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In this paper, the Crank-Nicholson method is applied to solve the one-dimensional nonlinear Burgers’ equation in warm,
dusty plasmas with dust charge variation. After obtaining numerical results, a thorough analysis is conducted and
compared against analytical solutions. On the basis of the comparison, it is evident that the numerical results obtained
from the analysis are in good agreement with the analytical solution. The error between the analytical and numerical
solutions of the Burgers’ equation is calculated by two error norms, namely L2 and Lo. A Von-Neumann stability
analysis is performed on the present method, and it is found to be unconditionally stable according to the Von-Neumann
analysis.
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1. INTRODUCTION

Many real-life problems are represented by nonlinear partial differential equations, including plasma
physics, acoustics, fluid mechanics, etc. One notable model equation is the nonlinear Burgers’ equation, initially
introduced by Bateman [1] and later recognized as a mathematical model for turbulence by Johannes Martinus
Burgers [2]. The Burgers’ equation is a partial differential equation that is used as a simplified version of the
Navier-Stokes equation [3]. The Burgers’ equation is a combination of convection and diffusion terms and has
the same nonlinear and dissipative terms as the Navier-Stokes equation. This equation is primarily used for
studying turbulence and shock wave theory in the context of nonlinear and dissipative phenomena. Burgers’
equation in dusty plasmas that describes the nonlinear phenomenon of the shock structure formation on the
acoustic wave originating from dust charge fluctuation dynamics.

The study of dusty plasmas, characterized by the presence of charged microparticles suspended in a plasma
medium, has garnered significant attention in both experimental and theoretical research in recent years be-
cause dusty plasma plays an important role in studying the different types collective process in space environ-
ment,namely lower and upper mesosphere, radiofrequency, plasma discharge, planetary rings, plasma crystals,
commentary tail, asteroid zones, planetary magnetosphere, interplanetary spaces, interstellar medium, earth’s
environment etc. [4, 5]. A dusty plasma is characterised by intense interactions between the dust particles
and the nearby plasma species, which have a significant influence on plasma behaviour. Charged dust particles
influence not only the equilibrium and stability of the plasma system but also exhibit fascinating dynamical
properties, such as dust acoustic waves, dust ion-acoustic waves, and dust cyclotron waves. These waves have
the potential to have a significant impact on the overall dynamics of a plasma due to the collective behaviour
of dust particles. The Burgers’ equation, which includes the effects of both convection and diffusion, is one of
the fundamental equations used to describe the dynamics of dusty plasmas [6]. Researchers have been greatly
interested in this equation since it was first presented because of its many practical applications, including
gas dynamics, shock theory, traffic flows, viscous flow, and turbulence. Over the past few decades, numerous
numerical methods have been developed and applied for solving Burgers’ equation [7, 8, 9, 10, 11, 12, 13, 14].
These methods include finite element methods, finite difference methods, least-squares finite element methods,
and spectral methods.

The Burgers’ equation was studied by Wei and Gu in 2002, and they employed the Conjugate Filter
Approach as a method for solving the equation [15]. Additionally, N.A. Mohamed [16] introduced new fully
implicit schemes for solving the unsteady one-dimensional and two-dimensional equations. Singh and Gupta [17]
have developed a new fourth order modified cubic B-spline (mCB) based upon collocation technique (mCBCT4)
to determine approximate solution of Burgers’ equation. Yusuf et al. [18] applied finite element collocation
method with strang splitting to finding exact solutions of Burgers’ type equation. Xu et al. [19] proposed a
novel numerical scheme to solve Burgers’ equation. Inan and Bahadir [20], developed implicit and fully implicit
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exponential finite difference methods for numerical solution of the one-dimensional Burgers’ equation. Inan and
Bahadir [21] solved Burgers’ equation numerically using a Crank-Nicolson exponential finite difference method.
Mittal and Jain [22] have implemented modified cubic B-splines collocation method to solve nonlinear Burgers’
equation.Wani and Thakar [23] developed a modified Crank-Nicolson type method for numerical solution of
Burgers’ equation. Mohamed [24] provided a new numerical scheme based on the finite difference method for
solving the nonlinear one-dimensional Burgers’ equation.

