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The paper examines solution for a two-dimensional steady, viscous, heat dissipation, incompressible hydro-magnetic free convective 
flow past a uniformly moving vertical porous plate immersed in a porous material in the presence of the Soret effect, Dofour effect and 
Chemical reaction. A constant magnetic field is directed into the fluid area perpendicular to the plate. The MATLAB built-in bvp4c 
solver approach is used to solve the governing non-dimensional equations. The discussion of the current issue focuses mostly on the 
impacts of thermal diffusion, magnetic field, thermal radiation, Grashof number, Soret number, Dufour number, and chemical reaction. 
It is observed that the Soret number improves fluid temperature. In addition, the fluid's temperature, concentration, and velocity all 
drop as the magnetic field parameter rises. Although the heat dissipation caused by the medium's porosity is usually disregarded 
in convective MHD flow simulations, it is considered in this work. 
Keywords: MHD; Porous medium; Chemical reaction; Radiation; Heat dissipation; Soret effect and Dufour effect 
PACS: 44.25+g; 44.05.+e; 44.30.+v; 44.40.+a 

INTRODUCTION 
The combined effects of magnetic and temperature field on viscous flow are basically studied in a magneto-

hydrodynamics (MHD) flow. In addition to many other domains, Magnetohydrodynamic (MHD) flow finds practical 
applications in diverse fields such as missile technology, plasma physics, geophysics, solar physics, astrophysics etc. 
Consequently, numerous scientists and engineers are keenly interested in its applications. Khan et al. [1] investigated the 
magnetohydrodynamic free convection flow around an oscillating plate within a porous medium. Fetecau et al. [2] 
explored the unsteady solution of magnetohydrodynamic natural convection flow incorporating radiative effects. 
Meanwhile, Seth et al. [3] delved into the radiative heat transfer in the context of MHD free convection flow past a plate 
with ramped wall temperature. MHD free convective flow involving chemical reaction over an inclined magnetic field 
was studied by Sheri et al. [4]. In an unstable MHD flow between two porous vertical plates, heat and mass transfer were 
investigated by Raghunath et al. [5].  Zeeshan et al. [6] investigated the MHD flow of water/ethylene glycol based 
nanofluids with natural convection through a porous medium. Their results were substantiated both mathematically and 
graphically. 

Free convection is a method of heat transmission in which buoyancy induced fluid motion is all that occurs. Due to 
the significance of natural convections in both nature and engineering, several scholars have investigated these issues in 
depth over the past 20 years. Among them are Ahmed et al. [7], Lawal et al. [8] and Sedki [9]. Ahmed et al. [10] conducted 
a study on the three-dimensional mixed convective mass transfer flow adjacent to a semi-infinite vertical plate in porous 
medium. Rajput et al. [11] investigated the effects of chemical reactions and radiation on magnetohydrodynamic flow via 
a vertical plate with changing mass diffusion and temperature. Soret and Dufour effect on MHD micropolar fluid past 
over a Riga plate was studied by Borah et al. [12]. Ahmed [13] examined the impact of Soret and radiation effects on 
transient magnetohydrodynamic free convection from an impulsively started infinite vertical plate.  Patel [14] investigated 
the thermal radiation effects on magnetohydrodynamic (MHD) flow involving heat and mass transfer of a micropolar 
fluid between two vertical walls. Reddy et al. [15] explored the influence of chemical reactions on magnetohydrodynamic 
natural flow through a porous medium past an exponentially stretching sheet, considering the presence of heat source/sink 
and viscous dissipation. Jha et al. [16] examined how a heat source or sink affected magnetohydrodynamic free convective 
flow in a nanofluid-filled channel. The effect of viscous dissipation on magnetohydrodynamic free convection flow 
around a semi-infinite moving vertical porous plate with chemical reaction and heat sink was investigated by 
Matta et al. [17]. Borah et al. [18] investigated the influence of Arrhenius activation energy in magnetohydrodynamic 
micropolar nanofluid flow along a porous stretching sheet, considering viscous dissipation and heat source. In a recent 
study, Akhtar et al. [19] explored the impacts of radiation and heat dissipation on magnetohydrodynamic convective flow 
in the presence of a heat sink. 

