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This study looks at how the impacts of thermal and mass stratification on magnetohydrodynamic (MHD) flow alongside
a vertically accelerating plate featuring variable temperature and exponential mass diffusion within a porous medium.
The Laplace transform technique is utilized to solve the governing equations related to flow, energy, and mass diffusion.
Subsequently, the impact of stratification on the flow field, temperature, and mass diffusion is examined. The study
indicates that thermal and mass stratification significantly affects the profiles of velocity, temperature, and mass diffusion.
Additionally, it has been discovered that a stable state for the velocity is achieved as both stratification parameters are
raised, whereas stable states for the temperature and concentration occur when mass stratification is heightened but
thermal stratification is reduced.

Keywords: MHD flow; Thermal stratification; Mass Stratification; Porous Medium; Accelerated Vertical Plate; Variable
Temperature; Laplace Transform
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1. INTRODUCTION

The investigation of heat transfer holds importance across various engineering fields, such as in the cooling
of electronic devices, nuclear reactors, and gas turbines. Similarly, a grasp of mass transfer is crucial for several
chemical engineering applications, like separation processes, distillation, and absorption. This study aims to
explore the combined effects of thermal and mass stratification on the behavior of MHD unsteady flow along
an accelerated vertical plate, considering variations in mass diffusion and a variable temperature. The influence
of thermal and mass stratifications on the behavior of MHD unsteady flows in fluids is significant, and this
research seeks to analyze the interaction of these stratifications.

Early work by [1] and [2] laid the groundwork for understanding transient free convection from vertical
flat plates. [3] extended this by investigating unsteady natural convection near doubly infinite vertical plates.
Later studies explored diverse aspects of this phenomenon. [4] and [5, 6] investigated transient buoyant flows
in stratified fluids, while [7] explored convectively driven flows in stably stratified fluids. Porous media were
explored in greater detail. [8] investigated unsteady free convection in a fluid-saturated porous medium, and [9]
considered heat and mass diffusion flow by natural convection in a porous medium. The influence of radiation and
magnetic fields was also examined. The surveyed literature investigates various aspects of magnetohydrodynamic
(MHD) and porous medium flow. [10] analyzed MHD boundary layer flow along vertical plates with ramped
temperature. [11] study heat sources in MHD flow past an accelerated plate with variable temperature and mass
diffusion. [12] explore thermal diffusion in unsteady MHD convective flow. [13, 14, 15, 16] and [17] examine
effects like Hall and ion slip, elastico-viscous fluid behavior, and nanofluid flow dynamics in different MHD
contexts, emphasizing the influence of porous mediums and thermal conditions on flow properties and heat
transfer. More recent research has delved into the effects of chemical reactions in these flows. [18] and [19, 20]
studied unsteady flow past vertical plates with chemical reactions in the presence of thermal stratification.
Lastly, [21] extended this to porous media, considering mass diffusion, showcasing the breadth and depth of
research in this field.

In this study, we present novel contributions by deriving the exact solution through the Laplace transform
technique, achieving this with perfect accuracy, which proves to be an extremely effective strategy for obtaining
precise solutions. Prior to this work, there has been no exploration of the combined influences of thermal
and mass stratification on the behavior of MHD unsteady flow past a vertically accelerating plate embedded
within a porous medium, where both temperature and mass diffusion vary. The aim was to analytically explore
the dynamics of MHD unsteady flow past such a plate, taking into account the effects of thermal and mass
stratification. Subsequently, we compare the results concerning fluid stratification in both thermal and mass
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Figure 1. Physical Model and coordinate system

aspects with those of the specific instance lacking any stratification. This study explores and presents the effects
of various physical parameters, including γ, ξ,Gr,Gc, the Darcy number (Da), and the Magnetic parameter (M),
on the observed profiles through graphical representations. The insights gained from this research hold potential
applications across a wide range of industries. For example, the outcomes can be leveraged to enhance thermal
system efficiency by minimizing the temperature discrepancy between the walls and the fluid, as well as by
accelerating the rate of mass diffusion.