Yaghoobi and Najafi [25] constructed implicit non-standard finite difference scheme for solving the nonlinear
Burgers’ equation. An efficient numerical solution based on Milne method was presented in [26]. Shallal et al. [27]
solved Burgers’ Equation by a cubic Hermite finite element method. A numerical technique is formulated for
solving the coupled viscous Burgers’ equation (CVBE) by employing cubic B-spline and the Hermite formula [28].
Hussain [29] introduces a hybrid radial basis function (HRBF) approach for the numerical solution of the quasi-
linear viscous Burgers’ equation.

In this research article, the Crank-Nicholson method is applied to solve the Burgers’ equation in warm
dusty plasmas, taking dust charge fluctuations into account. The Crank-Nicholson method, a finite difference-
based scheme, provides a robust and accurate numerical approach by employing an implicit midpoint rule, which
combines the advantages of explicit and implicit schemes. This approach surpasses other numerical techniques
in terms of precision.The behavior of plasma can be significantly impacted by the fluctuating charge levels of
dust particles. Therefore, the inclusion of dust charge variation is crucial. The numerical method described in
this paper aims to provide a comprehensive analysis of the influence of varying dust charge on the behavior of
nonlinear waves and shock structures in dusty plasmas.

The manuscript is organized as follows: In Section 2, we introduce the governing equations for dusty
plasmas with variable dust charge, and it provides a detailed discussion on the derivation of Burgers’ equation
within the context of dusty plasmas. In Section 3, we provide an overview of the Crank-Nicolson method used
for the solution of the equation. Section 4 presents the stability analysis of the technique. In Section 5, we
present the results and discussions, wherein we analyze the numerical solutions obtained and thoroughly discuss
their implications.

2. BASIC EQUATIONS AND DERIVATION OF BURGERS’ EQUATION

The fundamental equations governing the behavior of dust-charged grains in a fluid description consist of
the equations of continuity and momentum, which can be expressed as follows[30]:

% + % (nava) = (1)
OO a0 @)
i 0y 3,2 g (3)
The Poisson’s equation is given as
22715 = zgMg+ (1 = N)ne —n; (4)

The distribution of electron and ion density can be characterized using a Boltzmann distribution, that is.
Ne = Negexp (1) (5)

ni = nigexp (=) (6)

In the given context, where ng, ne, n;, v4, pa, ¥, , and t represent the dust particle number density,
electron number density, ion number density, dust fluid velocity, dust fluid pressure, electrostatic potential,
spatial variable, and time, respectively, and they are normalized by ng, (unperturbed dust particle number
densir‘lcy), Ne, (unperturbed electron particle number density), and n;, (unperturbed ion particle number density);

d,

mg , 8= %, and ¢g = %, where Ty, T,, and T; are the temperatures for dust, electron, and ion. A\g is the

1
zandgeA+3saKpTeq\ 2 . _
iad with ¢ = (1 — A) ne, + Bnig,

and Kp, myg, and z4 being the Boltzmann constant, dust acoustic mass, and charged number of dust particles.
pq is the pressure normalized to ngq, K pTy; 1 is the electrostatic wave potential normalized by (%), with e

fluid velocity normalized to the dust acoustic speed Cy =

3
being the electron charge; the spatial variable is normalized to the dust Debye length ¥4 = (m) ,
do\*d
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and the time variable is normalized to the dust period = dl = (

normalized quantity given by wpm92 mang,.
The plasma system maintains overall charge neutrality through the following relationship:

z2gAng, + (1 — X) ney = 1y, (7)
The following stretched coordinates are taken into consideration in order to obtain the Burgers’ equation:
X =p(x—0t);¢=p* (8)

Here, ¥ represents the phase velocity of the wave along the x direction, normalized by the acoustic velocity,
while p serves as a dimensionless expansion parameter, quantifying the strength of dispersion.
The equation of Burgers is formulated in [30] as:

IS
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where
A= 2 {9715, — (1= A ney } (9 = 36a) = 3 (92 + <a) {(1 = N) mey + B} 10
- 202420 {(1 = N) ney + By b 1
and ¢
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Employing the tanh-method [31], the solution for the shock wave is derived as

(X C) = Ym {1 — tanh (g) } (12)

Where Q = x — Mt 4, = % and T = % The variables v, and T represent the amplitude and width of the
shock waves, respectively, while M denotes the Mach number. The profile of the shock wave is influenced by

the nonlinearity coefficient A and dissipation coefficient C, both of which are functions of plasma parameters.