Chemical reactions have a significant impact on studies of thermal and solutal convection in the fields of science 
and engineering technology. The existence of multi-component species in a system causes the chemical reaction. 
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Senapati et al. [20] conducted a study on the magnetic effects on mass and heat transfer in a hydromagnetic flow past 
over a vertical oscillating plate in presence of a chemical reaction. Mondal et al. [21] examined how radiation and 
chemical reactions affect the free convection flow of magnetohydrodynamic via a vertical plate in a porous material. 
Sinha [22] conducted a study on the unsteady MHD free convective flow, considering the effects of a chemical reaction 
past a permeable plate under sloping temperature conditions. The results showed that the reaction rate increased as the 
chemical reaction parameter increased. Suresh et al. [23] investigated the influence of chemical reaction and radiation on 
magnetohydrodynamic flow along a moving vertical porous plate with heat source and suction. 

Bordoloi et al. [24] investigated the analytical solution for a steady, viscous, incompressible hydromagnetic free 
convective flow in two dimensions that passes in front of a vertical porous plate that is uniformly moving and embedded 
in a porous material. Their study included the consideration of the Soret effect and chemical reaction. The current research 
extends this work by incorporating heat dissipation due to the porosity of the medium. Through the use of a vertical plate 
that is always moving, always experiencing a heat flux, immersed in a porous media, and always under continual suction, 
the study seeks to understand how chemical reactions and thermal radiation affect natural convective flow. These 
combined effects, which are not typically examined simultaneously, have wide range of effects on engineering processes 
such as paper production, plastic sheet extrusion, glass blowing, and more. 
 

BASIC EQUATIONS 
The following equations described   the continuous convective flow across a porous medium of an electrically 

conducting, viscous, incompressible fluid while being affected by a magnetic field: 𝛁.ሬሬሬ⃗ 𝒒ሬሬ⃗ ൌ 𝟎      (1) 𝛁.ሬሬሬ⃗ 𝑩ሬሬ⃗ ൌ 𝟎      (2) 𝑱⃗ ൌ 𝝈 ൫𝑬ሬሬ⃗ ൅ 𝒒ሬሬ⃗ ൈ 𝑩ሬሬ⃗ ൯      (3)  𝛒൫𝐪ሬሬ⃗ .𝛁ሬሬ⃗ ൯𝐪ሬሬ⃗ ൌ 𝛒𝐠ሬ⃗ − 𝛁ሬሬ⃗ 𝐩 ൅ 𝐉 ൈ 𝐁ሬሬ⃗ ൅ 𝛍𝛁𝟐𝐪ሬሬ⃗ − 𝛍𝐪ሬሬ⃗𝐊´     (4) 𝝆𝑪𝒑൫𝒒ሬሬ⃗ .𝛁ሬሬ⃗ ൯𝑻 ൌ 𝒌𝛁𝟐𝑻 ൅ 𝝋൅ 𝑱𝟐ሬሬሬሬ⃗𝝈 ൅ 𝑸ᇱሺ𝑻ஶ −  𝑻ሻ − 𝛁.ሬሬሬ⃗ 𝒒𝒓ሬሬሬሬ⃗ − 𝝁𝑲𝒒𝒓ሬሬሬሬ⃗ 𝟐   (5) ൫𝒒ሬሬ⃗ .𝛁ሬሬ⃗ ൯𝑪 ൌ 𝑫𝑴𝛁𝟐𝑪 ൅ 𝑫𝑴𝑲𝑻𝑻𝒎 𝛁𝟐𝑻 ൅ 𝑲𝒄തതതതሺ𝑪ஶ − 𝑪ሻ    (6) 𝝆ஶ ൌ 𝝆ൣ𝟏 ൅ 𝜷ሺ𝑻 − 𝑻ஶሻ ൅ 𝜷ഥሺ𝑪ஶ − 𝑪ሻ൧     (7) 

Radiation heat flux as per Rosseland approximation, 𝐪𝐫ሬሬሬሬ⃗ ൌ −  𝟒𝝈∗𝟑𝒌∗ 𝛁ሬሬ⃗ 𝑻𝟒       (8) 

 
MATHEMATICAL FORMULATION 

It is considered that a viscous, incompressible, radiating fluid that conducts 
electricity will pass through a vertical plate embedded in a porous medium with 
uniform suction when a constant magnetic field is present and directed 
perpendicularly to the flow. The investigation is guided by the following 
presumptions: 

I. With the exception of density in the term for the buoyant force, all 
fluid parameters are constant. 

II. There is very little induced magnetic field. 
III. The plate has no electrical conductivity. 
IV. It receives no external electric field. 