2. MATHEMATICAL ANALYSIS

The governing equations describing the convective movement of an electrically conducting, incompressible,
and viscous fluid through a porous medium in presence of a magnetic field, where both mass diffusivity and
thermal diffusivity are constant, and incorporating the diffusion-thermo effect, are formulated in vector form as
follows:

Momentum Equation

ρ

[
∂q⃗

∂t′
+ (q⃗.∇⃗)q⃗

]
= −∇⃗p+ J⃗ × B⃗ + pg⃗ + µ∇2q⃗ − µq⃗

k
(1)

Energy Equation

ρCp

[
∂T ′

∂t′
+ (q⃗.∇⃗)T ′

]
= α∇2T ′ (2)

Concentration Equation
∂C ′

∂t′
+ (q⃗.∇⃗)C ′ = D∇2C ′ (3)

Consider the MHD unsteady flow of a viscous, incompressible, and stratified fluid over an accelerating
vertical plate within a porous medium. The analysis adopts a rectangular Cartesian coordinate system (x′, y′, t′),
where the y′ axis is perpendicular to the plate and the x′ axis extends vertically upward along the plate. The
fluid velocity at any point (x′, y′, t′) is given by q = (u′, 0). Initially, at t′ = 0, the temperature and concentration
at the plate are T ′

∞ and C ′
∞, respectively. For t′ > 0, the plate accelerates within its own plane at a velocity of

u0t
′ relative to the gravitational force. Additionally, for t′ > 0, the temperature drops to T ′

∞ + (T ′
w − T ′

∞)At′,
while the concentration increases linearly over time t. Given the plate’s infinite dimensions, all flow variables
are independent of x′, varying only with y′ and t′. Thus, under the standard Boussinesq approximation, specific
equations are employed to describe the MHD unsteady flow dynamics. The conversion procedure for equations
(1)-(3) has already been addressed by Sarma et al. [22]. Consequently, we obtain the following form.

∂u′

∂t′
= gβ(T ′ − T ′

∞) + gβ∗(C ′ − C ′
∞) + ν

∂2u′

∂y′2
− σB2

0u
′

ρ
− ν

k
u′ (4)

∂T ′

∂t′
= α

∂2T ′

∂y′2
− γ′u′ (5)
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∂C ′

∂t′
= D

∂2C ′

∂y′2
− ξ′u′ (6)

with the following initial and boundary Conditions:

u′ = 0 T ′ = T ′
∞ C ′ = C ′

∞ ∀y′, t′ ≤ 0

u′ = u0t
′ T ′ = T ′

∞ + (T ′
w − T ′

∞)At′ C ′ = C ′
∞ + (C ′

w − C ′
∞)ea

′t′ at y′ = 0, t′ > 0

u′ = 0 T ′ → T ′
∞ C ′ → C ′

∞ as y′ → ∞, t′ > 0

where a′, α, η, ν, D, and Da are respectively constant, thermal diffusivity, similarity parameter, kinematic
viscosity, mass diffusion coefficient, darcy number. The ”thermal stratification parameter” and ”mass stratifi-

cation parameter” are termed as γ′ =
dT ′

∞
dx′ + g

Cp
and ξ′ =

dC′
∞

dx′ respectively. The term ”thermal stratification”

refers to the combination of vertical temperature advection
(

dT ′
∞

dx′

)
, where the temperature of the surrounding

fluid is height-dependent, and work of compression
(

g
Cp

)
, the rate at which particles in a fluid do reversible

work due to compression. And we provide non-dimensional quantities in the following:

