as:

P(u) +R(u) =n(r) = 0. (3)
We construct mapping for homotopy:
H(u,p) : Q2 x[0,1] = R, (4)
H(u, p) = (1= p)[th(u) = P(uo)] + plv(w) +R(u) —n(r)] =0, ()
u(y,p) : 2 x[0,1] = R, (6)

where p is the homotopy parameter and when p = 0, then ug is the initial approximation that satisfies boundary
conditions. When p = 1, the solution can be written in the form

= ug + puy + p*us + pdus + ... (7

Homotopy perturbation method is the combine process of homotopy and perturbation.

2.2. Analysis of Optimal Axillary Functions Method

To explore the general procedure of the optimal axillary functions method, we consider the nonlinear
differential equation illustrated below.

L(u) 4+ N(u) + h(y) = 0. (8)
the associated boundary condition are:
du(y)
B =0.
(u). T2 =0 ©)

In Eq.(8) L is linear , N denotes the non-linear differential operator and h(y) is the known function. The
approximate solution of Eq.(8) can be written as

u (y,Cy) = up(y) +ui(y,Cr), n=1,2,34..s. (10)

where C,, are the auxiliary constant. To fined the initial and first approximate solution of Eq.(8) we use Eq.(10)
in Eq.(8), which reveals

Luo(y) + y1(y,Cn)) + N(uo(y) + u1(y, Cn)) + h(y) = 0. (11)
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For obtaining the initial approximation wug(y), we use the following linear equation.

dUQ

L(uo(y)) + h(y) = 0, B(uo, — ) ) =0. (12)

The first-order approximation us(y) can be found from the following equation:
Lux(y, Cn)) + N(uo(y) + u1(y, Cn)) = 0, (13)
with associated boundary condition:

8ul (ya Cn)
dy

The non-linear tern from equation (13) can be expanded in the form

B(ul(yacn)7 ) =0. (14)

N (uo(y) +ur(y, Cn)) = +Z“1 U: Cn) N (ug(y)). (15)

Equation (15) can be stated in the algorithmic sequence to achieve the limit solution. To control all the
challenges that are occur while solving the non-linear differential of Eq.(11) and to accelerate the convergence
of the first approximation u;(y, Cy,). We use an alternate expression which represent the Eq.(13)

B (9, Cu) + A (ao(9), Co) NCuo ) + Ax(ao(4), Co) =0, (16)
Blus (3. C,), “18C0)) g, (17)

Remark 1. A; and A, are assumed to be two axillary functions which depend on the ug(y) and unknown
C,, and C,, parameters where n =1,2,3,...sand m=s+1,s+ 2,5+ 3..q.

Remark 2.

A; and As are not fixed. It may be up(y) or N(ug(y)) and can be the combination of both wug(y) and
N(uo(y))-

Remark 3. The auxiliary constants C,, and C,, can be determined using different methods either by
Collocation method, Least square method or Galerkin’s method.

3. BASIC EQUATIONS AND PROBLEM FORMULATION
The basic equations for an incompressible couple stress fluid are as follows [25],[26]:

V.V=0 (18)
(66t+VV)V VS —nViV+pf+I xB (19)
pC’p(g +V.V)O = kV?O + tr(S.L) (20)

ot
Where the velocity vector is symbolized by V, the body force per unit mass is f, the constant density is denoted
as p, S is the Cauchy stress tensor, © is the temperature, x is the thermal conductivity,J represents current
density, B represents magnetic induction ,C}, symbolizes the specific heat, also the gradient of V is denoted by
L, and 7 is used for couple stress parameter. The material derivative is indicated by % and is defined by the
following;:

D(x) 0]
21
B = (5 t V-V (21)
The Cauchy stress tensor is represented and defined as
S=-—pl+p4 (22)

Where I represent the unit tensor, p indicates the dynamic pressure and p is the viscosity constant. The first
Rivilin-Ericksen tensor is defined and represented as

A =L+ L (23)

where Lt is the transpose of L.
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3.1. Problem Formulation