3. CRANK-NICOLSON METHOD

Section 2 introduces the derivation of the Burgers equation within the context of dusty plasmas, considering
variations in dust charge, and presents the solution for shock waves. Here, we proceed to apply the Crank-
Nicholson method to solve the derived Burgers equation.The Crank-Nicolson method, proposed by Crank and
Nicolson [24], is a numerical scheme and is a combination of the forward Euler method and the backward
Euler method, which provides improved accuracy and stability. We simplify the equation 9 by introducing the
transformations ! (x,¢) = u (x,t) = uy j+ = u; ; The equation 9 can be expressed as

Ly aut = (13)

Let us consider the discretization of the Burgers’ equation by using the Crank-Nicholson method:

ou Ui4-1,54+1 — Ui—1,5+1 Ui41,5 — Ui—1,5
i, : ’ ’ 14
ox 2h + 2h (14)
@ _ Wit1541 T 2041 + Uim1j41 T Uigl,j — 2Uij + Ui—1,5 (15)
0z 2h2 2h2
ou Uj,j4+1 — Usj
OV s LY A 16
ot k (16)
Now substituting eqs (26)-(28) into eq (25), we obtain
Wil ~ %ig Aum(ui“’j*l —Uislgel | Uit~ Uiolg)
k 2h 2h (17)
_ oYttt = Qi+ Wiy | Wiy 2t Uizl y
2h2 2h2
Let a = QCT’Z,T = Q—f,the equation (29) will become
(14 2a) ujjp1 — a(ui—1j41 + wig1,5-1) = (1= 2a) wij + a(ui-1,; + wiv1,5) (18)

=7 (Ui (Wit 1,541 = Wie1,41) + Wi g (Uig1,j — Uie1,5)]
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4. STABILITY ANALYSIS OF THE CRANK-NICHOLSON METHOD
The stability analysis was developed by the mid-twentieth century Hungarian mathematician and father
of the electronic computer John von Neumann. The Von Neumann stability theory in which the growth factor
of a Fourier mode is defined as

w ;= gjefkhi _ fjeIOi (19)

Where I = /-1 ,¢7 is the amplitude at time level k is the wave number and h = Az. To investigate the

stability of the numerical scheme, the Burgers’ equation has been linearized by ignoring the nonlinear term

and then obtained the differential equation by applying the Crank-Nicholson method to the linearized Burgers’
equation. The linearized Burgers’ equation is given as below:
ou 0%u

Applying the Crank-Nicolson method to equation 20, we get
(L +2a) ui g1 — a(wimy a1 + Uigr 1) = (L= 20) w5 + a (wio1j + tig15) (21)
Substitute 19 in 21, we get

(1 + 2&) é—jeleig —a (é—jeIQige—IG +£j6197;5619) _ (1 o 2@) gjefei +a (gjeIeie—Ie +£j610i616) (22)

(1+2a)¢—a(e ™+ €)= (1—2a) +a(e ' +e'f (23)
(14 2a)& — aécosh = (1 — 2a) + acosb (24)

1 —2a + acost
&= 1+ 2a — acos (25)

Where the quantity ¢ in equation 19 is called the amplification factor. Since 0 < cosff < 1 When cosf = 0, =

hgg < 1 When cosf = 1, = };ggf; = %;—g < 1 Hence, ¢ < 1 is always satisfied for any value of a where 1 is

the upper limit for £.For stability, we must have |{| < 1,which means —1 < ¢ < 1. Now, we consider the lower
limit for &.

-1<¢ (26)

S T et @
—1(1+2a — acost) < 1 — 2a+ acosd (28)
acos — 1 —2a <1 — 2a + acosb (29)
1-2<1-2a (30)

20 —2a<1+1 (31)

0 < 2 which is always true.
It implies that the lower limit for £ is satisfied for any value of a. Thus the Crank-Nicholson method is
unconditionally stable according to the linear analysis.