U =
u′

(u0ν)1/3
, t = t′

(
u2
0

ν

)1/3

, y = y′
(u0

ν2

)1/3
, θ =

T ′ − T ′
∞

T ′
w − T ′

∞
, C =

C ′ − C ′
∞

C ′
w − C ′

∞
,

Gr =
gβ(T ′

w − T ′
∞)

u0
, Gc =

gβ∗(C ′
w − C ′

∞)

u0
, P r =

ν

α
, Sc =

ν

D
, a = a′

(
ν

u2
0

)1/3

,

M =
σB2

0ν
1
3

ρu
2
3
0

, Da = k′
(
u2
0

ν4

)1/3

, γ =
γ′ν2/3

u
1/3
0 (T ′

w − T ′
∞)

, ξ =
ξ′ν2/3

u
1/3
0 (C ′

w − C ′
∞)

A =
(

u2
0

ν

)1/3
is the constant.

∂U

∂t
= Grθ +GcC +

∂2U

∂y2
−
(
M +

1

Da

)
U (7)

∂θ

∂t
=

1

Pr

∂2θ

∂y2
− γU (8)

∂C

∂t
=

1

Sc

∂2C

∂y2
− ξU (9)

Non-dimensional forms of initial and boundary Conditions are:

U = 0 θ = 0 C = 0 ∀y, t ≤ 0

U = t θ = t C = eat at y = 0, t > 0

U = 0 θ → 0 C → 0 as y → ∞, t > 0 (10)

3. METHOD OF SOLUTION

We discovered that the Laplace transform method produces an equation of non-tractable form for any arbi-
trary Prandtl or Schmidt number. The non-dimensional governing equations (7)-(9) with boundary conditions
(10), are solved for the tractable situation of Pr = 1, Sc = 1. Hence, the expressions for velocity, temperature,
and concentration profiles can be determined with the help of [23] and [24] are as follows

U =
F −Gr

F −Q
{g1(F )} − Gc

F −Q
{g2(F )− g2(Q)}+ Gr −Q

F −Q
{g1(Q)} (11)

θ =

(
t− tγGr

FQ

)[
(1 + 2η2)erfc(η)− 2η√

π
e−η2

]
− γGceat

2FQ

[
e−2η

√
aterfc

(
η −

√
at
)
+ e2η

√
aterfc

(
η +

√
at
)]

+
F −Gr

F −Q

{ γ

F
g1(F )

}
+

Gr −Q

F −Q

{
γ

Q
g1(Q)

}
− γGc

F −Q

{
1

F
g2(Q)− 1

Q
g2(F )

}
(12)
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C =
tξ {2FQ−Gr(F −Q)}

FQ(F −Q)

[
(1 + 2η2)erfc(η)− 2η√

π
e−η2

]
− (FQ− ξGc)eat

2FQ[
e−2η

√
aterfc

(
η −

√
at
)
+ e2η

√
aterfc

(
η +

√
at
)]

+
ξ(F −Gr)

F −Q

{
1

F
g1(F )− 1

Q
g1(Q)

}
− ξGc

F −Q

{
1

F
g2(F )− 1

Q
g2(Q)

}
− ξ

Q
{g1(Q)} (13)

Where,

η =
y

2
√
t
, F +Q = M +

1

Da
, F −Q =

√(
M +

1

Da

)2
− 4(γGr + ξGc)

Also, fi’s are inverse Laplace’s transforms given by

g1(p) = L−1

{
e−y

√
s+p

s2

}
, g2(p) = L−1

{
e−y

√
s+p

s− a

}
We separate the complex arguments of the error function contained in the previous expressions into real

and imaginary parts using the formulas provided by [23].