Consider the Couette flow of a couple stress fluid under the influence of MHD between two infinite parallel
plates separated by 2d, where the upper plate moves with constant velocity U and the lower plate remains
stationary (Figure 1). 1. The temperature of the lower upper and plates are ©y and ©; respectively. Both
plates are situated in the plane at y = —d and y = d in an orthogonal coordinate system (z,y), where the fluid
is moving in the x-axis direction and the y-axis is perpendicular to the plates.Here, the viscosity is assumed to
be a function of temperature O(y), the pressure gradient is set to zero, and the velocity and temperature fields
are chosen as follows:

V = [u(y),0,0], ©=06(y) (24)

Moving plate

Fixed plafe

Figure 1. Geometry of the problem

These assumptions lead us to the conclusion that the continuity Eq.(18) is identically satisfied and the
momentum Eq.(19) simplifies to

Op  BSus 08y 0S..  d'u

= —n—— —oB? 25
0 Ox Ox Oy 0z nd4y 7Bt (25)
op  0S,. 0S,, 0S,.
__op 2
0 Oy + oz + Oy + 0z’ (26)
0 0S.. O0S. 0S..
0=_L4 + =2 4+ (27)

8z Oz Oy 0z

Where By represents the applied magnetic field and ¢ denotes electric conductivity of the fluid.
We have

d
Sxa: = Syy = Szz = syz = Szy = Sacz = Szac = 07 Sxy = Syac = ﬂi- (28)

Obtaining the velocity profile using equation Eq.(25). This equation may also be stated as

d*u d*u di,u du

- - 2 4+ oBXu=0. 29
Uity dydy+0 ou (29)

After all assumptions are applied, the energy equation (20) simplifies to Eq. (30).

e pu

70 pdu
dy? &

w,d*u
dy)2 + E(diy?)Q =0. (30)

(

The associated boundary condition are
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u'(=d) =0, u'(=d) =0, (32)
O(—d) =0y, O(d) =0,. (33)

According to Eq. (32), the couple stresses at the plates are zero. We utilize the non-dimensional parameters
mentioned below:

y_Ev u_ﬁv N_%a 6_60—91’
52 _ d2,u0 R— O’d4Bg \ = /L()U2
n no K(0g — 1)

Where A is the Brinkman number, p is the reference viscosity, and U is the reference velocity. Using these
dimensionless parameters, Eqs.(29) and (30) along with the boundary conditions becomes.
d*u

d4u _ d/.l/ du 7 ”

ot ﬁ%d—yQ - 52d—yd—y +Ru=0,u(-1)=0, u(l)=1, u (-1)=0, u (=1)=0. (34)
d’e du A d*u
i + AM(@)Q + @(diyg)Q =0, ©(-1)=0, 6(1) =1 (35)

The dimensionless form of the Reynolds viscosity is expressed as follows [27, 28, 29.
p=e MO (36)

Using Taylor series expansion to Eq. (36) we get

p=1-M6, di 49

- M (37)

The coupled system illustrated below is created by replacing Eq. (37) in the governing Egs. (34) and (35),
respectively:

s
dyt

du dO du
— %1 - MO)— + M —— = 38
B7( @)dy2 +p dy dy + Ru =0, (38)

"

w(-1) =0, u(l)=1, u (-1)=0, u (~1)=0,
d?0 du A d%u

— A1 -MO)(=— )+ 5 (=5)* =0, ©(-1)=0, ©(1) =1.
4. SOLUTION OF THE PROBLEM
4.1. HPM Solution
Zeroth order problem.
d*u
dyt
uw(-1)=0, u(l)=1, u'(-1)=0, (1) =0,
d’*e
Pl =0, (41)
O(-1)=0, 6(1)=1
Solution of zeroth order problem
1+
uo(y) =~ (42)
1+y
Oo(y) = —— (43)
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First order problem