5. RESULTS AND DISCUSSION
The analytical solution 12 can be rewritten as ,

u(z,t) = % {1 - tanh% (x — Mt)} (32)

To proceed the numerical solution of Burgers’ equation,we consider the initial condition as

M Mx
and the boundary conditions
M M?t
M M
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Due to the dependence of the nonlinear coefficient A and dissipation coefficient C on different plasma
parameters, we have considered a range of values for A and C, corresponding to the various plasma parameters.
The validity of the present technique is evaluated using the absolute error which is defined by

Analytical i
u nalytical ui\fumerzcal (36)

Also,Ly and Lo, error norms, defined by

N
— analytical numerical
Ly=|n Y |uf — (37)
j=1
lytical i
Loo = mazx U,?na yticat u?umemcal (38)

are presented graphically for various values of nonlinear coefficient and dissipation coefficient for chosen space
and time steps to check the accuracy and effectiveness of the method.

Numerical Solution at A=1.0,C=0.01 Analytical Solution A=1.0,C=0.01 Numerical Solution at A=2.0,C=0.05 Analytical Solution at A=2.0,C=0.05

1 1 0.3 0.6
s = ’__02 __‘04
£ 95 s % %
= . 5041 4l
0 0 1]
1 1 1 1
1 1 1 1
0:5 0.5 9.5 0.5 0:a 0.5 9.3 0.5
X ] ¢ X 00 t X ] ¢ X 00 t

Numerical Solution at A=3.0,C=0.1 Analytical Solution at A=3.0,C=0.1 Numerical Solution at A=3.0,C=0.5 Analytical Solution at A=3.0,C=0.5

012 0.15
= = 01 = :
X X 2 01 \
=1 = : E]
0.08 _
0.05
1 1
1 /1
05 = 0.5 P
X 00 t X 0o t

Figure 1. Comparison of Analytical and numerical solution of Burgers’ equation at various values of A and C.

The comparison between the analytical and numerical solutions of the Burgers’ equation in dusty plasma
using the Crank-Nicholson method has been presented in Figure 1. It has been observed that the numerical
solution obtained through the Crank-Nicholson method demonstrates good agreement with the analytical solu-
tion. The figure clearly illustrates that the presence of shock wave structures is observed when the dissipation
coefficient is reduced to a smaller value. As C becomes larger, the diffusive behavior becomes more prominent
and suppress the formation of shocks and maintain a more diffusive behavior. The wavefronts become smoother
and propagate slower as C increases. When the nonlinear coefficient (A) is increased, the advection term becomes
dominant, leading to the formation of steep gradients and shock waves in the solution.



Numerical Approach to Burgers’ Equation in Dusty Plasmas with Dust Charge...

69
EEJP.2(2024)

Table 1. Absolute error between the numerical and analytical values at A = 1.0, C = 0.01

X t | Numerical value | Analytical value | Absolute error

0 0 0.5000 1.0000 0.5000
0.1 | 0.1 0.071419 1.0000 0.9286
0.2 | 0.2 0.022251 1.0000 0.9777
0.3 | 0.3 0.0059356 0.99995 0.9940
0.4 | 04 0.0011129 0.99331 0.9922
0.5 | 0.5 0.0001371 0.5000 0.4999
0.6 | 0.6 1.0961e-05 0.0066929 0.0067
0.7 | 0.7 5.7353e-07 4.5398e-05 4.4824e-05
0.8 | 0.8 1.9973e-08 3.059e-07 2.8593e-07
0.9 | 0.9 4.7392e-10 2.0612e-09 1.5872e-09
1.0 | 1.0 0.0 1.3888e-11 1.3888e-11
Lo 0.442952
Lo 0.996807

Table 2. Absolute error between the numerical and analytical values at A = 2.0, C = 0.05

X t | Numerical value | Analytical value | Absolute error

0 0.25 0.49665 0.2467
0.1 | 0.1 0.12951 0.49101 0.3615
0.2 | 0.2 0.075079 0.47629 0.4012
0.3 0.3 0.047618 0.4404 0.3928
04 | 04 0.030846 0.36553 0.3347
0.5 ] 0.5 0.019766 0.25 0.2302
0.6 | 0.6 0.012283 0.13447 0.1222
0.7 { 0.7 0.0072688 0.059601 0.0523
0.8 | 0.8 0.0039561 0.023713 0.0198
09 | 0.9 0.0017256 0.0089931 0.0073
1.0 | 1.0 2.2699e-05 0.0033464 0.0033
Lo 0.155768
Lo 0.403353