4. CLASSICAL CASE (γ = 0, ξ = 0)

We derived solutions for the classical case of no thermal and mass stratification (γ = 0, ξ = 0). We want to
compare the results of the fluid with thermal and mass stratification to the case with no stratification. Hence,
the solutions for the classical case with boundary conditions (10) by using the Laplace transformation are as
follows:

θc = t

{(
1 + 2η2

)
erfc(η)− 2η√

π
e−η2

}
(14)

Cc =
eat

2

[
e−2η

√
aterfc

(
η −

√
at
)
+ e2η

√
aterfc

(
η +

√
at
)]

(15)

Uc =
(
1− Gr

F +Q

)
g1(F +Q)− Gc

(F +Q)
g2(F +Q) +

Gc eat

2(F +Q)

{
e−2η

√
aterfc

(
η −

√
at
)

+e2η
√
aterfc

(
η +

√
at
)}

+
tGr

(F +Q)

{(
1 + 2η2

)
erfc(η)− 2η√

π
e−η2

}
(16)

4.1. Skin-Friction

The non-dimensional Skin-Friction, which is determined as shear stress on the surface, is obtained by

τ = −dU

dy

∣∣∣∣
y=0

The solution for the Skin-Friction is calculated from the solution of Velocity profile U , represented by (11), as
follows:

τ =
F −Gr

F −Q

[
t
√
F erf(

√
Ft) + e−Ft

√
t

π
+

erf(
√
Ft)

2
√
F

]
− Gr −Q

F −Q

[
t
√
Q erf(

√
Qt) + e−Qt

√
t

π
+

erf(
√
Qt)

2
√
Q

]

− Gc

F −Q

[
eat
{√

a+ F erf(
√
(a+ F )t)−

√
a+Q erf(

√
(a+Q)t)

}
+

e−Ft − e−Qt

√
πt

]
The solution for the Skin-Friction for the classical case is given from the expression (16), which is represented

by

τc =

(
1− Gr

F +Q

)[
t
√

F +Q erf(
√

(F +Q)t) +

√
t

π
e−(F+Q)t +

erf(
√

(F +Q)t)

2
√

(F +Q)t

]
+

2Gr

F +Q

√
t

π
+

Gc eat

(F +Q)

√
a erf(

√
at) +

Gc

(F +Q)
√
πt

− Gc eat

(F +Q)

√
a+ (F +Q) erf(

√
(a+ F +Q)t)− Gc e(F+Q)t

(F +Q)
√
πt
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4.2. Nusselt Number

The non-dimensional Nusselt number, which is determined as the rate of heat transfer, is obtained by

Nu = −dθ

dy

∣∣∣∣
y=0

The solution for the Nusselt number is calculated from the solution of Temperature profile θ, represented by
(12), as follows:

Nu = 2

√
t

π

(
1− γGr

FQ

)
− γGc

FQ

[
eat

√
a erf(

√
at) +

1√
πt

]
− γGc

F (F −Q)

[
eat

√
a+ F erf(

√
(a+ F )t) +

e−Ft

√
πt

]
+
γ(F −Gr)

F (F −Q)

[
t
√
Ferf(

√
Ft) +

√
t

π
e−Ft +

erf(
√
Ft)

2
√
F

]
+

γGc

Q(F −Q)[
eat
√
a+Q erf(

√
(a+Q)t) +

e−Qt

√
πt

]
+

γ(Gr −Q)

Q(F −Q)

[
t
√
Q erf(

√
Qt) +

√
t

π
e−Qt +

erf(
√
Qt)

2
√
Q

]

The solution for the Nusselt number for the classical case is given from the expression (14), which is
represented by

Nuc = 2

√
t

π

4.3. Sherwood Number

The non-dimensional Sherwood number, which is determined as the rate of mass transfer, is obtained by

Sh = −dC

dy

∣∣∣∣
y=0

The solution for the Sherwood number is calculated from the solution of Concentration profile C, represented
by (13), as follows:

Sh =

(
1 +

ξGc(Q− F )

FQ(F −Q)

)[
eat

√
a erf(

√
at) +

1√
πt

]
− 2ξ(2FQ−Gr(F +Q))

FQ(F −Q)

√
t

π
− ξGc

F (F −Q)

[
eat

√
a+ F

erf(
√
(a+ F )t) +

e−Ft

√
πt

]
+

ξ(F −Gr)