d4u1 d2’LL0 d@o duo

MO, — 52 M——= = 44
gyt T (BT MO0 — %)+ Mg R+ Ruo = 0 (44)
ur(=1) =0, u1(1)=0, w"(-1)=0, u"(1)=
d2 1 )\ 2ug dug \ 2
— (A=MX = 45
B ( d 90)( dy ) Oa ( )
0:(—1) =0, Op(1)=0.
Solution of the first order problem.
1
i (y) =—— ( — T582M + 9082 My? — 1582 My* — 150R — 14yR + 180y> R+
1440 (46)
204° R — 30y R — 6°R),
1
O1(y) = 5(6A — 3M\ — My — 62\ + 3My* X + My> ). (47)
First order HPM solution for velocity profile and temperature distribution are
u(y) = uo(y) + ur(y) (48)
O(y) = Oo(y) + O1(y) (49)
1 1
u(y) = Lty L ( — 7582 M 4 9082 My? — 1538° My* — 150y — 14y R + 180y° R+
2 1440 (50)
20y* R — 30y R — 64°R),
o) = I+y 1. B a2 2 3 51
y)—i2 +2(6)\ 3MMN — MyX — 6y° A+ 3My“ X + My° ). (51)
4.2, OAFM Solution
Zeroth component for velocity and temperature distribution.
d4u0
— = 52
=0, (52
UQ(— ) = 0 uo(l) 1, ’LLOH(—l) = 0, uo"(l) =
2
T, (53)
Y
Oo(—1)=0, ©1(1)=0
Their solution are
14
uoly) = —. (54)
14
Ouly) =~ (55)
consider non Linear term from Eq. (38) and (39)
N(u) = —52(1—M@) +62Md—u@+R (56)
dy dy
N(©) = A1 - MO + (S5 67)
p* dy?
Replace u by ug and © by ©g
&2u
Nuo) = ~(1— My T 4 g2y 20 80y gy, (59)

dy dy
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d’LLO 2 A d2u0 2
N(6g) = A1 — MOy)(—)? 4+ = (—=2)2% 59
(©0) = A( O)(dy)+ﬁ2(dy2) (59)
We are free to choose auxiliary function.
1 1
A= el (Y2 4, = (2 Y)3,
14 14 (60)
Ay =3(—2yP, Ay = ea(—2Y)T,
2 2
Now using Eq.(54), Eq.(55) and Eq.(60) into Eq.(58) and Eq.(59), the nonlinear terms becomes
M1
Nuw) = T4 RGy 4 ), (61)
1 1
N(Qg) = ZA(1 — oMy + 1)). (62)
First order approximation can be obtained by
d*u
41 + AlN[U(]} + A2 = 0, (63)
dy
d?e,
2 + A3N[@0] + Ay =0. (64)
dy
After applying inverse operator on Eq.(63) and Eq.(64), we get the first order approximation.
1
u1(y) :m( —21B82%¢; My® — 105B%c; My* + 70B?ci My® + 630B% ¢y My>
—49B8%¢; My — 5258%¢i M — 1246¢1 R — 3coy” — 14¢1 Ry® — 21¢9y° (65)
— 84¢1 Ry® — 63cay® — 2101 Ry* — 105¢2y* + 280¢1 Ry® + 231¢0°
+ 1470c1 Ry? + 945¢2y° — 196¢1 Ry — 165coy — 819¢2),
01(y) = 139094 (903My8)\ + 72cs My" X + 252¢3 My®\ + 504c, My® X + 630cs My* A
+ 5045 MyP X\ + 2525 My? X — 1080cs MyA — 1143c5 M\ — 24c5y" A\—
168¢5y5\ — 504csy” A — 840c5y A — 840¢55° A — 504csy® A + 13685y A+ (66)
1512¢3\ — 1deqy® — 126¢4y® — 504c¢4y” — 1176¢4y° — 1764c4y°—
1764cqy” — 1176¢4y” — 504c4y® + 3458c4y + 3570c4).
According to OAFM Procedure.
u(y) = uo(y) +ui(y) (67)
O(y) = Oo(y) + O1(y) (68)
1 1
u(y) :% + m( — 215%¢; My® — 10582 ¢y My* + 7T0B?c; My® + 6308 ¢, My?
— 4982, My — 52582, M — 1246¢1 R — 3cay” — 14c1 Ry® — 21¢9y° — 84¢1 Ry® (69)
— 63coy® — 210¢1 Ry* — 105¢2y* + 280¢1 Ry® + 231coy® + 1470¢1 Ry? + 945¢21>
—196¢1 Ry — 165¢2y — 819¢3),
1+y 1 8 7 6 5
630cs My* X\ + 504cs My> X + 252¢5 My? X — 1080cs My — 1143¢3 M — 24csy” A
— 168355\ — B04cy® A — 840c5y A — 840¢5y° A — 504csy A + 1368csyA+ (70)