Let, 𝑩ሬሬ⃗  and  𝒒ሬሬ⃗  be the applied magnetic field and the flow velocity respectively 
at the point ሺ𝒙ᇱ, 𝒚ᇱ,  𝒛ᇱሻ. Since | 𝐓 −  𝐓ஶ | is the very small,𝐓𝟒 can be expressed as: 𝐓𝟒 ൌ  ሼ𝐓ஶ ൅  ሺ 𝐓 −  𝐓ஶሻሽ 𝟒 ൌ 𝟒𝐓ஶ𝟑 𝐓 − 𝟑 𝐓ஶ𝟒.    (9) Therefore, equation (8) gives, 𝐪𝐫ሬሬሬሬ⃗ ൌ  −  𝟏𝟔𝛔∗𝐓ಮ𝟑𝟑𝐤∗ 𝛁ሬሬ⃗ 𝐓     (10) 
Equation (10) gives, 

 
Figure 1. Physical representation 

of the problem. 
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𝛁ሬሬ⃗  .𝐪𝐫ሬሬሬሬ⃗ =  −  𝟏𝟔𝛔∗𝐓ಮ𝟑𝟑𝐤∗ 𝛁𝟐𝐓        (11) Equation (11) can be used to simplify the energy equation as follows: 𝝆𝑪𝒑𝒗ᇱ 𝝏𝐓𝝏𝒚ᇲ = 𝒌 𝝏𝟐𝑻𝛛𝒚ᇲ𝟐  + 𝝁ቀ𝝏𝒖ᇲ𝝏𝒚ᇲቁ + 𝝈𝑩𝒐𝟐𝒖ᇱ𝟐 + 𝟏𝟔 𝛔∗𝟑𝐊∗ 𝑻ஶ𝟑 𝝏𝟐𝑻𝛛𝒚ᇲ𝟐 − 𝑸ഥ(𝑻ஶ − 𝑻)   (12) 
The equation of state (7) yields the following governing equations, which are standard boundary layer approximations. 𝝏𝒗ᇲ𝝏𝒚ᇲ = 𝟎,         (13) 𝒗ᇱ 𝝏𝒖ᇲ𝝏𝒚ᇲ = 𝒈𝜷(𝑻 − 𝑻ஶ) + 𝒈𝜷ഥ(𝑪 − 𝑪ஶ) +  𝝑 𝝏𝟐𝒖ᇲ𝛛𝒚ᇲ𝟐 − 𝝈𝑩𝒐𝟐𝒖ᇲ𝝆 − 𝝑𝒖ᇲ𝑲ᇲ  ,     (14) 𝝆𝑪𝒑𝒗ᇱ 𝝏𝑻𝝏𝒚ᇲ = 𝒌 𝝏𝟐𝑻𝛛𝒚ᇲ𝟐  + 𝝁ቀ𝝏𝒖ᇲ𝝏𝒚ᇲቁ + 𝝈𝑩𝒐𝟐𝒖ᇱ𝟐 + 𝟏𝟔 𝛔∗𝟑𝐊∗ 𝑻ஶ𝟑 𝝏𝟐𝑻𝛛𝒚ᇲ𝟐 − 𝑸ഥ(𝑻ஶ − 𝑻) − 𝝁𝒌ᇲ 𝒖ᇱ𝟐 +  𝑫𝑴𝑲𝑻𝑪𝐏𝑪𝐒   ,   (15) 𝒗ᇱ 𝝏𝑪𝝏𝒚ᇲ = 𝑫𝑴 𝝏𝟐𝑪𝛛𝒚ᇲ𝟐 +  𝑫𝑴𝑲𝑻𝑻𝒎 𝝏𝟐𝑻𝝏𝒚ᇲ𝟐 + 𝑲𝒄തതതത(𝑪ஶ − 𝑪),    (16) 

The appropriate boundary conditions for the velocity, temperature and concentration are, At  yᇱ= 0:  uᇱ = U,  ப୘ப୷ᇲ = −୯∗୩ ,     C = C୵       (17) As   yᇱ → ∞ :     uᇱ → 0,     T → Tஶ,    C → Cஶ     (18) 
The non-dimensional quantities are introduced as, 𝑦 = 𝑣௢𝑦ᇱ 𝑣 , 𝑢 = 𝑢ᇱ𝑈 , 𝜃 = 𝑇 − 𝑇ஶ௤∗௩௞௩೚ , 𝜑 = (𝐶 − 𝐶ஶ)𝐶௪ − 𝐶ஶ ,         𝐺௥ = 𝑣𝑔𝛽 ௤∗௩௞௩೚𝑈𝑣௢ଶ , 𝐸 = 𝑈ଶ𝐶୔(𝑇௪ − 𝑇ஶ), 