Table 3. Absolute error between the numerical and analytical values at A = 3.0, C = 0.1

X t | Numerical value | Analytical value | Absolute error

0 0.16667 0.30805 0.1414
0.1 | 0.1 0.11332 0.2936 0.1803
0.2 | 0.2 0.079198 0.27252 0.1933
0.3 | 0.3 0.0585 0.24369 0.1852
0.4 | 04 0.044279 0.20749 0.1632
0.5 | 0.5 0.033691 0.16667 0.1330
0.6 | 0.6 0.025343 0.12585 0.1005
0.7 | 0.7 0.018454 0.089647 0.0712
0.8 | 0.8 0.012529 0.060809 0.0483
0.9 | 0.9 0.0072105 0.039734 0.0325
1.0 | 1.0 0.002231 0.025286 0.0231
Lo 0.077955
Lo 0.193327
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Table 4. Absolute error between the numerical and analytical values at A = 4.0, C = 0.5

X t | Numerical value | Analytical value | Absolute error
0 0 0.125 0.15561 0.0306
0.1 | 0.1 0.11556 0.14967 0.0341
0.2 | 0.2 0.1064 0.14361 0.0372
0.3 | 0.3 0.098681 0.13746 0.0388
04 | 04 0.09209 0.13124 0.0392
0.5 | 0.5 0.0864 0.125 0.0386
0.6 | 0.6 0.081442 0.11876 0.0373
0.7 | 0.7 0.077087 0.11254 0.0355
0.8 | 0.8 0.073233 0.10639 0.0332
0.9 | 09 0.069802 0.10033 0.0305
1.0 | 1.0 0.067235 0.094385 0.0271
Lo 0.021960
Lo 0.039163
A=1,C=0.01 A=1,C=0.01 A=2C=0.05 A=2C=0.05
0.8 1 0.3 0.5
0.8 B.25 0.4
0.6
— 0-2 —_
“E- o 06 E g 0.3
0 04 w 0 0.15 w
" 04 o 02
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0 0.5 1 0 0.5 1 0 0.5 1 0 0.5 1
Time (t) Time (t) Time (t) Time (t)
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5 o 5 2
w W01 W 0.02 W 0.02
o s o P
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Figure 2. L, and L., error norms at various values of A and C.

It has been observed from the Table 1-4 and Figure 2 that the value of Ly and L., decrease as the value
nonlinear coefficient A and the dissipation coefficient C increases. As it is seen from the Table 1-4, the error
norms L and L, are sufficiently small and satisfactorily acceptable. A decreasing trend in the Ly and L, error
norm as the mesh size or time step is refined indicates improved accuracy and convergence of the numerical
scheme. A lower Ly and L, error norm indicates better accuracy and convergence of the numerical scheme.
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Figure 3. Numerical solutions at different times for (a) A = 1,C = 0.01,(b)A = 2,C = 0.05,(c) A =3,C =0.1
and (d)A=4,C=0.5.

The graphs of the numerical solution at different times for increasing values of the nonlinear coefficient
will show more pronounced changes in the solution profile, with sharper transitions and larger gradients.The
graphs of the numerical solution at different times for increasing values of the dissipation coefficient will exhibit
smoother profiles with reduced oscillations and less pronounced sharp transitions.

6. CONCLUSION

In this study, one dimensional Burgers’ equation is numerically solved using the Crank-Nicholson method
and the behavior of shock wave profiles are investigated in warm dusty plasmas considering dust charge variation.
The graphs of the numerical results are plotted to compare with the analytical results and it is clear from the
comparison that the graphs of numerical results are close with the results obtained by analytically and better
than numerical solutions obtained by some other methods in literature. The propagation of the shock waves
for various values of nonlinear coefficient and dissipation coefficient have been observed and it is found that
the wave front become more sharper as the dissipation coefficient decreases. The absolute error is computed
for checking the accuracy and efficiency of the present technique. From the study, it has been noted that the
accuracy and efficiency of the technique depends on the value of dissipation coefficient and the result will get
better when the dissipation coefficient takes smaller value.