1512¢3\ — 14eqy® — 126¢4y® — 504c4y” — 1176415 — 1764c4y° —
1764cay* — 1176¢4y> — 504c4y” + 3458cay + 3570c4).
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(a) Velocity profile against parameter (b) Velocity profile against parameter
R using HPM solution. R using OAFM solution.

Figure 2. Comparison of HPM and OAFM solutions for velocity profile against parameter R when A =4, § =1 and
M = 2.

(a) Velocity profile against parameter 8 (b) Velocity profile against parameter
using HPM solution. B using OAFM solution.

Figure 3. Comparison of HPM and OAFM solutions for velocity profile against parameter 8 when A =4, R =7 and
M = —5.

~10 05 0.0 05 10 -1.0 -05 0.0 05 1.0
y y

(a) Temperature profile against param-  (b) Temperature profile against param-
eter A\ using HPM solution. eter A using OAFM solution.

Figure 6. Comparison of HPM and OAFM solutions for Temperature profile against parameter A when R=2, M = —4
and 8 =04.

u

(a) Shear stress against parameter 8 (b) Shear stress against parameter (3
using HPM solution. using OAFM solution.

Figure 7. Shear stress on upper plate against parameter A when R = 0.3 and M = 3.
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(a) Velocity profile against parameter (b) Velocity profile against parameter
M using HPM solution. M using OAFM solution.

Figure 4. Comparison of HPM and OAFM solutiouns for velocity profile against parameter M when A =4, R = 8 and
B =6.

(a) Temperature profile against param- (b) Temperature profile against param-
eter M using HPM solution. eter M using OAFM solution.

Figure 5. Comparison of HPM and OAFM solutions for temperature distribution against parameter M when R=2,
A=0.6 and = 0.4.

(p)

(a) Shear stress against parameter R (b) Shear stress against parameter R
using HPM solution. using OAFM solution.

Figure 8. Shear stress on upper plate against parameter R when f =2 and M = 3.

0.2 04 0.6 08 1.0
v

0.0 0.2 04 0.6 08 1.0 0.0

(a) Shear stress against parameter 8 (b) Shear stress against parameter (3
using HPM solution. using OAFM solution.

Figure 9. Shear stress on lower plate against parameter A when f = 2 and R = 0.3.
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0.0 0.2 04 0.6 08 1.0
u u

(a) Shear stress against parameter R (b) Shear stress against parameter R
using HPM solution. using OAFM solution.

Figure 10. Shear stress on lower plate against parameter R when 8 =2 and M = 3.

~ R=04
0.97= R=03
- R=02
0.97 0.96{— R=0.1

1.0 12 14 16 18 20 1.0 12 14 16 18 20
B B

(a) Flow rate against parameter R us- (b) Flow rate against parameter R us-
ing HPM solution. ing OAFM solution.

Figure 11. Flow rate against parameter R at § =2 and M = 3.

0.710

- M=2.8
- M=2.8

0.604 (= M=2.6
- M=24
- M=2.2

0.700|= M=2.6
- M=24
0.708| = M=2.2

0.707 0.602
<] o

0.706

0.600
0.705

0.704
0.598

1.0 1.2 14 1.6 1.8 20 1.0 1.2 14 16 18 20
B B

(a) Flow rate against parameter M us- (b) Flow rate against parameter M us-
ing HPM solution. ing OAFM solution.

Figure 12. Flow rate against parameter M at 8 =2 and M = 3.

