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This study investigates the kinetic properties of both symmetrical and asymmetrical multilayer and nano-sized semiconductor
structures. We develop a theoretical framework using various models and mathematical methods to solve the Schrédinger matrix
equation for a system of electrons, taking into account the Bastard condition, which considers the difference in the effective masses of
current carriers in adjacent layers. We analyze tunnel-coupled electronic states in quantum wells separated by a narrow tunnel-
transparent potential barrier. Our findings provide insights into the electronic properties of semiconductor structures, which are crucial
for applications in micro- or nanoelectronics and other areas of solid-state physics.
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INTRODUCTION

The exploration of electronic properties in semiconductor structures, whether symmetrical or asymmetrical, holds
significant relevance for their application in micro- and nanoelectronics, as well as broader fields of solid-state physics.
While prior research has delved into the kinetic properties of these multilayer and nanoscale structures, employing a
variety of models and mathematical methodologies to tackle the full Schrodinger equation for electron systems, a gap
remains. Notably, these investigations have overlooked the Bastard condition, which accounts for the variance in effective
masses of charge carriers across adjacent layers. Furthermore, there has been a lack of focus on the study of tunnel-
coupled electronic states within quantum wells, especially those delineated by narrow, tunnel-permeable potential
barriers. Our research is designed to bridge these gaps, offering new insights into the physics of semiconductor structures
by incorporating these critical factors.

METHODS

In structures featuring two or more closely spaced potential wells, the wave functions from adjacent wells
significantly overlap within the barrier region. This overlap leads to a substantial probability of detecting an electron
within this barrier region, thereby enabling charge carriers to transition from one well to another, even without their
energies surpassing the barrier height. This quantum mechanical phenomenon, known as the tunneling effect [9-10], is
particularly notable in quantum wells where the tunneling probability is considerable, rendering these wells tunnel-
coupled.

The phenomenon of tunnel coupling, which becomes more pronounced as the wells draw nearer to each other,
significantly affects both the positioning of energy levels and the characteristics of the wave functions within the wells.
To accurately determine the levels of size quantization and their corresponding wave functions, it's essential to solve the
Schrodinger equation under a specific potential while adhering to Bastard boundary conditions. These conditions
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necessitate the continuity of the wave function () and its derivative with respect to mass %% at the interface between
the potential well (denoted as Layer A) and the barrier (Layer B). In mathematical terms, this continuity is expressed as:
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Following the establishment of the Bastard boundary conditions, as denoted by equation (1), it's imperative to
incorporate these conditions into our calculations at each interface between different materials within the nanostructure.
This approach is critical for accurately modeling the behavior of charge carriers, especially when considering the real
wave vector scenarios that result in the wave functions decaying to zero at the limits of x — Foo. Given a nanostructure
composed of two quantum wells, we encounter two distinct interfaces that necessitate the resolution of a system
comprising equations for eight variables, reflecting the complexity of electron behavior in these confined spaces.
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To facilitate our analysis, we define U, (x) and U,(x) as the potentials for the left and right wells, respectively.
These are treated as independent entities within their own spatial domains. For simplicity, and without loss of generality,
we position our energy reference at the barrier level, allowing us to consider U, (x) and U, (x) as being effective only
within their respective wells. Consequently, the potential (U(z)) describing the dual-well structure emerges as the
summation of U; (x) and U, (x).

HY = E1), 2

where H = H, + H, + U; + U,, with H,(U;) and H,(U,) being the Hamiltonian (potential) operators for the left and
right potential wells, respectively. Thus, the general Schrédinger equation takes the form:
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Transitioning to a one-dimensional analysis simplifies our approach to:
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Here, uf, represents the effective mass term, accounting for the combined mass effects from both wells, and k% = k2 +
k3 reflects the transverse component of the wave vector. This nuanced formulation provides a direct pathway to solving
the individual Schrodinger equations for each well:
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Leveraging the principle of superposition, we express the system's wave function as a linear combination of the well-
specific wave functions:

Y(x) = Cp1(x) + G, (x) )

Substituting equation (5) into equation (3) and reconciling this with equation (4), we arrive at a composite equation
that encapsulates the interaction between the two wells through the coefficients C; and C,, manifesting in:
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To delve deeper into the system's quantum mechanics, we apply integration by multiplying equation (6) from the
left with Y3 (x), and similarly with 17 (x), to integrate over the spatial domain. This operation is crucial for isolating the
coefficients C; and C,, facilitating the extraction of meaningful physical parameters:

f Y5 (x) [Equation (6)]dx and similarly for 5 (x)]