F (F −Q)

[
t
√
F erf(

√
Ft) +

√
t

π
e−Ft +

erf(
√
Ft)

2
√
F

]
+

ξGc

Q(F −Q)[
eat

√
a+Q erf(

√
(a+Q)t) +

e−Qt

√
πt

]
+

ξ(Gr −Q)

Q(F −Q))

[
t
√
Q erf(

√
Qt) +

√
t

π
e−Qt +

erf(
√
Qt)

2
√
Q

]

The solution for the Sherwood number for the classical case is given from the expression (15), which is
represented by

Shc = eat
√
a erf(

√
at) +

1√
πt

5. RESULT AND DISCUSSIONS

We computed numerical values of velocity, temperature, concentration, skin friction, Nusselt number, and
Sherwood number from their solutions derived in the preceding sections, for various values of the physical
parameters γ, ξ,Gr,Gc,M and Da. This allowed us to get a better understanding of the physical significance
of the problem. Moreover, using MATLAB, we plotted them in Figures 2-22.

Figure 2 illustrates the impact of thermal and mass stratification on velocity profiles, showing that both
types of stratification lead to reduced velocities. When one form of stratification is held constant, an increase
in the other type further decreases velocity. In the same way that [7] shows that fluid velocity drops for
thermal stratification γ > 0, we find that this is also the case for mass stratification ξ > 0. Enhancing
the parameter of thermal stratification (γ) diminishes the convective potential across the hot plate and the
adjacent fluid, reducing the buoyancy force and, subsequently, the flow velocity. Similarly, an increase in the
mass stratification (ξ) value leads to a lower concentration gradient between the surface and its environment,
diminishing the buoyancy’s upward force and thus slowing down the fluid flow. Therefore, the presence of both
thermal and mass stratification results in a reduced fluid velocity compared to conditions without stratification.
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Figure 2. Effects of γ and ξ on Velocity Profile for
Gr = 5, Gc = 5,M = 2, Da = 0.5, t = 1.5, a = 0.2,

Figure 3. Effects of Gr and Gc on Velocity Profile for
γ = 0.5, ξ = 0.4,M = 2, Da = 0.5, t = 1.5, a = 0.2

Figure 4. Effects of M on Velocity Profile for Gr =
5, Gc = 5, γ = 0.5, ξ = 0.4, Da = 0.5, t = 1.5, a = 0.2,

Figure 5. Effects of Da on Velocity Profile for Gr =
5, Gc = 5, γ = 0.5, ξ = 0.4,M = 2, t = 1.5, a = 0.2,

Hence, both thermal and mass stratification play a crucial role in establishing a stable stratified flow. As seen
in Figure 3, Raising the value of Gc leads to a higher velocity, while a rise in Gr causes a decrease in velocity.
We can observe from Figure 4 that velocity decreases as (M) grows. Figure 5 shows that as Da and the fluid’s
porosity increase, there is an elevation in the velocity profile, enabling the fluid particles to move more smoothly.

Figure 6 demonstrates the impact of thermal and mass stratification on the temperature profile. While
mass stratification leads to an increase in temperature, an increase in thermal stratification is associated with a
reduction in temperature. An increase in thermal stratification (γ) causes the temperature gradient between the
vertical plate and the adjacent fluid to diminish. Consequently, this results in a thicker thermal boundary layer
and a lower temperature. As shown in Figures 7, and 9, the temperature drops as Gr,Gc, and Da increase and
in Figure 8 the temperature increases as M increase. In Figure 10, fluid concentration decreases with increasing
mass stratification parameters but increases with increasing thermal stratification. As shown in Figures 11, 12,
and 13 the effects of Gr,Gc,Da, and M on concentration are identical to those seen for temperature profiles.