NUMERICAL RESULTS AND DISCUSSION

In this paper, we utilized the homotopy perturbation method (HPM) and optimal auxiliary function method
(OAFM) to investigate the couette flow of couple stress fluid under the influence of MHD. Different graphs are
plotted to see the effect of various parameters on the velocity and temperature distribution. The efficiency of
the proposed approaches are analyzed using different tables having the comparison of residual error obtained by
OAFM and HPM. In Figure (2),the velocity profile of the fluid is plotted using both approaches and found the
MHD parameter R has inverse relation with the velocity profle. Figure (3) show the comparison of HPM and
OAFM for the velocity u(y) against parameter 3. It reveals that 8 has directly relation with the velocity of fluid.
Figure (4) show the inverse relation between parameter M and velocity of the fluid u(y). Figure (5) show the
impact of parameter M on the temperature distributions. Figure (6) are plotted to see the effect of parameter A
on temperature distribution O(y) using OAFM and HPM solutions. The non-dimensional parameter A denotes
Brinkman number, which shows direct relation with the temperature distribution. Figure (7), (8) show the
behaviour of shear stress S on the upper plate against different parameters by using HPM and OAFM solutions.
Figure (9), (10) show the behaviour of shear stress S on the lower plate against different parameters by using
HPM and OAFM solutions. Figure (11), (12) demonstrates the effect of Parameters R and M on the flow rate
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using HPM and OAFM solutions. Table (1) and (2) represent the comparison of OAFM and HPM solutions
and their residual error for the Velocity profile and temperature distribution. These tables compare the results
obtained by both approaches for the different values of the independent variable y and parameters R, 3, M,
and A. Table (3)-(6) provides skin friction for different parameter using OAFM and HPM solutions and their
absolute differences. The range of residual error obtained by OAFM is -4 to -8 while the range of residual error
obtained by HPM is -8 to -16. It is observed that the HPM solution is batter than OAFM solution.

Table 1. Comparison of OAFM and HPM solutions for the velocity profile keeping M=0.00015,
A =0.0001 and R = 0.00002

y UOAFM UHPM Residual UOAFM Residual UHPM
-1.0 -2.5%x10~22 0 -1.6968x 106 1.47742x10716
-0.8 0.099999 0.099999 -1.3819x10~7 -1.2385x 10~ 11
-0.6 0.199999 0.199999 6.2748x10°7 -2.3714x 1011
-0.4 0.299998 0.299998 7.4888x10~7 -3.2990x 10~ 1
-0.2 0.399998 0.399998 4.1781x10°7 -3.9349%x 1011
0.0 0.499998 0.499998 -1.0522x10~7 -4.2116x 1011
0.2 0.599998 0.599998 -4.9810%x10~" -4.0874x10~11
0.4 0.699998 0.699998 -4.5993x10~7 -3.5525x 1011
0.6 0.799999 0.799999 7.50698x 108 -2.6355x 1011
0.8 0.899999 0.899999 5.25136x10~"7 -1.4098x 1011
1.0 1.0000 1.0000 -1.0300x 1076 -1.44731x 10716

Table 2. Comparison of OAFM and HPM solutions for temperature distribution keeping

R=0.00002, M=0.00015, 3 = 0.0003 and A = 0.0001

y Ooarm Oupm Residual Oparns Residual Oy pys
-1.0 -1.7x10~20 0.0000 2.5%x107° -3.1111x10~10
-0.8 0.100011 0.100004 2.51x107° 1.6381x10~?
-0.6 0.200023 0.200008 2.47%x107° 7.0229% 10~
-0.4 0.300034 0.30001 2.16x10° 1.4525%x10~8
-0.2 0.400045 0.400012 1.36x107° 2.2185x108
0.0 0.500054 0.500012 3.37x10~6 2.7758x108
0.2 0.600061 0.600012 -1x10-6 2.9209%x 1078
0.4 0.700061 0.70001 1.351x10~6 2.5357x1078
0.6 0.800051 0.800008 -6.2x107° 1.6653x10~8
0.8 0.900029 0.900004 6.4x107° 6.1074x107?
1.0 1.0000 1.0000 3.8x107% 3.5550x1010

Table 3. Comparison of Oparp (1) and Oppps(1) and their absolute difference keeping
£ = 0.00003, M = 0.000015 and R = 0.000002.