𝑃௥ = ఓ஼೛௞ ,    𝐾௖ =  ௞೎തതതതణ௩೚మ,𝐺௠ = ௚ఉഥ  ణ௎௩೚మ (𝐶௪ − 𝐶ஶ),   𝑆௖ = ణ஽ಾ , 𝑀 = ఙ஻మ೚ణఘ௩೚మ ,𝑅 = ସణூఘ஼೛௩೚మ௤∗,  𝑄 = ொതణఘ௩೚మ஼೛, K = ௄ᇲ௩೚మణమ ,    𝑆௥ =  ஽ಾ௄೅೜∗ೡೖೡ೚ణ ೘்(஼ೢି஼ಮ), 𝐷௨ =  ஽ಾ௄೅(஼ೢି஼ಮ)஼೛஼ೞ(்ೢ ି ಮ்)  , 𝑁 =  ௞௞∗ସఙ∗ 𝑻ಮ𝟑 
Equation (13) gives, 𝑣ᇱ = −𝑣௢(𝑣௢ > 0)         (19) 

The form of governing equations in dimensionless are as follows: ௗమ௨ௗ௬మ + ௗ௨ௗ௬ −   ቀ 𝑀 + ଵ௄ቁ 𝑢 = − 𝐺௥𝜃 − 𝐺௠𝜑       (20) 
ୢమ஘ୢ୷మ + Λଵ ୢ஘ୢ୷ − Q ଵθ = −ΛଵE( ୢ୳ୢ୷ )ଶ − ( M + ଵ୏) Λଵ E uଶ −  D୳Λଵ ୢమ஦ୢ୷మ      (21) 

ୢమ஦ୢ୷మ + Sୡ ୢ஦ୢ୷ − K ୡ φ = − SୡS୰ ୢమ஘ୢ୷మ        (22) 
Where, Λ=1 + ସଷ୒ , ஃ୕ = Qଵ , and Λଵ =   ୔౨ஃ  

Corresponding boundary conditions (17)-(18) reduces to At  𝑦 = 0 ∶  𝑢 = 1, డఏడ௬ = −1, 𝜑 = 1       (23) As y → ∞ :  u → 0, θ → 0, φ → 0       (24) 
 

METHOD OF SOLUTION 
The ordinary differential equations (20)-(22) with the boundary conditions (23) and (24) are solved by the use of 

numerical method ‘MATLAB built-in bvp4c solver technique’. The boundary ordinary differential equations are 
converted into the first order differential equations are as follows: 

Let, 𝑢 = y(1)  ,     𝑢ᇱ =  y(2),    𝜃 =  y(3),       𝜃′ =  y(4),       𝜑 = y(5),       𝜑′ = y(6). 

Now, we have the following set of first order differential equations: yᇱ(2) =  −y(2) − ቀM + ଵ୏ቁ −  𝐺௥y(3) − 𝐺௠ y(5)      (25) 
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Pr Pr 1 Pr Pr(4) (4) (3) (2) (2) (1) (1) (6)
4 4 4 4 41 1 1 1 1

3 3 3 3 3

Qy y y E y y M E y y Du y
K

N N N N N

 ′ ′= − + − − + −           + + + + +         
         

 (26) 

(6) (6) (5) (4)y Sc y Kc y Sc Sr y′ ′= − + −       (27) 

 The boundary conditions of the resulting ordinary differential equations can be expressed as,  

0(1) 1, 0(4) 1, 0(5) 1, 1(1) 0, 1(3) 0, 1(5) 0y y y y y y− + − − − −     (28) 
 

RESULT AND DISCUSSION  
In this study, the effects of various non-dimensional physical parameters such as magnetic parameter  (M), radiation 

parameter (N), thermal diffusion ratio (𝐾்) , heat sink (Q), thermal Grashof number (G୰ ), solutal Grashof number (G୫ ), chemical reaction (Kୡ ), Soret number (S୰ ), Schmidt Number (Sc ), Prandlt number (𝑃௥ ), Dufour number ( D୳) 
and porosity parameter (K ) on velocity field (u) , temperature field (θ) and concentration field ( 𝜑) of the  flow  system  
have been studied and their variations with respect to the parameters are shown by graphs. The Variations of fluid velocity, 
temperature and concentration field are shown in figures 2-20 graphically. 