ORCID

Harekrishna Deka, https://orcid.org/0000-0003-4280-3728; © Jnanjyoti Sarma, https://orcid.
org/0000-0002-0793-5680

REFERENCES

[1] H. Bateman, ”Some recent researches on the motion of fluids,” Monthly Weather Review, 43, 163-170 (1915).
https://doi.org/10.1175/1520-0493(1915)43%3C163: SRROTM/,3E2.0.C0;2


https://orcid.org/0000-0003-4280-3728
https://orcid.org/0000-0002-0793-5680
https://orcid.org/0000-0002-0793-5680
https://doi.org/10.1175/1520-0493(1915)43%3C163:SRROTM%3E2.0.CO;2

72
EEJP.2(2024) Harekrishna Deka, et al.

2]

3]

[4]

J.M. Burgers, ”Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion,” in
Selected Papers of J.M. Burgers, edited by F.T.M Nieuwstadt, and J.A. Steketee, (Springer Science + Business
Mwdia, B.V., Netherlands, 1995). pp. 281-334. https://doi.org/10.1007/978-94-011-0195-0_10

S. Dhawan, S. Kapoor, S. Kumar, and S. Rawat, ” Contemporary review of techniques for the solution of nonlinear
Burgers equation,” Journal of Computational Science, 3, 405-419 (2012). https://doi.org/10.1016/j.jocs.2012.
06.003

M. Hordnyi, ”Charged dust dynamics in the solar system,” Annual review of astronomy and astrophysics, 34,
383-418 (1996). https://doi.org/10.1146/annurev.astro.34.1.383

M. Horanyi, and D.A. Mendis, ”The dynamics of charged dust in the tail of comet Giacobini Zinner,” Journal of
Geophysical Research: Space Physics, 91, 355-361 (1986). https://doi.org/10.1029/JA091iA01p00355

B.P. Pandey, ” Thermodynamics of a dusty plasma,” Physical Review E, 69, 026410 (2004). https://doi.org/10.
1103/PhysRevE.69.026410

J. Caldwell, P. Caldwell, and A.E. Cook, A finite element approach to Burgers’ equation,” Applied Mathematical
Modelling, 5, 189-193 (1981). https://doi.org/10.1016/0307-904X (81)90043-3

N. Bressan, and A. Quarteroni, ” An implicit/explicit spectral method for Burgers’ equation,” Calcolo, 23, 265-284
(1986). https://doi.org/10.1007/BF02576532

S. Kutluay, A.R. Bahadir, and A. Ozdes, ”Numerical solution of one-dimensional Burgers equation: explicit and
exact-explicit finite difference methods,” Journal of computational and applied mathematics, 108, 251-261 (1999).
(https://doi.org/10.1016/S0377-0427(98)00261-1)

T. Ozig, EN. Aksan, and A. Ozdes, A finite element approach for solution of Burgers’ equation,” Journal of
computational and applied mathematics, 139, 417-428 (2003). https://doi.org/10.1016/50096-3003(02)00204-7

Y. Duan, and R. Liu, ”Lattice Boltzmann model for two-dimensional unsteady Burgers’ equation,” Journal of
Computational and Applied Mathematics, 206, 432-439 (2007). https://doi.org/10.1016/j.cam.2006.08.002

M.M. Cecchi, R. Nociforo, and P.P. Grego, ”Space-time finite elements numerical solutions of Burgers Problems,”
Le Matematiche, 51, 43-57 (1996). https://lematematiche.dmi.unict.it/index.php/lematematiche/article/
view/425/398

I.A. Hassanien, A.A. Salama, and H.A. Hosham, ”Fourth-order finite difference method for solving Burgers’ equa-
tion,” Applied Mathematics and Computation, 170, 781-800 (2005). https://doi.org/10.1016/j.amc.2004.12.
052

J. Zhao, H. Li, Z. Fang, and X. Bai, ”Numerical solution of Burgers’ equation based on mixed finite volume
element methods,” Discrete dynamics in nature and society, 2020, 6321209 (2020). https://doi.org/10.1155/
2020/6321209