A @OAFM(l) ®HPM(1) Abs.difference

0 0.500825 0.5 8.25x1074
0.000015 0.500681 0.499996 6.8x107%
0.00003 0.500537 0.499993 5.45%x1074
0.000045 0.500394 0.499989 4.05x1074
0.00006 0.50025 0.499985 2.65x1074
0.000075 0.500106 0.499981 1.25x1074
0.00009 0.499962 0.499978 1.51x104
0.000105 0.499819 0.499974 1.55x10~*
0.00012 0.499675 0.49997 2.95x1074
0.000135 0.499531 0.499966 4.35x1074
0.00015 0.499387 0.499963 5.75x 1074
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Table 4. Comparison of ©Opaprp(—1) and Oy py(—1) and their absolute difference keeping
B =0.00003, M = 0.000015 and R = 0.000002.

A G)OAF]\/I(_l) @HP]\/I(_l) Abs.difference

0.000 0.499897 0.5000 1.03x104
0.000015 0.499921 0.500004 8.29x1075
0.00003 0.499945 0.500007 6.27x1075
0.000045 0.499969 0.500011 4.25x1075
0.00006 0.499993 0.500015 2.23x1075
0.000075 0.500017 0.500019 2.07x107°
0.00009 0.500041 0.500022 1.81x107°
0.000105 0.500065 0.500026 3.83x1075
0.00012 0.500089 0.50003 5.85x1075
0.000135 0.500112 0.500034 7.87x107°
0.00015 0.500136 0.500037 9.90x1075

Table 5. Comparison of Oparp (1) and Oy pp (1) and their absolute difference keeping
£ =0.00003, A = 0.000015 and R = 0.000002.

M @OAF]W(l) ®HPM(1) Abs.difference
0 0.500681 0.499996 6.85x1074
0.000025 0.500681 0.499996 6.85x10~*
0.00005 0.500681 0.499996 6.85x10~*
0.000075 0.500681 0.499996 6.85x10~%
0.0001 0.500681 0.499996 6.85x10~4
0.000125 0.500681 0.499996 6.85x1074
0.00015 0.500681 0.499996 6.85x10~*
0.000175 0.500681 0.499996 6.85x10~*
0.0002 0.500681 0.499996 6.85x10~%
0.000225 0.500681 0.499996 6.85x10~4
0.00025 0.500681 0.499996 6.85x1074

Table 6. Comparison of Opsry(—1) and Oxpy(—1) and their absolute difference keeping
£ =0.00003, A = 0.000015 and R = 0.000002.

M GOAFM(_l) @HPM(—l) Abs.difference

0 0.499921 0.500004 8.29x1075
0.000015 0.499921 0.500004 8.29x107°
0.00003 0.499921 0.500004 8.29x1075
0.000045 0.499921 0.500004 8.29x1075
0.00006 0.499921 0.500004 8.29x1075
0.000075 0.499921 0.500004 8.29x1075
0.00009 0.499921 0.500004 8.29x1075
0.000105 0.499921 0.500004 8.29x107°
0.00012 0.499921 0.500004 8.29x1075
0.000135 0.499921 0.500004 8.29x1075
0.00015 0.499921 0.500004 8.29x1075