 
Velocity variation: The velocity profiles are shown in figures 2-9. Figure-2 represents that the fluid velocity u 

decreases with the increasing values of magnetic parameter (M). This happens as a result of the fluid's velocity decreasing 
due to the magnetic field's generation of an opposing Lorentz force. Therefore, the increasing value of magnetic field 
results in the decrease of fluid velocity. Figure-3 shows the effect of the radiation parameter on the velocity profile. It is 
evident that as the radiation parameter increases, the velocity of fluid particles increases. 

  
Figure 2. Variation of the velocity with M Figure 3. Variation of the velocity with N 

Figure-4 shows the impact of chemical reaction parameter 𝐾௖  on velocity profile. It is observed that fluid velocity 
(u) decreases with the increase of chemical reaction parameter 𝐾௖ . Figure-5 shows how fluid velocity changes with 
thermal Grashof number 𝐺௥  . It is noted that velocity increases along with the thermal Grashof number. 

  
Figure 4.  Variation of the velocity with 𝐾௖  Figure 5. Variation of the velocity with 𝐺௥  

This can be explained by the observation that temperature gradients rise in proportion to an increase in Grashof 
number, which ultimately causes the velocity distribution inside the flow to increase. Figure-6 demonstrates how the 
solutal Grashof number 𝐺௠ affect the fluid velocity. It is noted that the fluid velocity increases with 𝐺௠ . The thermal and 
solutal buoyancy forces cause a considerable rise in the velocity field. This results from the direct relationship between 
buoyant force and Grashof numbers. Figure-7 depicts the effect of Soret number (𝑆௥ ) on velocity. It is seen that the fluid 

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

y

u

M = 2, 4, 6, 10

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

y

u

N = 5, 9, 13

0 1 2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

y

u

Kc = 1, 1.5, 2.5, 5

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

y

u

Gr = 10, 16, 20, 24



146
EEJP. 2 (2024) Salma Akhtar, et al.

velocity increases due to the increase of Soret number. In figure-8, it has been noted that when the porosity parameter (K) 
grows, the fluid velocity increases. This happens because a fluid with a higher porosity value has more room to move. 
Consequently, an increase in the fluid velocity occurs. Figure-9 shows the influence of Dufour number (𝐷௨ ) on fluid 
velocity. It is regarded that as Dufour number increases there is monotonic increase in the fluid velocity. 

  

Figure 6. Variation of the velocity with 𝐺௠  Figure 7. Variation of the velocity with 𝑆௥  

  
Figure 8.  Variation of the velocity with K Figure 9. Variation of the velocity with 𝐷௨  

Temperature Variation: The temperature profiles are shown in figures 10-17. Figure-10 demonstrates 
how temperature profile changes with heat sink (Q). It is noted that the fluid temperature decreases with the 
increase of Q. Figure 11 indicates that the fluid temperature decreases as the chemical reaction parameter (𝐾௖ ) 
increases. Figure -12 shows how the radiation parameter affects the temperature profile. The observed that the 
fluid's temperature drops as the radiation parameter increases. Figure-13 illustrates how the fluid temperature 
drops as the magnetic parameter increases. The increasing values of solutal Grashof number (𝐺௠ ) and thermal 
Grashof number(G୰ ) increases the fluid temperature, as shown in figures 14 and 15. Figure-16 shows a clear 
rise in the fluid temperature for increasing the Soret number(𝑆௥ ). Figures-17 describes the effect of Dufour 
number ( D୳ ) on fluid temperature. The Dufour number signifies the contribution of the concentration 
gradients to the thermal energy flux in the flow. It is seen that as Dufour number (𝐷௨ ) increases there is 
monotonic increase in temperature. 

  
Figure 10. Variation of the temperature with Q Figure 11. Variation of the temperature with 𝐾௖  
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Figure 12.  Variation of the temperature with N Figure 13. Variation of the temperature with M 

  
Figure 14. Variation of the temperature with 𝐺௠  Figure 15. Variation of the temperature with 𝐺௥  

  
Figure 16. Variation of the temperature with  𝑆௥  Figure 17. Variation of the temperature with 𝐷௨  

Concentration Variation: The concentration profiles for the parameters 𝑲𝒄 ,  𝑺𝒓  and  𝑫𝒖  are depicted in figures 18-20. 
Figure-18 illustrates that fluid concentration decreases with increasing chemical reaction parameter(𝑲𝒄 ). Figure-19 shows 
a clear rise in the fluid concentration for increasing the Soret number ( 𝑺𝒓 ). Figure-20 describes the fluid concentration 
increases due to the increasing value of Dufour number ( 𝑫𝒖 ).  