Figures 14, 15, and 16 plot the two stratification’s effects on fluid velocity, temperature, and concentration
over time. The velocity grows infinitely with time for the Classical case but reaches a steady state when
both stratifications are present. The presence of both stratifications influences the temperature profile over
time, but an increase in thermal stratification has a more pronounced effect in slowing down the temperature
increase compared to an increase in mass stratification. The concentration increases over time, highest with no
stratification, and less as thermal or mass stratification values rise.

In Figure 17, skin friction decreases with time in the presence of both stratification compared to no
stratification. It decreases over time, with the lowest values occurring for the highest Gc at a constant Gr, as
shown in Figure 18. Figures 19, 20, 21and 22 for both nusselt and sherwood numbers, values rise with time.
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Figure 6. Effects of γ and ξ on Temperature Profile
for Gr = 5, Gc = 5,M = 2, Da = 0.5, t = 1.5, a = 0.2

Figure 7. Effects of Gr and Gc on Temperature Pro-
file for γ = 0.5, ξ = 0.4, t = 1.5,M = 2, Da = 0.5, a =
0.2

Figure 8. Effects of M on Temperature Profile for
Gr = 5, Gc = 5, γ = 0.5, ξ = 0.4, t = 1.5, Da = 0.5, a =
0.2

Figure 9. Effects of Da on Temperature Profile for
Gr = 5, Gc = 5, γ = 0.5, ξ = 0.4, t = 1.5,M = 2, a =
0.2

Figure 10. Effects of γ and ξ on Concentration Profile
for Gr = 5, Gc = 5, Da = 0.5, t = 1,M = 2, a = 0.2

Figure 11. Effects of Gr and Gc on Concentration
Profile for γ = 0.5, ξ = 0.4, t = 0.5,M = 2, Da =
0.5, a = 0.2
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Figure 12. Effects of Da on Concentration Profile for
Gr = 5, Gc = 5, γ = 0.5, ξ = 0.4, t = 0.5,M = 2, a =
0.2

Figure 13. Effects of M on Concentration Profile for
Gr = 5, Gc = 5, γ = 0.5, ξ = 0.4, t = 0.5, Da = 0.5, a =
0.2

Figure 14. Effects of γ and ξ on Velocity Profile
against time for Gr = 5, Gc = 5,M = 2, Da = 0.5, a =
0.2, y = 1.4

Figure 15. Effects of γ and ξ on Temperature Profile
against time for Gr = 5, Gc = 5,M = 2, Da = 0.5, a =
0.2, y = 1.4

Figure 16. Effects of γ and ξ on Concentration Profile
against time for Gr = 5, Gc = 5,M = 2, Da = 0.5, a =
0.2, y = 1.4

Figure 17. Effects of γ and ξ on Skin friction for
Gr = 5, Gc = 5,M = 2, Da = 0.5, a = 0.2



Thermal and Mass Stratification Effects on MHD Flow Past an Accelerated Vertical...
169

EEJP.2(2024)

Figure 18. Effects of Gr and Gc on Skin friction for
γ = 0.5, ξ = 0.4,M = 2, Da = 0.5, a = 0.2

Figure 19. Effects of γ and ξ on Nusselt Number for
Gr = 5, Gc = 5,M = 2, Da = 0.5, a = 0.2

Higher thermal stratification dampens the increase for nusselt and more so for sherwood, while varying mass
stratification shows mixed effects. Higher Gr boosts sherwood’s growth at a constant Gc.