CONCLUSIONS

In this paper, plane couette flow of a couple stress fluid under the influence of magnetohydrodynamics
(MHD) using Reynolds model of viscosity has been explored by employing two reliable techniques. The governing
equation of the couple stress fluid under the influence of MHD are solved using Homotpoy Perturbation method
(HPM) and Optimal Auxiliary Function Method (OAFM). The HPM is an analytical method that employs a
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series solution with a parameter to approximate the solution of the problem. On the other hand, the OAFM
is a numerical technique that involves introducing an auxiliary function to simplify the equations, leading to
an easier solution procedure and gives an efficient solution after two steps. Furthermore the effect of non-
dimensional parameters on velocity profile, temperature distribution, shear stresses and flow rate are analysed.
The HPM solution and OAFM solution are compared to each other using different graphs and tables involving
residual error. It reveals that the HPM solution is more efficient and accurate than OAFM solution. Finally we
conclude that both approaches have the capability to solve highly non linear differential equations and physical
models.
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IMOPIBHSIJIbBHUM AHAJII3 IIJIOCKOI TEYIi KYETTA IIAPHO HAIIPVKEHOI
PIAVHMN IIId BIIJIMBOM MATHITOT'TAPOANMHAMIKN
Myxammag @apyk?, I6pap Xan?, Pammyg Hasas?, Tamans Moxamesn Iemain®, Xyszaiicdpa Ymap?,
Ximkas Axmang®d-e
® Qaxyavmem mamemamuru, Yuieepcumem A6dyasa Baai Xana, Mapdan 23200, Haxucmar
®UniSa STEM, Ywisepcumem ITiedennoi Aecmpanii
¢ Tenapmamenm mamemamuru, Paxysomem npupodnuwux nayx, Icaamevkuid ynisepcumem Medinu,
Medina, Caydiscvra Apasisn
¢ Bausvroczionut ywisepcumem, Llenmp onepamuenus docaidocenn y cfepi ozoporu 300pos s,
Bausvkoczionut 6yaveap, IIK: 99138 Hixocia/Mepcin 10, Typeuuwuna
¢ enapmamenm mamemamuru, A3sepbaidocancorutl yrisepcumems,
eya. Hocetzyn Tadorcubetini, 71, AZ1007, Baxy, Asepbatioocan

Ile mocnimkenns Mae Ha MeTiI BUKOHATH IIOPIBHSA/IBHAN aHAI3 IIOCKOro moToKy Kyerra mapHol Hanpy keHol piauHm misg
BIIMBOM MaraiTorinpoamaamikm (MI'/]) 3a m0MOMOTO0 ABOX PI3HUX METOMIB: METOMY ONTHUMAJBHOI JOMOMIKHOI (yH-
kuii (OAFM) i meromy romoroniunux 36ypens (HPM). Pinuna napHux HanpyskKeHb BigoMa CBOEIO HEHBIOTOHIBCHKOIO
[OBEJIHKOIO, /i€ PeakKlis PIIMHU Ha 3CYB 3aJI€KUThb Bij HagBHOCTI BHYTpimHboi Mikpocrpykrypu. OAFM i HPM Bu-
KOPHUCTOBYIOTHCS JIJIsi PO3B'si3aHHs KePiBHUX DIBHAHB Teuil pizamum mapHux Hanpyr mig MTI. OAFM — ne uncesnbHwmit
MeTO/I, KW TIepeadadae BBeAeHHs JOMOMIXKHOI (DYHKITIT /TSt CIIPOIIEHHS PiBHSAHB, MO CIIPOIILYE MPOIEIy Py PO3B’ A3aHHS.
3 inmoro 6oky, HPM — ne anasiituanuil Meroj, skuil BAKOPUCTOBYE 1OCJ110BHe pimienus. [lopiBHsibHUI aHai3 30ce-
PEIKYETHCST HA, BUBYEHHI TOYHOCTI, €(peKTUBHOCTI Ta TOBEIIHKN 301:KHOCTI ABOX METOMIB. [l MOC/IIZKEHHS X BILTUBY
Ha TOBEIHKY MOTOKY PO3IISA0OTHCS Pi3HI MapaMeTpH MOTOKY, TaKi SK MapaMeTp HAIPYTH [Taph, MATHITHUN mTapaMeTp
i cuiBBignomenns msuikocreil. Kpim roro, pimenns HPM nopisuoBamu 3 pimennsm OAFM 3a gonomoroo piznux
rpadikis i Tabsmip. e BusgBwmIo, mo pimenns, orpumane HPM, € kpamum, ik pimenns OAFM.

Kuro4oBi cioBa: napho nanpyoicena piouna; memod onmumasvroi donomiotcrnoi gynwuii (OAFM); memod 2omomoni-
wnux 36ypensy (HPM); maznimoziopodunamixa (MHD)
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