G.W. Wei, and Y. Gu, ”"Conjugate filter approach for solving Burgers’ equation,” Journal of Computational and
Applied mathematics, 149, 439-456 (2002). https://doi.org/10.1016/S0377-0427(02)00488-0

N.A. Mohamed, ”Solving one-and two-dimensional unsteady Burgers’ equation using fully implicit finite difference
schemes,” Arab Journal of Basic and Applied Sciences, 26, 254-268 (2019). https://doi.org/10.1080/25765299.
2019.1613746

B.K. Singh, and M. Gupta, ” A new efficient fourth order collocation scheme for solving Burgers’ equation,” Applied
Mathematics and Computation, 399, 126011 (2021). https://doi.org/10.1016/j.amc.2021.126011

Y. Ucgar, M. Yagmurlu, and I. Celikkaya, ”Numerical solution of Burger’s type equation using finite element
collocation method with strang splitting,” Mathematical Sciences and Applications E-Notes, 8, 29-45 (2009).
https://doi.org/10.36753/mathenot.598635

M. Xu, R.H. Wang, J.H. Zhang, and Q. Fang, ” A novel numerical scheme for solving Burgers’ equation,” Applied
mathematics and computation,” 217, 4473-4482 (2011). https://doi.org/10.1016/j.amc.2010.10.050

B. Inan, and A.R. Bahadir, ”Numerical solution of the one-dimensional Burgers’ equation: Implicit and
fully implicit exponential finite difference methods,” Pramana, 81, 547-556 (2013). https://doi.org/10.1007/
512043-013-0599-z

B. Inan, and A.R. Bahadir, ” A numerical solution of the Burgers’ equation using a Crank-Nicolson exponential
finite difference method,” Math. Comput. Sci. 4, 849-860 (2014). https://scik.org/index.php/jmcs/article/
download/1853/984

R.C. Mittal, and R.K. Jain, ”Numerical solutions of nonlinear Burgers’ equation with modified cubic B-splines
collocation method,” Applied Mathematics and Computation, 218, 7839-7855 (2012). https://doi.org/10.1016/
j.amc.2012.01.059

S.S. Wani, and S.H. Thakar, ” Crank-Nicolson type method for Burgers’ equation,” International Journal of Applied
Physics and Mathematics, 3, 324-328 (2013). https://doi.org/10.7763/IJAPM.2013.V3.230

N.A. Mohamed, ”Fully implicit scheme for solving Burgers’ equation based on finite difference method,” The Egyp-
tian International Journal of Engineering Sciences and Technology, 26, 38-44 (2018).


https://doi.org/10.1007/978-94-011-0195-0_10
https://doi.org/10.1016/j.jocs.2012.06.003
https://doi.org/10.1016/j.jocs.2012.06.003
https://doi.org/10.1146/annurev.astro.34.1.383
https://doi.org/10.1029/JA091iA01p00355
https://doi.org/10.1103/PhysRevE.69.026410
https://doi.org/10.1103/PhysRevE.69.026410
https://doi.org/10.1016/0307-904X(81)90043-3
https://doi.org/10.1007/BF02576532
(
https://doi.org/10.1016/S0096-3003(02)00204-7
https://doi.org/10.1016/j.cam.2006.08.002
https://lematematiche.dmi.unict.it/index.php/lematematiche/article/view/425/398
https://lematematiche.dmi.unict.it/index.php/lematematiche/article/view/425/398
https://doi.org/10.1016/j.amc.2004.12.052
https://doi.org/10.1016/j.amc.2004.12.052
https://doi.org/10.1155/2020/6321209
https://doi.org/10.1155/2020/6321209
https://doi.org/10.1016/S0377-0427(02)00488-0
https://doi.org/10.1080/25765299.2019.1613746
https://doi.org/10.1080/25765299.2019.1613746
https://doi.org/10.1016/j.amc.2021.126011
https://doi.org/10.36753/mathenot.598635
https://doi.org/10.1016/j.amc.2010.10.050
https://doi.org/10.1007/s12043-013-0599-z
https://doi.org/10.1007/s12043-013-0599-z
https://scik.org/index.php/jmcs/article/download/1853/984
https://scik.org/index.php/jmcs/article/download/1853/984
https://doi.org/10.1016/j.amc.2012.01.059
https://doi.org/10.1016/j.amc.2012.01.059
https://doi.org/10.7763/IJAPM.2013.V3.230