Figure 20. Effects of Gr and Gc on Nusselt Number
for γ = 0.5, ξ = 0.4,M = 2, Da = 0.5, a = 0.2

Figure 21. Effects of γ and ξ on Sherwood Number
for Gr = 5, Gc = 5,M = 2, Da = 0.5, a = 0.2

Figure 22. Effects ofGr andGc on Sherwood Number
for γ = 0.5, ξ = 0.4,M = 2, Da = 0.5, a = 0.2
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6. CONCLUSION

The findings from this research indicate that thermal and mass stratification notably diminishes velocity
over time, leading the system to achieve equilibrium. For conditions of increased mass stratification and de-
creased thermal stratification, the system’s temperature and concentration levels stabilize. With the concurrent
presence of both types of stratification, there is a gradual decrease in skin friction. Additionally, time enhances
heat and mass transfer rates, with higher mass stratification and lower thermal stratification increasing both
nusselt and sherwood numbers more markedly. These results hold significant implications for the design of
porous media systems tailored to manage MHD unsteady flow with stratification features.
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ÂÏËÈÂ ÒÅÐÌI×ÍÎ� ÒÀ ÌÀÑÎÂÎ� ÑÒÐÀÒÈÔIÊÀÖI� ÍÀ ÌÃÄ-ÏÎÒIÊ ÏÎÂÇ
ÏÐÈÑÊÎÐÅÍÓ ÂÅÐÒÈÊÀËÜÍÓ ÏËÀÑÒÈÍÓ ÂÁÓÄÎÂÀÍÓ Â ÏÎÐÈÑÒÅ

ÑÅÐÅÄÎÂÈÙÅ ÇI ÇÌIÍÍÎÞ ÒÅÌÏÅÐÀÒÓÐÎÞ ÒÀ ÅÊÑÏÎÍÅÍÖIÀËÜÍÎÞ
ÌÀÑÎÂÎÞ ÄÈÔÓÇI�Þ

Äiãáàø Ñàõó, Ðóäðà Êàíòà Äåêà
Ôàêóëüòåò ìàòåìàòèêè, Óíiâåðñèòåò Ãàóõàòi, Ãóâàõàòi, 781014, Àññàì, Iíäiÿ

Ó öüîìó äîñëiäæåííi ðîçãëÿäà¹òüñÿ âïëèâ òåðìi÷íî¨ òà ìàñîâî¨ ñòðàòèôiêàöi¨ íà ìàãíiòîãiäðîäèíàìiêó (ÌÃÄ)
ïîðÿä iç âåðòèêàëüíî ïðèñêîðþâàíîþ ïëàñòèíîþ çi çìiííîþ òåìïåðàòóðîþ òà åêñïîíåíöiàëüíîþ ìàñîâîþ äèôóçi¹þ
â ïîðèñòîìó ñåðåäîâèùi. Òåõíiêà ïåðåòâîðåííÿ Ëàïëàñà âèêîðèñòîâó¹òüñÿ äëÿ âèðiøåííÿ âèçíà÷àëüíèõ ðiâíÿíü,
ïîâ'ÿçàíèõ iç äèôóçi¹þ ïîòîêó, åíåðãi¨ òà ìàñè. Äàëi äîñëiäæó¹òüñÿ âïëèâ ñòðàòèôiêàöi¨ íà ïîëå òå÷i¨, òåìïåðàòóðó
òà äèôóçiþ ìàñè. Äîñëiäæåííÿ ïîêàçó¹, ùî òåïëîâà òà ìàñîâà ñòðàòèôiêàöiÿ ñóòò¹âî âïëèâà¹ íà ïðîôiëi øâèäêîñòi,
òåìïåðàòóðè òà äèôóçi¨ ìàñè. Êðiì òîãî, áóëî âèÿâëåíî, ùî ñòàáiëüíèé ñòàí äëÿ øâèäêîñòi äîñÿãà¹òüñÿ, êîëè îáèäâà
ïàðàìåòðè ñòðàòèôiêàöi¨ ïiäâèùóþòüñÿ, òîäi ÿê ñòàáiëüíi ñòàíè äëÿ òåìïåðàòóðè òà êîíöåíòðàöi¨ âèíèêàþòü, êîëè
ìàñîâà ñòðàòèôiêàöiÿ ïiäâèùó¹òüñÿ, àëå òåðìi÷íà ñòðàòèôiêàöiÿ çìåíøó¹òüñÿ.
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