 
Figure 18. Variation of the concentration with 𝑲𝒄  
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Figure 19. Variation of the concentration with  𝑺𝒓  Figure 20. Variation of the concentration with  𝑫𝒖  

 
CONCLUSION 

In this inquiry, using the ‘MATLAB built-in bvp4c solver technique’, free convective MHD radioactive flow across 
a porous vertical plate surrounded by a porous medium has been numerically simulated, accounting for viscous 
dissipation, thermo-diffusion, and chemical reaction. The investigation's results are noteworthy when fluid temperature 
rises for high radiation and high thermo-diffusion effects. The consumption of species and magnetic field characteristics 
is still decreased. As the buoyant force grows, the upsurge concentration rises; nevertheless, as the magnetic parameters 
grow, it declines. With a rise in magnetic field and intense radiation, the flow slows down. The impact of thermo-diffusion 
causes the flow to speed up. The application of thermal radiation and magnetic field slows the drag force at the plate. The 
rate of mass transfer is increased by increasing the thermo-diffusion effect. 

NOMENCLATURE 𝑞⃗ Fluid velocity vector 𝐾் Thermal diffusion ratio 
ρ Fluid density 
T Fluid temperature 𝐶ஶ Species concentration in free stream 𝐵ሬ⃗  Magnetic flux density vector 
ν Kinematic viscosity 
C Molar species concentration 𝐽 Current density vector 𝐶ௐ Species concentration at the plate 𝐽 Acceleration vector due to gravity 𝑇௠ Mean fluid temperature 
P Fluid pressure 𝐸ሬ⃗  Electrical field 𝐶௣ Specified heat at steady pressure 
μ Coefficient of viscosity 

U Free stream velocity 𝑞∗ Heat flux 𝜎∗ Stefan-Boltzmann constant 𝑞௥ Flux of radiation heat 
κ Thermal conductivity ௃⃗మఙ  Ohmic dissipation of energy per unit volume 
ϕ Viscous energy dissipation per unit volume 𝐾௖ Chemical reaction coefficient 
σ Conductivity of electricity 
K Porosity parameter 
∗ Mean absorption coefficient 𝐷ெ Mass diffusivity 
β Coefficient of thermal expression 
N Radiation absorption Coefficient 
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ВІЛЬНИЙ КОНВЕКТИВНИЙ РАДІОАКТИВНИЙ МГД ПОТІК ЧЕРЕЗ ВЕРТИКАЛЬНУ ПЛАСТИНУ В 

ПОРИСТОМУ СЕРЕДОВИЩІ З УРАХУВАННЯМ В'ЯЗКОВОЇ ДИСИПАЦІЇ, ТЕРМОДИФУЗІЇ 
ТА ХІМІЧНОЇ РЕАКЦІЇ 

Сальма Ахтарa, Кешаб Борахa, Шьяманта Чакрабортиb 
aФакультет математики, Університет Гаухаті, Гувахаті-781014, Ассам, Індія 

bUGC-HRDC, Університет Гаухаті, Гувахаті-781014, Ассам, Індія 
У статті розглядається рішення для двовимірного постійного, в’язкого, розсіювання тепла, нестисливого гідромагнітного 
вільного конвективного потоку повз рівномірно рухому вертикальну пористу пластину, занурену в пористий матеріал, за 
наявності ефекту Соре, ефекту Дофура та хімічної реакції. Постійне магнітне поле спрямоване в область рідини 
перпендикулярно до пластини. Вбудований у MATLAB розв’язувач bvp4c використовується для розв’язування керівних 
безвимірних рівнянь. Обговорення поточного питання зосереджено на впливі теплової дифузії, магнітного поля, теплового 
випромінювання, числа Грасгофа, числа Соре, числа Дюфура та хімічної реакції. Помічено, що число Соре покращує 
температуру рідини. Крім того, температура, концентрація та швидкість рідини падають зі збільшенням параметра магнітного 
поля. Хоча розсіювання тепла, викликане пористістю середовища, зазвичай не враховується при моделюванні конвективного 
МГД-потоку, воно розглядається в цій роботі. 
Ключові слова: МГД; пористе середовище; хімічна реакція; випромінювання; розсіювання тепла; ефект Соре і ефект 
Дюфура 