73
Numerical Approach to Burgers’ Equation in Dusty Plasmas with Dust Charge... EEJP.2(2024)

[25] A. Yaghoobi, and H.S. Najafi, A fully implicit non-standard finite difference scheme for one dimensional Burgers’
equation,” Journal of Applied Research on Industrial Engineering, 7, 301-312 (2020). https://doi.org/10.22105/
jarie.2021.244715.1188

[26] S. Chonladed, and K. Wuttanachamsri, ” A numerical solution of Burger’s equation based on milne method,” TAENG
International Journal of Applied Mathematics, 51, 411-415 (2021). https://www.iaeng.org/IJAM/issues_v51/
issue_2/IJAM_51_2_20.pdf

[27] M.A. Shallal, A.H. Taqi, B.F. Jumaa, H. Rezazadeh, and M. Inc, ”Numerical solutions to the 1D Burgers’ equation
by a cubic Hermite finite element method,” Indian J. Phys, 96, 3831-3836 (2022). https://doi.org/10.1007/
s12648-022-02304-4

[28] M. Abdullah, M.Yaseen, and M. De la Sen, ”Numerical simulation of the coupled viscous Burgers equation using
the Hermite formula and cubic B-spline basis functions,” Phys. Scr. 95, 115216 (2020). https://doi.org/10.1088/
1402-4896/abbf1f

[29] M. Hussain, ”Hybrid radial basis function methods of lines for the numerical solution of viscous Burgers’ equation,”
Computational and Applied Mathematics, 40, 107-156 (2021). https://doi.org/10.1007/s40314-021-01505-7

[30] J. Sarma, and A.N. Dev, "Dust acoustic waves in warm dusty plasmas,” Indian Journal of Pure & Applied Physics,
52, 747-754 (2014). https://nopr.niscpr.res.in/bitstream/123456789/29598/1/IJPAPY2052(11)%20747-754.
pdf

[31] G.C. Das, C.B. Dwivedi, M. Talukdar, and J. Sarma, ” A new mathematical approach for shock-wave solution in a
dusty plasma,” Physics of Plasmas, 4, 4236-4239 (1997). https://doi.org/10.1063/1.872586

YN CEJIbHUN IIIAX1A 10 PIBHAHHA BIOPTEPCA B 3AIINJIEHIN I1JIA3MI
31 SMIHOIO BAPAOY IINJIY
Xapekpimma deka?, JTxuangkbori Capma
*K.K. Jeporcasnuti eidxpumut ynisepcumem Xandixi, Xananapa, I'yeaxami, 781022, Indis
®Koaedow P.I. Bapya, Pamacun Ambapi, lysazami, 781025, India
Y miit craTTi 3acrocoBano metron Kpenka-Hikoncona /s BupinmeHHs OJHOBUMIPHOTO HeJHINHOTO piBHAHHA Bioprepca B
TeruIiil 3amoporeniil mra3mi 31 3MiHOIO 3apsamy nwity. [IpoBemerHo aHasi3 OTPUMAHUX YUCETHLHAX PE3Y/IbTATIB Ta MTOPIBHI-
HHSI 3 aHAJIITHIHUME pe3yabraTaMu. Ha OCHOBI HODIBHAHHS OYEBHUIHO, IO YHC/IOBI Pe3yIbTaTH, OTPUMAHI B Pe3y/IbTaTi
aHaJsi3y, 700pe y3ro/KyoThcd 3 anajgitTudHuM pinenaaM. [loxmbOka MixK aHAJIITHYHUM 1 YUCEIbHUM DO3B’I3KaMU DPiB-
HsiHHsI Broprepca o0YMCIIOETHCA 3a IBOMa HOpMaMu TOXUOKHM, a came Lo i Loo. AHai3 cTabiJibHOCTI BUKOHYETHCS 3a
meronom don-Heiimana, i Bil BusBisieThcs 6€3yMOBHO CTAOLIBHIM 3TiIHO 3 aHAJI30M.
KurouoBi ciioBa: zapawa nuaoea naadma; pisuanna bropzepca; memod Kpanxa-Hikoavcona; anaaid cmitxocmi gon
Hetimana
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