Through this process, we obtain a system of homogeneous equations that encapsulate the interaction dynamics
between the quantum wells, structured as follows:
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The overlaps Ul(ij ) and Uz(ij ) are integrals representing the interaction terms between the wells, and o symbolizes
the overlap integral between ¥} and ;. This configuration allows us to calculate the adjusted energies E; and E,
reflecting the modified energy levels due to the coupling between the wells.
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UPY = [ 30U, (x) - dx, USSP = [3(0)Uphy(x) - dx, UL = [3() Uy, (x) - dx,
UL = [ 300U, (x) - dx, UMD = [ ;U (x)dx, US™ = [5G0 Uphy (x) dx,
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For a non-trivial solution of equation (7), the determinant of the system must be set to zero, leading us to:
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From this, we derive a second-degree algebraic equation for the variable E, which can be represented in the general
form:

—b-E+c=0, )

which has two roots, E, representing the sought-after energy levels of the electron in the double-well potential U (x)
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By substituting these roots, £, and E_, back into equation (7) in turn, one can find two solutions of the system,

(%) for E, and another (%) for E_, which according to equation (7) determine the wave functions ¥, (), 1, (2),
27 4 2/ —
corresponding to the energy levels E, and E_, respectively.

CONCLUSIONS
Thus, in tunnel-coupled wells, the energy levels are shifted relative to the levels of isolated wells, and the wave

functions emerge from the wave functions of isolated wells as a result of their interaction. The system of equations (7)

can be simplified, preserving the main features of its solutions, if we neglect the contributions with terms Ul( Zn), where

n = 1,2 exceeds the considered range. Consequently, equation (7) takes the form:

{mlc; +C(E,—E) =0, an

Cl(El - E,) + ER2C2 = 0,
where R, = (1 - —) U(Zl) + U(Zl) R, = U(lz) + (1 - ;n—f) U2(12). Then, by setting the determinant of the system of
12
equations (11) to zero, we obtain a less cumbersome equation instead of (8):

—(Ey + E))E'+ E\E, + Ry R, = 0, (12)

whose roots are equal

Ei |:E1 + EZ \/(El - Ez)z + 4‘%19’{2 . (13)
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Analyzing the expression for the energy level gap AE = |Eir - EL| from equation (13), the quantity AE sy, =
|E'1 -E 2| serves as a measure of the asymmetry between the two quantum wells and equals zero for symmetric wells. If
its square dominates under the square root in equation (4), then AE ~ AEsyp,. In this scenario, the solutions of the system

(11) correspond to wave functions 1), (z), ), (z) that are close to the original functions 1;,1,, indicating that mixing of
the wave functions is almost nonexistent. Conversely, when the asymmetry of the wells is negligibly small, the gap
between levels (13) in tunnel-coupled wells is given by AE = \/4R,R,, where this quantity characterizes the tunnel

splitting of energy levels. In this case, the solutions of the system (11) correspond to a strong mixing of the original wave
functions, where the coefficients C;and C, are comparable in magnitude.
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AHAJII3 KIHETUYHUX BJIACTUBOCTEM TA TYHEJBHO-3B’SI3AHAX CTAHIB B ACUMETPUYHUX
BATATOIIAPOBUX HAINIBITPOBIJIHUKOBUX CTPYKTYPAX
Pycram S1. Pacyaos?, Bokxo6 P. Pacyaos?, Kamonaxon K. Ypinosa®, Icnamoex A. Myminos?, Baxonip B. Axmenos?
@ @epeancoruil depoicagnuil ynisepcumem, Pepeana, Ysbexucman
b Koxanocvxuil OdeporcasHuil nedazoeiunuil incmumym, Koxano, Yz6exucman

Ile nmocimipKeHHsT AOCHIDKYE KIHETHYHI BJIACTMBOCTI SIK CHMETPHUYHMX, TaK 1 aCHMETPUYHMX OaraTromlapoBHX 1 HAHOPO3MIPHUX
HAITBIIPOBITHUKOBHX CTPYKTYp. Mu po3pobiasieMo TeopeTHuHy 06a3y 3 BUKOPUCTAHHSAM PI3HUX MOJeNel i MaTeMaTHIHUX METOJIB Ui
BUpinieHHs1 piBHsHHs Marpuui Illpeainrepa st CHCTEMH eNICKTPOHIB, BpaxoByKOuM yMmMoBYy bacrapna, ska BpaxoBye DI3HHIIO B
e(eKTUBHIX Macax HOCIIB CTpyMy B CyMDKHHX IIapaXx. Mu aHai3yeMO TyHEJbHO-3B’s13aHI €NEKTPOHHI CTAHM B KBAaHTOBUX SIMaX,
PO3IITICHUX BY3bKAM TYHEIBHO-TIPO30PUM HOTEHUIHHAM Oap’epom. Harri BUCHOBKH MarOTh 3MOTY 3pO3YMITH €JIEKTPOHHI BIACTHBOCTI
HaITiBIIPOBITHUKOBHX CTPYKTYP, SKi MAIOTh BUpIMIANbHE 3HAUCHHS U 3aCTOCYBAHHS B MIKPO- UM HAaHOEJICKTPOHII Ta iHIMX 001acTsIX
(bi3MKH TBEpOTO TiNA.
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